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Summary

Substructural fragments are proposed as a simple and safe way to encode molecular structures in a matrix
containing the occurrence of fragments of a given type. The knowledge retrieved from QSPR modelling can
also be stored in that matrix in addition to the information about fragments. Complex supramolecular
systems (using special bond types) and chemical reactions (represented as Condensed Graphs of Reactions,
CGR) can be treated similarly. The efficiency of fragments as descriptors has been demonstrated in QSPR
studies of aqueous solubility for a diverse set of organic compounds as well as in the analysis of thermo-
dynamic parameters for hydrogen-bonding in some supramolecular complexes. It has also been shown that
CGR may be an interesting opportunity to perform similarity searches for chemical reactions. The rela-
tionship between the density of information in descriptors/knowledge matrices and the robustness of QSPR
models is discussed.

Introduction

Nowadays, a safe exchange of data associated with
chemical compounds but without revealing their
structures is very desirable because it provides the
academic or industrial researchers with the data
required for structure-property studies, whereas
the owner of the data obtains the results of
research without any risk to lose the confiden-
tiality of information.

Fragment descriptors obtained from 2D graphs
provide a possibility to encode chemical structures
[1–3] as well as to perform structure – property
studies being used as variables in a multi-linear
regression [1, 4–14] or in neural networks [8, 10].

Computation of fragments does not require
knowledge of the geometry and electronic struc-
ture of molecules, and structural fragments are
more easily interpretable than topological indices
or some physico-chemical descriptors. Many dif-
ferent types of fragment descriptors have been
suggested: the sequences of atoms and bonds;
‘‘augmented’’ atoms including a ‘‘central’’ atom
with its several topological coordination spheres;
branched fragments and small rings. The ‘‘molec-
ular signature’’ descriptors of Faulon [1, 15, 16],
representing a combination of augmented atoms
and atom/bond sequences, have been successfully
used both to encode chemical structures and to
reconstruct them from the set of descriptors.
Substructural fragments are closely related to
topological descriptors; the latter can be repre-
sented as a linear combination of occurrences of
some substructures [17, 18].
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An important requirement for sharing infor-
mation is the pertinence of molecular descriptors
which map structural information with properties.
In this sense, substructural fragments are good
candidates. They have been successfully used in
diversity analysis of large databases [4, 19] and in
structure-property studies [1, 4, 20–25]. It should
be noted that QSAR methods based on 2D
fragment descriptors represent an appealing alter-
native to 3D QSAR since they do not require
extensive conformational analysis and spatial
alignment of molecules. They are faster and easier
to implement in an automated fashion and are
typically characterized by the same or better
statistics compared to 3D QSAR methods [26, 27].

Here we demonstrate that substructural frag-
ments can be used as descriptors not only for a set
of individual compounds, but also for more
complex supramolecular structures as well as for
chemical reactions. The paper contains two parts.
The first one describes the general approach of
encoding structures and reactions using substruc-
tural fragments, and gives some information about
particular fragments and developed software tools.
The second part is devoted to application of
fragment descriptors to assess physico-chemical

properties of molecules (aqueous solubility) and
supramolecular ensembles (thermodynamics of
hydrogen bond complexes) as well as to perform
a similarity search for reactions.

Encoding reactions, molecular and supramolecular

structures using substructural fragments

Under the fragment approach, a molecular struc-
ture can be encoded by the vector constituted from
occurrences of the fragments of each type. Conse-
quently, the set of molecules is encoded by a
descriptors (pattern) matrix which combines the
vectors encoding individual molecules (Figure 1).
When the property values are added, the resulting
descriptors/properties matrix characterizes both
structures and properties of the compounds in
the given data set. If substructural fragments are
used as descriptors in QSPR studies, the modelled
property can be presented as a linear combination
of selected descriptors. Thus, the descriptors/
knowledge matrix (Figure 1) contains information
only about those descriptors which are pertinent to
the modelled property. Thus, from the same
descriptors/properties matrix, one can obtain

Figure 1. Encoding molecular structures and properties using fragment descriptors. Here, Nij is the number of fragments of j-type
(Dj) in the molecule i (Moli ), Pij is the value of the property j (PRj) for i-th molecule, Kj is the coefficient at Dj in the multi-linear
equation (1), r £ k.
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several different descriptors/knowledge matrices,
each of them being related to a given property.

If the owner of the data does not wish to reveal
the structures, information about types of constit-
uent fragments in the descriptors matrix can be
hidden. Reconstruction of the structures from the
descriptors matrix or descriptors/property matrix
then becomes hardly possible (Figure 2). On the
other hand, the researcher is able to run QSPR
studies producing the descriptors/knowledge ma-
trix. Thus, the confidentiality of the structural
information does not prevent the researcher
extracting knowledge from the owner’s data.

In our previous publications [5, 7, 9, 11–13], we
suggested the use in QSPR studies of two different
classes of substructural molecular fragments:
‘‘sequences’’ (I) and ‘‘augmented atoms’’ (II).
Three sub-types, AB, A and B are defined for
each class. For the fragments I, they represent
sequences of atoms and bonds (AB), of atoms only
(A), or of bonds only (B). Only the shortest paths
from one atom to the other are used. For each type
of sequence, the minimum (nmin) and maximum
(nmax) number of constituent atoms must be defined.
Thus, for the partitioning I(AB, nmin)nmax), I(A,
nmin)nmax) and I(B, nmin)nmax), the program

generates ‘‘intermediate’’ sequences involving n
atoms (nmin £ n £ nmax) (Figure 3).

An ‘‘augmented atom’’ represents a selected
atom with its environment including either neigh-
bouring atoms and bonds (AB), or atoms only (A),
or bonds only (B). Atomic hybridization (Hy) can
be taken into account for augmented atoms of the
A-type (Figure 3). Supramolecular structures can
be treated in a similar way, if the hydrogen bonds,
coordination bonds or any other types of bonds
are represented explicitly (see Table 1).

This fragment approach can be extended to
chemical reactions using Condensed Graphs of
Reaction (CGR), [29–32] in which reactants and
products are ‘‘condensed’’ into one 2D graph
involving both conventional and ‘‘dynamic’’ bonds
(Figure 4). This provides users with an opportu-
nity to treat an ensemble of reacting species as one
pseudo-compound (see Section 4.3).

Tools for the mining of chemical data using

fragment descriptors

The ISIDA (In Silico Design and Data Analysis)
package has been developed to perform structure-

Figure 2. Example showing a part of the descriptors matrix for three organic compounds. The integer numbers correspond to
occurrences of the constituent substructural fragments. If the list of these fragments is suppressed, the structure of molecules can
hardly be revealed.
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property and clustering studies using fragment
descriptors [33]. ISIDA includes QSPR, clustering
and combinatorial modules as well as some
supplementary tools including the editor of 2D
structures, EdChemS, the editor of SD files,
EdiSDF, and converters of formats, etc. For
molecular and supramolecular structures, the Ed-
ChemS editor recognizes 10 different types of
bonds: single, double, triple (in cycles or in chains),
aromatic bonds and three types of coordination
bonds (Table 1). Nine types of dynamic bonds
related to transformations of one type of conven-
tional bond to another one can be used for
preparation of condensed graphs of reactions
(Table 1, Figure 4).

Structure-property calculations. Once a molec-
ular graph is split into constitutive fragments, any

corresponding quantitative physical or chemical
property PR is calculated from the fragments
contributions using linear (1) or non-linear (2) and
(3) fitting equations:

PR ¼ a0 þ
X

i

aiNi þ C ð1Þ

PR ¼ a0 þ
X

i

aiNi þ
X

i

bið2N2
i � 1Þ þ C

ð2Þ

PR ¼ a0 þ
X

i

aiNi þ
X

i;k

bikNiNk þ C ð3Þ

Figure 3. Two classes of substructural fragments: atom/bond sequences and augmented atoms. Shortest paths sequences (I) and
augmented atoms (II) including atoms and bonds (AB), only atoms (A) or only bonds (B). From top to bottom: the sequences (I)
correspond to the I(AB, 2–4), I(A, 2–4) and I(B, 2–4) types involving paths between each pair of atoms. The II(Hy) augmented
atoms correspond to the II(AB) type, where hybridization of atoms is taken into account.
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where, ai and bi (bik) are fragment contributions,
Ni is the number of fragments of type i. The ao
term is fragment independent. The ai and bi (bik)
are the same for corresponding fragment for all
compounds from the given set. An extra term
C = RcmEDm can be used to describe any specific
feature of the compound using external descriptors
EDm (e.g., topological, electronic, etc.); by default

C = 0. Equation (1) represents a molecular prop-
erty as a linear combination of fragment contri-
butions. Equation (2), representing the three first
terms of Chebyshev polynomial [34], accounts for
non-additive effects related to individual frag-
ments, whereas equation (3) involves a cross term
Ni Nk which accounts for the non-additivity effects
of two different fragments. When non-linear equa-
tions (2) or (3) are used, the descriptors/knowledge
matrix (Figure 1) contains columns corresponding
not only to descriptors Di, but also to terms (2Di

2 -
1) or Di

.Di.
In the current version of ISIDA, the minimal

and maximal lengths of the sequences are, respec-
tively, nmin ‡ 2 and nmax £ 15. The number of
types of sequences of different lengths for the
range nmin = 2 to nmax = 15, is equal to 105 for
each of three sub-types AB, A and B.

At the training stage, ISIDA builds up about
1300 structure-property models involving 3 linear
and non-linear fitting equations and 319 types of
fragment descriptors (batch calculations). If some
fragments are linearly dependent, they are treated
as one extended fragment. Using the singular
value decomposition method (SVD) [35], ISIDA
fits the ai and bi terms in equations (1) – (3) and
performs statistical tests [36] to select the best
models.

If some of the variables in equations (1)–(3) are
linearly dependent or if a given fragment occurs in
a relatively small number of molecules, the stan-
dard deviation Dai (Dbi) for the fragment contri-
butions ai (bi) can be large enough to lead to the
corresponding t-test (t = ai/Dai) being smaller
than the tabulated value (t0). The following
procedure is applied in order to improve the
robustness of the models. First, the program
selects the variable with the smallest t< t0, then
it performs a new fitting excluding that variable.
This procedure is repeated until t ‡ t0 for selected
variables or if the number of variables attains the
user’s defined value.

Table 1. Bond types for compounds, complexes and reactions
implemented in the ISIDA package.

No. Bond

codea
Comments

Compounds 1 1 A single bond in chain

2 2 A double bond in chain

3 3 A triple bond in chain

4 4 An aromatic bond

5 5 A single bond in cycle

6 6 A double bond in cycle

7 7 A triple bond in cycle

Complexes 8 8 Coordination bond, type I

9 9 Coordination bond, type II

10 10 Coordination bond, type III

Reactions 11 81 Transformation of ‘‘no bond’’

to single bond

12 12 Transformation of single bond

to double bond

13 23 Transformation of double bond

to triple bond

14 13 Transformation of single bond

to triple bond

15 18 Transformation of single bond

to ‘‘no bond’’

16 21 Transformation of double bond

to single bond

17 28 Transformation of double bond

to ‘‘no bond’’

18 32 Transformation of triple bond

to double bond

19 31 Transformation of triple bond

to simple bond

aBonds code in the connection table for MOL format [28].

Figure 4. Encoding a reaction of hydrogenation into Condensed Graphs of Reaction. Dynamic bond ‘‘ ’’ corresponds to
transformation of a double bond to a single bond (see Table 1).
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Clustering. Partitioning of the structurally
diverse data set into congener sub-sets followed
by QSPR studies on each cluster may significantly
improve the robustness of structure – property
models. In this case, the calculations for one
descriptors/properties matrix result in several de-
scriptors/knowledge matrices. ISIDA performs
clustering based on fragment descriptors using
different metrics, linkages, normalizations and
clustering algorithms. To treat large data sets, a
successive use of the non-hierarchic Jarvis-Patrick
algorithm and the hierarchical Johnson algorithm
is suggested in order to reduce the time of
calculations. Quite often, using conventional
Euclidian or Manhattan distances (DISTij) be-
tween molecules i and j does not lead to chemically
meaningful clusters. Therefore, modified distances
(DISTij*) which enforce the fusion of similar
compounds in one cluster, are suggested for the
clustering, with fragment descriptors:

DIST�ij ¼ DISTijð1þ 1=ðTij þ fÞÞ; ð4Þ

where Tij is a Tanimoto coefficient and f = 0.05 is
an empirical fitting factor.

The content of clusters depends on the type of
fragment descriptors. The choice of those frag-
ments can be based on preliminary performed
QSPR studies, thus resulting in clusters which fit
the modelled property.

Structure-property and similarity studies using

fragment descriptors

Assessment of aqueous solubility using combined
clustering/QSPR approach

Aqueous solubility (logS) has been the subject of
many QSPR studies [37–46] because of its major
role in determining the bioavailability of com-
pounds in organisms, and consequently, of its
application in computer-aided drug design re-
search. Here we show that combination of clus-
tering and QSPR techniques based on fragment
descriptors leads to the models which are, at least,
as robust and predictive as the best models
reported in the literature [37, 47].

A data set containing 1643 compounds was
critically selected from the references [39, 48–50].
Clustering performed with ISIDA using the

descriptors pool involving both I(AB,2–6) se-
quences and II(Hy) augmented atoms, resulted in
four clusters containing 135 (A), 493 (B), 217 (C)
and 798 (D) compounds (Figure 5, a). QSPR
calculations were performed both on the entire set
and on each cluster, resulting in several global and
local models, respectively. The ‘‘global’’ I(AB, 2–
5)/equation 1 model obtained in calculations on
the full set has reasonable statistical parameters
(R2 = 0.924, RMSE = 0.60 and Q2 = 0.900,
Table 2). Calculations on clusters A, B and D
resulted in the models based only on the sequences
of atoms and bonds, whereas for the cluster C the
models were based both on sequences and on aug-
mented atoms (Table 2). The statistical parameters of
these ‘‘local’’ models (R2 = 0.803)0.952, RMSE
= 0.36)0.59 and Q2 = 0.618)0.922) were in some
rare cases inferior to those obtained for the ‘‘global’’
model.

However, statistical parameters for linear cor-
relations of logS (calc) vs logS (exp) of local
models obtained for the clusters are clearly better
than those of the global models obtained for the
entire set (Figure 5, b, c). Thus, correlation coef-
ficients R2 obtained with local models are always
higher than those obtained with the global model,
whereas the opposite trend is observed for RMSE
(Figure 5, b). Figures 5, c, d show that the
ensemble of local assess logS for the entire set
much better than the global model: the RMSE
value for the linear correlation logS (calc) vs logS
(exp) decreases from 0.60 (global) to 0.43 (local).
The latter is similar to RMSE = 0.47 obtained
for the set of 879 molecules using E-state indices
and the neural networks technique of [51]. Thus,
our multi-linear regression calculations on clusters
resulted in models as efficient as those previously
obtained with non-linear techniques.

Assessment of thermodynamics of intermolecular
hydrogen bonds using labelled atoms

Assessment of thermodynamic parameters of the
hydrogen-bond complexes is an important step
toward a design of new supramolecular assemblies
based on H-bond networks. In this section we
demonstrate how substructural fragments can be
used to assess the free energy (DG, kJ/mol) and
enthalpy (DH, kJ/mol) of the 1:1 complexes
between organic acids and bases linked by one
hydrogen bond. Experimental data for 365
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hydrogen bonded complexes in tetrachlorome-
thane at 298 K were selected from the review by
Raevsky et al. [52]. In these complexes, the acids
are 46 substituted phenols, whereas the bases are
represented by the large variety of chemical
classes: phenols, alcohols, ethers, ketones, amides,
heterocyclic compounds, phosporyl- and sulpho-
nyl-containing molecules.

The EdChemS editor of 2D structures has been
used to label all potential proton donor groups
(OH groups in phenols) and proton acceptor
groups (=O, –NH–, …). Then, using the EdiSDF
editor, an SD file containing structures of reagents
and experimental values of DG and DH has been
prepared and used in structure – property

modelling. The hydrogen atoms were omitted in
calculations.

The modelling of both free energy and enthalpy
of the H-bond complexes resulted in the linear
I(AB, 2–8)/equation 1 model based on the labelled
atom-bond sequences containing from 2 to 8
atoms. In these calculations, the initial descriptors
matrix containing 286 fragment descriptors was
reduced to one containing 90 (DG) or 76 (DH) due
to a variables selection procedure based on the t-
test. These models have reasonable values of the
correlation coefficient R2 (fit)>0.93, the leave-
one-out cross-validation correlation coefficient
Q2>0.89 and RMSE = 0.70 kJ/mol for DG
and 1.47 kJ/mol for DH (Table 3, Figure 6). Since

Figure 5. Studies of aqueous solubility (logS): (a) Clustering of the set of 1643 compounds performed using the descriptors pool
involving both I(AB,2–6) sequences and II(Hy) augmented atoms, modified Euclidian distances, complete linkage and a combina-
tion of non-hierarchic (Jarvis-Patrick) and hierarchical (Johnson) algorithms. (b) Correlation coefficient R2 and standard deviation
s for linear correlations logS (calc) vs logS (exp) for the full set and clusters A, B, C and D. (c–d) Linear correlations logS (calc)
vs logS (exp) obtained with QSPR models built either on the full data set (global models) or on clusters A, B, C and D (local
models).

699



no coordination bonds between the acids and
bases in the complexes were initially assumed, the
resulting descriptors/knowledge matrix for the
complexes is a superposition of two non-overlap-
ping parts for the proton donors and acceptors,
respectively.

In order to perform the internal validation of
the model, the initial data set was split into the
training set of 292 H-bond complexes and the test

set of 73 complexes corresponding to each 5th
complex from the initial set. Since some of
compounds in the test set contained rare occur-
rence fragments, so that the validation calculations
were not performed for those compounds. For the
others, calculations with I(AB, 2–8)/equation 1
model show good correlations between ‘‘predicted’’
and experimental values: DGpred = 0.10 + 1.00DGexp

(n = 66, R2 = 0.916, F = 693, s = 1.67) and
DHpred = )2.28 + 0.90DHexp, (n = 66, R2 = 0.868,
F = 421, s = 2.16).

Thus, unlike as in additive-multiplicative mod-
els for enthalpy and stability constants of 1:1
hydrogen bond complexes previously developed by
Drago [53, 54], Abraham [55–57] and Raevsky
[58–61] we propose a simple additive scheme for
calculations of DG and DH using contributions of
selected fragments. This approach can be easily
extended toward more complex systems involving
multiple hydrogen bonds between organic acids
and bases.

Density of information vs quality of QSPR models

A well-known problem of the fragment approach
concerns the low density of information stored in
the descriptors matrix. Indeed, for the set of 365
hydrogen bond complexes, the initial descriptors
matrix built from 286 fragment descriptors con-
tains d = 4.6 % of elements not equal to 0. The
density of information increases with the decrease
of the number of variables k selected in the QSPR
models. Figure 7 shows that the reduction of k
from 90 to 30 leads to an increase of d from 4.6 %
to 13.4 %. On the other hand, such a reduction of
k leads to less robust QSPR models. For example,
in the modelling of DG, R2 (fit) decreases from
0.981 to 0.870 and Q2 decreases from 0.960 to
0.863 (Table 3), whereas the standard deviation
for the linear correlation DG(calc) vs DG(exp)
increases from 0.70 to 1.72 kJ/mol (Figure 6). For
DH, this trend is even more pronounced (Table 3).
Thus, one has to seek a compromise between the
density of information in the descriptors matrix
and related matrices (Figure 1) and the quality of
QSPR models.

Similarity searching in the reactions space

Merging reactants and products of a chemical
reaction into a Condensed Graph of Reaction

Table 2. Modelling of aqueous solubility (logS) for 1643 or-
ganic compounds: statistical criteria of selected linear mod-
els.a,b

Fragments N k R2 (fit) RMSE (fit) F Q2

Full Set ( 1643 compounds )

I(AB, 2–5) 1643 213 0.929 0.58 88.4 0.933

Cluster A ( 135 compounds )

I(AB, 4–4) 135 43 0.892 0.38 18.0 0.738

I(AB, 2–3) 135 30 0.803 0.52 14.8 0.618

Cluster B ( 493 compounds )

I(AB, 2–6) 493 92 0.946 0.36 77.9 0.884

Cluster C ( 217 compounds)

II(Hy) 217 43 0.906 0.58 40.0 0.858

I(AB, 2–4) 217 47 0.902 0.59 34.0 0.761

Cluster D ( 798 compounds)

I(AB, 2–5) 798 141 0.952 0.49 93.9 0.922

aStatistical parameters calculated for the training set: the
number (n) of points (compounds), the number (k) of fitted
coefficients in equation (1), correlation coefficient (R), root
mean square error (RMSE), Fisher’s criterion (F), factor of
Hamilton (RH), cross-validation correlation coefficient (Q).
bMolecules are represented without hydrogen atoms.

Table 3. Modelling of free energy (DG, kJ/mol) and enthalpy
(DH, kJ/mol) for 365 H-bond complexes in CCl4 at 298 K.
Statistical criteria of the linear I(AB, 2–8)/equation 1 model.a,b

Property Variables

selectionc
k R2 F RMSE Q2

DG, kJ/mol 1 90 0.981 159.9 0.70 0.960

2 50 0.950 122.3 1.13 0.936

2 30 0.870 77.0 1.84 0.863

DH, kJ/mol 1 76 0.937 57.4 1.47 0.890

2 50 0.876 45.5 2.07 0.843

2 30 0.770 38.7 2.80 0.760

aSee footnotes for Table 2.
bFitting equation (1) was used with a0 = 0. Only sequences
containing labelled atoms were taken into account.
cThe variables have been selected according t-test: (1) the cal-
culations stop at t> t0, and (2) the calculations stop at t> t0
and at user’s defined number of variables.
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(CGR) gives the possibility of treating reactions
as pseudo-compounds and, as a consequence,
allows one to perform a similarity searching for
queries represented as CGR. Recently, together
with the Novalyst Discovery company [62] spe-
cializing in the development of new methods of
organic synthesis, we have created a database
containing several hundreds of hydrogenation

reactions. Each record includes CGR, the reac-
tion yield and experimental conditions (catalyst,
temperature, pressure, solvent). Using ISIDA
tools, one can search all CGRs having Tanimoto
similarity coefficients larger than user’s defined
threshold (Figure 8). In such a way, for any
hypothetical reaction, the user can search for the
closest analogues in the database.

Figure 6. Modelling of free energy (DG, kJ/mol) for the set of 365 hydrogen-bond complexes in CCl4 at 298 K. Linear correlation
between calculated and experimental values for the I(AB, 2–8)/equation 1 model using 90 (left) and 30 (right) fragment descriptors
selected by t-test.

Figure 7. Modelling of thermodynamics parameters of the set of 365 hydrogen bond complexes: Density of information (d, %) in
descriptors/knowledge matrix as a function of the number of fragment descriptors (k) selected according to t-test.
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Conclusions

It has been shown that substructural fragments
represent a simple and safe way to encode con-
ventional molecular structures as well as complex
supramolecular systems and chemical reactions.
The fragments can be easily calculated from 2D
graphs, then be used as descriptors in structure –
property studies or in similarity searching. The
density of encoded information can be increased
by reducing the number of selected fragment
descriptors, which, however, leads to a reduction
of the quality of related QSPR models.

Encoding chemical systems in descriptors/
properties or descriptors/knowledge matrices pro-
vides the industrial and scientific communities with
a rather secure way to share the data without
revealing the structures, thus strengthening a
partnership between them.
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