
A recursive-partitioning model for blood–brain barrier permeation

S.R. Mente* & F. Lombardo
Pfizer Global Research and Development, Groton, CT, USA

Received 13 May 2005; accepted in revised form 11 July 2005

� Springer 2005

Key words: ADME, blood–brain barrier, CNS, in silico, QSAR

Summary

A series of bagged recursive partitioning models for log(BB) is presented. Using a LGO-CV, three sets of
physical property descriptors are evaluated and found to have Q2 values of 0.51 (CPSA), 0.53 (Ro5x) and
0.53 (MOE). Extrapolating these models to Pfizer chemical space is difficult due to P-glycoprotein (P-gp)
mediated efflux. Low correlation coefficients for this test set are improved (R2=0.39) when compounds
known to be P-gp substrates or statistical extrapolations are removed. The use of simple linear models for
specific chemical series is also found to improve the correlation over a limited chemical space.

Introduction

The distribution of therapeutic compounds
between brain and blood is an important compo-
nent in the design of CNS-active drugs. The
experimental determination of the brain–blood
partition ratio is difficult and expensive since it
involves the direct measurement of the drug
concentration in the brain and blood of laboratory
animals. For this reason, it is desirable to predict
the brain–blood distribution ratio of complex
molecules from physicochemical parameters and
parameters derived from molecular structures [1].
A variety of approaches have been examined
which generally rely on few or no experimentally
determined parameters. Several of these are
reviewed here [1–10], and a number of recent
reviews are also available [11–14].

Young et al. [1] determined the correlation
between log (Cbrain/Cblood) and DlogP (octanol-
cyclohexane) (r=0.83, s=0.44) for a series of 20
structurally diverse histamine H2 antagonists. Van
der Waterbeemd and Kansy [9] modified this

correlation by substituting the computed term
hydrophobic fraction of the van der Waals surface
area (r=0.835), thus eliminating the need to
include any experimentally determined partition
coefficients. Abraham et al. [2, 10] considered a
larger data set of 57 compounds permitting for the
construction of what may have been the first
general model for brain–blood partitioning based
only upon empirically determined fragment
descriptors. In support of this point, they demon-
strated the similarity of the coefficients between
two ‘‘bunches/clusters’’ of compounds while iter-
ating that a ‘‘satisfactory general regression’’ was
only possible upon combination of the two sets.

Subsequent to Abraham’s important work, a
large number of papers have been published that
explore various aspects of molecular representa-
tion (descriptors) and statistical modeling meth-
ods. Most studies have built upon Abraham’s
initial study and in many cases used essentially the
same set of data to build QSAR models. Lom-
bardo et al. [3] used computed free energies of
solvation (r=0.82, s=0.41). In a different study,
MolSurf descriptors resulted in an internally cross-
validated model, q2=0.782. These authors con-
cluded that hydrogen bonding descriptors as well
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as descriptors relating to the polarizability of
electrons (i.e. groups containing conjugated and
aromatic structures as well as large halogens) are
important [15]. These same authors then devel-
oped a simpler system for the calculation of
log(BB) using simple ‘‘rule-of-five’’ type descrip-
tors available via ACD/Labs commercial software
[16]. Topological descriptors of the sort developed
by Kier and Hall have also been used to construct
a PLS-QSAR model [17, 18]. The latter study used
an expanded data set of 106 compounds collected
from a variety of other log(BB)-related QSAR
studies.

Despite the diversity of calculable descriptors
used, there seems to be a general consensus that the
polar surface area of the molecule appears to be
the most important descriptor for the prediction of
passive diffusion into the brain [5, 6]. The first
article to make this claim established a predictive
and simple QSAR relation between the dynamic
polar surface area, obtained from time-averaged
molecular dynamics simulations and brain pene-
tration [6]. Here, brain penetration was found to
decrease with increasing polar surface area. Anal-
ysis of 776 CNS and 1590 non-CNS drugs showed
an apparent cutoff at approximately 120 Å2, above
which drugs stand little chance of passively diffus-
ing into the brain. Subsequent studies have shown
that further improvement may be obtained by
adding a log P term to polar surface area QSAR
equations [5]. Using the C log P octanol–water
partition calculation yields a simple equation with
log(BB) (r=0.876).

Finally, Platts et al.[4] revisited the problem and
included plasma-brain data from Salminen. The
new model reported therein demonstrates compa-
rable accuracy to that seen on smaller data sets
(r2=0.745, s=0.343) even during a leave-20%-out
cross validation procedure (r2=0.733, s=0.356).
In addition, they noted that a specific ‘‘indicator’’
descriptor to flag carboxylic acid functionalities
appears to be very important, while a similar
descriptor to flag basic moieties is not required.

Two research groups have approached the
problem by asking a more general question: can
CNS drugs be identified prospectively based on
current data sets of CNS active drugs? One group
trained a neural network to classify CNS actives
and inactives using simple chemical descriptors
such as molecular weight, number of donors/
acceptors as well as 166 2-dimensional fragment-

based descriptors [19]. Here the MDDR database,
which includes 15,000 CNS active drugs and
50,000 CNS inactives, was used as a training set
for the neural network. The neural network was
able to identify 92% of a validation set of 275
compounds with known CNS activity.

In related work, the VolSurf program was
presented as means of classifying drugs as being
CNS active and inactive [20]. The VolSurf program
takes 3-dimensional molecular structures and cal-
culates 1-dimensional descriptors derived from the
3-dimensional GRID interaction fields. In addi-
tion, some simple ‘‘rule-of-five’’ like descriptors are
also included. The program then performs a
principal-components analysis (PCA) and a partial
least squares model (PLS). For the training set
compounds, the first principal component is shown
to separate CNS actives and inactives, although a
high false-positive rate was found when applied to
an external validation set. This lack of accuracy is
rationalized as being due to the multiple mecha-
nisms that may stop a drug from entering the brain,
such as metabolism and efflux processes.

Other methods, ranging from those using
molecular dynamics derived descriptors [7] to
support vector machine algorithms [8] have been
applied, all with reported success. In those, as well
as in almost all of the studies summarized here, a
single general theme may be seen: CNS drugs must
have a fair degree of hydrophobicity in order cross
the blood–brain barrier by passive diffusion. This
attribute is reflected in a number of the models
primary descriptors: polar surface area, free energy
of solvation, as well as various hydrogen-bonding
descriptors. These descriptors are presumably well
correlated with each other and reflect the general
differences between the environment of the central
nervous system and that of the circulatory system.
Interestingly only Crivori et al. [20] reported any
difficulty in model validation that could possibly
be caused by relatively difficult to model efflux
and/or metabolic mechanisms. Only recently has
the transport out of the brain by P-gp considered
[21] explicitly as part of the modeling process.

The work we report here builds upon the
successes achieved by these earlier works and
attempts to further examine the severity of
efflux-related mechanisms. We employ a bagged
recursive partitioning statistical model to examine
the relationship between several different sets of
physical–chemical properties and brain–blood dis-
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tribution for 190 different compounds. The data
set used in this work is very comprehensive, as we
have added many data points from the clinical
literature in addition to internally measured brain–
blood data. This expanded set allows us to
examine the issue initially raised by Abraham [2]
regarding the effects of bunching and the ability to
develop ‘‘general’’ models from physical property
descriptors. The relative absence of serious discus-
sion regarding efflux issues undoubtedly reflects
the inherent difficulties involved in realistic mod-
eling of what is a multitude of very specific
mechanisms. Prior to presenting our modeling
results, we therefore first give some data regarding
the efflux liability of internal Pfizer compounds
and some discussion as to how we believe this may
affect subsequent modeling attempts. We also
briefly examine the concerns related to the use of
whole-brain homogenates/plasma vs. the seem-
ingly preferred CSF (cerebrospinal fluid) exposure
vs. the use of unbound fraction (in brain and
plasma), and their potentially negative impact on
drug discovery. We then present our statistical
modeling results and discuss the ability of our
‘‘general’’ model to extrapolate to our Pfizer data
sets. Of particular interest is the role that different
descriptor sets play with respect to making model
‘‘general’’ or not. We conjecture that simple
descriptor sets are more likely to provide a
‘‘general’’ model, although overall accuracy
remains relatively poor as strong variations in
standard error still exist depending upon the
chemical scaffold. When available, a preferable
alternative would be to construct models based
upon series-specific chemical data.

The organization of the remainder of the paper
is as follows. In part A of the Methods section, we
discuss the data, where they came from and some
comment on the quality of various sources. We feel
that this section is of particular importance not
only to the interpretation of the results we reach in
this paper, but also as a guide for subsequent
studies that may choose to use this set of data as a
basis for statistical modeling. Our modeling meth-
odology and details of descriptor calculation are
given in parts B and C of the Methods section. The
Results and Discussion is divided into four parts.
Part A contains a presentation of brain–blood
ratios for whole-brain homogenate measurements
provided by various Pharmacodynamic and Drug
Metabolism groups at Pfizer Groton Laboratories.

Of particular interest is the graphical comparison
between data taken from wild-type mice to that
from the P-gp knock-out mice, which will serve as
the basis of our discussion of efflux issues. Part B
then turns to a similar but brief discussion of CSF
issues. The main results of this study are contained
in part C, where we describe the results of our
statistical modeling and provide details concerning
how differences in descriptor set can impact the
ability of a given model to predict new chemical
entities and thus guide discovery efforts. A sum-
mary of the main results of this work along with
ideas for future directions is provided in the
conclusions section. There is also a supplemental
information section included that provides a
SMILES representation of each molecule in the
training set as well as the brain–blood ratios and
relevant annotations.

Methods

A. Data collection

The data used in this work can be divided into
three broad classes. In-house wild-type and
knock-out (mdr 1a -/-) mouse data, in-house rat
data and literature data, largely from rats. The
latter data was obtained via literature screening
and analysis, to try to discern possible experi-
mental problems, affinity of a compound for
influx or efflux transporters and lack of data
reproducibility especially when two or more
sources were available for comparison. This set
is indexed by CAS number in Table 1, which also
includes the logBB values, original references and
a designation of drug class. We have generally
kept the ‘‘threshold’’ of variability at 0.3–0.5
logBB units as a criterion for acceptance of two
data points from different sources and for their
averaging. In many cases, it was reassuring to see
a much higher convergence between data from
different authors. No allowance was made, how-
ever, for differences between B/P (brain–plasma)
and B/B (brain–blood). In very few cases, for
example in the case of acebutolol and alprenolol,
post-mortem human data were deemed reliable,
and care was exercised in trying to establish
whether redistribution of a compound among
tissues had occurred. In almost all cases we have
used original references as the source of data and
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Table 1. List of drugs and their log(brain/plasma) values.

# CAS # NAME Class logBB Ref.a

1 101-40-6 Propylhexedrine Adrenergic 1.08 [44]

2 23830-88-8 TZ-10 Adrenergic 0.16 [45]

3 59465-39-3 TZ-11 Adrenergic 0.38 [45]

4 4201-26-7 TZ-12 Adrenergic )0.87 [45]

5 4201-22-3 TZ-13 Adrenergic )0.65 [45]

6 4794-83-6 TZ-14 Adrenergic )1.3 [45]

7 138474-57-4 TZ-15 Adrenergic )1.89 [45]

8 36318-56-6 TZ-17 Adrenergic )1.39 [45]

9 21571-08-4 TZ-18 Adrenergic 0.47 [45]

10 38941-33-2 TZ-19 Adrenergic 0.58 [45]

11 4205-93-0 TZ-2 Adrenergic 0.33 [45]

12 40065-09-6 TZ-21 Adrenergic 0.41 [45]

13 65936-23-4 TZ-28 Adrenergic )0.28 [45]

14 59465-54-2 TZ-3 Adrenergic )0.2 [45]

15 4205-90-7 Y-G6 (Clonidine) Adrenergic 0.19 [1, 45]

16 50679-08-8 Terfenadine Allergy 0.64 InH

17 153439-40-8 Fexofenadine (Allegra) Allergy )0.98 [46]

18 103-90-2 Acetaminophen Analgesic )0.74 [47]

19 50-78-2 Acetylsalicylic acid Analgesic )1.30 [48-49]

20 60-80-0 Antipyrine Analgesic )0.07 [50]

21 76-57-3 Codeine Analgesic 0.54 [51]

22 156154-71-1 DM44 (ENAMINONE) Analgesic )1.00 [52]

23 156154-42-6 DM5 (ENAMINONE) Analgesic )0.96 [52]

24 156164-76-6 DM49 (ENAMINONE) Analgesic )0.17 [52]

25 69-72-7 Salicylic acid Analgesic )1.1 [53]

26 15687-27-1 Ibuprofen Analgesic )0.18 [54]

27 56-54-2 Quinidine Antiarrhythmic 0.33 [55]

28 99-66-1 Valproic Acid Anticonvulsant )0.84 [56]

29 54910-89-3 Fluoxetine Antidepressant 1.08 InH, [57, 58]

30 54739-18-3 Fluvoxamine Antidepressant 0.79 [57]

31 79559-97-0 Sertraline Antidepressant 1.6 InH

32 53179-11-6 Loperamide Antidiareheal 0.77 InH

33 91161-71-6 Terbinafine Antifungal 0.08 [59]

34 73590-58-6 Omeprazole Antiulcerative )0.82 [60]

35 132235-73-5 2’,3’-Dideoxy-3’-hydroxymethylcytidine Antiviral )0.79 [61, 62]

36 7481-89-2 2’,3’-Dideoxycytidine (Zalcitabine) Antiviral )1.5 [61]

37 161814-49-9 Amprenavir (KVX 478) Antiviral )0.56 [63]

38 69655-05-6 Didanosine Antiviral )1.28 [64]

39 150378-17-9 Indinavir Antiviral )0.72 [63, 65]

40 159989-64-7 Nelfinavir (AG)1341) Antiviral )0.93 [63]

41 127779-20-8 Saquinavir (Ro 31-8959) Antiviral )0.86 [63]

42 30516-87-1 Zidovudine Antiviral )0.72 [65]

43 129618-40-2 Nevirapine Antiviral 0 [65]

44 56-29-1 Hexobarbital Barbiturate )0.31 [66]

45 151-83-7 Methohexital Barbiturate )0.06 [67]

46 76-73-3 Secobarbital Barbiturate 0.20 InH

47 76-75-5 Thiopental Barbiturate )0.45 [68]

48 59468-90-5 1-Hydroxymidazolam Benzodiazepine )0.07 [69]

49 59468-85-8 4- Hydroxymidazolam Benzodiazepine )0.03 [69]
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Table 1. Continued.

# CAS # NAME Class logBB Ref.a

50 28981-97-7 Alprazolam Benzodiazepine )0.04 [69]

51 84379-13-5 Bretazenil Benzodiazepine )0.09 [70]

52 22316-47-8 Clobazam Benzodiazepine 0.35 [69]

53 22316-55-8 Desmethylclobazam Benzodiazepine 0.36 [69]

54 1088-11-5 Desmethyldiazepam Benzodiazepine 0.61 [69, 71]

55 439-14-5 Diazepam Benzodiazepine 0.56 [69, 71]

56 78755-81-4 Flumazenil Benzodiazepine )0.29 [70]

57 1622-62-4 Flunitrazepam Benzodiazepine 0.06 [69]

58 122384-14-9 L-663581 (FG 8205) Benzodiazepine )0.3 [72]

59 128246-10-6 M1 L-663581 Benzodiazepine )1.34 [72]

60 130073-36-8 M2 L-663581 Benzodiazepine )1.82 [72]

61 59467-70-8 Midazolam Benzodiazepine 0.32 [69, 70]

62 604-75-1 Oxazepam Benzodiazepine 0.55 [69, 71]

63 99632-94-7 RO19-4603 Benzodiazepine )0.25 [70]

64 28911-01-5 Triazolam Benzodiazepine 0.6 [69, 71]

65 37517-30-9 Acebutolol Beta-Blocker )0.15 [73]

66 13655-52-2 Alprenolol Beta-Blocker )0.23 [73]

67 29122-68-7 Atenolol Beta-Blocker )1.0 [47, 74]

68 63659-18-7 Betaxolol Beta-Blocker 0.39 [73]

69 51384-51-1 Metoprolol Beta-Blocker 1.15 [74]

70 525-66-6 Propranolol Beta-Blocker 1.58 [44, 55, 74]

71 3930-20-9 Sotalol Beta-Blocker )0.28 [75]

72 120014-06-4 Donepezil (Aricept) Cholinergic 0.89 [76]

73 357-70-0 Galantamine Cholinergic 0.32 [77]

74 364079-69-6 LU-201640 Cholinergic 0.3

75 123441-03-2 Rivastigmine (ENA-713) Cholinergic 0.88 [78]

76 142852-50-4 Zanapezil (TAK-147) Cholinergic 1.14 [78]

77 91374-21-9 Ropinirole (SKF-101468) Dopamine 0.25 [5]

78 187281-31-8 Pfizer Compound 1 GPCR-NK1 0.48 InH

79 147116-67-4 Pfizer Compound 2 GPCR-NK1 0.46 InH

80 161105-56-2 Pfizer Compound 3 GPCR-NK1 )0.89 InH

81 135095-42-0 Pfizer Compound 4 GPCR-NK1 0.37 InH

82 145148-39-6 Pfizer Compound 5 GPCR-NK1 0.87 InH

83 145741-90-8 Pfizer Compound 6 GPCR-NK1 0.98 InH

84 145877-52-7 Pfizer Compound 7 GPCR-NK1 0.63 InH

85 145742-16-1 Pfizer Compound 8 GPCR-NK1 0.92 InH

86 145742-01-4 Pfizer Compound 9 GPCR-NK1 0.96 InH

87 145742-22-9 Pfizer Compound 10 GPCR-NK1 0.88 InH

88 145742-21-8 Pfizer Compound 11 GPCR-NK1 0.41 InH

89 145741-95-3 Pfizer Compound 12 GPCR-NK1 )0.15 InH

90 160502-69-2 Pfizer Compound 13 GPCR-NK1 )1 InH

91 160502-85-2 Pfizer Compound 14 GPCR-NK1 )0.42 InH

92 161499-49-6 Pfizer Compound 15 GPCR-NK1 0.36 InH

93 163257-90-7 Pfizer Compound 16 GPCR-NK1 )0.22 InH

94 163257-80-5 Pfizer Compound 17 GPCR-NK1 0.48 InH

95 164352-88-9 Pfizer Compound 18 GPCR-NK1 )0.37 InH

96 190275-53-7 Pfizer Compound 19 GPCR-NK1 0.49 InH

97 163257-64-5 Pfizer Compound 20 GPCR-NK1 0.11 InH

98 163257-86-1 Pfizer Compound 21 GPCR-NK1 0.85 InH
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Table 1. Continued.

# CAS # NAME Class logBB Ref.a

99 163257-88-3 Pfizer Compound 22 GPCR-NK1 0.32 InH

100 163257-84-9 Pfizer Compound 23 GPCR-NK1 1.26 InH

101 163257-85-0 Pfizer Compound 24 GPCR-NK1 0.62 InH

102 77086-21-6 MK-801 GPCR-NMDA 1.11 [79]

103 52-26-6 Morphine GPCR-Opiod )0.16 [51]

104 151581-23-6 Apaxifylline GPCR-AA1A )1.4 [80]

105 222722-65-8 Compound 13 GPCR-AA1A )0.23 [80]

106 210880-09-4 Compound 17 GPCR-AA1A )1 [80]

107 141060-39-1 Compound 28 GPCR-AA1A 0.38 [80]

108 202646-80-8 Compound 32 GPCR-AA1A 0.06 [80]

109 210879-61-1 Compound 5 GPCR-AA1A )0.31 [80]

110 5638-76-6 Betahistine (B14) Histamine )0.3 [81]

111 6304-27-4 B15 Histamine )0.06 [81]

112 18453-07-1 B16 Histamine )0.42 [81]

113 61887-92-1 B19 Histamine )1.3 [81]

114 83881-51-0 Cetirizine (Zyrtec) Histamine )1.30 [82]

115 43170-96-3 SKF 71473 (B20) Histamine )1.4 [81]

116 68-88-2 Hydroxyzine Histamine 0.18 [83]

117 86181-42-2 Temelastine (SKF93944) Histamine )1.87 [84]

118 2507-81-5 Y-G 19 Histamine )0.18 [1]

119 51481-61-9 Cimetidine (Y-G1) Histamine )1.42 [1]

120 69014-14-8 Tiotidine (Y-G10, ICI 125211) Histamine )0.82 [1]

121 112598-26-2 Y-G12 Histamine )1.17 [1]

122 52378-66-2 Y-G13 Histamine )2.15 [1]

123 54856-23-4 Y-G14 Histamine )0.3 [1]

124 112598-28-4 Y-G15 (SKF-94445) Histamine )0.67 [1]

125 112598-30-8 Y-G16 Histamine )0.66 [1]

126 112598-32-0 Y-G17 Histamine )0.12 [1]

127 7120-01-6 Y-G2 Histamine )0.04 [1]

128 72801-60-6 YG)20 Histamine )1.15 [1]

129 72801-74-2 Y-G22 Histamine )1.57 [1]

130 72801-63-9 Y-G23 (ICI 127032) Histamine )1.54 [1]

131 74188-86-6 Y-G24 Histamine )1.12 [1]

132 112598-43-3 Y-G25 Histamine )0.73 [1]

133 112598-45-5 Y-G26 Histamine )0.27 [1]

134 112598-49-9 Y-G29 Histamine )0.28 [1]

135 71351-79-6 Icotidine (Y-G3, SKF 93319) Histamine )2 [1]

136 78273-74-2 Y-G30 Histamine )0.46 [1]

137 112598-52-4 Y-G31 (SKF-94826) Histamine )0.24 [1]

138 87078-26-0 Y-G34 Histamine )0.02 [1]

139 104076-40-6 Y-G36 (SKF-94674) Histamine 0.69 [1]

140 104076-45-1 Y-G37 Histamine 0.44 [1]

141 145459-26-3 Y-G4 (SKF 93619) Histamine )1.3 [1]

142 104076-38-2 Zolantidine (Y-G41, SKF-95282) Histamine 0.14 [1]

143 104076-32-6 Y-G42 Histamine 0.22 [1]

144 83903-06-4 Lupitidine (Y-G5, SKF93479) Histamine )1.06 [1]

145 59-33-6 Y-G7 (Mepyramine Maleate) Histamine 0.49 [1, 84]

146 113-52-0 Y-G8 (Imipramine HCl) Tricyclic Amine 1.17 [1, 55, 85]

147 66357-35-5 Y-G9 (Ranitidine) Histamine )1.23 [1]
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Table 1. Continued.

# CAS # NAME Class logBB Ref.a

148 82626-48-0 Zolpidem Hypnotic )0.54 [86]

149 203321-88-4 Compound A Muscarinic )0.89 [87]

150 133099-04-4 Darifenacin Muscarinic )0.62 [87]

151 51-34-3 Scopolamine Muscarinic 0.23 [87]

152 117-89-5 Trifluperazine Neuroleptic 1.38 [88]

153 10457-90-6 Bromperidol Neuroleptic 1.38 [89]

154 1063-55-4 Butaperazine-Maleate Neuroleptic 0.83 [90]

155 50-53-3 Chlorpromazine Neuroleptic 0.84 [90]

156 2095-20-7 Desmonomethylpromazine Neuroleptic 0.59 [89, 91]

157 146-56-5 Fluphenazine-HCl Neuroleptic 1.53 [90]

158 52-86-8 Haloperidol Neuroleptic 1.34 [90]

159 32672-69-8 Mesoridazine-Besylate Neuroleptic )0.01 [90]

160 2095-17-2 Nor-2-Chlorpromazine Neuroleptic 0.97 [89]

161 1225-64-5 Nor-Chlorpromazine Neuroleptic 1.37 [89]

162 10538-32-6 Northioridazine Neuroleptic 0.75 [89]

163 85650-56-2 Asenapine (ORG-5222) Neuroleptic 1.03 [6]

164 210821-63-9 ORG-12962 Neuroleptic 1.64 [6]

165 142494-12-0 ORG-13011 Neuroleptic 0.16 [6]

166 128915-56-0 ORG-30526 Neuroleptic 0.39 [6]

167 129234-06-6 ORG-32104 Neuroleptic 0.52 [6]

168 198968-25-1 ORG-34167 Neuroleptic 0 [6]

169 135928-30-2 ORG-4428 Neuroleptic 0.82 [6]

170 104535-64-0 SKF-89124 Neuroleptic )0.43 [5]

171 167782-15-2 BMS-184111 HCl Neuroleptic 0.74 [92]

172 53-60-1 Promazine HCl Neuroleptic 0.67 [91, 93]

173 146-21-4 Promazine-Sulfoxide Neuroleptic )0.48
174 14759-06-9 Sulforidazine Neuroleptic 0.18 [89]

175 50-52-2 Thioridazine Neuroleptic 0.34 [90]

176 207390-15-6 Bromocytisine Nicotinic )0.05 InH

177 486-56-6 Cotinine Nicotinic 0.04 [94, 95]

178 485-35-8 Cytisine Nicotinic )1.09 [96]

179 54-11-5 Nicotine Nicotinic 0.56 [95-97]

180 494-97-3 Nor-nicotine Nicotinic 0.32 [95]

181 34911-55-2 Bupropion (Zyban) Smoking 1.40 [98]

182 5630-53-5 Tibolone Steroid 0.4 [6]

183 58-08-2 Caffeine Stimulant 0.01 [99–102]

184 83-67-0 Theobromine Stimulant )0.29 [100]

185 58-55-9 Theophylline Stimulant )0.38 [100, 102, 103]

186 1977-15-7 2-OH-Desm.Imipramine Tri.Anti.Depr 0.53 [85]

187 50-48-6 Amitriptyline Tri.Anti.Depr 0.89 [104]

188 50-47-5 Desipramine Tri.Anti.Depr 0.9 [55, 85, 105]

189 2095-95-6 Desmethyldesipramine Tri.Anti.Depr 0.96 [85, 105]

190 24219-97-4 Mianserine Tri.Anti.Depr 0.99 [6]

191 85650-52-8 Mirtazapine Tri.Anti.Depr 0.53 [6]

Not Usedb

193 58-15-1 Aminopyrine Analgesic 0.04 [101, 106]

194 15687-27-1 Ibuprofen Analgesic )0.18 [54]

195 53-86-1 Indomethacin Analgesic )1.26 [106]

213 50-33-9 Phenylbutazone Analgesic )0.58 [50, 53]
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comments, rather than secondary references.
These criteria, of course, do not provide ultimate
assurance of data reliability, but do constitute a
necessary, albeit arguable, filter toward the low-
ering of errors encountered. Furthermore, they
allow an additional measure of control, by
allowing other authors to consult and consider
the accuracy of the original reports, as well as the
quality of the data used in the present work. All
the original references are provided and the
compounds that may have been identified as
possible efflux substrates are identified.

B. Statistical analysis

The R program [22] was used to generate bagged
decision tree models using the ‘‘rpart’’ library. This

methodology creates a number of decision tree
models and takes the average of those models as
the predicted value. In all cases reported here, 25
trees were used in each ‘‘bagged’’ tree model. The
multiple linear regression model (MLR) for the
rule-of-five (Ro5) data set was also performed in R
with the ‘‘lm’’ command.

We prefer the recursive partitioning method for
three primary reasons. First, overfitting is reduced
[22]. While the overfitting of one tree may occur,
overfitting 25 trees is relatively less likely. Second,
the standard deviation of the 25 predictions
provides a quick assessment of the confidence of
the prediction. For instance, if a new compound is
tested and the model reports that the logBB
predicted is 0.7±0.3, this may be considered a
good prediction, while a logBB prediction of

Table 1. Continued.

# CAS # NAME Class logBB Ref.a

218 487-54-7 Salicyluric Acid Analgesic [48]

198 298-46-4 Carbamazepine Anticonvulsant 0.00 [107]

199 36507-30-9 Carbamazepine 10,11-epox. Anticonvulsant )0.34 [107]

214 57-41-0 Phenytoin Anticonvolsant )0.035 [53]

221 21489-20-3 Talsupram (LU 5-003) Antidepressant 0.22 [108]

204 86386-73-4 Fluconazole Antifungal )0.22 [109]

207 Itraconazole Antifungal [61]

208 65277-42-1 Ketoconazole Antifungal )0.63 [110]

216 106266-06-2 Risperidone Antipsychotic )0.11 [86, 111]

217 144598-75-4 Risperidone (9-OH) Antipsychotic )1.22 [86, 111]

219 3056-17-5 Stavudine Antiviral [112]

193 52-43-7 Allobarbital Barbiturate )0.22 [68]

195 57-43-2 Amobarbital Barbiturate 0 [68]

196 57-44-3 Barbital Barbiturate )0.25 [68]

202 52-31-3 Cyclobarbital Barbiturate )0.301 [68]

211 143-81-7 Pentobarbital Barbiturate 0.1 [68]

212 50-06-6 Phenobarbital Barbiturate )0.12 [68]

215 6673-35-4 Practolol Beta-blocker )0.55 [93]

220 1684-40-8 Tacrine Cholinergic 1.16 [113]

200 529-38-4 Cocaethylene Cocaine [114]

201 50-36-2 Cocaine Cocaine [114]

203 57808-66-9 Domperidone Dopamine )0.78 [115]

209 18717-72-1 Nor-cocaine Cocaine [114]

197 519-09-5 Benzoylecgonine Stimulant [114]

210 611-59-6 Paraxanthine Stimulant 0.57 [100]

a‘InH’ refers to values generated from in-house measurements that are disclosed for the first time here. Experimental designs represent
those employed in several different drug discovery programs and should be taken as similar to those found on page 331 of Kalvass and
Maurer [41] or page 167 of Doran et al. [86].
b‘‘Not Used’’ refers to values for which we could not determine the accuracy. This could be due to inconsistent values between
references (i.e. values for Risperidone cited in references [86] and [111] are very different, and we were unable to determine the source of
the discrepancy), or inconsistent methodologies (i.e. CSF/plasma values).
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0.7±0.6 may be considered a relatively poor
prediction. Finally, descriptor selection is done
automatically [22].

Three separate statistical levels are reported.
First, a training set model is generated for each
descriptor set. Here all 190 compounds are used
to train a bagged decision tree model. The same
compounds are then predicted and the ability of
the model to predict those compounds is eval-
uated. The second level reported here is the
leave-group-out cross validation (LGO-CV). In
this case, 10 separate bagged decision tree
models are generated. For each model, 25% of
the literature compounds are selected randomly
using the ‘‘rbinom’’ function in R. A model is
trained on the remaining 75% of the data set
and the selected 25% is used as a test set. The
correlation coefficient reported, Q2, is the aver-
age correlation coefficient for 10 randomly
selected test sets. This averaging was done
because Q2 varies by about 0.10 unit from one
randomly selected test set to the next. Finally,
using the training model of the 190 literature
compounds, all internal Pfizer compounds were
used as a test set. Many of the proprietary Pfizer
compounds are from active drug discovery pro-
jects and their structures are not disclosed here.
We provide the statistical analysis to share our
experiences as they relate to data extrapolation
and the important consideration of transporter
assessment.

Two additional statistical techniques have also
been used to examine descriptor importance and
to detect outliers. Relative variable importance
was determined from summing the number of
times a particular chemical descriptor was chosen
as a split-point in one of the bagged decision
trees. Here we presume that descriptors that are
chosen more often as splits are determined by the
model to be more relevant to the observed
variable.

The hat matrix was used as a means for
estimating ‘‘extrapolated’’ descriptor strings in
the Pfizer data sets. The hat matrix is defined as

H ¼ XðXTXÞ�1XT ð1Þ
where X is an N (number of observations) by D
(number of descriptors) matrix and may be used as
a projection matrix for subsequent test sets in a
linear model. The initial H matrix is defined by the

training set. The diagonal elements of H indicate
the effect of a given observation. These values
(termed leverage values) indicate whether or not
the descriptor values for a given observation (in
this case a new compound) are far from the main
body of the data. For our purposes a high leverage
value for a test compound indicates that the
particular observation is distant from the centre
of the X observations (i.e. the training set) and is
thus designated as a potential extrapolation. We
determine this by comparing the leverage value of
a test compound to the leverage values of the
training set. If the test compound has a leverage
value that is less than or greater than the minimum
and maximum training set leverage values, respec-
tively, then an outlier, hence an extrapolation, is
assumed.

C. Descriptor calculations

Three descriptor sets were examined in this
study: the Charge Polar Surface Area (CPSA)
descriptors [23], the Rule-of-Five (Ro5) descrip-
tors [24], and a set of descriptors from the MOE
computer program [25]. In the course of our
work, we also evaluated the Volsurf descriptors
[26, 27] and the Electrotopological State (E-state)
descriptors [28]. However, the results we
achieved for these last two descriptor sets were
generally poor, possibly due to inconsistent
methodology compared with the original refer-
ence. For these two sets, it is likely that some
differences exist between the specific descriptors
calculated here and those reported by blood–
brain barrier models found in the literature [20,
25, 29]. Due to lack of direct reproducibility
with the original references and for the sake of
brevity the results obtained using these programs
will not be reported here.

The CPSA descriptors used for this study are
similar to those defined by Stanton and Jurs [23]
and recently used to examine the brain/plasma
endpoint. These descriptors are calculated by first
using the Corina program [30] to provide a
uniform 3-dimensional translation for all mole-
cules. The internal version of the CPSA program
then uses AMSOL [31] and the CM1A method
for calculating partial atomic charges [32, 33].
SAVOL2 [34] is used for generating the partial
solvent accessible surface areas and molecular
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surface areas/volumes. A number of mathemati-
cal permutations of charge summations/differ-
ences of different surface areas are then used as
descriptors of the molecules. A table defining
these descriptors is included in the Supplemental
Information section of this paper and is available
upon request.

The extended Rule-of-Five (Ro5x) descriptor
set used here contains a number of extra descrip-
tors in addition to the well-known ‘‘Rule of Five’’
[24]. These include an estimation of the Andrew’s
binding energy [35], the number of rotatable
bonds, CLOGP [36], rule-of-five violations, rule-
of-five alerts [24], TPSA [37], and a flag for the
presence of positive and negative ionizable groups,
as well as all of the Moriguchi parameters: MlogP,
PRX, POL, UB, NO and CX [38]. All of these
have been calculated using an internal SPL (Sybyl
Programming Language) programs with the
exception of CLOGP, and TPSA. This set includes
a total of 16 descriptors.

The MOE [39] descriptor set includes all of
the molecular VSA (van der Waals surface area)
descriptors. These ‘‘VSA-type’’ descriptors sub-
divide the molecular surface area of the mole-
cules based upon property type using three
properties: SMR (molecular refractivity), SlogP
(logP) and PEOE (partial electrostatic charges)
[40]. In addition, the TPSA (topological polar
surface area), molecular weight, logP (o/w),
counts for aromatic, acidic and basic atoms are
included, as well as total van der Waals surface
areas corresponding to various atomic properties
(acids, bases, hydrogen bond donors, etc.) have
been included as calculated by the commercially
available MOE program [39].

Results and discussion

A. Efflux issues

Before considering the ability of various descrip-
tor-based statistical models to predict the brain/
plasma ratio, we first consider the underlying
mechanisms that determine drug disposition and
their relative impact upon the observed variable.
Most models attempting to correlate calculable
physical properties with B/P ratios make the
assumption that the observed brain/plasma ratio
reflects the ability of the drug to partition from an
aqueous-like environment to a lipid-like environ-
ment. This assumption is supported by numerous
empirical correlations between observed brain/
plasma ratios and calculated estimates of a drugs
lipophilicity (ClogP) or hydrophilicity (polar sur-
face area).

Generally, drugs that are suspected to have
anomalously low brain/plasma ratios due to P-gp-
mediated efflux from the brain are flagged as
outliers and not included in quantitative correla-
tions. The issue of the transporter-mediated efflux
raises important questions: what is the impact on
overall brain permeation from efflux mechanisms?
What is the variation of this effect from one
chemical series to the next?

Figure 1 shows the correlation of brain/plasma
ratios observed between P-gp ko-mice and brain/
plasma from wild-type mice for a series of 250
compounds measured at Pfizer. The three panels
all show the same set of data and differ only in the
shading of the data points that refer to different
target types. Compounds made for a specific
kinase inhibitor project are shaded dark on panel

Figure 1. Comparison of measured P-gp knock out (KO) and wild-type (WT) brain/plasma ratios. Panels ‘‘A’’, ‘‘B’’ and ‘‘C’’ all
have the same data plotted and differ only by the shading. Black data points in Panel ‘‘A’’ refer only to compounds from a pro-
gram with a kinase target, while all other data are shaded grey. Panels ‘‘B’’ and ‘‘C’’ follow this convention with darkened symbols
for a GPCR and Ion Channel targets.
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A, while potential GPCR ligands and ion-channel
ligands are shaded dark on panels B and C
respectively. Although we have arbitrarily parti-
tioned the data set by the gene-family of the target,
a very limited number of distinct chemical scaf-
folds comprise these sets. The ratio of [brain/
plasma]knock-out/[brain/plasma]wild-type (re-
ferred to KO/WT) gives an in vivo measure of the
P-gp liability of a given compound. The average
KO/WT ratio is 8.14. Only 90 out of the 230
compounds have KO/WT ratios less than 3.0.
From this perspective, approximately 60% of all
compounds tested have substantial (KO/WT>3)
P-gp-mediated efflux issues. This percentage may
not accurately reflect all of the compounds being
made for CNS projects at Pfizer, Groton since KO
experiments are typically only performed on com-
pounds that are suspected of having some P-gp-
mediated efflux.

The implication of the series-dependent P-gp-
liability for statistical modeling of novel chemical
series is important. It suggests that B/P ratios
cannot be predicted accurately until the P-gp
liability is well characterized. As we shall see in
the next section, extrapolating to new chemical
series remains a major hurdle for just this reason.
Unfortunately, no rapid in vitro methods have
been established that may act as a surrogate
measure for the KO/WT ratio.

One strategy that may turn out to perform
well in the future is to have two statistical
models: one that predicts [brain/plasma]wild-type
and one that predicts [brain/plasma]knock-out
data. The ability of the models to extrapolate to a
novel series will remain a question. However, a
model built solely on the knock-out data will at
least attempt to provide an answer to the
question ‘‘do these compounds passively diffuse
into the brain?’’

B. CSF

Another major issue related to building statistical
models for ‘‘brain penetration’’ based upon
continuous-valued brain/plasma ratios are their
relevance, or lack of relevance with respect to in
vivo CNS activity. A number of sources have
argued towards measuring CSF or ECF levels in
the brain as opposed to using whole-brain
homogenates [41, 42]. The primary idea behind

this argument is that measurements of whole-
brain homogenates include concentrations of
drug bound to non-specific brain tissues. Statis-
tical models based upon this number would then
drive SAR towards excessively lipophilic com-
pounds with relatively low receptor availability
and therefore lower than expected in vivo activity.
This argument assumes that the receptor active
sites are themselves exposed to ECF. Based upon
a small but growing number of crystal structures
in historically CNS-related gene families [43], and
the observed low solvent exposure of these active
sites one may argue that the assumption that high
ECF concentrations leads to high receptor occu-
pancy is not necessarily valid. In any case, lack of
sizable ECF or CSF data sets precludes statistical
modeling efforts at this stage.

C. Descriptor comparison

Of particular interest to us is the ability of the
brain/plasma statistical model to predict virtual
compounds that either have not been made or
have not yet been tested. To assess the predictive
ability of the models, we have presented a number
of quantitative measures. First, a training set
model has been generated for each descriptor set.
These models use all of the literature data (190
compounds), train a bagged tree model and
predict all of the compounds using this model.
This measure accounts for the model’s ability to
reproduce the values from the training set. A set of
correlation plots of predicted vs. observed log(BB)
values is shown in Figure 2, and basic statistics for
these models are given in Table 2. For all descrip-
tor sets studied, these models produce typical R2

and RMSE values [2–4, 18, 29, 116, 117]. The
lowest observed R2 value is for the simple descrip-
tor set comprising of the ‘‘augmented’’ Rule-of-
Five descriptor set, which also has the highest
RMSE. Using this same descriptor set, a much
higher quality of model can be found using the
recursive partitioning statistical method compared
to the multiple linear regression. A leave-group-
out cross validation (LGO-CV) is also reported in
Table 2. In this case, 10 separate bagged tree
models are generated. For each bagged model
25% of the literature compounds are selected
randomly using the ‘‘rbinom’’ function in R. A
model is trained on the remaining 75% of the data
set and the selected 25% are used as a test set. The
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correlation coefficient reported, Q2, is the average
correlation coefficient for 10 randomly selected test
sets. All recursive-partitioning models have a
drop-off of at least �0.24 units when compared
to the training set R2. All physical property-based
models (CPSA, Ro5, and MOE) have a very
similar range of accuracy (R2=0.51–0.53) with the
simple Ro5 and MOE-rpart model giving the best
average Q2 of 0.53. These Q2 values are lower than
others reported in literature using a leave-one-out
method. It is our feeling that this methodology
gives a slightly more realistic picture of the ability
of these models to predict novel chemical series.
Finally, using the training model of the 190
literature compounds, all internal Pfizer com-
pounds were tested. These compounds were col-
lected from eight separate CNS-related projects.
For our purposes, the R2 values reported for this
set represent a true test set. The percentage
coverage column refers to the percentage of
compounds in the set that is within the training
set descriptor space for that set of descriptors
based upon the hat matrix determination of
whether or not a compound is an extrapolation.
Compared to the LGO-CV Q2, the R2 values
reported for this set show a further decline. The
extended rule-of-five descriptor set demonstrates
the best ability to extrapolate from the literature
training set to the Pfizer test set. Considering that
the average KO/WT ratio of the Pfizer compounds
is 8.14, and that the model has no method of
determining the Pgp-liability of the compounds,
these results are not surprising and underscore the
difficulty of predicting compounds with P-gp-
mediated efflux.

Given that all of the descriptor sets analyzed
here may be considered ‘‘physical property’’ de-
scriptors, it is interesting that their apparent ability
to extrapolate to new chemical series is as different
as it is. To better understand the difference in
performance between seemingly similar physical-
property based descriptor sets, we have examined
the construction of the individual partitioning
trees. Figure 3 shows the relative variable impor-
tance determined from summing the number of
times a particular chemical descriptor was chosen
as a split-point in one of the 25 bagged decision
tree models. Here, we presume that descriptors
that are chosen more often as split points are more
relevant to the observed variable. The right panel
of Figure 3 shows the relative variable importance
for rule-of-five descriptors. Our findings are con-
sistent with previously observed results by Clark
[5]. The TPSA descriptor that is calculated from a
fragment-based VdW polar surface area [37] is the
most prominent descriptor split along with ClogP.
Interestingly, the TPSA descriptor is used less
often when included in the much larger CPSA
descriptor pool. A number of the fractional
permutations of the CPSA set appear at or near
the top in terms of number of splits. For instance,
the FNSA3 descriptor, defined as

P
(SA�q))/SA1

is the most prevalent split.
Although the CPSA descriptors provide a

much more detailed picture of the physical
chemical properties of the molecules, when com-
bined with a recursive partitioning algorithm this
set performs poorly when predicting new com-
pounds. One plausible explanation is that includ-
ing many more permutations of fractional CPSA

Table 2. List of drugs and their log(brain/plasma) values.

Model Literature set LGO-CV Pfizer data Percentage extrapolation(c)

R2 RSE Q2(a) (STDV) RSE (STDV) Q2(b)

CPSA 0.83 0.35 0.51 (0.09) 0.58 (0.06) 0.19 13.1

Ro5_tpsa 0.77 0.40 0.53 (0.10) 0.58 (0.07) 0.27 1.7

Ro5-MLR 0.54 0.57 0.52 (0.07) 0.58 (0.06) 0.19 1.7

MOE 0.80 0.38 0.53 (0.08) 0.57 (0.06) 0.22 13.7

aQ2 values represent average correlation coefficients for 10 test sets. Each of the 10 test sets was generated by randomly selecting 25%
data points from the literature set (190 compounds). Numbers in parenthesis indicate the standard deviation of the Q2 values for the 10
test sets.
bQ2 values represent the correlation coefficients of Pfizer compounds tested using a training set model of literature compounds.
cRefers to the percentage of the test set that falls outside the bounds of the training set as defined by the leverage values computed using
the Hat Matrix analysis.
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produces a ‘‘fingerprint-like’’ descriptor string
that is overly descriptive and thus not as trans-
ferable to different chemical scaffolds. To address
this issue, we have evaluated the descriptor
strings using the hat matrix as defined in the
methods section. Test compounds with hat matrix
values lower than the hat matrix minimum or
higher than the hat matrix maximum may be
considered outliers relative to the training set
descriptor space. Of the 350 Pfizer compounds
examined, 46 were determined to be outliers when

defined using the CPSA descriptors, 48 were
determined to be outliers when defined using the
MOE descriptor set and six were determined to
be outliers when defined using the Rof5 descrip-
tor set. The description of modeled compounds as
a set of ‘‘bunches’’ or ‘‘clusters’’ used by Abra-
ham is very useful. The analysis presented here
helps to establish whether a not a new compound
falls into an existing ‘‘cluster’’. For the Rof5
descriptor set, it may be that new chemical
entities have a much higher chance of looking

Figure 2. Comparison of predicted and observed log(BB) values. CPSA-RP refers to predicted values generated using the CPSA
descriptors and a recursive partitioning model. Rof5-RP refers to predicted values generated using the Rof5 descriptors and a
recursive partitioning model. Rof5-MLR refers to predicted values generated using the Rof5 descriptors and a multiple linear
regression model. The top panels compare predicted and observed values for the literature training set, while the bottom panels
compare predicted and observed values for the in-house Pfizer test set.

Figure 3. Evaluation of descriptor importance for all Rof5 descriptors (left panel) and selected CPSA descriptors (right panel).
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similar to an existing cluster since the properties
used to describe the molecules are more general.
In this regard it makes some sense that they tend
to be predicted more accurately by using this set
of relatively simple descriptor strings.

There are two possible reasons why the Pfizer
internal compounds are predicted relatively poor.
The first is the apparent efflux liability and the
second is the presence of statistical extrapolations.
How well does the model predict observed log(BB)
if the both of these effects are removed? Figure 4
shows the correlation plot of the Rof5 (panel A)
and CPSA (panel B) models for compounds with
known KO/WT ratios less than 10 without com-
pounds that are statistical extrapolations.
Comparing these correlation plots to the bottom
plots of Figure 2 demonstrates that the correlation
does improve with the removal of known extrap-
olations. The observed R2 values are 0.39 (s=0.43)
for CPSA and 0.39 (s=0.33) for Rof5. Once
extrapolations are removed, both models appear
to be equally predictive. The advantage of using
the Rof5 descriptor set is only that there are far

fewer statistical extrapolations, so the model may
be correctly applied to a nearly all of the test set
compounds.

D. Extending the rule of five

This is not the first time that rule-of-five or
similarly simple chemical descriptors have been
used when modeling log(BB). In addition to past
QSAR studies using polar surface area [5, 6],
free energies of solvation [3, 118] and other
simple physical properties [2, 4, 29], there also
exists a ‘‘CNS-Rule of Five’’ [14]. Not as well-
known as the original Rule of Five [24], this
version of the rule of five offers a similar set of
simple property cut-offs: MW<400, hydrogen-
bond acceptors<6, hydrogen-bond donors<2
and neutral or basic with a pKa between 7.5
and 10.5. Noticeably absent from this list is a
revised term for logP.

This simple analysis suffers from a similar
weakness as other models that separate com-
pounds into CNS active and inactive classes. That
is, compounds that either do not have a basic
center or possess a non-traditional CNS scaffold
will generally be filtered-out, thus hindering
potential use for non-traditional CNS targets
(for example, [119, 120]). Nevertheless, it under-
scores the usefulness of focusing on simple
chemical descriptors. In practice, it is often more
useful from both a predictive and interpretive
standpoint to build ‘local models’ based upon
small sets of compounds belonging to a similar
chemical scaffold using a simple set of descrip-
tors. Figure 5 demonstrates three correlations
that may be found using historic and/or in-house
data sets for a few focused chemical series. What

Figure 4. Comparison of predicted and observed log(BB) val-
ues using a reduced test set which includes only data from
compounds that are not statistical extrapolations and have
measured KO/WT ratios less than 10.

Figure 5. Comparison of observed log(B/P) values with either simple linear models or physical properties. Left and middle panels
refer to simple models for Histamine and NK-1, generated using equations 2 and 3 in the text. The panel on the right refers to the
simple correlation (equation 4) that log(B/P) values share with the TPSA parameter for a set of compounds targeting a kinase.
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is surprising in this analysis is that the three
models have an assorted reliance upon the
descriptors used to model them:

HistamineDataSet:
log(B/P)¼0:06�0:014�PSAþ0:16�ClogP ð2Þ
n¼28;R2¼0:79

NK-1DataSet:
log(B/P)¼1:55�0:009�MWþ0:41�ClogP ð3Þ
n¼51;R2¼0:73

KinaseDataSet:
log(B/P)¼2:04�0:023�PSA ð4Þ
n¼47;R2¼0:65

Here, the NK-1 data set shows relatively little
correlation with PSA. Presumably due to the P-gp-
efflux component to the data, MW rather than
PSA contributes more to the ability of these
particular compounds to partition into the brain.
Additionally, from a design perspective, these
models have a much greater intuitive appeal since
these parameters all are relatively easy to calculate
and modulate.

Conclusions

A series of bagged recursive partitioning models
for log(BB) are presented. Three descriptor types
are compared using a LGO-CV as well as an
external data set of proprietary Pfizer com-
pounds. Pfizer compounds are typically difficult
to predict, primarily due to P-gp-mediated efflux.
Low correlation coefficients for this test set are
improved when compounds known to be P-gp-
substrates or statistical extrapolations are re-
moved. The use of simple linear models for
specific chemical series can also improve the
correlation over a limited chemical space. Of the
general use models studied here, the Ro5_tpsa
recursive partitioning model appears to extrapo-
late the best to ‘new’ series. However, the overall
correlation is poor, and only incrementally better
than other recursive partitioning models built
using the MOE and CPSA descriptor sets.

The most useful future direction would most
likely be either a model of the brain/plasma ratio
generated from knock-out mice or a model of the
KO/WT ratio. The latter would have the added

benefit of canceling-out some of questions arising
from non-specific plasma protein binding and
binding to non-specific brain tissues since these
factors (assuming they are the same in KO andWT
species) would cancel out. Considering the difficulty
of predicting effect of Pgp-mediated efflux fromWT
data alone and the tremendous shift this may cause
in the observed WT brain/plasma ratios (i.e. Fig-
ure 1), this model would most likely be a more
useful tool for the prediction of in vivo activity.
However, it would only explain P-gp-mediated
efflux mechanisms, which although predominant,
are not the only cause of efflux from the brain.

Notes

1. SA is the total solvent-accessible-surface
area, SA- is the corresponding negative con-
tribution.
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