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Abstract. Two-point distribution functions are used here as to introduce “Microstructure Sensitive Design”
in two-phase composites. Statistical distribution functions are commonly used for the representation of
microstructures and also for homogenization of materials properties. The use of two-point statistics allows
the composite designer to include the morphology and distribution in addition to the properties of the
individual phases and components. Statistical continuum mechanics is used to make a direct link between
the microstructure and properties (elastic and plastic) in terms of these two-point statistical functions. An
empirical form of the two-point statistical function is used which allows the construction of a composite
hull. Two different composites (isotropic and anisotropic) are considered and the effect of anisotropy for
the prediction of the elastic properties is discussed.

Keywords: aluminum, anisotropic, composite hull, degree of anisotropy, design, elastic modulus, elastic
constant, isotropic, lead, microstructure, shear modulus, volume fraction

Nomenclature

pij two-point probability function,
cij , nij emprical coefficients used in Corson’s probability equation,
r vecotor connected each two points in the microstructure,
c0, θ0 reference values,
A degree of anisotropy defined for the microstructure,
cijkl elastic constants,
Cijkl effective elastic constant (components),
C effective elastic constant (matrix form),
σij , εij stress and strain,
〈h〉 ensemble average of variable h,
h̃ deviation component of variable h,
aijkl the local inhomogeneity (components),
Gij green’s function,
Kijk, Kijkl first and second derivative of Green’s function.

1. Introduction

Recently a methodology was developed by Adams et al. [1] that uses a spectral
representation as a tool to allow the mechanical design to take advantage of the
∗To whom correspondence should be addressed. E-mail: hamid.garmestani@mse.gatech.edu
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microstructure as a continuous design variable. This new approach, called microstruc-
ture-sensitive design (MSD) uses a set of Fourier basis functions to represent the
microstructure (e.g. single orientations) as the material set [1]. The combination of all
these elements of microstructure states can be used to construct the property enclo-
sure for any particular structure. The procedure in this methodology can be summa-
rized in the following:
a-Microstructure representation. The microstructure and its details are represented by
a set of Orthogonal Basis Functions χn.

F(χn,Cn)=
∑

n

Cnχn, (1)

where Cn’s are the coefficients, determined for each individual microstructure.
b-Properties and constraints. The properties and constraints are represented in the
same orthogonal space

P(χn,pn)=
∑

n

pnχn. (2)

c-Coupling. The properties and constraints can represent hyper planes in the property
enclosure which is defined as a universe of all variation in the inter relation among
several properties for the same microstructure.
d-Designer materials. Intersection of these planes defines the universe of all materi-
als and microstructure (distributions) appropriate for design. This is similar to how
Ashby’s diagrams are being used in design [2].
In this paper, a similar methodology is developed and applied to a two-phase compos-
ite material. The difference is the representation of the composite microstructure using
empirical equations for the representation of two-point statistical distribution functions
rather than spectral analysis. In a polycrystalline material, each grain is considered as a
state and an n-dimensional space is then used for the construction of one point distri-
bution function for polycrystalline materials. However a two-phase composite consists
of only two phases and the n-dimensional material is reduced to a two-dimensional
state assuming that the anisotropic property within each phase is ignored. It is clear
that such a construction that uses volume fraction of the second phase can only present
a limited description of the composite. In this paper, two-point correlation functions
are used as additional parameters for the description of a composite. Two-point sta-
tistics can incorporate not only the distribution and interaction of the two phases but
also information on the shape and morphology of each individual phase.

The MSD is presently taking advantage of “texture” in the form of Orientation
Distribution Function (ODF) for the representation of polycrystalline materials [1].
The ODF is a one-point statistical distribution function that only considers volume
fractions (or number fractions) of crystallites with the same orientation. Two-point
statistical function can be used as a first-order correction to the average representa-
tion. Two-point correlation functions [3–9] provide information about near neighbor
and far field effects and allow the defect sensitive properties to be incorporated in the
analysis. The extension to higher order statistics adds a higher-order of dimensional-
ity in the Materials Hull. It also presents two major improvements in the analysis
for the calculation of effective properties and the evolution of microstructures [6, 8].
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The composite formulation will be markedly enhanced by the use of two point cor-
relations [3, 10, 11].

Recent improvements in electron microscopy and image analysis have led to new
techniques for analyzing the structure of polycrystalline materials at the scale of the
crystalline grains. Orientation Imaging Microscopy (OIM) provides information on
the spatial arrangement of lattice orientations in polycrystalline structures and is
based on Kikuchi diffractometry [12]. Measurements of local orientation and misori-
entation of polycrystalline materials are now possible. For the composite, if the ori-
entation of each phase is ignored, the correlation functions can be measured using
imaging techniques (optical, SEM. . . ). The use of OIM for the measurement of ori-
entation for a multiphase composite can introduce a large amount of detail and
higher-order statistical formulations will be needed to incorporate such information
for MSD and microstructure analysis.

In this paper, we take advantage of anisotropy in the microstructure of a two-
phase composite as a parameter for design. The methodology presented here is an
application of a framework for “Microstructure Sensitive Design” for the case of
composites. The earlier work in this effort concentrated on polycrystalline materials.
The main issue within this methodology is the microstructure representation and in
the earlier work [1] a one-point statistical function (ODF) was used in the form of
Spherical Harmonics. In the present paper a two-point statistical function represen-
tation is used for the representation of the microstructure of a two-phase compos-
ite. Futhermore, it will allow us to link the microstructure to elastic properties. Fur-
thermore, it will allow us to identify and classify composites based on the desired set
of properties (inverse methodology). Finally an example of design criteria is provided
and the methodology is then used to identify the composite material which satisfied
the required constraints.

2. Representation of heterogeneity

The prediction of mechanical property from the details of the microstructure such as
phase, crystalline grain distribution and morphology has received special attention in
the mechanics and materials community [3, 4]. The mathematical description of het-
erogeneity has received some breakthroughs in the last three decades with the works
of Kröner and Beran [13–15]. More progress has been achieved to calculate the effec-
tive properties by making simple assumptions about the microstructure distribution
(random, isotropic and periodic microstructures) or the shape of the second phase
(spherical, ellipsoidal. . . ). These studies have relied primarily on the one-point prob-
ability functions (number or volume fractions of individual states within the micro-
structure), which ignored shape and geometric characteristics of the microstructure. It
was realized that in order to use the measured materials heterogeneity it is necessary
to incorporate two and higher order probability functions. Progress was hindered due
to lack of experimental techniques to obtain two and three-point correlation func-
tions. These techniques are now available to measure individual crystalline orienta-
tion in polycrystalline materials. Extension of this effort to non-random microstruc-
tures requires proper definition of nth degree statistical correlation functions. For a
detailed description of the theoretical discussion and the derivations please refer to
work of Garmestani [6–8], Beran [16], and Adams [4, 17]. A statistical continuum
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mechanics approach for both elastic and inelastic deformation of composites was
introduced earlier [6–8]. In this paper, the elastic formulation for the isotropic dis-
tribution will be extended to include anisotropy.

For two-phase composite structures, the application of two-point statistics requires
two different sets of probability functions: the first set can be chosen to describe the
probability distribution functions for the interaction of the two phases. This reduces
the problem to a composite formulation ignoring the crystalline phase for each com-
ponent. The two phases can then be taken as isotropic (or anisotropic) phases and
the effect of textures can be incorporated in the anisotropy parameters in the con-
stitutive relations. The second set can consist of the probability distribution functions
for the individual crystalline phases. This means incorporating the effect of orienta-
tion for each phase.

Based on the arguments presented earlier, the first approach will use the compos-
ite formulation and develop the property space for the two-phase structure. In this
analysis Lame’s constants are known for two basis isotropic phases.

2.1. Two-point distribution function

The statistical details of a microstructure can be represented by an n-point probability
distribution function. The volume fractions, f1 and f2 define the one-point probability
distribution function that can be used to give an estimate of the effective properties. The
details of the shape and morphology of the microstructure including the interaction of
the second phase can only be realized by using higher order distribution functions [3,
10]. A two-point distribution function can be defined as a conditional probability func-
tion when the statistics of a three-dimensional vector “r” is investigated once attached
to each set of the random points in a particular microstructure. The exponential form
of the distribution function as proposed by Corson has been shown to be appropriate
for random microstructures [10]. It is represented as

Pij (r)=αij +βij exp
[−cij r

nij
]
, (3)

where r is a vector in this equation, however in isotropic case, the probability doesn’t
depend on the direction and r is assumed to be a scalar. For a two-phase composite,
i and j correspond to phases 1 and 2. This reduces the number of two point func-
tions to four, P11(r), P12(r), P21(r), and P21(r). Normality relations for a two-phase
composite and the statistical limitations (P12 =P21) require that only P11 be treated
as the independent variable and α and β are functions of volume fractions. In Eq.
(3) the empirical coefficient cij is a scaling parameter representing the correlation dis-
tance and can be reformulated into an anisotropic form:

cij (θ,A)= c0
ij

(
A+ (1−A) sin(θ − θ0

)
. (4)

However, nij can be shown to be equal to 1 for a random structure [18]. A three-
dimensional form of Eq. (3) can also be introduced. The present form is sufficient
when the statistical information is uniform in one dimension for the composite. The
three dimensional form requires data from a variety of sections through the sample.
In Eq. (4), “A” is a material parameter that represents the degree of anisotropy in a
microstructure such that A=1 corresponds to an isotropic microstructure. Assuming
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that two perpendicular sections are chosen for the analysis of a composite, we will
be able to calculate two anisotropy parameters in these two sections.

2.2. Definitions and the procedure

To estimate the elastic constants the equilibrium equation has to be solved

σij,j =0. (5)

The relation between elastic stress and strain can be shown by

σij (x)= cijkl(x)εkl(x),〈
σij

〉=Cijkl 〈εkl〉 , (6)

εij = (1/2)(∂ui/∂xi∂xj + ∂uj/∂xi),

Symbol < h > denotes the ensemble average over grains (phases. components. . . ) at
state h. So 〈cijkl〉 is the average of the local stiffness defined as follows:

〈
cijkl

〉= 〈
cijkl(x)

〉= 1
V

∫

V

cijkl(x)dV . (7)

The same definition is applicable for stress, strain and compliance. The local mod-
uli and compliance as well as the local stress and strain can be defined as a pertur-
bation from the average (mean) values <..> by defining a new parameter

(∼
··
)

as in
the following equations:

cijkl(x)= 〈
cijkl

〉+ c̃ijkl(x),

sijkl(x)= 〈
sijkl

〉+ s̃ijkl(x), (8)

σij (x)= 〈
σij

〉+ σ̃ij (x),

εij (x)= 〈
εij

〉+ ε̃ij (x),

where c̃ijkl(x), s̃ijkl(x), σ̃ijkl(x) and ε̃ijkl(x) are, respectively, the deviation of stiffness,
compliance, stress and strain at each point from the average value. The following
equations should be always satisfied as a result of statistically homogenous media:

〈
c̃ijkkl(x)

〉=0
〈
s̃ijkl(x)

〉=0, (9)〈
σ̃ijkl(x)

〉=0
〈
ε̃ijkl(x)

〉=0.

2.3. Effective elastic constants

Statistical continuum mechanics analysis is used to predict the elastic properties of a
composite. The theoretical framework has been developed for isotropic distributions
in composites by Garmestani et al. [6, 7] and for a textured polycrystalline material
by Adams et al. [16, 19]. Here, a brief discussion is provided for the calculation of
the effective elastic constants for isotropic distribution and will be extended to aniso-
tropic distributions,

Effective elastic constants “C” of a composite are defined by the equation

σ̄ =Cε̄, (10)
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where σ̄ and ε̄ are the average stress and strain, respectively, and C is the effective
elastic constant of the composite. Applying Hill’s criteria the effective elastic con-
stants can be written as (for details see paper by Garmestani et al. [6, 7]):

C =〈c〉+〈ca〉 , (11)

where the first term is the average elastic tensor and the second term is the average
deviation of the elastic constants from the mean. The fourth rank tensor a = (ajkl) is
introduced here to represent the local inhomogeneity. Therefore, the effective property
can now be defined by

Cijkl =
〈
cijkl

〉+ 〈
c̃ijmn(x)amnkl(x)

〉
. (12)

By substituting local stress (Eq. (6)) into the equilibrium equations (Eq. (5)), an
equation for displacement is obtained. Differentiating the equation of displacement
and multiplying the result by cijkl, the second term in Eq. (12) will be calculated by

〈
c̃ijku(x)akurs(x)

〉=
∫

V

∂�Kkpu(x, x ′)
〈
c̃ijku(x)c̃pmrs(x

′)
〉�/∂x ′

mdX′

−
∫

V

Kkpum(x, x ′)
〈
c̃ijku(x)c̃pmrs(x

′)
〉
dX′, (13)

where x and x ′ are two different position in the media, and dX′ shows the volume
integral on the volume element around the position x ′. In which the correlation func-
tion is defined by

〈
c̃ijku (x) c̃pmrs

(
x ′)〉= c̃1ijkuc̃1pmrsp11 + c̃1ijkuc̃2pmrsp21

(14)+c̃1ijkuc̃2pmrsp12 + c̃2ijkuc̃2pmrsp22.

and

Kkpu = (
Gkp,u +Gup,k

)
/2,

(15)
Kkpum = (

Gkp,um +Gup,km

)
/2,

where G is the Green’s function used for solving the equilibrium equations. For defi-
nition of Green’s function for isotropic and anisotropic cases, readers should refer to
refs. [7, 19].

3. Results and discussions: Composite property enclosure

In this section the elastic properties are calculated for two types of composites. First an
isotropic composite with a randomly distributed second phase is considered. In such a
composite, the probability distribution functions are isotropic and independent of ori-
entation. In this case the probability functions in Eq. (3) are sufficient to characterize
the microstructure. Next a special case of an anisotropic composite is considered such
that the microstructure of any section perpendicular to a particular direction has the
same statistics. The anisotropy is then considered in only two sections of the composite.
In the simulation of this microstructure, the probability distribution function changes
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with orientation and magnitude of the vector “r” on each section. The measurements
of this composite on any section perpendicular to one particular direction provides the
same statistical information within which the statistics maybe anisotropic.

3.1. Isotropic distribution

For a randomly distributed isotropic composite, the correlation functions are indepen-
dent of orientation and can be taken out of the integral in the second term of Eq.
(13). The integrand then only includes the Green’s function and has to be integrated
over the boundary of a sphere. It is proved that this integral goes to zero which means
there is no contribution from the two-point statistics for an isotropic material and only
the first integral or the one-point statistics (volume fractions) contributes to effective
elastic property. The two substituting phases are Aluminum and Lead with Lame’s
constants of (λ= 64.286, µ= 25) and (λ= 25.88, µ= 4.926), respectively. The effective
elastic modulus for an isotropic distribution is plotted as a function of volume fraction
in Figures 1 and 2. Several models have been studied to approximate the properties
of heterogeneous materials [20–23]. Here Voigt upper bound and Ruess lower bound
are calculated and shown in the graphs for a comparison with simulation results. Voigt
assumes a uniform strain, and Reuss assumes uniform stress in both phases. [24, 25].
In general, upper bound and lower bound for diagonal and off-diagonal components
of stiffness and compliance can be shown by the following equations: [14]

C
upper
iiii =f1C

1
iiii +f2C

2
iiii ,

C
upper
ij ij =f1C

1
ij ij +f2C

2
ij ij ,

C lower
iiii = C1

iiiiC
2
iiii

f1C
2
iiii +f2C

1
iiii

, (16)

C lower
ij ij = C1

ij ijC
2
ij ij

f1C
2
ij ij +f2C

1
ij ij

.

C
upper
iijj =min

(
Ciijj , S

−1
iijj

)
+

√(
Ciiii −S

−1
iiii

)(
Cjjjj −S

−1
jjjj

)

C lower
iijj =max

(
Ciijj , S

−1
iijj

)
−

√(
Ciiii −S

−1
iiii

)(
Cjjjj −S

−1
jjjj

)

Where C
1,2
iiii C

1,2
ij ij , and C

1,2
iijj are diagonal and off-diagonal terms of the forth rank elas-

tic stiffness tensor for phases 1 and 2, and C
upper,lower
iiii , C

upper,lower
ij ij and C

upper,lower
iijj are

upper and lower bounds. There is no summation on i and j.
Figure 1 shows the variation of the elastic modulus for Al–Pb composite for

different volume fractions of Aluminum. It illustrates that the statistical model pro-
vides a good estimate for the elastic properties. The predictions of the statistical
model seem to be closer to the upper bound for larger volume fractions and closer to
the lower bound for smaller volume fractions. The difference between the predictions
and the upper bound decreases from 80 to 13% as the second-phase volume fraction
increases. The statistical predictions for the shear modulus of the composite (com-
monly known as µ) are shown in Figure 2. Although the composite is considered
to be isotropic, three elastic coefficients (C1111, C1122 and C1212) can be independently
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Figure 1. Effective elastic modulus of Al–Pb versus volume fraction of the second phase.
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Figure 2. Effective elastic shear modulus of Al–Pb versus volume fraction of the second phase: in
this graph, the values of µ is calculated from the isotropic relation for µ (Eq. (17)). C1122 and C1111

in this relation are the statistical values. Also, the values of C1212 shown in the graph are directly
calculated from the simulation.

predicted for this simulation. The shear modulus, (µ) can be calculated directly from
the simulation as C1212. It can also be predicted from C1111 and C1122 through the
isotropic relation for µ.

µ= (1/2)(C1111 −C1122). (17)

These two values should be identical for an isotropic composite (µ=C1212); whereas,
in this simulation the probability distributions for the two phases will determine
whether this is valid. The simulations show that the values obtained from C1212 are
very close to the upper bound. The differences between these calculated values and
the upper bound is less than 4%. However the values obtained from (1/2)(C1111 −
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Figure 3. Modified Corson’s equation fitted to measured values of p11.

C1122) are better estimates for the shear modulus (µ) of the composite. It is observed
that the results of the simulation are very close to the upper bound for the larger
volume fractions of aluminum, and closer to the lower bound for smaller values of
volume fractions. The statistical values of E and µ are also compared to self-consis-
tent model [26] and they show good agreement with the model. The largest difference
for both E and µ is about 10%.

3.2. Anisotropic distribution

The effect of anisotropy is examined here by considering a special type of a two-
phase composite that gives the same anisotropic distribution in every plane perpen-
dicular to a particular direction (z-direction). This means that the three-dimensional
distribution function can be measured to be identical from any plane normal to this
direction. The two individual phases of the composite are considered to be isotro-
pic. As it was mentioned before volume fraction and the degree of Anisotropy (A)
are considered as two design parameters in this work. In this section, the degree of
anisotropy is calculated for three samples of Al–Pb composite by having the distribu-
tion of p11. The volume fraction of Al in the samples is 20, 30 and 40%, respectively.
As an example the fitted curve through modified Corson’s equation for the case of
30% is shown in Figure 3. The values of C1111, C2222, C3333 and C1133 are calculated
for the three samples and the effect of degree of anisotropy on property is studied in
transverse plane. In Figure 4 the variation of anisotropy is shown for different values
of A for the case of vol2 = 30%. It’s observed that as A gets closer to 1, C1111 gets
closer to C2222, which corresponds to an isotropic distribution in transverse plane.

Figure 5 illustrates the property enclosure of the composite Al–Pb. Each point in
this enclosure represents a microstructure distribution with a specific volume fraction
and specific anisotropy “A”. Two elastic coefficients of the composite are shown for
three different volume fractions (20, 30 and 40%) of Al.

In Table 1 the effective elastic coefficients C1111 and C3333 of the composite are
also calculated for three samples. In this particular microstructure, z-direction may
be considered such that the elastic properties in that direction, C3333, is smaller than
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Table 1. The contribution of one-point and two-point correlation statistics in the calculation of effec-
tive elastic modulus C1111 and C3333 for anisotropic Al–Pb

ν of Al (%) Upper Bound C1111 Term 1 Term 2 C3333 Term 1 Term 2 Lower bound

20 51.45 42.47 −6.58 2.39 41.89 −6.58 2.97 41.43
30 59.30 51.59 −6.49 1.20 46.99 −6.49 5.82 45.02
40 67.15 59.129 −5.85 2.17 53.92 −5.85 7.37 49.28

C1111. It’s also evident that although the two phases are isotropic, the statistical
model results in an anisotropic behaviour for the elastic modulus.

The contribution of the different higher order statistical terms for the calculation
of C1111 and C3333 is also shown in this table. Term 2 is the contribution from the
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Figure 6. Composite design: Minimizing the longitudinal /transverse property of anisotropic composite
Al–Pb (A represents the degree of Anisotropy in transverse direction).

two-point statistical functions that are included in the second integral equation of
Eq. (13). This contribution is 15–27% in calculation of C1111. For the case of C3333,
the contribution of the second term is between 31 and 47%. As it was noted before,
the second term does not contribute for the case of isotropy and is only observed in
the anisotropic case.

3.3. Composite design

To illustrate the use of the present methodology in composite design, an example is
given for a certain design project requiring a knowledge of the variations in the ratio
of the elastic moduli C3333/C1111. The composite system will be limited to the one
discussed in the previous sections (Al–Pb). Let’s consider a certain design in which
the ratio of the elastic moduli C3333/C1111 needs to be minimized. The composite in
this design project is quantified using the two-point statistical functions defined in
Eqs. (3) and (4). The design variables are now defined based on two parameters: vol-
ume fraction and degree of anisotropy as the representation of one and two point
functions. Let us consider the example above and for the purpose of illustration, the
three microstructures above are considered. It is clear that these three microstructures
can be extended to a large set of microstructures by varying A and the volume frac-
tion of the second phase. The connection can be set up as an analytical tool for
design using the homogenization relations explained above. Calculating the ratio of
C3333/C1111 for different values of vol(Al) and A (degree of Anisotropy), the statisti-
cal analysis above shows that for any given values of A, the composite has the lowest
ratio of the longitudinal elastic property with respect to transverse elastic property
at vol(Al)= 30% (Figure 6). It means this methodology can be used to predict the
microstructure in a specific design. The design constraints would lead us to a set of
optimized properties as needed. The microstructure of the composite is predicted in
terms of the statistical parameters (here as volume fractions and degree of anisotropy
factor). However this microstructure is not unique. For instance for this case, having
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vol(Al)=30% and A(degree of anisotropy)= 0.0258, there are a variety of microstruc-
tures that ensure this specification. Meanwhile, knowing these two parameters limits
the microstructure to a subset of microstructures with a specific volume fraction and
degree of anisotropy. Therefore, two parameters defined in this section are adequate
to represent the microstructure needed for design.

4. Conclusions

The MSD has been applied to a two-phase composite. The key to MSD is the cor-
rect representation of the microstructure. Here a simplified empirical form of the two-
point probability function is used for the microstructure representation instead of the
spectral representation. The statistical formulation uses the two-point statistical func-
tions to incorporate the effect of the microstructure distribution. The results show
that in the case of isotropic distributions the two-point statistics will not contribute
to the effective properties but the statistical analysis can provide a better estimate for
the effective properties. In the case of anisotropic distribution, the two-point function
can introduce anisotropy in the effective elastic properties. Such anisotropy can be
used as a parameter to engineer new composites with an imposed distribution. These
parameters and their concomitant properties are considered to be continuous design
variables that can be used for optimization of composites. An example is provided
such that the design constraint can be reduced to a set of microstructures. The design
objectives and constraints are then communicated by specific iso-property surfaces in
this space.

Acknowledgements

This work has been funded under the AFOSR Grant no. F49620-03-1-0011 and
Army Research Lab contract no. DAAD17-02-P-0398 and DAAD 19-01-1-0742.

References

1. Adams, B.L., Lyon, M.B., Kalidindi, S.R. and Garmestani, H., Mater. Sci. Forum, 408–412
(2002) 493.

2. Ashby, M.F., Metall Trans. A., 14 (1983) 1755.
3. Torquato, S. and Stell, G., J., Chem. Phys., 77 (1982) 137.
4. Adams, B.L., Morris, P.R., Wang, T.T., Willden, K.S. and Wright, S.I., Acta Metall., 35 (1987)

2935.
5. Torquato, S., Phys. rev. Lett., 79 (1997) 681.
6. Garmestani, H., Lin, S. and Adams, B.L., Int. J. Plasticity, 14 (1998) 719.
7. Garmestani, H. and Lin, S., J. Composites: Part B., 31 (2000) 39.
8. Garmestani, H., Lin, S., Adams, B. and Ahzi, S.I., J. Mech. Phys. Solids, 49 (2001) 589.
9. Lin, S., Garmestani, H. and Adams, B., Int. j. Solids Struct., 37 (2000) 423.

10. Corson, P.B., J. Appl. Phys., 45 (1974) 3159.
11. Corson, P.B., J. Appl. Phys., 45 (1974) 3165.
12. Garmestani, H., Kalu, P. and Dingley, D., J. Mater. Sci. Eng. A., 242 (1998) 284.
13. Kroner, E., Statistical Continuum Mecahnics, Springer verlag, Wien., NY, 1972.
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