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Summary

Non-stochastic and stochastic 2D linear indices have been generalized to codify chemical structure infor-
mation for chiral drugs, making use of a trigonometric 3D-chirality correction factor. These descriptors
circumvent the inability of conventional 2D non-stochastic [Y.Marrero-Ponce. J. Chem. Inf. Comp., Sci. l 44
(2004) 2010] and stochastic [Y. Marrero-Ponce, et al. Bioorg. Med. Chem., 13 (2005) 1293] linear indices to
distinguish r-stereoisomers. In order to test the potential of this novel approach in drug design we have
modelled the angiotensin-converting enzyme inhibitory activity of perindoprilate’s r-stereoisomers combi-
natorial library. Two linear discriminant analysis models, using non-stochastic and stochastic linear indices,
were obtained. The models showed an accuracy of 100% and 96.65% for the training set; and 88.88% and
100% in the external test set, respectively. Canonical regression analysis corroborated the statistical quality of
thesemodels (Rcan of 0.78 and of 0.77) andwas also used to compute biology activity canonical scores for each
compound. After that, the prediction of the r-receptor antagonists of chiral 3-(3-hydroxyphenyl)piperidines
by linear multiple regression analysis was carried out. Two statistically significant QSAR models were
obtained when non-stochastic (R2 = 0.982 and s = 0.157) and stochastic (R2 = 0.941 and s = 0.267) 3D-
chiral linear indices were used. The predictive power was assessed by the leave-one-out cross-validation
experiment, yielding values of q2 = 0.982 (scv = 0.186) and q2 = 0.90 (scv = 0.319), respectively. Finally,
the prediction of the corticosteroid-binding globulin binding affinity of steroids set was performed. The best
results obtained in the cross-validation procedure with non-stochastic (q2 = 0.904) and stochastic
(q2 = 0.88) 3D-chiral linear indices are rather similar to most of the 3D-QSAR approaches reported so far.
The validation of this method was achieved by comparison with previous reports applied to the same data set.
The non-stochastic and stochastic 3D-chiral linear indices appear to provide an interesting alternative to
other more common 3D-QSAR descriptors.

Introduction

Asymmetry of atomic configurations is very
important feature in determining the physical,

chemical and biological properties of chemicals
substances [1]. The non-superimposable mirror
image isomers are called enantiomers, but may
also be referred to as enantiomorphs, optical
isomers or optical antipodes [2]. The molecules
with identical 2D structural formulas containing
more than one asymmetric atom as referred to as
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r-diastereomers [3]. Most of the physical as well as
chemical properties of chiral molecules are similar.
At the same time, it is well know that many
biological molecules are chiral and that the chi-
rality plays an essential role in defining biological
activity [1]. The case of thalidomide is an example
of a problem that was, at least, complicated by the
ignorance of stereochemical effects [4]. Thus,
whenever a drug is to be obtained in a variety of
chemically equivalent forms (such as a racemate);
it is both good science and good sense to explore
the potential for in vivo differences between these
forms. In this connection, the regulation of Food
& Drug Administration (FDA) requires a detailed
study of both enantiomers [5].

Several quantitative measures of chirality have
been developed in the past and were extensively
reviewed [6–8]. Buda and Mislow distinguished
between two classes of measures [6]. In the first
class ‘the degree of chirality expresses the extent to
which a chiral object differs from an achiral
reference object.’ In the second one ‘it expresses
the extent to which two enantiomorphs differ from
one another.’ These methods yield a single real
value, usually an absolute quantity that is the
same for both enantiomorphs. A different idea
was to incorporate R/S labels into conventional
topological indices (TIs) [9]. Derived chirality
descriptors were correlated with biological activity
by Julián-Ortiz et al. [10], Golbraikh et al. [1] and
more recently by González-Dı́az et al. [11]. These
indices are refereed as chirality TIs (CTIs). The
main purpose on developing these descriptors is to
be able to account for chiral molecules, which are
well known to play an import role in medicinal
chemistry. Very few of these descriptors have been
reported in the literature to date, although the
necessity of a more serious effort in this direction
has been recognized by researchers in the area
[12].

Recently, a novel scheme to the rational – in
silico- molecular design and to QSAR/QSPR has
been introduced by one of the present authors
TOMOCOMD (acronym of TOpological MOlec-
ular COMputer Design). It calculates several new
families of molecular descriptors. In this sense,
quadratic and linear indices have been defined in
analogy to the quadratic and linear mathematical
maps [13, 14]. This approach has been successfully
employed in QSPR [13, 15–17] and QSAR [14,
18–22] studies, including studies related to nucleic

acid–drug interactions [23, 24], and central chiral-
ity codification [25]. Finally, an alternative formu-
lation of our approach for structural characterization
of proteins was carried out recently [26, 27].

The main aim of the present paper is to extend
2D linear indices of the ‘molecular pseudograph’s
atom adjacency matrix’ in order to codify chirality
related structural features. The problem of classi-
fication of ACE (Angiotesin-Converting Enzime)
inhibitors, the prediction of r-receptor antagonist
activities and corticosteroid-binding globulin bind-
ing affinity of the Cramer’s steroid data set are
selected as illustrative example of method appli-
cations. These examples will be used as matter of
comparison with other CTIs, 3D and quantum
chemical descriptors as well.

Theoretical framework

2D non-stochastic and stochastic linear indices

The atom, atom-type and total 2D non-stochastic
and stochastic linear indices of the ‘molecular
pseudograph’s atom adjacency matrix’ for small-
to-medium sized organic compounds have been
explained in some detail elsewhere [13, 14, 20].
However, an overview of this approach will be
given.

For a given molecule composed of n atoms, the
‘molecular vector’ (X) is constructed and the kth
atom linear indices, fk(xi), are calculated as a linear
maps on <n½fkðxiÞ : <n ! <n; thus fk(xi): Endo-
morphism on <n] in canonical basis as shown in
Equation 1,

fkðxiÞ ¼
Xn

j¼1

kaijXj ð1Þ

where, kaij =
kaji (symmetric square matrix), n is

the number of atoms of the molecule, and X1, . . . ,
Xn are the coordinates or components of the
‘molecular vector’ (X) in a system of canonical
basis vectors of <n. The components of the
‘molecular’ vector are numeric values, which can
be considered as weights (atom-labels) for the
vertices of the pseudograph. Certain atomic prop-
erties (electronegativity, density, atomic radius,
etc) can be used with this propose. In this work
Pauling electronegativity was selected as atom
weights [28].

370



The coefficients kaij are the elements of the kth
power of the symmetric square matrix M(G) of the
molecular pseudograph (G) and are defined as
follows: [14, 16, 20, 22]

aij ¼ Pij if i 6¼ j and 9 ek 2 E (G)

¼ Lii if i ¼ j

¼ 0 otherwise ð2Þ

where, E(G) represents the set of edges of G. Pij is
the number of edges (bonds) between vertices
(atoms) vi and vj and Lii is the number of loops in vi.

Note that linear indices’s matrices, Mk, are
graph-theoretic electronic-structure models; like
an ‘‘extended Hückel MO model’’. The M1 matrix
considers all valence-bond electrons (r- and
p-networks) in one step and their power
(k = 0,1,2,3. . .) can be considering as an interact-
ing-electron chemical-network model in k step.
This model can be seen as an intermediate between
the quantitative quantum-mechanical Schrödinger
equation and classical chemical bonding ideas [10].

The present approach is based on a simple
model for the intramolecular movement of all
outer-shell electrons. Let us consider a hypothet-
ical situation in which a set of atoms is free in
space at an arbitrary initial time (t0). In this time,
the electrons are distributed around atom nucleus.
Alternatively, these electrons can be distributed
around cores in discrete intervals of time tk. In this
sense, the electron in an arbitrary atom i can move
to other atoms at different discrete time periods
tk (k = 0,1,2,3,. . .) throughout the chemical-bond-
ing network.

The kth stochastic molecular pseudograph́s
atom adjacency matrix [Sk(G)] can be obtained
from Mk. Here, Sk(G) = Sk = [ksij], is a squared
table of order n (n = number of atoms) and the
elements ksij are defined as follows:

kSij ¼
kaij

kSUMi
¼

kaij
kdi

ð3Þ

where, kaij are the elements of the kth power of M
and the SUM of the i th row of Mk are named the
k-order vertex degree of atom i, kdi. The kth sij
elements are the transition probabilities with the
electrons move from atom i to j in the discrete time
periods tk. Note, that kth element sij take into
consideration the molecular topology in k step
throughout of the chemical-bonding (r- and p-)
network.

Table 1 depict the calculation of the linear
indices of the molecular pseudograph’s atom
adjacency matrix for 2-chloro-propionaldehyde.

The kth total [and local (atom and atom-type)
stochastic linear indices], sfk(x) [

sfk(xi)] are calcu-
lated in the same way that the linear indices (non-
stochastic), but using kth stochastic molecular
pseudograph�s atom adjacency matrix, Sk(G), like
mathematical linear maps’ matrices.

On the other hand, the defining Equation (1)
for fk(xi) may be written as the single matrix
equation:

fkðxiÞ ¼ ½X0�k ¼Mk[X] ð4Þ

where [X] is a column vector (a n� 1 matrix) of the
coordinates of X in the canonical basis of <n and
Mk the kth power of the matrixM of the molecular
pseudograph (map’s matrix).

Total (whole-molecule) linear indices are linear
functional (some mathematicians use the term
linear form, which means the same as linear
functional) on <n. That is, the kth total linear
index is a linear map from <n to the scalar
<½fkðxÞ : <n ! <�. The mathematical definition of
these molecular descriptors is the following:

fkðxÞ ¼
Xn

i¼1
fkðxiÞ ð5Þ

where n is the number of atoms and fk(xi) are the
atom’s linear indices (linear maps) obtained by
Equation 1. Then, a linear form fk(x) can be
written in matrix form,

fkðxÞ ¼ ½u�t½X0�k ð6Þ

or

fkðxÞ ¼ ½u�tMk½X� ð7Þ

for each molecular vector X 2 <n. [u]t is a
n-dimensional unitary row vector. As can be seen,
the kth total linear index is calculated by summing
the local (atom) linear indices of all atoms in the
molecule.

3D-chiral linear indices

The total and local linear indices, as defined
above, can not codify any information about 3D
molecular structure. In order to solve this prob-
lem we introduced a trigonometric 3D-chirality
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correction factor in molecular vector X [25]. In
these sense, a chirality molecular vector is
obtained (*X), where the components of X (for

instance, Pauling electronegativity (XA) [28] of
the atom A) are substituted by the following term
[vA + sin((xA+4D)p/2)].

Table 1. Definition and calculation of non-stochastic and stochastic total (whole-molecule) and local (atom) 3D-chiral and simple
2D-linear indices of the molecular pseudograph’s atom adjacency matrix of the molecule 2-chloro-propionaldehyde.

3D (R)-stereoisomer ‘Classical’ 2D-indices 3D (S)-stereoisomer

Atom (i) Local and total non-stochastic chiral linear indices of order 0–2 (k = 0–2)

*f0(xi)
*f1(xi)

*f2(xi)
*f0(xi)

*f1(xi)
*f2(xi)

*f0(xi)
*f1(xi)

*f2(xi)

O1 3.440 5.100 20.860 3.440 5.100 18.860 3.440 5.100 16.860

C2 2.550 10.430 18.460 2.550 9.430 18.460 2.550 8.430 18.460

*C3 3.550 8.260 17.530 2.550 8.260 14.530 1.550 8.260 11.530

C4 2.550 3.550 8.260 2.550 2.550 8.260 2.550 1.550 8.260

Cl 5 3.160 3.550 8.260 3.160 2.550 8.260 3.160 1.550 8.260

Total 15.250 30.890 73.370 14.250 27.890 68.370 13.250 24.890 63.370
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The trigonometric 3D-chirality correction fac-
tor use a dummy variable, xA and an integer
parameter, D: [25].

Thus, this 3D-chirality factor sin((xA+4D)p/2)
takes different values in order to codify specific
stereochemical information such as chirality, Z/E

isomerism, and so on. This factor therefore takes
values in the following order 1>0>)1 for atoms
that have specific 3D environments. The chemical
idea here is not that the attraction of electrons by
an atom depends on their chirality, due to expe-
rience shows that chirality does not change the
electronegativities of atoms in the molecule in an
isotropic environment in an observable way [29].
This correction has principally a mathematical
means and must not be source of any misunder-
standing. That is to say, this approach can be seen
as a simplification of molecular structure. How-
ever, in other level of the theoretical chemistry this
procedure has also been used. As was recalled by
Dewar almost 20 years ago, the Schrödinger
equation is not exact; it is only an approximation
where electron spin is incorporated in the results
only as an artifact [30].

A severe limitation of the Golbraikh-Bon-
chev-Tropsha (GBT) approach is the existence of
different chirality corrections and we had great

difficulty in selecting one of these. In this sense,
Gonzalez et al. [11] introduced an exponential
chirality factor (exp (xAD)), which eliminated
indetermination in the selection of chirality and
3D scales for stochastic topologic indices. Unfor-
tunately, this exponential factor does not solve

the problem in GBT-like approaches. In this
connection, the present trigonometric 3D-chiral
correction factor is invariant with respect to the
selection of other chirality scales for all kinds of
such chiral topologic indices (GBT-like ones).
Table 2 depicts the values of the trigonometric
3D-Chirality correction factor for all allowed
values of xA and D (GBT-like chirality scale and
other alternative chirality scales). In Table 2
clearly shown that the trigonometric 3D-chirality
factor is invariant with respect to the selection of
all possible real scales. That is to say, the factor
gets ever the values 1, 0 and )1 for R, non-chiral
and S atoms. As outlined above the demonstra-
tion of invariance for this factor with respect to
other 3D features such as a/e substitutions and
Z/E or p-isomer is straightforward to realize by
homology. Henceforth, we do not need to
answer the question regarding the best value
for chirality correction at lest for linear scales [1,
10, 11].

xA ¼ 1 and D is an odd number when A has R (rectus), E (entgegen), or a (axial)

notation according to Cahn-Ingold-Prelog rules ð8Þ
¼ 0 andD is an even number, ifA does not have 3D specific enviroment

¼ � 1 andD is an odd number whenA has S (sinister), Z (zusammen),

or e (ecuatorial) notation according to Cahn-Ingold-Prelog rules

Table 1. (Continued).

Atom (i) Local and total stochastic chiral linear indices of order 0–2 (k = 0–2)

*f0(xi)
*f1(xi)

*f2(xi)
*f0(xi)

*f1(xi)
*f2(xi)

*f0(xi)
*f1(xi)

*f2(xi)

O1 3.440 2.550 3.477 3.440 2.550 3.143 3.440 2.550 2.810

C2 2.550 3.477 2.637 2.550 3.143 2.637 2.550 2.810 2.637

*C3 3.550 2.753 3.506 2.550 2.753 2.906 1.550 2.753 2.306

C4 2.550 3.550 2.753 2.550 2.550 2.753 2.550 1.550 2.753

Cl5 3.160 3.550 2.753 3.160 2.550 2.753 3.160 1.550 2.753

Total 15.250 15.880 15.126 14.250 13.547 14.193 13.250 11.213 13.260
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A very interesting point is that the present 3D-
chiral descriptor reduces to simples (2D) linear
indices ones for molecules without specific 3D
characteristics because sin(0+4D)p/2 = 0, being D
zero or any even number. That is, when all the
atoms in the molecule are not chiral, the TOMO-
COMD–CARDD (Computed-Aided ‘Rational’
Drug Design) molecular descriptors or any GBT-
like chiral topologic index do not change upon the
introduction of this factor. This means that
*X = X and thus, *fk(x) = fk(x).

Methods

TOMOCOMD–CARDD approach

For computation of 3D-chiral linear indices we
used TOMOCOMD software [31]. It’s an interac-
tive program for molecular design and bioinfor-
matics research, which contains four subprograms:
CARDD, CAMPS (Computed-Aided Modeling in
Protein Science), CANAR (Computed-Aided
Nucleic Acid Research), and CABPD (Comput-
ed-Aided Bio-Polymers Docking). In this paper,
we used the module CARDD for the calculation of
non-stochastic and stochastic total 3D-chiral lin-
ear indices considering and not considering H-
atoms in the molecular pseudograph (G).

Chemometric analysis

Statistical analysis was carried out with the
STATISTICA software [32]. The considered tol-
erance parameter (proportion of variance that is
unique to the respective variable) was the default
value for minimum acceptable tolerance, which is
0.01. Forward stepwise procedure was fixed as the
strategy for variable selection. The principle of
parsimony (Occam’s razor) was taken into account
as strategy for model selection. In connection, we

selected the model with a high statistical significa-
tion but having as few parameters (ak) as possible.

Linear Discriminant Analysis (LDA) was per-
formed to classify the 32 perindoprilate stereoi-
somers as angiotensin-converting enzyme (ACE)
inhibitors or not. The quality of the models were
determined by examining Wilks’ k parameter (U-
statistic), square Mahalanobis distance (D2), Fish-
er ratio (F) and the corresponding p-level (p(F)) as
well as the percentage of good classification in the
training and test sets. The statistical robustness
and predictive power of the obtained model was
assessed using an external prediction (test) set. In
developing classification models the values of 1
and )1 were assigned to active and inactive
compounds, respectively. By using the models,
one compound can then be classified as active,
if DP%>0, being DP% = [P(Active) ) P(Inac-
tive)] � 100 or as inactive otherwise. P(Active)
and P(Inactive) are the probabilities with which
the equations classify a compound as active and
inactive, correspondingly.

Finally, the calculation of percentages of global
good classification (accuracy) and Matthews’s
correlation coefficient (MCC) in the training and
test sets permitted the assessment of the model
[33]. MCC is always between )1 and +1. A value
of )1 indicates total disagreement (all-false pre-
dictions) and +1 total agreement (perfect predic-
tions). The MCC is 0 for completely random
predictions and therefore, it yields easy compari-
son with respect to random baseline. That is to
say, MCC quantifies the strength of the linear
relation between the molecular descriptors and the
classifications, [33] and it may often provide a
much more balanced evaluation of the prediction
than, for instance, the percentages.

We also developed the linear discriminant
canonical analysis by checking the following
statistic: Canonical regression coefficient (Rcan),
v2 and its p-level [ p (v2)] [34].

Table 2. Values of trigonometric 3D-chirality correction factor [sin((xa+4D)p/2)] within the allowed domain.

D

xA )7 )6 )5 )4 )3 )2 )1 0 1 2 3 4 5 6 7

xR = 1 1 1 1 1 1 1 1 1

xnon-chiral = 0 0 0 0 0 0 0 0

xS = )1 )1 )1 )1 )1 )1 )1 )1 )1
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On the other hand, Multiple Linear Regression
(MLR) was carried out to predict r-receptor
antagonist activities of 3-(3-hydroxyphenyl)piperi-
dines and the corticosteroid-binding globulin
(CBG) binding affinity of a steroid data set. The
quality of the models was determined examining
the regression’s statistic parameters and of the
cross-validation procedures [35, 36]. In this sense,
the quality of models was determined by examin-
ing the determination coefficients (also know as
squared regression coefficient; R2), Fisher-ratio’s
p-level [p(F)], standard deviations of the regression
(s) and the leave-one-out (LOO) press statistics (q2,
scv) [35, 37].

QSAR Applications and comparison with other

theoretical studies

To evaluate the effectiveness of 3D-chiral linear
indices, we have tested their ability to predict
pharmacological properties in groups with a
known stereochemical influence. First a data set
of 32 perindoprilate stereoisomers, an angiotensin-
converting enzyme (ACE) inhibitors, was used to
test the applicability of the method [11, 38]. ACE
acts in plasma and blood vessels, removing the
C-terminal dipeptide of undecapeptide Angiotesin
I to produce the potent blood vessel constrict-
ing octapeptide Angiotesin II. In addition,
ACE inactivates the hypotensive nonapeptide
Bradykinin. For these reasons, ACE is the biolog-
ical target of many important antihypertensive
drugs called ACE inhibitors (ACEIs) [38]. Is this
study active is taken to a mean a compound that
has an IC50 value no higher than 110 nm.

After that, a short data set of seven pairs of chiral
N-alkylated 3-(3-hydroxyphenyl)piperidines that
bind to r-receptors, are also selected as illustrative
example of the 3D-chiral linear indices application.
The r-receptors mediate severe side effects induced
by various dopamine antagonists [10].

Finally, in order to validate even more 3D-
chiral linear indices in QSAR studies, we select a
molecular set that is well-know to QSAR research-
ers, the so-called Cramer’s steroid data set. This
data set was introduced by Cramer et al in 1988
[39] using Comparative Molecular Field Analysis
(CoMFA) methodology and since then has be-
come a benchmark for the assessment of novel
QSAR methods [40, 41]. Various groups used this

data set to compare the quality of their 3D-QSAR
methodologies. Hence, this data set has become
one of the most often discussed ones and can be
seen as point of reference data set for novel
molecular descriptors [42]. Even though this data
set is not the ideal 3D benchmark data set, [42] it
was used for the shake of comparability [43]. We
use this molecular set, because all compounds in
this data set contain chiral atoms, and binding
affinities of these compounds are available [39].
Some structures of these compounds were drawn
incorrectly in the original paper and were cor-
rected in a recent work [41].

Different methods were used to develop 3D-
QSAR models for this data set, including CoMFA
[39], Comparative Molecular Similarity Indices
Analysis (CoMSIA) [44], Molecular Quantum
Similarity Measures (MQSM) [45], Topological
Quantum Similarity Indices (TQSI) [46], and
Comparative Molecular Moment Analysis (CoM-
MA) [41], Mapping Property Distributions of
Molecular Surfaces (MAP) [43], and so on [47–50].

Classification of the ACE inhibitory activity
of 32 perindopirilate’s r-stereoisomers

We tested the predictive power of 3D-chiral linear
indices in the classification of perindopirilate
stereoisomers. The classification obtained models
are given below together with the LDA statistical
parameters:

ACEiactv ¼ 10:818þ 2:85� 10�5 �fH11ðxÞ

� 2:02� 10�6�f15ðxÞ ð9Þ

N = 23 k = 0.398 D2 = 7.82 F(2,20) = 15.080
p<0.0001

ACEiactv ¼ 64:6484þ 7:5052 �f6ðxÞ
� 8:4588 �f14ðxÞ ð10Þ

N = 23 k = 0.399 D2 = 7.789 F(2,20) = 15.020
p<0.0001
where N is the number of compounds, k is the
Wilks’ statistic, D2 is the squared Mahalanobis
distance, F is the Fisher ratio and p-value is the
significance level.

The model (9), which includes non-stochastic
indices, has an accuracy of 100% for the training
set. This model showed a high Matthews’ corre-
lation coefficient (MCC) of 1. The most important
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Table 3. Basic structure and chirality notation of active and non-active perindoprilate stereoisomers with their posterior probabili-
ties in data split in training and test sets and the canonical scores, using non-stochastic and stochastic linear indices.

.

No Comp.a Classb IC50
c Class DP%d Scoree Class DP%d Scoree

Equation 9 (non-Stochastic) Equation 10 (Stochastic)

Active compounds

1 SSRSS* + 1.1 + 95.43 )2.00 + 76.96 1.79

2 SRSSS* + 1.2 + 99.60 )2.92 + 97.03 2.60

3 SSSSS + 1.5 + 98.45 )2.41 + 93.66 2.31

4 SRRSS* + 3.3 + 98.81 )2.51 + 88.67 2.08

5 SSSSR + 12.2 + 97.02 )2.16 + 94.07 2.34

6 SSRSR + 29.4 + 91.34 )1.75 + 78.32 1.82

7 SRRSR + 39.8 + 97.70 )2.26 + 89.39 2.11

8 SRSSR + 54 + 99.22 )2.67 + 97.22 2.63

9 RRSSS + 108 + 0.11 )0.59 ) )48.90 0.63

Non-active compounds

10 SSSRS ) 1.1 � 103 ) )41.42 )0.26 ) )88.42 )0.02
11 RSSSS ) 1.9 � 103 ) )59.03 )0.09 ) )72.69 0.34

12 SSRRR* ) 2.6 � 103 ) )86.64 0.39 ) )96.74 )0.51
13 RRSSR ) 5.5 � 103 ) )31.80 )0.35 ) )46.24 0.65

14 SSRRS ) 7.1 � 103 ) )75.65 0.15 ) )96.96 )0.54
15 RRSRS ) 7.8 � 103 ) )99.35 1.55 ) )99.86 )1.70
16 RSRRR* ) 23 � 103 ) )99.97 2.72 ) )99.98 )2.48
17 SRRRR ) 33 � 103 ) )56.44 )0.12 ) )93.06 )0.22
18 RSSSR ) 36 � 103 ) )76.52 0.16 ) )71.02 0.36

19 RSRSR ) 47 � 103 ) )91.48 0.57 ) )91.83 )0.16
20 RSRSS* ) 60 � 103 ) )84.13 0.32 ) )92.35 )0.18
21 RRRRR ) 105 ) )99.89 2.21 ) )99.96 )2.19
22 SRRRS ) 105 ) )29.93 )0.36 ) )93.51 )0.24
23 RRRSS ) 105 ) )49.77 )0.19 ) )84.11 0.11

24 SRSRR* ) 105 ) )9.17 )0.53 ) )75.00 0.30

25 RRRRS ) 105 ) )99.78 1.96 ) )99.97 )2.22
26 RRSRR ) 105 ) )99.67 1.80 ) )99.85 )1.67
27 SSSRR ) 105 ) )64.76 )0.02 ) )87.65 0.01

28 RSSRS* ) 105 ) )99.83 2.06 ) )99.94 )1.99
29 RRRSR ) 105 ) )70.48 0.06 ) )83.07 0.14

30 RSSRR ) 105 ) )99.91 2.31 ) )99.93 )1.97
31 RSRRS ) 105 ) )99.94 2.47 ) )99.98 )2.51
32 SRSRS* ) 105 + 23.42 )0.77 ) )76.47 0.27

*Compounds used in the Test set. aNotation of the chiral centers in each perindoprilate derivative in the following order C2, C3a, C7a,
C9, C11.

bClassification according to the value of the IC50.
cValues of the IC50, of the compound, for ACE in nM taken from the

references 11, 25 and 38. dDP Posterior probability predicted for each compound using Equation 9 and Equation 10. eCanonical scores
predicted using canonical analysis.
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criterion for the acceptance or not of a discrimi-
nant model is based on the statistic for external
prediction set. Model (9) classifies correctly
100.00% of active (isomers 1, 2 and 4) and
83.33% of inactive (isomers 12, 16, 20, 24 and
28) compounds in the test set, for an accuracy of
88.88% (MCC = 0.79).

In Table 3 we give the basic structure of
perindoprilate stereoisomer and their classification
in the training and prediction set together with
their canonical scores and their posterior proba-
bilities calculated from the Mahalanobis distance.

A very similar behavior was obtained with
stochastic linear indices (Equation 10). In this
case, the model classifies correctly 83.33% of active
(isomers 3, 5, 6, 7 and 8) and 100% of inactive ones
(compounds 10, 11, 13–15, 17–19, 21–23, 25–27,
29–31) for accuracy of 95.65% and a high MCC of
0.887 for the training set. In addition, model 10
shown an accuracy of 100%, yielding a MCC of 1
for the test set.

Table 4 depicts the obtained results in our study
as well as the achieved with other cheminformatic
approaches. First, it is remarkable that our model
contain one variable less than the model obtained
with MARCH-INSIDE molecular descriptors [11]
and the same number of variables that Marrero-
Ponce et al. [25] used for develop their model using
other 3D-chiral TOMOCOMD–CARDD descrip-
tors. However, the accuracy of the model 9 for the
training set is the best of all equations for this data
set. In the model 10 this parameter, for the training
and test set, are equal to the obtained when the 3D-
chiral quadratic indices [25] were used and both are
better than obtained for González-Dı́az et al. (see
Table 4). [11]

On the other hand, canonical analysis is used
here to test both the ability of 3D-chiral non-
stochastic and stochastic linear indices to discrim-
inate between the two groups of stereoisomers and

also to order these compounds accordingly with
their activity profile.

Canonical analysis is used here to test both the
ability of 3D-chiral quadratic indices to discrim-
inate between the two groups of stereoisomers and
also to order these compounds accordingly with
their stability profile. 3D-chiral total non-stochas-
tic and stochastic linear indices & LDA ACEin-
hibitory activity canonical analysis principal root
are given below:

ACEroot ¼ �4:643� 1:1� 10�5 �fH11ðxÞ
þ 7:54� 10�7 �f15ðxÞ ð11Þ

N = 23 k = 0.398 Rcan = 0.78 v2 = 18.39
mean(+) = )1.98 mean()) = 0.70 p<0.0001

ACEroot¼ 25:27þ2:81�f6ðxÞ�3:172�f14ðxÞ
ð12Þ

N = 23 k = 0.399 Rcan = 0.77 v2 = 18.34
mean(+) = 1.97 mean()) = )0.70 p<0.0001

The canonical transformation of the LDA
results with non-stochastic and stochastic 3D-
chiral linear indices gives rise to canonical roots
with good canonical regression coefficients of 0.78
and 0.77, respectively. Chi-squared test permits us
to asses the statistical signification of this analysis
as having a p-level<0.0001.

When LDA analysis is applied to solve the two-
group classification problem we ever find two
classification functions. However, we cannot use
these two classification functions to evaluate all
the compounds and obtain a bivariate activity map
because they are not orthogonal [34]. To solve this
problem we used canonical analysis in this case the
dimensional reduction caused by canonical analy-
sis makes possible to obtain a 1-dimension activity
map [34].

That is the same that we can order all com-
pounds taking into account its canonical scores.

Table 4. Classification of 32 perindopirilate’s stereoisomers and the statistical parameters of the QSAR models obtained using dif-
ferent molecular descriptors.

Index n k D2 Accuracy (Training)

%

Accuracy (Test)

%

F

Non-stochastic linear indices (Equation 9) 2 0.398 7.82 100.00 88.88 15.08

Stochastic linear indices (Equation 10) 2 0.399 7.789 95.65 100.00 15.02

MARCH-INSIDE molecular descriptors11 3 0.38 8.43 91.30 88.88 10.30

Non-stochastic quadratic indices25 2 0.42 7.12 95.65 100.00 13.73
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The canonical scores of all stereoisomer of perin-
doprilate appear in Table 3. For example, we can
detect an overall ascendant tendency of canonical
scores of Equation 11 when they are plotted in the
same order in which IC50 increases (activity
decreases). As it is expected, the over all mean of
canonical root scores for the group of active
isomers (lowest IC50 values) has an opposite sign
()) with respect to the other group [(+); highest
IC50 values] [34].

Modelling r-receptor antagonist activities
of 3-(3-hydroxyphenyl)piperidines

We will now discuss the ability of 3D-chiral linear
indices to predict r receptor antagonist activities.
3D-linear indices are non-symmetric and reduce
to classical descriptors when symmetry is not
codified (see Table 1). Moreover, Gónzalez-Dı́az

et al. conclude that r receptor antagonist activ-
ities are not a pseudoscalar property [11] and we
can expect at least a good correlation with 3D-
linear indices.

This experiment also permitted us to compare
our method with others previously reported
approaches. The MLR analysis was used to
develop QSAR models for the r receptor antag-
onist activities. The obtained models using non-
stochastic linear indices are the follow:

logIC50ðrÞ ¼ �8:9207ð�0:8388Þ

þ 0:5304ð�0:0695Þ�f H
0 ðxÞ

� 0:0065ð�0:0011Þ�f H
3 ðxÞ ð13Þ

N = 14 R2 = 0.399 q2LOO = 0.909 F(2,11) =
84.876 s = 0.271 sCV = 0.305 p < 0.0001

Table 5. Results of multivariate regression analysis of the log IC50 of a group of n-alkylated 3)(3-hidroxyphenyl)piperidines for
the r-receptor.

.

Compound (Alkyl group)a Log IC50 (r-receptor)

Obs.b Cal.c Res.d Cal.e Res.d Cal.f Res.d

(R))3-HPP

H )0.66 )0.54 )0.12 )0.54 )0.12 )0.48 )0.18
CH3 0.43 0.13 0.30 0.18 0.25 0.28 0.15

C2H5 0.95 0.72 0.23 0.81 0.14 0.70 0.25

n-C3H7 1.52 1.32 0.20 1.45 0.07 1.45 0.07

i-C3H7 0.61 1.30 )0.69 outlier – 0.84 )0.23
n-C4H9 2.05 1.93 0.12 2.09 )0.04 1.89 0.16

2-Phenylethyl 2.10 2.22 )0.12 2.24 )0.14 2.41 )0.31
(S))3-HPP

H )1.19 )1.09 )0.10 )1.13 )0.06 )0.80 )0.39
CH3 )0.28 )0.42 0.14 )0.42 0.14 )0.56 0.28

C2H5 )0.01 0.17 )0.18 0.21 )0.22 0.19 )0.20
n-C3H7 0.81 0.77 0.04 0.85 )0.04 0.57 0.24

i-C3H7 0.68 0.75 )0.07 0.83 )0.15 0.62 0.06

n-C4H9 1.51 1.37 0.14 1.49 0.02 1.18 0.33

2-Phenylethyl 1.80 1.67 0.13 1.65 0.15 2.03 )0.23

aAlkylic (R) group at nitrogen ring. bObserved values of the Log IC50 for the r-receptor taken from Ref. 10, 11 and 25. cValues
calculated from Eq. 13. dResidual, defined as [Log IC50 (r)Obs ) Log IC50 (r)Cal].

eValues calculated from Eq. 14. fValues calculated
from Eq. 15.
Abbreviations: HPP, N-alkylated 3-Hydroxyphenyl piperidines.
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Table 6. Statistical parameters of the QSAR models obtained using different molecular descriptors to predict the r-Receptor
antagonist activity of 14 N-alkylated 3-Hydroxyphenyl piperidines.

Index N n R2 s q2 sCV F

Non-Stochastic Linear Indices (Equation 13) 14 2 0.939 0.271 0.909 0.305 84.87

Non-Stochastic Linear Indices (Equation 14) 13 2 0.982 0.157 0.966 0.186 256.66

Stochastic Linear Indices (Equation 15) 14 2 0.941 0.267 0.90 0.319 87.93

Chiral TIs10 14 3 0.931 0.301 * * 45.70

MARCH-INSIDE molecular descriptors11 14 2 0.922 0.295 * 0.32 71.17

Non-Stochastic Quadratic indices25 14 2 0.940 0.270 0.912 0.289 85.82

Non-Stochastic Quadratic indices25 13 2 0.977 0.175 0.957 0.211 211.20

*Values are not reported in the literature.

Table 7. Results of the steroids data set used for QSAR study.

Observed CBG affinity (pKa)a Pred. valueb %Ec %Ecv
d Pred. valueb %Ec %Ecv

d

1 Aldosterone )6.279 )6.149 2.063 2.396 )6.222 0.902 2.497

2 Androstanediol )5.000 )5.161 )3.225 )5.187 )4.984 0.324 0.394

3 Androstenediol )5.000 )4.965 0.692 0.875 )4.930 1.401 1.721

4 Androstenedionee,f )5.763 )6.691 )16.096 )20.067 )6.583 )14.231 )17.342
5 Androsterone )5.613 )5.265 6.197 7.865 )5.342 4.826 6.399

6 Corticosterone )7.881 )7.283 7.588 8.857 )7.535 4.389 5.397

7 Cortisol )7.881 )7.380 6.351 7.955 )7.794 1.100 1.475

8 Cortisone )6.892 )6.892 0.004 0.006 )7.222 )4.793 )6.438
9 Dehydroepiandrosterone )5.000 )5.094 )1.879 )2.296 )5.033 )0.652 )0.750
10 Deoxycorticosterone f )7.653 )7.307 4.522 5.294 )6.820 10.885 12.194

11 Deoxycortisol )7.881 )7.522 4.560 5.089 )7.202 8.618 9.710

12 Dihydrtestosterone )5.919 )5.700 3.697 4.672 )6.025 )1.783 )2.380
13 Estradiol )5.000 )4.803 3.946 5.880 )4.888 2.232 3.936

14 Estriol )5.000 )5.194 )3.884 )5.544 )5.071 )1.421 )2.536
15 Estrone )5.000 )4.960 0.808 1.679 )4.954 0.912 1.723

16 Ethiocholanolone )5.255 )5.265 )0.194 )0.246 )5.342 )1.658 )2.198
17 Pregnenolone )5.255 )5.450 )3.720 )4.537 )5.529 )5.220 )5.980
18 17-Hydroxyregnenolone )5.000 )5.463 )9.264 )13.865 )5.405 )8.107 )10.835
19 Progesterone )7.380 )6.730 8.814 9.652 )6.889 6.649 7.622

20 17-Hydroxyprogesteronef )7.740 )7.025 9.238 10.883 )6.954 10.150 11.731

21 Testosterone )6.724 )6.535 2.810 3.316 )6.480 3.630 4.159

22 Prednisolone )7.512 )7.735 )2.972 )4.857 )7.687 )2.335 )3.273
23 Cortisolacetate )7.553 )7.700 )1.943 )2.751 )7.647 )1.247 )3.642
24 4-Pregnene)3,11,20-trione )6.779 )6.441 4.983 6.873 )7.007 )3.358 )4.393
25 Epicorticosterone )7.200 )7.441 )3.344 )3.965 )7.695 )6.877 )9.164
26 19-Nortestosteronee )6.144 )6.858 )11.616 )14.222 )6.758 )9.991 )12.091
27 16a,17a-Dihydroxyprogesteronee )6.247 )7.439 )19.079 )21.199 )6.118 2.060 3.135

28 16a-Methylprogesterone )7.120 )6.793 4.588 5.352 )7.239 )6.195 )7.372
29 19-Norprogesterone )6.817 )7.019 )2.967 )3.570 )7.927 )3.108 )4.072
30 2a-Methylcortisol )7.688 )7.773 )1.100 )1.374 )5.864 )1.148 )2.083
31 2a-Methyl)9a-fluorocortisol )5.797 )5.940 )2.459 )4.541 )6.824 4.152 4.755

aObserved CBG affinity values taken from ref 45; bPredicted CBG affinity values using Equation 16; bPredicted CBG affinity values
using Equation 18; cPercent of relative error; %E = 100� [Obs)Pred/Obs]. dPercent of relative error in leave-one-out cross-validation
procedure; %Ecv = 100� [Obs)PredLOO-CV/Obs]. eCompounds detected as outlier in Equation 16. fCompounds detected as outlier in
Equation 18.
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logIC50ðrÞ ¼ �9:4831ð�0:4984Þ

þ 0:5886ð�0:0419Þ�f0ðxÞ

� 0:0074ð�0:0007Þ�fH3 ðxÞ ð14Þ

N = 13 R2 = 0.982 q2LOO = 0.966 F(2,10) =
265.66 s = 0.157 sCV = 0.186 p<0.0001
where, N is the size of the data set, R2 is the
squared regression coefficient (determination coef-
ficient), s is the standard deviation of the regres-
sion, F is the Fischer ratio and q2 (scv) are the
squared correlation coefficient (standard devia-
tion) of the cross-validation performed by the
LOO procedure. This statistics indicate that these
models are appropriate for the description of
chemicals studied here. In the Table 5 are show the
structure and values of experimental and calcu-
lated Log IC50 for this data set.

In the development of the first quantitative
model for description of activities (Equation 13),
one compound was detected as statistical outlier.
Once rejected the statistical outlier, the Equa-
tion 14 was obtained with better statistical
parameters.

When the stochastic linear indices were used,
the obtained model for the r receptor antagonist
activities is given below:

logIC50ðrÞ ¼ �5:9421ð�0:5197Þ

þ 0:8067ð�0:2739Þ�f14ðxÞ

� 0:7329ð�0:2741Þ�fH11ðxÞ ð15Þ

N = 14 R2 = 0.941 q2LOO = 0.90 F(2,11) =
87.932 s = 0.267 sCV = 0.319 p<0.0001

The comparison with other methods previ-
ously reported for the same activity is shown in
Table 6. As it can be seen, our models have
statistical parameter slightly better than models
obtained with MARCH-INSIDE molecular de-
scriptors [11] and other chiral TIs [10], and our
statistics are very similar that obtained by
Marrero-Ponce et al. [25] when 3D-chiral qua-
dratic indices were used. Once rejected the
statistical outlier our model show better predic-
tive abilities (R2 = 0.982, s = 0.157, q2 = 0.966
and scv = 0.186) than model built with 3D-chiral
quadratic indices (R2 = 0.977, s = 0.175,
q2 = 0.957 and scv = 0.211) [25].

Prediction of the Corticosteroid-Binding Globulin
(CBG) binding affinity of a Steroid family

The training set used to validate our methodology
is made up of 31 molecules. Table 7 gathers the
entire studied set with the actual binding affinities,
taken from Robert et al. [45]. Due to the studied
steroid molecular structures have been already
depicted in several papers, they will not be
included here. For more details see, for example
Figure 1 in reference 39 or Figure 1 in reference 41.

This study also permitted us to compare our
method with others 3D QSAR methods such as
MQMS, MaP, CoMMA, TQSAR and so on. The
MLR analysis was used to develop QSAR models
for the corticosteroid-binding globulin binding
affinity. The obtained models using non-stochastic
linear indices are the follow:

CBG ¼ �6:396ð�0:087Þ
� 7:596ð�0:999Þ�fL14ðxEÞ
� 4:528ð�1:816Þ�f4ðxÞ
� 6:696ð�2:399Þ�f2ðxÞ
þ 16:289ð�2:908Þ�fL11ðxEÞ
� 9:603ð�2:308Þ�fL7ðxEÞ
� 2:269ð�0:662Þ�f0ðxÞ ð16Þ

N = 31 R2 = 0.84 q2LOO = 0.77 F(6, 24) =
21.060 s = 0.48 scv = 0.52 p<0.0001

CBG ¼ �6:511ð�0:057Þ � 2:297ð�0:423Þ�f0ðxÞ
� 8:329ð�1:512Þ�f2ðxÞ
� 5:782ð�1:143Þ�f4ðxÞ
� 12:424ð�1:527Þ�fL7ðxEÞ
þ 19:908ð�1:877Þ�fL11ðxEÞ
� 8:790ð�0:651Þ�fL14ðxEÞ ð17Þ

N = 28 R2 = 0.946 q2LOO = 0.904 F(6,
21) = 61.765 s = 0.296 scv = 0.349 p<0.0001

In the development of the quantitative model
(Equation 16), three compounds (4, 26 and 27) were
detected as statistical outlier. Once rejected the
statistical outliers, a new model (Equation 17) was
obtained with better statistical parameters. As can
be seen this new model explains more than the 94%
of the variance of the experimental CBG values.
These two models uses six variables each one to
describe 31 and 28 steroids, correspondingly.
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In addition, using stochastic linear fingerprints
to describe the CBG binding affinity we obtained
two models which are given below:

CBG ¼ �6:408ð�0:080Þ
� 6:218ð�1:388Þ�fL8ðxEÞ
þ 5:024ð�1:000Þ�fL9ðxEÞ
� 4:647ð�1:060Þ�fL2ðxE�HÞ
þ 1:172ð�0:628Þ�fL4ðxEÞ
þ 13:850ð�3:568Þ�fL4ðxE�HÞ
� 13:145ð�3:569Þ�fL6ðxE�HÞ
þ 3:386ð�1:013Þ�fL9ðxEÞ ð18Þ

N = 31 R2 = 0.87 q2LOO = 0.787 F(7, 23) =
22.863 s = 0.437 scv = 0.52 p < 0.0001

CBG ¼ �6:383ð�0:066Þ
� 5:605ð�1:088Þ�fL8ðxEÞ
þ 4:491ð�0:786Þ�fL9ðxEÞ
� 4:894ð�0:841Þ�fL2ðxE�HÞ
þ 1:107ð�0:497Þ�fL4ðxEÞ
þ 15:003ð�2:789Þ�fL4ðxE�HÞ
� 14:277ð�2:780Þ�fL6ðxE�HÞ
þ 3:679ð�0:788Þ�fL9ðxEÞ ð19Þ

N = 28 R2 = 0.92 q2LOO = 0.88 F(7, 20) =
35.773 s = 0. 338 scv = 0.368 p<0.0001

In the development of the quantitative model
(Equation 18), three compounds were also de-
tected as statistical outlier. Once rejected these
chemicals (4, 10 and 20), a new model (Equation
19) was obtained with better statistical parameters.
Notice that this new model explains more than the
92% of the variance of the experimental CBG
values. These two models uses seven variables each
one to describe 31 and 28 steroids, respectively.

All these results are summarized in Table 8,
where a comparison with other computational
scheme can be more easily performed. Neverthe-
less notice that the present QSAR method, non-
stochastic and stochastic 3D-chiral linear indices,
obtains comparable results to other highly predic-
tive QSAR models; even when they use more
sophisticated statistic methods such as: partial
least squared, principal components analysis, non-
linear neural network techniques and so on. Many
of the models objects of comparison were obtained
from different procedures based on quantum
mechanics and/or geometric principles as well as
molecular mechanic approaches.

Final conclusions

Our studies demonstrated that 3D-chiral linear
indices can be successfully applied in QSAR
studies which include chiral molecules. Therefore,
we suggest that 2D-QSAR methods enhanced by

Table 8. Comparison of TOMOCOMD–CARDD descriptors prediction for the steroid data set with other 3D QSAR approaches.

QSAR Method N n Statistic Method q2 ref.

Similarity matrixes-based molecular descriptors 31 6 genetic NN 0.940 49

TOMOCOMD–CARDD non-stochastic 28 6 MLR 0.904 Equation 17

TOMOCOMD–CARDD stochastic 28 7 MLR 0.882 Equation 19

MaP 29 4 PCR-VS 0.880 43

TQSAR 31 6 MLR after PCA 0.842 45

TOMOCOMD–CARDD stochastic 31 7 MLR 0.788 Eq. 18

TQSI 31 3 MLR 0.775 46

TOMOCOMD-CARDD non-stochastic 31 6 MLR 0.767 Equation 16

Similarity indices 31 1 PLS 0.734 48

MQMS 31 3 MLR and PCA 0.705 46

CoMMA 31 6 PCR 0.689 41

MaP 29 4 (168) PLS 0.630 43

Wagener’s 31 – k-NN and FNN 0.630 47

MaP 29 5 (168) PCR 0.530 43

N: number of steroids. n: number of variables. q2: leave-one-out cross-validated coefficient of determination.
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chirality descriptors present a powerful alternative
to popular 3D-QSAR approaches.

We have shown here that the generalized
TOMOCOMD–CARDD approach is not only
able to discriminate between active and inactive
perindoprilate stereoisomers, but also to codify
information related to pharmacological property
highly dependent on molecular symmetry of a set
of seven pairs of chiral N-alkylated 3-(3-hydroxy-
phenyl)-piperidines that bind r-receptors, and to
predict the corticosteroid-binding globulin binding
affinity of the Cramer’s steroid data set. This result
is only a preliminary conclusion and a deeper
analysis of the potential of the 3D-chiral linear
indices is necessary. However, we show that for
three data sets chiral-QSAR models that use 3D-
chiral linear indices had better or similar predictive
ability as compared to other previously reported
chiral and/or 3D-QSAR Methods.

Acknowledgement

The authors would like to offer their sincere
thanks to the two anonymous referees for their
critical opinions about the manuscript, which
have significantly contributed to improving its
presentation and quality. One of the authors
(M-P. Y) thanks the program ‘Estades Tempo-
rals per a Investigadors Convidats’ for a fellow-
ship to work at Valencia University.

References

1. Golbraikh, A., Bonchev, D. and Tropsha, A., J. Chem. Inf.
Comput. Sci., 41 (2001) 147.

2. de Julián-Ortiz, J.V., Garcı́a-Doménech, R., Gálvez, J.,
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F., Huesca-Guillen, A., Jorge, E., del Valle, A., Torrens, F.
and Castro, E.A., J. Comput. Aid. Mol. Des., 18 (2004)
615.

20. Marrero-Ponce, Y., Montero-Torres, A., Romero-Zaldi-
var, C., Iyarreta-Veitı́a, M., Mayón-Peréz, M. and Garcı́a-
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R., González, H., Romero, V. and Torrens, F., Molecules.,
9 (2004) 1124.

27. Marrero-Ponce, Y., Medina, R., Castillo-Garit, J.A.,
Romero, V., Torrens, F. and Castro, E.A., Bioorg. Med.
Chem., 13 (2005) 3003.

28. Pauling, L. The Nature of Chemical Bond . Cornell Uni-
versity Press, New York, 1939.

29. Eliel, E., Wilen, S. and Mander, L., Stereochemistry of
Organic Compounds, John Wiley and Sons Inc, 1994.

30. Dewar, M.J.S., J. Phys. Chem., 89 (1985) 2145.
31. Marrero-Ponce, Y., Romero, V., TOMOCOMD software.

Central University of Las Villas, 2002. TOMOCOMD
(TOpological MOlecular COMputer Design) for Win-
dows, version 1.0 is a preliminary experimental version; in
future a professional version will be obtained upon re-
quest to Y. Marrero: yovanimp@qf.uclv.edu.cu; ymarre-
ro77@yahoo. es.

32. STATISTICA version. 6.0, Statsoft, Inc.
33. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A. and

Nielsen, H., Bioinformatics, 16 (2000) 412.
34. Ford M.-G. and Salt D.-W. The use of Canonical Corre-

lation Analysis; In Chemometric Methods in Molecular

382



Design van de Waterbeemd H., Ed. VCH Publishers New
York, 1995, pp. 283–292.

35. Wold S. and Erikson L. Statistical Validation of QSAR
Results. In van de Waterbeemd H., Ed. Chemometric
Methods in Molecular Design VCH Publishers New York,
1995, pp. 309–318.

36. Belsey, D. A., Kuh, E. and Welsch, R.E., Regression
Diagnostics, Wiley, New York, 1980.

37. Golbraikh, A. and Tropsha, A., J. Mol. Graph. Modell., 20
(2002) 269.

38. Vicent, M., Marchand, B., Rémond, G., Jaquelin-Guina-
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