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Abstract

Evolutionary Finance (EF) explores financial markets as evolving biological systems.
Investors pursuing diverse investment strategies compete for the market capital. Some
“survive” and some “become extinct”. A central goal is to identify evolutionary stable
(in one sense or another) investment strategies. The problem is analyzed in a framework
combining stochastic dynamics and evolutionary game theory. Most of the models
currently considered in EF assume that asset payoffs are exogenous and depend only
on the underlying stochastic process of states of the world. The present work develops
a model where the payoffs are endogenous: they depend on the share of total market
wealth invested in the asset.
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1 Introduction

As Orr (2018) stated! in this journal, the study of economics, including mathematical
finance, and the study of biological evolution have interacted extensively throughout
their histories. On the one hand, Thomas Malthus and Adam Smith influenced the
thinking of Charles Darwin (Schweber, 1977). On the other hand many authors have
created various versions of “ evolutionary finance,”’in which natural selection is used
to identify investment strategies that can competitively displace alternative strategies.
And as Orr (2018) continues, the resulting literature is voluminous. Contemporary
approaches began with Alchian (1950), who was concerned primarily with competition
among firms. Finally, as Orr (2018) wrote, given that economics and evolutionary
biology are both concerned with competition among agents, this interaction is hardly
surprising.

Evolutionary finance (EF), in its modern form, is a rapidly developing research
area at the interface of Financial Economics and Mathematical Finance applying the
evolutionary approach to the modeling of stochastic dynamics of financial markets.
The classical theory (Radner, 1972, 1982) relies upon the hypothesis of full rational-
ity of market players, who are assumed to maximize their utilities subject to budget
constraints, i.e. solve well-defined and precisely stated constrained optimization prob-
lems. EF models abandon this hypothesis and permit market players to have patterns
of investment behavior determined by their individual psychology, not necessarily
describable in terms of utility maximization. In a recent paper in this journal, Burn-
ham and Phelan (2023) argue convincingly that the assumption of utility maximization
does not have any biological foundation. Moreover, they make pretty clear that not
absolute payoffs but relative payoffs matter in evolution. Thus, Burnham and Phelan
(2023) give very good arguments for the two most fundamental modeling choices of
EF: not relying on utility functions and considering relative preferences.

EF realizes in the context of financial economics Aumann’s (2019) program of
synthesizing mainstream (welfare) and behavioral economics. Aumann writes (ibid.
p. 667):

Quotation Mainstream economic theory is based on the rationality assumption: that
people act as best they can to promote their interests. In contrast, behavioural eco-
nomics holds that people act by behavioural rules of thumb, often with poor results....
People indeed act by rules, which usually work well, but may work poorly in excep-
tional or contrived scenarios. The reason is that like physical features, behavioural
rules are the product of evolutionary processes; and evolution works on the usual, the
common—not the exception, not the contrived scenario.

In EF models asset prices are determined endogenously via a short-run equilibrium
of supply and demand. Dynamic equilibrium is formed consecutively in each time
period in the course of interaction of investment strategies of competing market par-
ticipants. It is defined directly via the set of strategies of the market players describing
their investment behavior. An important feature of EF models is that they employ only

L As this paragraph is a shortened version of a similar paragraph in Orr (2018), we claim no originality for
it. But we fully agree to his view, which could not have been expressed better.
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objectively observable market data and do not use hidden individual agents’ character-
istics, such as their utilities and beliefs, which makes them amenable for quantitative
practical applications (Schnetzer & Hens, 2022).

The main focus of studies in the field is on questions of survival and extinction of
investment strategies in the market selection process. A central goal is to identify those
strategies which survive in this process and/or are evolutionary stable in one sense or
another. Typical results show that under very general assumptions, such strategies
exist, are asymptotically unique and easily computable.

Important contributions to the formation of modern EF as a research area were
made in Anderson et al. (1988), Blume and Easley (1992), Arthur et al. (1997), Farmer
and Lo (1999), Farmer (2002), Lo (2004, 2005, 2012, 2017), Bottazzi et al. (2005),
Brock et al. (2005), Sciubba (2005, 2006), Coury and Sciubba (2012), Bottazzi and
Dindo (2013a, 2013b), Zhang et al. (2014), Bottazzi et al. (2018), Lo et al. (2018). A
recent general survey on EF is provided by Holtfort (2019). An elementary textbook
introduction can be found in Evstigneev et al. (2015, Ch. 20).

EF models invoke ideas related to behavioral economics and finance (Kahneman &
Tversky, 1979; Shiller, 1981; Tversky & Kahneman, 1992; Shiller, 2003; Bachmann et
al., 2018), evolutionary game theory (Weibull, 1995; Samuelson, 1997; Kojima, 2006;
Gintis, 2009) and games of survival (Milnor & Shapley, 1957; Shubik & Thompson,
1959). Another important source for EF is capital growth theory, or the theory of
growth-optimal investments: Kelly (1956), Breiman (1961), Algoet and Cover (1988),
and others. For a comprehensive discussion of the biological roots of EF see (Levin
& Lo, 2021) Introduction to PNAS Special Issue “Evolutionary Models of Financial
Markets”.

The model studied in this paper pertains to the family of EF models that has its
roots in the papers by Amir et al. (2011, 2013), which initiated a game-theoretic strand
in the EF literature. The former paper deals with long-lived dividend-paying assets,
while the latter considers short-lived assets. A survey describing the state of the art in
this line of research by 2016 and putting forward a program for further studies was
given in Evstigneev et al. (2016). For recent progress in the field see Evstigneev et
al. (2020), Zhitlukhin (2021a, 2021b), Hens and Naebi (2022), Schnetzer and Hens
(2022), Zhitlukhin (2022a, 2022b), and references therein.

In nearly all EF models considered in the literature, asset payoffs or dividends are
given exogenously and do not depend on the investment strategies of market players.
In reality, however, such a dependence is more of a rule than an exception, see e.g.
Lintner (1965), Tobin (1969), Tobin and Brainard (1977), and Li et al. (2009). One of
the key general open problems in EF is to develop game-theoretic models of financial
markets that would take into account the endogenous nature of asset payoffs. The
first step in this direction was made in Amir et al. (2021), where a game-theoretic
framework for the analysis of markets with long-lived dividend-paying securities was
developed. In the present paper we conduct a similar study for a model with short-lived
(one-period) assets.

Short-lived assets typically represent standardized contracts that are sold and pur-
chased at the market prices at the beginning of each time period [t — 1, #] and by the
end of it yield payoffs depending on random events that might occur by time ¢. The
payoffs may come from the contract seller or from other sources. Typical examples
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120 1. V. Evstigneev et al.

include contracts involving production or delivery of a specific amount of a com-
modity, raw material or energy, contracts between wholesaler and retailer, derivative
securities, service and insurance contracts, etc. Not infrequently, the payoffs of short-
lived assets depend on externalities and are affected by oligopolistic competition of
firms. Thereby the analysis of models dealing with such assets bridges finance and the
theory of industrial organization, see, e.g., Singh and Vives (1984).

The main focus of our analysis in this paper is on questions of evolutionary stability
of investment strategies (portfolio rules) in the market selection process. Consider
a financial market with N participants i = 1, ..., N pursuing investment strategies
AL, ., AN A strategy A* is called evolutionary stable if the following condition holds.
Suppose N — 1 market players i = 2, 3, ..., N (“non-mutants”) use the portfolio rule
A%,

M= =. =" =2
and investor 1 (“mutant”) employs some other portfolio rule
Al £ ax

If the initial share of total market wealth of the mutant is small enough, then it will be
driven out of the market by the non-mutants in the long run: its share of wealth will
tend to zero with probability one as time goes to infinity.

This notion of evolutionary stability combines ideas from two fundamental solution
concepts of evolutionary game theory proposed by Maynard Smith and Price (1973)
for continuous populations and Schaffer (1988) for discrete ones. The main result of
this work is an effective construction of an evolutionary stable strategy A* for an EF
model with short-lived assets and endogenous asset payoffs. The form of this result is
analogous to that obtained in Amir et al. (2021) for a model with long-lived dividend-
paying assets. Rigorous definitions of the above notions and the statements of the
results are given in Sect. 3.

The remainder of the paper is organized as follows. Section 2 sets up the model. Sec-
tion 3 states the main results. Section 4 derives the equations describing the financial
market dynamics. Section 5 provides proofs of the main results. Section 6 analyzes an
important special case of the model in which the endogenous asset payoffs are defined
by affine functions. Section 7 illustrates and extends to some extent the results by a
numerical example. Section 8 concludes.

2 The model

We consider a market where K > 2 assets are traded at moments of timer =0, 1, ....
Assets live for one period and are identically re-born at the beginning of the next
period. The total volume of each asset k = 1, ..., K is constant (independent of time)
and is denoted by V. There are N > 2 investors (traders) acting in the market. The
market is influenced by random factors modeled in terms of a sequence of independent
identically distributed elements 51, 52, ... in ameasurable space S. The random element
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s; is interpreted as the “state of the world” at time/date ¢. The wealth of investor
i =1,2,..,N atdate r > 1 is denoted by w! = wi(s’), where s’ := (s, ..., 5)
stands for the history of states of the world up to date 7. Initial endowments wf) > 0 of
all the investors at date O are given. An investment strategy (portfolio rule) of investor
i =1, ..., N is represented by a vector A= (Ai - )Jk) in the unit simplex

AK = {(ay,...,ax) € Rf ay+...+ag =1}

An investor i at each time ¢ allocates her wealth w;' across assets k = 1, ..., K in
constant (independent of time and random factors) proportions A;{.

Given the set of investment strategies Al i =1,..., N, the total amount allocated
by all the investors i = 1, ..., N for purchasing asset k at time ¢ is expressed as

N
Wik = (o wi) == D Mw, A= O oo A0, Wy i= (wf e wl), £ =0, 1, .

i=1

ey
We denote by
(M, wi—1)
rt—1,k <= m 2)
the fraction of total market wealth
K N
W= (jowa)=> w_, 3)
j=1 i=1
allocated to asset k = 1, ..., K. The payoffs
Atk = Di(s i1 0)Wemy, k=1, .., K, @)
ofassetsk = 1, ..., K attime ¢ depend on the fractions r;_ x of the total market wealth

W;_1 invested in them and (in a linear way) on W;_. It is assumed that the payoff
functions Dy (s, b), b € [0, 1], are jointly measurable with respect to their arguments
and satisfy

Di(s,b) > 0 forall b € [0, 1]. 5)

As shown in Amir et al. (2021), simple functions of this type have good empirical
support for the US equity market.

According to (4), the ratios A; x/A; , of asset payoffs yielded by assets k, m =
1, ..., K depend only on the relative, rather than absolute, amounts of wealth allocated
to these assets,? i.e. only on the variables r;_1 4, k = 1, ..., K, rather than the variables

2A deep analysis of an evolutionary model of asset market dynamics described in terms of relative wealth
was conducted by Lo et al. (2018).
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wr—1k, k =1, ..., K. This structure of asset payoffs, which is essential for the model
to work, will be preserved if we replace W;_; in formula (4) by any scaling factor Z;
given by an arbitrary jointly measurable function

Z(St, Wr—1,15 ..., Wi—1,5) > 0.

This will change neither the equations of the market dynamics in the model at hand,
nor the results. The choice of the scaling factor Z; specifying the absolute values of
asset payoffs might depend on the applied aspects and on the needs of the analysis
of the model. For example, one can simply set Z, = 1 [as in Amir et al. (2021)].
This will exclude from consideration redundant variables and simplify the description
of the model, but at the same time might require explanations as those provided in
the present paragraph. Our choice of W;_; as the scaling factor in (4) makes the
mapping (w—1.1, ..., Wr—1,k) — (A1, ..., Ar, k) positively homogeneous, which
has a clear economic meaning (constant returns to scale) and turns out to be useful in
the mathematical analysis of the model, see Sect. 5.

We denote by p; = p;(s?) € R’j the vector of market prices of the assets. For each
k =1, ..., K, the coordinate p; x of the vector p; = (ps.1, ..., pr,x) stands for the
price of one unit of asset k at date 7. Below we describe how these prices are formed
in equilibrium over each time perlod A portfollo of investor / at date r = 0, 1,

specified by a vector x, (x[ s oo t { k)€ R where xt ¢ 18 the amount (the number

of units) of asset k in the portfoho x,. The scalar product (py, x, = Zk:l pt,kxt’k
expresses the value of the investor i’s portfolio x,i at date ¢ in terms of the prices p; k.
The portfolio vector x! depends on the history s’ of states of the world: x/ = x! (s").
This vector function of s’, as well as all the other functions of s’ we deal with, is
measurable. To alleviate notation, we will often omit “s’” in what follows.

At date t = O the investors’ budgets are given by their (non-random) initial
endowments wf) > 0. Investor i’s budget/wealth at date t > 1 is

W' A,,x, 1 ZAth; 1,k (6)

where

A= (Az,l» ooy Al,K)s Az,k = Dy (sy, rt—l,k)Wt—lv k=1,.. K. @)

The budget wf at time ¢ is constituted by the payoff (A, x,_,) of the portfolio x;_l

that was created at time ¢ — 1. If investor i allocates the fraction )\f{ of wealth w! to
asset k, then the number of units of asset k that can be purchased for this amount is

Qi
AWy

) (3
Ptk

i
Xtk =

Thus, by employing the portfolio rule A’ = (A%, ..., )»"K), trader i constructs a portfolio
whose positions are specified by (8).
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Suppose that each investor i has selected some strategy A’ = (A, ..., )“'}() e AK.
Assume that the market is always in equilibrium: forall =0, 1,...andk =1, ..., K,
total asset supply is equal to total asset demand

N
Vi=Y xi,. ©)
i=1
i.e.
N i
A w!
Vi =Y (10)
; Ptk
(see (8)). Then we get
1M
Pk == ) Auw, (11)
=

and so the equilibrium (market clearing) prices p;  are given by
LN
Prk = Vk;mAt,x,’_l), k=1,..K. (12)

Given a strategy profile (!, ..., V) of the investors and their initial endowments

w(l), e wév , we can, by using Eqgs. (6)—(12), generate recursively the path of the system

specified by the sequences of variables
w,i=1,.,N, t=0,1,.., (13)
(the investors’ budgets)
rk, k=1,2,..,K, t=0,1, .., (14)
(the fractions of wealth allocated to each of the assets k)
pr=(pia, - pPrx), t=0,1, .., (15)
(the vectors of equilibrium asset prices) and
X = nxlg), i=1,2,.,N, t=0,1,.. (16)

(the investors’ portfolios). The recursive procedure is as follows. For ¢t = 0, the
budgets w;, > 0 are given as initial endowments; ro x are computed by the formula
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rox = (Ak, wo) / Zle (1}, wo) (see (2)); the prices po  and the portfolio positions
xé « are obtained from equations (11) and (8):

1 N

N A;{wo (17)
Ok— w 5 X = —. ;
p ?1 k"0 Ok Dok

Suppose the variables (13)—(16) are defined up to some ¢ — 1. Then we define wf by
(6) and (7), and r; ; by (2) (with ¢ in place of ¢ — 1). The prices p; are determined by
the system of equations (12), and the investors’ portfolios by formula (8).

The above description of asset market dynamics requires clarification. Equations
(10) and (8) make sense only if the equilibrium prices p; i are strictly positive. Under
what assumptions can we guarantee this? Let us say that a strategy profile (A!, ..., 1)
is admissible if for each asset k

N
>3 >0, (18)

This means that for each k there is an investor i allocating a strictly positive share
)Lf{ of wealth to asset k. In what follows, we will deal only with admissible strategy
profiles.

The hypothesis of admissibility guarantees that the random dynamical system we
study is well-defined, in particular, the prices p; i are strictly positive. Under this
hypothesis, we have

w) >0, pr= (P, Prk) > 0, x} = (x} |, .o xl ) #0 (19)

foralli =1, ..., Nandr = 0, 1, ..., which can be proved by induction. Indeed if t = 0,
then the first relation in (19) holds by virtue of the assumption of strict positivity of
the initial endowments, while the second and third ones follow from the first one and
(17). Suppose the relatlons analogous to those in (19) hold for ¢ — 1, and let us prove
them for t. We have wt = (A, x;_;) > Obecause A, > 0 (see (5)) and xt | # 0. The
inequality p, > 0 holds by virtue of the admissibility assumption (18) and formula
(12). Finally, the fact that xf = 0 follows from (8) because wﬁ > 0 and )»j; > 0 for
some k.

Assumption (18) on an investors’ strategy profile is obviously fulfilled if for at least
one market participant i all the investment proportions A}; are strictly positive, i.e., the
portfolio rule A’ is fully diversified. This is so for the strategy profiles we deal with
in Theorem 1, the main result of the present paper. Thus in the context of Theorem 1
condition (18) is satisfied automatically and does not lead to a loss of generality.
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3 The main results

Let (A!, ..., AY) be an admissible strategy profile of the investors. Consider the path
(13)—(16) of the asset market generated by this strategy profile and the given initial
endowments w(l) > 0, i = 1,..., N. We are primarily interested in the long-run
behavior of the relative wealth or the market shares

r[i = w;/Wt

of the traders, where, as before,

is the fotal market wealth. The main concept we analyze in this paper is that of an
evolutionary stable strategy.

Definition 1 A portfolio rule A* is called evolutionary stable if it possesses the fol-
lowing property. Suppose all the investors except one, say i = 1, use the strategy
A*, while investor 1 uses some other strategy A. Furthermore, suppose that the initial
market share r(; of investor 1 is small enough: r& < 8, where § > 0 is some random
variable. Then the market share r,1 of trader 1 will tend to O almost surely, i.e., trader
1 will be driven out of the market by the other traders (using A*) with probability one.

The above definition of an evolutionary stable strategy combines two fundamental
concepts of Evolutionary Game Theory: the classical definition of an evolutionary
stable strategy (ESS) for continuous populations by Maynard Smith and Price (1973)
and its version for discrete populations proposed by Schaffer (1988). The analogy with
the former lies in the fact that the initial relative wealth of the “mutant” (A-investor)
is assumed to be small enough; under this assumption, the A-investor cannot survive
in competition with “non-mutants” (A*-investors). A parallel with the latter is in the
assumption that there is only one mutant type represented by the A-investor 1; all the
others, 2, 3, ..., N, are non-mutants. Relative wealth is the counterpart of the relative
mass of a continuous population of mutants or non-mutants in the biological context.
A fundamental distinction between the notion introduced and the classical ones is
that in the present EF setting we are dealing with properties holding with probability
one, while the classical biological notions of evolutionary stability are concerned with
frequencies, probability distributions and properties holding on average.

To formulate the main result of this work (Theorem 1 below) we introduce some
assumptions and notation. Denote by

8k(s,b) = Vi Di(s, b) (20)

the total payoff of all the assets k available in the market. Suppose that the following
conditions hold:
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(G1) For each s and k the functions gi(s,b) (b € [0, 1]) are strictly positive,
differentiable, strictly monotone increasing and concave in b.

(G2) For any & = (Aq, ..., Ax) € AK, the functions gi(s, Ax) are linearly inde-
pendent, i.e., if for some constants ay, ..., ag the equality Y argk(s;, Ax) = 0 holds
almost surely (a.s.), thena; = ... = ax = 0.

(G3) There exist constants g/,,,, > 0 and gmin > 0 such that

g;nax < gmin (21)

and for all s, b and k we have

8k(s,b) > gmin, g]/((sv b) < gllnax’

where g,’( (s, b) stands for the derivative of the function g (s, b) with respect to b.
Assumption (G1) contains regularity conditions on the functions gi (s, b) which
are typical assumptions on a production function. Property (G2) means the absence
of redundant assets: one cannot construct a “synthetic asset”, a portfolio with fixed
weights consisting of assets j # k, that yields the same payoffs as any given asset
k. Condition (G3) says that although the growth of the total investment in an asset k
leads to the growth of this asset’s payoff, this growth is moderate: its rate g (s, b) =
Vi D,’< (s, b) cannot exceed the constant specified in (21). Such an assumption is natural
when, in addition to capital, a second production factor (e.g., labor) is essential.

Theorem 1 Under assumptions (G1)-(G3), there exists a unique solution \* =
(A], . A%) € AX to the system of equations

s, A¥
Kg"(—k)zx,t, k=1,2,..K. (22)
Zmzl 8Em (Sv )\-;;1)

We have 1} > 0, k = 1, ..., K. The portfolio rule represented by the vector \*is
evolutionary stable.

In (22) s is a random element in the space S having the same distribution as s,
(independent of = 1, 2, ...). The symbol E stands for the expectation with respect to
this distribution. The meaning of equation (22) is as follows. It says that the relative

payoffs
8k(s, 1)) B Vi Dy (s, 1)
SN i gm(s. 25 Yom_i VD (s. 2%

Ri(s) := k=1,...K)

corresponding to the allocation of wealth across assets in the proportions A}, ..., A%
prescribed by the evolutionary stable portfolio rule A* coincide on average with these
proportions.

If, in contrary to our assumption (G1), the functions gi (s, ) do not depend on b,
then equations (22) boil down to

M =ER}, k=12,..K.
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In this case A* reduces to the prescription to invest in accordance with the expected
relative payoffs. This is a generalization of the classical Kelly portfolio rule—* betting
your beliefs” (Kelly, 1956). In EF models with exogenous payoffs, stronger (global)
versions of Theorem 1 were obtained in Evstigneev et al. (2008) and Amir et al. (2013).

4 Dynamics of the asset market

In this section we prove some auxiliary propositions needed for the proof of Theorem
1. They are concerned with the structure of the random dynamical system under
consideration. In the next proposition, we derive a system of equations governing the
dynamics of the market shares of the investors given their admissible strategy profile
L ..., AN). Consider the path (13)—(16) of the random dynamical system generated
by the strategy profile (Al, AN ) and the sequence of vectors r; = (rtl, e r,N ),
where 7/ is the investor i’s market share at date ¢.
Denote by R; i the relative payoffs

AV,
Ripi=——* 8 o120 k=1,..,K. 23)

SNt Arn Vi
Note that R, > Oand > Ry = 1.

Proposition 1 The following equations hold:

i - )‘i”zi
r =) Rk o (24)
k=1 ks 't

i=1,..,N,t>0.

Proof From (12) and (8) we get

N N
Pk =V Y AL X ) = VY ! = VT (i w),
i=1 i=1
s =
L ()\'kv wt)

wheret > 1, w; := (wtl, s th) and Ax = (AL, ., )L,ICV). The analogous formulas for
t=0,
. Vk)\i wi
-1 i k%0
pok =V (M, wo), Xpp = ———,
k Ok (hk, wo)
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128 1. V. Evstigneev et al.

follow from (17). Consequently, we have

Al wt
wz+1 = ZAM kxt k= ZAm WVir——— O, wp) t>0. (25)
k=1 k=1
By summing up these equations over i = 1, ..., N, we obtain:
Wirr =Y Arp1aVie (26)
Dividing both sides of equation (25) by W;,1, we get
K [N w
o = Z A1 Vie Awy /Wy
+ - ’
! k=1 ani:l Al‘+1,me <A'k7 wt)/Wt
which yields (24) by virtue of (23). O

Let us observe that it is sufficient to prove Theorem 1 when N = 2, i.e., the general
model can be reduced to the case of two investors. Indeed, suppose that investor 1 uses
some strategy A and all the others follow the strategy A*. By setting

we get r! = 1 — r}, and from equations (24) we obtain

K 1,1
At
1 k't
Fryl = E Revik—1
t+1 )\‘1 1+)\‘* *
k=1
K
)\’* *
r E Rt+1k—
+1 = — )\l 1+)\.* *

Thus the dynamics of the market share r! of the A-investor is the same as if she faces
as the rival the A*-investor with the market share equaltor,) = 1 —r* = 1 — Zlsz rl.
Our goal is to show that r,1 — 0 with probability one as long as r& is small enough.
The model with two investors will be examined by using Proposition 2 below.
Assume that investors i = 1, 2 use strategies A= (ki - Ai[(),i =1, 2, and denote

by
xo=r}/r} =wjw
the ratio of their market shares.
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Proposition 2 The process x; is governed by the random dynamical system

Xt+1 = H(St+15xl)7 = 07 17 ceey

where
< 1
D okei Rk(SH—l,x)m
H(siy1,x) =x k )\2 k 27
Zk 1Rk(St+1,x)m
and
Mex + A
Sk | St+1s % 7 5.
YK e+ ad)
Ri(si11, %) = NI (28)
X
25—1 &m (Sz+1, Km—m>
= 1 2
2 i1 (hjx +2%)
Proof By using (24) with N = 2, we get
. l
1
Tt41 = Z Rit1k )“z l + )»]
where i, j € {1, 2} and i # j. Consequently,
)\.1}’1 K )\,1
S Rtk SRk
rhy Ar 1+AZ i) ard [rE 423
2 2 -2 2 ’
Fi Al rf K Ay
Zk 1 Req, kw D k=1 Rit1, km
which proves (27). Finally, by virtue of (7) and (20), we get
Ripip = Art 1,k Vi _ Dy (sr41, e k) Wi Vi _ 8k (St41,1.k)
t+1k = = = ’
Z£=1 At+1,m Vin Z,I;:] Dy (st41, rt,m) Wi Vi 2521 &m(St41,Tt,m)
(29)
where (see (2))
- Mew) Ml AW M A
k= K

- K - K ’
Yicihgow) Y 0bwl +23wd) Y (hx +2%)
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which yields (28). O

5 Proofs of the main results

In this section we give a proof of Theorem 1. We begin with proving the existence,
uniqueness and strict positivity of the solution y = (y1, ..., yx) to the system of
equations

8k(s, yr)

_ S ok =1,2,..K. (30)
S gm (s, Ym)

In fact, existence is straightforward from Brouwer’s fixed-point theorem, and strict
positivity follows from the strict positivity of g, so that we only need to establish
uniqueness (however, the argument below yields existence as well).

We will fix s and omit it in the notation. Consider the mapping F(y) = F (s, y)
assigning to a vector y = (y1, ..., Yx) € R_’ﬁ the vector

F(y) == (F1(), ... Fk () == Y| G(y),

where
g lyl™
Gy == (G1(y), ... Gk (), Gk(y) = =% =
Zm:l Emm Iy1™)
and |y| = ), y. Observe that G(y) is homogeneous of degree 0, F(y) is
homogeneous of degree 1, and if |y| = 1, then we have
8k (k)
Fr(y) = =%

Zm:l &m(Ym) .

Thus the mapping F(y) is a homogeneous of degree 1 extension (to the whole non-
negative cone ]R_IE ) of the mapping of AX into itself appearing under the sign of
expectation in (30).

Suppose we have found y € Rf , ¥ # 0, such that

EF(y) = Ay. 31)

Then A = 1l,and z :=y |y|_1 is a solution to (30). Indeed, if EF (y) = |y| EG(y) =
Ay, then

EG() = EG(y) = rylyl™' =1z,
where A = 1 because |z] = 1 and |[EG(2)| = E|G(z)| = 1.

The existence and uniqueness of a solution to (31) follows from a nonlinear version
of the Perron-Frobenius theorem, holding under the assumption of strict monotonicity
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of the mapping E F (y) (Kohlberg, 1982), which follows from the strict monotonicity
of the mapping F(y) = F (s, y) holding for each s:

dFi(y)

>0 (32)
8yj

foreach k,j and y € R_If . To prove (32) put

K
A=Y gmlm I,
m=1

We have
IF(y) _ €
ayj AZ’
where
0 1 . 0A
C=A—Iyl sy =1yl - gxQrlyl™") - —
dy; dyj
_ a _
= A{gr Ok 1yl 1>+|y|a—[gk(yk IvI=H1)
yj
K o9
— Iyl gk Y17 D ——lgmGm IyI7H1,
m=1 ayj
9 _ _1v Y186 — vk
—Ler( Iy ™D = g Iy - —L5—, (33)
dy; [yl
where

Sjx=1if j=kand8;; =0if j #k.

Since the function Fi(y) is homogeneous of degree 1, its partial derivatives are
homogeneous of degree 0, and so we can assume without loss of generality that
|y| = 1.In the chain of relations below, we use the inequalities g (yi) — & (Vk) ¥k = 0,
following from the concavity of g;(b). We have from (33)

K
A=) gmlm),
m=1
K K
C =1 emmlge0) + g Gk — Y1 — gkt Y 8mGm)Gjm — ym) =
m=1 m=1
K K
(D emOmlgrr) = 8GO+ gk GOLY 830 Gm)ym] — 8 OR)8; (7)) =
m=1 m=1
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K
200K — gL ORI+ gk OO & Om)ym] — g VR (37))-

m=1

(34)
Finally, we get

K
(8 (k) — 8 OYOT+ 1D 8y ) ym] — 85 () =

m=1
g0 — &Yk + & vk — &5(0))
= gr(v) — g;(vj) > 0,
where the last inequality follows from the assumption (G3).
To complete the proof of Theorem 1 it remains to prove the property of evolutionary

stability of the portfolio rule A*. By virtue of (Evstigneeyv, et al. 2011, Theorem 1 and
Section 6), it is sufficient to show that if A # A*, then

ElnH'(s,0) <0, 35)

where H (s, x) is defined by (27) and (28) with Al = A and A2 = A*. Thus we have

Ak

K
1 Ri(s, x) ———

H(s,x)=x

*

A

K k
" Ri(s, x) —————
Zk_l (s x)kkx ~|—)\2

and

( x4 A )
O R T
Simi (x5

ZK 18 (s _Im¥ Ay it |
m=1&m s
2

K
=1 (ij + )»j)

Ri(s,x) =

This yields

)\‘*
R (s,0) = ng(s—’k)’
Zm:l 8m (S, }‘;kn)

Ak

it Re(s, 0055

H'(s,0) = — k —
2 k=1 Ri(s,0) k

Ak

Ri(s,0)—,
k(s ))‘Z

1

K
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consequently,
K
/ * )\'k
H'(5,0) =} ()5, (36)
k=1 k
where
Ay
Wis) = ng(s—)’ k=1...K. 37)
Zm:l 8m (S’ )"m)
Observe that

Eui(s) = A} (33)

by virtue of (22). Further, note that the functions wj(s) are linearly independent.
Indeed, if

Z 8k(s A; ©)

k= m 1gm(S Ad )
then
K
> akgi(s, 1) =0,
k=1
and soa; = a» = ... = ag = 0 in view of (G2).

To prove (35) we use Jensen’s inequality for the logarithmic function and write

ElnH'(s,0)= Elnzuk—<lnEzuk _an(Euk) _1n2,\k=,

k=1 M k=1

where the last but one equality follows from (38). To complete the proof it remains
to justify the strict inequality in the above chain of relations. Assume the contrary:
we have equality “=", rather than inequality “<”, in (39). This can happen only if the
random variable Zk:] My (s)(Ak/A*) is in fact constant, i.e., coincides (a.s.) with its
expectation Z/f:] E i (s)(Ax/2}). But this expectation is equal to 1 (see (38)). Thus
Zf 1 M)Ak /Af = 1 (a.s.) or equivalently, Zf L ME@ Ak /A) — 11 = 0 (as.),
which implies that (At /A}) — 1 =0 (as.) forallk = 1,2, ..., K because, as we have
proved above, the functions u} (s) are linearly 1ndependent Consequently, A = A*,
which is a contradiction. U

“ ”
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6 The affine model

In this section we examine an important special case of the model in which the payoff
functions gi (s, b) are affine:

8k(s, b) = c(s) + ar(s)b, ci(s), ax(s) > 0. (40)

The general results obtained above are based on certain simple sufficient conditions
for the model to be workable and estimates that most probably can be improved. In
the present, affine context we succeed in finding necessary and sufficient conditions
and obtain exact estimates. In what follows, the parameter s will be fixed and omitted
in the notation.

In the previous section, it was shown that the strict monotonicity of the operator
F(y) (guaranteeing the existence and uniqueness of A*) is equivalent to the strict
positivity of the following expression

K
I, j(y) == [Z gm(ym)} [ex ) + 8L ) Gk — yi)]

m=1

K
—8k () Y 8 m)Sjm — Ym)

m=1

forall y = (y1, ..., yg) € AK and all k and j. We wish to characterize the set of pairs
of vectors a = (ay, ...,ag) > 0 and ¢ = (cy, ..., ck) > O under which I ;(y) > 0
for any y, k and j. Let us call such pairs of vectors feasible.

To formulate the result we introduce some notation. Let us assume (without loss of
generality) that a; > ap > ... > ak. Then

e = MaX @) = {Z; hie }j  dnip = Mmina; = {afﬁ}, ik k@D
For those k =1, 2, ..., K — 1 for which a; > aﬁlin, we define
yia,c) = Ak (afnax - ar];in) - Zik(ak - ar];in) (42)
2ar (ak — agy,)
and
®r(a,c) :=cx (L + 2aﬁlin - aﬁlax) - (yk*)z ay(ax — aﬁlin), (43)
where

K
L= ZC’"'

m=1
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For each k = 1, ..., K we denote by W (a, c¢) the minimum of the two numbers

Ck (L + 2’afnin - aﬁlax) )

Ck (L + 2a; — afnax) + ax(ax — aﬁm). (44)
Finally, we put
. k %
Ui(a, c) := &y (a, c), ifa, > inin and y;(a, c) € (0, 1),
W (a, ¢), otherwise,

fork=1,..., K —1and Uk (a, c) := ¥k (a, c).

Proposition 3 A pair of vectors a = (ay, ...,ax) > 0and c = (c1,...,cx) > 0is
feasible if and only if Ux(a,c) > O forallk =1, ..., K.

Proof 1st step. We begin with the following remark. If X = j, then

K K
[ emOm)ILerGr) + 80 G5k — ¥l — g0 Y 8 Om)Ej.m — Ym)
m=1 m=1
K K
=1 amOmlerOn) — g GOk + 8O0+ 8 0k) D & m)ym — &k ()&, %)
m=1 m=1
K
> 1) emOm)Ilgk ) — g Rk + 8, 1] — gk (i) (k)
m=1

> gk gk k) — & )Yk + 81 )] — 8k i) & (k)
> k)8, %) — 8k i) gL (k) = 0.

Therefore if j = k, then It j(y) > 0 always, and we can exclude this case from
consideration. Clearly, if k # j, then

K K
L) =1 gnmlgen) — gL O] + gL nOm)ym] — g3 ())-

m=1 m=1

Thus our goal is to characterize pairs of vectors a = (aj,...,ax) > 0 and ¢ =
(c1, ..., cx) > 0 such that this expression is strictly positive for all y = (y1, ..., Yx) €
AX and all k # j.

2nd step. In the model at hand (see (40)), we have

g () = ax, g (b)b = axb, gr(b) — g (b)b = ck + akb — arb = ¢y,
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and so

K K
I j ) =Y (Cm + amym)ck + (ck + @)D amym) — (ck + axyi)a;.

Clearly, I j(y) > O for all y and k # j if and only if

K K
L) ==Y (Cm + amym)ck + (ck + @)D amym) — (ck + aryi) maxa; >0

m=1 m=1
(45)
for all y and k.
Fixk =1, ..., K and some y € [0, 1], and put
AR =y = 51y e ) € AKX Ly =)
Fory e AK (y), we have (see (45))
K K
L) =Y (Cm + amym)ck + (& + @)D amym) = (Ck + Ak yi) g
m=1 m=1
K K
=L +celary + Y amym) + (e + axy)axy + Y amym) — (Ck + ary)apyy.
m#k m#k
(46)
Thus a pair of vectors (ay, ...,ag) > 0 and (cy, ..., cx) > 0 is feasible if and only if
Je(y) ;== min I(y) > Oforall k and all y € [0, 1].
yeaK(y)

3rd step. Let us fix k and y and regard the expression in (46) as a linear function
of a (K — 1)-dimensional vector (y1, ..., Yk—1, Yk+1, ---» Yk ) belonging to the set

(s oo Yoty Vel s YK) 202 )y =1 =y}
m#k

This set is a convex polyhedron (simplex), and therefore any linear function attains
its minimum on it at one of its vertices—that one for which the value of the linear
function is the smallest. Therefore we have

Je() = kL + exlagy + ak (1= )]
+(cx + ary)lary + a1 — )] — (cx + axy)ak . = re + pry + ay?,
(47)
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where

k k k k k
rk = kL + crapin + ci(amin — dpax) = k(L + 2am, — dmay),
k k k k
Pk = 2¢ck(ak — ain) — ak(Amay — Apin)s Gk = ak(@k — Apip).-
Now our goal is to describe the set of pairs of vectors a = (ay, ...,ag) > 0 and
c = (cq, ..., cg) > 0 such that

JPN = min Ji(y) > 0k=1,2,.... K. (48)
yel0.1]

We will show that (48) is fulfilled if and only if the inequalities Uy (a, ¢) > 0 hold for
allk=1,.., K.
4th step. In view of (41), we have

ag(ax —ag) >0, ifk <K,
ag(ag —ag-1) <0, ifk =K,

qr = ax(ax —ak) = {

and so the function Ji () is convex quadratic or linear fork < K and concave quadratic

or linear for k = K. Fix some k < K and consider two cases: (i) ay — aﬁlin > 0 and
vi € (0, 1) (see (42)); (ii) either ax — aﬁlin =0ora; — aﬁlin > 0and y;" ¢ (0, 1).

In the first case, the strictly convex quadratic function (47) attains its minimum on
[0, 1] at the point

Pk Ak (arlilax - arl;in) — 2ci(a — arlilin) *
_Pe_ - =y (49)
2qx 2ai (ay — amin)

(see (42)). This minimum is equal to

Dk 2
KD =re+ vl (et avd) =re+ vl =n - ()" ax
2
= ck (L + Zaﬁﬁn - aﬁm) - (yk*) ay(ay — aﬁlin) = @,
(see (43)).
In the second case, the function Ji(y) is linear or convex quadratic with the sta-

tionary point y;* ¢ (0, 1) (see (49)). Consequently, the minimum of this function on
[0, 1] is attained either at O or at 1, i.e.,

JI — min{J; (0), Ji (1)}, (50)

where

() = e (L +2aky, — abi) (51)

T () = g (L +2af, — afiay ) + 26k (@ — afyiy) — ax (b — aloin) + @ — afy)
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= ok (L +2ax — afiyy ) + ax (@ — abi). (52)

which shows that J,g“i“ = Wy (see (44)).

It remains to consider the case k = K. As we have noticed above, the function
Jk (y) is concave quadratic or linear. Therefore the arguments conducted in case
(i1) and the relations in (50)-(52) apply to the case k = K, which proves that Jlr(“i“
= Ug. ]

We provide a simple sufficient condition (53) under which the (necessary and
sufficient) condition in Proposition 3 holds. Define:

Qmin = MIN  dy;, Gmax = Max dy, Cmin = Min ¢,
1<m<K 1<m<K 1<m<K
K
andrecall that L =), | cm. |

Proposition 4 Suppose that

Cmin (L + 20min — @max) > dmax (@max — Gmin)- (53)
Then U(a,c) > O forallk =1, ..., K.

Proof We show that for all k = 1, ..., K condition (53) ensures that ¥; > 0 and
&, > 0 aslong as y;* € (0, 1), which implies that Uy > 0 for all k. Indeed, we have

Ck (L + 2(11];111 - aﬁlax) > Cmin (L + 2amin — Gmax)
2
> amax (@max — Amin) = (Vk*) ag(ag — ar];in)’
Ck (L + za]]fnin — aﬁlax) > ¢k (L 4 2amin — Amax) > @max (@max — Amin) > 0

and

Ck <L + 2ay — alﬁlax) +ag(ax — ar]ilax) > cmin (L + 2amin — max) + @k (@min — dmax)
> cmin (L + 2@min — @max) + @max(@min — dmax) > 0,
which completes the proof. O

The above proofs of Propositions 3 and 4 follow the arguments in (unpublished)
Section 6 of preprint Amir et al. (2020), the abridged version of which was published
as Amir et al. (2021).

7 A numerical example

In Fig. 1 below, the results of a numerical example analogous to the one in Amir et
al. (2021) are shown. The example has time-dependent investment strategies and is
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0.2 0.4 0.6 0.8 1
Trend chaser

Logarithm of the growth rate of ESS

Fig. 1 Logarithm of the growth rate of ESS

provided to illustrate which strategy has the highest growth rate of wealth for each
particular initial distribution of wealth. We measure the expected growth of wealth over
20 periods for each combination of initial wealth across the three strategies. It turns out
that A* has the highest expected growth for all initial distributions. As an implication
it follows that A* is globally stable against the history-dependent momentum strategy
and the noise trader. The example suggests, as it could be expected, that the following
assumptions do not matter: (a) smallness of the initial wealth of a “mutant”; (b) the
use of only fixed-mix strategies.

There are two assets in supply Vix = k and the payoffs Di(s;, r—14) = 1 +
Stri—1,k. k = 1, 2. The total amount of payoffs of asset k in period ¢ is gk (s;, r1—1,k) =
Vi Dy (8¢, ri—1.x)- The random variables s; are independent, identically distributed and
log-normal with parameters (1, 1).

There are three investment strategies. First, the ESS Al =% = (0.2, 0.8), which s
fixed over time. Second, )le is a history-dependent, trend chaser (momentum) strategy.
Denote by R;_1 x asset k’s realized return from period t — 2 to t — 1 and by Ri_
its average over k = 1, 2. Then )‘zz,l = arctan(R;—1,1 — Rt_l)/n + 0.5 and )‘r2,2 =
arctan(R;—1 2 — ﬁ,_l)/n +05=1-— )‘12,1~ Since there are no previous returns in the
initial period, the strategy is chosen randomly.

Third, a noise trader strategy varies from period to period. In each period this
strategy is determined by randomly drawing )“?,1 uniformly from [0, 1] and setting
AMy=1-370.

The simulation is carried out as follows. Strategies start with different initial wealth
shares; no smallness assumption is imposed on the initial wealth of any strategy. In
each period, the prices for both assets are computed by Eq. (11). Portfolios are defined
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according to (8). Next, we generate the random state of the world s; and calculate the
payoffs Dy (s;, ri—1,k). Afterwards, by using (6), we compute the new wealth for all
strategies, as well as returns, which are needed for the trend chaser.

8 Conclusion

This paper advanced on the EF model of Evstigneev et al. (2016) by letting the payoff
of short-lived assets depend on the wealth invested in them. We prove the existence of
an evolutionary stable investment strategy that is determined by the relative payoffs
of the assets. Simulations (see Sect.7) show that this strategy might also be a survival
strategy, i.e. a strategy which achieves the highest growth rate of wealth in competition
with any other strategies—independently from where the dynamical process is started.
Generally seen, the paper shows once more how fruitful the evolutionary reasoning is
for finance.

The present study is only a first step in analyzing EF models with endogenous
payoffs. An interesting (and possibly difficult) problem would be to extend the results
obtained in this paper in the following directions: (a) introduce general, adaptive
strategies in place of fixed-mix portfolio roles to reflect a whole variety of possible
patterns of investment behavior; (b) establish the survival property of A* without the
assumption of smallness of the initial wealth of the rivals of the A*-investors; (c)
relax the assumptions of independence and identity of distributions of the states of
the world s;. For the counterpart of the present framework with exogenous dividends,
the problem of constructing a model satisfying all the above requirements has been
resolved only recently in Evstigneev et al. (2020), which required the development of
substantially new mathematical techniques.
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