
BODIL: a molecular modeling environment for structure-function analysis
and drug design

Jukka V. Lehtonena, Dan-Johan Stilla, Ville-V. Rantanena;b, Jan Ekholma, Dag Björk-
lunda, Zuhair Iftikhara, Mikko Huhtalaa, Susanna Repoa, Antti Jussilab, Jussi Jaakkolab,
Olli Pentikäinena, Tommi Nyrönenc, Tiina Salminena, Mats Gyllenbergb;d and Mark S.
Johnsona;�
aDepartment of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6A, FIN-20520 Turku,
Finland; bDepartment of Mathematics, University of Turku, Matematiikan laitos, FIN-20014 Turun yliopisto,
Finland; cCSC, the Finnish IT Center for Science, P.O. Box 405, FIN-02101 Espoo, Finland; dCurrent
address: Rolf Nevanlinna Institute, Department of Mathematics and Statistics, FIN-00014 University of
Helsinki, Finland

Received 20 April 2004; accepted in revised form 10 September 2004

Key words: density docking, molecular visualization, sequence comparisons, structure comparison, struc-
ture modeling

Summary

BODIL is a molecular modeling environment geared to help the user to quickly identify key features of
proteins critical to molecular recognition, especially (1) in drug discovery applications, and (2) to under-
stand the structural basis for function. The program incorporates state-of-the-art graphics, sequence and
structural alignment methods, among other capabilities needed in modern structure–function–drug target
research. BODIL has a flexible design that allows on-the-fly incorporation of new modules, has intelligent
memory management, and fast multi-view graphics. A beta version of BODIL and an accompanying
tutorial are available at http://www.abo.fi/fak/mnf/bkf/research/johnson/bodil.html

Introduction

As the biological sciences enter what has been
referred to as the ‘post-genomic’ era, where the fo-
cus has shifted to the comparison of genomes and
detailed investigation of the encoded proteins, the
comparison and analysis of sequences and three-
dimensional structures have become routine aspects
in molecular biology. Very often, direct visualiza-
tion of molecular structures and their relationship
to the linear sequence and to ligands they bind is
necessary to interpret and understand the detailed
biological functions of proteins, often revealed only
indirectly by wet-lab experimentation.

Five years ago we began to develop a graphical
interface for our own programs and to use this
graphical interface to ease the development and
use of novel software. The result today is the Bodil
Molecular Modeling Environment, which provides
flexible and convenient integration of protein
comparison and modeling tools coupled with high-
quality molecular graphics. In Bodil we sought to
do basic tasks (e.g., alignments, display, high-
similarity structure modeling) well, while fully
realizing that it was impossible to accomplish all of
the tasks that are available in commercial pro-
grams. We aimed to make a straightforward user
interface for some of the tasks that are difficult to
achieve in commercial and other academic pack-
ages – most often tasks related to data manipula-
tion or access to frequently used procedures.

�To whom correspondence should be addressed. Fax: +358-2-

215-3280; E-mail: johnson4@abo.fi

Journal of Computer-Aided Molecular Design 18: 401–419, 2004.
� 2004 Kluwer Academic Publishers. Printed in the Netherlands.

401



Furthermore, we wanted Bodil to be written in
such a way that it would be easy to introduce new
modules and to modify and enhance the program
as needs change. Our ultimate goal was to produce
a quality set of tools useful for protein structure–
function analysis and applicable to ligand design,
and whose features could evolve with future
desires.

Bodil consists of a core program and a set of
modules that perform different tasks. These tasks
include reading/writing sequence and structure
files, making multiple sequence alignments, align-
ments of three-dimensional structures, graphical
display of structures, estimating the coordinates of
a protein structure, ‘protein modeling’, and so on.
The core of Bodil provides for common data
storage and management of plug-in programs.
The plug-ins present data in different ways,
e.g., alignments, structure, surface features, rela-
tionships, etc. The change of the common data
in one plug-in notifies the other plug-ins via the
core program. Thus, one can highlight sequence
identities, differences, amino acid properties (e.g.,
hydrophobicity, polarity, size, etc.), motifs in
the sequence alignment, and their location on
the three-dimensional structure is immediately
shown. Likewise, interesting structural features
are linked back to the residues in the sequence
alignment.

The graphical structure view editor makes it
easy to mock-up a complicated view of proteins
and any bound ligand molecules, where, for
example, different parts of the structures can be
displayed simultaneously as opaque and trans-
parent surfaces, the secondary structure as
ribbons, and any portion of the structure as ball-
and-sticks, CPK or as wire frameworks. Bodil can
read in density grids specifying the ideal location
for binding chemical groups [1], chemical probe
grid maps from AutoDock [2], GRID [3] and
electron density from X-ray crystallography or
cryo-electron microscopy (cryo-EM). We have
used a plug-in devised by us within Bodil to dock
X-ray coordinates into low-resolution electron
density obtained from cryo-EM. Grid density data
can be displayed as contours, ranges or as iso-en-
ergy values, colored appropriately.

The current generation of mid-priced graphics
cards for desktop machines can display and rotate
surfaces without the annoying delay seen previously
even on older, high-priced graphics workstations.

At the present time, a fast personal computer run-
ning under Linux is an ideal solution, but the pro-
gram is nearly fully functional under the Microsoft
Windows operating system, too. Bodil can use
hardware stereomode, forwhich graphics cards and
X-windows support is available for the Linux
operating system.

Methods

Bodil – design strategy

The initial design goal of the program Bodil was to
create a software package that would visualize
molecules with high quality graphics even on Intel-
based PC computers, which would present the user
with a simple and intuitive, yet powerful, graphical
user interface, and that should be easy to expand
by adding new functionality. The main design task
was to choose an appropriate data structure for
the biochemical data and to develop an efficient
method for incorporating useful algorithms into
the program. The result is a modular design, where
the main executable contains only the common
data and the algorithms are encapsulated in
modules that are physically separate, dynamically
loaded libraries. This produces independent mod-
ules, which only require access to the common
data. New functionality can be added to the pro-
gram simply by adding modules; the existing pro-
gram does not need to be changed. Similarly,
changing a module requires only the recompilation
of that single library. There is also a run-time
performance benefit from this modular design:
modules are loaded into memory only if they
are used and unloaded after use to release the
memory.

In Figure 1 we show the program components
and the modules currently implemented. The
modules have been grouped by their purpose:
visualization tools, computational algorithms,
parsers, and utilitarian procedures. The visualiza-
tion modules employ different techniques to show
the data graphically and allow interactive modifi-
cation of the data. The parser modules convert
data between the program’s internal representa-
tion and external file formats. The set of algo-
rithms includes computational procedures both to
assist visualization and to analyze proteins and
molecular interactions. The utility modules

402



provide helper functions, such as the selection of
the files for data import.

The data structure

Biochemical data contain both clearly defined
physical entities and the relationships between
those entities. Some entities, like molecules, are
clearly composed of smaller parts – the atoms.
These higher-level abstractions of molecules are
usable alone; a protein sequence describes the one-
dimensional properties of a protein and only
implies the existence of an atomic structure. Thus,

it is a sufficient representation of the protein for
sequence comparison purposes. A chemical bond
is an example of a stronger dependency, since it
must explicitly refer to defined atoms. It is rather
straightforward to use an object oriented data
structure to represent such data in the form of an
object tree. A composite design pattern [4]
describes a way to construct an object tree, and
each molecular entity can be modeled by either of
the two basic types – leaf and composite – defined
by the pattern. The leaves are always terminal
nodes in the tree and the composites can be
internal nodes. An internal node represents a

Figure 1. Program components. The program is divided into the core binary, which holds the data and module libraries that contain
the computational algorithms and the user interface. The modules are grouped by their task. Some of the algorithms are implemented
within the visualization modules, and some computational modules do have their own user interface for selecting operating param-
eters. The density grids are three-dimensional arrays of discrete spatial data, which can be, for example, electron densities, electrostatic
potentials, or a force field. Besides molecules and density grids, the program also handles alignments and arbitrary geometric objects.

403



larger structure that is composed from smaller
objects (leaves). Thus, an operation performed on
a composite node does not change that node
directly. Instead, the operation is automatically
performed on every node directly under the com-
posite node in the tree (the child nodes). Since a
child node can be a composite node, the resulting
recursion asserts that the operation is performed
for each leaf node within the subtree, rooted at the
composite node on which the operation was initi-
ated. Thus, the state of the composite node is
changed indirectly, as the state is a composition of
the states of the leaf nodes. In addition, composite
biochemical entities, such as a protein chain, can
have some state variables (color, name, etc.)
independent of the state of the child nodes.
Therefore, the composite objects in our imple-
mentation are more complex than the composite
design pattern [4] requires.

In our implementation we represent biochemi-
cal entities as objects and store all objects in a
hierarchical tree structure (Figure 2). The levels of
hierarchy are a convention that is not required by
the data structure nor by the algorithms, but it
simplifies both the implementation and the use of
the tree. While Figure 2 shows only an example of
the main hierarchy, the tree also contains rela-
tionships between physical entities, for example
bonds and alignments, as well as other objects
such as grid maps, surfaces, and arbitrary geo-
metrical shapes. A grid is an array that contains
discrete values sampled from a three-dimensional
volume. Electron densities, force fields and spatial
probabilities are types of data typically stored as a
discrete grid. The density within a three-dimen-
sional volume is visualized by an iso-surface,
similarly to the way a contour curve indicates a

specific height in a two-dimensional map. The
coordinates of iso-surface points are computed
from grid points by interpolation of density values.
The surface points can be used to draw triangles,
which approximate the iso-surface. We store the
set of triangles as a separate surface object, which
is a child of the grid object.

A bond between two atoms or an alignment
between two or more protein chains is an object,
although it represents a less tangible relationship
between the entities. A normal object, for example
an amino acid, is a branch node in a tree: a child
of a chain and the parent of the atoms. A bond,
however, does not fit into the tree as easily: the
bond must connect two atoms without being
either the parent or the child, since the presence of
more than one bond per atom would violate the
tree structure where each child can only have a
single parent. Therefore, it is clear that a tree
structure (Figure 3a) cannot be used to represent
such relationships. Instead, we have used a
directed acyclic graph (DAG) to describe both the
molecular entities and their relationships (Fig-
ure 3b). This graph includes a tree, which is only
a special form or subset of a DAG where each
node has only one incoming edge; a tree does
have the advantage of allowing more simplified
recursive operations than a generic DAG. Con-
sequently, we identify the tree within the DAG,
marking the edges in the data structure to be of
either a ‘tree’ or a ‘relationship’ type (Figure 3b).
The edges belonging to the tree are stored sepa-
rately from the relationship edges. Thus, we can
access the data objects efficiently with tree algo-
rithms, but the graph can still be traversed
explicitly using the relationship edges when
needed.

Figure 2. Hierarchy of molecular data. On the left we list major levels of the hierarchy; on the right is an example tree organized
according to the hierarchy.

404



A set of properties is implemented for each
object type. Such properties include name, color,
position, and selection. The position of an atom –
essentially a point – contains two components: the
initial xyz coordinates and the transformation, i.e.
the rotations and translations that have so far been
applied to that atom. The position of objects that
are not leaves is either based on the position of their
leaf objects, for example an amino acid residue has a
position that is equal to the position of the Ca-atom,
or the object does not have an implicit position, as is
the case of a residue without defined atoms.

The most important tool for interactive data
manipulation is the selection property, which has
three states: ‘selected’, ‘partial selection’, and
‘unselected’. These correspond to all, some, and
none of the leaves of a node in the tree to be selected.
Most algorithms and operations that manipulate
data objects operate exclusively on selected objects.
The ‘partial selection’ property enables the efficient
search of the data tree to locate selected objects.
Thus, the user can select a set ofmolecules using any
of the graphical tools and then the computational
algorithms will operate on that set of molecules.
The selected and partially selected objects are
highlighted with green and dark green colors,
respectively, in order tomake it easier for the user to
identify the selected objects from graphical repre-
sentations, such as from a list of objects, from an
alignment, or from the three-dimensional display of
the structure of the molecule. For example, the
selection of a residue in the alignment will also
immediately update the graphical view in order to
highlight the position of the selected residue within
the protein structure (Figure 4).

Implementation

The program has been implemented using the
C++ programming language, although some

subroutines in the modules have been obtained
from existing C programs and have not been
converted to C++: program components written
with C can be directly called by the C++ main
program. Despite the high level of abstraction,
which allows the program design to closely
resemble the modeled (biochemical) problem, the
executable program produced from the C++
source code is efficient. There are also several well-
designed C++ libraries available for all desired
platforms. Consequently, the application devel-
oper can focus on the biochemical problem by
using predefined program components from a li-
brary rather than wasting a large amount of effort
on platform-specific implementation issues.

Thehighquality three-dimensional graphicsuses
standardized OpenGL [5]. There are OpenGL
implementations for all common operating systems
and graphics hardware. The graphical user interface
was implemented using the Qt-library [6] because it
provided a well-defined, multi-platform graphical
framework. TheQt-library is a versatile framework,
now supports the use of OpenGL graphics, and is
available for platforms based on X11 (UNIX, Li-
nux), Microsoft Windows, and Mac OS X. All
graphical user interface objects – dialogs andmenus
– have been implemented using Qt. However, we
have tried to minimize the Qt-dependencies of the
maindata structure interface, since the development
of computational modules should be possible even
in the absence of the Qt-library.

We began the development of Bodil on the SGI
IRIX operating system, since at that time it was the
dominant graphics workstation platform used for
structural studies. Already then Linux-based PC
machines were considered an important target
platform, both due to the price of the hardware and
software and because of the potential for future
development. The graphics capability of the PC
machines has now reached an impressive level with

(a) (b)

Figure 3. (a) Directed acyclic graph representing a water molecule. (b) Modified graph that contains a proper tree as a subgraph. The
edges that do not belong to the tree are drawn with dotted lines.

405



an affordable price. From the point-of-view of the
programmer, IRIX and Linux (as well as other
varieties of UNIX) are very similar platforms, and
it has been a great asset to develop the program
using both environments, since the different
development tools (e.g., compilers, debuggers)
available under the different operating systems
complement each other. The Windows version
proved to be more difficult to produce, mostly due
to lack of experience with that platform and be-
cause Windows employs a different strategy for
memory management. In Windows, the libraries
are more self-consistent, with their own memory
space, unlike Unix/Linux-based systems in which
the allocated memory is owned by the program and
not by the library. This caused extra difficulties,
since in Bodil the memory allocated for data ob-
jects, which are usually created by parser modules
or computational routines, must come from the

memory address space of the main program. Since
each module has its own address space in the
Windows memory model, care must be taken that
the memory allocation routines called from a
module do use the memory pool of the main pro-
gram rather than the memory local to the module.
Even standard C++ container types – the dy-
namic and generic implementations of well-known
data structures such as arrays, linked lists, and hash
tables – cannot easily be accessed across the
memory address space boundaries of the dynamic
libraries in Windows. We are currently producing
an Apple Mac OS X version of Bodil.

Results and discussion

The core program
Since the functionality of the program has been
separated into individual modules, the main task

Figure 4. Three representations of two histidine triad proteins. (a) Hierarchical directory for data object management. The left pane
lists the top level objects: protein kinase C inhibitor 1 (PDB code 1KPF [34]), fragile histidine triad protein mutant (PDB code 2FHI
[35]; the second histidine of the histidine triad has been mutated to asparagine), and a structural alignment of the proteins
(1KPF_FHI). The right pane in (a) shows part of the data tree for 1KPF with one residue (His114) expanded to show all the atoms.
The side-chain atoms of the histidine triad are selected (blue and green) with related objects partially selected (dark green). (b) Three-
dimensional graphics for structure visualization. The view focuses on the nucleotide binding site. Both 1KPF (gold) and 2FHI (light
blue; conserved residues red on both) are drawn with ribbon and coil to illustrate the secondary structures. The AMP molecule bound
to 1KPF is shown as a ball-and-stick model, and the side chains of the histidine triad of both proteins are shown as wire-frames (1KPF
green, 2FHI in default atom color scheme). Distances between the phosphate O3P oxygen of AMP and the nearest atoms in 1KPF, the
�-nitrogen of His112 and the d-nitrogen of His114, are visualized with white dashed lines. (c) Alignment view. The sequences of 1KPF
and 2FHI are shown as aligned by structural superimposition. The color scheme for amino acids is the same as in (a) and (b): 1KPF
gold, 2FHI light blue, conserved residues red, histidine triad dark green and blue, respectively. The residue numbering, secondary
structure elements, and mutually conserved residues are shown above the alignment.

406



of the program is to hold data. Besides biochemi-
cal data, the core program also handles program
settings. The main program reads all configuration
files, including module-specific files, on startup.
These data are used to generate the list of available
modules without loading the binary library files
for each module, which are loaded on demand.
The module configuration may require a menu
entry, which will be added at this point into the
menu of the main program window. Access to
menu items from the main window will load the
corresponding modules. The module loading and
execution interface is all that the core program
knows about the modules, and therefore it is easy
to add more functionality to the program package.
The main program provides an application pro-
gramming interface (API) for the modules to ac-
cess the data tree and the configuration settings.
The API includes an event notification system
based on observer design pattern [4]. The observer
pattern defines a one-to-many dependency, where
the change of the state of the observed object
(called ‘Subject’ or ‘Publisher’) is automatically
signaled to each observing object (known as ‘Ob-
server’ or ‘Subscriber’). In practice, the subject has
a list of observer objects and after each change of
the subject state the list will be iterated through,
and an ‘update’ procedure is executed for each list
member. The observer object provides the ‘update’
procedure which changes the internal state of that
observer to match the changes of the ‘Subject’
state. The main program has a single ‘Subject’
object that informs the observers about changes of
the data tree. Any module may contain one or
more ‘Observer’ objects that should implement
appropriate actions for notification events. Thus,
the modules can update their local data to corre-
spond to the current state of the main data tree.
For example, selecting a residue in the alignment
view will be immediately visible also in the 3-D
graphics and vice versa.

Description of available modules
The different modules can be divided into three
functionally different categories: computational,
graphical, and utilitarian modules. The utilitarian
modules are used for viewing and changing the
state of the program. For example, the configu-
ration settings can be listed and edited in a sepa-
rate window, which also allows the re-reading of
the settings from files. Some modules do, however,

cache the setting values and do not check if the
values change. Most of those modules were
developed relatively early in the project, when the
core application was not yet available. Now that
the main program design and implementation has
reached a stable state, we are – besides adding
functionality – revising older modules in order to
replace redundant or more restricted initial
implementations with calls to more refined imple-
mentations.

Computational modules

The computational modules contain algorithms
for processing and producing molecular data.
Many of the algorithms have been adapted from
existing programs that were freely available,
resulting in faster implementation and the intro-
duction of fewer errors. Some of the algorithms
were adapted from previously unpublished in-
house software and are described here. When the
main program and the primary modules reached a
stable and usable state, we began to develop new
algorithms and modules in order to expand the
functionality of the program to better match the
needs of molecular modeling as well as to test
the robustness of the core design. As a result, the
data structure design has been refined and aug-
mented from its original model to the one pre-
sented here in order to better fulfill the needs of the
computational algorithms as well as to improve
overall performance.

Sequence alignments
The sequence alignment module was derived from
the multiple sequence alignment program MA-
LIGN [7]. The original command line program was
implemented in C and used static memory man-
agement. The integrated version added a graphical
dialog for selecting parameters, i.e., a scoring ma-
trix and gap penalty, and the memory is now
managed dynamically. While the use of dynamic
memory handling is unavoidably slower than the
use of static memory, it conveys two benefits: the
memory used is only that which is really required,
possibly compensating for any loss in performance,
and the artificial problem size limit is removed. The
module receives an alignment data object from the
main program and recomputes the alignment of
the sequences held by that object. Furthermore, the
user may specify that some of the sequences belong

407



to a pre-aligned set, and the rest of the sequences
are then aligned against that set and each other. A
direct application of this latter feature is to align a
sequence against a structural alignment made by
comparing the three-dimensional structures of
related proteins. Here, the structural alignment
should have fewer ambiguities, but the sequence
alignment algorithm is unlikely to reproduce it. By
preventing changes to the structural alignment, we
in effect introduce spatial variation into the gap
penalties and bring structural information into the
alignment process, leading to more accurate
alignments.

Distances reflecting the degree of sequence
similarity among proteins can be computed from
the alignment and the relationships among
sequences can be visualized with a tree diagram.
For example, the Phylip program package [8]
provides several methods for the distance compu-
tation and for phylogenetic tree construction. We
have implemented as a separate module a graphi-
cal dialog where the user can select options, and
the dialog will then produce and execute a script,
which calls appropriate programs from the Phylip
package in order to construct a tree from an
alignment (currently available only in the Linux
and IRIX versions).

Structural alignments
Proteins whose three-dimensional structures are
known can be superimposed in order to compare
their structures and to provide more accurate
sequence alignments. We have added a separate
module, Superimposer, which contains algorithms
for superimposing protein structures. The pairwise
superimposition of structures involves three steps:
(1) the definition of equivalent positions in the two
structures, (2) the calculation of the transforma-
tion that minimizes the distances between the
equivalent positions, and (3) application of the
transformation to the xyz-coordinates of one of
the proteins so that it is superposed on the other.
The transformation is computed with the least
squares minimization method of Kearsley [9] and
the transform is applied by adding it to the internal
transformation stored within the atom objects.

The key step in the superimposition procedure
is the definition of equivalences: the equivalences
represent the common elements of the two com-
pared structures. Thus, an incorrect set of equi-
valences usually produces a superimposition that

will not correctly highlight the similarities and
differences of the structures. At least three pairs of
equivalent points are required in order to compute
the transformation, and already three well chosen
pairs can produce a useful superimposition. We
provide three strategies for the definition of the
equivalences: (1) manual method, (2) iterative
superimposition-based procedure, and (3) fully
automatic structure alignment.

In the manual method pairs of equivalences are
defined by the user. The set of equivalent pairs
should contain at least three pairs of atoms that are
known or highly likely to reflect ‘equivalent’ enti-
ties in the structures located at the same or similar
relative positions. They are often obtained from a
sequence alignment or other data, for example
mutation studies. The procedure obtains the equi-
valences from the specified alignment object, and
minimizes the root of the mean squared deviations
(RMSD) of the pairs of equivalent points, which by
default are the Ca-atoms.

An approximate superimposition, obtained for
example by interactively moving the molecules or
by the use of the manual method, can be refined
with the iterative method, which uses a dynamic
programming algorithm (DPA) [10] for identifying
the equivalences from superimposed structures.
The similarity of the Ca-atom positions needed in
the DPA is computed with the Rossmann and
Argos [11] equation, similarly to the program
STAMP [12]. The subset of identified equivalences
that are already superimposed within a user de-
fined cut-off are used to recompute the superim-
position and the process is repeated until the set of
equivalences does not change any more, or a
maximum number of iterations is reached, indi-
cating that the procedure cannot converge, but
instead fluctuates between solutions.

The automatic algorithm implements our
topology based structure alignment program
VERTAA [13]. The algorithm was specifically
designed to align structures that have similar
shapes both quickly and automatically. VERTAA
defines the initial set of equivalences by correlating
the patterns of Ca-atom density values – the
number of Ca-atoms within 14 Å of each residue –
along the sequence of each structure. Therefore,
no initial alignment or superimposition is needed.
For convenience, multiple structures can be
superimposed (pairwise) onto one reference struc-
ture with a single procedure call.

408



Molecular modeling of protein structure – Homodge
The prediction of a protein structure is a complex
task, but it canbe simplified if the complete answer is
not needed or if enough biological information is
available. For example, the specificity of a receptor
can be studied quite extensively already when a
model of the binding site, not the whole protein, is
constructed. Homology modeling generates the
model of a protein structure from known structures
of homologous proteins (templates). Thus, both the
selection of the template and the alignment of se-
quences have a significant effect on the model. If the
model can be generated and displayed within sec-
onds, the user can quickly assess the quality of the
model based on his knowledge about the studied
problem and decide to refine the current model, or
feed information back to the alignment process and
generate a new model.

The computer program Homodge has been
developed for such use. The philosophy behind the
program has been to rely on information from
the related structure as much as possible, making
the minimum number of changes. Such an
approximation is sufficient when highly similar
proteins are modeled and the speed of the method
allows interactive use. While Homodge is partic-
ularly suitable for highly similar proteins, it also
performs reasonably well with low similarity, un-
less the alignment contains long insertions or
deletions (indels), since indels require construction,
or at least major modification of the main chain.

Homodge generates the putative main chain of
the model by copying the coordinates of all resi-
dues, including those that will be deleted, from the
template structure. For each insertion the main-
chain positions are computed by adjusting – with a
simulated annealing algorithm – the main-chain
torsion angles of the residues in the inserted frag-
ment as well as for a couple of residues preceding
and following the insertion. The goal of the torsion
angle adjustment is to produce a continuous main
chain with the torsion angles within allowed re-
gions of the Ramachandran plot. Deletions are
removed from the model after the insertions have
been added, and torsion angles are adjusted in
order to reconnect the remaining residues. This
approach is fast for short insertions and deletions.
The construction of the main chain is completed
by adding atomic coordinates for the amino- and
carboxy-terminal overhangs; both are given a
pseudo-helical conformation. The residues are

added in order to let the user manipulate the whole
structure with other methods.

The resulting model is thus a partial copy of the
template. There is no minimization step, so the
side chains and even the main chain may collide.
More accurate results would require minimization
of the model structure, which is computationally
expensive, and can itself produce structural arti-
facts. In places where the template differs only by
point mutations (no indels) the main chain will be
identical in the model regardless of the level of
sequence identity.

When the main-chain coordinates have been
determined, the side chains are reconstructed
based on torsion angles, along with bond lengths
and angles. The template provides torsion angles
for the conserved residues, while the most fre-
quently occurring torsion angles of each amino
acid type – as found in known structures [14] – are
used for inserted and mutated residues. The rot-
amer library (see below) can be used to quickly
change the side-chain orientations.

The program Homodge is distributed as a
separate binary usable either from the command
line or from the alignment editor in Bodil. Thus,
the user can also substitute an alternative model-
ing program for Homodge. For example, a shell
script could execute Modeller [15] with predefined
options and then return the produced model
structure for Bodil.

Rotamer library
The conformation of side chains along the protein
chain is important both for the structure of the
protein and for the interactions with other mole-
cules. We have added a rotamer library in order to
facilitate the exploration of probable side-chain
conformations. The rotamer library [14, 16] con-
sists of a list of conformations corresponding to
local energy minima that have been observed in
known protein structures. The rotamer module
within Bodil looks up the conformations for an
amino acid from a list of identified rotamers [14]
and creates an alternate set of coordinates for the
atoms in the amino acid for each conformation.
The user can cycle through the conformations for
atoms, groups, or even whole proteins (NMR-
structure files often report tens of alternative
conformations for the whole structure, which can
be cycled through with the same method as for
rotamers of a single amino acid), and see on the

409



graphics how different conformations fit into the
structure. The coordinates of any and all confor-
mations can be saved to a structure file. The
supplied rotamer library is a flat file in pseudo
PDB-format [17] and can be edited or replaced by
the user.

Surface computations
The space filling representation of atoms is an
easily implemented way of showing the space
occupied by a molecule, but the molecular surface
is aesthetically and functionally a more effective
method. The computation of the molecular surface
is a three-stage process. First, a function is evalu-
ated at discrete points. The function defines the
shape of the surface. The evaluation of the function
at any given point requires computing the distances
from all atoms. Therefore, it is more effective to
pre-compute values of grid points rather than to
start from any point on the surface and dynami-
cally explore the surface and use recursion to
achieve an increased level of detail where the cur-
vature of the surface is higher. A straightforward
grid-based approach uses an even distribution of
points resulting in evenly sized triangles, i.e. large
planar surfaces will be divided into many triangles
and tight curves flatten out due to too few triangles.
A finer grid with more points does produce a more
accurate surface composed of smaller triangles, but
the memory requirements and amount of compu-
tations increase exponentially. The user can specify
the spacing of the points in the grid in order to
allow computation of both rough and smooth
surfaces. A more complex, grid-based procedure
would start with a sparse grid and recursively
subdivide the volume locally into finer grids only
where the surface is not planar. The recursive ap-
proach is not used in Bodil, since the grid data
object type was designed for evenly spaced data
points. A separate grid implementation for sparse
data can be added later.

In addition to the molecular surface algorithm
of Connolly [18], we have functions that will pro-
duce van der Waals and solvent accessible sur-
faces. The solvent is represented by a spherical
probe with radius usually equal to 1.4 Å. The
solvent accessible surface represents the closest
points outside the molecule, where the probe can
be positioned, i.e. positions where the distance
between the center of the probe and the closest
atom is equal to the sum of the probe radius and

the van der Waals radius of the atom. When the
probe ‘rolls’ over the molecule, its center moves on
the solvent accessible surface and the probe
touches the Connolly molecular surface. Thus, the
Connolly molecular surface contains the volume
within van der Waals radii of atoms and the
grooves between two or more atoms that are
unreachable by the probe.

The second stage is to create triangles such that
they approximate a surface that represents a user-
specified threshold value of the function. The
position of each triangle is linearly interpolated
from the grid points, since the value of the func-
tion is only evaluated for the grid points. We use
the triangulation algorithm of Bloomenthal [19] to
generate the triangles. The triangulation algorithm
may be used to create a contour surface to any
grid. For example, the user can read into the
program an electron density map created from
cryo-electron microscopy (cryo-EM) image pro-
cessing and visualize the density volumes due to
macromolecules.

The third stage in the surface computation
involves locating the nearest atom for each point
on the surface. The mapping of atoms to the sur-
face allows the quick mapping of atom or residue
properties such as color to the surface.

The initial implementation of the surface
computation module performed its task as a single
step and produced only the final surface object.
We quickly found that the division of the process
into separate sub-routines and the storage of the
intermediate results gave much more flexibility and
also helped us to verify the correctness of each sub-
routine. Separating the computation of a grid from
the generation of the iso-surface permits the gen-
eration of surfaces for precomputed grids. The
creation of grid as a separate object allows the
generation of several different iso-surfaces from
one grid without re-computation of that grid.
Different functions can be implemented for com-
puting values to an existing grid. Thus, the user
can choose from several options to perform dif-
ferent, but related tasks with a small number of
program components. The default options pro-
duce basically the same surface as the initial single-
step implementation did.

Electrostatic potentials
Molecular interactions are due to inter-atomic
forces. The electrostatic potential is one important

410



type of force contributing to specificity in molec-
ular interactions. The contribution of a charged
atom to the potential energy falls off exponentially
as the distance from the atom increases. However,
the net potential energy at any specific point is a
sum of contributions of all atoms, including sol-
vent atoms. Visualization of electrostatic poten-
tials for a protein is typically used to help locate
the patches on the protein surface that are com-
plementary to the surface of a molecule that
interacts with the protein. For example, a surface
in the binding pocket of a ligand molecule can
have both hydrophobic (neutral) areas that pro-
vide non-specific interactions as well as charged/
polar areas that interact specifically with charged/
polar groups of the ligand. The computation of the
electrostatic potential involves two steps: the
potential is computed at discrete points (a grid)
enclosing the protein, and then the grid values are
visualized. Our implementation uses successive
over-relaxation [20] to solve the Poisson–Boltz-
mann equation at the grid points. The visualiza-
tion is handled by interpolating the values from
the grid to points on the molecular surface com-
puted for the protein. The surface is then colored
based on these values, the value range is converted
into a color range; the default color range is from

red (negative charge) via semi-transparent white
(neutral) to blue (positive charge) (Figure 5).

Fitting of atom-resolution protein models to
low-resolution density maps
Large biomolecular complexes are increasingly
studied by methods such as cryo-electron micros-
copy (cryo-EM) that provide three-dimensional,
low-resolution density maps. Such a map can be
used to construct a model of the complex at
pseudo-atomic resolution, if the high-resolution X-
ray or NMR structures of individual components
are known or can be modeled from related struc-
tures. Thus, the task is to assemble the complex of
molecules with the low-resolution density map as a
guide.

We have implemented in the module ‘EMfit’ a
simple algorithm to fit a protein structure into a
density grid. The program performs an exhaustive
search of the local rotational and translational
space. Each sampled transformation is (i) scored
according to the fit to the low-resolution density
map and (ii) optionally examined for overlap with
other protein structures contributing to the com-
plex, which have been pre-determined by the user
as being correctly positioned in the low-density
map. The score is the sum of density values in the

Figure 5. Molecular surface of protein kinase C inhibitor 1 (PDB code 1KPF [34]). The ligand molecule (AMP) is drawn as a CPK
model. The secondary structure of 1KPF is shown. Residues with at least one atom within 4.0 Å from any atom in the ligand are
shown as ball-and-stick representation. Oxygen atoms from water molecules within 5.0 Å of the ligand atoms are shown as small cyan
spheres. The molecular surface for 1KPF has been computed, and the electrostatic potential has been interpolated onto the surface.
The surface has been colored according to the potential values, from negative (solid red) through neutral (transparent white) to positive
(solid blue).

411



low-resolution map at each Ca-position of the
protein being fitted. Since side-chain atoms are not
considered, possible inaccuracies in the protein
model due to side-chain conformational changes
upon complex formation have no effect on the
fitting. Notably, the method uses neither pre-
determined density contour cut-offs to limit fitting
nor convolution of the high-resolution model to
the low resolution of the map. Density maps of
entire complexes as well as difference maps, where
the density of the components not being fitted has
been deducted, can be used.

Transformations with overlap of protein
structures can be discarded without further com-
putations, since the non-overlapping solutions are
guaranteed to be found by the exhaustive search.
The overlap can be determined in linear time by
the use of a simplified density grid, generated from
the static structure. The transformed molecule
overlaps if any of its atoms is within the density of
the static molecule, i.e. a grid point near the atom
has been flagged as being near a static atom (in
practice, Ca-atoms closer than 4.0 Å from each
other). Moreover, preferred positions for selected
Ca-atoms can be pre-defined. The distances of
these Ca-atoms from their preferred coordinates
are then recorded in the list of transformations and
they can be used for filtering the results. This
allows external information about the location of
the protein, such as mutagenesis or cross-linking
data, to be included in the search. The user inter-
face of the module allows the user to interactively
specify the input parameters. After fitting, the user
can pick transformations from the resultant list
and immediately visualize the corresponding
complexes.

The module has been successfully used to fit a
receptor domain, the I-domain of a2b1-integrin,
onto the structure of the non-enveloped picorna-
virus echovirus 1 [21] (Figure 6) and to resolve the
biological dimerization mode of bovine lysosomal
a-mannosidase [22]. In the virus-receptor case, a
density map of the complex at 25 Å resolution
from cryo-EM and crystal structures of both
echovirus 1 [23] and the a2I-domain were avail-
able. Published results from mutagenesis were not
used to constrain the fitting, but the resulting
model was nonetheless in good agreement with
those data [21]. Crystallographic data on a-man-
nosidase, an enzyme known to form a dimer in
solution, was compatible with two alternative

dimeric structures. The dimer was observed di-
rectly in solution by cryo-EM, and fitting of both
of the dimers derived from crystal symmetry to the
low-resolution cryo-EM density map clearly re-
solved the higher-scoring dimer as the biologically
relevant one [22].

Parsers
Molecular data are usually stored in formatted
files and there are several file formats, each
designed for a different purpose. Most formats use
text files that can be directly edited by hand. Such
manual changes are convenient, but may introduce
errors. Binary files are a more efficient form of
storage, but are usually only accessible by a limited
set of programs. Because we decided it would be
important to be able to use and also produce files
that are directly exchangeable and usable with
other programs, Bodil does not use any Bodil-
specific format: parser modules were developed
where each module encapsulates knowledge about
one existing, widely used format. Thus, each
module is able to convert data from one format
into data objects within Bodil and also to produce
formatted data from data objects. The conversion
from any particular file format has to take into
account the conventions and peculiarities of that
format. For example, the Protein Data Bank
(PDB) [17] format assumes implicitly that the
amino acids have bonds, while the SYBYL Mol2
[24] format lists each bond explicitly. Thus, some
formats require more preprocessing and knowl-
edge about represented molecules than others. In
addition, the text files may be incomplete or
modified by the user. In such a case the parser
must be able to handle the inconsistent data
gracefully. Since each format, including the data
representation within Bodil, typically only repre-
sents some subset of the molecular data, the con-
version has to use some default values for data
that does not exist in the source format and to
discard data that cannot be represented by the
destination format. For example, the PDB format
– designed for macromolecules – will not store the
bond types for small molecules. Thus, the bond
types for a small molecule should be computed, as
they cannot be read from the PDB file. The current
set of parser modules reads and writes the typical
molecular formats PDB, Mol2, Gromacs [25], and
MDL SDfile [26], and the sequence formats
FASTA [27] and PIR. The modified PIR sequence

412



format is used also by the program Modeller [15],
and we use it to represent sequence alignments too.

Another group of parsers is focused on
importing three-dimensional value grids. These
grids can represent, for example, electron densities
or energy distributions. Thus, precomputed spatial
data can be read in from ASCII grid formats
produced by the programs Grid [3], AutoDock [2],
CNSsolve [28], and Surfnet [29], and from binary
formats of Grid and AVS [30]. Grids computed in
Bodil can be written out for visualization by other
programs. We are developing a molecular inter-
action-predicting algorithm using statistical meth-
ods [1, 31, 32]. The gathered data can be plotted to
a grid and visualized just like any other spatial
data. In Bodil, a grid can be easily visualized by
computing a contour surface. The triangles of a
surface, as well as spheres and cylinders repre-
senting atoms and bonds, can be saved as a Ras-
ter3D [33] input file for higher quality rendered
images, but the 3D-graphics module can also print
the rendered view directly into bitmap image.
Likewise, the alignment viewer module can print
the displayed alignment.

The C++ programming language encourages
resource abstraction with the concept of the
‘stream’. Both text and files can be referred to as
streams of characters, thus separating the access to
a stream from the true type of the stream. For
parsing formatted data this creates an interesting
possibility, since several file formats are text based
and as such can be handled as streams. Thus, we
have already implemented some of the parsers as
procedures, which take data from, or put to, a
stream, and then added a helper method that
creates a stream from a file and calls the parsing
procedure. The direct benefit from this separation
is the possibility to call the parser module with a
text stream object rather than a real file. To use
this feature, we have a separate graphical module,
which contains a box with editable text. Instead of
saving data from Bodil into a text file and opening
that file in a text editor, the user can display the
same formatted text directly within the box.
Likewise, the contents of the text box can be read
into Bodil just like a regular data file, although the
format of the contents must be specified by the
user since there is no associated filename that

Figure 6. Rigid-body fitting of integrin a2I domain into a low-resolution density map of the complex of echovirus 1 and a2I domain
using the EMFitter module [21]. The density map (isodensity contour surface shown in semitransparent gray) was obtained by cryo-
electron microscopy of single particles and three-dimensional image reconstruction. Ca-traces of the 10 highest-scoring transformations
of the a2I domain are shown in red. The atom-resolution crystal structure of echovirus 1 [23] was used to constrain the fitting of the
receptor. Two protomers of echovirus are drawn in yellow and blue. The EMFitter start dialog and the interactive density map
cropping dialog are shown on the left.

413



could indicate the correct format. Since the con-
tents of the box can be edited, for example by
pasting a sequence into the box, or by changing
data retrieved from the Bodil data structure, the
user can easily input data from several sources or
even create several copies of a single molecule.

Graphical modules

The main purpose of Bodil is to visualize molec-
ular data and provide the user with ways to modify
that data interactively. The computational mod-
ules described above usually perform these modi-
fications of data.

Structure editor
While the main program stores the data as a tree
of objects (Figure 4a), the structure editor allows
the user to explore the data object tree in a similar
way to browsing directories and files. A file icon in
a directory window shows some properties of the
file and allows operations like rename and delete.
Analogously, the structure editor lets the user see
and change the properties of molecular objects.
Naturally, the tree view allows selection and
modification of individual objects as well as whole
branches and groups of objects. Structure depen-
dent selection methods have also been imple-
mented. For example, all atoms near any already
selected atom or within the same residue as the
selected atoms can be easily selected. Thus, the
user can quickly select a ligand molecule from
the tree, request atoms within hydrogen bonding
distance, and fully select each identified group. As
a result, each protein residue within hydrogen
bonding distance from the ligand is selected and
thus easy to find both in the graphical view and in
the sequence alignment. A separate query window
is used to select atoms through a combination of
three regular expressions that match chain, resi-
due, and atom names, respectively. The query can
select or deselect atoms matching the expression,
or remove the selection if an atom does not match
the expression. These operations correspond to
union, difference, and intersection operators used
in set theory. The structure editor also provides
access to some computational algorithms: the calls
to the surface computation module and the rot-
amer module require extra parameters (type of
surface and target amino acid, respectively) that
are supplied by the structure editor. The compu-

tational modules could – and should – have their
own graphical dialogs for selecting such parame-
ters, but it is more convenient for the user to access
the modules via the structure editor and it reduces
the number of windows displayed.

Three-dimensional graphics
The graphics viewer module (Figure 4b) can dis-
play one or more simultaneous 3D-graphical views,
rendering each object in a different mode and from
a different viewpoint. Multiple windows can be
linked to receive the same camera rotation and
translation changes. Most, but not all, objects do
have a graphical representation. Atoms and bonds
can be drawn with a combination of wire frame,
stick, ball-and-stick, and CPK model representa-
tions. Atoms can also show their name, identifier
(usually atom number from the structure coordi-
nate file), charge, or type as a label. Similarly,
groups can be labeled. A bond is drawn by default
as two parts (lines or sticks) with each part using
the color of the nearest atom, but it can also be
constructed as a single piece with a unique color.
The wire frame representation of an aromatic bond
has one solid and one dashed line, while double and
triple bonds have two and three solid lines,
respectively. Texture bitmaps are used to draw
aromatic bonds as ‘stippled’ sticks. The chain can
be drawn as a wire frame Ca-trace or the secondary
structure elements (SSE) can be drawn separately
with helices as ribbons, strands as arrows of defined
thickness, turns as filled arcs to highlight their
locations, and random coils as tubes. The color of
these chain fragments is either a single color of the
particular SSE or the color assigned to the residues.
The other shapes may have dot, line, opaque
polygon, or transparent polygon representations.
Surfaces have all four possibilities, while grids can
only be drawn as dots. Only grid points with values
within a user-specified range are drawn. Thus,
‘dense’ volumes can be located by specifying a
range that covers the large values, but a contour
surface computed for the grid, which encloses such
volumes, is usually a more effective visual repre-
sentation of the same property. Alignments of
structures can be drawn as lines connecting the
corresponding matched Ca-atoms, helping to
highlight poorly superimposed, yet aligned resi-
dues. Furthermore, aligned residues can be colored
according to the separation (distance) of their Ca-
atoms in order to further highlight the differences

414



of the aligned structures. The view drawn on the
screen exists within the memory of the graphics
card. It can be saved as a bitmap image file, pro-
ducing a snapshot of the view. However, that image
is limited to the resolution of the visible graphics
window. The OpenGL standard also describes off-
screen rendering of the image directly into a bitmap
format. This would allow the creation of higher-
resolution images, limited only by the amount of
available memory. However, the OpenGL imple-
mentations do not uniformly support the off-screen
rendering to very large bitmaps. Therefore, only
screen-resolution bitmap creation is available in
the graphics module.

The mouse is used in several modes to produce
different input actions. Movements of the mouse
translate and rotate the viewpoint and change the
zoom and slab, which determine the viewed vol-
ume. The coordinates of molecules can also be
modified interactively with the mouse, whereby the
rotation and translation change the atomic coor-
dinates of the selected molecules. The mouse is also
used to select atoms directly from the graphical
view. Besides selecting single atoms, a sphere-
selection mechanism is available: the user can select
an atom and then drag the mouse to indicate the
desired inclusion radius. The radius is visualized
with a wireframe sphere (Figure 7); when the

mouse button is released all atoms within the
radius from the center point are selected.

There are other mouse selection modes that do
not select atom objects but instead perform other
actions. A centering function translates the camera
to bring the pointed atom into focus. Measure
modes add the pointed atom into a measure
object. The measure objects are not common data
objects; they are created and used only in the
graphics module to compute and show either a
distance, bond angle, or torsion angle for the
atoms they refer to. Thus, selecting two atoms with
the distance mode will add to the view a dashed
line connecting those atoms and a number show-
ing the distance. The displayed value changes
automatically if the distance of the atoms changes,
since it is computed on-the-fly. Since a distance
object specifies two atoms, it can be used to create
a bond between those atoms. Several options
affecting the quality of the graphics can be chan-
ged interactively, like fog effects, ambient light, the
anti-alias feature of lines and stereo parameters;
even more options are available in the configura-
tion file.

The graphics can also produce both wall-eyed
and cross-eyed side-by-side stereo and hardware
stereo views. The latter requires quad-buffered
OpenGL support from the underlying graphics

Figure 7. Selection sphere. The phosphate group of AMP bound to protein kinase C inhibitor 1 (PDB code 1KPF [34]) and the
protein atoms around the phosphate group are shown as licorice and ball-and-stick models, respectively. The mouse movement ‘drag’
has been interpreted as the radius of a sphere that has been centered on the phosphorus atom (the start point of the ‘drag’ operation).
The sphere is visualized dynamically with a wire-frame and the radius (4.0 Å) is shown. The sphere is used to select atoms within it:
protein atoms within 4.0 Å from the phosphorus atom are green and have been labeled.

415



system. Proper anti-aliased lines and transparent
surfaces would require drawing the objects in
back-to-front order, but the sorting of objects
needed after each change of viewpoint is a time-
consuming operation. In order to keep the
graphics fast enough for interactive use, we have
chosen not to sort the objects. Instead, we apply a
‘peeling’ method, which requires rendering of the
view in several passes: (1) determine the closest
objects, (2) render other than closest objects, and
(3) render the closest objects. This ensures that at
least the closest objects have proper anti-aliasing
and transparency.

Alignment editor
The purpose of the alignment editor (Figure 4c) is
to display protein sequences and to ease the editing
of alignments. Since each character in the dis-
played sequence represents either a gap or a resi-
due, and the linkage between a residue character
and the corresponding residue object is main-
tained, the residue objects can be manipulated –
for example, selected – via the alignment display.
The primary visualization aid available through
the alignment editor is the coloring of residues.
Besides changing the color of selected residues, the
user can color residues based on their properties.
The properties for residues (e.g. hydrophobicity,
hydrophilicity, polarity, etc.) are listed in a data
file and a color map is associated with each
property. Thus, the property values are converted
into colors and applied to the residues. Since the
properties are defined statically for individual
amino acid types, the values and colors do not
depend on the sequence. However, residues do
have properties that are sequence or structure
dependent – for example, the solvent accessible
area of a residue, or the accuracy of the superim-
position of the structurally aligned residues –
which must be computed rather than looked up
from a table. Thus, the generation of a property
value, be it from a table lookup or computation,
should be clearly separated from the visualization
of the value, for example with color schemes or
separate plots.

The main function of displaying an alignment
is to identify and highlight similarities and differ-
ences among the sequences. Therefore, two color-
ing methods operate on the properties of the
alignment, rather than properties of individual
amino acids, as above. One identifies each column

in the alignment where a user-specified minimum
number of residues are identical and then colors
those residues, highlighting conserved amino
acids. The other alignment-based coloring method
computes the distance between Ca-atom positions
of aligned residues and converts the distance value
into a color using a color map. However, the dis-
tance computation assumes that the structures
have already been superimposed according to the
alignment. The superimposed residues in the
alignment will have different color (blue) from
those residues (red) that, although aligned, have
distance larger than a cut-off value (6.0 Å). Both
the color map and the cut-off are adjustable con-
figuration options.

The object shown in the alignment editor is an
alignment object. It contains a list of chains and an
array of columns, each representing one position
in the alignment. A column in the alignment points
to an aligned residue in each chain or shows a gap
marker for those chains that do not have a residue
corresponding to that position. The alignment
objects are generated on three occasions: (1) from
(unaligned) sequences in the alignment editor, (2)
as a result of the structure alignment algorithm, or
(3) from a file with pre-aligned sequences. It is
important to note that the alignment object may
contain any set of sequences, with gaps inserted at
arbitrary positions. Only if the sequences do have
corresponding parts – residues – and those resi-
dues are aligned properly, then the alignment ob-
ject does represent an alignment of the protein
sequences (or structures), else the alignment object
merely lists the residues. Deletion of a residue
object does not destroy the alignment; the deleted
residues are converted into gap markers in the
alignment.

The alignment objects are modified by passing
them to the Malign module, which performs the
sequence alignment, or by adding and removing
columns or rows and by moving gaps in a row
interactively. The structure alignment module
creates new alignment objects in order to describe
the alignment of structures instead of modifying
existing alignments. The user may also specify a
subrange of the sequences for re-alignment by
Malign, for example to realign a loop region while
keeping the rest of the alignment unchanged. It is
possible to have more than one alignment editor
window open at the same time in order to view
several alignments or different locations along a

416



single alignment that are difficult to visualize
within a single window because of the length of the
alignment.

Performance and system requirements

The size of the program is moderate, less than
100,000 lines of code, and the size of the binary
distribution is about 20 MB, including the Qt-li-
brary binary file which is required by the program.
The memory use of the program depends on the
amount of objects (molecules, grids, surfaces) that
are loaded or computed during runtime. The
development of the program began on the IRIX
platform using MIPS R5000-based SGI O2 work-
stations. The main asset of those machines was
their support for hardware stereo graphics. Inter-
estingly, the graphics system in the O2 workstation
used the main memory rather than dedicated
graphics memory, and performed part of the ren-
dering in the main processor. When the PC
graphics hardware evolved into a stereo-capable
platform, Linux became the main development
platform. While OpenGL provides a standard
interface for graphics, the optimization of the
graphical performance must take into account the
hardware used. There is a clear trade-off between
speed and quality. One way to increase speed

without sacrificing quality is to minimize the
computations made on the graphics hardware by
precomputing values in the main processor. This,
however, requires more memory for storing the
values and the transfer of values from the main
memory into the graphics memory may well be the
real bottleneck of the system. In the old O2 systems
the memory was limited, and the computations
were in every case performed by the main proces-
sor. On the latest PCs as well as on high-end SGI
workstations the graphics hardware is very
advanced and most likely contains more compu-
tational power than the main processor.

Planned additions

The program, although usable, is by no means
complete yet. The basic modeling procedure would
benefit from addition of more functionality. Fur-
thermore, the feedback from users has not only
helped to remove bugs, but has elongated the list
of ‘obvious’ features needed, too. For example,
full-featured command-line access and scripting,
and saving of the program state would allow
continuation of work at a later time. Direct access
to data on network servers and databases may be
more convenient than via intermediate files. The
chemical properties of molecules obtained from a

Figure 8. Visualization of precomputed spatial data. A molecular interaction library [32] has been used to predict volumes in contact
with the protein kinase C inhibitor 1 structure (PDB code 1KPF [34]) where ligand atoms can be placed: hydrogen bond donors (blue),
hydrogen bond acceptors (red), and aliphatic carbons (cyan wire-frame). The predicted volumes coincide closely with the ligand
molecule (AMP, ball-and-sticks, six atoms labeled) present in the crystal structure. Amino acid side chains around the ligand have been
drawn as licorice models and the Ca-trace (orange) is also shown.

417



database for a large set of molecules or from
computations can be intractable without a tabular
view that supports sorting and filtering of data.
Similarly, both quantitative structure–activity
relationships (QSAR) and small molecule docking
are essential computational tools for drug design.
Rantanen et al. [1, 31, 32] have studied molecular
interactions detected in the experimentally deter-
mined structures of protein–ligand and protein–
protein complexes. The resulting interaction
library could, for example, be used to score how
well a small molecule has been docked into the
binding site of a protein (Figure 8). Additional
interactive visualization methods, such as contact
maps, Ramachandran plots, and trees, could
highlight potential errors within structural models.
Building of molecules, adjustment of torsion an-
gles, and automatic addition of hydrogens and
hydrogen bonds would contribute to the modeling
process. The increase of configurability and addi-
tion of graphical options would allow production
of even better quality images.

Conclusions

We have developed a modular program package,
Bodil, for visualization of molecular structures and
interactions in order to simplify the study of pro-
teins and their function. The use of available
program development tools and technologies such
as the OpenGL standard and the Qt library has
facilitated simultaneous development on different
platforms, such as Linux and MS Windows. One
of our goals was to produce a high quality pro-
gram operating on PC and portable computers,
eliminating the need for high-priced graphics
workstations. The modular design of the program
allows addition of functionality in the form of new
modules without changing the existing program. It
was important to implement the functionality as
small specific algorithms that could be mixed and
matched – reused – to offer a wide spectrum of
possibilities to the user. We already provide the
essential modules used in structural studies and
protein homology modeling, and currently it is
rather straightforward to introduce new ideas and
functionality quickly.

The visualization of biochemical data offers
several benefits. While an algorithm may yield an
optimal result for a ligand docking with respect to

the used scoring function, often only the human
eye can deduce from a three-dimensional image
whether the result is also biochemically sound. The
ability to see data in several formats simulta-
neously allows the user to recognize such relations
that cannot be seen in any single view alone. For
example, seeing both a conserved residue in the
sequence alignment and the position of that resi-
due in the protein structure may help to explain
why that residue is conserved. The interactive
graphics allows the user to focus on the key fea-
tures of the studied molecular interactions. Fur-
thermore, the user can interactively select and limit
important substructures as input for the compu-
tational algorithms and the result of the compu-
tation will automatically be visualized.

The beta version of the program is available for
use without a fee. Compiled versions of the pro-
gram for SGI IRIX, Linux, and MS Windows
operating systems, as well as a tutorial, can be
downloaded from: http://www.abo.fi/fak/mnf/bkf/
research/johnson/bodil.html.

Acknowledgements

We are grateful for constructive feedback and
encouragement from members of the Structural
Bioinformatics Laboratory in the Department of
Biochemistry and Pharmacy, Åbo Akademi Uni-
versity. This study has financially been supported
by TEKES – the National Technology Agency of
Finland, the Academy of Finland, the Ministry of
Education, the Foundation of Åbo Akademi
University, the Erna and Victor Hasselblad
Foundation (Sweden), the Sigfrid Juselius Foun-
dation, the Tor, Joe och Pentti Borgs minnesfund,
Fatman Bioinformational Designs Ltd, the
National Graduate School in Informational and
Structural Biochemistry, Finland, and the Grad-
uate School in Computational Biology, Bioinfor-
matics and Biometry, Finland.

References

1. Rantanen, V.V., Denessiouk, K.A., Gyllenberg, M.,
Koski, T. and Johnson, M.S., J. Mol. Biol., 313 (2001)
197.

2. Morris, G., Goodsell, D., Halliday, R., Huey, R., Hart,
W., Belew, R. and Olson, A., J. Comput. Chem., 19 (1998)
1639.

418



3. Goodford, P.J., J. Med. Chem., 28 (1985) 849.
4. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (Eds),

Design Patterns. Elements of Reusable Object-oriented
Software. Addison-Wesley, New York, USA, 1994.

5. Woo, M., Neider, J., Davis, T. and Shreiner, D., OpenGL
Programming Guide, 3rd edition. Addison-Wesley, New
York, USA, 1999.

6. Qt, Version 3.3. Trolltech AS, Oslo, Norway, 2004.
7. Johnson, M.S. and Overington, J.P., J. Mol. Biol., 233

(1993) 716.
8. PHYLIP (Phylogeny Inference Package), Version 3.5c.

Joe Felsenstein, Department of Genetics, University of
Washington, Seattle, 1993.

9. Kearsley, S., Acta Crystallogr., A, Found. Crystallogr., 45
(1989) 208.

10. Fredman, M., Bull. Math. Biol., 46 (1984) 553.
11. Rossmann, M. and Argos, P., J. Mol. Biol., 105 (1976) 75.
12. Russell, R.B. and Barton, G.J., Proteins, 14 (1992) 309.
13. Johnson, M.S. and Lehtonen, J.V., In Higgins, D. and

Taylor, W. (Eds), Bioinformatics: Sequence, Structure and
Databanks. Practical Approach Series, Oxford University
Press, Oxford, UK, pp. 15–50.

14. Lovell, S.C., Word, J.M., Richardson, J.S. and Richard-
son, D.C., Proteins, 40 (2000) 389.

15. Šali, A. and Blundell, T.L., J. Mol. Biol., 234 (1993) 779.
16. Dunbrack, R.L. Jr. and Karplus, M., Nat. Struct. Biol., 1

(1994) 334.
17. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G.,

Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne,
P.E., Nucleic Acids Res., 28 (2000) 235.

18. Connolly, M.L., Science, 221 (1983) 709.
19. Bloomenthal, J., In Heckbert, P.S. (Ed.), Graphics Gems

IV. Academic Press Professional, Inc., San Diego, CA,
USA, pp. 324–349.

20. Nicholls, A. and Honig, B., J. Comput. Chem., 12 (1991)
435.

21. Xing, L., Huhtala, M., Pietiäinen, V., Käpylä, J., Vuori-
nen, K., Marjomäki, V., Heino, J., Johnson, M.S.,

Hyypiä, T. and Cheng, R.H., J. Biol. Chem., 279 (2004)
11632.

22. Heikinheimo, P., Helland, R., Leiros, H.K.S., Leiros, I.,
Karlsen, S., Evjen, G., Ravelli, R., Schoehn, G., Ruigrok,
R., Tollersrud, O.K., McSweeney, S. and Hough, E.,
J. Mol. Biol., 327 (2003) 631.

23. Filman, D.J., Wien, M.W., Cunningham, J.A., Bergelson,
J.M. and Hogle, J.M., Acta Crystallogr. D, Biol. Crystal-
logr., 54 (1998) 1261.

24. SYBYL�, Version 6.7.1, Tripos Inc., St. Louis, Missouri,
USA.

25. Lindahl, E., Hess, B. and van der Spoel, D., J. Mol.
Model., 7 (2001) 306.

26. MDL ISI/Base, Version 2.5, MDL Information Systems
Inc., San Leandro, CA, 2002.

27. Pearson, W.R. and Lipman, D.J., Proc. Natl. Acad. Sci.
USA, 85 (1988) 2444.

28. Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L.,
Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski,
J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M.,
Simonson, T. and Warren, G.L., Acta Crystallogr. D,
Biol. Crystallogr., 54 (1998) 905.

29. Laskowski, R.A., J. Mol. Graph., 13 (1995) 323.
30. Advanced Visual Systems Inc., Waltham, MA, Develop-

er’s Guide and Applications Guide.
31. Rantanen, V.V., Gyllenberg, M., Koski, T. and Johnson,

M.S., Bioinformatics, 18 (2002) 1257.
32. Rantanen, V.V., Gyllenberg, M., Koski, T. and Johnson,

M.S., J. Comput.-Aided Mol. Des., 17 (2003) 435.
33. Merritt, E.A. and Bacon, D.J., Meth. Enzymol., 277

(1997) 505.
34. Lima, C.D., Klein, M.G. and Hendrickson, W.A., Sci-

ence, 278 (1997) 286.
35. Pace, H.C., Garrison, P.N., Robinson, A.K., Barnes,

L.D., Draganescu, A., Rosler, A., Blackburn, G.M.,
Siprashvili, Z., Croce, C.M., Huebner, K. and Brenner,
C., Proc. Natl. Acad. Sci. USA, 95 (1998) 5484.

419


