
Journal of Automated Reasoning (2023) 67:28
https://doi.org/10.1007/s10817-023-09671-5

Measure Construction by Extension in Dependent Type
Theory with Application to Integration

Reynald Affeldt1 · Cyril Cohen2

Received: 1 February 2023 / Accepted: 29 May 2023 / Published online: 18 August 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
We report on an original formalization of measure and integration theory in the Coq proof
assistant. We build the Lebesgue measure following a standard construction that had not
yet been formalized in proof assistants based on dependent type theory: by extension of a
measure over a semiring of sets. We achieve this formalization by leveraging on existing tech-
niques from the Mathematical Components project. We explain how we extend Mathematical
Components’ iterated operators and mathematical structures for analysis to provide support
for infinite sums and extended real numbers. We introduce new mathematical structures for
measure theory and incidentally provide an illustrative, concrete application of Hierarchy-
Builder, a generic tool for the formalization of hierarchies of mathematical structures. This
formalization of measure theory provides the basis for a new formalization of the Lebesgue
integration compatible with the Mathematical Components project.

Keywords Measure theory · Lebesgue integral · Coq · Mathematical Components

1 Introduction

Measure theory and integration theory are major topics in mathematics with practical appli-
cations. For example, they serve as the foundation of probability theory whose formalization
in proof assistants is used to verify information security (e.g., [1]) or artificial intelligence
(e.g., [39]). It is therefore no wonder that the topic of formalization of measure and integration
theory in proof assistants has already been tackled several times (e.g., [11, 12, 17, 26, 27]).
In fact, experiments are still going on [45], some still dealing with the basics [14, 22].

Our motivation is to develop measure and integration theory on top of MathComp [33],
a library of formalized mathematics developed using the Coq proof assistant [41]. The

B Reynald Affeldt
reynald.affeldt@aist.go.jp

Cyril Cohen
cyril.cohen@inria.fr

1 National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku,
Tokyo 135-0064, Japan

2 Université Côte d’Azur and Inria, 2004 route des Lucioles, 06902 Sophia Antipolis, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09671-5&domain=pdf

28 Page 2 of 27 R. Affeldt, C. Cohen

MathComp library consists of several algebraic theories that made it possible to formalize
the Odd Order theorem1 by following its published, revised proof [24, Sect. 6]. There are
now several libraries that are built on top of MathComp, the main ones being made available
as parts of the Mathematical Components project2. Among them, MathComp-Analysis [2,
3] aims at taking advantage of the algebraic theories provided by MathComp to develop
classical analysis (topology, real and complex analysis, etc.).

In this paper, we report on an original formalization of measure and integration theory.
Our approach is to extend MathComp-Analysis with reusable theories while following
textbook presentations [29, 32]. The best illustration is the construction of the Lebesgue
measure that we formalize. This is a standard construction from a semiring of sets, using
the Measure Extension theorem. To the best of our knowledge, it has never been formalized
with the abstraction of ring of sets or semiring of sets in a proof assistant based on dependent
type theory. Yet, its formalization is the occasion to develop new mathematical structures
of general interest for Coq users. Similarly, the construction of the Lebesgue integral gives
us the opportunity to develop a generic formalization of simple functions and to extend
the formalization of the iterated operators of MathComp [10], one key to the successful
formalization of the Odd Order theorem.

Our contribution in this paper is twofold. First, we bring to the Coq proof assistant a
formalization of measure and integration theory that is compatible with the algebraic the-
ories of MathComp. Second, we demonstrate recent formalization techniques developed
in the context of the Mathematical Components project. In particular, we use Hierarchy-
Builder [19] to formalize a hierarchy of mathematical structures for measure theory and
to provide a compositional formalization of simple functions. Our technical contributions
materialize as extensions to MathComp-Analysis in the form of reusable formal theories
about sequences (of reals and of extended real numbers) and about sums over general sets
and over finitely-supported functions.

1.1 Paper Outline

In Sect. 2, we explain how we develop the theory of extended real numbers by extending
MathComp and MathComp-Analysis. In Sect. 3, we explain how we encode the basic
definitions of measure theory, demonstrating the use of Hierarchy-Builder. In Sect. 4,
we formalize the Measure Extension theorem which shows how to extend a measure over a
semiring of sets to a σ -algebra. This is a standard and generic approach to the construction
of measures. In Sect. 5, we obtain the Lebesgue measure by extending a measure over the
semiring of sets of intervals. In Sect. 6, we show that the framework developed so far allows
for a formalization of the Lebesgue integral up to the dominated convergence and Fubini’s
theorems. We review related work in Sect. 7 and conclude in Sect. 8.

1.2 Note on Notation

The Mathematical Components project have been favoring ASCII notations. Most of them are
unsurprising because they are inspired by LATEX commands. This paper follows this tradition;
ASCII notations will be explained in the prose or in Tables 1 and 2. As a consequence, we

1 The Odd Order theorem, a.k.a. the Feit-Thompson Theorem, states that groups of odd order are solvable.
This theorem relies on finite group theory, character theory, and Galois theory.
2 https://github.com/math-comp/.

123

https://github.com/math-comp/

Measure Construction by Extension in Dependent Type... Page 3 of 27 28

Fig. 1 Numeric types provided
by MathComp and
MathComp-Analysis used in
this paper

can display the Coq code almost verbatim; we allow pretty-printing only for a few standard
symbols (such as ← instead of <-, → instead of ->, ∀ instead of forall, ∃ instead of
exists, ≤ instead of <=, �= instead of !=, ∧ instead of /\, etc.). The accompanying
development [42] can be found online and we will refer to it as a citation possibly indicating
the name of the relevant file (as in [42, file filename.v]).

2 Support for Extended Real Numbers

Since a measure is potentially infinite, it is represented by extended real numbers. A pre-
requisite for the construction of measures is therefore the development of the theory of
extended real numbers and of their sequences. This actually calls for a substantial extension
of MathComp-Analysis [3].

Our starting point is the hierarchy of numeric and real interfaces provided by MathComp
and MathComp-Analysis. It contains (among others) the type numDomainType for numeric
integral domains, the type numFieldType for numeric fields, the type realFieldType for
real fields (see [18, Chapter 4]), and the type realType for real numbers. They form an
inheritance chain as depicted in Fig. 1.

The definition of extended real numbers is unsurprising (and predates the work presented
in this paper):

Inductive extended (R : Type) := EFin of R | EPInf | ENInf.

Hereafter, the notation +oo (resp. -oo) is for the constructor EPInf (resp. ENInf). The con-
structor EFin injects a real number r into the set of extended real numbers; we also use the
notation r%:E for that purpose. The type extended R appears as the notation \bar R.

2.1 Algebraic Aspects of Extended Real Numbers

The expression ∞ − ∞ is undefined in the mathematical practice. How to deal with this is
a crucial aspect of our formalization. We define it to be −∞ because it makes the extended
real numbers a commutative monoid, so we can use MathComp’s iterated operators [10].

Furthermore, we can combine the iterated operators of MathComp with the notion of
limit, which comes from MathComp-Analysis [3], to introduce a notation for infinite
sums. On the one hand, MathComp comes with a generic definition of iterated operators
\big[op/idx]_(i ← s | P i) f i where f is a function whose domain corresponds to
the list of indices s and P is a boolean predicate. Depending on the properties of the binary
operator op and the element idx, many lemmas are available that have been key to important
formalizations in Coq (e.g., [24]).

The notation \big[op/idx]_(i < n | P i) f i is a special case where the indices
are the natural numbers less than n. As for the notation \sum_(i ← s | P i) f i, it
is a special case for the iterated addition when f is a numerical type-valued function. On

123

28 Page 4 of 27 R. Affeldt, C. Cohen

Table 1 Summary of iterated operators and alike used or newly introduced in this paper

Finitely iterated operators [10]:

\big[op/idx]_(i ← s | P i) f i op i<|s|,i∈P f (si)

\big[op/idx]_(i < n | P i) f i op 0≤i<n,i∈P f (i)

\big[op/idx]_(m ≤ i < n | P i) f i op m≤i<n,i∈P f (i)

Application to numeric functions (see Table 2 for application to sets):

\sum_(i ← s | P i) f i
∑

i<|s|,i∈P f (si)

Countably iterated sum of numeric functions (Sect. 2.1):

\sum_(i<oo | P i) f i
∑∞

i=0,i∈P f (i)

\sum_(m ≤ i<oo | P i) f i
∑∞

i=m,i∈P f (i)

Iterated operators over finite supports (Sect. 2.4):

\big[op/idx]_(i \in D) f i op i∈D f (i) if f (i) has a finite number

of values in D s.t. f (i) �= idx o.w. idx

Sum of extended real numbers over general sets (Sect. 2.5):

\esum_(i in P) f i
∑

i∈P f (i)

Integral (Sect. 6.4):

\int[mu]_(x in D) f x
∫
x∈D f (x)dμ(x)

The symbol op is the iterated operator corresponding to op

the other hand, MathComp-Analysis comes with a definition of limit [3, Sect. 2.3]. It
can be applied to sequences, i.e., functions of type nat → T (notation T^nat). Given a
sequence u, lim u is the limit of the sequence un when n → ∞. We combine these two
notations into a family of notations \sum_(i <oo | P i) f i, which is simply defined
as lim (fun n ⇒ \big[op/idx]_(i < n | P i) f i). Of course, these new notations
need to be instrumented with many lemmas, the rest of this paper will provide several exam-
ples.

Table 1 contains a summary of the notations for iterated operators we have discussed so
far.3

2.2 Topological Aspects of Extended Real Numbers

MathComp-Analysis provides several mathematical structures (topological, uniform, pseu-
dometric spaces, etc.) together with generic lemmas. To enjoy these lemmas, it is necessary
to equip extended real numbers with these structures by showing they meet their interfaces.

Extended real numbers form a pseudometric space. The instantiation of the mathemat-
ical structures essentially relies on the definition and properties of an order-preserving
bijective function from the set of extended real numbers to [−1; 1] (see [42, file
constructive_ereal.v] for details):

Definition contract (x : \bar R) : R :=
match x with r%:E ⇒ r / (1 + ‘|r|) | +oo ⇒ 1 | -oo ⇒ -1 end.

There is no hope to get a richer structure (say, MathComp’s zmodType) on the full type
though, because as we already discussed above ∞ − ∞ is taken to be −∞.

3 Table 1 also contains notations that we will introduce later in this paper. We summarize these notations
together to highlight their resemblances and serve as a reading guide.

123

Measure Construction by Extension in Dependent Type... Page 5 of 27 28

2.3 Sequences of Extended Real Numbers

The preparatory steps (Sects. 2.1 and 2.2) we briefly overviewed above are necessary to
produce a theory about sequences of extended real numbers that blends in MathComp-
Analysis in a satisfactory way. For the sake of illustration, let us present two sample lemmas.
The first one shows that the limit of a sum is the sum of limits:

Lemma ereal_limD (R : realType) (f g : (\bar R)^nat) :
cvg f → cvg g → lim f +? lim g → lim (f \+ g) = lim f + lim g.

We already explained the notation lim in Sect. 2.1. See Fig. 1 for realType. The definition
cvg f (cvg is for “convergence”) states that lim f exists without naming it explicitly. The
notation a +? b is a predicate that checks whether the addition of a and b is well-defined;
the notation f \+ g is for the pointwise addition of two functions.

The second illustrative lemma shows the commutation of finite and infinite sums of
sequences of non-negative terms:

Lemma nneseries_sum_nat (R : realType) n (f : nat → nat → \bar R) :
(∀ i j, 0 ≤ f i j) →
\sum_(j <oo) (\sum_(0 ≤ i < n) f i j) =
\sum_(0 ≤ i < n) (\sum_(j <oo) (f i j)).

There are many lemmas dealing with sequences of extended real numbers that have been
added to MathComp-Analysis for the purpose of this work (see [42, file sequences.v]
and [42, file normedtype.v]). These are reusable lemmas that make the rest of our for-
malization possible.

2.4 Iterated Operators Over Finite Supports

To be able to succinctly formalize some proofs relying on iterated operators, we also extend
the library of iterated operators of MathComp-Analysis with iterated operators over finite
supports. They take the form of the notation \big[op/idx]_(i \in A) f i for the iterated
application of the operator op to f i’s where i ranges over A and f as a finite support.

The definition of the finite support of a function relies on a theory about the cardinality
properties of sets that was also triggered by the work presented in this paper. From this
theory, we use in particular the function fset_set (fset_set A returns a list when the set A
is indeed finite and the empty list otherwise) to define the finite support of a function:

Definition finite_support {I : choiceType} {T : Type}
(idx : T) (D : set I) (F : I → T) : seq I :=

fset_set (D ∩ F @^-1‘ [set~ idx] : set I).

The notation for iterated operators over finite supports combines this definition with Math-
Comp’s iterated operators:

Notation "\big [op / idx]_ (i ’\in’ D) F" :=
(\big[op/idx]_(i ← finite_support idx D (fun i ⇒ F)) F) :

big_scope.

The integral of simple functions in Sect. 6.3 will provide a concrete use of this new notation.

123

28 Page 6 of 27 R. Affeldt, C. Cohen

Table 2 Summary of the set-theoretic notations used in this paper

ASCII Coq Meaning
notation identifier

set0 set0 The empty set

[set: A] setT The full set of elements of type A

‘|‘ setU Set union

‘&‘ setI Set intersection

‘\‘ setD Set difference

~‘ setC Set complement

‘<=‘ subset Set inclusion

f @‘ A image Image by f of A

f @^-1‘ A preimage Preimage by f of A

[set x] set1 The singleton set {x}
[set~ x] See [42] The complement of {x}
[set E | x in P] See [42] The set of E with x ranging in P

range f See [42] Image by f of the full set

\big[setU/set0]_ (i ← s | P i) f i See Table 1
⋃

i<|s|,i∈P f (si)

\bigcup_(k in P) F k bigcup Countable union

\bigcap_(k in P) F k bigcap Countable intersection

trivIset D F trivIset F is a sequence of pairwise

disjoint sets over the domain D

[set‘ p] See [42] Set corresponding to the boolean

predicate p

The typeset T is defined asT → Prop. Most set-theoretic constructs are given ASCII notations, otherwise
we use the Coq identifier directly (as with set0 or trivIset)

2.5 Sums Over General Sets

Last, we extend MathComp-Analysis with sums over general sets, i.e.:

∑

i∈S
ai

def= sup

{
∑

i∈A

ai
∣
∣
∣ A finite subset of S

}

.

For that purpose, we introduce the definition fsets S for the finite sets included in S. It is
defined using the predicate finite_set which is defined in such a way that finite_set A

when there is a natural number n such that there is bijection between A and the set {k | k < n},
i.e., when the set A is finite (see [42, file cardinality.v] for details). Using fsets and
the notation for iterated operators over finite supports from Sect. 2.4, the pencil-and-paper
definition of sums over general sets translates directly:

Variables (R : realFieldType) (T : choiceType).
Definition fsets S : set (set T) := [set F | finite_set F ∧ F ⊆ S].
Definition esum (S : set T) (a : T → \bar R) :=

ereal_sup [set \sum_(x \in A) a x | A in fsets S].

The type realFieldType is one of the numeric types of MathComp (see Fig. 1). The
identifier ereal_sup corresponds to the supremum of a set of extended real numbers. The
definition esum is equipped with the notation \esum_(i in P) f i of Table 1. It generalizes

123

Measure Construction by Extension in Dependent Type... Page 7 of 27 28

the notation for the limit of sequences of extended real numbers of Sect. 2.1. As an illustration
of the theory of sums over general sets, let us consider the following partition property:

Jk pairwise-disjoint → (∀ j, j ∈
⋃

k∈K
Jk → 0 ≤ a j) →

∑

i∈⋃
k∈K Jk

ai =
∑

k∈K

⎛

⎝
∑

j∈Jk

a j

⎞

⎠ .

Here follows the corresponding formal statement, where the hypothesis about the pairwise-
disjointness of the sets Jk is slightly generalized (see Table 2 for notations):

Lemma esum_bigcup J a : trivIset [set k | a @‘ J k �= [set 0]] J →
(∀ x, (\bigcup_(k in K) J k) x → 0 ≤ a x) →

\esum_(i in \bigcup_(k in K) J k) a i =
\esum_(k in K) \esum_(j in J k) a j.

This property will turn out to be useful when developing the Measure Extension theorem
later in this paper.

3 Basic Definitions of Measure Theory

The main mathematical definitions for measure theory are σ -algebra and measure. The goal
of the construction of the Lebesgue measure is to build a function that satisfies the properties
of a measure. This is not trivial because such a function does not exist in general when the
domain is an arbitrary powerset, hence the introduction of σ -algebras.

This section proposes a formalization of the basic definitions of measure theory using
Hierarchy-Builder [19], a tool that automates the writing of packed classes [23], a
methodology to build hierarchies of mathematical structures that is used pervasively in the
Mathematical Components project.

3.1 Overview ofHIERARCHY-BUILDER

Hierarchy-Builder extends Coq with commands to define hierarchies of mathematical
structures and functions. It is designed so that hierarchies can evolve (for example by splitting
a structure into smaller structures) without breaking existing code. These commands are
compiled to packed classes [23], but the technical details of their implementation in Coq
(modules, records, coercions, implicit arguments, canonical structures instances, notations,
etc.) are hidden to the user.

The main concept of Hierarchy-Builder is the one of factory. This is a record defined by
the command HB.factory that packs a carrier, operations, and properties. This record usually
corresponds to the standard definition of a mathematical structure. Mixins are factories used
as the default definition for a mathematical structure; they are defined by the command
HB.mixin. Structures defined by the command HB.structure are essentially sigma-types
with a carrier paired with one or more factories. A mixin often extends a structure, so it
typically takes as parameters a carrier and other structures.

Factories are instantiated using the command HB.instance. Instances are built with an
xyz.Build function which is automatically generated for each xyz factory.

A builder is a function that shows that a factory is sufficient to build one or several mixins.
To add builders, one uses the command HB.builders that opens a Coq section which starts

123

28 Page 8 of 27 R. Affeldt, C. Cohen

with postulating a factory instance and lets the user declare several instances of mixins as
builders.

In addition to commands to build hierarchies, Hierarchy-Builder also checks their
validity by detecting missing interfaces or competing inheritance paths [2]. More than an
inheritance mechanism, Hierarchy-Builder therefore provides help in the design of hier-
archies of structures.

3.2 Mathematical Structures for Measure Theory

A σ -algebra is a mathematical structure that comprises a set of sets that contains the empty
set, and is stable by complement and by countable union. It is best defined as a hierarchy
of mathematical structures because more general structures actually play a key role in the
construction by extension of the Lebesgue measure.

3.2.1 Inheritance Chain from Semiring of Sets

The hierarchy of mathematical structures for measure theory starts with semirings of sets.
They are formalized using Hierarchy-Builder (see Sect. 3.1) as follows:

1 HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
2 measurable : set (set T) ;
3 measurable0 : measurable set0 ;
4 measurableI : setI_closed measurable;
5 semi_measurableD : semi_setD_closed measurable }.
6
7 #[short(type=semiRingOfSetsType)]
8 HB.structure Definition SemiRingOfSets d :=
9 {T of isSemiRingOfSets d T}.

The declaration of the mixin starts at line 1. The parameter d is what we call a display
parameter. It can be ignored on a first reading because it is not used in the definition; it
is used to implement user-friendly notations as will be explained in Sect. 3.4 where we
will have enough material to demonstrate its use with a concrete example. Line 2 corre-
sponds to the carrier. A semiring of sets contains the empty set (line 3). It is also stable
by finite intersection; this is captured by line 4, where setI_closed G is formally defined
as ∀ A B, G A → G B → G (A ∩ B). At line 5, semi_setD_closed G means that the
relative complement of two sets in G can be partitioned into a finite number of sets in G:

Definition semi_setD_closed G := ∀ A B, G A → G B → ∃ D,
[∧ finite_set D, D ⊆ G, A ‘\‘ B = \bigcup_(X in D) X & trivIset D id].

The definition of semiring of sets is completed at line 8 by declaring the structure (as explained
in Sect. 3.1) and providing a conventional notation for the corresponding type (line 7).
Hereafter, we call measurable sets the sets that form a semiring of sets.

A ring of sets is a non-empty set of sets that is closed under union and difference. It can
be defined by extending a semiring of sets with the axiom that it is stable by finite union. Its
interface can be defined using Hierarchy-Builder as follows:

1 HB.mixin Record SemiRingOfSets_isRingOfSets d T
2 of SemiRingOfSets d T := {
3 measurableU : @setU_closed T measurable }.
4
5 #[short(type=ringOfSetsType)]
6 HB.structure Definition RingOfSets d :=
7 {T of SemiRingOfSets_isRingOfSets d T & SemiRingOfSets d T }.

123

Measure Construction by Extension in Dependent Type... Page 9 of 27 28

Fig. 2 Inheritance chain from
semiring of sets to σ -algebra’s

This declaration provides a new mixin that extends the mixin for semiring of sets (note the
of declaration at line 2). At line 3, the expression setU_closed G means that the class G

is stable by finite unions and is formally defined as ∀ A B, G A → G B → G (A ∪ B).
The modifier @ at line 3 is Coq syntax to enforce the explicit input of implicit argu-
ments. The corresponding structure is declared at line 6 where it is marked as satisfying
the mixin SemiRingOfSets_isRingOfSets and extending the structure of semiring of sets
SemiRingOfSets (line 7).

An algebra of sets is a set of sets that contains the empty set and is stable by (finite) union
and complement. Algebras of sets are defined as extending rings of sets with the axiom that
the full set belongs to the set of measurable sets. The Hierarchy-Builder declaration is
similar to the one of semiring of sets and ring of sets:

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

#[short(type=algebraOfSetsType)]
HB.structure Definition AlgebraOfSets :=

{T of RingOfSets_isAlgebraOfSets T & RingOfSets d T}.

Finally, σ -algebras are defined by extending algebras of sets with the axiom of stability by
countable union:

HB.mixin Record Measurable_from_algebraOfSets d T
of AlgebraOfSets d T :=

{ bigcupT_measurable :
∀ F, (∀ k, measurable (F k)) → measurable (\bigcup_k (F k)) }.

#[short(type=measurableType)]
HB.structure Definition Measurable :=

{T of Measurable_from_algebraOfSets d T & AlgebraOfSets d T}.

These definitions form an inheritance chain (Fig. 2), so that σ -algebras are also algebras of
sets, which are also rings of sets, and therefore semirings of sets.

3.2.2 Direct Definition of Mesurable Spaces

The set of interfaces provided by the hierarchy of mathematical structures for measure theory
is not the only way to instantiate structures. We also provide factories (introduced in Sect. 3.1).
For example, the following factory provides an alternative interface for σ -algebras:

HB.factory Record isMeasurable d T := {
measurable : set (set T) ;
measurable0 : measurable set0 ;
measurableC : ∀ A, measurable A → measurable (~‘ A) ;
measurable_bigcup :

∀ F, (∀ k, measurable (F k)) → measurable (\bigcup_k (F k)) }.

123

28 Page 10 of 27 R. Affeldt, C. Cohen

It is arguably closer to the textbook definition that we gave at the beginning of Sect. 3.2.
In fact, though it may seem at first sight that mixins provide the definition of mathematical
structures, we have observed in practice that the standard textbook definition often ought
better be sought in factories provided afterwards.

3.3 Generated�-algebras

The notion of generated σ -algebra will come in handy to define the Measure Extension theo-
rem and to develop the theory of measurable functions. The generated σ -algebra σ � D, G �
is the smallest σ -algebra that contains the set of sets G, such that the complement is taken
w.r.t. a set D. This is defined using a generic smallest predicate:

Definition smallest C G := \bigcap_(A in [set M | C M ∧ G ⊆ M]) A.
...
Context {T}.
Definition sigma_algebra D G := [∧ G set0, (∀ A, G A → G (D ‘\‘ A)) &

(∀ A : (set T)^nat, (∀ n, G (A n)) → G (\bigcup_k A k))].
...
Notation "’σ �’ D , G ’�’" := (smallest (sigma_algebra D) G).

Below, the notation σ � G � is for the measurable sets of the σ -algebra generated from the
set of sets G with complement take w.r.t. the full set.

Note that the definition smallest is well-defined (i.e., is indeed the smallest set in the
class C) whenever the smallest fixpoint of the class C indeed exists. This is why the definition
of a generated σ -algebra can also be found elsewhere [14, Sect. 4.2] defined as an induc-
tive predicate instead. The choice of using the smallest predicate rather than an inductive
definition is for the sake of genericity: we have a unique function symbol and a common
theory to deal with all generated classes (Dynkin, σ -algebra, etc.), and since smallest itself
is monotonous, we can reduce comparison of generated classes to the extent of the classes
themselves. However, this has the drawback that the elimination principle and correctness
lemmas are not automatically proven by Coq as they would with the Inductive command.

Since the set of sets of type σ � G � forms a σ -algebra we can equip it with the structure
of measurableType from Sect. 3.2.1. The temptation would be to give a definition to the
measurable type generated by G. However, for the sake of modularity it is a common practice
in the MathComp libraries to define a type alias of T (of type pointedType, i.e., it contains
at least one element) with G as a phantom argument and provide a inferable instance of
measurable type on this alias. Hence we introduce a dedicated identifiersalgebraType (line 1
below) to alias T and a dedicated display parameter sigma_display (line 2) (remember from
Sect. 3.2.1 that mathematical structures for measure theory are parameterized by a display
parameter to be explained in Sect. 3.4). Let us furthermore assume that we are given the proofs
sigma_algebra{0,C,_bigcup} corresponding to the σ -algebra properties of a generated
σ -algebra. To associate to the identifier salgebraType a structure of σ -algebra, we use the
Hierarchy-Builder command HB.instance. At line 8, it equips salgebraType with a
structure of pointed type (Pointed.on replicates the pointed type structure of the underlying
type, here T). At line 9, it is used with the constructor of the factory isMeasurable of
Sect. 3.2.2. The corresponding display appears at line 10 and the proofs of the σ -algebra
properties appear at lines 12–13.

1 Definition salgebraType {T} (G : set (set T)) := T.
2 Definition sigma_display {T} : set (set T) → measure_display.
3 Proof. exact. Qed.
4

123

Measure Construction by Extension in Dependent Type... Page 11 of 27 28

5 Section g_salgebra_instance.
6 Variables (T : pointedType) (G : set (set T)).
7
8 HB.instance Definition _ := Pointed.on (salgebraType G).
9 HB.instance Definition _ := @isMeasurable.Build

10 (sigma_display G)
11 (salgebraType G) σ � G �
12 (@sigma_algebra0 _ setT G) (@sigma_algebraC)
13 (@sigma_algebra_bigcup _ setT G).
14
15 End g_salgebra_instance.

3.4 Displays for Measurable Types

We saw in the previous sections that the structures for measure theory are parameterized by
a display parameter. Its purpose is to disambiguate the printing of expressions of the (input)
form measurable A. This is useful when several of them appear in the same local context
or when A does not provide enough information to infer the right measurable type.

More concretely, let us consider the basic case of a measurable type T with display d (e.g.,
T:ringOfSetsType d). To assert that a set A:set T is measurable, one can always write
measurable A. Yet, the display mechanism is such that Coq prints back d.-measurable A.
This is achieved by providing a type for displays (line 1) and a notation (line 6):

1 Inductive measure_display := default_measure_display.
2
3 Declare Scope measure_display_scope.
4 Delimit Scope measure_display_scope with mdisp.
5
6 Notation "d .-measurable" := (@measurable d%mdisp).

The display mechanism can be used to disambiguate expressions. Let us consider the case of
generated σ -algebra’s. We saw that the display for generated σ -algebra’s is parameterized
by the generator set (sigma_display in the previous section—Sect. 3.3). We can therefore
introduce a notation G.-sigma for the display associated with the generator set G and a
notation G.-sigma.-measurable for the measurable sets of the σ -algebra generated by G:

Notation "G .-sigma" := (sigma_display G) : measure_display_scope.
Notation "G .-sigma.-measurable" :=

(measurable : set (set (salgebraType G))) : classical_set_scope.

For example, we can use these notations to regard the empty set set0 as a member of the
σ -algebra generated by any set G:

Goal ∀ (T : pointedType) (G : set (set T)), G.-sigma.-measurable set0.
Proof. by move⇒ T G; exact: measurable0. Qed.

In comparison, the input measurable set0 would not type check, because T does not have
a default instance to give a meaning to measurable.

3.5 Functions on Classes of Sets

There are several notions of functions from classes of sets to the real numbers (or, implicitly,
extended reals) which fall under the umbrella name of “measure”. In the literature, they
are named contents (a.k.a. additive measures), premeasures, outer measures, σ -subadditive
measures, and σ -additive measures (a.k.a. measures). We define predicates for all of these

123

28 Page 12 of 27 R. Affeldt, C. Cohen

notions, but we only define structures for the three most useful: contents, measures, and outer
measures.

3.5.1 Contents

A content (or an additive measure) μ is a non-negative function defined over a semiring of
sets such that the measure of the empty set is 0 and such that μ(∪n

k=1Fk) = ∑n
k=1 μ(Fk) for

a finite number of pairwise-disjoint measurable sets F . We first provide a definition for the
latter condition:

Definition semi_additive mu := ∀ F n, (∀ k, measurable (F k)) →
trivIset setT F → measurable (\big[setU/set0]_(k < n) F k) →
mu (\big[setU/set0]_(k < n) F k) = \sum_(k < n) mu (F k).

The pairwise-disjointness of sets is captured by the generic predicate trivIset (Table 2).
Asking ∪n

k=1Fk to be measurable is superfluous when taken on a ring of sets. Contents are
eventually defined by the following mixin and structure:

HB.mixin Record isContent d (T : semiRingOfSetsType d)
(R : numFieldType) (mu : set T → \bar R) := {

measure_ge0 : ∀ x, 0 ≤ mu x ;
measure_semi_additive : semi_additive mu }.

HB.structure Definition Content d (T : semiRingOfSetsType d)
(R : numFieldType) := { mu & isContent d R T mu }.

See Fig. 1 for the type numFieldType. In the Coq code, the type of contents is denoted by
{content set T → \bar R}.

An essential property of contents is that they can be extended from a semiring of sets S to
its generated ring of sets R(S). We can define the latter similarly to how we defined generated
σ -algebras in Sect. 3.3:

Definition setring G := [∧ G set0, setU_closed G & setDI_closed G].
Notation "’ρ �’ G ’�’" := (smallest setring G).

The predicate setDI_closed is for stability by set difference and is defined by
∀ A B, G A → G B → G (A ‘\‘ B).

A generated ring of sets can be equipped with a canonical structure of ring of sets. It
happens that the measurable sets of these generated rings of sets can in fact be expressed as
the finite disjoint unions of (non-empty) sets from the original semiring of sets S (rT in the
lemma below indicates sets from the generated ring of sets):

Lemma ring_finite_set (A : set rT) : measurable A → ∃ B : set (set T),

[∧ finite_set B,
(∀ X, B X → X �=set0),
trivIset B id,
(∀ X, X \in B → measurable X) &
A = \bigcup_(X in B) X].

Thanks to this lemma, we can make this decomposition explicit by the following func-
tion decomp, which given a set A in R(S) returns a finite set of sets in S that cover A:

Definition decomp (A : set rT) : set (set T) :=
if A == set0 then [set set0]
else if pselect (measurable A) is left mA then

projT1 (cid (ring_finite_set mA))

else [set A].

123

Measure Construction by Extension in Dependent Type... Page 13 of 27 28

The function decomp is written in an idiomatic way to retrieve in Coq a witness from an
existential proof. The identifier pselect comes from MathComp-Analysis and is a strong
version of the law of excluded middle [3, Sect. 5.2]; cid is the axiom of constructive indefinite
description.

Using decomp, we can extend the function over the original semiring of sets by summing
the components:

Definition measure (R : numDomainType) (mu : set T → \bar R)
(A : set rT) : \bar R := \sum_(X \in decomp A) mu X.

We thus have a measure mu function for all functions mu, which is equal to mu on the sets of
the semiring of sets where mu is defined, and which is a content on the generated ring of sets
when mu is a content (section content in [42, file measure.v]), and which is σ -additive
if mu is σ -subadditive (lemma ring_semi_sigma_additive). Furthermore, using the latter
fact we prove that when mu is σ -subadditive on a semiring of sets, it is in fact σ -additive
(lemma semiring_sigma_additive).

3.5.2 Measures

A measure μ is defined similarly to a content. The difference is the additivity axiom: it is
such that μ(∪k Fk) = ∑

k μ(Fk) for any sequence F of pairwise-disjoint measurable sets.
We provide a definition for the latter condition, but generalizing it for semirings of sets by
requiring the union ∪k Fk to be measurable as a precondition, thus merging the notions of
measure and premeasure into one:

Definition semi_sigma_additive mu := ∀ F, (∀ k, measurable (F k)) →
trivIset setT F → measurable (\bigcup_k F k) →
(fun n ⇒ \sum_(k < n) mu (F k)) � mu (\bigcup_k F k).

The notation f � l is a notation for convergence of functions that comes from MathComp-
Analysis [3]. In particular, when f � l holds, we have lim f = l using the lim notation
of Sect. 2 (provided that the range of the function f is a separated space, which is the case
for the functions considered in this section). Note that in the definition above the precon-
dition measurable (\bigcup_k F k) holds unconditionally whenever we know that the
underlying type is a σ -algebra.

We use this definition to define the mixin corresponding to measures, which extends the
one for contents:

HB.mixin Record Content_isMeasure d (T : semiRingOfSetsType d)
(R : numFieldType) mu of isContent d R T mu := {

measure_semi_sigma_additive : semi_sigma_additive mu }.

#[short(type=measure)]
HB.structure Definition Measure d (T : semiRingOfSetsType d)

(R : numFieldType) :=
{ mu of Content_isMeasure d T mu & Content d mu }.

In practice, to construct a measure, one would rather use the following factory (we introduced
the notion of factory in Sect. 3.2.2) whose interface is closer to the textbook definition of
measure:

HB.factory Record isMeasure d (T : semiRingOfSetsType d)
(R : realFieldType) (mu : set T → \bar R) := {

measure0 : mu set0 = 0 ;
measure_ge0 : ∀ x, 0 ≤ mu x ;
measure_semi_sigma_additive : semi_sigma_additive mu }.

123

28 Page 14 of 27 R. Affeldt, C. Cohen

The notation {measure set T → \bar R} corresponds to the type of measures.

3.5.3 Outer Measures

Outer measures are the object of study of the measure extension theorems. Contrarily to a
measure, an outer measure mu is σ -subadditive on the full powerset rather than on a specific
class of sets.

Definition sigma_subadditive
(R : numFieldType) (T : Type) (mu : set T → \bar R) :=

∀ (F : (set T)^nat), mu (\bigcup_n (F n)) ≤ \sum_(n <oo) mu (F n).

Compared to σ -additivity, in σ -subadditivity the relation between the measure of the count-
able union and the sum of the measures is an inequality, there are no conditions on the
sequence of sets, and the support type need not be a σ -algebra. Like for contents and mea-
sures (Sects. 3.5.1 and 3.5.2), we encode an outer measure as a Hierarchy-Builder mixin:

HB.mixin Record isOuterMeasure
(R : numFieldType) (T : Type) (mu : set T → \bar R) := {

outer_measure0 : mu set0 = 0 ;
outer_measure_ge0 : ∀ x, 0 ≤ mu x ;
le_outer_measure : {homo mu : A B / A ⊆ B � A ≤ B} ;
outer_measure_sigma_subadditive : sigma_subadditive mu }.

The notation {homo f : x y / r x y � s x y} is a generic MathComp notation for
homomorphisms f with respect to the relations r and s. The type of outer measures comes
with the notation {outer_measure set T → \bar R}.

4 Measure Extension

A standard approach to the construction of measures is to extend a function over a semiring
of sets, a ring of sets, or an algebra of sets to a measure over an enclosing σ -algebra.
These extension theorems are known under different names (Carathéodory/Carathéodory-
Fréchet/Carathéodory-Hopf/Hopf/Hahn/Hahn-Kolmogorov/etc. extension theorems). In the
following, we explain the formalization of a version starting from semiring of sets and refer
to it as the Measure Extension theorem.

As in the textbooks we follow [29, 32], we decompose the Measure Extension theorem
in reusable constructions and lemmas. The first, which we refer to as the outer measure
construction, extends a non-negative function μ such that μ(∅) = 0 over a semiring of sets
S to an outer measure (Sect. 4.1). This is then shown to be a measure over the σ -algebra
of Carathéodory-measurable sets (Sect. 4.2). When restricted to this σ -algebra, we call it
the Carathéodory measure. Now, if μ was a σ -subadditive content on S, the σ -algebra of
Carathéodory-measurable sets contains the σ -algebra generated by S, and the Carathéodory
measure is uniquely determined on it, by the values of μ on S (Sect. 4.3).

4.1 Outer Measure Construction

The first part of the Measure Extension theorem builds an outer measure (Sect. 3.5.3)
given a function defined over a semiring of sets. In textbooks it is often stated in a
weaker form starting from a ring of sets or an algebra of sets. The outer measure

123

Measure Construction by Extension in Dependent Type... Page 15 of 27 28

in question is more precisely defined as the infimum of the measures of covers, i.e.,
infF

{∑∞
k=0 μ(Fk) | (∀k,measurable(Fk)) ∧ X ⊆ ⋃

k Fk
}
. The definition of these cov-

erable measures translates directly in MathComp-Analysis:

Definition measurable_cover X :=
[set F | (∀ k, measurable (F k)) ∧ X ⊆ \bigcup_k (F k)].

We use measurable_cover to define the desired outer measure:

Context d (T : semiRingOfSetsType d) (R : realType).
Variable mu : set T → \bar R.
Definition mu_ext (X : set T) : \bar R :=

ereal_inf [set \sum_(k <oo) mu (F k) | F in measurable_cover X].

The identifier ereal_inf corresponds to the infimum of a set of extended real numbers. In
the following, mu_ext mu is noted mu^*.

The difficulty to show that mu^* is an outer measure is to show that it is σ -subadditive
(remember that we are working under the hypotheses that mu set0 = 0 and that mu is non-
negative). A typical textbook proof [32, Sect. X.1] [29, Lemma 1.47] translates to a proof
script of 54 lines of code (lemma mu_ext_sigma_subadditive, [42, filemeasure.v]). The
main technical point is the use of sums over general sets. Precisely, in the course of proving
σ -subadditivity, we run into a subgoal of the following shape (μ∗ is the outer measure under
construction):

μ∗(∪i Fi) ≤
∞∑

i

(
μ∗(Fi) + ε

2i

)
.

The proof goes on by showing μ∗(∪i Fi) ≤ ∑
i, j μ(Gi j) ≤ ∑

i
∑

j μ(Gi j) for some well-

chosen G, such that Fi ⊆ ∪ j Gi j and
∑

j μ(Fi j) ≤ μ∗(Fi) + ε/2i . This proof can be
completed with the partition property using sums over general sets from Sect. 2.5.

Coming back to mu^*, we also show that it coincides with the input measure mu (lemma
measurable_mu_extE in [42, file measure.v]).

4.2 From an Outer Measure to aMeasure

The second part of the Measure Extension theorem builds, given an outer measure, a σ -algebra
and a measure over it. The resulting σ -algebra is formed of Carathéodory measurable sets,
i.e., sets A such that ∀X , μ∗(X) = μ∗(X ∩ A) + μ∗(X ∩ Ā) where μ∗ is an outer measure.
Hereafter, the set of Carathéodory measurable sets for an outer measure mu will appear as
the notation mu.-caratheodory.

Given our newly developed theory of sequences of extended real numbers (Sect. 2.3),
proving, for an outer measure mu, that mu.-caratheodory is actually
a σ -algebra is essentially a translation of standard pencil-and-paper proofs (see lemmas
caratheodory_measurable_{set0,setC,bigcup} in [42, file measure.v]). Hereafter,
the σ -algebra of Carathéodory measurable sets is denoted by mu.-cara.-measurable (this
notation is implemented using the display mechanism explained in Sect. 3.4).

Similarly, proving that the restriction of the outer measure mu to the σ -algebra
mu.-cara.-measurable is a measure is also essentially a direct translation of standard
pencil-and-paper proofs (see lemmascaratheodory_measure{0,_ge0,_sigma_additive}).

Finally, we formally prove a number of properties about the resulting measure, in particular
that it is complete, i.e., negligible sets are measurable. Let T be a semiring of sets and R be a

123

28 Page 16 of 27 R. Affeldt, C. Cohen

realFieldType. A set N is negligible for μ when there exists a measurable set A such that
μ(A) = 0 and N ⊆ A:

Definition negligible (mu : set T → \bar R) N :=
∃ A, [∧ measurable A, mu A = 0 & N ⊆ A].

Let mu.-negligible X be a notation for “X is negligible”. The formal definition of a
complete measure follows:

Definition measure_is_complete (mu : set T → \bar R) :=
mu.-negligible ⊆ measurable.

4.3 TheMeasure Extension Theorem

Finally, we show that a measure over a semiring of sets can be extended to a measure over
a σ -algebra that contains all the measurable sets of the smallest σ -algebra containing the
semiring of sets. We place ourselves in the following context:

Context d (T : semiRingOfSetsType d) (R : realType).
Variable mu : {measure set T → \bar R}.

In this context, we can build an outer measure mu^* using the results of Sect. 4.1 and its
σ -algebra mu^*.-cara.-measurable using the results of Sect. 4.2. We can show that this
σ -algebra contains all the measurable sets generated from the semiring of sets:

Lemma sub_caratheodory :
(d.-measurable).-sigma.-measurable ⊆ mu^*.-cara.-measurable.

Recall from Sect. 3.4 that G.-sigma.-measurable corresponds to the σ -algebra generated
from G and that in our context d.-measurable corresponds to the measurable sets of the
semiring of sets T. As for m.-cara.-measurable, we saw in Sect. 4.2 that it corresponds to
the σ -algebra of Carathéodory measurable sets for the outer measure m.

We use this last fact to build a measure over the σ -algebra generated from the semiring
of sets: this is the final result of the Measure Extension theorem (recall from Sect. 3.3 that
salgebraType G is the measurable type generated by G):

Let I := salgebraType (@measurable _ T).
Let measure_extension : set I → \bar R := mu^*.

HB.instance Definition _ := isMeasure.Build _ _ _ measure_extension
measure_extension0 measure_extension_ge0
measure_extension_semi_sigma_additive.

The proofs measure_extension{0,_ge0,_semi_sigma_additive} correspond to the
properties of a measure as explained in Sect. 3.5.2. See [42, file measure.v] for details.

Furthermore, we prove that the measure extension is unique. This requires to prove before-
hand the uniqueness of measures [42, lemma measure_unique]. We use monotone classes
for that purpose [32, Sect. V.2.1]. This can also be proved using the equivalent notion of
Dynkin systems (as mentioned in [26], which we also formalized in [42, file measure.v]).
The uniqueness of measure extension is under the condition that the measure is σ -finite, i.e.,
the full set can be covered by a countable union of sets of finite measure:

Definition sigma_finite (A : set T) (mu : set T → \bar R) :=
∃ F : (set T)^nat, A = \bigcup_(i : nat) F i &

∀ i, measurable (F i) ∧ mu (F i) < +oo.

123

Measure Construction by Extension in Dependent Type... Page 17 of 27 28

When this holds for the measure of the measure extension, any other measure mu’ that
coincides with mu on the original semiring of sets also coincides with the measure extension
over the generated σ -algebra:

Lemma measure_extension_unique : sigma_finite [set: T] mu →
(∀ mu’ : {measure set I → \bar R},

(∀ X, d.-measurable X → mu X = mu’ X) →
(∀ X, (d.-measurable).-sigma.-measurable X →

measure_extension X = mu’ X)).

Since σ -finite measures are actually pervasive in measure theory, we extend using
Hierarchy-Builder the hierarchy of structures for contents and measures of Sects. 3.5.1
and 3.5.2 with a structure SigmaFiniteContent for contents that are σ -finite and a
structure SigmaFiniteMeasure for measures that are σ -finite. In particular, hereafter,
{sigma_finite_measure set T → \bar R} is a notation for the type of σ -finite mea-
sures.

5 Construction of the LebesgueMeasure over a Semiring of Sets

In this section, we explain how we derive the Lebesgue measure from the semiring of sets of
intervals of the form]a, b] using the measure extension from the previous section.

5.1 The Semiring of Sets of Intervals

In MathComp, the type interval R, where R is typically an ordered type, is defined as the
pairs of bounds of type itv_bound:

Variant itv_bound (T : Type) : Type :=
BSide : bool → T → itv_bound T | BInfty : bool → itv_bound T.

Variant interval (T : Type) := Interval of itv_bound T & itv_bound T.

The constructor BSide is for open or closed bounds, BInfty is for infinite bounds. How
the boolean parameter distinguishes between open and closed bounds is better explained
with illustrations. For example, the left bounds of the intervals ‘[x, +oo[and ‘]x, +oo[

are respectively BSide true x and BSide false x, while the right bound of the interval
‘]-oo, x[is BSide true x.

Let us define a type alias for R of type realType and the following set of open-closed
intervals:

Definition ocitv_type : Type := R.
Definition ocitv := [set ‘]x.1, x.2]%classic | x in [set: R * R]].

This set forms a semiring of sets. Indeed, it contains set0, it is closed under finite intersection,
and it satisfies the semi_setD_closed predicate from Sect. 3.2.1 (proofs ocitv{0,I,D}
below):

Definition ocitv_display : Type → measure_display. Proof. exact. Qed.
HB.instance Definition _ := Pointed.on ocitv_type.
HB.instance Definition _ :=

@isSemiRingOfSets.Build (ocitv_display R) ocitv_type
ocitv ocitv0 ocitvI ocitvD.

123

28 Page 18 of 27 R. Affeldt, C. Cohen

5.2 Construction of the LebesgueMeasure

The length of an interval is defined by subtracting its left bound from its right bound. For
the sake of generality, this is formally defined over arbitrary sets for which we take the hull
using Rhull (see [42, file normedtype.v] for the definition of Rhull):

Definition hlength {R : realType} (A : set R) : \bar R :=
let i := Rhull A in i.2 - i.1.

Now, the function hlength is a content on the semiring of sets of intervals. Indeed, it is
non-negative (proof hlength_ge0 below), and, more importantly, it is additive over ocitv:

Lemma hlength_semi_additive : semi_additive hlength.
Proof. (* see [42] *) Qed.
HB.instance Definition _ :=

isContent.Build R _ hlength hlength_ge0 hlength_semi_additive.

Moreover, hlength is also σ -subadditive over ocitv, and hence a measure:

Lemma hlength_sigma_sub_additive : sigma_sub_additive hlength.
Proof. (* see [42] *) Qed.
HB.instance Definition _ := Content_SubSigmaAdditive_isMeasure.Build

_ _ _ hlength hlength_sigma_sub_additive.

We obtain the Lebesgue measure as an application of the measure extension from Sect. 4.3.
More precisely, we use the generic definition measure_extension to define the function
corresponding to the Lebesgue measure, and it is directly a measure from Sect. 4.3.

Definition lebesgue_measure := measure_extension hlength.
HB.instance Definition _ := Measure.on lebesgue_measure.

The above construction provides a unique measure that applies to a σ -algebra generated
from open-closed intervals (remember the use of salgebraType in Sect. 4.3), which include
the Borel sets: this is the definition of the Lebesgue measure.

We have not introduced an explicit definition for Borel sets but their σ -algebra can be
denoted by ocitv.-sigma.-measurable which is a notation that combines the definition
ocitv of the set of open-closed intervals and the notation .-sigma.-measurable that we
introduced in Sect. 3.4. This σ -algebra can easily be shown to be the same as the one generated
by open intervals:

Module RGenOpens.
Section rgenopens.
Variable R : realType.
Definition G := [set A | ∃ x y, A = ‘]x, y[%classic].
Lemma measurableE :

(@ocitv R).-sigma.-measurable = G.-sigma.-measurable.
Proof. (* see [42] *) Qed.
End RGenOpens.

Similarly, it can be shown to be the same as the one generated by open rays, etc. Furthermore,
it can also be easily extended to a σ -algebra over extended real numbers. These facts (whose
formal proofs can be found in [42, file lebesgue_measure.v]) are useful to establish
the properties of measurable functions in the next section.

6 Construction of the Lebesgue Integral

We now show that the infrastructure we have developed for the Lebesgue measure can be used
to develop the theory of the Lebesgue integral up to Fubini’s theorem, which covers the typi-

123

Measure Construction by Extension in Dependent Type... Page 19 of 27 28

cal set of properties that demonstrate the usefulness of such a formalization. This experiment
improves in particular on related work inCoq by providing theorems for functions that are not
necessary non-negative and that are extended-real valued, and also be experimenting with sim-
pler encodings, in particular the one of simple functions. Hereafter, we shorten code snippets
with the following convention: T has type measurableType d for some display parameter
d, R has type realType, and mu is a measure of type {measure set T → \bar R}.

6.1 Mesurable Functions

Ultimately, the Lebesgue integral is about measurable functions. A function is measurable
when any preimage of a measurable set is measurable. We defined it for functions with
domain D as follows:

Definition measurable_fun d d’ (T : measurableType d)
(U : measurableType d’) (D : set T) (f : T → U) :=

measurable D → ∀ Y, measurable Y → measurable (D ∩ f @^-1‘ Y).

Note that when in the above definition T or U are actually R or \bar R with R : realType,
a concrete instance of σ -algebra need to have been declared beforehand as explained in
Sect. 5.2.

6.2 Simple Functions

The construction of the Lebesgue integral starts with simple functions. A simple function f
is typically defined by a sequence of pairwise-disjoint and measurable sets A0, . . . , An−1 and
a sequence of elements a0, . . . , an−1 such that f (x) = ∑n−1

k=0 ak1Ak (x). It might be tempting
(in particular for a computer scientist) to encode this definition using lists to represent the
range of simple functions. This actually turns out to be detrimental to formalization (see
Sect. 7). Instead, we strive for modularity by obtaining simple functions from even more
basic functions. For that purpose, we again put Hierarchy-Builder to good use. We first
define functions with a finite image (notation {fimfun T � R}):

HB.mixin Record FiniteImage aT rT (f : aT → rT) :=
{fimfunP : finite_set (range f)}.

HB.structure Definition FImFun aT rT := {f of @FiniteImage aT rT f}.

We then package measurable functions (notation {mfun T � R}):

HB.mixin Record isMeasurableFun
d (aT : measurableType d) (rT : realType) (f : aT → rT) :=

{measurable_funP : measurable_fun setT f}.
HB.structure Definition MeasurableFun aT rT :=

{f of @isMeasurableFun aT rT f}.

As a consequence, simple functions (notation {sfun T � R}) can be defined by combining
both functions with a finite image and measurable functions:

HB.structure Definition SimpleFun
d (aT : measurableType d) (rT : realType) :=

{f of @isMeasurableFun d aT rT f & @FiniteImage aT rT f}.

Similarly, we introduce non-negative functions (notation {nnfun T � R}) and define non-
negative simple functions (notation {nnsfun T � R}) resulting in the hierarchy displayed
in Fig. 3.

123

28 Page 20 of 27 R. Affeldt, C. Cohen

Fig. 3 Definition of non-negative
simple functions

The introduction for the above collection of types is a fertile ground for the formalization
of the properties of simple functions. We show in particular that simple functions form a ring
structure (a comRingType in MathComp’s parlance) and thus that they can be combined
accordingly (see [42, file lebesgue_integral.v]).

Among all the simple functions, indicator functions indic A (notation \1_A , where A is
a set) are of particular interest because they are used pervasively in the theory of integration:

Definition indic {T} {R : ringType} (A : set T) (x : T) : R :=
(x \in A)%:R.

(%:R embeds boolean numbers and natural numbers into a ring.) In particular, any func-
tion with a finite image (and thus any simple function) is a linear combination of indicator
functions:

Lemma fimfunE T (R : ringType) (f : {fimfun T � R}) x :
f x = \sum_(y \in range f) (y * \1_(f @^-1‘ [set y]) x).

This fact is instrumental in proofs using the monotone convergence theorem, such as Fubini’s
theorem (Sect. 6.5).

6.3 The Integral of Simple Functions

The integral of a simple function is the sum of its images multiplied by the measure of the
associated preimage. In textbooks, the corresponding formula can be written in two ways.
One can make explicit the finite image of the simple function and sum w.r.t. the indices, i.e.,
as

∑n−1
k=0 akμ(Ak) using the notations from the previous section and some measure μ. Since

the image of a simple function is finite, one can alternatively use sums over finite supports
(Sect. 2.4) and write:

∑
x∈R x μ(f −1{x}). From the viewpoint of formalization, the former

reveals implementation details while the latter is more compact and allows for the following
simple definition of the integral of simple functions:

Variables (T : Type) (R : numDomainType) (mu : set T → \bar R).
Variable (f : T → R).
Definition sintegral :=

\sum_(x \in [set: R]) x%:E * mu (f @^-1‘ [set x]).

See Fig. 1 for numDomainType. The development of the properties of the integral of simple
functions goes on by establishing the properties of the integral of non-negative simple func-
tions such as semi-linearity, monotonicity, etc. Among them, the fact that the integral of the
sum of simple functions is the sum of the integrals is the most technical result. Yet, it can
be proved within 23 lines of script using generic properties of sums over finite supports (see
sintegralD4 [42, file lebesgue_integral.v]).

4 https://github.com/math-comp/analysis/blob/7d4ed9cf0e32f6be5b50c092cc8d93a21ec4dee3/theories/
lebesgue_integral.v#L668

123

https://github.com/math-comp/analysis/blob/7d4ed9cf0e32f6be5b50c092cc8d93a21ec4dee3/theories/lebesgue_integral.v#L668
https://github.com/math-comp/analysis/blob/7d4ed9cf0e32f6be5b50c092cc8d93a21ec4dee3/theories/lebesgue_integral.v#L668

Measure Construction by Extension in Dependent Type... Page 21 of 27 28

6.4 Integral of Measurable Functions

The integral of a measurable function is defined as the difference between its non-negative
part and its non-positive part, both considered as non-negative functions. We therefore first
temporarily define the integral of a non-negative measurable function, as the supremum of
the integrals of smaller non-negative simple functions:

Let nnintegral f := ereal_sup [set sintegral mu h |
h in [set h : {nnsfun T � R} | ∀ x, (h x)%:E ≤ f x]].

Regarding the definition of the integral of a measurable function, we make the design choice
to have it parameterized with the domain of integration. For that purpose, we introduce the
notation f _ D for the function that behaves as f over the set D and 0 elsewhere. The
definition of the integral follows (notation \int[mu]_(x in D) f x):

Definition integral mu D f (g := f _ D) :=

nnintegral mu (g +) - nnintegral mu (g −).

In the code just above, the notation f + is for λx . max(f(x), 0) and the notation f − is for
λx . max(−f(x), 0).

See [42, file lebesgue_measure.v] for the development of the theory of integration
as presented in [32], and the next section for two illustrative examples.

6.5 Dominated Convergence and Fubini’s Theorem

The dominated convergence theorem establishes the convergence of a sequence of integrals
of functions fn given an hypothesis of pointwise convergence of the functions fn and an
hypothesis of domination by an integrable function; these two hypotheses are true “almost
everywhere”. The standard presentation (e.g., [32, Sect. IV.2]) is to first prove the theo-
rem when the hypotheses are unconditionally true, in which case the proof is essentially a
consequence of Fatou’s lemma and of the linearity properties of the integral. As for the gen-
eralization to hypotheses that are true “almost everywhere”, it is almost always only sketched
in textbooks. The complete statement of the dominated convergence theorem follows. The
notation {ae mu, ∀ x, P x} means that P holds almost everywhere for the measure mu,
i.e., that the complement of the set defined by P is negligible as defined in Sect. 4.2.

Variables (D : set T) (mD : measurable D).
Variables (f_ : (T → \bar R)^nat) (f g : T → \bar R).
Hypothesis mf_ : ∀ n, measurable_fun D (f_ n).
Hypothesis mf : measurable_fun D f.
Hypothesis f_f : {ae mu, ∀ x, D x → f_ ^~ x � f x}.
Hypothesis ig : mu.-integrable D g.
Hypothesis f_g : {ae mu, ∀ x n, D x → ‘|f_ n x| ≤ g x}.
Let g_ n x := ‘|f_ n x - f x|.

Theorem dominated_convergence : [∧ mu.-integrable D f,
[sequence \int[mu]_(x in D) (g_ n x)]_n � 0 &
[sequence \int[mu]_(x in D) (f_ n x)]_n � \int[mu]_(x in D) (f x)].

Note that in this version of the dominated convergence theorem we assume that f is measur-
able; this hypothesis is not needed when mu is complete.

Fubini’s theorem is a commutation result about integration. It is a good testbed for a
combined formalization of measure and integration theory because, on the one hand, it
requires the construction of the product measure, and, on the other hand, its proof relies

123

28 Page 22 of 27 R. Affeldt, C. Cohen

on several lemmas about integration. Given two measures m1 and m2 respectively over
two measurable types T1 and T2, m2 being σ -finite, the product measure m1 \x m2 is
defined as \int[m1]_x (m2 \o xsection A) x where xsection A x is the set of pairs
(x, y) in A. In virtue of the uniqueness of measures (Sect. 4.3), inverting the role of m1

and m2 actually gives rise to the same measure. For the proof of Fubini’s theorem, we
follow the presentation by Li [32, Sect. V.3], which is standard. The first step is to prove
Fubini-Tonelli’s theorem, which is essentially Fubini’s theorem for non-negative functions.
The decomposition of functions with a finite image into a linear combination of indicator
functions (Sect. 6.2) comes in handy to prove Fubini-Tonelli’s theorem because the latter is
first established for indicator functions, then for simple functions, and finally for measur-
able functions. The second main ingredient is the monotone convergence theorem [42, file
lebesgue_integral.v]. Fubini’s theorem is then essentially an application of Fubini-
Tonelli’s theorem:

Context d2 d2 (T1 : measurableType d1) (T2 : measurableType d2)
(R : realType).

Variables (m1 : {sigma_finite_measure set T1 → \bar R})
(m2 : {sigma_finite_measure set T2 → \bar R}).

Variable f : T1 * T2 → \bar R.
Hypothesis imf : (m1 \x m2).-integrable setT f.

Theorem Fubini :
\int[m1]_x (\int[m2]_y f (x, y)) = \int[m2]_y (\int[m1]_x f (x, y)).

7 RelatedWork

7.1 About Measure and Integration Theory in Proof Assistants Based on Dependent
Type Theory

We are not aware of any formalization of the measure extension theorem for general semirings
of sets in a proof assistant based on dependent type theory (neither Coq nor Lean).

There is a formalization in Coq, based on the Coquelicot library, of the Lebesgue
integral of non-negative functions [14]. This development is driven by detailed pencil-and-
paper proofs written for the purpose of formalization [16]. The theory of Lebesgue integration
has been limited to non-negative functions and stops at Tonelli’s theorem [13] but it has
recently been extended with a formalization of the Bochner integral [15]. The authors have
communicated to us that there is work in progress on the Lebesgue measure but that it is not
a modular construction like ours.

The difference between the work by Boldo et al. and our work lies more in the sustaining
infrastructure than in the gallery of theorems. First, we cannot reuse their framework because
of many diverging choices of conventions, one of them is assuming that ∞ − ∞ = 0, which
results in the addition of the extended real numbers being non-associative, which prevents
the use of iterated operators à la MathComp [14, Sect. 3.2]. We also insist on developing
abstractions and components developed along MathComp-Analysis so as to find the best
encodings. For example, Boldo et al. use a very concrete encoding of simple functions whose
ranges are represented by sorted lists [14, Sect. 6.3]. Notwithstanding the fact that sorting is
not essential to develop integration theory, it appears that this makes for longer proofs. For
example, we already discussed the benefits of the infrastructure of iterated operators over
finite supports (Sect. 2.4) regarding the proof that the integral of the sum of simple functions is
the sum of the integrals (Sect. 6.3). The approach by Boldo et al. seems to make for a five times

123

Measure Construction by Extension in Dependent Type... Page 23 of 27 28

longer script (118 vs. 23 lines of codes, see LInt_SFp_plus5 [30, file simple_fun.v]).
Another example having a sigma_algebra predicate or a measurableType structure while
Boldo et al. use the fact that a class of sets is a σ -algebra if and only if it is equal to the
smallest σ -algebra generated by its elements. We found this characterization impractical in
the presence of the hierarchy of classes of sets, for which we need inheritance to work in order
to share theorem across structures. With an inductive characterization, theorems defined on
a larger class of sets (e.g., semiring of sets) could not be applied to a σ -algebra. On a related
note, our definition of generated σ -algebra in Sect. 3.3 generalizes the one by Boldo et al. by
defining the complement with respect to an arbitrary set instead of the full set. This is very
useful in practice to develop the theory of measurable partial functions and in fine define the
Lebesgue integral as parameterized by a domain (Sect. 6.4).

The C-Corn library also deals with the formalization of integration in Coq as it has a
formalization of the fundamental theorem of calculus [21] but this is about the Riemann
integral and it is in a constructive setting.

The coq-proba library [38] provides a formalization of the Lebesgue measure and integral
but limited to real-valued functions and closed intervals.

Lean has an extensive formalization of measure and integration theory. The main source
of documentation is the code of mathlib [43]. To our understanding, measures are defined
as a special case of outer measures [45], following the idea than any non-negative function
can generate an outer measure which in turn can generate the σ -algebra of its Carathéodory
measurable sets. Hence mathlib does not have a hierarchy of classes of sets reflecting the
literature, as we did (Sect. 3.2), even though we believe that they naturally occur inside
the proofs. mathlib provides the Lebesgue integral and its standard lemmas up to Fubini’s
theorem and the Radon-Nikodým theorem (which we have also recently proved using our
framework [28]), and is actually further generalized to the Bochner integral. It has also sup-
ported the formalization of the Haar measure [45], which generalizes the Lebesgue measure.

We are not aware of a formalization of the Lebesgue measure or integral in Nuprl [20]
or Agda [40] which are also proof assistants based on dependent type theory.

7.2 About Measure and Integration Theory in Proof Assistants of the HOL Family

The HOL family of proof assistants has several formalizations of measure and integration
theory. It can be traced back to a formalization of measure theory in HOL in 2002 [27,
Sect. 2.2.2] (work actually inspired by earlier work in Mizar [11]). It was generalized in
HOL4 in 2010 [17, Sect. 2.3] and used to formalize Lebesgue integration [17, 35]. Work in
HOL4 triggered a port in Isabelle/HOL that was eventually reworked in 2011 [26, Sect. 4.2].
The Lebesgue measure is defined in Isabelle/HOL using the gauge integral that was already
available in Isabelle/HOL, i.e., it is not built as an extension of a premeasure [26, Sect. 4.6].
This approach results from a port from HOL- Light [25].

7.3 Measure and Integration Theory in Other Proof Assistants

Proof assistants we have discussed so far are based on the LCF approach which consists in
having a small kernel to ensure the soundness of proof checking. Other proof assistants based

5 https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/blob/d76dc70b06f70e2f1e99fd2ba3b22bba6
ea78c91/Lebesgue/simple_fun.v#L809

123

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/blob/d76dc70b06f70e2f1e99fd2ba3b22bba6ea78c91/Lebesgue/simple_fun.v#L809
https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis/-/blob/d76dc70b06f70e2f1e99fd2ba3b22bba6ea78c91/Lebesgue/simple_fun.v#L809

28 Page 24 of 27 R. Affeldt, C. Cohen

on an augmented trusted base providing more automation have also been used to formalize
measure and integration theory.

The Mizar Mathematical Library (MML) [9] provides a formalization of measure theory
that can be traced back to 1992 [11]. The Lebesgue measure in MML has recently been
reconstructed [22] using an approach by extension from a semialgebra of intervals to fix an
earlier formalization [12]. This is of course in a very different setting compared to our work
in Coq since the Mizar proof assistant relies on the Tarski-Grothendieck set theory instead
of dependent type theory.

NASALib [44] also provides a construction of the Lebesgue measure by extension but
where extension is carried out from an algebra of sets [44, file hahn_kolmogorov.pvs]
instead of a semiring of sets as we do. NASALib is written in PVS [36], an interactive
and automated prover based on higher-order logic that provides predicate subtyping and
dependent types [37]. The formalization of measure theory and Lebesgue integration has
been initiated in 2007 [31].

To the best of our understanding, in Metamath [34], the Lebesgue measure is not defined
by extension.6

We did not find a formalization of the Lebesgue measure or integration in other main-
stream theorem provers such as ACL2 or ProofPower, which seems to be confirmed by the
“Formalizing 100 Theorems” list [46].

8 Conclusion

This paper introduced a Coq formalization of measure theory and Lebesgue integration that
is compatible with MathComp and that extends MathComp-Analysis. This includes an
original formalization of mathematical structures for measure theory (Sect. 3.2), an orig-
inal formalization of the construction of measures using the Measure Extension theorem
(Sect. 4.3), whose application to a measure over a semiring of intervals yields the Lebesgue
measure (Sect. 5). This also allows for the construction of the Lebesgue integral and the
formalization of its theory up to Fubini’s theorem (Sect. 6).

We argued about technical aspects of this formalization that we believe improve on related
work (Sect. 7). At the beginning of this experiment, much work was dedicated to the formal-
ization of structures for measure theory and to enrich the foundations (in particular, extended
real numbers). Our development now provides new reusable libraries of general interest, in
particular for extended real numbers and their sequences (Sect. 2), sums over finite sup-
ports (Sect. 2.4) and over general sets (Sect. 2.5). As concrete applications that illustrate
the reusability of our formalization, we can mention the Lebesgue-Stieltjes measure, which
could be formalized using the same approach we used for the Lebesgue measure in Sect. 5 [7],
more standard results about measure theory such as the Radon-Nikodým theorem [8], and
the formalization of the semantics of a probabilistic programming language [4].

8.1 Current and FutureWork

The Coq community now has several formalizations of integration, that rely on different
grounds. We have been exchanging with the members of the MILC project [30] to look for
ways to share the development effort. As a next step of our formalization, we plan to formal-
ize the fundamental theorem of calculus for the Lebesgue integral to connect with the theory

6 https://us.metamath.org/mpeuni/df-vol.html

123

https://us.metamath.org/mpeuni/df-vol.html

Measure Construction by Extension in Dependent Type... Page 25 of 27 28

of derivatives of MathComp-Analysis. We have also started formalizing probability theory
and in particular discrete random variables to generalize existing work on the formalization
of discrete probabilities on top of MathComp (e.g., [6]) and to apply it to the formaliza-
tion of equational reasoning for probabilistic programming languages (e.g., to extend [5] to
continuous probabilities).

Author Contributions RA and CC wrote the main manuscript text, prepared figures and tables, and reviewed
the manuscript.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Abate, C., Haselwarter, P.G., Rivas, E., Muylder, A. V., Winterhalter, T., Hritcu, C., Maillard, K., Spitters,
B.: SSProve: a foundational framework for modular cryptographic proofs in Coq. In: 34th IEEE Computer
Security Foundations Symposium (CSF 2021), Dubrovnik, Croatia, June 21–25, 2021, pp 1–15. IEEE
(2021)

2. Affeldt, R., Cohen, C., Kerjean, C., Mahboubi, A., Rouhling, D., Sakaguchi, K.: Competing inheritance
paths in dependent type theory: a case study in functional analysis. In: 10th International Joint Conference
on Automated Reasoning (IJCAR 2020), Paris, France, June 29–July 6, vol. 12167(2) of Lecture Notes
in Artifical Intelligence, pp. 3–20. Springer (2020)

3. Affeldt, R., Cohen, C., Rouhling, D.: Formalization techniques for asymptotic reasoning in classical
analysis. J. Formaliz. Reason. 11(1), 43–76 (2018)

4. Affeldt, R., Cohen, C., Saito, A.: Semantics of probabilistic programs using s-finite kernels in coq. In:
12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2023) Boston,
MA, USA, January 16–17, 2023, pp. 3–16. ACM (2023)

5. Affeldt, R., Garrigue, J., Nowak, D., Saikawa, T.: A trustful monad for axiomatic reasoning with proba-
bility and nondeterminism. J. Funct. Program. 31(E17) (2021)

6. Affeldt, R., Garrigue, J., Saikawa, T.: Reasoning with conditional probabilities and joint distributions in
Coq. Comput. Softw. 37(3), 79–95 (2020)

7. Affeldt, R., Ishiguro, Y.: Formalization of the Lebesgue-Stieltjes measure in MathComp-Analysis. https://
github.com/math-comp/analysis/pull/677, 2023. Pull request to [42]. Completed in (2022)

8. Affeldt, R., Ishiguro, Y.: Formalization of the Radon-Nikodým theorem in MathComp-Analysis. https://
github.com/math-comp/analysis/pull/818, 2023. Pull request to [42]. Completed in (2022)

9. Bancerek, G., Bylinski, C., Grabowski, A., Kornilowicz, A., Matuszewski, R., Naumowicz, A., Pa̧k, K.:
The role of the Mizar Mathematical Library for interactive proof development in Mizar. J. Autom. Reason.
61(1–4), 9–32 (2018)

10. Bertot, Y., Gonthier, G., Biha, S. O., Pasca, I.: Canonical big operators. In: 21st International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2008), Montreal, Canada, August 18–21, 2008,
volume 5170 of Lecture Notes in Computer Science, pp. 86–101. Springer (2008)

11. Bialas, J.: Properties of Caratheodor’s measure. Technical report (1992). Formalized Mathematics 4
12. Bialas, J.: The one-dimensional Lebesgue measure. Technical report (1995). Formalized Mathematics 7
13. Boldo, S., Clément, F., Martin, V., Mayero, M., Mouhcine, H.: A Coq formalization of Lebesgue induc-

tion principle and Tonelli’s theorem. In: 25th International Symposium on Formal Methods (FM 2023),
Lübeck, Germany, March 6–10, 2023, volume 14000 of Lecture Notes in Computer Science, pp 39–55.
Springer (2023)

14. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: A Coq formalization of Lebesgue Integration
of nonnegative functions. J. Autom. Reason. 66(2), 175–213 (2021)

15. Boldo, S., Clément, F., Leclerc, L.: A Coq formalization of the Bochner integral (2022). arXiv cs.LO
arXiv:2201.03242

16. Clément, F., Martin, V.: Lebesgue integration, detailed proofs to be formalized in Coq (2021). arXiv cs.LO
arXiv:2101.05678

17. Coble, A. R.: Anonymity, information, and machine-assisted proof. PhD thesis, University of Cambridge,
King’s College (2010). TR UCAM-CL-TR-785

123

https://github.com/math-comp/analysis/pull/677
https://github.com/math-comp/analysis/pull/677
https://github.com/math-comp/analysis/pull/818
https://github.com/math-comp/analysis/pull/818
http://arxiv.org/abs/2201.03242
http://arxiv.org/abs/2101.05678

28 Page 26 of 27 R. Affeldt, C. Cohen

18. Cohen, C.: Formalized algebraic numbers: construction and first-order theory. PhD thesis, École Doctorale
de l’École Polytechnique, Laboratoire d’Informatique de l’École Polytechnique (2012)

19. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy Builder: Algebraic hierarchies made easy in Coq with
Elpi (system description). In: 5th International Conference on Formal Structures for Computation and
Deduction (FSCD 2020), June 29–July 6, 2020, Paris, France (Virtual Conference), vol. 167 of LIPIcs,
pp. 34:1–34:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

20. Constable, R.L., Allen, S.F., Bromley, M., Cleaveland, R., Cremer, J.F., Harper, R., Howe, D.J., Knoblock,
T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing mathematics with the Nuprl
proof development system. Prentice Hall, Upper Saddle River (1986)

21. Cruz-Filipe, L.: A constructive formalization of the fundamental theorem of calculus. In: Selected Papers
of the Second International Workshop on Types for Proofs and Programs (TYPES 2002), Berg en Dal,
The Netherlands, April 24–28, 2002, volume 2646 of Lecture Notes in Computer Science, pp. 108–126.
Springer (2002)

22. Endou, N.: Reconstruction of the one-dimensional Lebesgue measure. Technical report, National Institute
of Technology, Gifu College. Formalized Mathematics 28(1), 93–104 (2020)

23. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: 22nd Inter-
national Conference on Theorem Proving in Higher Order Logics (TPHOLs 2009), Munich, Germany,
August 17–20, 2009, volume 5674 of Lecture Notes in Computer Science, pp. 327–342. Springer (2009)

24. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S. L., Mahboubi, A.,
O’Connor, R., Biha, S. O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E., Théry, L.: A machine-checked
proof of the odd order theorem. In: 4th International Conference on Interactive Theorem Proving (ITP
2013), Rennes, France, July 22–26, 2013, volume 7998 of Lecture Notes in Computer Science, pp 163–
179. Springer (2013)

25. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reason. 50(2), 173–190 (2013)
26. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: Second International Confer-

ence on Interactive Theorem Proving (ITP 2011), Berg en Dal, The Netherlands, August 22–25, 2011,
volume 6898 of Lecture Notes in Computer Science, pp 135–151. Springer (2011)

27. Hurd, J.: Formal verification of probabilistic algorithms. PhD thesis, University of Cambridge (2002).
UCAM-CL-TR-566

28. Ishiguro, Y., Affeldt, R.: A progress report on formalization of measure theory with MathComp-analysis.
In: 25th Workshop on Programming and Programming Languages (PPL2023), Nagoya University, March
6–8, 2023. Japan Society for Software Science and Technology (2023)

29. Klenke, A.: Probability Theory: A Comprehensive Course, 2nd edn. Springer, New Year (2014)
30. Le projet MILC. Numerical analysis in Coq. https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis,

2023. Since 2018. See also https://lipn.univ-paris13.fr/MILC
31. Lester, D. R.: Topology in PVS: Continuous mathematics with applications. In: 2nd Workshop on Auto-

mated Formal Methods (AFM 2007), pp. 11–20. Association for Computing Machinery (2007)
32. Li, D.: Intégration et applications—Cours et exercices corrigés. Eyrolles (2016)
33. Mathematical Components Team. Mathematical Components library. https://github.com/math-comp/

math-comp, 2007. Last stable version: 2.0 (2023)
34. Megill, N.: Metamath: A Computer Language for Mathematical Proofs. (2019). https://us.metamath.org/

downloads/metamath.pdf. With extensive revisions by David A. Wheeler
35. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the Lebesgue integration theory in HOL. In:

First International Conference on Interactive Theorem Proving (ITP 2010), Edinburgh, UK, July 11–14,
2010, volume 6172 of Lecture Notes in Computer Science, pp. 387–402. Springer (2010)

36. Owre, S., Rushby, J. M., Shankar, N.: PVS: A prototype verification system. In: 11th International Con-
ference on Automated Deduction (CADE-11), Saratoga Springs, NY, USA, June 15–18, 1992, vol. 607
of Lecture Notes in Computer Science, pp. 748–752. Springer (1992)

37. Rushby, J.M., Owre, S., Shankar, N.: Subtypes for specifications: predicate subtyping in PVS. IEEE
Trans. Softw. Eng. 24(9), 709–720 (1998)

38. Tassarotti, J., Tristan, J., Palmskog, K.: coq-proba: A probability theory library for the Coq theorem
prover. https://github.com/jtassarotti/coq-proba, 2023. Since (2019)

39. Tassarotti, J., Vajjha, K., Banerjee, A., Tristan, J.: A formal proof of PAC learnability for decision stumps.
In: 10th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2021), Virtual
Event, Denmark, January 17–19, 2021, pp. 5–17. ACM (2021)

40. The Agda Team. Agda’s documentation v2.6.3, 2023. https://agda.readthedocs.io/en/v2.6.3
41. The Coq Development Team. The Coq Proof Assistant Reference Manual. Inria, 2023. https://coq.inria.

fr/refman/. Version 8.17.0

123

https://depot.lipn.univ-paris13.fr/mayero/coq-num-analysis
https://lipn.univ-paris13.fr/MILC
https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp
https://us.metamath.org/downloads/metamath.pdf
https://us.metamath.org/downloads/metamath.pdf
https://github.com/jtassarotti/coq-proba
https://agda.readthedocs.io/en/v2.6.3
https://coq.inria.fr/refman/
https://coq.inria.fr/refman/

Measure Construction by Extension in Dependent Type... Page 27 of 27 28

42. The MathComp-Analysis Team. MathComp-Analysis: Mathematical components compliant analysis
library. https://github.com/math-comp/analysis, 2023. Since 2017. Last stable version: 0.6.2. This paper
refers to the branch hierarchy-builder

43. The mathlib community. Lean mathematical components library. https://github.com/leanprover-
community/mathlib 2023. Since (2017)

44. The NASALib development team. NASA PVS library of formal developments. Current version: 7.1.1.
https://github.com/nasa/pvslib. (2023)

45. van Doorn, F.: Formalized Haar measure. In: 12th International Conference on Interactive Theorem
Proving (ITP 2021) June 29–July 1, 2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs, pp.
18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

46. Wiedijk, F.: Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://github.com/math-comp/analysis
https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib
https://github.com/nasa/pvslib
http://www.cs.ru.nl/~freek/100

	Measure Construction by Extension in Dependent Type Theory with Application to Integration
	Abstract
	1 Introduction
	1.1 Paper Outline
	1.2 Note on Notation

	2 Support for Extended Real Numbers
	2.1 Algebraic Aspects of Extended Real Numbers
	2.2 Topological Aspects of Extended Real Numbers
	2.3 Sequences of Extended Real Numbers
	2.4 Iterated Operators Over Finite Supports
	2.5 Sums Over General Sets

	3 Basic Definitions of Measure Theory
	3.1 Overview of Hierarchy-Builder
	3.2 Mathematical Structures for Measure Theory
	3.2.1 Inheritance Chain from Semiring of Sets
	3.2.2 Direct Definition of Mesurable Spaces

	3.3 Generated σ-algebras
	3.4 Displays for Measurable Types
	3.5 Functions on Classes of Sets
	3.5.1 Contents
	3.5.2 Measures
	3.5.3 Outer Measures

	4 Measure Extension
	4.1 Outer Measure Construction
	4.2 From an Outer Measure to a Measure
	4.3 The Measure Extension Theorem

	5 Construction of the Lebesgue Measure over a Semiring of Sets
	5.1 The Semiring of Sets of Intervals
	5.2 Construction of the Lebesgue Measure

	6 Construction of the Lebesgue Integral
	6.1 Mesurable Functions
	6.2 Simple Functions
	6.3 The Integral of Simple Functions
	6.4 Integral of Measurable Functions
	6.5 Dominated Convergence and Fubini's Theorem

	7 Related Work
	7.1 About Measure and Integration Theory in Proof Assistants Based on Dependent Type Theory
	7.2 About Measure and Integration Theory in Proof Assistants of the HOL Family
	7.3 Measure and Integration Theory in Other Proof Assistants

	8 Conclusion
	8.1 Current and Future Work

	References

