
Journal of Automated Reasoning (2024) 68:16
https://doi.org/10.1007/s10817-024-09707-4

Dependency Schemes in CDCL-Based QBF Solving: A
Proof-Theoretic Study

Abhimanyu Choudhury1,2 ·Meena Mahajan1,2

Received: 22 January 2024 / Accepted: 15 July 2024 / Published online: 24 July 2024
© The Author(s) 2024

Abstract
In Quantified Boolean Formulas QBFs, dependency schemes help to detect spurious or super-
fluous dependencies that are implied by the variable ordering in the quantifier prefix but are
not essential for constructing countermodels. This detection can provably shorten refutations
in specific proof systems, and is expected to speed up runs of QBF solvers. The proof system
QCDCL recently defined by Beyersdorff and Boehm (LMCS 2023) abstracts the reasoning
employed by QBF solvers based on conflict-driven clause-learning (CDCL) techniques. We
show how to incorporate the use of dependency schemes into this proof system, either in
a preprocessing phase, or in the propagations and clause learning, or both. We then show
that when the reflexive resolution path dependency scheme Drrs is used, a mixed picture
emerges: the proof systems that add Drrs to QCDCL in these three ways are not only incom-
parable with each other, but are also incomparable with the basic QCDCL proof system that
does not use Drrs at all, as well as with several other resolution-based QBF proof systems.
A notable fact is that all our separations are achieved through QBFs with bounded quantifier
alternation.

Keywords Proof complexity · QCDCL · Dependency schemes

1 Introduction

Despite the NP-hardness of propositional satisfiability, SAT solvers today are amazingly
efficient in solving real-world instances. The best algorithms solving SAT in practice are
based on the paradigm conflict-driven clause learning CDCL, that revolutionised SAT solving
in the nineties. Such algorithms use a generic template as follows: repeatedly decide values of
some variables, propagate hard constraints (unit clauses) until a conflict is reached, “learn” a
new clause from the conflict, backtrack and continue. For unsatisfiable formulas, the learning
process yields a refutation in the proof systemResolution, and it was shown over a decade ago

B Meena Mahajan
meena@imsc.res.in

Abhimanyu Choudhury
abhimanyuc@imsc.res.in

1 The Institute of Mathematical Sciences, Chennai, Tamil Nadu 600113, India

2 Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra
400094, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-024-09707-4&domain=pdf

16 Page 2 of 24 A. Choudhury, M. Mahajan

that resolution proofs can themselves be mimicked within this framework, so CDCL equals
Resolution [1, 21]. Hence, a proof-complexity-theoretic analysis of Resolution has revealed
deep insights into the strengths and limitations of this CDCL paradigm.

With the success of propositional SAT solvers, there are many ambitious attempts now to
tacklemore expressive/succinct formalisms. In particular, for the PSPACE-complete problem
of deciding the truth of Quantified Boolean Formulas QBF, there are now many solvers, as
well as a rich (and still growing) theory about the underlying formal proof systems. Designing
solvers for QBFs is a useful enterprise because many industrial applications seem to lend
themselves more naturally to expressions involving both existential and universal quantifiers;
see for instance [9, 24].

The proof system Resolution can be lifted to the QBF setting in many ways. The
“CDCL way” is to add a universal reduction rule, giving rise to the system Q-Res and the
more general QU-Res. Allowing contradictory literals to be merged under certain conditions
gives rise to the system long-distance Q-Resolution LDQ-Res.

Another “CDCL” way is to lift the CDCL algorithm itself to a QCDCL algorithm: decide
values of variables, usually respecting the order of quantified alternation, propagate unit
constraints, interpreting unit modulo universal reductions, repeat until a conflict is reached,
learn a new clause, backtrack and continue. For false formulas, the learning process yields a
long-distance Q-resolution refutation. However, the QCDCL refutation itself is much more
restricted than an LDQ-Res refutation. In [4], a formal proof system QCDCL was abstracted
out of the QCDCL algorithm. Noting that potentially the decision policy and the propagation
policy could be modified, the authors of [4] actually formalised four different QCDCL-based
proof systems. The system underlying most solvers is QCDCLLEV-ORD

RED , which we will refer
to as QCDCL without any sub/super-script; for the other systems we will explicitly write the
policies.

While the aforementioned QCDCL proof system explains the correctness of solvers for
false QBFs, it ignores cube-learning from satisfying assignments. In practice, cube-learning
is essential to the completeness of a QCDCL solver; it is integral to proving a QBF to be true.
(A QBF solver algorithm does not know in advance whether the input formula is true or
false. It learns clauses and cubes, and concludes false/true when the empty clause/cube has
been learnt.) The choice to ignore this was made in [4] because the focus there (as also here)
was on refutational proof systems, proving QBFs false. In this setting, cube-learning is not
an essential ingredient. However, in [13], the authors defined the system QCDCLcube that
incorporates cube-learning on top of the originalQCDCL, and found that cube-learningwas in
fact advantageous even in constructing shorter refutations for false QBFs. (More recent work
(see [11]) in fact redefines QCDCL as the augmented systemwith cube-learning incorporated.
For this paper, we retain the notation from [4].) An interesting outcome from [11], though not
directly relevant to our work, is that extracted refutations do not capture the full generality
of LDQ-Res.

DepQBF [16] is the leading QCDCL solver and has many versions. Its base version
still employs what the authors call “vanilla QCDCL”, and its behaviour on false QBFs is
explained by the proof system QCDCL which we are interested in exploring. Later versions
of DepQBF provide options of turning on “cube learning” (when “turned on”, its behaviour
is explained by the proof system QCDCLcube) and also offer heuristics like whether or not
to allow “dependency scheme aware propagation” and/or apply “pure literal elimination”.

A heuristic that has been found to be quite useful in many QBF solvers, and has been
formalised in proof systems, is to eliminate easily-detectable spurious dependencies. In a
prenex QBF, a variable “depends” on the variables preceding it in the quantifier prefix;
where “depends” means that a Herbrand/Skolem function for the variable is a function of

123

Dependency Schemes in CDCL-Based QBF Solving… Page 3 of 24 16

the preceding variables. However, a Herbrand function or countermodel may not really need
to know the values of all preceding variables. A dependency scheme filters out as many of
such unnecessary dependencies as it can detect, producing what is in effect a Dependency
QBF, DQBF. Although DQBF is a significantly richer formalism that is known to be NEXP-
complete (see [2, 23]), these heuristics are not aiming to solve DQBFs in general. Rather, they
algorithmically detect spurious dependencies and disregard them as the algorithm proceeds.
See [15–17, 22] for early work on this topic. Often the use of a dependency schememakes the
solvers run faster, and this is borne out by theoretical studies. Now, the universal reduction
rule in the proof systems (say in Q-Res, LDQ-Res) can be applied in more settings because
there are fewer dependencies, and this can shorten refutations significantly. See for instance
[10, 20, 25]. Note that the use of a dependency scheme must be proven to be sound and
complete, and this in itself is often quite involved. The notion of a dependency scheme being
“normal” was introduced in [20], where it is shown that adding any normal dependency
scheme to LDQ-Res preserves soundness and completeness.

In this paper, we examine how the usage of a dependency scheme can affect proof systems
underlying the QCDCL algorithm. As far as we are aware, such a theoretical study has not
been undertaken before, even though many current QBF solvers are based on the QCDCL
paradigm and also do use dependency schemes. Specifically, we focus on the proof system
QCDCL (in the notation of [4], the QCDCLLEV-ORDRED proof system) and on the dependency
scheme Drrs which has been studied in the context of Q-Res and LDQ-Res, see [10, 20, 25].
We note that the proof system QCDCL can be made aware of dependency schemes in more
than one way.We identify two natural ways: (1) use a dependency scheme D to preprocess the
formula, performing reductions in the initial clauses whenever permitted by the scheme, and
(2) use a dependency scheme D in the QCDCL algorithm itself, in enabling unit propagations
and in learning clauses. Denoting the first way as D + QCDCL and the second as QCDCL(D),
and noting that we could even use different dependency schemes in both these ways, we
obtain the system D1 +QCDCL(D2). When D1 and D2 are both the trivial dependency scheme
Dtrv inherited from the linear order of the quantifier prefix, this system is exactly QCDCL.

A third way in which the QCDCL system can be made dependency-aware is to use depen-
dency information in the decision policy itself. Denote this decision policy as DEP-ORD(D),
in which a variable may be decided whenever all variables it depends on according to D have
been assigned. The solver DepQBF in fact does exactly this, using the standard dependency
scheme Dstd in making decisions; [16, 18]. Hence it seems that this way should be incorpo-
rated first in a theoretical study. However, since the solver also uses cube-learning (essential
for verifying true formulas), and since long-distance cube resolution is not yet known to be
sound, the combination of long-distance resolution and dependency schemes is not supported
in DepQBF 6.0. (See bottom of page 377 in [18].) In effect, then, learning has to proceed
through Q-Res or Q(D)-Res. Since DEP-ORD is subsumed in ANY-ORD, the net effect is
captured by a sub-system of the QCDCLANY-ORD

RED proof system, where the learning phase does
not use long-distance steps. It is not immediately clear to us why this system is complete. The
completeness of QCDCLANY-ORD

RED in [4] crucially uses long-distance steps. We do believe that
using Q(D)-Res instead of LDQ-Res in learning should still give rise to a complete system.
But, pending a formal proof of this, we for now restrict this study to the LEV-ORD decision
policy.

Our contributions are as follows:

1. We formalise the proof system D′ + QCDCL(D) for dependency schemes D,D′, and
note that whenever D′,D are normal schemes, D′ + QCDCL(D) is sound and complete
(Theorem 1).

123

16 Page 4 of 24 A. Choudhury, M. Mahajan

Fig. 1 Relations between proof systems

2. For D,D′ ∈ {Dtrv,Drrs}, we study the four systems D′+QCDCL(D). As observed above,
one of them isQCDCL itself, while the others are new systems.We compare these systems
with each other and show that they are all pairwise incomparable (Theorem 4). We also
show that each of them is incomparable with each of the systems QCDCLLEV-ORD

NO-RED , Q-Res,
Q(Drrs)-Res, and QU-Res(Theorem 5), as well as with QCDCLcube(Theorem 6).
Relations among various proof systems are shown in Fig. 1.

In other words, making QCDCL algorithms dependency-aware is a “mixed bag”: in some
situations this shortens runs while in others it is disadvantageous. Here are our thoughts on
what this actually means.

That QCDCL(D) is stronger than QCDCL at times is to be expected; after all, that is
why the heuristic evolved. That it can be weaker at times appears a bit surprising until
one recalls that even when QCDCL was formalised in [4], it was shown that the no-reduction
version QCDCLLEV-ORD

NO-RED can have an advantage over QCDCL; for some formulas, enabling
more reductions and unit propagations can send the trails down into a trap where refuting a
hard sub-formula becomes inevitable. Since dependency schemes do exactly this enabling of
more reductions and propagations, custom formulas can be designed where the difference is
not just between no-reductions and reductions, but also between reductions and dependency-
aware reductions. This is a consequence of the level-ordering of decisions and the forcing of
all unit propagations with reduction, and may not hold for the other variants of QCDCL.

ThatD+QCDCL can be stronger thanQCDCL is again to be expected. That it can beweaker
seems really counter-intuitive, but is again related to the comment above: the preprocessing
shortens clauses and thus enables more unit propagations in subsequent trails.

One direction of our separation betweenD+QCDCL andQCDCL(D)was genuinely surpris-
ing to us. We construct formulas (in Sect. 4.5) where after preprocessing (as in D+ QCDCL)
the resulting formula is propositional and easy to refute in Resolution, and hence the original
formula is easy to refute inD+QCDCL. The same formulas, however, are hard forQCDCL(D),
which uses dependencies in propagation but not for preprocessing! In other words, it is not
enough for the QCDCL algorithm to be dependency-aware; this awareness must be achieved
at the right stage of the algorithm.

The fact that QCDCL(D), D + QCDCL, and D + QCDCL(D) are all incomparable with
QCDCLcube is note-worthy and interesting as allowing for cube-learning always adds strength
andmakes things easier as compared to without cube-learning;QCDCLcube as a proof system
is known to be strictly more powerful than QCDCL [13]. Our results show that switching on

123

Dependency Schemes in CDCL-Based QBF Solving… Page 5 of 24 16

cube-learning (which most current solvers do by default) and switching on dependency-
awareness as proposed here are orthogonal options. Which option is better may depend on
the setting from which the instances to be solved arise.

This work is based on formalisms in [4, 10, 20, 25]. See [4] for an extensive bibliography
of relevant work.

The rest of this paper is organised as follows. After spelling out the notation and
required preliminaries in Sect. 2, including defining dependency schemes and describing the
QCDCL proof system, we show in Sect. 3 that the addition of normal dependency schemes
results in sound and complete proof systems. In Sect. 4 we present, for some previously
studied formulas as well as for some newly designed formulas, lower and/or upper bounds
in the D1 + QCDCL(D2) systems when D1,D2 are in {Dtrv,Drrs}. Using these bounds, we
conclude in Sect. 5 that these new systems are pairwise incomparable with each other as well
as with each of QCDCL, QCDCLLEV-ORDNO-RED , Q-Res, Q(Drrs)-Res, QU-Res, QCDCLcube. We
end with some concluding remarks in Sect. 6.

A preliminary version of this work was presented at the FSTTCS 2023 conference and
appears in its proceedings, see [14].

2 Preliminaries

2.1 Basics

A Quantified Boolean Formula in prenex conjunction normal form (PCNF) consists of a
prefix with an ordered list of variables, each quantified either existentially or universally, and
the matrix, which is a set of clauses over these variables. That is, it has the form

� = Q�x · ϕ = Q1x1Q2x2 . . . Qnxnϕ(x1, x2, . . . , xn)

where ϕ is a propositional formula in CNF.
The formula is true if there are (Skolem) functions si for each existentially quantified

variable xi , where each such si depends only on universally quantified variables x j with
j < i , such that substituting these si in ϕ yields a tautology. Similarly, the formula is false if
there are (Herbrand) functions hi for each universally quantified variable xi , where each such
hi depends only on existentially quantified variables x j with j < i , such that substituting hi
in ϕ yields an unsatisfiable formula.

In this paper, we focus on false formulas; refutations must rule out the existence of Skolem
functions. In the proof system Q-Res, a refutation of a false QBF is a derivation of the empty
clause � from the clauses in the matrix, using two rules: Resolution (from A = C ∨ x and
B = D∨¬x , derive C ∨ D, provided the pivot x is existential and C ∨ D is not tautological.
We denote this as C ∨ D = res(A, B, x)), and Universal Reduction (from C ∨ u derive C
if u is universal and no existential variable in C appears to the right of u in the prefix). The
proof system QU-Res generalises Q-Res by allowing resolution on universal pivots as well.
The proof system LDQ-Res generalises Q-Res in a different way, allowing the derivation
of seemingly-tautological clauses in resolution under certain conditions: a universal variable
u appearing in opposite polarities in C and D is represented as the merged literal u∗ in the
resolvent, provided it is to the right of the pivot x .

A proof system P simulates a proof system Q if, for every formula, the size of the shortest
P refutation is polynomial in the size of the shortest Q refutation. The systems QU-Res and
LDQ-Res are both strictly more powerful than Q-Res and incomparable with each other.

123

16 Page 6 of 24 A. Choudhury, M. Mahajan

For a set S of clauses and a literal �, we use shorthand � ∨ S to denote the set of clauses
{� ∨ C | C ∈ S}.

2.2 Dependency Schemes

Dependency schemes are mappings that associate every PCNF formula� with a binary rela-
tion on its variables in a manner that encodes constraints on the order of pairs of variables.
The most basic of dependency schemes is the trivial dependency scheme Dtrv, which encap-
sulates the order of the quantifier prefix: an existential variable x depends on a universal
variable u (i.e. (u, x) ∈ Dtrv(�)) if x appears to the right of u in the quantifier prefix. A
non-trivial dependency scheme D produces, for any formula �, a subset D(�) of the trivial
dependencies; it does not introduce new dependencies. Some non-trivial schemes are the
standard scheme Dstd and the reflexive resolution path scheme Drrs; see [25]. Roughly
speaking, in Drrs, (u, x) is in the dependency relation of a formula if (u, x) ∈ Dtrv and
there is a sequence of clauses with the first containing u, the last containing ū, some inter-
mediate consecutive clauses containing x and x̄ , and where each pair of consecutive clauses
has an existential variable, quantified after u, in opposite polarities. The non-existence of
such a sequence implies that if at all there are Skolem functions for x , then there exists a
Skolem function for x which does not use information about u; hence x need not depend on
u. Formally, the dependence scheme is defined as follows:

Definition 1 (Reflexive Resolution Path Dependency Scheme, [25]) For a QBF � = Qφ, the
pair (u, x) is in Drrs(�) if and only if (u, x) ∈ Dtrv(�) and there exists a sequence of
clauses C1, . . . ,Cn ∈ φ and a sequence of literals l1, . . . , ln−1 such that:

• u ∈ C1 and ū ∈ Cn ,
• x = var(li) for some i ∈ [n − 1],
• var(li) �= var(li+1) for each i ∈ [n − 2], and
• (u, var(li) ∈ Dtrv(�), li ∈ Ci and l̄i ∈ Ci+1 for each i ∈ [n − 1].
For a dependency scheme D, a QBF �, a universal literal �u ∈ {u, ū} and an existential

literal �x ∈ {x, x̄}, we say that �x blocks �u if (u, x) ∈ D(�); in particular, this implies that
x is quantified after u. For a clause C we denote by red-D(C) the subclause obtained by
removing all universal literals which are not blocked by any other literal in C . We denote
by red-D(�) the QBF � obtained by replacing each clause C in the matrix of � with the
clause red-D(C). When D = Dtrv, we use the notation red(C) and red(�).

The proof systems Q-Res and LDQ-Res, augmented with a dependency scheme D [20],
permit universal reduction of u under the more relaxed requirement that (u, x) /∈ D for any
existential variable x ∈ C . That is, they permit the derivation of red-D(C) from C .

An interesting and important subclass of dependency schemes are the so-called normal
dependency schemes.

Definition 2 (Normal Dependency Scheme, [20]) A dependency scheme D is

• monotone if for every PCNF formula φ, and every assignment τ to a subset of var(φ),
D(φ[τ]) ⊆ D(φ). (Here φ[τ] is the restriction of φ obtained by applying the partial
assignment τ to it.)

• simple if for every PCNF formula � of the form � = ∀XQ.φ, every LDQ(D)-Res
derivation P from �, and every u ∈ X , either u or ū does not appear in P .

• normal if it is both monotone and simple.

123

Dependency Schemes in CDCL-Based QBF Solving… Page 7 of 24 16

If D is simple, then in a QBF with a leading universal block, universal variables from
the first block appear in a LDQ-Res derivation in only one polarity. This feature is useful
in proving the soundness of LDQ-Res. However, for LDQ-Res(D), this alone is not enough.
The additional property of monotonicity, expressing that applying a partial assignment can
possibly erase existing dependencies but cannot create newones, suffices to ensure soundness.

The dependency schemes Dtrv, Dstd, Drrs are all normal dependency schemes. These
normal dependency schemes are important to us because for these dependency schemes
LDQ(D)-Res is a sound proof system [20].

2.3 The Proof System QCDCL

This proof system QCDCL defined in [4] formalises the reasoning in QCDCL algorithms. A
refutation of a false QBF is a sequence of triples of the form (T ,C, π) where T is a trail (in
the QCDCL algorithm) ending in a conflict, C is the clause learnt from this trail, and π is
the LDQ-Res derivation of C explaining how C is learnt. (Recall that in (Q)CDCL, a trail is
a sequence of literals, some of which are decisions made by the algorithm and the others are
propagated literals. Following the standard convention, we denote decision literals in a trail
in boldface.) From the last triple in the sequence we can learn the empty clause, completing
the refutation. Three factors affect the construction of the refutation.

1. The decision policy: how to choose the next variable to branch on. In standardQCDCL (i.e
QCDCLLEV-ORDRED , the focus of this paper), decisions must respect the quantifier prefix level
order. (Variables x, y are at the same level if they are quantified the same way, and no
variable with a different quantification appears between them in the prefix order.) Other
policies such as ASS-ORD, ASS-R-ORD, UNI-ANY, ANY-ORD are also possible; see [4,
12].

2. The unit propagation policy. Upon a partial assignment α to some variables, when does a
clause C propagate a literal? In the No-Reduction policy, a clause C is unit if exactly one
literal � ofC is unset, and this literal is propagated. In the Reduction policy, used by most
current QCDCL solvers [16, 19], a clause C propagates literal � if after restricting C by
α and applying all possible universal reductions, only � remains. In standard QCDCL the
Reduction policy is used.
In the notation of [4], for a decision policy P and a propagation policy R, the correspond-
ing QCDCL proof system is denoted QCDCLP

R . Thus standard QCDCL is QCDCLLEV-ORD
RED .

Other variants are also defined in [4]; in particular QCDCLLEV-ORD
NO-RED .

3. The set of learnable clauses. These explain the conflict at the end of a trail.

Definition 3 (Learnable clauses) From a trail

T := (p(0,1), . . . , p(0,g0);d1, p(1,1), . . . p(1,g1);d2, ;dr, p(r ,1), . . . p(r ,gr))

ending in a conflict p(r ,gr) = �, the sequence LT of learnable clauses has a clause associated
with each propagation in the trail, and one more clause, described by tracing the conflict
backwards through the trail as follows. (ante(�) denotes the clause that causes literal � to
be propagated; i.e. the antecedent.)

• C(r ,gr) = red(ante(p(r ,gr))).
• For i ∈ {0, 1, . . . , r} and j ∈ [gi − 1],

C(i, j) =
{
red[res(C(i, j+1),red(ante(p(i, j))), p(i, j))] if p̄(i, j) ∈ C(i, j+1)

C(i, j+1) otherwise

123

16 Page 8 of 24 A. Choudhury, M. Mahajan

• For i ∈ {0, 1, . . . , r − 1}.

C(i,gi) =
{
red[res(C(i+1,1),red(ante(p(i,gi))), p(i,gi))] if p̄(i,gi) ∈ C(i+1,1)

C(i+1,1) otherwise

In the above formulation of theQCDCL system,weonly consider trails that end in a conflict.
Trails ending in a satisfying assignment are ignored. This is enough to ensure refutational
completeness—the ability to prove all false QBFs false. From satisfying assignments, solvers
can learn cubes (or terms), and this is necessary to prove true QBFs true. In [13] it was shown
that allowing cube (or term) learning from satisfying assignments can also be advantageous
while refuting false QBFs. This led to the definition of the proof system QCDCLcube, which
was shown to be strictly stronger than the standard QCDCL system i.e. QCDCLLEV-ORDRED .

Our focus, however, is on adding dependencies to the basic QCDCL system without cube
learning, so wherever we talk about QCDCL as a proof system we refer to QCDCLLEV-ORD

RED .

3 Adding Dependency Schemes to the QCDCL proof system

We first describe the generic addition of dependency schemes to QCDCL, and then show
soundness and completeness for normal schemes. For a decision policy P and a propagation
policy R, the corresponding QCDCL proof system is denoted QCDCLP

R . Adding a dependency
scheme D to this system can affect P , R, as well as the set of learnable clauses.

For the decision policy P = LEV-ORD, which is the focus of this work, adding a depen-
dency scheme D does not affect the decision policy. (As discussed in the introduction, it is
possible to consider a decision policy that uses dependency schemes, DEP-ORD(D), but that
requires independent study.)

For the propagation policy, the notion of unit clauses depends on the universal reductions
allowed, and this in turn is affected by the dependency scheme. In the case of R = NO-RED,
no universal reductions are allowed anyway, so adding a dependency scheme to the proof
system does not affect the policy. In the case of R = RED, the definition of a unit propagation
changes. A clause C propagates a literal � at a position in the trail if the ∀(D)-reduction of C
restricted to the trail so far is a unit clause. That is, the partial assignment α specified by the
trail so far does not satisfy C , and after restricting C by α, applying all universal reductions
allowed by D leaves the single literal �; red-D(C |α) = {�}. We denote this propagation
policy as RED + D.

The dependency scheme modifies the reduction rule, which modifies the set of learnable
clauses. The set of learnable clauses is now defined in a similar way as in Definition 3, but
replacing red everywhere with red-D, the ∀(D) rule for universal reduction with respect to
the dependency.

A completely differentway inwhich a dependency schemeD can be added toQCDCL proof
systems is by adding it as a preprocessing step, by applying the red-D rule on the axioms
of the given formula. That is, produce QCDCL refutations of red-D(�) instead of �.

These two ways of adding dependency schemes to QCDCL—(1) in the trail construc-
tion, propagation and learning itself, or (2) as pre-processing—can both be combined. For a
particular dependency scheme D, we can think of three distinct proof systems:

• QCDCL(D): use D for unit propagations and learning, but not for preprocessing.
• D + QCDCL: use D only to preprocess the formula.
• D + QCDCL(D): use D for preprocessing first and then use it again during propagation

and learning.

123

Dependency Schemes in CDCL-Based QBF Solving… Page 9 of 24 16

Going a step further, we can even use different dependency schemes in the preprocessing
and in the actual trails. Thus, formally, we define the general proof system D′ + QCDCL(D):

Definition 4 (D′ + QCDCL(D) proof system) For a false QBF � = Q · ψ and a dependency
scheme D, a QCDCL(D) derivation of a clause C from � is a sequence of triples (Ti ,Ci , πi),
or equivalently, a triple of sequences

ι := ((T1, . . . , Tm), (C1, . . . ,Cm), (π1, . . . , πm))

where for each i ∈ [m], the trail Ti follows policies LEV-ORD and RED + D, each clause
C j ∈ LTj is a clause learnable from Tj using the red-D rule, and Cm = C . Each πi is the
derivation of Ci from Q · (ψ ∪ {C1, . . . ,Ci−1}) in LDQ(D)-Res.

For a false QBF � = Q · φ and dependency schemes D,D′, a D′ + QCDCL(D) deriviation
of a clause C from � is a QCDCL(D) derivation of C from � = red-D′(�).

If C = (�), then the derivation ι is called a refutation.

Note that QCDCL is exactly the proof system Dtrv + QCDCL(Dtrv). Using other
dependency schemes instead of Dtrv is a natural generalisation.

We now show that adding normal dependency schemes D1,D2 preserves soundness and
completeness.

Theorem 1 If D1 and D2 are normal dependency schemes, then D1 + QCDCL(D2) is a sound
and complete proof system.

Proof First we prove the soundness of the system. Suppose ι is a D1 +QCDCL(D2) refutation
of a QBF �. By definition, this is a QCDCL(D2) refutation of the QBF � = red-D1(�).
Now, every QCDCL(D) refutation has an underlying LDQ(D)-Res refutation. Therefore, from
ιwe can extract a LDQ(D2)-Res refutation� of�. Since D2 is a normal dependency scheme,
LDQ(D2)-Res is a sound proof system [20], and therefore � is a false QBF. Now, by com-
pleteness of LDQ-Res, there exists a LDQ-Res refutation �′ of �. The reductions made to
obtain � from �, followed by the derivation steps in �′, gives a LDQ(D1)-Res refutation
�′′ of �. Since D1 is also a normal dependency scheme, LDQ(D1)-Res is also sound, and
hence, the existence of �′′ implies that � is a false QBF.

Now we turn to completeness. In Theorem 3.16 of [4], QCDCL (denoted there as
QCDCLLEV-ORD

RED) is shown to be complete. Exactly the same proof, which is actually quite
intricate, works also to show the completeness of D1 + QCDCL(D2). The idea is as follows:
for a false formula �, in the 2-player evaluation game, the universal player has a winning
strategy on �. Since each clause in � has a subclause in � = red-D1(�), the same strategy
is also a winning strategy in the evaluation game on �, so � is false. Now, we can construct
trails in level order that perform propagations whenever applicable, decide the polarity of
existential variables arbitrarily, and decide the polarities of universal variables following this
winning strategy. (This is possible because decisions are level-ordered.) Thewinning strategy
guarantees that each such trail runs into a conflict. The set of learnable clauses either contains
the empty clause, or is shown to contain an asserting clause—one which after backtracking
becomes unit at some point in the trail—and an asserting clause is shown to be new. Thus
each trail that does not terminate the refutation learns a new clause, and there are only finitely
many clauses that can be added. All the arguments in this outline work also in the presence
of a dependency scheme (D2) that is used in both propagation and learning. ��

Having established soundness and completeness when normal dependency schemes are
added,we nowwish to look at howadding a particular dependency scheme affects the strength

123

16 Page 10 of 24 A. Choudhury, M. Mahajan

of these systems. In this work we focus on adding the reflexive resolution path dependency
scheme Drrs as it is one of the most popular ones, and it is known that adding it to Q-Res
gives a strictly stronger system in Q(Drrs)-Res. Therefore it is interesting to see if the
same parallel extends to the QCDCL systems. Thus in the system D1 +QCDCL(D2), we will
henceforth assume that D1,D2 ∈ {Dtrv,Drrs}. When a dependency scheme is Dtrv, we will
omit reference to it. Thus we have the systems QCDCL, QCDCL(Drrs), Drrs + QCDCL, and
Drrs + QCDCL(Drrs).

Before proceeding further, the following propositions are noteworthy to keep in mind.

Proposition 2 For aQBF�, ifD(�) = Dtrv(�), then all ofQCDCL,QCDCL(D),D+QCDCL,
and D + QCDCL(D)are equivalent on � and produce the same refutations.

This is simply because if D = Dtrv, then adding the dependency scheme gives nothing
new to the system as no extra reductions are enabled.

Proposition 3 For a QBF �, Drrs(�) = ∅ if and only if red-Drrs(�) is a propositional
formula (no universal variables in any clause).

Further, if Drrs(�) = ∅, then red-Drrs(�) is easy to refute in Res if and only if � is
easy to refute in Drrs + QCDCL and Drrs + QCDCL(Drrs).

Proof (Sketch) If Drrs(�) = ∅, then by definition red-Drrs(�) is propositional. If
Drrs(�) �= ∅, then there is some reflexive resolution path involving a universal variable
u, and the occurrence of u in the first clause of the path is blocked by an existential literal
even with respect to Drrs. So red-Drrs(�) is not propositional.

If red-Drrs(�) is propositional, then after the preprocessing in Drrs + QCDCL and
Drrs +QCDCL(Drrs), the universal variables have no role to play and the ensuing refutation
is a standard CDCL refutation. Since CDCL is equivalent to Res, the claim follows. ��
Remark 1 It is tempting to believe that if, for a QBF�, red-D(�) is a propositional formula
easy to refute in Res, then � is easy to refute in QCDCL(D) as well. However, this intuition
is misleading. As we will show in Sect. 4.5, this is provably not the case.

4 Refutation Size Bounds for Some Formulas

In this sectionwe examine the effect of adding theDrrs scheme toQCDCL (obtaining the three
systems QCDCL(Drrs), Drrs+QCDCL and Drrs+QCDCL(Drrs)) by computing bounds on
refutation size for some known QBF formulas, as well as for some newly-constructed QBF
formulas.

4.1 The QParityn Formulas

The first family of formulas that we study are the QParity formulas, first defined in [6].

Formula 1 (QParityn) The QParityn formula has the prefix ∃x1, . . . , xn∀z∃t2, . . . , tn
and the matrix

x1 ∨ x2 ∨ t̄2 x̄1 ∨ x̄2 ∨ t̄2 x1 ∨ x̄2 ∨ t2 x̄1 ∨ x2 ∨ t2
for i = 3, . . . , n : xi ∨ ti−1 ∨ t̄i xi ∨ t̄i−1 ∨ ti x̄i ∨ ti−1 ∨ ti x̄i ∨ t̄i−1 ∨ t̄i

tn ∨ z t̄n ∨ z̄

123

Dependency Schemes in CDCL-Based QBF Solving… Page 11 of 24 16

As shown in [6], these formulas are hard to refute inQU-Res (and hence also inQ-Res and
QCDCLLEV-ORD

NO-RED). In [4] it was shown that they have short refutations in QCDCL.
It is straightforward to see that Drrs(QParity) = Dtrv(QParity): the last two clauses

give the dependence (z, tn), and this extends to (z, ti) for all i using the remaining clauses.
Hence the QParity formulas are hard to refute in Q(Drrs)-Res as well.

On the other hand, since these formulas are easy to refute in QCDCL (and hence also
in QCDCLcube), from Proposition 2 it follows that they have short refutations in all three
systems: QCDCL(Drrs), Drrs + QCDCL, and Drrs + QCDCL(Drrs).

4.2 The Equalityn Formulas

The next formula we study are another well-known family of QBF formulas, the
Equality formulas, first introduced in [5].

Formula 2 (Equalityn)TheEqualityn formulahas theprefix∃x1 · · · xn∀u1 · · · un∃t1 · · · tn
and the PCNF matrix

(t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

⎡
⎢⎣(xi ∨ ui ∨ ti)︸ ︷︷ ︸

Ai

∧ (x̄i ∨ ūi ∨ ti)︸ ︷︷ ︸
Bi

⎤
⎥⎦

(In [5], the long clause Tn has positive t literals and the short clauses Ai , Bi have negated
t literals; it is straightforward to see that the formulations are equivalent upto renaming of
variables. The formulation we define above is as used in [4, Definition 5.6].)

In [5] it was shown that these formulas are hard for QU-Res, and hence also for Q-Res and
QCDCLLEV-ORD

NO-RED . In [4] it was shown that they are hard for QCDCL as well.
However, as shown in [13], they are easy to refute in QCDCLcube.
Further, as shown in [3], Drrs(Equality) = ∅, and there are short refutations in

Q(Drrs)-Res.
Since Drrs(Equality) = ∅, no existential variable depends on any universal variable

in the entire formula. Hence red-Drrs(Equality) is the propositional formula described
below.

red-Drrs(Equality) : (t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

⎡
⎢⎣(xi ∨ ti)︸ ︷︷ ︸

A′
i

∧ (x̄i ∨ ti)︸ ︷︷ ︸
B′
i

⎤
⎥⎦

This formula has a short Res refutation (resolve A′
i , B

′
i to get ti for all i , and then resolve

the ti ’s with Tn). Therefore by Proposition 3, the Equality formulas are easy to refute in
Drrs + QCDCL and Drrs + QCDCL(Drrs).

Finally we come to the system QCDCL(Drrs). It turns out that these formulas are also
easy to refute in this system, but this is not so straightforward. In particular, it does not follow
merely because red-Drrs(Equality) is easy to refute in Res; see Remark 1. We describe
the refutation below.

Lemma 1 The Equalityn formulas have O(n2) refutations in QCDCL(Drrs).

Proof Since Drrs(Equalityn) = ∅, the propagation policy and clause learning always
reduce the universal u variables from the corresponding clauses.

We will construct a polynomial size refutation for the Equalityn formulas containing
2(n − 1) trails. Define the following clauses: For i ∈ [n], Ti = ∨

j≤i t̄ j ; for i ∈ [n]\{1},
Li = x̄i ∨ Ti−1 and Ri = xi ∨ Ti−1.

123

16 Page 12 of 24 A. Choudhury, M. Mahajan

We will construct the trails Un−1,Vn−1,Un−2,Vn−2, . . . ,U1,V1, and learn clauses
Ln−1, Rn−1, . . . L1, R1 corresponding to these trails. The U trails decide x variables (as
many as is possible until conflict) positively; the V trails decide them negatively. Due to the
RED policy, each decision propagates at least one t literal.

The initial trail is

Un−1 := (x1, t1; x2, t2, . . . , xn−1, tn−1, t̄n, xn,�)

and the antecedent clauses are ante(t j) = Bj for j ∈ [n−1], ante(t̄n) = Tn , ante(xn) =
An , and ante(�) = Bn . From these set of clauses we learn the clause Ln−1 = x̄n−1 ∨Tn−2.

Restarting, create a symmetric trail to Un−1 flipping each decision:

Vn−1 := (x̄1, t1; x̄2, t2, . . . , x̄n−1, tn−1, t̄n, xn,�)

where the antecedent clauses are ante(t j) = A j for j ∈ [n − 1], ante(t̄n) = Tn ,
ante(xn) = An , and ante(�) = Bn . From these set of clauses we learn the clause
Rn−1 = xn−1 ∨ Tn−2.

We now go down now from i = n − 2 down to i = 2. At stage i , we first construct trail
Ui by deciding x variables positively; we reach a conflict after deciding xi . The trail and
antecedent clauses are as follows:

Ui := (x1, t1; x2, t2, . . . , xi, ti , xi+1,�)

with ante(t j) = Bj for j ∈ [i], ante(xi+1) = Li+1, ante(�) = Ri+1. From this we
learn the clause Li .

Next, we create the symmetrical trail by deciding the x variables negatively

Vi := (x̄1, t1; x̄2, t2, . . . , x̄i , ti , xi+1,�)

with antecedent clauses ante(t j) = A j for j ∈ [i], ante(xi+1) = Li+1, ante(�) =
Ri+1. From this we learn the clause Ri .

The proof ends with the two trails

U1 = (x1, t1, x2,�)

with antecedents ante(t1) = B1, ante(x2) = L2, ante(�) = R2, from which we learn
L1 = x̄1, and finally the last trail

V1 = (x̄1, t1, x2,�)

with antecedents ante(x̄1) = L1, ante(t1) = B1, ante(x2) = L2, ante(�) = R2, from
which we learn the empty clause �, completing the refutation.

The QCDCL(Drrs) refutation we have created has O(n) trails and hence overall size
O(n2). ��

Thus the Equality formulas, which are hard for both Q-Res and QCDCL, become easy
to refute when the power of Drrs is added to these systems. Thus they showcase the power
of dependency schemes and discarding spurious dependencies.

4.3 The Trapdoorn Formulas

TheTrapdoor formulaswere introduced in [4], in order to compareQCDCLwith the variant
with the NO-RED policy. The idea is to juxtapose two propositional formulas, one hard for
Res and one easy for Res, and judiciously interject universal and existential variables tying

123

Dependency Schemes in CDCL-Based QBF Solving… Page 13 of 24 16

the two together. The tying is done in such a way that QCDCL trails with the NO-RED policy
can quickly get to the easy part, whereas with RED and the ensuing forced propagations,
QCDCL is trapped into refuting the hard part. Thus for QCDCL proof systems, allowing
reductions, which force more unit propagations in a trail, is not necessarily a good thing.

Formula 3 (Trapdoorn) The Trapdoorn QBF has the prefix ∃y1, . . . , ysn∀w∃t∃x1, . . . ,
xsn∀u, where sn is the number or variables in the propositional pigeonhole principlePHPn+1

n ,
and the following matrix:

PHPn+1
n (x1, . . . , xsn)

for i ∈ [sn] : ȳi ∨ xi ∨ u, yi ∨ x̄i ∨ u
for i ∈ [sn] : yi ∨ w ∨ t, yi ∨ w ∨ t̄, ȳi ∨ w ∨ t, ȳi ∨ w ∨ t̄

In [4], itwas shown that these formulas are easy to refute inQCDCLLEV-ORDNO-RED andQ-Res (and
hence also in Q(Drrs)-Res and QU-Res), but are hard to refute in QCDCL because the
reductions force unit propagations in the trails which send the solver down a “trap” of refuting
PHP.

Clearly, Drrs(Trapdoor) = ∅ since the universal variables appear in only one polarity.
Thus red-Drrs(Trapdoor)is the following propositional formula:

PHPn+1
n (x1, . . . , xsn)

for i ∈ [sn] : ȳi ∨ xi , yi ∨ x̄i
for i ∈ [sn] : yi ∨ t, yi ∨ t̄, ȳi ∨ t, ȳi ∨ t̄

This formula has a very short Res refutation involving the four y, t clauses for any i . Hence
by Proposition 3, the Trapdoor formulas are easy to refute in Drrs + QCDCL and Drrs +
QCDCL(Drrs).

We observe below that they are quite easy to refute in QCDCL(Drrs) as well.

Lemma 2 The Trapdoorn formulas have O(1)-size refutation in QCDCL(Drrs).

Proof As seen before, Drrs(Trapdoorn) = ∅. Using this fact we can construct a
QCDCL(Drrs) refutation consisting of two trails T1 and T2. The first trail decides y1 and
learns ȳ1, the second trail has no decisions. More precisely, the first trail is

T1 := (y1, t,�)

withred-Drrs(ante(�)) = red-Drrs(ȳ1∨w∨ t̄) = (ȳ1∨ t̄), andred-Drrs(ante(t)) =
red-Drrs(ȳ1 ∨ w ∨ t) = (ȳ1 ∨ t). This allows us to learn the clause (ȳ1). The second trail
begins by propagating ȳ1.

T2 := (ȳ1, t,�)

Here, red-Drrs(ante(�)) = red-Drrs(y1 ∨ w ∨ t̄) = y1 ∨ t̄ , red-Drrs(ante(t)) =
red-Drrs(y1 ∨ w ∨ t) = y1 ∨ t and ante(ȳ1) = ȳ1 Therefore, we can learn the empty
clause (�), completing the refutation. ��

Thus, we see that the Trapdoor formulas which were hard for QCDCL become easy to
refute when the power of Drrs is added to the QCDCL system, be it in preprocessing, unit
propagation or both. This is another demonstration of the advantage of discarding spurious
dependencies.

123

16 Page 14 of 24 A. Choudhury, M. Mahajan

4.4 The Dep-Trapn Formulas

From the previous sub-sections it may appear that adding Drrs to QCDCL only adds to its
strength and suggests that the addition of the dependency scheme gives us a strictly stronger
proof system as with Q-Res. However, this is not the case; QCDCL’s are tricky proof systems.
In the previous sections we discussed the QParity and Trapdoor formulas; these were
used in [4], to show that neither of QCDCLLEV-ORD

NO-RED and QCDCL simulates the other. For the
Trapdoor formulas, the reduction sends the QCDCL refutation down a “trap” but not the
QCDCLLEV-ORD

NO-RED refutation. This motivates the idea of designing a formula where adding the
dependency scheme enables reductions that send the refutation down a trap into which the
seeminglyweaker systems do not fall. Based on this idea, we introduce the familyDep-Trap
which is a slight modification of the Trapdoor family, and is defined as follows:

Formula 4 (Dep-Trapn) The Dep-Trapn formula has the prefix ∃y1, . . . , ysn∀w∃t∀u∃x1,
. . . , xsn , and the matrix is as given below.

PHPn+1
n (x1, . . . , xsn)

for i ∈ [sn] : ȳi ∨ u ∨ xi , yi ∨ u ∨ x̄i
for i ∈ [sn] : yi ∨ w ∨ t, yi ∨ w ∨ t̄, ȳi ∨ w ∨ t, ȳi ∨ w ∨ t̄

w̄ ∨ t̄

Note that there are two differences from the Trapdoorn formulas. Firstly, the universal
variable u which was earlier quantified at the end is now quantified just before the existential
variables x1, . . . , xsn . Secondly, there is an additional clause w̄∨ t̄ .Wewill see that these serve
a dual purpose: the shifting of the position of u stopsQCDCL from falling into the trap,making
the formulas easy to refute in QCDCL, while the additional clause prevents the Drrs scheme
from bypassing the trap as it used to in the Trapdoorn formulas, since now instead of
being the empty set, Drrs(Dep-Trap) = {(w, t)}. Therefore, red-Drrs(Dep-Trap) isn’t
a propositional formula anymore; in fact it is the following QBF:

PHPn+1
n (x1, . . . , xsn)

for i ∈ [sn] : ȳi ∨ xi , yi ∨ x̄i
for i ∈ [sn] : yi ∨ w ∨ t, yi ∨ w ∨ t̄, ȳi ∨ w ∨ t, ȳi ∨ w ∨ t̄

w̄ ∨ t̄

We observe below that for exactly the same reasons as Trapdoor, the Dep-Trap formulas
are easy to refute in QCDCLLEV-ORDNO-RED , and hence also in Q-Res, Q(Drrs)-Res, and QU-Res.
Furthermore, the shifting of u to before the xi ’s stops QCDCL from going down the “trap”,
and hence the formulas are easy to refute in QCDCL (and in QCDCLcube).

Lemma 3 The Dep-Trap formulas have polynomial-size refutations in QCDCL,
QCDCLLEV-ORD

NO-RED , Q-Res, QU-Res and Q(Drrs)-Res.

Proof First wewill show that theDep-Trap formulas have a linear-size refutation inQCDCL.
We will do so by constructing a complete refutation. The first trail decides all y variables
positively, decides w negatively, and then propagates t and a conflict. Unlike Trapdoorwe
don’t propagate an x after an y decision, since the u cannot be reduced and so blocks unit
propagation.

T1 := (y1; y2; . . . ; ysn ; w̄, t,�)

where ante(�) = (ȳ1 ∨ w ∨ t̄) and ante(t) = (ȳ1 ∨ w ∨ t). Hence the set of learnable
clauses for this trail is LT1 = ((ȳ1 ∨ w ∨ t̄), (ȳ1)); allowing us to learn the clause (ȳ1). Now

123

Dependency Schemes in CDCL-Based QBF Solving… Page 15 of 24 16

the second trail propagates (ȳ1) followed by remaining decisions as before.

T2 := (ȳ1; y2; . . . ; ysn ; w̄, t,�)

where ante(�) = (y1 ∨ w ∨ t̄), ante(t) = (y1 ∨ w ∨ t), and ante(ȳ1) = ȳ1. Therefore,
the set of learnable clauses for this trail is LT2 = ((y1 ∨ w ∨ t̄), (y1), (�)) which allows us
to learn the empty clause (�), completing the refutation. The refutation size is O(sn), which
is linear in the formula size.

Since none of the unit propagations in the two trails above employed a universal reduction,
the same refutation is also a valid linear-size refutation in QCDCLLEV-ORD

NO-RED . Since all the other
systems mentioned in the lemma simulate QCDCLLEV-ORD

NO-RED , Dep-Trap has polynomial-size
refutations in these proof systems as well. ��

Next we show that these formulas are hard to refute in QCDCL variants that use Drrs.

Lemma 4 Refutations of the Dep-Trapn formulas in QCDCL(Drrs), Drrs + QCDCL and
Drrs + QCDCL(Drrs) require exponential size.

Proof Drrs(Dep-Trapn) = {(w, t)}. This means that the universal variable w cannot be
reduced from any axiom clause it appears in as they all also contain the variable t , whereas
the universal variable u can be reduced from the axiom clauses as no existential variable
depends on it.

Let us first see hardness for QCDCL(Drrs). Since u can be reduced but not w, the proof
of hardness of Trapdoor in QCDCL from [4] carries over as is to hardness of Dep-Trap in
QCDCL(Drrs): the decisions on the y variables propagate x literals, sending the trails down
the PHP trap. The additional clause cannot change the course of such trails, because its
variables appear after the y part in the prefix and decisions are required to be level-ordered.

Next consider the other two variants. Preprocessing yields the QBF
red-Drrs(Dep-Trap) described above. Now all trails in a refutation of this formula
must start with deciding the yi ’s; these decisions propagate the xi ’s; andw cannot be reduced
from the clauses it exists in (irrespective of whether we allowed ∀(D)-reductions or not)
nor decided before all the yi ’s are decided. Again, the proof of hardness of Trapdoor in
QCDCL from [4] lifts to hardness of Dep-Trap in Drrs+QCDCL and Drrs+QCDCL(Drrs).

��
The Dep-Trap formulas are thus easy for QCDCL, but become hard to refute when Drrs

is added to the system demonstrating that allowing more reductions and removing spurious
dependencies does not necessarily help for the QCDCL system.

4.5 The TwoPHPandCTn Formulas

The formulas in the previous sections seem to suggest that Proposition 3 could also extend
to include QCDCL(Drrs). We show now that this is not the case. The motivation for defining
the following formula also comes from the Trapdoor formulas, using the propositional
hardness of PHP and the “easiness” of the (negation of) complete tautology on two variables.
The added new element is the use of two disjoint copies of the hard part.

Formula 5 (TwoPHPandCTn) The TwoPHPandCTn formulas have the prefix, Q =
∀u∃x1 · · · xsn ∃y1 · · · ysn ∀v∃z1, z2 and the matrix

u ∨ PHP(x1, . . . , xsn)
ū ∨ PHP(y1, . . . , ysn)

v ∨ z1 ∨ z2, v ∨ z̄1 ∨ z2, v ∨ z1 ∨ z̄2, v ∨ z̄1 ∨ z̄2

123

16 Page 16 of 24 A. Choudhury, M. Mahajan

Observe that these formulas are easy to refute in Q-Res, using the four z1, z2 clauses, and
hence also easy to refute in Q(Drrs)-Res and QU-Res.

Since v appears in only one polarity and u, ū appear in clauses with disjoint variables,
hence Drrs(TwoPHPandCT) = ∅ and red-Drrs(TwoPHPandCT) is the propositional
formula

PHP(x1, . . . , xsn)
PHP(y1, . . . , ysn)

z1 ∨ z2, z̄1 ∨ z2, z1 ∨ z̄2, z̄1 ∨ z̄2,

This formula is easy to refute in Resusing the z1, z2 clauses; hence by Proposition 3, the
original QBFs are easy to refute in Drrs + QCDCL and Drrs + QCDCL(Drrs).

Thefinal question arises nowas to howhard they are to refute inQCDCL,QCDCL(Drrs) and
QCDCLLEV-ORD

NO-RED . And the answer is that it is hard for all three systems.

Lemma 5 The QBF formulas TwoPHPandCTn require exponential size refutations in
QCDCL, QCDCL(Drrs)and QCDCLLEV-ORD

NO-RED .

Proof None of the three systems QCDCL, QCDCL(Drrs)or QCDCLLEV-ORDNO-RED allow for any
preprocessing. Hence the first decision in each of these three systems must be on u, which
allows for no propagations in any case. And depending on the choice of u, the next set
of decisions are either all on x variables or all on y variables. The variable v could be
dropped during unit propagation in the QCDCL(Drrs) system, but neither z1 or z2 could be
decided or propagated before all the y or x variables are decided/propagated. Therefore, all
conflicts these trails hit come directly from thePHP clauses. Thus refutingTwoPHPandCT in
QCDCL, QCDCL(Drrs) or QCDCLLEV-ORD

NO-RED is equivalent to refuting PHP in CDCL, requiring
exponential size. ��

These formulas highlight two important facts: firstly that QCDCL(Drrs) is not the same as
Drrs+QCDCLorDrrs+QCDCL(Drrs) anddoes not simulate themeither.And secondly, even
in the case when Drrs = ∅ and reducing the formula by Drrs gives us an easy propositional
formula, it can still be hard to refute for QCDCL(Drrs).

4.6 The RRSTrapEqn Formulas

The next family of formulas are obtained by making a slight modification to the
Equality formulas. The motivation to define such formulas comes from trying to ascer-
tain whether after preprocessing with Drrs, does allowing reductions using Drrs for unit
propagation add any power over trivial universal reductions.

Formula 6 (RRSTrapEqn) The RRSTrapEqn formula has the prefix ∃a∃x1 · · · xn∀u1
· · · un∃t1 · · · tn∃b and the PCNF matrix as below:

(t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

⎡
⎢⎣(xi ∨ ui ∨ ti ∨ b)︸ ︷︷ ︸

Ai

∧ (x̄i ∨ ūi ∨ ti ∨ b)︸ ︷︷ ︸
Bi

⎤
⎥⎦

∧
n∧

i=1

(ui ∨ b̄)︸ ︷︷ ︸
Ci

∧(a ∨ b̄) ∧ (ā ∨ b̄)

123

Dependency Schemes in CDCL-Based QBF Solving… Page 17 of 24 16

The prefix has the variables of Equality sandwiched between a and b. The underlying
idea in the formulation is that unlike Drrs(Equality) which is empty, the additional Ci

clauses make Drrs(RRSTrapEq) = {(ui , b) : i ∈ [n]}. Further, adding b to the x, u, t
clauses along with that results in red-Drrs(RRSTrapEq) = RRSTrapEq. Now, since
preprocessing by Drrs does not change the formula at all, therefore the refutational hardness
and in fact the refutation for these two formulas will be exactly the same for the pair of
systems QCDCL and Drrs + QCDCL, and similarly for the pair QCDCL(Drrs) and Drrs +
QCDCL(Drrs).

Lemma 6 The RRSTrapEq formulas have polynomial size refutations in QCDCL(Drrs) and
Drrs+QCDCL(Drrs), but require exponential size refutations in QCDCL and Drrs+QCDCL

Proof Since, red-Drrs(RRSTrapEq)= RRSTrapEq, there is no effect of preprocessing,
and all 4 systems start off by refuting the same formula. Now, for any of the four proof
systems, if you consider any trail T of a refutation, the first decision must be on the variable
a, and irrespective of the manner of that decision we propagate b̄, which satisfies all the
Ci clauses and removes the b literal from the Ai and Bi clauses. The remaining formula at
this point is exactly the Equality formula, i.e. RRSTrapEq|a=∗,b=0 = Equality, and
hence refuting the RRSTrapEq formulas is equivalent to refuting the Equality formulas
in QCDCL and QCDCL(Drrs), which we know are hard and easy respectively.

Therefore, RRSTrapEq formulas have polynomial size refutations in QCDCL(Drrs) and
Drrs+QCDCL(Drrs), but require exponential size refutations inQCDCL andDrrs+QCDCL��

Additionally, since the Equality formulas are embedded in the RRSTrapEq for-
mula, and since QU-Res is closed under restrictions, the RRSTrapEq formulas are hard
for QU-Res and in turn Q-Res and QCDCLLEV-ORD

NO-RED . However, they are easily seen to have
short refutations in Q(Drrs)-Res: resolve the last two clauses to derive b̄, use it to remove b
from the Ai and Bi , now use Drrs reductions to remove the u literals, resolve on x to derive
unit ti clauses, and remove them from Tn sequentially.

4.7 The PreDepTrapn Formulas

The previous section underlined that preprocessing by Drrs may not necessarily make Drrs

during propagation obsolete and/or give an advantage. It is reasonable to believe that at
least it won’t make things worse. But the following example shows that this is not the case:
preprocessing before allowing a QCDCL system to refute could in fact make the refutation
harder.

The construction of the formula is pretty straightforward. It is the disjoint union of the
two formulas Dep-Trap and Equality, connected by a universal quantified right at the
beginning, appearing in the two sub-formulas in opposite polarities.

Formula 7 (PreDepTrapn) The PreDepTrapn formula has the prefix ∀a∃y1 · · · ysn
∀w∃t∀u ∃x1 · · · xsn∃p1 · · · pn∀q1 · · · qn∃r1 · · · rn, and the matrix

a ∨ Dep-Trap(y1, . . . , ysn , w, t, u, x1, . . . , xsn)
ā ∨ Equality(p1, . . . , pn, q1, . . . , qn, r1, . . . , rn)

(Recall that a ∨ Dep-Trap is the disjunction of a with every clause of Dep-Trap, and
similarly for ā ∨ Equality.)

123

16 Page 18 of 24 A. Choudhury, M. Mahajan

First consider the QCDCLLEV-ORD
NO-RED and QCDCL ystems. Since there is no preprocess-

ing, the first decision of every trail must set the variable a. For a trail that starts with
the decision ā, the PreDepTrap formula reduces exactly to Dep-Trap formula which
we know is easy to refute in QCDCLLEV-ORD

NO-RED as well as QCDCL (Sect. 4.4). Therefore,
the PreDepTrapformulas are easy to refute in QCDCL and QCDCLLEV-ORDNO-RED , and as a
consequence in Q-Res, Q(Drrs)-Res, QU-Res, and QCDCLcube.

Next, consider adding Drrs. Since the opposite polarities of a appear in clauses with
disjoint non-interacting sets of variables, no existential variable depends on a. Since
Drrs(Equality) = ∅, no variable depends on a q variable. Thus Drrs(PreDepTrap) =
Drrs(Dep-Trap).

In the QCDCL(Drrs) system, where there is no preprocessing, the first decision of every
trail must again set the variable a. For trails that start with the decison a, the formula immedi-
ately reduces exactly to the Equality formulas, which are easy to refute in QCDCL(Drrs),
Lemma 1. The refutation in the proof of Lemma 1, preceded by the decision a, gives a valid
refutation for the PreDepTrap formulas. Therefore these formulas are easy to refute in
QCDCL(Drrs).

Finally, consider the case when the formula is preprocessed. We show that this makes
refutations exponentially long.

Lemma 7 The PreDepTrap formulas require exponential size refutations in Drrs +
QCDCL and Drrs + QCDCL(Drrs).

Proof Since Drrs(PreDepTrap) = Drrs(Dep-Trap), the formula red-Drrs

(PreDepTrap) has the matrix

PHPn+1
n (x1, . . . , xsn)

for i ∈ [sn] : ȳi ∨ xi , yi ∨ x̄i
for i ∈ [sn] : yi ∨ w ∨ t, yi ∨ w ∨ t̄, ȳi ∨ w ∨ t, ȳi ∨ w ∨ t̄

w̄ ∨ t̄
(r̄1 ∨ · · · ∨ r̄n)

for i ∈ [n] (pi ∨ ri)
for i ∈ [n] (p̄i ∨ ri)

Now the variable a, though still in the quantifier prefix, has no effect on the
trails. It can be decided arbitrarily in the beginning, and then the goal is to refute
red-Drrs(PreDepTrap) in QCDCL and QCDCL(Drrs). At this point, therefore, all trails
must start with deciding the yi ’s, propagating the xi ’s. The only other universal variable
w is blocked by t in all clauses where it occurs. Since we use LEV-ORD, it cannot be
decided before all the yi ’s are decided. Nor can t be propagated before w is decided.
Since the pi ’s and ri ’s also cannot be decided before the yi ’s, the trails are led into the
trap of refuting PHP. The proof of hardness of Trapdoor in QCDCL from [4] carries
over exactly as it is to show hardness for Drrs + QCDCL and Drrs + QCDCL(Drrs).
��

4.8 The PropDep-Trapn Formulas

The previous section illustrated an example where having Drrs as a preprocessing technique
was a detriment to refuting it and in fact it was better to use Drrs only in unit propagation,
and not also for preprocessing. This leads to the question—could there be a formula where
having Drrs only for preprocessing was strictly better than having it for both preprocessing

123

Dependency Schemes in CDCL-Based QBF Solving… Page 19 of 24 16

and propagation? Addressing this led to the birth of the following formula which is a slight
modification of the Dep-Trap formulas, and which witnesses that the answer is yes.

Formula 8 (PropDep-Trapn) The PropDep-Trapn formulas have the prefix
∃s ∃y1 · · · ysn∀w∃t∀b1, b2 ∃x1 · · · xsn ∃z1, z2 and the matrix as given below.

PHPn+1
n (x1, . . . , xsn)

for i ∈ [sn] : ȳi ∨ b1 ∨ xi ∨ z1, yi ∨ b2 ∨ x̄i ∨ z2
s ∨ w ∨ t, s ∨ w ∨ t̄, s̄ ∨ w ∨ t, s̄ ∨ w ∨ t̄

w̄ ∨ t̄
b̄1 ∨ z̄1, b̄2 ∨ z̄2, z̄1, z̄2

First observe that the presence of the four s, w, t clauses make this formula very easy to
refute in Q-Res and hence in Q(Drrs)-Res and QU-Res.

Next, notice that the formulas are also easy to refute in QCDCLLEV-ORD
NO-RED , QCDCL, and

QCDCLcube because, after the initial propagation of the unit clauses z̄1, z̄2 in level 0, there
are no propagations possible before a w decision; the decisions on s and all the yi ’s cause
no propagations. A trail that decides s and w̄ quickly reaches a conflict and learns s̄; a next
trail that propagates s̄ and decides w̄ then learns the empty clause.

Coming toDrrs, it can be seen thatDrrs(PropDep-Trap) = {(w, t), (b1, z1), (b2, z2)}.
Therefore, red-Drrs(PropDep-Trap)= PropDep-Trap. This means that a QCDCL refu-
tation is also aDrrs+QCDCL refutation, and thereforePropDep-Trap has short refutations
in Drrs + QCDCL.

We now show that refuting these formulas in QCDCL(Drrs) and Drrs +QCDCL(Drrs) is
hard.

Lemma 8 The PropDep-Trap formulas require exponential size refutations in
QCDCL(Drrs) and Drrs + QCDCL(Drrs).

Proof Since red-Drrs(PropDep-Trap)= PropDep-Trap, a Drrs+QCDCL(Drrs) refu-
tation in this case is just a QCDCL(Drrs) refutation, so it suffices to show hardness for the
latter. Let us observe how a QCDCL(Drrs) refutation looks. The two unit clauses z̄1, z̄2 get
propagated initially and then s and the yi ’s have to be decided. A decision on s, irrespective
of the polarity, causes no further propagations until w is also decided, as every clause con-
taining the variable s also contains the variables w and t , and the reduction of w is blocked
by t . Since neither (b1, xi) nor (b2, xi) is in Drrs, a decision on variable yi propagates either
xi (due to the clause containing ȳi , where b1 can now be reduced), or x̄i (due to the clause
containing yi , where b2 can now be reduced). The propagating of xi due to yi sends the
QCDCL(Drrs) refutation down the same “trap” as the Trapdoor formulas for QCDCL[4],
and thus QCDCL(Drrs) requires exponential size refutations to refute these formulas. ��

4.9 The TwinEqn Formulas

The TwinEq formulas were introduced in [13] to show hardness in the system QCDCLcube.
They are formally defined as follows:

Formula 9 (TwinEqn [13]) The TwinEqn formula has the prefix ∃x1 · · · xn∀u1 · · · un, w1,

. . . , wn∃t1 · · · tn and the PCNF matrix

(t̄1 ∨ · · · ∨ t̄n)︸ ︷︷ ︸
Tn

∧
n∧

i=1

⎡
⎢⎣(xi ∨ ui ∨ ti)︸ ︷︷ ︸

Ai

∧ (x̄i ∨ ūi ∨ ti)︸ ︷︷ ︸
Bi

⎤
⎥⎦

123

16 Page 20 of 24 A. Choudhury, M. Mahajan

∧
n∧

i=1

⎡
⎢⎣(xi ∨ wi ∨ ti)︸ ︷︷ ︸

Ci

∧ (x̄i ∨ w̄i ∨ ti)︸ ︷︷ ︸
Di

⎤
⎥⎦

These formulas are hard for QCDCLcube, and hence also for QCDCL and QCDCLLEV-ORD
NO-RED .

For the same reason as for Equality (the size-cost-capacity theorem from [5]), they are
also hard for QU-Res and Q-Res.

It is easy to show that Drrs(TwinEq) = ∅ (just as Drrs(Equality) is shown to be ∅).
Therefore, red-Drrs(TwinEq) is a propositional formula, and in fact is the same formula as
red-Drrs(Equality). Therefore, due to the sameargument as for theEquality formulas
in Sect. 4.2, the TwinEq formulas are easy to refute in Q(Drrs)-Res, Drrs + QCDCL,
Drrs + QCDCL(Drrs) and QCDCL(Drrs).

5 Relation Between Proof Systems

The previous section saw us study the bounds for known as well as our newly-constructed
formulas in a plethora of proof systems. Using these obtained bounds, in this section we look
to obtain the relations of our newly defined proof systems using Drrs with QCDCL among
themselves, as well as their relation with other QBF proof systems.

First we observe that the four versions of QCDCL that use or do not use Drrs in either of
the two ways are all pairwise incomparable.

Theorem 4 The proof systems in {QCDCL,QCDCL(Drrs),Drrs + QCDCL,Drrs +
QCDCL(Drrs)} are pairwise incomparable.
Proof Of the four systems under consideration, the Trapdoor formulas (Sect. 4.3) are hard
only for QCDCL, and the Dep-Trap formulas (Sect. 4.4) are easy only in QCDCL. Hence
QCDCL is incomparable with all three systems obtained by adding Drrs.

Among the three systems using Drrs, the TwoPHPandCT formulas (Sect. 4.5) are
hard only in QCDCL(Drrs), while the PreDepTrap formulas (Sect. 4.7) are easy
only in QCDCL(Drrs). Hence QCDCL(Drrs) is incomparable with the systems that use
preprocessing.

Finally, the systems Drrs + QCDCL and Drrs + QCDCL(Drrs) are separated by the
formulas RRSTrapEq (Sect. 4.6) easy only in Drrs + QCDCL(Drrs), and the formulas
PropDep-Trap (Sect. 4.8) easy only in Drrs + QCDCL. ��

Next we observe that each of the three new versions of QCDCL is also incomparable with
QCDCLLEV-ORD

NO-RED , Q-Res, Q(Drrs)-Res, and QU-Res.

Theorem 5 Any two proof systems P1 ∈ {QCDCL(Drrs),Drrs + QCDCL,Drrs +
QCDCL(Drrs)}, and P2 ∈ {QCDCLLEV-ORD

NO-RED ,Q-Res,Q(Drrs)-Res,QU-Res}, are incompa-
rable.

Proof The QParity formulas (Sect. 4.1) require exponential size refutations in P2 but have
polynomial size refutations in P1.

The Dep-Trap formulas (Sect. 4.4) have constant size refutations in P2 but require
exponential size refutations in P1. ��

Finally, we observe that even when we add cube-learning to standard QCDCL, the system
QCDCLcube is still incomparable with all the three versions of QCDCL with dependency
scheme added.

123

Dependency Schemes in CDCL-Based QBF Solving… Page 21 of 24 16

Theorem 6 Every proof system in {QCDCL(Drrs),Drrs + QCDCL,Drrs + QCDCL(Drrs)}
is incomparable with QCDCLcube.

Proof The TwinEq formulas (Sect. 4.9) require exponential size refutations in
QCDCLcube but have poly-size refutations in Drrs + QCDCL, QCDCL(Drrs) and Drrs +
QCDCL(Drrs).

TheDep-Trap formulas (Sect. 4.4) require exponential size refutations inDrrs+QCDCL,
QCDCL(Drrs) and Drrs + QCDCL(Drrs), but have short refutations in QCDCLcube. ��

6 Conclusion

We have examined, from a rigourous proof-theoretic viewpoint, the effect of incorporating
heuristics based on dependency schemes into QBF solving algorithms based on the conflict-
driven clause learning paradigm. Our results show that unlike in the case of the proof system
Q-Res, where dependency-awareness can shorten but never lengthens refutations, here the
picture is much more nuanced, and all kinds of shortenings as well as lengthenings can be
observed. Thus the decision of whether or not to make a QCDCL solver account for spurious
dependencies is itself a challenging one, and it is likely the domain from where instances are
to be solved may indicate what choice is more suitable.

The solver DepQBF uses Dstd rather than Drrs, for decisions and reductions. As far as
we are aware, no existing solver uses Drrs with QCDCL in the manner we have introduced.
The prepocessor HQSpre [26] does use Drrs in preprocessing but not beyond that. It would
be interesting to see how a solver working on these principles would fare against current
solvers. The trade-off between the power of Drrs and the restriction of LEV-ORD would be
interesting to observe. Additionally, ifDrrs is used instead ofDstd inDepQBF, the difference
in performance would be of interest.

One aspect which is unresolved in our work is the nature of our upper bounds. Since
QCDCL is not in itself an algorithm but a template, there are multiple instantiations of it
based on the choice of decision heuristics, propagation policy, and learning scheme. We
have restricted ourselves here to the decision heuristic and propagation policy used in most
state-of-the-art solvers, namely, level-ordered decisions and propagations with reductions.
However, we have not specified the learning scheme. Our lower bounds hold for any QCDCL-
based solver as long as the learning scheme picks a clause only from the learnable-clause
sequence as defined in Sect. 2. However, the upper bounds hold for specific choices of learnt
clauses, and this, in some sense, reflects a certain non-determinism in the algorithm. (This
is somewhat akin to the non-determinism inherent in CDCL algorithms in the statement that
CDCL simulatesResolution.)Arguably, the upper boundswill bemoremeaningful if achieved
with actually-used learning schemes.While some of our upper bounds are achievedwith such
schemes, specifically the UIP policy, some others make ad hoc choices with respect to which
clauses to learn. Thus the impact of the learning scheme itself is still improperly understood
for dependency-aware QCDCL.

In this work, we only consider decisions in LEV-ORD. Whether incorporating dependency
schemes in the decision policy itself makes a difference or not is an interesting question.
As recent work in [12] shows, other orders are not necessarily unsound, so this can still be
meaningful. Formalisation seems tricky as we would like to retain the use of dependency
schemes and long-distance resolution in the learning process, while also using dependency
schemes in the decision policy and the propagations. The use of most dependency schemes
is not yet known to be sound for long-distance cube resolution. (See the Discussion section

123

16 Page 22 of 24 A. Choudhury, M. Mahajan

in [20].) Although in this work we have not considered cube learning, cube learning and
cube resolution is implemented in most solvers and so this issue cannot be completely side-
stepped. One way out is to disallow long-distance steps when using dependency schemes.
Thismakes proving completeness challenging. Another way is to disallow long-distance only
while learning cubes, not clauses. This is a direction worth exploring.

There is also the dependency-learning setup which is quite different: the solver starts off
assuming there are no dependencies, and gradually builds up a set of dependencies. (That
is, add required dependencies starting from ∅, rather than remove spurious dependencies
starting from Dtrv.) In this approach, explored in [19] and used in the QBF solver Qute,
learning dependencies does affect decision order. An in-depth future comparison of these
two approaches could be interesting to explore.

Another aspect we have not directly addressed, other than showing soundness and com-
pleteness, is the effect of dependency schemes other than Drrs. Since Drrs is a well-studied
dependency scheme, known to be polytime-computable and for whichLDQ(D)-Res is known
to be sound, this makes it an important candidate whose effects need to be understood first.
But there are other schemes: the less (than Drrs) general standard dependency scheme Dstd

introduced in [22] and used in DepQBF [16], and more general schemes based on tautology-
free and implication-free paths introduced in [7, 8]. It seems reasonable to expect that a
similar nuanced picture will present when considering such schemes as well.

Finally, an aspect to our work that is also interesting to investigate, with potential ramifica-
tions to practical solvers, is exploring the addition of cube-learning to our dependency-aware
QCDCL systems. (Asmentioned earlier, all solvers implement cube learning since it is essen-
tial for verifying true formulas.) This may be somewhat non-trivial and nuanced, as adding
dependency schemes to the formal proof system of long-distance term resolution (the proof
system in which proofs can be extracted from runs of solvers on true QBFs, Q-consensus) is
not known to be sound (see the Discussion section in [20]).

Acknowledgements Part of this work was done when the second author was at the Simons Institute for the
Theory of Computing at Berkeley during March–May 2023, participating in the Extended Reunion of the
program Satisfiability: Theory, Practice, and Beyond.

Author Contributions These authors contributed equally to this work.

Funding Open access funding provided by Department of Atomic Energy.

Data availibility No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Dependency Schemes in CDCL-Based QBF Solving… Page 23 of 24 16

References

1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and bounded-width
resolution. J. Artif. Intell. Res. 40, 353–373 (2011). https://doi.org/10.1613/jair.3152

2. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative games of incomplete
information. J. Comput. Math. Appl. 41, 957–992 (2001)

3. Beyersdorff, O., Blinkhorn, J.: Dynamic QBF dependencies in reduction and expansion. ACM Trans.
Comput. Log. 21(2), 8:1-8:27 (2020). https://doi.org/10.1145/3355995

4. Beyersdorff, O., Böhm,B.: Understanding the relative strength ofQBFCDCL solvers andQBF resolution.
Log. Methods Comput. Sci. (2023). https://doi.org/10.46298/lmcs-19(2:2)2023. (Preliminary version in
ITCS’21)

5. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic technique for hard random
QBFs. Log. Methods Comput. Sci. (2019). https://doi.org/10.23638/LMCS-15(1:13)2019

6. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their proof complexity.
ACM Trans. Comput. Theory 11(4), 26:1-26:42 (2019). https://doi.org/10.1145/3352155

7. Beyersdorff, O., Blinkhorn, J., Peitl, T.: Strong (D)QBFdependency schemes via tautology-free resolution
paths. In: Pulina, L., Seidl, M. (eds.) Theory and Applications of Satisfiability Testing—SAT 2020—
23rd International Conference, Alghero, Italy, July 3–10, 2020, Proceedings, Lecture Notes in Computer
Science, vol. 12178, pp. 394–411. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-51825-
7_28

8. Beyersdorff, O., Blinkhorn, J., Peitl, T.: Strong (D)QBF dependency schemes via implication-free res-
olution paths. Electron. Colloquium Comput. Complex TR21-135 (2021). https://eccc.weizmann.ac.il/
report/2021/135, arXiv:TR21-135

9. Beyersdorff, O., Janota, M., Lonsing, F., et al.: Quantified Boolean formulas. In: Biere, A., Heule, M., van
Maaren, H., et al. (eds.) Handbook of Satisfiability—Second Edition, Frontiers in Artificial Intelligence
and Applications, vol. 336, pp. 1177–1221. IOS Press (2021). https://doi.org/10.3233/FAIA201015

10. Blinkhorn, J., Beyersdorff, O.: Shortening QBF proofs with dependency schemes. In: Gaspers, S., Walsh,
T. (eds.) Theory and Applications of Satisfiability Testing—SAT 2017—20th International Conference,
Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings, Lecture Notes in Computer
Science, vol. 10491, pp. 263–280. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-66263-
3_17

11. Böhm, B., Beyersdorff, O.: QCDCL vs QBF resolution: further insights. In: Mahajan, M., Slivovsky,
F. (eds.) 26th International Conference on Theory and Applications of Satisfiability Testing, SAT 2023,
July 4–8, 2023, Alghero, Italy, LIPIcs, vol. 271, pp. 4:1–4:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPICS.SAT.2023.4

12. Böhm, B., Peitl, T., Beyersdorff, O.: Should decisions in QCDCL follow prefix order? In: Meel, K.S.,
Strichman, O. (eds.) 25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2–5, 2022, Haifa, Israel, LIPIcs, vol. 236, pp. 11:1–11:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.SAT.2022.11

13. Böhm, B., Peitl, T., Beyersdorff, O.: QCDCL with cube learning or pure literal elimination—what is
best? In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22. International Joint Conferences on Artificial Intelligence Organization, pp. 1781–
1787 (2022). https://doi.org/10.24963/ijcai.2022/248

14. Choudhury, A., Mahajan, M.: Dependency schemes in CDCL-based QBF solving: a proof-theoretic
study. In: Bouyer, P., Srinivasan, S. (eds.) 43rd IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2023, December 18–20, 2023, IIIT Hyderabad,
Telangana, India, LIPIcs, vol. 284, pp. 38:1–38:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPICS.FSTTCS.2023.38

15. Lonsing, F.: Dependency schemes and search-based QBF solving: theory and practice. PhD thesis,
Johannes Kepler University, Linz, Austria (2012)

16. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. J. Satisf. Boolean Model. Comput.
7(2–3), 71–76 (2010). https://doi.org/10.3233/sat190077

17. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman,
O., Szeider, S. (eds.) Theory and Applications of Satisfiability Testing—SAT 2010, 13th International
Conference, SAT 2010, Edinburgh, UK, July 11–14, 2010. Proceedings, Lecture Notes in Computer
Science, vol. 6175, pp. 158–171. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14186-
7_14

18. Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. In: deMoura,
L. (ed.) Automated Deduction—CADE 26—26th International Conference on Automated Deduction,

123

https://doi.org/10.1613/jair.3152
https://doi.org/10.1145/3355995
https://doi.org/10.46298/lmcs-19(2:2)2023
https://doi.org/10.23638/LMCS-15(1:13)2019
https://doi.org/10.1145/3352155
https://doi.org/10.1007/978-3-030-51825-7_28
https://doi.org/10.1007/978-3-030-51825-7_28
https://eccc.weizmann.ac.il/report/2021/135
https://eccc.weizmann.ac.il/report/2021/135
http://arxiv.org/abs/21-135
https://doi.org/10.3233/FAIA201015
https://doi.org/10.1007/978-3-319-66263-3_17
https://doi.org/10.1007/978-3-319-66263-3_17
https://doi.org/10.4230/LIPICS.SAT.2023.4
https://doi.org/10.4230/LIPICS.SAT.2022.11
https://doi.org/10.24963/ijcai.2022/248
https://doi.org/10.4230/LIPICS.FSTTCS.2023.38
https://doi.org/10.3233/sat190077
https://doi.org/10.1007/978-3-642-14186-7_14
https://doi.org/10.1007/978-3-642-14186-7_14

16 Page 24 of 24 A. Choudhury, M. Mahajan

Gothenburg, Sweden, August 6–11, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10395,
pp. 371–384. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-63046-5_23

19. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell. Res. 65, 180–208 (2019).
https://doi.org/10.1613/jair.1.11529

20. Peitl, T., Slivovsky, F., Szeider, S.: Long-distance Q-resolution with dependency schemes. J. Autom.
Reason. 63(1), 127–155 (2019). https://doi.org/10.1007/s10817-018-9467-3

21. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif.
Intell. 175(2), 512–525 (2011). https://doi.org/10.1016/j.artint.2010.10.002

22. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77–97
(2009). https://doi.org/10.1007/s10817-008-9114-5

23. Scholl, C., Wimmer, R.: Dependency quantified Boolean formulas: an overview of solution methods and
applications—extended abstract. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) International Conference
on Theory and Practice of Satisfiability Testing SAT, LNCS, vol. 10929, pp. 3–16. Springer, Berlin (2018)

24. Shukla, A., Biere, A., Pulina, L., et al.: A survey on applications of quantified Boolean formulas. In: 31st
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR, USA,
November 4–6, 2019, pp. 78–84. IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00020

25. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612,
83–101 (2016). https://doi.org/10.1016/j.tcs.2015.10.020

26. Wimmer, R., Scholl, C., Becker, B.: The (D)QBF preprocessor HQSpre—underlying theory and
its implementation. J. Satisf. Boolean Model. Comput. 11(1), 3–52 (2019). https://doi.org/10.3233/
SAT190115

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1613/jair.1.11529
https://doi.org/10.1007/s10817-018-9467-3
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1016/j.tcs.2015.10.020
https://doi.org/10.3233/SAT190115
https://doi.org/10.3233/SAT190115

	Dependency Schemes in CDCL-Based QBF Solving: A Proof-Theoretic Study
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basics
	2.2 Dependency Schemes
	2.3 The Proof System QCDCL

	3 Adding Dependency Schemes to the QCDCL proof system
	4 Refutation Size Bounds for Some Formulas
	4.1 The QParityn Formulas
	4.2 The Equalityn Formulas
	4.3 The Trapdoorn Formulas
	4.4 The Dep-Trapn Formulas
	4.5 The TwoPHPandCTn Formulas
	4.6 The RRSTrapEqn Formulas
	4.7 The PreDepTrapn Formulas
	4.8 The PropDep-Trapn Formulas
	4.9 The TwinEqn Formulas

	5 Relation Between Proof Systems
	6 Conclusion
	Acknowledgements
	References

