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Synopsis: This paper considers the well-known Levhari-Mirman discrete-time model of resource extrac-
tion, and investigates the effects of the information structure of the dynamic game – open-loop,
Markovian or history-dependent – on the equilibrium consumption path and the overall utility of the
agents. Due to the special structure of the model, the open-loop regime yields a Pareto-optimal out-
come. The Markovian regime leads to the most pronounced version of the tragedy of the commons. His-
tory-dependent behavior yields an outcome set that is intermediate between the other two cases, and
that may include the Pareto-optimal outcome in some cases. The level of efficiency of equilibrium behav-
ior is thus U-shaped as a function of the level of information the agents’ extraction strategies are based
on. The analysis suggests that in environments characterized by a dynamic (and no market) externality,
forcing agents to commit to open-loop behavior would constitute welfare-improving regulation.
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1. Introduction

The tragedy of the commons is one of the most readily accepted conclusions in
economic analysis. In the absence of clear-cut property rights assignment or in the
presence of public goods, the emergence of the tragedy of the commons is almost
always a foregone conclusion. In other words, a first-best outcome is typically not
expected to prevail in such environments in the presence of multiple agents when-
ever their behavior is assumed noncooperative. Among the many diverse economic
settings characterized by this outcome, common-property resource extraction is
one of the most natural and most intensively investigated problem.

Of the several different competing models of noncooperative resource extraction1,
the work of Levhari & Mirman (1980) remains the leading discrete-time model, and
one of the most influential overall. Their simple model postulates two agents as
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joint owners of a renewable resource, with each of them maximizing the infinite-
horizon discounted sum of utilities depending on own consumption only. An impor-
tant feature of their model is that it reflects no market externality. They refer to
the only interdependence in their model, the intertemporal common-property fea-
ture, as a dynamic externality. Adopting the specific framework of log utility and
isoelastic growth function for the resource, they provided a simple analysis of the
Markovian (also known as feedback or closed-loop no-memory2) equilibrium of the
dynamic game based on a closed-form solution with linear consumption strategies.
Their results confirm that, relative to the first-best or cooperative solution, the Mar-
kovian equilibrium leads to overconsumption (at every stock level3) and to a lower
overall utility level for each agent. Their model has recently been generalized by
Fisher & Mirman (1996) to cover the more general case where there are two biolog-
ically interacting species of fish, and further extended by Datta & Mirman (1999).

In a novel attempt to model history-dependent behavior in such an environment,
Cave (1987) subsequently considered the symmetric version of this model and ana-
lyzed ‘cooperative’ equilibria secured by trigger strategies. In his setting, the two
agents agree on extraction paths that mutually improve on the Markovian out-
come, with reversion to the latter for the indefinite future constituting the pun-
ishment mode in case a deviation from the ‘cooperative path’ is detected.4 At any
point in the course of the game, the players recall all the previous history of play:
states as well as actions. Some recall of history is obviously necessary for the play-
ers to be able to monitor compliance with the cooperative extraction path. The
equilibria thus derived have the desirable property of subgame-perfection, due to
the equilibrium nature of the punishment phase. Ingeniously exploiting the rich
structure of this framework, Cave (1987) provides a complete characterization of
the associated large equilibrium set. In particular, whether or not this set includes
a Pareto-optimal extraction path depends on a derived simple condition on the
parameters on the problem.

The present paper is an attempt to understand the effects of the information struc-
ture of the dynamic game of Levhari & Mirman (1980) on the characteristics of the
resulting equilibria. The main underlying question is whether a monotonic relation-
ship exists between the level of information available to the agents and the efficiency
properties of the resulting equilibria. We consider three different information struc-
tures, listed in order of increasing information for the players as open-loop, closed-
loop no-memory (or Markovian), and history-dependent strategies. For the latter
two cases, we rely completely on the results of Levhari-Mirman and Cave, respec-
tively, as described above and in detail in the body of the paper. Our first task then is
to investigate the structure of equilibrium under open-loop behavior by the agents:
Consumption at any period depends only on the initial stock level and on the date.
The agents are thus committed at the very beginning of the game to a fully speci-
fied course of play that cannot be altered along the way, as no dynamic information
becomes available in the course of the game. The game may thus be viewed as a
one-shot game with infinite sequences (of consumption levels) as strategies.
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Our first main result is that the open-loop equilibrium coincides with the symmet-
ric Pareto-optimal solution. While at first very surprising, we argue that this result
is not so unnatural when one considers that the only externality present in the game
is the dynamic externality. In other words, this result would survive an extension to
more general functional forms for the utility and growth functions, but would not
extend to a more general setting that includes a market externality.5

This finding, together with the results of the two previous studies, leads to the
following assessment: Equilibrium efficiency does not depend in a monotonic way
on the level of information available to the agents. Rather, efficiency as a function
of information is U-shaped, with a maximum at the lowest information level (i.e.
with open-loop strategies) and possibly at the maximal information level (i.e. with
full recall of history), with a local maximum being guaranteed there, and a mini-
mum at the intermediate level of information (i.e. with Markovian strategies). An
intuitive account of this interesting conclusion is provided below, together with a
detailed description of the general properties of each of the information structures
at hand.

Besides shedding some light on the relationship between information structure
and equilibrium efficiency in the specific dynamic game at hand, our results offer
one policy implication worth exploring: If regulatory action could induce the
agents to behave according to open-loop strategies in environments characterized
by the sole presence of the dynamic externality, the resulting equilibrium would be
a first-best outcome. A possible way of accomplishing this is to force the agents to
submit a vector of specified consumption levels, over some fixed horizon, to which
they would remain committed.6 If the players are then forced to stick to their
announcements, the outcome would be Pareto-optimal over the given horizon. An
interesting property of such a scheme is that it is likely to require much less mon-
itoring to ensure compliance than current regulation via quota assignment. The
reason for this important feature follows from an interesting property of open-loop
equilibria: If all other players are using open-loop strategies, a given player cannot
(unilaterally) improve on his payoff by using more complex strategies.7 In other
words, a unilateral violation of this scheme would not be worthwhile to the per-
petrating agent.

By contrast, the standard quota regulation is subject to unilateral violations since,
given the quotas assigned to the other players, the best response of a player is often to
consume more than his own quota. Indeed, in practice, it has been observed in var-
ious settings that this widespread regulation scheme has enjoyed rather limited suc-
cess. For instance, the EU has on several occasions experienced violations by member
states of the quota levels agreed upon within the Community. Another well-known
example is OPEC, an international oil cartel that has frequently encountered major
difficulties in ensuring compliance of the member states with their assigned extrac-
tion quotas, the explanation being again the unilateral incentive for over-extraction,
given the partners’ compliance with their quotas.8
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The rest of the paper is organized as follows. Section 2 presents the basic
model. In Sections 3–6, the solutions under the three different information struc-
tures and the Pareto-optimal case are discussed. Section 7 discuss the main com-
parative results and their derivation. Section 8 discuss policy implications of the
results. Section 9 explores the relationship between the sustainability of the natu-
ral resource and the information structure. Section 10 provides a short conclusion.

2. The model

Two identical agents share the rights to exploit a renewable resource over an indefi-
nite future. The resource stock develops over time according to a biological growth
rule given (upon a normalization of units) by

xt+1 =xα
t , 0<α ≤1, (1)

and this rule is common knowledge to both agents. Following Levhari & Mirman
(1980) and Cave (1987), the utility of agent i is assumed to be:

ui(c
t
i )= log ct

i , i =1,2 (2)

where ct
i is his consumption at time t.9 Let 0 < δ < 1 be the common discount

factor of the agents. Agent’s objective is to maximize the sum of the discounted
utility of consumption

Max

∞∑

t=0

δt log ci
t (3)

subject to

xt+1 =
(
xt − c1

t − c2
t

)α

t =0,1, . . . (4)

Upon specification of the strategies of the two players, the formulation of an
infinite horizon dynamic game between the agents will be complete. Over the next
four sections of the paper we compare the equilibria that arise under different
information structures or, equivalently, under different sets of strategies used by
the agents, in terms of their efficiency properties and their consequences on the
resource stock.

This model is specific on two important counts. First, the utility and growth
functions have special (though commonly used) functional forms. Second, the
agents face no market externality here, the only externality being what Levhari &
Mirman referred to as a dynamic (common-property) externality.

In what follows, we can consider each of the four solutions separately. For each
case, we provide a definition and summary of the salient features of the strategies
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at hand, and then derive the associated equilibrium. Further details may be found
in Basar & Olsder (1999), Fudenberg & Tirole (1986) or Amir (2003).

3. The open-loop equilibrium

3.1. Definition and general facts

This subsection provides a definition of open-loop strategies in deterministic
Markovian dynamic games10 and a summary of their general properties and
limitations.

In the present setting, an open loop (henceforth OL) strategy σ for an agent
is an infinite sequence σ (x0)= (c0, c1, . . . )∈R∞ specifying the resource consump-
tion level at every time period t over an infinite horizon as a function of the initial
stock x0 and calendar time t only. Open-loop behavior thus rests on the premise
that the players simultaneously commit at the beginning of the game to a com-
pletely specified list of actions, without any possibility of revision during the entire
game. The players receive no new information, not even about the value of the cur-
rent state. Hence, no contingency planning of any sort is possible.

Several important observations concerning open-loop equilibria should be noted.
Interestingly, while some of these properties may appear complex, they actually all
follow directly from the well-known properties of Markovian dynamic program-
ming. To begin with, in deterministic Markov dynamic optimization, there always
exists an optimal open-loop strategy (under minor regularity conditions). In other
words, in one-person problems, restricting oneself to open-loop policies results in
no loss of value compared to using more sophisticated behavior such as Markov
or history-dependent policies. This fact is certainly intuitive, as is its failure in the
presence of chance moves or stochastic transitions.11

The game-theoretic partial analog12 of the above fact is perhaps less intuitive,
though no less important. In deterministic dynamic games, an open-loop equilib-
rium remains an equilibrium when the strategy spaces are expanded to include
Markovian or history-dependent strategies. The reason is that if the rival is using
open-loop strategies, a player cannot achieve a higher payoff by using more sophis-
ticated strategies than open-loop. This follows directly by invoking the above fact
for the player’s best-response problem which, given the open-loop strategies of the
rivals, is a deterministic (Markovian) dynamic optimization problem.

Open-loop equilibria are generally not subgame-perfect. This is often viewed as a
major drawback of this type of equilibrium. On the other hand, open-loop equilib-
ria are typically much simpler to analyze than Markovian equilibria. This relative
simplicity is at the heart of the widespread use of open-loop strategies in the early
stages of the adoption of the tools of strategic dynamics in economics.13 In recent
years, economists have generally agreed that the commitment to a completely speci-
fied course of action over the indefinite future is not a realistic behavioral postulate
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in most cases of interest in economic dynamics. Furthermore, subgame-perfection is
broadly viewed as a desirable property of dynamic equilibria. Consequently, focus
has markedly shifted to Markovian behavior.

3.2. The open loop solution

In order to characterize the OL equilibrium, we begin with an analysis of the best
response problem of agent 1 (say). Fix an open loop strategy τ 2 = (

c2
0, c

2
1, c

2
2 . . .

)∈
R∞ for agent 2 that is feasible, i.e., that is such that 0 ≤ c2

0 ≤ x0 and xt+1 =(
xt − c2

t

)α ≥ 0, for t = 0,1 . . . Given the OL strategy τ 2, agent 1 clearly faces a
dynamic optimization problem, and his best-response may be solved for via the
discrete-time Maximum Principle as follows. With {λt } being a vector of costate
variables, the Hamiltonian is (the superscript is dropped for simplicity):

H
(
xt , c

1
t , λt+1

)
= δt log c1

t +λt+1

(
xt − c1

t − c2
t

)α

. (5)

The first-order condition for the maximization of the Hamiltonian is

δt

c1
t

=αλt+1

(
xt − c1

t − c2
t

)α−1
. (6)

The associated second-order conditions hold, so the first-order conditions are suffi-
cient. The costate equation is λt = ∂H

/
∂c1

t , or

λt =αλt+1

(
xt − c1

t − c2
t

)α−1
. (7)

Since the right-hand sides of (6) and (7) are the same, we have

δt

c1
t

=λt . (8)

Rewriting (8) with a time shift as λt+1 = δt+1

c1
t+1

and substituting this for λt+1 in (6),

1

c1
t

= δα

c1
t+1

(
xt − c1

t − c2
t

)α−1
. (9)

An analogous equation can be derived for agent 2 given a feasible consumption path
by agent 1. Then invoking symmetry, we can postulate that c1

t = c2
t for all t, at an

open-loop equilibrium. Furthermore, we can postulate – and later confirm – that
the (symmetric) solution of (9) has a closed-loop or feedback representation g that
is linear in x. Then pluging g (x)=λ (x) in (9) and dropping time subscripts leads to
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1
λx

= δα [(1−2λ) x]
λ [(1−2λ) x]α

α−1

. (10)

After simplification, we have λ= (1− δα) /2 or

gol (x)=
(

1− δα

2

)
x. (11)

Viewed as g (xt )=
(

1−δα
2

)
xt , t =0,1, . . . , this is the closed-loop (or feedback) rep-

resentation of the symmetric open-loop equilibrium consumption strategies.14

A simple way to calculate the corresponding equilibrium value function Vol (x)

for each agent (i.e the equilibrium total discounted utility given an initial state x)
is to substitute (11) in the functional equation of dynamic programming (see Cor-
ollary 4 in Section 7 for a justification), yielding

Vol (x)= log
(

1− δα

2
x

)
+ δVol (x) [(δαx)α] , (12)

and then postulating the ‘guess’ Vol (x)=A log x +B into (12), we get

A log x +B = log
(

1− δα

2
x

)
+ δ

{
A log [(δαx)α]+B

}
. (13)

Identifying terms leads to

Vol (x)= log x

1− δα
+ log (1− δα)+ δα log δα

2

1− δ
(14)

where x is to be thought of as the initial state here. Under the open-loop equilib-
rium, the resource stock evolves according to the following difference equation

xt+1 =
[
xt −2

(
1− δα

2
xt

)]α

= (δαxt )
α . (15)

At a steady-state equilibrium of the ressource stock, x, we have x = (δαx)α or

xol = (δα)
α

1−α . (16)

4. The closed-loop (no memory) equilibrium

4.1. Definition and general facts

A feedback or closed-loop memoryless strategy for an agent is a function γ from
the set of all possible stock levels to the set of possible consumption levels.15 Since
with such strategies, players are allowed to condition their extraction only on the
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value of the current stock, they necessarily consume the same amount of resource
every time the same stock is observed, regardless of calendar time.

It is well-known that a feedback or Markov-stationary equilibrium of a Mar-
kov-stationary infinite-horizon dynamic game remains an equilibrium when his-
tory-dependent strategies are allowed. This also follows from the fact that with the
rival playing a Markov-stationary strategy, a player’s best-response problem is a
Markov-stationary dynamic program, which is known to admit a Markov-station-
ary optimal policy. Note in this case that this argument is equally valid in the pres-
ence of chance moves (i.e. stochastic transitions).16 Furthermore, an equilibrium
in Markovian (or feedback) strategies is always subgame-perfect in a strong sense:
Uniformly in the initial state.

4.2. The closed-loop or feedback solution

The results of this subsection are due to Levhari & Mirman (1980). Their solu-
tion proceeds via backward induction to derive the closed-loop equilibrium as the
length of the horizon is increased, obtaining the infinite-horizon equilibrium as a
limit. Here, we analyze instead the infinite-horizon problem directly to maintain
comparability with the other cases analyzed in the present paper.

A feedback strategy γ is feasible if 0≤γ (x)≤x,∀x ≥0. We consider only the set
of strategy pairs

(
γ 1, γ 2

)
that are jointly feasible here, in the sense that 0≤γ1 (x)+

γ2 (2)≤x,∀x ≥0.17

Fixing a feasible strategy γ (·) by agent 2 (say), the best-response problem of
agent 1 can be analyzed as follows. Let Vγ (x) denote the optimal value agent 1
can obtain when agent 2 follows the consumption function γ (·) and the initial
state is x. Then agent 1’s best response strategy is the solution to the standard
optimality equation (note that subscripts are dropped below for the sake of lighter
notation, as the identity of the agents is clear):

Vγ (x)= max
0≤c≤x−γ (x)

{
log c+ δVγ [(x − c−γ (x))α]

}
. (17)

The first order condition is (g denotes the best response consumption policy):

1
g (x)

= δαV ′
γ [(x −g (x)−γ (x))α] (x −g (x)−γ (x))α−1 . (18)

We can clearly write

Vγ (x)= log [g (x)]+ δVγ [(x −g (x)−γ (x))α] , f or all x. (19)

Differentiating with respect to x gives

V ′
γ (x)=g′ (x)

g (x)
+ δαV ′

γ [(x −g (x)−γ (x))α] (x −g (x)−γ (x))α−1

× (
1−g′ (x)−γ ′ (x)

)
. (20)
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Substituting (18) into (20) yields the envelope relation

V ′
γ (x)= 1−γ ′ (x)

g (x)
. (21)

Substituting (21) into (18), the Euler equation follows

1
g (x)

= δα (x −g (x)−γ (x))α−1

g [(x −g (x)−γ (x))α]

{
1−γ ′ [(x −g (x)−γ (x))α]

}
. (22)

Postulating a symmetric equilibrium with strategies linear in the stock, i.e. γ (x)=
g (x)=λx,(22) becomes

1
λ (x)

= δα [(1−2λ) x]α−1

λ [(1−2λ) x]α
(1−λ) . (23)

This simplifies to λ= 1−δα
2−δα

, so the symmetric CL equilibrium consumption is

gcl (x)= 1− δα

2− δα
x. (24)

This is clearly jointly feasible, i.e. 0≤2gcl (x)<x, for all x ≥0. The corresponding
value function may by computed, as before, via the optimality equation (17), upon
substituting (24) for both agents:

Vcl (x)= log
(

1− δα

2− δα
x

)
+ δVcl

[(
δαx

2− δα

)α]
. (25)

Substituting the guess Vcl (x)=A log x +B into (25) and identifying terms yields

Vcl (x)= log x

1− δα
+ log 1−δα

2−δα
+ δα

1−δα
log δα

2−δα

1− δ
. (26)

The steady-state equilibrium level of ressource stock satisfies x =
(
x −2 1−δα

2−δα
x
)α

.

Solving this equation for x yields

xcl =
(

δα

2− δα

) α
1−α

. (27)

5. The symmetric Pareto-optimal solution

In view of agents’ symmetry, we focus on the unique symmetric solution out of the
set of all Pareto-optimal outcomes. In other words, we consider as objective the
sum of the two agents’ utilities, as each is weighted by 1/2. This is clearly equiva-
lent to the single-agent or monopoly problem:



156 RABAH AMIR AND NIELS NANNERUP

Max

∞∑

t=0

δt log ci
t subject to xt+1 = (xt − ct )

α , t =0,1 . . . (28)

The solution may be obtained from the previous section by setting λ ≡ 0. The
resulting optimality, envelope and Euler relations are respectively

V (x)= max
0≤c≤x

{
log c+ δV [(x − c)α]

}
, (29)

V ′ (x)= 1
g (x)

, (30)

and

1
g (x)

= δα (x −g (x))α−1

g [(x −g (x))α]
. (31)

Following the same method as before, the optimal consumption policy is then

gpo (x)= (1− δα) x, (32)

and the corresponding total utility per agent is

Vpo (x)= log x

1− δα
+ log (1− δα)+ δα

1−δα
log δα2

1− δ
. (33)

The steady-state equilibrium level of resource stock is easily seen to be

xpo = (δα)
α

1−α . (34)

6. The trigger-strategy equilibria

Cave (1987) extends the analysis of Levhari & Mirman (1980) by incorporating
history-dependent behavior in the specific form of threat or trigger strategies. We
here review the main results of Cave’s analysis. Unlike closed-loop (no memory)
strategies, agents now have access to the entire past history of play and condition
their actions on past observations at each time period. A trigger-strategy equilib-
rium is characterized by two phases. The first is a cooperative phase where play-
ers specify a mutually beneficial extraction path (e.g. a Pareto-optimal path) for the
entire length of the game. The second is a punishment phase where a player would
‘pull the trigger’ and revert to the punishment part of his strategy as soon as he
detects a deviation by the rival from the cooperative path. Following Cave, we con-
sider the equilibria that result from the threat of reversion to the unique feedback
equilibrium of Levhari-Mirman as calculated in Section 4 of the present paper, so
that the resulting equilibria are clearly overall subgame-perfect.18
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Cave exploits the special structure of this model by specifying consumption by
agents in fractions hi of the current resource stock. The agents select a pair h =(
h1, h2

)
of extraction rates in each period from the set of feasible extraction rate

vectors given by Y = {
h∈R2+ :

∑
hi ≤1

}
, so that at date t , ci

t = hi
txt . By solving

recursively for the resource stock at time t as a function of a given initial stock, x0,
we find xt (h, x0)= (1−H)λ(t) xαt

0 , where H =h1 +h2 and λ (t)=α
(
1−αt

)
/ (1−α).

The present value to agent 1 for a given extraction rate vector h= (
h1, h2

)
is then

V (h, x0)=
∞∑

t=0

δ log
[
h1xt (h, x0)

]
= �1 (h)+ (1− δ) log (x0)

(1− δ) (1−αδ)
. (35)

where �1 (h) (1−αδ) log
(
h1

)+αδ log (1−H) . A strategy for an agent is an infinite
sequence of extraction rates (f0, f1, . . .) , such that eachft is a map from the his-
tory of states and actions up to time t to the set of feasible consumption levels.

Specifically, let b = (b1, b2, . . .) be a sequence of extraction pairs representing
cooperative behavior and let zt be the history of play, that is, the pairs of extrac-
tion rates during the first t periods. A closed-loop supported equilibrium strategy
supporting cooperative behavior for player 1 is then

f 1
t

(
zt−1

)=
{

b1
t , if and only if zt−1 = (

b1, b2, . . . , bt−1
)
,

gcl (xt )
xt

, otherwise,
(36)

where gcl is agent 1′s equilibrium closed loop (no memory) strategy as given by
(24). Given this, cooperative behavior is closed-loop supported for player 1 if and
only if

V (h, x)≥max
c

{
logc+ δVcl

[
x − c−b2x

]}
, (37)

where the right-hand side of (37) stands for the maximal gain an agent would
obtain by deviating from the cooperative path for one period, given that he would
be punished from the next period on. If a pair of cooperative extraction rates for
agent’s 1 and 2, d = (

b1, b2
)
, is closed-loop supported for both players, d belongs

to the set of closed-loop supported extractions, CL. From (26) and (35) we have
that a pair of extraction rates h∈CL if and only if (i, j =1,2; j �= i)

F i (h)=�i (h)− (1− δ) log
(

1−hj
)

≥K =F i

(
gcl (x)

x
,
gcl (x)

x

)
, (38)

where K = (1−αδ) log (1−αδ)+αδ log αδ − δ log (2−αδ) .

The set CL of extractions can be determined by varying H in (38). This leads to
a non-empty, convex, compact, and symmetric set. It follows from the very defi-
nition of CL, i.e. (38), that the closed loop equilibrium extractions

(
gcl (x)

xt
,

gcl (x)
xt

)

always constitute the largest total extraction rate in CL. (See Cave (1987) for
details.)
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By symmetry, it is now clear from (32) and (38) that there exists a Pareto opti-
mal solution in the set of closed loop supported extraction rates if and only if

F 1
(

1−αδ

2
,

1−αδ

2

)
=F 2

(
1−αδ

2
,

1−αδ

2

)
≥K, (39)

or

δ log (2−αδ)− δ (1−α) log 2− (1− δ) log (1−αδ)≥0. (40)

As trigger-strategy equilibria form an open set, there are also a priori uncount-
ably many steady-state equilibra of the resource stock, xts , all of which are clearly
greater than xol.

7. Comparative results

We state the main result of this paper in the form of:

Proposition 1. (i) The open-loop equilibrium coincides with the symmetric Pareto-
optimal solution in that both lead to the same consumption path and utility levels.

(ii) The closed-loop (no memory) equilibrium leads to overconsumption (at
every possible stock level) and to a lower total discounted utility level for each
agent relative to the symmetric Pareto-optimal solution.

(iii) The trigger-strategy equilibrium set is such that any of its selections leads to
a consumption level and a total discounted utility level that are respectively lower
and higher than the corresponding levels under a closed-loop equilibrium. Further-
more, this equilibrium set includes a Pareto-optimal point if and only if (40) holds.

Proof. We provide only an outline of proof, as the actual analysis was conducted
in the previous section. (i) follows from comparing (11) and (32). Total consump-
tion is clearly the same in the OL equilibrium and the Pareto optimal solution.
Hence, consumption per agent is also the same in the two solutions. Hence, the OL
equilibrium and the Pareto optimal solution have the same total discounted utility
per player. (ii) follows by comparing (24) with (32) and (26) with (33), respectively.
Clearly, total consumption in the CL equilibrium is higher than the Pareto opti-
mal level while total discounted utility is highest in the Pareto optimal solution.
(iii) follows from the very definition of the trigger strategies used here.

Some important consequences of this Proposition are given next. The first com-
pares the steady-state levels of resource under the different regimes (the proof is
omitted, as it amounts to a simple comparison of the three quantities).

Corollary 2. The steady-state equilibrium levels of the resource stock satisfy:

xcl ≤xts ≤xpo =xol. (41)
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Observe that Proposition 1 (ii) does not imply that actual consumption levels are
higher at every time period in the CL than in the OL solution, the reason being
that although consumption levels form a higher proportion of the current stock in
the CL case, the stock gets consumed faster in the CL case, at least initially. In
other words, under the CL regime, the agents consume a larger proportion of a
resource stock that is shrinking faster or growing slower than in the OL regime. In
fact, it is worthwhile to note the obvious fact that consumption levels are always
unambiguously comparable at steady-state.

Corollary 3. Steady-state consumption levels are higher in the open-loop (or in the
Pareto-optimal) solution than in the closed-loop solution.

Proof. The result follows from a simple computation, the steady-state consumption
levels for the OL and the CL solutions being respectively

1− δα

2− δα

(
δα

2− δα

) α
1−α

and
1− δα

2
(δα)

α
1−α . (42)

While OL equilibria typically fail the desirable property of subgame-perfection,
the present case forms an exception. Indeed, due to the coincidence of the open-
loop and the Pareto-optimal solutions, and the subgame-perfection of the latter,
we have:

Corollary 4. The open-loop equilibrium of our dynamic game is subgame-perfect.

We now provide an extensive discussion of our conclusions. The main result sheds
light on the important issue of how the extent of the tragedy of the commons
depends on the information structure of the agents in common-property resource
extraction. For the well-known model of Levhari & Mirman (1980), noncooperative
open-loop behavior is outcome-equivalent to perfect cooperation, and thus leads to
a first-best or Pareto-optimal outcome. Feedback or Markovian behavior leads to
the most pronounced version of the tragedy of the commons, of all cases consid-
ered. Finally, history-dependent behavior in the form of trigger-strategies leads as
usual (due to Folk-Theorem-type arguments) to a myriad of solutions, all reflecting
an intermediate outcome, ranging from the feedback solution all the way to possibly
the first-best situation (depending on the parameters of the problem).

We now attempt to provide an intuitive understanding of these results. In the
open-loop case, agents are deprived of the possibility of observing the current
stock and reacting in a dynamic sense to the catches of the rival. This lack of
awareness of the period-by-period effects of the rival’s catches on the resource
stock leads the agents to avoid the over-consumption that is otherwise inherent
to noncooperative resource extraction. That this leads all the way to Pareto opti-
mality is rather surprising, and is due to the special structure of the model (the
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sole presence of the dynamic externality). Under feedback behavior, the agents are
fully aware of the consequences of the rival’s catch on the resource level, and react
accordingly, causing the standard tragedy of the commons to be fulfilled. Feedback
information, on the other hand, is not sufficient to allow agents to make threat-
secured agreements, as these require history-dependent information for the agents
to be able to detect deviations from agreed-upon extraction paths. Increasing the
agents’ information levels as Cave did allows them to make such cooperative agree-
ments and reduce the extent of the tragedy of the commons, possibly all the way
to first-best.

Our main result may be succinctly phrased as follows: The efficiency of equilibria
in common-property resource extraction is not monotonic in the level of information
on which the players’ decisions are based. Rather it is U-shaped, with a global max-
imum at the lowest level of information (open-loop strategies) and possibly another
at the maximum level of information (i.e. history-dependent strategies).

While the coincidence of the open-loop and the Pareto-optimal solutions is eas-
ily shown to extend to general utility and growth functions and asymmetric agents,
the trigger-strategy equilibrium is much harder to characterize at such a level of
generality, as suggested by Cave’s specific analysis on which we relied here. Aside
from the latter difficulties, the main conclusions of the present analysis are robust
provided the only externality at work is the dynamic externality.

The subgame-perfect property of the open-loop equilibrium turns out to be of
possible practical relevance to a possible regulatory application of our analysis.

8. A policy implication

A natural question at this point is whether our conclusions offer any policy-rele-
vant insights. Consider a government regulator with a mandate to prevent or limit
over-extraction of a natural resource (such as fish or game) over a specified time
horizon. One possible way to proceed19 would be to require the consuming agents
to (independently and simultaneously) submit individual consumption plans over
the entire time horizon with the understanding that they will remain committed
to these announcements, and penalized for any future deviations. According to our
analysis, if the dynamic externality is the only one present and if uncertainty plays
no role in the context at hand,20 this noncooperative mechanism would lead to a
Pareto-optimal solution over the specified time horizon. This offers an interesting
possible alternative to the usual centrally-negotiated cooperative solution consist-
ing of allocating quotas to the agents, which is worth exploring.

If the specified time horizon is long enough, and in view of the coincidence of
the open-loop and the Pareto-optimal solutions, we know from Easley & Spulber
(1981) that this rolling-horizon solution should remain fairly close to the Pareto-
optimal solution of the infinite-horizon problem. More broadly, while we agree
with the now well-known assessment that open-loop behavior in a long-term game
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is generally inappropriate as an approximation of real-life volontary behavior in
most economic settings, we argue here that open-loop behavior may quite naturally
arise from Pareto-improving regulation in some specific settings. Indeed, forcing
a commitment from all agents and policing their compliance with the announce-
ments may be welfare-improving for all, in some situations characterized in par-
ticular by the independence of the one-period rewards on the rival’s actions.

A key property of such a mechanism is that it would essentially be cheat-proof,
at least in a unilateral sense, since if all the other agents employ open-loop strat-
egies, a given agent cannot improve his payoff by following some more complex
strategy, so he might as well do the same (this fact is an important property
of open-loop equilibrium and was discussed in Section 3.1). Thus the monitor-
ing regulator need only worry about deviations from the announced paths that
involve more than one agent. This potentially makes the monitoring problem less
demanding than in the case of regulation via centrally-allocated extraction quotas.
Another desirable feature of this mechanism is that it is likely to be less demanding
to administer, as it allows policy-makers to avoid the typically lengthy and stren-
uous negotiations that are often associated with quota negotiations.21 In the lan-
guage of industrial regulation (see e.g. Perry 1984), our proposal can be regarded
more as an instance of structural policy than of behavioral policy. In other words,
the aim of the regulator is to influence the strategic environment of the regu-
lated agent by constraining his allowable strategy set, and not to interfere directly
with the agents’ postulated behavior of individual payoff maximization (taking the
rival’s action as given). In contrast, central quota assignment is an instance of the
latter mode of regulation.

The notion that commitment is important in many classes of noncooperative
games has been around for quite some time, and this is only a new instance (at
least to us) of this general fact.22 Yet, as simple as this idea is in the context of
noncooperative dynamic resource exploitation, it does not seem to have been pro-
posed before.

9. Information structure and resource depletion

In this section, we elaborate on the observation that the differences in noncooper-
ative resource extraction between open-loop and Markovian behavior can in some
cases be so pronounced as to lead to the long-run resource sustainability in the
former case and depletion in the latter case. To this end, it is necessary to pos-
tulate another form of natural growth function, as (1) always leads to a strictly
positive resource stock at steady-state, regardless of the information structure.

Consider the log utility function (2) and a linear growth for the resource
evolution

xt+1 =axt , with a >1. (43)
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Under the OL and the CL information structures, the same steps as before lead to
the respective unique linear equilibrium (per-agent consumption) strategies23

gol (x)= 1− δ

2
x,∀x ≥0 and gcl (x)= 1− δ

2− δ
x, ∀x ≥0. (44)

The corresponding resource dynamics under the OL and CL equilibria is given
respectively by the following two dynamical systems

xt+1 = aδ

2− δ
xt and xt+1 =aδxt . (45)

It is easy to verify, using the above equations, that under a moderate natural
growth rate of the resource, i.e. 2−δ

δ
< a < 1

δ
, we have lim

t→∞xt = ∞ under the OL

solution, and lim
t→∞xt =0 under the CL solution. In other words, the resource grows

without bound under noncooperative open-loop extraction and is depleted over
time under feedback extraction, a dramatic difference in many respects.

On the other hand, in case of a high growth rate
(
a > 1

δ

)
, lim

t→∞xt =∞ in both

cases, while in case of a low growth rate
(
a <

(
2−δ
δ

))
, lim

t→∞xt =0 in both cases.

The underlying computational details are simple and left to the reader.

10. Conclusion

Adopting the simple framework proposed by Levhari & Mirman (1980), this paper
has provided a comparative analysis of the effects of the information structure
on the equilibrium extraction path and overall utility levels for a common-prop-
erty natural resource. To allow a more intuitive understanding of the relationship
between information and extraction paths, we derive all solutions using a dynamic
programming approach. The main result is that equilibrium efficiency is U-shaped
in the level of information available to the agents, with the open-loop equilibrium
being Pareto-optimal. We argue that the main result extends to more general func-
tional forms, provided the special structure of the Levhari-Mirman model is pre-
served, with the absence of a market-type externality. This result is of broader
interest for the application of dynamic games in economics, where similar infor-
mation effects on the behavior and welfare of agents are often investigated.

The results suggest a mechanism design approach to the problem of regulation of
common-property resource extraction: If agents could be induced to behave accord-
ing to open-loop strategies, the equilibrium would be self-enforcing, and thus require
relatively minor monitoring. This proposal would also save on the usual tedious bar-
gaining and dispense with the reliance on truthful information revelation, two of the
features that always accompany the process of quota-setting.

It must of course be clearly stressed that this provocative proposition is valid
only in rather special environments as reflected in the special structure of the
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model used here. On the other hand, there may exist other more complex environ-
ments where, for reasons similar to the ones driving our results here, the open-loop
solution welfare-dominates the closed-loop solution without satisfying Pareto-opti-
mality. Then, our proposed regulatory scheme would alleviate the tragedy of the
commons without fully resolving it as in the present analysis. These issues would
be important natural extensions for future research.
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Notes

1. In particular, the pioneering work of Gordon (1954) is one study that immediately comes to mind.
See Clark (1999) for further references.

2. Henceforth we refer to this type of equilibrium using any of the three terminologies.
3. It is worthwhile here to fully specify what overconsumption means here: The resulting consumption

functions are higher at every stock level for the Markovian equilibrium than for the first-best solu-
tion. Since this implies that the resource stock declines faster under the former regime than under
the latter, actual consumption levels will eventually be lower under the Markovian equilibrium.

4. While the idea that strategic interaction over time with recall of past play can induce more cooper-
ative behavior on the part of players was well-established in the theory of repeated games, the eco-
nomic applications of the theory of dynamic games (with a state variable) have generally restricted
attention to history-independent behavior. In this sense, Cave (1987) pioneered this type of analy-
sis in economic applications of dynamic games. The complexities involved in such a task explain the
specific nature of the model that Cave adopted, as will be seen below.

5. In certain continuous time formulations of resource extraction models, the Pareto optimality of
open-loop equilibria has been known for some time, see Chiarella et al. (1984) and Dockner &
Kaitala (1989). On the other hand, to the best or our knowledge, there is no discrete-time coun-
terpart in the literature. Furthermore, it is well-known that fundamental differences often exist
between the continuous-time and corresponding discrete-time formulations, including in particular
with regard to the issue of existence of Markovian equilibrium.

6. See Reinganum & Stokey (1985) for an analysis of the role of the period of commitment to extrac-
tion paths in a dynamic game.

7. In other words, an open-loop Nash equilibrium (i.e. one that is derived by allowing only open-loop
deviations for the players) remains an equilibrium if the players are allowed to use any more general
classes of strategies, such as Markovian or history-dependent strategies.

8. It is worthwhile to point out here that, in view of the absence of a supranational governing body
to ensure direct compliance with assigned quotas, OPEC has to rely on threat-secured compliance
instead. Indeed, sustained deviations in the form of over-production in the past have sometimes trig-
gered reactions (e.g. by Saudi Arabia) that resulted in a glut in the oil market. Thus, OPEC would
fit quite nicely a Cave-style analysis. On the other hand, a model of OPEC would generally not
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satisfy the result that the open-loop equilibrium is Pareto-optimal, since OPEC reflects a market
externality and no dynamic externality (as oil wells are the private property of the states involved),
in complete contrast to the Levhari-Mirman world.

9. Throughout, we denote agents by superscripts and calendar time by subscripts.
10. These are defined by the facts that the one-period reward and the next state are time-invariant and

depend only on the current state and actions.
11. The model of Levhari & Mirman (1980) has been investigated in a general framework with a sto-

chastic growth law for the resource in Amir (1996).
12. No general results are known about the comparison of equilibrium payoffs under open-loop vs.

Markovian (or closed-loop no-memory) behavior. Examples can be given for either type of equilib-
rium to be better than the other type, in terms of resulting equilibrium payoffs.

13. In the economics of natural resource exploitation and sustainability, studies that rely on the open-
loop information structure tend to be older. They include, among many others, Salant (1976), Lewis
& Schmalensee (1980), and Dasgupta & Heal (1979).

14. Stating these strategies in this form is very convenient for the purposes of this paper, as this allows
for direct comparisons with the other cases. The alternative, i.e. giving an infinite vector of consump-
tion levels depending only on x0, would make this comparison less transparent. Thus we deviate
from standard practice in formulating an open-loop solution in this manner.

15. With the above terminology originating in the control theory literature, the standard game-theoretic
way of referring to such strategies is as Markov-stationary, see e.g. Amir (1996). The latter terminol-
ogy is more consistent with the way we defined the general class of games at hand, but is less preva-
lent in the resource economics literature.

16. It is of interest to observe that these important justifying arguments, as well as the so-called one-
shot deviation principle, follow directly from the general properties of dynamic programming.

17. In other words, we are really considering a generalized game, in Debreu’s (1952) terminology.
18. One may appropriately interpret this set-up as a self-enforcing cooperative agreement in a noncoop-

erative framework. By its very construction, such a trigger-strategy equilibrium has the property that
no agent wishes to defect from either the agreement or the threats associated with out-of-equilibrium
behavior, hence Cave’s ‘Cold Fish War’ reference.

19. There is an extensive literature on the regulation of natural resources via taxes or quotas: see e.g.
Dasgupta & Heal (1979) and Bergstrom (1982).

20. Recall that, as can be intuitively expected, the open-loop information structure loses many of its
equilibrium properties in the presence of uncertainty in the state transition law (see Section 3).

21. For resource conservation, the main approach taken by regulation authorities is to stipulate a total
allowable catch for the whole fishery based on biological studies on the actual stock population.
Individual quotas are subsequently awarded, usually, to agents with a history of participation in the
fishery (and through negotiations at the international level.). To implement a cost-effective fishery
individually transferable quotas are increasingly being used. Under this system total quotas being
issued are still determined by the regulation authorities, while trade in quota units is allowed so that
they go to agents who value them the most. Such management systems of centralized control are
used for most regulated fish populations. Clark (2000) provides a broad discussion of traditional and
alternative fishery management techniques.

22. For instance, within the theory of multiperiod mechanism design, it proves essential for the principal
to be able to commit to a long term contract at the beginning of a relationship. Otherwise, serious
ratchet effects may arise leading to substantial difficulties for contract theory, see Laffont & Tirole
(1993 [chapter 9]).

23. Since log axt = log a + log xt , the equilibrium policies are independent of a. With a = 1, one can
obtain these policies from the corresponding solutions in previous sections by setting α =1.
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