
ENPDA: an evolutionary structure-based de novo peptide design algorithm

Ignasi Beldaa, Sergio Madurgaa, Xavier Lloràb, Marc Martinella, Teresa Tarragóa,
Mireia G. Piquerasc, Ernesto Nicolásc & Ernest Giralta,c,*
aInstitut de Recerca Biomèdica de Barcelona, Parc Cientı́fic de Barcelona, Universitat de Barcelona, Josep
Samitier, 1-5, Barcelona, E 08028 Spain; bIllinois Genetic Algorithms Laboratory, National Center for
Supercomputing Applications, University of Illinois at Urbana–Champaign, 117 Transportation Building, 104
South Mathews Urbana, Illinois, IL, 61801-2996, USA; cDepartament de Quı́mica Orgànica, Universitat de
Barcelona, Martı́ i Franquès, 1-11, Barcelona, E 08028 Spain

Received 5 April 2005; accepted 14 August 2005

� Springer 2005

Key words: de novo design, evolutionary algorithms, peptide design

Summary

One of the goals of computational chemists is to automate the de novo design of bioactive molecules.
Despite significant advances in computational approaches to ligand design and binding energy evaluation,
novel procedures for ligand design are required. Evolutionary computation provides a new approach to this
design endeavor. We propose an evolutionary tool for de novo peptide design, based on the evaluation of
energies for peptide binding to a user-defined protein surface patch. Special emphasis has been placed on the
evaluation of the proposed peptides, leading to two different evaluation heuristics. The software developed
was successfully tested on the design of ligands for the proteins prolyl oligopeptidase, p53, and DNA
gyrase.

Introduction

A primary goal in computational chemistry – as
well as in general drug development – is the
automation of de novo drug design [1, 2]. The
recent surge in proteins identified as targets of
pharmacological interest, a result of major ad-
vances in experimental structure determination [3, 4]
and high-throughput modeling [5], has created a
demand for new, drug-like ligands. Although
significant advances have been made in computa-
tional approaches to ligand design [6–8], there
continues to be an interest in novel design
approaches.

Peptides offer tremendous therapeutic potential
for myriad diseases [9]. However, the reality of

peptidic drugs has been slow to arrive owing to the
poor ADME (absorption, distribution, metabo-
lism, excretion) profiles of most peptides. Strate-
gies to overcome the aforementioned limitations
include drug delivery of peptides [10], and the
incorporation of metabolically robust residues
(e.g., D amino acids) into peptide sequences.

Several research groups are currently trying to
develop methodologies for the design of peptidic
drugs. Examples of effective methodologies are
structure-based drug design [11], whereby the
design process is tackled as an engineering
problem, and high-throughput screening (HTS)
of numerous compounds from combinatorial
libraries against a known target [12]. We propose
herein a new in silico approach, dubbed ENPDA
(Evolutionary structure-based de Novo Peptide
Design Algorithm), that is a hybrid of the two
aforementioned strategies; it allows the screening

*To whom correspondence should be addressed. Phone: +34-
934037125; Fax: +34-934037126; E-mail: egiralt@pcb.ub.es

Journal of Computer-Aided Molecular Design (2005) 19: 585–601
DOI 10.1007/s10822-005-9015-1

585

of large numbers of candidate peptides that are
derived from a semi-rational process implying
evolutionary computation.

We use evolutionary algorithms to generate
potential peptide ligands of a given protein, by
minimizing the docking energy between the can-
didate peptide ligand and a user-defined area of
the target protein surface, or surface patch [13]. To
achieve this goal, an algorithm must address two
main tasks. First, a competent search method must
be provided to explore this high-dimensional
chemical space. Second, the search space (i.e., the
set of all algorithmically treatable molecules) must
be divided into regions of higher and lower quality
to allow the prediction of desired properties [14].
In this paper, we present results from testing four
different evolutionary algorithms as candidates for
the search task: (1) Darwinist genetic algorithm
(GA) – also known as the original GA [14], (2)
Lamarckian genetic algorithm (LGA) [15], (3)
population-based incremental learning (PBIL)
[16], and (4) Bayesian optimization algorithm
(BOA) [17].

The evaluation focused on ordering the search
space into regions of higher and lower quality by
implementing two different heuristics – one of
which emphasized speed, the other of which
emphasized accuracy – to calculate the fitness
(docking energy) of each individual (peptide)
proposed by the evolutionary algorithms. We used
AutoDock 3.0.5 [18] to execute the docking
calculations required by the heuristics.

We then tested the developed methodology in
several test cases: the proteins prolyl oligopetidase,
p53, and DNA gyrase. The results obtained are
encouraging. Some of the new ligands designed via
computational methods have better docking ener-
gies than those peptides designed using a purely
chemical-knowledge based approach. Moreover,
we carried out a validation process based on the
known complexes of the protein MHC H-2Kb with
peptide ligands.

Related work

Several approaches to computer-based ligand
design have previously been reported, includ-
ing growing [19–22], linking [23–25], physico-
chemical property guided search [26, 27], and
experimental-aided evolution [28, 29]. In the

growing strategy, the process starts from a seed
structure that has been pre-placed on the surface
patch. The user then designates certain growth
sites on the seed structure, at which point the
program tries to replace each growth site with a
candidate fragment. The newly formed structure
serves as the seed structure for the next growing
cycle. In the linking strategy, the process also
starts form a pre-placed seed structure. However,
in this case, the structure consists of several
separate pieces that have been positioned to
maximize interaction with the target protein. The
pieces grow simultaneously, and the program
ultimately tries to link them in an acceptable
way. This process continues until all of the
pieces have been unified into a single molecule.
In the physico-chemical approach, the main goal
is to obtain a peptide exhibiting an optimal set
of physico-chemical properties associated with
known good ligands. A peptide is then designed
by considering this obtained set of physico-
chemical properties. Finally, in experiment-aided
evolution approaches, an evolutionary algorithm
evolves a set of molecules that are subsequently
synthesized and experimentally evaluated.

Schneider et al. [30] developed an evolutionary
algorithm for optimizing peptides by computing
their fitness using neural networks. The difference
between Schneider’s approach and our approach is
that their tool requires an initial seed compound,
or pre-optimized lead peptide compound. In our
case, we design peptides – de novo – without
needing any seed to start the search, avoiding any
initialization bias.

ADAPT [31] is a program for the total design
of small organic molecules. The underlying mech-
anism uses docking as part of the fitness measure.
The main difference between ADAPT and our
approach is that our system is specifically opti-
mized for the synthesis of sequential compounds
and, more specifically, much larger compounds
than those for which ADAPT has been optimized.

Previously reported strategies for peptidic
ligands are only amenable to sequences based on
L-amino acids. This limitation could thus yield
compounds with high protease liability, and
consequently, poor bioavailability [32]. Overcom-
ing this drawback was another motivation for the
title project. Although we are currently working
with natural amino acids (L-amino acids), the
framework has been designed to accommodate

586

D-amino acids. Albeit results with D-amino acids
are not presented here, it should be noted that the
algorithms and the evaluation of ligand energy
function independently of peptide stereochemistry.

Methods

ENPDA is based on the use of evolutionary
algorithms; several of which were explored for
the present work as detailed below. The evaluation
of fitness values (i.e., the docking energy of a test
peptide to a given surface patch) is especially
difficult in our case due to the fact that the high
flexibility of peptide ligands implies a huge con-
formational space to be explored. As a response to
this challenge we developed two different heuristics
that are also described below.

Evolutionary computation

Evolutionary computation is currently being
applied to several areas of chemoinformatics [33],
and has recently been utilized in drug and com-
pound library design [25, 27, 34–38]. However,
despite the numerous evolutionary computation
tools available, those used in drug design are
primarily genetic algorithms and to a lesser extent,
Lamarckian genetic algorithms [18].

Evolutionary algorithms are ideal for cases in
which deterministic or analytic methods fail, for
instance, problems in which the underlying math-
ematical model is not well defined or the search
space is too large. These obstacles are commonly
encountered in our research. The mathematical
model being optimized in the present work,
provided by AutoDock 3.0.5, is based on docking
and is imperfect [39]. Also, the search space is too
big to be systematically explored and, moreover,
each docking energy computation is a very slow
process. The appeal of using evolutionary algo-
rithms for this model becomes apparent when one
considers that docking a hexapeptide onto a
protein surface may normally require more than
30 min of calculations on a 1.60 GHz Pentium
IV. These considerations have also guided work
previously reported by other researchers [21, 22,
25, 40].

Evolutionary algorithms are population-based
search methods. However, the solutions (in our
case, peptide ligands) must be represented in a way

that the evolutionary algorithm can handle. In the
jargon of evolutionary algorithms, solutions are
known as individuals, and they can be represented
by chromosomes, although other forms of repre-
sentation are available [41]. Each chromosome is a
sequence of genes. In our case a chromosome is a
peptide, and each gene represents an amino acid.
The position of a gene has in a chromosome
corresponds to the position of an amino acid
within a peptide. In our case the genotype, the
amino acid sequence of a peptide, is distinct from
the phenotype, the 3D structure of the peptide
when bound to a protein surface patch.

The remainder of this section describes the
evolutionary algorithms used.

Darwinistic genetic algorithm

The Darwinistic genetic algorithm (GA) is the
original genetic algorithm proposed by Holland
[14]. The Darwinistic GA evolves a population of
individuals by progressively adapting them to the
environment (i.e., the problem being optimized,
which in our case is the minimization of the
docking energy between a peptide ligand and a
target protein). During the evolutionary process,
individuals are selected, crossed over and mutated
to generate new individuals. GA’s consist of five
steps: (1) initialization, (2) evaluation, (3)
selection, (4) crossover, and (5) mutation (see
Figure 1).

For the first step, a population can be initial-
ized in several ways, however, the usual method is
a random function. Afterwards, the GA enters a
loop formed by the evaluation, selection, cross-
over, and mutation phases. This evolutionary loop
runs until the end criteria are satisfied.

The loop commences with the evaluation,
whereby the fitness of each individual is calculated
using a function – or model – to assess the degree
of adaptation of that individual to the environ-
ment.

Once the fitness of each peptide is computed,
the best individuals are selected by the Rank
Selection method [42], which ranks individuals by
fitness. Then Stochastic Universal Sampling [43]
selects the individuals to be crossed over, by
mapping individuals onto contiguous segments of
a line, such that the size of each individual segment
is proportional to its rank. Pointers are then
placed over the line at regular intervals – one for

587

each individual to be selected. This method has
been described as a good selection operator for
small populations [43].

Once the individuals that are going to be
reproduced have been selected, crossover begins.
Two parents are chosen randomly from the
selected individuals. A random cut point is gener-
ated in each parent, at which tail fragments are
exchanged. Thus one of the offspring will be
comprise the head fragment of the chromosome of
one parent and the tail fragment of the chromo-
some of the other parent, and vice-versa for the
second individual.

The following step in the loop is mutation.
Small, random changes are introduced into the
population with a pre-defined probability. Muta-
tion introduces genetic diversity into the search,
assuring that all the search space could be
explored.

The next generation is built before restarting
the loop. Every new generation contains a certain
percentage of individuals selected from the high
fitness members of the previous generation. This

technique is known as elitism [44], and the per-
centage is normally set to one individual per
generation in order to avoid premature conver-
gence of the population.

Lamarckian genetic algorithm

The Lamarckian genetic algorithm (LGA) [15]
follows a similar life cycle to that presented above.
The only difference is the introduction of a local
search applied to each individual before being
selected. Figure 2 shows the steps of this algo-
rithm. Throughout this description we will focus
on the local search applied in this algorithm.

Local search implementation can be performed
in many ways. In our work we used a (1+1)
evolutionary strategy (ES) [45] – see Figure 3. This
ES performs a mutation over an entire chromo-
some. The new individual is then evaluated and
compared to its parent, and the best of the two
proceeds to the next generation. This process is
repeated for each individual as many times as
indicated by the user.

Figure 2. General overview of LGA steps.

Figure 1. General overview of GA steps.

588

In the ES mutation stage, a Gaussian mutation
is performed. The chromosomes that represent
each one of the proposed peptides are rebuilt.
Each old gene is enhanced by another gene that
encodes the standard deviation to be used by the
Gaussian mutation. Hence, in the mutation step,
for each gene representing a peptide amino acid, a
random value with a normal distribution is taken.
This value corresponds to the amino acid gene in
the new individual. Figure 4 summarizes this step.
It should be noted that since we are dealing with
amino acids as categorical values, the only func-
tions of the Gaussian mutation are to detect if an
amino acid is favorable, and if not, to replace that
amino acid.

In ES there are two kind of mutations. The
gene values are mutated as described above, and in
addition, the standard deviation values can also be
mutated. This second mutation is carried using the
following formula:

r0i ¼ ri � expðs0 �Nð0; 1Þ þ s �Nið0; 1ÞÞ ð1Þ

ri
0 is the value of the ith standard deviation gene of

the new individual, and is composed of two
independent terms. The first of these terms
(s¢ÆN(0,1)) takes the same value for every mutation
in the step, while the second s (sÆNi(0,1)) is
computed individually for each standard deviation
gene mutation. ri represents the value of the ith
standard deviation parent gene. N(0,1) is a random

NoYes

Evaluation

Better than before?

Mutation

Optimised chromosome

Initial chromosome

Discarded

Figure 3. Steps performed in an ES.

589

number with a normal distribution with a mean of
0 and a standard deviation of 1. Finally, the
parameters s and s0 are recommended to be
proportional to (2) and (3) [46].

s / 1
ffiffiffiffiffiffiffiffiffi

2
ffiffiffi

n
pp ð2Þ

s0 / 1
ffiffiffiffiffi

2n
p ð3Þ

where n is the number of amino acid genes in the
chromosome.

Population-based incremental learning

Baluja and Caruana [16] defined the population-
based incremental learning (PBIL) algorithm as an
abstraction of a GA by explicitly maintaining the
statistics contained in a GA population. In simple
words, PBIL is a GA having a statistical vector in
place of a crossover or mutation. By statistical
vector we mean a data structure in which we
compute the frequency with which each gene allele

appears in the best individuals of the population.
If more than two alleles are possible, PBIL
generates a matrix computing the appearance
frequencies for each vector and allele. The new
individuals are thus created by sampling the
inferred statistical matrix. Figure 5 shows the
PBIL life cycle.

PBIL performs incremental learning, meaning
that the statistical matrix is not built from scratch
for each generation. The values of this table are
computed as follows:

8i8jVprob½i �½ j � :¼ ðð1� aÞ � Vprob½i �½ j �Þ
þ ða � V0prob½i �½ j �Þ

where, Vprob[i][j] is the matrix in which the
appearance frequency is characterized and a is
the learning rate. It should be noted that if a is set
to 1 for each generation, the matrix is built from
scratch. V0prob[i][j] is the matrix containing the
appearance frequency for the present generation
only. "i refers to all of the genes in the chromo-
some, and "j represents the possible values of each
gene.

Figure 5. Life cycle of the PBIL algorithm.

N N NN

SD1’

NN

SD6AA1 SD1 SD2AA2 AA3 SD3 AA4 SD4 AA5 SD5 AA6

AA3’SD2’ SD3’ AA4’ SD4’ AA5’ SD5’ AA6’ SD6’AA1’ AA2’

Figure 4. Gaussian mutation performed over the genes representing amino acids. The AAi term is the value of the amino acid gene
representing the i amino acid of the peptide. The SDi is the gene representing the standard deviation of the amino acid gene i.
Those terms with the prime symbol are the values of the new individual built using AAi as expectation of the Gaussian function
(N) and SDi as standard deviation.

590

A new individual is generated from sampling of
the inferred distribution. We performed this step
as many times as there are individuals in the
population.

This algorithm is based on the assumption that
values which can adopt the genes – i.e., the alleles –
are independent. This underlying premise is not
necessarily true in real drug design problems. For
this reason we decided to implement another
estimation of the distribution algorithm that
correlates the frequencies with which each genes
in the chromosome appears.

Bayesian optimization algorithm

The Bayesian optimization algorithm (BOA) [17]
is quite similar to PBIL. Its life cycle is identical,
but instead of using a statistical matrix to perform
the population inference it uses a Bayesian network
[47, 48].

A Bayesian network is an annotated, directed
graph that encodes probability relationships
among distinctions of interest in an uncertain-
reasoning problem. In our work, it encodes the
conditional probabilistic relationships among the
possible values of the amino acids of each gene.
The Bayesian network is modeled with only the
best individuals of the population. This task is

performed via the K2 algorithm in tandem with
Dirichlet metrics [49].

The K2 algorithm is a Bayesian network
building algorithm. It is a greedy algorithm that
tries to maximize the Dirichlet metrics of a
Bayesian network by adding, removing, or chang-
ing the direction of the edges that interconnect the
nodes. Once K2 has found an optimal network
topology, conditional probabilities of the condi-
tional relationships represented by the edges can
be computed. For example, if in a given network,
node gene1 is connected to the node gene5, then a
conditional relationship between these two genes
has been observed. An example of a Bayesian
network is illustrated in Figure 6.

In the sampling stage, the conditional relation-
ships inferred in the Bayesian network must be
taken into account when creating the individuals
of the next generation. A detailed explanation of
the sampling algorithm used for this task can be
found in [50].

Heuristics

As stated above, the use of evolutionary algo-
rithms requires a tool to structure the search space
into regions of higher and lower quality. We

G0

G5 G4

G2 G3G1

Figure 6. A graphical example of a Bayesian network. Each node represents one gene in the evolutionary algorithm. In this exam-
ple, the value of G5 depends on the values of G1 and G2, the value of G0 depends of the values of G5 and G4, and G3 is indepen-
dent.

591

developed two heuristics to compute the energy for
docking each peptide to a user-defined surface
patch. These calculations provide us with an
estimation of the binding energy between the
peptide and the protein. The two heuristics are
complementary. Whereas the first one is quicker,
the second is more accurate, and, hence, compu-
tationally more expensive. The researcher can
choose the heuristic according to the needs of the
problem in question.

Docking

Docking algorithms are in silico tools that search
for the best mode of interaction between a small,
flexible ligand and a large, usually rigid, macro-
molecular receptor. Docking programs usually
consist of two key elements: an energy function
to be minimized, and a search algorithm. The
search algorithm is used to determine which
three-dimensional structure minimizes the energy
function. However, as an increase in ligand
flexibility results in an exponential increase in
search space, the search algorithm is rarely able
to find the global optima. Moreover, the energy
functions are typically an approximation of the
real binding energy, which could lead to artifac-
tual results in the docked complexes. However,
recent reviews of the topic are encouraging in
terms of docking [51].

In the specific case of AutoDock 3.0.5 [18], the
energy value being minimized is the sum of the
final intermolecular energy and the final internal
energy of the ligand. In our work, the small flexible
ligands are the peptides proposed by the evolu-
tionary algorithms, and the macromolecular recep-
tor is the surface patch of the protein defined by
the researchers.

The heuristics first entail preparation of the
information needed by AutoDock, which is then
used to perform the docking experiments. The
program’s output is subsequently used to extract
the docking energy. We used AutoDock set at the
majority of its default parameters. We used an
LGA as a search algorithm within AutoDock,
with 50 individuals per generation, 10,000 gener-
ations, 300 steps of local optimization and a
maximum of 2,500,000 energy evaluations. The
process is independently executed (i.e., with differ-
ent initializations for each docking experiment) ten
times for each docking run.

Systematic exploration of the search space is
impractical because of the time required for
docking calculations. The computing expense is a
consequence of two factors: peptide size and
peptide flexibility. The former stems from the fact
that the peptides we designed are six amino acids
in length, and any shorter peptides would be
useless for our application, (i.e., to act as protein–
protein interaction inhibitors). The latter is due to
the fact that a high degree of flexibility had to be
introduced into the peptides to obtain reliable
results.

Rapid heuristics

The more rapid heuristics only involves one
docking run, which itself includes ten docking
experiments, however, as explained below, the
more accurate technique involves five. There are
five stages in the heuristics: (1) three-dimensional
reconstruction, (2) energy minimization, (3) flexi-
ble angle definition, (4) docking and (5) Boltzmann
averaging of docking energies.

Three-dimensional reconstruction
The internal representation of the peptides in the
evolutionary algorithms is not a three-dimensional
structure, but rather a sequence of amino acids.
We developed a program in NAB language [52]
which reads these sequences and outputs a PDBQ
file (PDB with charges) [53] that describes the
extended structure of the peptide and can be
subsequently used for docking experiments.

Energy minimization
The next step is to perform a short energy
minimization over the extended structure
obtained in the previous step. We imple-
mented this into the program developed for the
three-dimensional reconstruction [52], using a
conjugate gradient minimization until the root-
mean-square of the components of the gradient
was less than 1.0.

Flexible angles definition
Before starting the docking calculations we
redefined our ligand (peptide) to be flexible, by
fixing the backbone but providing flexibility to
the side chains. To perform this task we
use AutoTors, which is an auxiliary script of
AutoDock.

592

Docking
Using the ligand built in the previous stages and
the user-defined surface patch, a docking run
takes place using the previously described con-
figuration.

Boltzmann averaged binding energy
Finally, we computed a Boltzmann binding energy
by averaging the most stable structure found in
each of the 10 runs of the docking algorithm. The
value obtained in this step is the fitness value for
the peptide in question.

Accurate heuristics
The second heuristics implicitly implements back-
bone flexibility, making it more accurate than that
described above, in which the backbone was fixed
after the energy minimization stage. The second
heuristic involves five different dockings, each of
which corresponds to a different peptide backbone
structure. Once the docking experiments have been
carried out, we keep the most stable of the
structures generated. This heuristics comprises five
steps: (1) secondary structure prediction, (2) rota-
mers construction, (3) definition of flexible angles,
(4) docking, and (5) Boltzmann averaging of
docking energies.

Secondary structure prediction
We first use the Chou-Fasman method [54] for
secondary structure prediction of peptides, which
takes into account their amino acid sequence.
This method assigns to each conformation
(a-helix, b-strand or random coil) a number
representing the ‘‘probability’’ of adopting that
conformation.

Rotamer construction
Using the numbers obtained from the Chou-
Fasman prediction, we built five rotamers of the
same peptide. In each rotamer, all the / and w
angles of the peptide are randomly chosen from
the area of a Ramachandran map which represents
the secondary structure being built. Angle x is
fixed at 180�.

Flexible angle definition
Using AutoTors, each side-chain of each of the
five peptide structures built is defined as flexible.
Hence, in each docking experiment, the backbones
are fixed and the side-chains are flexible.

Docking
A single flexible docking run is carried out for each
rotamer built. Each of the docking calculations is
carried out as in the first heuristics. As each
docking run implies ten independent docking
experiments, fifty docking experiments are ulti-
mately performed in this stage.

Boltzmann averaged binding energy
Finally, we determined which of the rotamers is
most stable when docked, then calculated the
Boltzmann averaged binding energy for this rot-
amer as previously described.

Results

Reported here are the results from tests in which
ENDPA was used to design ligands for three
proteins of high therapeutic interest. Making an
exhaustive comparison of the performance of the
evolutionary algorithms developed is beyond the
scope of this paper. Moreover, said comparison
would be impossible using typical statistical anal-
ysis due to the high computational cost of ENDPA
– a typical run takes around 2 weeks using a 8
process elements of an Origin 3400. In this section,
we explored the performance of PBIL, LGA and
BOA in three different problems. We considered it
unnecessary to test GA, as it behaves similarly to
LGA.

We tested ENDPA on a wide range of proteins,
namely POP, p53, and DNA gyrase. The surface
patch of POP is located inside a long tunnel, while
the surface patch of p53 is a large hydrophilic
surface, and that of DNA gyrase is an area of
DNA interaction. To ensure a fair comparison, we
carried out four experiments for each of the
systems studied. In the first, we performed docking
experiments with peptides designed manually by
researchers in our group, as well as with some
natural ligands. In the second experiment, we ran
ENPDA. In the third, we evaluated as many
random peptides as each algorithm had evaluated
in each subsystem and we compared the top-five
random peptides to the peptides obtained by the
other sources. And finally, we evaluated five
totally random peptides. In this manner we were
able to compare results derived from three very
different sources: human-guided methods, artificial
intelligence and random search. It is worth to say

593

that the random peptides were built using an
uniform residues frequencies among the selected
subset of amino acids for each system.

Since ENPDA allows to select the amino acids
that can be used in the peptide design, we selected
a small reduced set for each system. It should be
remembered that the aim of the present work is the
identification of peptide ligands starting from
scratch. Hence, optimization of the peptides will
be the subject of future work.

In addition, in order to compare and validate
the peptides obtained with ENPDA, we have
designed ligands for a protein that has been
reported to co-crystalize with peptides. The chosen
system is the protein MHC H-2Kb complexed to
the high affinity peptide dEV8. Hence, we wanted
to test if ENPDA was able to design ligands
similar in sequence and secondary structure to
peptides having a known affinity for MHC H-2Kb.

Prolyl oligopeptidase

Prolyl oligopeptidase (POP, EC 3.4.21.26) is a
cytosolic serine peptidase characterized by oligo-
peptidase activity. POP hydrolyzes peptide bonds
at the C-terminal site of prolyl residues within
polypeptides of less than 30 amino acids [55]. POP
is highly conserved in mammals and distributed
throughout the body, with higher concentrations
in the brain [56]. The three-dimensional structure
of POP reveals two distinct domains: catalytic and
structural. The catalytic domain contains residues
Ser554, His680, and Asp641, which form the
catalytic triad of the protease. These residues are
essential for the catalytic activity of the enzyme
and are located in a large cavity at the interface of
the two domains [57].

Based on this information and analysis of the
crystal structure of POP, we defined a surface
patch around the residues of the catalytic center
Ser554, His680 and Asp641. The surface patch
also comprises the cavity formed by the structural
domain that corresponds to the interior of the
b-propeller domain. Inside this cavity the substrate
interacts with many residues of the enzyme and is
directed to the active site. The surface patch is
ample enough to accommodate peptides composed
of six residues such as those tested in this study.

POP is involved in the maturation and degra-
dation of proline-containing neuropeptides that
are implitated in learning and memory [58].

Physiological studies of human plasma have
shown that POP activity is increased in mania,
schizophrenia, post-traumatic stress and anxiety,
while it is decreased in depression, anorexia and
bulimia nervosa [59, 60]. Modulation of POP
activity with specific peptide inhibitors could be
useful for the treatment of these diseases.

The initial POP structure used was that corre-
sponding to PDB code 1QFS. A brief energy
minimization was performed and hydrogen atoms
were added to the structure using the program
Insight II.

Ligand peptides found in the literature

Since the peptides found in the literature were
longer than six amino acids, we used fragments of
known POP substrates to perform the experi-
ments. As POP hydrolyzes bonds adjacent to
prolines, only fragments containing a minimum of
one proline residue were chosen. We tested the
following peptidic fragments of known POP sub-
strates: neurotensin fragment (KPRRPY), substance
P fragment (RPKPQQ), oxytocin fragment (QNCPLG),
and vasopresin fragment (QNCPRG). Furthermore,
the following peptides cited as POP inhibitors were
also tested: GKPPIG, GKPPVG, GVEIPE, GYPIPF,
HLPPPV, LLSPFW, LSPFWN, MPPPLP, MTPPLP,
TPPLPA and SPFWNI. Table 1 shows the energies
of all these peptides.

Table 1. Docking energy of fragments of POP inhibitors de-
scribed in the literature.

Peptide Docking energy

LSPFWN)9.5
QNCPRG)8.9
MPPPLP)8.9
HLPPPV)8.5
QNCPLG)8.0
TPPLPA)7.9
RPKPQQ)7.5
SPFWNI)7.5
MTPPLP)7.4
GKPPIG)7.2
GKPPVG)7.1
LLSPFW)6.3
GYPIPF)5.8
GVEIPE)5.1
KPRRPY)3.6

594

In silico designed peptides

In this stage we ran an LGA with 50 individuals
per generation, 10 generations and 2 local optimi-
zation steps. We used a crossover probability of
0.9, a mutation probability of 0.05 and an elitism
of one individual per generation. The more accu-
rate of the two heuristics was used, and a total of
975 peptides were explored using a reduced set of
amino acids: alanine, serine, proline, tryptophan,
glutamic acid, isoleucine and arginine. Table 2
shows the energies of the best five individuals
found by the algorithm. All of these peptides are
proline rich, in the same manner than the natural
inhibitors. Figure 7 displays an image of POP
interacting with one of the proposed peptides.

Random peptides

We also created 975 random peptides and tested
their docking energies using the accurate heuris-
tics. We used the same amino acid set used in the in
silico process above. Table 3 shows the top five
peptides found. Table 4 lists five additional com-
pletely random peptides.

p53

p53 is a transcription factor involved in different
cellular functions, such as cell cycle control, pro-
grammed cell death (or apoptosis), and differenti-
ation. The p53 gene was the first tumor-suppressor
gene to be identified, and is dysfunctional in most
human cancers. In ca. 50% of cancers, p53 is
deactivated as a direct result of mutations in its
corresponding gene. The deactivation of the pro-
tein may also stem from mutations in genes whose
products interact directly with p53 or are involved
in the p53 pathway. In other cases, p53 is shut
down upon binding of viral proteins to the protein
itself [61].

Table 2. Docking energy of the best five individuals found by
the algorithm for the POP.

Peptide Docking energy

WWPWPP)13.7
WWPSWA)13.2
WSPSWP)13.0
PWPEWA)13.0
WWPWSP)12.9

Figure 7. Proposed peptide, WWPWPP, docked in the user-defined surface patch of the protein prolil oligopeptidase.

Table 3. Docking energy of the best five peptides found for
POP among 975 random peptides.

Peptide Docking energy

SWPWWS)13.0
WAPWWS)12.1
WAPWAA)12.1
SWPAWS)12.0
PARWEP)12.0

Table 4. Docking energy of five random peptides bound to
POP.

Peptide Docking energy

SSWWRP)9.6
AIPPWE)8.2
AASAIP)7.0
PAIRAA)6.9
RWSRSP)5.6

595

p53 can be divided into four domains: (1) an N-
terminal trans-activation domain, (2) a DNA-
binding domain (DBD), (3) a tetramerization
domain (TD), and (4) a C-terminal regulatory
domain. The functioning of p53 is mediated by
protein-DNA and by protein-protein interactions.
The tetramerization domain plays an essential role
in the protein’s activity as only the tetramer is
active [62]. This domain can be described as a
dimer of dimers. Each primary dimer is formed by
an antiparallel b-sheet and two antiparallel a-heli-
ces, and the two dimers are arranged orthogonally
[63]. Peptides that recognize this tetramerization
domain and stabilize its native conformation could
be of great interest in cancer research.

For our work with p53, we chose the structure
corresponding to PDB code 1SAL, which was
originally derived from NMR studies. Hydrogen
atoms were then added to the structure using the
Insight II software.

Peptides designed by researchers

In our group, we have studied recognition of the
p53 tetramerization domain by a tetraguanidinium
compound [64]. Based on this molecule, we have
designed and synthesized a peptide which is also
able to interact with the domain. The recognition
can be attributed to arginines in the peptide, which
are known to favor interaction with the carboxyl-
ate-rich surface of the protein. In order to improve
the affinity of the peptide for the protein surface,
we designed a peptide library in which arginine
was widely substituted for other residues, primar-
ily through modifications of the chain length and/
or functional group. The library was synthesized
and is currently evaluated in our laboratory.
Table 5 shows the docking energies of the best
five peptides found in the 47 peptide library. More
details on the design and evaluation of these
peptides can be found in [65].

In silico designed peptides

In this stage we ran PBIL using 50 individuals per
generation, and 20 generations. The learning rate
(a) was set to 0.5. The best 20 individuals from
each generation were taken to build the statistical
matrix and an elitism of one individual was
allowed. Accurate heuristics was used, and a total
of 715 peptides were explored based on the

following amino acids: alanine, serine, tryptophan,
glutamic acid, isoleucine and arginine. Table 6 lists
the energies of the five best individuals found by
the algorithm. Figure 8 shows p53 interacting with
one of the proposed peptides.

Random peptides

In this stage we created 715 random peptides and
tested their docking energy using the accurate
heuristics. We used the same amino acid set as in
the in silico design process. Table 7 shows the best
five peptides found among the 715 and Table 8
shows five fully random peptides.

DNA gyrase

The enzymes responsible for maintaining the
topological state of DNA are termed DNA topoi-
somerases [66], although type II topoisomerases
are also known as DNA gyrases. These proteins
influence basic in vivo processes such as RNA
transcription as well as DNA replication and
recombination. DNA gyrases are essential to all
cells and, as such, are important targets for many
antibacterial drugs.

Many discoveries regarding gyrase function,
such as the determination of the nature of the ATP
binding site, as well as the relationship between
gyrase activity and DNA replication and tran-
scription, have been made through the use of

Table 5. Docking energy of the top-five peptides designed as
p53 ligands.

Peptide identification Docking energy

Rpa3R_46)11.1
Rpa4_47)10.9
Oxaa_33)10.2
Rab4_51)9.7
Dapa3R_20)9.5

Table 6. Docking energy of the best five individuals found by
the algorithm for p53.

Peptide Docking energy

WWPWWW)13.3
WWWWWW)13.3
AWWWWW)13.2
WWWWWA)13.1
AWRWWW)12.8

596

gyrase inhibitors [67, 68]. This is a crucial step to
designing new antibiotic drugs that might prevent
bacterial infection and overcome resistance.

The initial structure of the protein used was
that corresponding to the PDB code 1AB4. In the
interest of preserving computing resources, we
only used the 59 kDa fragment.

In silico designed peptides

In this stage we ran a BOAusing 100 individuals per
generation, and 40 generations. The best 50 indi-
viduals from each generation were used to build the

Bayesian network, and an elitism of one individual
was allowed. We applied rapid heuristics and
explored a total of 352 peptides based on alanine,
serine, tryptophan, glutamic acid, isoleucine, and
arginine. Table 9 shows the energies of the best five
individuals found. Figure 9 shows DNA gyrase
interacting with one of the proposed peptides.

Random peptides

In this stage we created 352 peptides, the same
number explored by BOA to obtain a solution,
and tested their docking energies using the rapid
heuristics. We used the same amino acid set as in
the in silico design process. Table 10 shows the
best five peptides found among the 352. In
Table 11 the energies of five completely random
peptides bound to DNA Gyrase are listed.

MHC H-2Kb

This new peptide design methodology was applied
to the murine H-2Kb major histocompatibility
complex (MHC) class I molecule. MHC molecules

Table 8. Docking energy of five random peptides bound to
p53.

Peptide Docking energy

WEAASW)9.2
WIESSE)6.5
RARRWA)5.9
SWIEEE)5.7
ERIAAR)5.4

Table 9. Docking energy of the best five individuals found by
BOA for the DNA gyrase.

Peptide Docking energy

WWWWWS)3.7
AAWWRA)3.4
RWWEWW)3.4
WAWAWS)3.3
AAWWRE)3.3

Table 7. Docking energy of the best 5 peptides found for p53
among 715 random peptides.

Peptide Docking energy

WIWWWW)11.2
SWWWWS)11.1
AWWEAW)10.7
SERWWW)10.6
WWWRWE)10.5

Figure 8. Proposed peptide, WWPWWW, docked in the user-defined surface patch of the protein p53.

597

are highly polymorphic cell-surface proteins that
present antigenic peptides for recognition by T-cell
receptors, thereby triggering an immune response.
The high resolution crystal structure of the protein
H-2Kb complexed to the high affinity dEV8 ligand
(EQYKFYSV) was selected to compare the docking
structures of the predicted hexapeptide ligands.
The 1LEG PDB code was used to obtain
the structure of the H-2Kb protein and dEV8
ligand [69].

The ENPDA program was run using the
PBIL algorithm with 50 individuals per genera-
tion, and a total of 30 generations. The amino
acids used for the design process comprised:
alanine, glutamate, glutamine, tyrosine, lysine

and phenylalanine. It should be noted that, in
this particular validation test, the secondary
structure of the peptides was assigned according
to the crystallographic coordinates of the
EQYKFYSV ligand bound to the protein.

From a structural point of view, the docked
structures of the best peptides obtained by the
algorithm are similar to the pose of the EQYKFY

hexapeptide fragment in the crystal of the complex
(Table 12). The root mean square deviation
(RMSD) values for the backbone atoms of the
five best designed peptides fall below 1 Å. With
respect to the side-chain structures, comparison of
the QQFFFA designed peptide with the crystal
structure of dEV8 peptide reveals a good super-
position of the Gln with the Glu at position P1,
Gln with the Gln at position P2, the Phe with the
Tyr at position P3 and the Phe with the Phe amino
acid at position P5 (Figure 10). In the literature
[70], high-affinity binding to H-2Kb is described to
usually be associated with aromatic residues at
positions P3 and P5. Our best five designed

Table 12. Comparison of the binding position of the best five
designed peptides ligands to that observed in the crystal struc-
ture of the EQYKFY hexapeptide ligand fragment bound to
H-2Kb protein.

Peptide RMSDa

QQFFFA 0.80

QFFFFE 0.80

FFFFFA 0.98

QKFFFA 0.81

AFFFFK 0.84

aBackbone RMSD values, units in Å.

Table 10. Docking energy of the best five peptides found for
DNA gyrase among 352 random peptides.

Peptide Docking energy

WWSAES)3.1
SAWWRS)3.0
SWSWWA)3.0
WWSSAS)2.9
EWWWEA)2.9

Table 11. Docking energy of five random peptides bound to
DNA gyrase.

Peptide Docking energy

WASRSW)1.4
SSSEWS)1.4
WSAEEW)1.3
AAARAE)0.4
ISWEII 1.7

Figure 9. Proposed peptide, WWWWWS, docked in the user-defined surface patch of the protein DNA gyrase.

598

peptides are in agreement with this experimental
trend since these two positions are optimized with
the amino acid Phe (Table 12).

Discussion

Recent advances in evolutionary computational
methods have allowed us to develop a new
approach for the in silico design of peptide
ligands. We have implemented four evolutionary
algorithms to direct this combinatorial search.
Due to the computational cost of the heuristics,
insufficient data was available to perform a
reliable statistical comparison of the performance
of these programs in the drug design problems
addressed. However, we can make some com-
ments about the general behavior of each algo-
rithm and the quality of the peptides evolved in
each individual problem domain. For example,
LGA performs better than GA, since the local
search performed by LGA over each individual
helps build an appropriate sequence. We have
also observed, in agreement with the theory [17,
71], that BOA requires a large population to infer
a proper Bayesian network. Hence, since our

evaluation methods are computationally expen-
sive, we can only use the BOA algorithm when
using the rapid heuristics that is described in the
methods section. Regarding PBIL, we should
point out that for simple estimations of distribu-
tion assuming gene interaction independence,
population diversity is maintained (results not
shown). Such diversity ensured that PBIL did not
converge prematurely, even when working with
small populations. Finally it must be said that
LGA produced peptide ligands with very high
binding affinities. Nevertheless, this may be an
obvious consequence since it is the algorithm
that, due to the local search mechanisms, tends to
perform the most evaluations.

For three distinct problems, we compared the
designed peptides to random peptides, natural
ligands or peptides designed by medicinal chem-
ists. The in silico designed peptides are generally
better in in silico comparisons (i.e., they exhibit
better docking energies compared to the other
peptides). In the validation study carried out on
the MHC H-2Kb, we observed that ENDPA is
able to identify the most important residues
of the molecular recognition described in the
literature. We have also observed that our

Figure 10. Comparison of the predicted structure of the QQFFFA peptide (atom type color) with the known crystal structure of the
EQYKFY hexapeptide ligand fragment (yellow) bound to the H-2K(b) protein.

599

docking procedures are able to obtain a binding
structure of the designed ligands and the protein
similar to that observed in crystal structures of
known high affinity ligands attached to the same
protein.

In summary, the present paper reports the
development of ENPDA, a new computational
evolutionary tool that has been shown to be
efficient for the design of high affinity peptidic
ligands of protein surfaces in silico. Nevertheless,
the Achilles heel of the method is the docking step,
which is slow and inaccurate. Therefore, our
future work plans entail further improvement of
our evolutionary algorithms as well as optimiza-
tion of the docking procedure for relatively large,
flexible peptide ligands.

Acknowledgments

The authors thank I. Traus for his creative input
on the computational aspects of this work, and
Prof. X. Vilasis for his mathematical support in
the implementation of Bayesian network learning
algorithms. The authors would also like to thank
the Parc Cientı́fic de Barcelona for providing
the computational resources used for this
research. This work was partially supported by
grants from Fundación BBVA, Fundació Marató
TV3 and the Ministerio de Ciencia y Tecnologı́a
FEDER (BIO2002-2301 and EET2001-4813), the
Air Force Office of Scientific Research, Air Force
Materiel Command, USAF (F49620-03-1-0129),
and by the Technology Research, Education, and
Commercialization Center (TRECC), at the
University of Illinois at Urbana–Champaign,
administered by the National Center for Super-
computing Applications (NCSA) and funded by
the Office of Naval Research (N00014-01-1-0175).
The US Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.
The views and conclusions contained herein are
those of the authors and should not be inter-
preted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of the Air Force Office of Scientific Re-
search, the Technology Research, Education, and
Commercialization Center, the Office of Naval
Research, or the U.S. Government.

References

1. Böhm, H.J., J. Comput.-Aid. Mol. Design, 12 (1998) 309.
2. Kubinyi, H., J. Recept. Signal Transduction Res., 19 (1999)

15–39.
3. Codina, A., Gairı́, M., Tarragó, T., Vigueras, A.R., Feliz,

M., Ludevid, D. and Giralt, E., J. Biomol. NMR, 22 (2002)
295.

4. Chiva, C., Barthe, P., Codina, A., Gairı́, M., Molina, F.,
Granier, C., Pugniere, M., Inui, T., Nishi, H., Nishiuchi,
Y., Kimura, T., Sakakibara, S., Albericio, F. and Giralt, E.,
J. Am. Chem. Soc., 125 (2003) 1508.

5. Thormann, M. and Pons, M., J. Comput. Chem., 22 (2001)
1971.

6. Ajay, A., Walters, W.P. and Murko, M.A., J. Medical
Chem., 41 (1998) 3314.

7. Zou, X., Sun, Y. and Kuntz, I.D., J. Am. Chem. Soc., 121
(1999) 8033.

8. Apostolakis, J. and Caflish, A., Combinatorial Chem. High
Throughput Screen., 2 (1999) 91.

9. Loffet, A., J. Pept. Sci., 8 (2002) 1.
10. Malmsten, M., Surfactants and Polymers in Drug Delivery.

Marcel Dekker, 2002.
11. Henry, C.M. and Washinton, E., Chem. Eng. News., 79

(2001) 69–74.
12. Pinilla, C., Appel, J.R., Borras, E. and Houghten, R.A.,

Nat. Medicine, 9 (2003) 118.
13. Jones, S. and Thornton, J.M., J. Mol. Biol., 272 (1997) 121.
14. Holland, J.H., Adaptation in Natural and Artificial Sys-

tems. University of Michigan Press, 1975.
15. Krasnogor, N., Studies on the Theory and Design Space of

Memetic Algorithms. Ph.D. dissertation at University of
the West England, Bristol, 2002.

16. Baluja. S. and Caruana, R., Proceedings of the Interna-
tional Conference on Machine Learning, Morgan
Kaufmann (1995) pp. 112–128.

17. Pelikan, M., Goldberg, D.E. and Cantú-Paz, E., Proceed-
ings of the Genetic and Evolutionary Computation Con-
ference GECCO-99, Morgan Kaufmann (1999).

18. Morris, G., Goodsell, D., Halliday, R., Huey, R., Belew, R.
and Olson, A., J. Comput. Chem., 19 (1998) 1639.

19. Moon, J.B. and Howe, J.W., Proteins: Structure, Function
and Genetics, 11 (1991) 314.

20. Gillet, V.J., Newell, W., Mata, P., Myatt, G., Sike, S.,
Zsoldos, Z. and Johnson, A.P., J. Chem. Inform. Comput.
Sci., 34 (1994) 207.

21. Douglet, D., Thoreau, E. and Grassy, G., J. Comput.-Aid.
Mol. Design, 14 (2000) 449.

22. Budin, N., Majeux, N., Tenette, C. and Caflisch, A.,
J. Comput. Chem., 22 (2001) 1956.

23. Frenkel, D., Clark, D.E., Li, J., Murray, C.W., Robson, B.,
Waszkowycz, B. and Westhead, D.R., J. Comput.-Aid.
Mol. Design, 9 (1995) 213.

24. Böhm, H.J., Prog. Biophys. Mol. Biol., 3 (1996) 197.
25. Wang, R., Gao, Y. and Lai, L., J. Mol. Model., 6 (2000) 498.
26. Mandell, A., Selz, K. and Shlesinger, M., Algorithmic de-

sign of peptides for binding and/or modulation of the
funcions of receptors and/or other proteins, Patent No.
767460, 2002.

27. Teixido, M., Belda, I., Roselló, X., Gonzalez, S., Fabre,
M., Llorà, X., Bacardit, J., Garrell, J.M., Vilaró, S., Al-
bericio, F. and Giralt, E., QSAR Combinatorial Sci., 22
(2002) 745.

600

28. Weber, L., Wallbaum, S., Broger, C. and Gubernator, K.,
Angewantde Chemical International Edition English, 34
(1995) 2280.

29. Singh, J., Ator, M.A., Jaeger, E.P., Allen, M.P., Whipple,
D.A., Soloweij, J.E., Chowdhary, S. and Treasurywala,
A.M., J. Am. Chem. Soc., 118 (1996) 1669.

30. Schneider, G., Schrodl, W., Wallukat, G., Muller, J., Nis-
sen, E., Ronspeck, W., Wrede, P. and Kunze, R., Proc.
Nat. Acad. Sci., 95 (1998) 12179.

31. Pegg, S., Haresco, J. and Kuntz, I., J. Comput.-Aid. Mol.
Design, 15 (2001) 911.

32. Haack, T., González, M.J., Sánchez, Y. and Giralt, E.,
Lett. Peptide Sci., 4 (1997) 377.

33. Fogel, G.B. and Corne, D.W., Evolutionary Computation
in Bioinformatics, Elsevier Science, 2002.

34. Patel, S., Stott, I., Bhakoo, M. and Elliott, P., Patenting
Evolved Bactericidal Peptides. In Bentley, P. and Corne,
D.W. (Eds.), Creative Evolutionary Systems. Morgan
Kaufmann Publishers, 2001.

35. Kamphausen, S., Höltgen, N., Wirsching, F., Morys-
Wortmann, C., Riester, D., Goetz, R., Thürk, M. and
Schwienhorst, A., J. Comput.-Aid. Mol. Design, 16 (2002)
551.

36. Michaud S.R., Zydallis J.B., Lamont G.B. and Pachter, R.,
Technical Proceedings of the 2001 International Confer-
ence on Computational Nanoscience and Nanotechnology,
2001, pp. 29–32.

37. Goh, G.K.-M. and Foster, J.A., Proceedings of the Genetic
and Evolutionary Computation Conference GECCO-2000,
Morgan Kaufmann, 2000, pp. 27–33.

38. Yamashita, F., Wanchana, S. and Hashida, M., J. Phar-
maceutical Sci., 91 (2002) 2230.

39. Shoichet, B.K., McGovern, S.L., Wei, B. and Irwin, JJ.,
Current Opinion in Chem. Biol., 6 (2002) 439.

40. Scheider, G., Lee, M., Stahl, M. and Schneider, P.,
J. Comput.-Aid. Mol. Design, 14 (2000) 487.

41. Koza, J.R., Genetic Programming: On the Programming of
Computers byMeans of Natural Selection.MITPress, 1992.

42. Baker, J.E., Proceedings of the First International Confer-
ence on Genetic Algorithms, Erlbaum, 1985, pp. 101–111.

43. Baker, J.E., Proceedings of the Second International Con-
ference on Genetic Algorithms, Erlbaum, 1987, pp. 14–21.

44. Michalewicz, Z., Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer, 1992.

45. Back, T., Evolutionary Algorithms in Theory and Practice.
Oxford University Press, 1997.

46. Schwefel, H.P., Numerische Optimierung von Computer-
Modellen mittels der Evolutionsstrategie. Birkhaeuser,
1977.

47. Howard, R. and Matheson, J., Readings on the Principles
and Applications of Decision Analysis, Vol. III. Howard,
R. and Matheson, J. (Eds.), Strategic Decisions Group,
1981, pp. 721–762.

48. Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, ,
1988.

49. Heckerman, D., Geiger, D. and Chickering, D.M., Tech-
nical report of Microsoft Research, MSR-TR-94-09, 1995.

50. Pelikan, M., Goldberg, D.E and Cantú-Paz, E., Technical
report of IlliGAL, No. 98013, 1998.

51. Vajda, S. and Camacho, C.J., Trend. Biotechnol., 22 (2004)
110.

52. Macke, T.J. and Case, D.A., NAB User’s Manual.
Departament of Molecular Biology, The Scripps Research
Institute, La Jolla, California, 1999.

53. Berman, H.M, Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T.N, Weissig, H., Shindyalov, I.N. and Bourne, P.E.,
Nucleic Acid Res., 28 (2000) 235.

54. Chou, P.Y. and Fasman, G.D., Advanced Enzymol., 47
(1978) 45.

55. Yoshimoto, T., Fischl, M., Orlowski, R. and Walter, R.,
J. Biol. Chem., 10 (1978) 3708.

56. Goossens, F., De Meester, I., Vanhoof, G. and Scharpé, S.,
Eur. J. Clin. Chem. Clin. Biochem., 34 (1996) 17.

57. Fülöp, V., Bocskei, Z. and Polgár, L., Cell, 94 (1998) 161.
58. Mentlein, R., FEBS Lett., 234 (1988) 251.
59. Maes, M., Goossens, F., Scharpé, S., Calabrese, J., Des-

nyder, R. and Meltzer, H.Y., Psychiatry Res., 58 (1995)
217.

60. Maes, M., Lin, A.H., Bonaccorso, S., Goossens, F., Gastel,
A.V., Pioli, R., Delmerie, L. and Scharpé, S., J. Affect.
Disord., 53 (1999) 27.

61. Vogelstein, B., Lane, D. and Levine, A.J., Nature, 408
(2000) 307.

62. Chene, P., Oncogene, 20 (2001) 2611.
63. Clore, M., Ernst, J., Clubb, R., Omichinski, J.G., Kennedy,

W.M.P., Sakaguchi, K., Appella, E. and Gronenborn,
A.M., Nat. Struct. Biol., 2 (1995) 321.

64. Salvatella, X., Martinell, M., Gairı́, M., Mateu, M.G.,
Feliz, M., Hamilton, A.D., de Mendoza, J. and Giralt, E.,
Angewantde Chemie International Edition, 43 (2004) 196.

65. Martinell, M., Disseny, sı́ntesi i estudi de lligands peptı́dics
capaços de reconèixer la superfı́cie de la p53, Ph.D. dis-
sertation at Universitat de Barcelona, 2004.

66. Gellert, M., Ann. Rev. Biochem., 50 (1981) 879.
67. Vizan, J.L., Hernandez-Chico, C., del Castillo, I. and

Moreno, F., EMBO J., 10 (1991) 467.
68. Yorgey, P., Davagnino, J. and Kolter, R., Mol. Microbiol.,

9 (1993) 897.
69. Luz, J.G., Huang, M., Garcia, K.C., Rudolph, M.G.,

Apostolopoulos, V., Teyton, L. and Wilson, I.A., J. Exp.
Med., 195 (2002) 1175.

70. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. and
Rammensee, H.G., Nature, 351 (2001) 290.

71. Pelikan, M., Goldberg, D.E. and Cantú-Paz, E., Technical
report of IlliGAL, No. 2000001, 2000.

601

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

