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Abstract
This paper presents a formalization of several termination criteria for first-order recursive
functions. The formalization, which is developed in the Prototype Verification System (PVS),
includes the specification and proof of equivalence of semantic termination, Turing termi-
nation, size change principle, calling context graphs, and matrix-weighted graphs. These
termination criteria are defined on a computational model that consists of a basic functional
language called PVS0, which is an embedding of recursive first-order functions. Through this
embedding, the native mechanism for checking termination of recursive functions in PVS
could be soundly extended with semi-automatic termination criteria such as calling contexts
graphs.
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1 Introduction

Advances in theorem proving have enabled the formal verification of algorithms used in
safety-critical applications. For instance, the Prototype Verification System (PVS) [16] is
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extensively used at NASA in the verification of safety-critical algorithms of autonomous
unmanned systems.1 Many of these algorithms include the specification of recursive func-
tions that, in PVS, are required to be complete, i.e., they are known to terminate for every
possible input. In computer science, program termination is the quintessential example of a
property that is undecidable. Alan Turing famously proved that it is impossible to construct a
correct and complete algorithm that decides whether or not another algorithm terminates on
a given input [22]. Turing’s proof applies to algorithms written as Turing machines, but the
proof extends to other formalisms for expressing computations, such as λ-calculus, rewriting
systems, and programs written in modern programming languages.

As is the case for other undecidable problems, there are syntactic and semantic restrictions,
data structures, and heuristics that lead to a solution for subclasses of the problem. In Coq,
for example, termination of well-typed functions is guaranteed by the type system, a version
of the Calculus of Inductive Constructions [5]. Other theorem provers, such as ACL2, have
incorporated syntactic conditions for checking termination of recursive functions [10]. In
PVS, users need to provide a measure function over a well-founded relation that strictly
decreases at every recursive call [16]. Despite the undecidability result, showing termination
for most specified functions is routine in computer science, but can often be a tedious and
time-consuming stage in a formal verification effort.

This paper reports on the formalization of several termination criteria in PVS. In addition
to the internal mechanism implemented in the type checker of PVS to assure termination of
recursive definitions, this work also includes the formalization of more general techniques,
such as the size change principle (SCP) presented by Lee et. al. [13]. The SCP principle
states that if every infinite computation would give rise to an infinitely decreasing value
sequence on a well-founded order, then no infinite computation is possible. Later, Manolios
and Vroon introduced a particular concretization of the SCP, namely the Calling Context
Graphs (CCG) and demonstrated its practical usefulness in the ACL2 prover [14]. Avelar’s
PhD dissertation proposes a refinement of the CCG technique, based on a particular algebra
on matrices called Matrix-Weighted Graphs (MWG) [4]. The formalization reported in this
paper includes all these criteria and proofs of equivalence between them. This paper also
presents a practical contribution: a mechanizable technique to automate (some) termination
proofs of user-defined recursive functions in PVS. While the formalization itself has been
available for some time as part of the NASA PVS Library2 and referenced in other works,
e.g., [3] and [18], the main results were not published prior to the conference version [15]
of this extended journal publication. Compared to the conference version, the present work
includes expanded discussion, motivation, and examples in Sects.2, 4, and 5; and a detailed
description of Dutle’s algorithm to check termination onmatrix-weighted graphs, in Sect. 5.2.
In addition to the previous elements, substantial extensions are given in Sect. 5.3 concerning
automating the MWG technique in PVS, and in Sect. 5.4 that surveys recursive functions in
the NASA PVS library,3 with a discussion of how the MWG technique might apply.

For readability, this paper uses a stylized PVS notation. The development presented in
this paper, including all lemmas, theorems, and examples, are formally verified in PVS and
are available as part of the NASA PVS Library.

1 For example, see https://shemesh.larc.nasa.gov/fm.
2 https://github.com/nasa/pvslib/tree/master/PVS0 and https://github.com/nasa/pvslib/tree/master/CCG
3 https://shemesh.larc.nasa.gov/fm/pvs.
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2 PVS & PVS0

2.1 PVS

PVS is an interactive theorem prover based on classical higher-order logic. The PVS speci-
fication language is strongly-typed and supports several typing features including predicate
sub-typing, dependent types, inductive data types, and parametric theories. The expressive-
ness of the PVS type system prevents its type-checking procedure from being decidable.
Hence, the type-checker may generate proof obligations to be discharged by the user. These
proof obligations are called Type Correctness Conditions (TCCs). The PVS system includes
several pre-defined proof strategies that automatically discharge most of the TCCs.

In PVS, a recursive function f of type [A→B] is defined by providing ameasure function
M of type [A→T], where T is an arbitrary type, and awell-founded relation R over elements
in T . The termination TCCs produced by PVS for a recursive function f guarantee that the
measure function M strictly decreases with respect to R at every recursive call of f .

Example 1 The following PVS declaration defines a common version of the Ackermann
function.

ackermann(m, n: N) : RECURSIVE N =
IF m = 0 THEN n+1
ELSIF n = 0 THEN ackermann(m-1,1)
ELSE ackermann(m-1, ackermann(m,n-1))
ENDIF

MEASURE lex2(m,n) BY <

In this example, the type A is the tuple [N×N] and the type B isN. The type T is ordinal,
the type denoting ordinal numbers in PVS. The measure function lex2maps a tuple of natural
numbers into an ordinal number. Finally, the well-founded relation R is the order relation
“<” on ordinal numbers. The termination-related TCCs generated by the PVS type-checker
for the Ackermann function are shown in Fig. 1. Since all these TCCs are automatically
discharged by a PVS built-in proof strategy, the PVS semantics guarantees that the function
ackermann is well defined on all inputs.

For the Ackermann function above, proving termination is done automatically by existing
built-in strategies in PVS. However, determining the measure function and in some cases,
showing the well-foundedness of the relation can be more difficult. In this example, the
lexicographic order on the inputs seems to be an obvious choice in hindsight, but it may take
some careful inspection and thought to actually discover this is a useful measure function for
this program. In addition, the function lex2 was already specified in PVS, and the necessary
order properties were proven so that the automated strategies would succeed. This is not
always the case, and can slow the progress of specification and proof when it happens. One
goal of the work described here is to enable this to be done automatically (cf. Sect. 5).

Note also that the termination TCCs generated here are created by the typechecking
system of PVS. Because PVS does not have self-referential capabilities, reasoning about
the correctness/completeness of alternative termination criteria cannot be performed directly
inside the system itself. Thus, in order to do analysis of termination of programs, a (restricted)
model of PVS was built inside of PVS. This model, called PVS0, is described below.
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Fig. 1 Termination-related TCCs for the Ackermann function in Ex. 1

2.2 PVS0

2.2.1 PVS0 Language Definition

PVS0 is a basic functional language used in this paper as a computationalmodel for first-order
recursive functions in PVS. More precisely, PVS0 is an embedding of univariate first-order
recursive functions of type [V →V ] for an arbitrary generic typeV . The syntactic expressions
of PVS0 are defined by the grammar

e ::= cnst(v) | vr | op1(n, e) | op2(n, e, e) | rec(e) | ite(e, e, e),

where v is a value of type V and n is a natural number. Furthermore, cnst(v) denotes a
constant with value v, vr denotes the unique variable in the language, op1 and op2 denote
unary and binary operators respectively, rec denotes a recursive call, and ite denotes a
conditional expression (“if-then-else”). The first parameter of op1 and op2 is an index used
to identify built-in operators of type [V →V ] and [[V × V ] → V ], respectively. In the
following, the collection of PVS0 expressions is referred to as EV , where the type parameter
for E is omitted when possible to lighten the notation. The PVS0 programs with values in
V , denoted by PVS0V , are 4-tuples of the form (O1, O2,⊥, e), such that

– O1 is a list of unary operators of type [V →V ], where O1(i), i.e., the i-th element of the
list O1, interprets the index i as referred by in the application of op1,

– O2 is a list of binary operators of type [[V ×V ] →V ], where O2(i) interprets the index
i in applications of op2,

– ⊥ is a constant of type V representing the Boolean value false in the conditional con-
struction ite, and

– e is an expression from E : the syntactic representation of the body of the program.

The operators in O1 and O2 are PVS pre-defined functions, whose evaluation is considered to
be atomic in the proposed computational model. These operators make it easy to modularly
embed first-order PVS recursive functions in PVS0, while maintaining non-recursive PVS
functions directly available to PVS0 definitions. Henceforth, ifp = (O1, O2,⊥, e) is a PVS0
program, the symbols pO1 , pO2 , p⊥, and pe denote, respectively, the first, second, third, and
fourth elements of the tuple.

Since there is only one variable available to write PVS0 programs, arguments of binary
functions such as Ackermann’s need to be encoded in V , for example using tuples as shown
in Example 2.

Example 2 The Ackermann function of Example 1 can be implemented as the PVS0[N×N]
program ack ≡ (O1, O2,⊥, e), where the type parameter V of PVS0 is instantiated with
the type of pairs of natural numbers, i.e., [N×N]. In this encoding, the first projection of
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the result of the program represents the output of the function. The components of ack are
defined below.

– O1(0)((m, n)) ≡ IF m = 0 THEN � ELSE ⊥ ENDIF .
– O1(1)((m, n)) ≡ IF n = 0 THEN � ELSE ⊥ ENDIF .
– O1(2)((m, n)) ≡ (n + 1, 0).
– O1(3)((m, n)) ≡ IF m = 0 THEN ⊥ ELSE (max(0,m − 1), 1) ENDIF .
– O1(4)((m, n)) ≡ IF n = 0 THEN ⊥ ELSE (m,max(0, n − 1)) ENDIF .
– O2(0)((m, n), (i, j)) ≡ IF m = 0 THEN ⊥ ELSE (max(0,m − 1), i) ENDIF .
– ⊥ ≡ (0, 0), and for convenience � ≡ (1, 0).
– e ≡ ite(op1(0,vr), op1(2,vr),

ite(op1(1,vr), rec(op1(3,vr)),
rec(op2(0,vr,rec(op1(4,vr)))))).

Example 2 illustrates the use of built-in operators in PVS0. Any unary or binary PVS
function can be used as an operator in the construction of a PVS0 program. In order to show
that ack correctly encodes the Ackermann function, it is necessary to define the operational
semantics of PVS0.

2.2.2 Semantic Relation

Given a PVS0 program p, the semantic evaluation of an E expression ei is given by the
relation ε defined as follows. Intuitively, it holds when given a subexpression ei of a program
p, the evaluation of ei on the input value vi results in the output value vo.

Definition 1 (Semantic Relation) Let p be a PVS0 program on a generic type V , ei be an
expression in E , and vi , vo, v, v′, v′′ be values from V . The relation ε(p)(ei , vi , vo) holds if
and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vo = v if ei = cnst(v)

vo = vi if ei = vr

∃ v′ : ε(p)(e1, vi , v′) ∧ vo = χ1(p)( j, v′) if ei = op1( j, e1)

∃ v′, v′′ : ε(p)(e1, vi , v′) ∧ ε(p)(e2, vi , v′′)
∧ vo = χ2(p)( j, v′, v′′) if ei = op2( j, e1, e2)

∃ v′ : ε(p)(e1, vi , v′) ∧ ε(p)(pe, v
′, vo) if ei = rec(e1)

∃ v′ : ε(p)(e1, vi , v′) ∧ (v′ 	= p⊥ ⇒ ε(p)(e2, vi , vo))

∧ (v′ = p⊥ ⇒ ε(p)(e3, vi , vo)) if ei = ite(e1, e2, e3)

where

χ1(p)( j, v) =
{
pO1( j)(v) if j < |pO1 |
p⊥ otherwise.

χ2(p)( j, v1, v2) =
{
pO2( j)(v1, v2) if j < |pO2 |
p⊥ otherwise.

The following lemma states that the ack program encodes the function ackermann.

Lemma 1 For all n,m, k ∈ N, ackermann(m, n) = k if and only if there exists i ∈ N such
that ε(ack)(acke, (m, n), (k, i)).
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The proof of Lemma 1 proceeds by structural induction on the definition of the function
ackermann and the relation ε. A proof of this kind of statement is usually tedious and
long. However, it is fully mechanizable in PVS assuming that the function and the PVS0
program share the same syntactical structure. A proof strategy that automatically discharges
equivalences between PVS functions and PVS0 programs was developed.

The following theorem shows that the semantic relation ε is deterministic.

Theorem 1 Let p be a PVS0 program. For any expression ei ∈ E and any pair of values
vi , v

′
o, v

′′
o ∈ V ,

ε(p)(ei , vi , v
′
o) and ε(p)(ei , vi , v

′′
o ) implies v′

o = v′′
o .

PVS0 enables the encoding of non-terminating functions. The predicate ε-determined,
defined below, holds when a PVS0 program encodes a function that returns a value for a
given input.

Definition 2 (ε-determination) A PVS0 program p is said to be ε-determined for an input
value vi ∈ V (denoted by Dε(p, vi )) when ∃vo ∈ V : ε(p)(pe, vi , vo).

2.2.3 Functional Semantics

The operational semantics of PVS0 can be expressed by a function χ : [PVS0 → [E ×
V ×N] → V � {♦}]. This function returns either a value of type V or a distinguished value
♦ /∈ V . The natural number argument represents an upper bound on the number of nested
recursive calls that are to be evaluated. If this bound is reached and no final value has been
computed, the function returns ♦.

Definition 3 (Semantic Function) Let p be a PVS0 program, ei an expression from E , vi a
value from V , n a natural number, v′ = χ(p)(e1, vi , n), and v′′ = χ(p)(e2, vi , n).

χ(p)(ei , vi , n) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if n > 0 and ei = cnst(v)

vi if n > 0 and ei = vr

χ1(p)( j, v′) if n > 0, ei = op1( j, e1), and v′ 	= ♦
χ2(p)( j, v′, v′′) if n > 0, ei = op2( j, e1, e2),

v′ 	= ♦, and v′′ 	= ♦
χ(p)(e, v′, n − 1) if n > 0, ei = rec(e1), and v′ 	= ♦
χ(p)(e2, vi , n) if n > 0, ei = ite(e1, e2, e3), v

′ 	= ♦, and v′ 	= p⊥
χ(p)(e3, vi , n) if n > 0, ei = ite(e1, e2, e3), v

′ 	= ♦, and v′ = p⊥
♦ otherwise.

The well-definedness of the function χ is proved using the well-founded measure given
by the lexicographical order of the pairs n measured as a natural number, and the size of the
subexpression e1 being evaluated by the semantic function. As discussed in the begining of
the section on PVS & PVS0, all recursive functions are specified jointly with a well-founded
measure provided by the specifier. In addition, PVS generates termination proof obligations
(TCCs) that should be discharged either automatically or, when not possible, manually by
the specifier.

The following theorem states that the semantic relation ε and the semantic function χ are
equivalent.

Theorem 2 For any PVS0 program p, vi , vo ∈ V and ei ∈ E , ε(p)(ei , vi , vo) if and only if
vo = χ(p)(ei , vi , n), for some n ∈ N.
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A program p is χ-determined for an input vi , as defined below, if the evaluation of p(vi )

produces a value in a finite number of nested recursive calls.

Definition 4 (χ-determination) A PVS0 program p is said to be χ-determined for an input
value vi ∈ V (denoted by Dχ (p, vi )) when there is an n ∈ N such that χ(p)(pe, vi , n) 	= ♦.

The equivalence of ε-determination and χ-determination is a corollary of Theorem 2.

Theorem 3 For all p ∈ PVS0V and value vi : V , Dε(p, vi ) if and only if Dχ (p, vi ).

In Definition 4, there may be multiple (in fact, infinite) natural numbers n that satisfy
χ(p)(pe, vi , n) 	= ♦. The following definition distinguishes the minimum of those numbers.

Definition 5 (μ) Let p be a PVS0 program and vi a value in V such that Dχ (p, vi ), the
minimum number of recursive calls needed to produce a result (denoted by μ(p, vi )) is
formally defined as min({n ∈ N | χ(p)(pe, vi , n) 	= ♦}).

If p is χ-determined for a value vi , then for any n ≥ μ(p, vi ) the evaluation of
χ(p)(pe, vi , n) results in a value from V . This remark is formalized by the following lemma.

Lemma 2 Let p be a PVS0 program and vi a value from V such that Dχ (p, vi ). For any
n ∈ N such that n ≥ μ(p, vi ), χ(p)(pe, vi , n) = χ(p)(pe, vi , μ(p, vi )).

2.2.4 Semantic Termination

The notion of termination for PVS0 programs is defined using the notions of determination
from Sect. 2.2.3.

Definition 6 (ε-termination and χ-termination) A PVS0 program p ∈ PVS0V is said to
be ε-terminating (noted Tε(p)) when ∀vi ∈ V : Dε(p, vi ). It is said to be χ-terminating
(Tχ (p)) when ∀vi ∈ V : Dχ (p, vi ).

As a corollary of Theorem 3, the notions of ε-termination and χ-termination coincide.

Theorem 4 For every PVS0 program p, Tε(p) if and only if Tχ (p).

Not all PVS0 programs are terminating. For example, consider the PVS0 program p′ with
body rec(vr). It can be proven that Dε(p′, vi ) does not hold for any vi ∈ V . Hence, Tε(p′)
does not hold and, equivalently, nor does Tχ (p′). Since terminating programs compute a
value for every input, the function χ can be refined into an evaluation function for terminating
programs that does not depend on the existence of a distinguished value outside V , such as
♦.

Definition 7 Let PVS0↓ε
be the collection of PVS0 programs for which Tε holds, let

p ∈ PVS0↓ε
, and vi be a value in V . The semantic function for terminating programs

ε : [PVS0↓ε
→ V → V ] is defined in the following way.

ε(p)(vi ) ≡ εe(p)(pe, vi ), where v′ = εe(p)(e1, vi ), v′′ = εe(p)(e2, vi ), and

εe(p)(ei , vi ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if ei = cnst(v)

vi if ei = vr

χ1(p)( j, v′) if ei = op1( j, e1)

χ2(p)( j, v′, v′′) if ei = op2( j, e1, e2)

εe(p)(e, v′) if ei = rec(e1)

εe(p)(e2, vi ) if ei = ite(e1, e2, e3) and εe(p)(e1, vi ) 	= p⊥
εe(p)(e3, vi ) if ei = ite(e1, e2, e3) and εe(p)(e1, vi ) = p⊥
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Fig. 2 Abstract syntax tree of the
Ackermann function from
Example 2

Notice that the definition above holds only for ε-terminating programs. Therefore, a well-
founded ordering exists to measure the needed number of nested recursive calls to evaluate
any subexpression ei of the PVS0 program pwith input vi . The specification of this function
comes with the measure function given by the lexicographical order of pairs given by the
number of necessary nested recursive calls measured as natural numbers and the size of
PVS0 expressions. Using this lexicographic measure, it is possible to manually prove the
well-definedness of this function built by PVS as a termination TCC that the system cannot
prove automatically.

Theorem 5 For all terminating PVS0 program p, i.e., Tε(p) holds, and values vi , vo ∈ V ,
ε(p)(pe, vi , vo) holds if and only if ε(p)(vi ) = vo.

WhileTε andTχ provide semantic definitions of termination, these definitions are impracti-
cal as termination criteria, since they involve an exhaustive examination of thewhole universe
of values in V . The rest of this paper formalizes termination criteria that yield mechanical
termination analysis techniques.

3 Turing Termination Criterion

In contrast to the purely semantic notions of termination presented in Sect. 2, the so-called
Turing termination criterion relies on the syntactic structure of recursive programs. In par-
ticular, this termination criterion uses a characterization of the input values that lead to the
evaluation of recursive call subexpressions, i.e., rec(e). In order to define such a characteri-
zation, it is necessary to formalize a way to identify univocally a particular subexpression of
a given PVS0 program. Furthermore, the subexpression as well as its actual position must be
identified. If a given program body contains several repetitions of the same expression, such
as op2(0,rec(vr),rec(vr)), which has two occurrences of rec(vr), the criterion
needs them to be distinguishable from one another. Such a reference for subexpressions can
be formally defined using the abstract syntax tree of the enclosing expression. To illustrate
the idea, Fig. 2 depicts a graphical representation of the abstract syntax tree of the ack pro-
gram. A unique identifier for a given subexpression can be constructed by collecting all the
numbers labeling the edges from the subexpression to the root of the tree. For example, the
sequence of numbers that identify the subexpression rec(op1(4,vr)) is 〈2, 0, 2, 2〉. A
syntax tree labeled using these sequences is called a labeled syntax tree.
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Definition 8 (Valid Path) Let p be a PVS0 program, a finite sequence of natural numbers p
is a Valid Path of p if p determines a path in the labeled syntax tree of p from any node e to
the root of the tree. In that case, p is said to reach e in p.

The notion of path is strictly syntactic. Nevertheless, a semantic correlation is also needed
to state termination criteria focused on how the inputs change along successive recursive calls,
as is the case for Turing termination criterion. A semantic way to identify a subexpression e
of a given program p is to recognize all the values that reach the particular subexpression e
when used as inputs for the evaluation of p. Here, a value whose execution induces a path
which contains e is said to reach the subexpression. It is possible to characterize such values
by collecting all the expressions that act as guards for the conditional expressions traversed
for a given path reaching e.

Continuing the example based on the ack program, for the path 〈2, 0, 2, 2〉 reaching
rec(op1(4,vr)), such expressions would be op1(0,vr) and op1(1,vr). For that
specific path, the values to be characterized are the ones that falsify both guard expressions,
i.e., the values for which both expressions evaluate to p⊥. Nevertheless, for the path 〈1, 2〉
reaching rec(op1(3,vr)), the collected expressions are the same, but it is necessary for
the latter not to evaluate to p⊥ in order to characterize the input values that would exercise
rec(op1(3,vr)).

The previous example shows that it is necessary not only to collect the guard expressions,
but also to determine whether each one needs to evaluate to p⊥ or not.

Definition 9 (Polarized Expression) Given an expression e ∈ E , the polarized version of e
is a pair [E × {0, 1}] such that (e, 0), abbreviated as ¬e, indicates that e should evaluate to
p⊥ and the pair (e, 1), which is abbreviated simply as e, indicates the contrary.

For a given program p, an input value vi , and a polarized expression c = (e, b) with
b ∈ {0, 1}, c is said to be valid when the condition expressed by it holds. The predicate ε±
defined below formalizes this notion.

ε±(p)(c, vi ) ≡
{

ε(p)(e, vi ,p⊥) if b = 0,

¬ε(p)(e, vi ,p⊥) otherwise.

The semantic characterization of a particular subexpression is formalized by the notion
of list of path conditions defined below.

Definition 10 (Path Conditions) Let p be a valid path of a PVS0 program p and e the
subexpression of pe reached by p. The list of polarized guard expressions of p that are
needed to be valid in order for the evaluation of p to involve the expression e is called the
list of path conditions of p.

Definition 11 (Calling Context) A calling context of a program p is a tuple (rec(e′), p, c)
containing: a path p, which is valid in p, a recursive-call expression rec(e′) contained in pe
and reached by p, and the list c of path conditions of p. The collection of all calling contexts
of p is denoted by cc(p).

The notion of calling context captures both the syntactic and the semantic characterizations
of the subexpressions of a program that denote recursive calls.

Example 3 The calling contexts for the ack function from Example 2 are:

– (rec(op1(3,vr)), 〈1, 2〉, 〈¬op1(0,vr),op1(1,vr)〉),
– (rec(op2(0,vr,rec(op1(4,vr)))), 〈2, 2〉, 〈¬op1(0,vr),¬op1(1,vr)〉),

and
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– (rec(op1(4,vr)), 〈2, 0, 2, 2〉, 〈¬op1(0,vr),¬op1(1,vr)〉).
A value whose execution leaves a PVS0 program to evaluate the expression e, argument

of a recursive call in a calling context (e, p, c), of a PVS0 program is said to exercise the
calling context as defined below.

Definition 12 (Exercising values) Given a PVS0 program p, an input value v is said to
exercise a calling context cc = (e, p, c) in p when ε±(p)(c, v) holds for all c ∈ c.

A program p is TCC-terminating if for each calling context cc in p and every input value
vi exercising cc, the value of the expression used as argument by the call in cc is smaller than
vi . In this context, a value v1 is considered smaller than a value v2 if, considering the entire
order, the shortest path to some minimal element is shorter for v1 than for v2.

Definition 13 (TCC-termination) A PVS0 program p is said to be TCC-terminating, or
Turing-terminating, on a measuring type M if there exist a function m : [V → M] and a
well-founded relation <M on M such that for all calling context cc = (rec(e), p, c) among
the calling contexts of p, for all vi , vo ∈ V , if ε±(p)(c, vi ) and ε(p)(e, vi , vo) hold, then
m(vo) <M m(vi ).

The notion of TCC-termination on a program p is denoted by the predicate T [M,<M ,m]
T (p),

which is parametric on the measure type M , the well-founded relation <M , and the measure
functionm. TCC-termination is equivalent to ε-termination (and, therefore, toχ-termination)
as stated by Theorem 6 below. A key construction used in the proof of Theorem 6 is the
function Ω , defined as follows.

Definition 14 (Ω) Let <p,m be a binary relation on V defined as v1 <p,m v2 if and only if
m(v1) <M m(v2) and the value v2 exercises the calling context cc = (e, p, c) in the program
p such that ε(p)(e, v2, v1) holds.

Then, Ωp,m(v) ≡ min({i : N+ | ∀ v′ ∈ V : ¬(v′ <i
p,m v)})

where v′ <i
p,m v denotes a chain of i + 1 values related by <p,m with endpoints in v′ and

v.

Example 4 The functionΩ for the Ackermann program ack in Example 2 is given as below.

Ω((0, n)) = 1
Ω((1, n)) = n + 2
Ω((m + 2, 0)) = 1 + Ω((m + 1, 1))
Ω((m + 2, n + 1)) = 1 + Ω((m + 1,ackerman(m + 2, n)))

Thus, Ω((2, 0)) = 4, and Ω((2, n + 1)) = 2(n + 1) + 4; Ω((3, 0)) = 9, and Ω((3, n +
1)) = 1 + 2n+3; Ω((4, 0)) = 18, and Ω((4, n + 1)) = 2 + 2 2 · · · 2

︸ ︷︷ ︸

(n+1)+3 times

; etc.

The following lemma states that the function Ω acts as an upper bound for semantic
termination.

Lemma 3 Let p be a TCC-terminating PVS0 program, i.e., p satisfies T [M,<M ,m]
T (p) for a

measure type M, a well-founded relation <M over M, and a measure function m. For any
values vi , vo ∈ V , and e ∈ E , ε(p)(e, vi , vo) implies vo = χ(p)(e, vi , n), for some n ∈ N,
such that n ≤ Ωp,m(vi ).
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Proof The lemma is formalized considering the evaluation of expressions at valid paths of
the program p and path conditions. Essentially, the more general property below is proved.

For any valid path p, and expression e of p reached by p, such that the associated path
conditions hold for input value v, there exists n ≤ Ωp,m(v), such that χ(p)(e, v, n) 	= ♦
and ε(p)(e, v, χ(p)(e, v, n)). The proof requires induction on pairs of environments and
expressions, using the lexicographic order built from the well-founded relation<M on values
and the size of expressions. The tricky part of the proof is that it captures more granularity
than TCC-termination since it states the decrement of the measure through all traces of the
pprogram p during evaluation. Indeed, the valid path p and the associated expression e do
not necessarily correspond to a path to a recursive call and the subexpression of the recursive
call. ��

The following lemma states a relation between μ, the number of nested recursive calls in
the evaluation of a particular input v, and Ωp,m for the same input v.

Lemma 4 Let p be a TCC-terminating PVS0 program, i.e., p satisfies T [M,<M ,m]
T (p) for a

measure type M, a well-founded relation <M over M, and a measure function m. For any
value v ∈ V , μ(p, v) ≤ Ωp,m(v).

Proof The proof proceeds by showing that Ωp,m(v) ∈ {n ∈ N | χ(p)(e, v, n) 	= ♦}, i.e.,
proving that Ωp,m(v) is an upper bound of the minimum of this set, μ(p, v). The fact that
such set is nonempty is a consequence of the assumption that p is a TCC-terminating PVS0
program. ��
Theorem 6 Let p be a PVS0 program, Tε(p) holds if and only if there exist a measure type
M, a well-founded relation <M on M, and a measure function m such that T [M,<M ,m]

T (p)

holds as well.

Proof Assuming Tε(p), it can be proved that T
[N,<,μp]
T (p) holds, where μp(v) = μ(p, v).

The function μp(v) is well defined for every v since Tε(p) holds and then, by Theorem 4,
Dχ (p, v) holds as well. Following the definition of χ and the determinism of ε (Lemma 1),
it can be seen that μp(vo) < μp(vi ) for each pair of values vi , vo such that ε±(p)(c, vi ) and
ε(p)(e, vi , vo) for every calling context (rec(e), p, c) in p. The opposite implication can
be proved stating that if T [M,<M ,m]

T (p) holds, for every v ∈ V and any subexpression e of
p, there exists a natural number n ≤ Ωp,m(v) such that χ(p)(e, vi , n) 	= ♦, which assures
Tε(p) by Theorem 4. The proof of such a property proceeds by induction on the lexicographic
order given by (m(v), |e|), where |e| denotes the size of the expression e. ��

Theorem 6 can be used as a practical tool to prove ε-termination of PVS0 programs, as
illustrated by the following lemma.

Lemma 5 The PVS0 program ack from Example 2 is ε-terminating, i.e., Tε(ack) holds.

Proof In order to use theTheorem6, it is necessary to provefirst that there exist ameasure type
M , a well-founded relation<M overM , and ameasure functionm such that T [M,<M ,m]

T (ack)

holds. Let M be the type of pairs of natural numbers [N × N], m the identity function, and
<M the lexicographic order on [N × N], i.e., (a, b) <lex (c, d) ≡ a < c ∨ (a = c ∧ b < d)

where < is the less-than relation on natural numbers. To prove that T [[N×N],<lex ,id]
T (ack)

holds, it suffices to check that for every input pair vi , leading to any of the recursive-call
subexpressions rec(e) in ack, vi is such that for every pair vo satisfying ε(ack)(e, vi , vo),
vo <lex vi .
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There are only three recursive calls in the function ack, namely: rec(op1(3,vr)),
rec(op1(4,vr)), and rec(op2(0,vr,rec(op1(4,vr)))). Each of them deter-
mines a case in the proof. For the first subexpression, note that any input value vi leading
to it must be such that π1(vi ) 	= 0 and π2(vi ) = 0, in order to falsify the guard in the
outermost if-then-else and validate the guard in the innermost conditional. Because of the
function O1(3) used to interpret op1(3, ·), for every vo such that ε(ack)(e, vi , vo) holds,
π1(vo) must be equal to π1(vi ) − 1; hence, vo <lex vi holds. For the other recursive-call
subexpressions in ack, the values vi that lead to them satisfy π1(vi ) 	= 0 and π2(vi ) 	= 0. In
particular, for the case of rec(op1(4,vr)), the function O1(4) forces any vo for which
ε(ack)(e, vi , vo) holds, to be equal to (π1(vi ), π2(vi ) − 1), satisfying vo <lex vi as well.
Finally, for the values vi reaching rec(op2(0,vr,rec(op1(4,vr)))) and because
of O2(0), the first coordinate of vo must be π1(vi ) − 1, which is enough to conclude that
vo <lex vi holds. Then, T

[[N×N],<lex ,id]
T (ack) holds and, by Theorem 6, Tε(ack) holds as

well. ��
The inequalities of the form vo <lex vi that are proved in Lemma 5 correspond to the

actual termination correctness conditions generated by the PVS type checker for the function
ackermann defined in Example 1.

4 The Size Change Principle and Calling Context Graphs

4.1 The Size Change Principle

The Size Change Principle (SCP) is another criterion of what it means for a recursive function
to terminate. It states that “a program terminates on all inputs if every infinite call sequence
(following program control flow) would cause an infinite descent in some data values” [13].
Of course, the definition of “descent” and “data values” here must be qualified in some way,
essentially to be some well-founded relation, to make this true. Regardless, the SCP is a
particularly useful and concise way to describe termination. The implementation of the SCP
inside PVS0 requires a few definitions prior to use.

Definition 15 (Valid Trace) Givenp ∈ PVS0, and an index set I ∈ {N∪⋃∞
i N≤i } a sequence

cc = 〈rec(ei ), pi , ci 〉i∈I of calling contexts of p, and a sequence of values v from V also
indexed by I , cc and v are said to form a valid trace of calls if the following predicate τ

holds.4

τp(cc, v) ≡ ∀(i − 1 ∈ I ) : (ε±(p)(ci−1, vi−1) ∧ ε(p)(ei−1, vi−1, vi )).

Note that a valid trace can be infinite or finite.

Definition 16 (Trace-Termination)APVS0programp is said to beSCP-terminating, denoted
by TSCP (p), if there is no infinite valid trace.

Theorem 7 For all p ∈ PVS0, Tε(p) if and only if TSCP(p).

Proof By Theorem 6 it is enough to prove that TT (p) and TSCP (p) are equivalent. Proving
TSCP (p) given TT (p) is straightforward. To prove the other direction, it is necessary to
use Ωp,m . Since one has TSCP (p), it is possible to provide a relation between parameters

4 Since ε± can be straightforwardly extended to lists of polarized expressions, the same symbol is used for
both versions along the text. Also, the actual formalization only defines infinite valid traces,
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Fig. 3 A possible CCG for the Ackermann function

and arguments of recursive calls and prove that it is well-founded. Similarly to the proof of
Theorem 6, the closure of this relation is then used to parameterize the function Ωp,m , which
provides the height of the tree of evaluation of recursive calls as the needed measure. ��

Definition 17 (SCP-Termination) Let < be a well-founded relation over V , SCP<(p) holds
if for all infinite sequence cc of calling contexts of p and for every infinite sequence v of
values in V such that τ(cc, v) holds, v is a decreasing sequence on <, i.e., for all i ∈ N,
vi+1 < vi .

Theorem 8 For all p ∈ PVS0V , TSCP (p) if and only if SCP<(p) for a well-founded relation
< over V .

4.2 Calling Context Graphs

Calling Context Graphs is a technique that implements SCP [14]. A call sequence in a
recursive function (of any reasonable length) will necessarily return to the same “place” in
the recursive function more than once. For example, in the Ackemann function, the recursive
call guarded by n = 0 will be executed many times in a non-trivial example. This Calling
Context Graph (CCG) method creates a graph that in essence puts these similar recursive
calls into equivalence classes as the vertices, with an edge connecting two recursive calls
if one can reach the other. A more precise description of the notion for a PVS0 program is
given below.

Definition 18 A Calling Context Graph of a PVS0 program p (p ∈ PVS0V ) is a directed
graphGp = (V , E)with a node in V for each calling context in p such that given two calling
contexts of p (rec(ea), Pa,Ca) and (rec(eb), Pb,Cb), if

∃(va, vb : V ) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ∧ ε±(p)(Cb, vb),

then the edge 〈(rec(ea), Pa,Ca), (rec(eb), Pb,Cb)〉 ∈ E .

Note in particular the oneway implication in the definition. It does not include the converse
statement, that an edge must be removed from the graph if there is no valid value pair that
relates them. Any graph that obeys this implication is called a sound CCG, or just a CCG,
for the function. A CCG where every edge that exists is witnessed by some concrete input to
the function is called exact. While sound graphs are a necessity, an exact graph is not. This is
important from a practical implementation standpoint, since the guard for a recursive call can
be any boolean function, even an undecidable one. Indeed, the condition on the edges admits
a fully connected graph of calling contexts to be considered a sound CCG for the function.
For the sake of example, another possible CCG for the Ackermann function as defined in the
Example 1 is depicted in Fig. 3, where the calling contexts from Example 3 are abbreviated
to improve readability.
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The lack of the loop at cc1 is justified, because there exist no tuples (a, b), (c, d) ∈ [N×N]
such that ε±(ack)(Ccc1 , (a, b))∧ε(ack)(ecc1 , (a, b), (c, d))∧ε±(ack)(Ccc2 , (c, d)), since
this formula can be expanded to (a 	= 0∧ b = 0) ∧ (c = a − 1∧ d = 1) ∧ (c 	= 0∧ d = 0).
Note also that the edge from cc2 to cc1 could be removed from the graph in the Fig. 3. This
is because there are no pairs of naturals (a, b), (c, d) such that (a 	= 0 ∧ b 	= 0) ∧ (c =
a − 1 ∧ d = ack(a, b − 1)) ∧ (c 	= 0 ∧ d = 0) since the result of the Ackermann function
is always greater than zero. While this is true, it is not a simple property to determine from
the function definition without analysis. Moreover, this sound but not exact calling context
graph suffices to prove termination for the function. In practice, deciding which edges are
able to be pruned without adding a significant proof burden to a user can be difficult, as the
guard for a recursive call can be any boolean function.

The following standard notions from Graph Theory will be used in the definitions below.
A walk of Gp is a sequence cci1 , . . . , ccin of calling contexts such that for all 1 ≤ j < n
there is an edge between cci j and cci j+1 . The collection of all walks of a given graph G is
denoted by WalkG . A circuit is a walk cci1 , . . . , ccin , with n > 1, where cci1 = ccin . A
cycle is an elementary circuit, i.e., a circuit cci1 , . . . , ccin where the only repeating nodes are
cci1 and ccin . The notation |w| will be used in the following to denote the number of edges
in the walk w, and |G| to denote the size of a graph G. Additionally, if w = cc1, · · · , ccn
the expression w[a..b] will denote the walk cca, · · · , ccb when 1 ≤ a ≤ b ≤ n.

Definition 19 Let M be a family of N measures μk : V → M , with 1 ≤ k ≤ N , and < be
a well-founded relation over M . A measure combination of a sequence of calling contexts
cci1 , . . . , ccin is a sequence of natural numbers k1, . . . , kn , with each k j in the range 1 ≤ k j ≤
N representing the measure μk j , such that for all 1 ≤ j < n, v, v′ ∈ V , ε±(p)(C j , v) ∧
ε(p)(e j , v, v′) implies μk j (v) � j μk j+1(v

′), where cci j = (rec(e j ), Pj ,C j ) and � j ∈
{>,≥}. A measure combination is descending if at least one � j is >.

Following the example in Fig. 3 and using the family of measures M = {μ1, μ2}
where each of them is a projection of the arguments μ1(a, b) = a and μ2(a, b) = b, the
sequence [1, 2, 2] is a descending measure combination for the sequence of calling contexts
[cc1, cc3, cc1], since:
(1) ∀(m, n) ∈ [N × N], m 	= 0 ∧ n = 0 ⇒ μ1(m, n) ≥ μ2(m − 1, 1), and
(2) ∀(m, n) ∈ [N × N], m 	= 0 ∧ n 	= 0 ⇒ μ2(m, n) > μ2(m, n − 1).

Definition 20 Let Gp be a CCG of a PVS0 program p ∈ PVS0V and let M be a family
of measures for a well-founded relation < over a type M . The graph Gp is said to be CCG
terminating (denoted by TCCG(Gp)) if for all circuits cci1 , . . . , ccin in WalkGp there is a
descending measure combination k1, . . . , kn , with k1 = kn .

The following case analysis on the possible circuits in the CCG in Fig. 3 reveals that it is
terminating. For any given circuit, if the calling contexts cc1 or cc2 appear in it, the measure
combination formed only by the μ1 measure is descending, since the projection of the first
argument provokes a strict descent for both calling contexts, while for cc3 the descending
flow stands even in a non-strict way. In the remaining case, those circuits formed only by the
calling context cc3 (possibly appearing more than once), a descending measure combination
can be constructed using only the projection of the second argument: μ2.

Theorem 9 For all p ∈ PVS0V , TSCP (p) if and only if TCCG(Gp) for some CCG Gp of p
and some family of measures M .

Since the number of circuits in a CCG is potentially infinite, CCG termination does not
directly provide an effective procedure to check termination. The following example shows
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Fig. 4 A possible CCG, a family of measures, and descending combinations for the definition in Example 5

Fig. 5 Summary of measure applications for the calling contexts cc1 and cc3 in the CCG from Fig. 3

that even though the number of cycles in a graph, i.e., its non-repeating circuits, is indeed
finite, it is not enough to check for decreasing measure combinations on them.

Example 5 Consider the definition on natural numbers stated below, where 0?(n) and¬0?(n)

are abbreviations for 1−̇n and1−0?(n) respectively, and −̇ is the saturated subtraction defined
as a−̇b = max(a − b, 0).

f (n,m, s) =

⎧
⎪⎨

⎪⎩

f (1 + ¬0?(s) ∗ (m + n), 1 + 0?(s) ∗ (m + n), 0?(s)) if n = 0 or m = 0

f (n − 1,m, 0) otherwise and s = 0

f (n,m − 1, 1) otherwise

This definition can be expressed as a PVS0 program. Figure4 shows a valid CCG for f ,
where the calling contexts are numbered in the order they appear in the definition. The
family of measures presented there can be used to form descending combinations for each
cycle in the graph, as shown in the same Figure. Nevertheless, f is not terminating since, for
instance, the inputs 1, 1, 0 cause the following chain of calls: f (1, 1, 0) → f (0, 1, 0) →
f (1, 2, 1) → f (1, 1, 1) → f (1, 0, 1) → f (2, 1, 0) → f (1, 1, 0) → · · · , over the circuit
cc2, cc1, cc3, cc3, cc1, cc2, cc2, .... This explains whyDefinition 20 cannot be stated in terms
of cycles.

5 Matrix-Weighted Graphs

Matrix-Weighted Graphs (MWG) is a technique that checks descending measure combina-
tions in CCG using an algebra over matrices [4]. Given a CCG Gp for a PVS0 program p,
a family of measures M , and a calling context cc ∈ G, the main idea behind MWG is to
summarize the relation between the application of a measure μa on the arguments of p and
the application of a measureμb on the arguments of the recursive call in cc for every possible
pair of measures μa, μb ∈ M .

Figure 5 shows a way in which such information can be summarized for two of the calling
contexts in the CCG depicted in Fig. 3.

There, each row of the tables represents the application of one of the measures μ1 or
μ2 as stated above on the arguments of the function. Similarly, each column represents the
application of one of the measures on the arguments of the recursive call in the corresponding
calling context. Every symbol inside the table informs the order relation between the result of
the application denoted by the row and the one denoted by the column when it can be stated

123



40 Page 16 of 30 C. A. Muñoz et al.

Fig. 6 A MWG for the PVS0 program for the Ackermann function

for any possible input value fulfilling the path conditions of the calling context. A question
mark is used otherwise.

Capturing these kinds of interactions among the members of a family of N measures can
be done using matrices of dimension N ×N and values in {−1, 0, 1}. Since the only relations
that are significant to decide CCG termination are ≥ and >, the values 0 and 1 are used to
represent them, while the value −1 is used to represent an increase on the measure of the
arguments or the impossibility of stating any relation between them (signaled with a question
mark in Fig. 5). The type of the matrices is denoted by M

N
3 . Similar to the pruning of edges

of the CCG, the construction of sound measure matrices, in the sense that any 0 or 1 entries
correspond to an inequality that must be proven, is necessary. A measure matrix with all
entries set to −1 is sound, but does not capture any information about measures decreasing.
Being able to effectively determine some entries that can be marked 0 or 1, and prove the
associated inequality, is undecidable in general.

Definition 21 (Matrix Weighted Graph) Let p be a PVS0 program in PVS0V and M be a
family of N measures {μi }Ni=1. A matrix-weighted graph WM

p of p is a CCG Gp = (V , E)

of p whose edges are correctly labeled by matrices in M
N
3 .

An edge (cca, ccb) ∈ E is said to be correctly labeled by a matrix Mab when for all
1 ≤ i, j ≤ N ,

– ifMab(i, j) = 1, then for any pair of values va, vb ∈ V ,

ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies μi (va) > μ j (vb);
– ifMab(i, j) = 0, then for any pair of values va, vb ∈ V ,

ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies μi (va) ≥ μ j (vb).

An entry Mab(i, j) = −1 provides no information about va, vb with respect to μi and μ j .

Similar to the pruning of edges of the CCG, the construction of soundmeasurematrices, in
the sense that any 0 or 1 entries correspond to an inequality that must be proven, is necessary.
As mentioned, a measure matrix with all entries set to −1 is sound, but does not provide
any information about measures decreasing. Being able to determine some entries that can
be marked 0 or 1, and prove the associated inequality, is undecidable in general. A measure
matrix where relationships between measures are marked with the highest value that is true
for every input (i.e., a 1 value for measure pairs that strictly decrease on all inputs, a 0 value
measure pairs that weakly decrease on all inputs with at least one set of inputs witnessing
equality, and a −1 value for measure pairs with a set of inputs witnessing increase) is called
exact. Luckily, termination can often be proven with sound but not exact measure matrices.

Figure 6 depicts a possible MWG for the PVS0 program implementing the Ackermann
function.

The next step is to combine these matrices in order to check if a suitable measure combi-
nation as stated in Definition 19 exists for two consecutive calling contexts in the graph. The
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method for combining the information summarized in the matrices is to multiply them as
usual, but redefining the binary operations on the entries. Let x, y ∈ {−1, 0, 1}, the addition
of x an y is the maximum between them, x + y = max(x, y), while the multiplication is
shown below.

x × y =

⎧
⎪⎨

⎪⎩

−1 if min(x, y) = −1,

1 if min(x, y) ≥ 0 ∧ max(x, y) = 1,

0 otherwise.

Definition 22 (Weight of a Walk) Let p be a PVS0 program, Wp a MWG for p, and
wi = cci1 , . . . , ccin a walk in such graph, the weight of wi, noted by w(wi), is defined as
Πn−1

j=1Mi j i j+1 .Aweightw(wi) is positive if there exists 1 ≤ i ≤ N such thatw(wi)(i, i) > 0.

Example 6 Continuing the example in Fig. 6, the weights for walks w1,3 = cc1, cc3 and
w2,3 = cc2, cc3 are shown below. Both of them are positive.

w(w1,3) =
[
1 1

−1 −1

]

w(w2,3) =
[
1 −1

−1 −1

]

The lemma below states a useful property about walk weights.

Lemma 6 Let Wp be an MWG for a PVS0 program p and w = cc1, · · · , ccn be a walk of
Wp , then w(w) = w(cc1, · · · , cci ) × w(cci , · · · , ccn).

As in the case of the calling context graphs, a walk in a MWG represents a trace of
recursive calls. Hence, a circuit denotes a trace ending at the same recursive call where it
starts. In line with the notion of CCG termination, a MWG is considered terminating when,
for every possible circuit, the matrix representing its weight has at least one positive value in
its diagonal.

Definition 23 (Matrix-Weighted Graph Termination) Let p a PVS0 program and let Wp be
a MWG of p. The graphWp is said to beMWG terminating (denoted by TMWG(Wp)) when
for every circuit wi of Wp, w(wi) is positive.

The equivalence between the notions of termination for CCG and MWG is stated by
Theorem 10 below.

Theorem 10 LetM be a family of N measures for a well-founded relation < over a type M.
For all p ∈ PVS0V , TCCG(Cp

M ) for some CCG Cp
M if and only if TMWG(Wp

M ) for
some MWG Wp

M .

Proof This theorem follows from the fact that circuits in Wp, built from Gp using the same
measures, have positive weights if and only if there exist corresponding descending measure
combinations. This property is proved by induction in the length of circuits in Gp. ��

5.1 Bounding Circuit Length

As pointed out in the previous section, a digraph such as anyCCGorMWGcan have infinitely
many circuits. Nevertheless, since the information used to check MWG termination is the
weight of the circuits and, for a fixed number N of measures, there are only finitely many
possible weights, a bound on the length of the circuits to be considered can be safely imposed
as shown in the lemma below.
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Lemma 7 Let p be a PVS0 program and Wp a MWG for it. If for all circuit w in Wp such

that |w| ≤ |Wp | · 3N2 + 1, w(w) is positive, then Wp is MWG terminating.

Proof In order to prove TMWG(Wp), it is necessary to show that every circuit of Wp has

positive weight. For every circuit w = cc1, · · · , ccn of Wp , if n ≤ |Wp | · 3N2 + 1, then
w(w) is positive by hypothesis. Otherwise, it can be proved that there exists another circuit
w′ such that w(w) = w(w′) and |w′| < |w|. By hypothesis, w(w)′ is positive and so w(w)

is positive also. Hence by an inductive argument, the result will hold.
The existence of the circuitw′ is established using a pigeonhole principle argument. Given

the walk w of length n > |Wp | · 3N2 + 1 in Wp , construct the sequence of ordered pairs
〈(cci , w(cc1, · · · , cci ))〉ni=1, where for each 1 ≤ i ≤ n, the vertex cci is the i th vertex in
w and it is paired with the weight of the prefix of w of length i (essentially the pair is the
vertex, and the accumulated weight of the walk to that point). By the pigeonhole principle,
it can be seen that there cannot exist more than |Wp | · 3N2

of these pairs that are all distinct.

Since n > |Wp | · 3N2 + 1, there are two indices i, j such that (cci , w(cc1, · · · , cci )) =
(cc j , w(cc1, · · · , cc j )) and i 	= j . Without loss of generality, it can be assumed that i < j .
Then, consider the walk w′ = cc1, · · · , cci−1, cc j , cc j+1, · · · , ccn . Note that it is a circuit,
since cci = cc j and cc1 = ccn . Also note that the length of w′ is shorter than w, since the
path from cci to cc j−1 is removed, which contains at least the vertex cci . To calculate the
weight of w′, first it should be noted that, by Lemma 6, w(cc1, · · · , cc j , cc j+1, · · · , ccn) =
w(cc1, · · · , cci−1, cc j ) × w(cc j , cc j+1, · · · , ccn). Since the vertex cci is the same than
the vertex cc j and by our hypothesis, w(cc1, · · · , cci ) is equal to w(cc1, · · · , cc j ), then
w(w′) = w(cc1, · · · , cc j ) × w(cc j , cc j+1, · · · , ccn), which by Lemma 6 again is equal to
w(w). Conceptually, the process finds a circuit at vertex cci that has the same weight when
entering the circuit as when leaving, and hence can be “cut out” without changing the weight
of the original walk.

If the length ofw′ is at most |Wp | ·3N2 +1, the result is proven. Otherwise, the procedure
can be repeated until the circuit reaches the claimed length.

��

Note that this bound can be turned into a brute-force algorithm for determining the entire
collection of weights taken on by the circuits inWp . First, enumerate the circuits of length at

most |Wp | ·3N2 +1, building them using the elementary cycles ofWp . This can be computed
by Tarjan’s algorithm [19], or other similar know methods. Once these are in hand, calculate
the weight of the circuit for each one. Unfortunately, for even very small graphs and measure
matrix sizes, the circuit length bound in Lemma 7 can be large. The number of circuits of
this length is even worse, generally being exponential in the number of elementary cycles.

Example 7 Continuing Example 6. As an example, consider the matrix weighted graph for
the Ackermann function in Fig. 6. With three vertices, and two measures, the circuit bound is
hence 3 · 322 + 1 = 244. Consider only the portion of the graph containing vertices cc1 and
cc2, and further, only circuits starting and ending at cc2. There are two elementary cycles,
which are the loop at cc2 and the two-edge path from cc2 to cc1 and back to cc2. The number
of different circuits of length k using just these two cycles starting from cc2 is then Fk , the
kth Fibonacci number.5 Hence the number of circuits at cc2, using only these two cycles, of

5 This simple exercise is left to the reader.
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length at most 244 is

244∑

k=1

Fk = 1152058411884454788302593034206568772452674037325127.

Computing these circuits and their weights would take an untenable amount of time and
resources. So while Lemma 7 implies a basic algorithm, it is clearly not the most efficient
one. It should also be noted that the method described does not use any of the structure of
the measure matrices, simply relying on the number of them being finite.

5.2 Dutle’s Procedure

Lemma 7 states that there is a bound on the length of circuits that must be examined to
guarantee that all circuits have positive weight in a matrix-weighted graph. The proof of
this bound provides both a guidepost as to how an algorithm should run (by examining
successively longer circuits), and a guarantee of termination for an algorithm that does so.
The particular algorithm for doing so, described below, is referred to as Dutle’s procedure.

Given aMWGWp
M = (V , E) on a family of N measuresM for a PVS0 program p, the

general idea of this procedure is to build sequentially a family of functions fi : V → list[MN
3 ]

with 0 ≤ i ≤ |Wp | · 3N2 + 1. These functions are such that for each vertex cc ∈ V , and
every circuit w in Wp

M starting at cc where |w| <= i , there is a weight M ∈ fi (cc) for
which M ≤ w(w). Here, the inequality on measure matrices is taken pointwise, noting that
the collection of N × N measure matrices form a partially ordered set under this inequality.
For correctness, it is also required that anyM ∈ fi (cc) is actually the weight of some circuit
at cc.

If for some i there is a vertex cc and a weight M such that M ∈ fi (cc) and M is not
positive, then it can be concluded thatWp

M is not terminating, since there is a circuit whose
weight is not positive. On the other hand, the algorithm can be stopped if it reaches the point
where i = |Wp | · 3N2 + 1 with positive matrices in the range of fi (cc) for each i , andWp

M

can be safely declared as terminating thanks to Lemma 7. To avoid having to continue the
computation to this bound, another stopping criterion is introduced, which is in fact always
reached prior to attaining the circuit bound.

Figure 7 depicts a pseudo-code for Dutle’s procedure. The majority of the computa-
tion takes place in the function expandPartialWeight. It takes as parameter fi , which is
the current collection of lists, specific to each vertex, which contain the measure matrices
encountered as a weight of all circuits of length at most i . When provided with a walk w as
input, expandPartialWeight( fi ) calculates a new list of measure matrices, which contains
the measure matrices of every walk that can be obtained by walking along w, and at every
vertex, taking some circuit of length at most i . The function achieves this by combining
weights from the vertex lists on the walk with weights from the edges of the walk. At the
first vertex v0 of w, the list from fi is taken. Each element of this list is multiplied by the
weight of the edge leading to the second vertex v1. The resulting list is then combined with
the list from v1 using the function pairwiseMultiplication which, given two lists l1, l2 of
matrices in M

N
3 returns the list resulting from the pairwise multiplication of the elements

in those lists. This procedure is then repeated until the end of the walk. Note that since the
values from fi for each vertex contain weights from cycles of length at most i (including
i = 0), this procedure finds the weight of any walk w′ that traverses w, but at each vertex,
chooses and traverses any cycle of length at most i .
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Fig. 7 Dutle’s procedure to check termination on matrix-weighted graphs

The wrapper function expandWeightLists applies the expandPartialWeight to the col-
lection of all elementary cycles at each vertex, which is computed using the auxiliary function
allCyclesAt(G, v). Note that any circuit of length at most i +1 is either an elementary cycle,
or can be decomposed as an elementary cycle with circuits of length at most i attached to
each vertex of the elementary cycle. Hence the function expandWeightLists computes fi+1

given its predecessor fi . It is worth noting that the claimed invariant of fi+1 is that is contains
weights of all circuits of length at most i + 1, but in fact it computes something more. It
calculates the weights of all circuits with some loosely defined notion of circuit complexity
at most i + 1. Because this notion was not crucial to the procedure, it is not defined precisely
or analyzed formally in this development.

The function terminatingAt? recursively computes the desired lists fi , and also imple-
ments the stopping conditions. The first stopping condition is i ≥ |Wp | · 3N2 + 1, which
allows the use of Lemma 7 to guarantee that the procedure itself will terminate. The second
condition determines if there is a cycle of negative weight using the negation of the func-
tion positive?(M), which checks if a matrix M is positive in the sense of Definition 22. In
this case, the procedure exits with false, indicating that a non-positive cycle was detected.
The third condition implements the recursive step, as well as the innocuous-looking check
fi = fi+1. This check on the saturation of fi serves two (related) purposes. The main reason
for the check is that once a single computation step does fails to change fi , any further
iterations will also leave it unchanged, and so it follows that fi = f|Wp |·3N2+1. This can

happen based on many things, including the structure of the particular calling context graph,
the measures chosen, and the calculations of the measure comparisons. Additionally, this
saturation accounts for the inherent looseness in the bounds used to guarantee termination of
the procedure. The bound for Lemma 7 is based on a very rudimentary pigeonhole principle
argument, and a closer examination could likely lower this value. Similarly, as mentioned
above, the calculation of fi actually bounds circuits of a certain complexity that also ensures
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length, and further analysis of this complexity would likely show it as strictly encompassing
length.

Finally, the outer call to this procedure is terminating?, which initializes the set of lists
to be empty for f0, since a walk of length 0 has no weight.

Other elements in the pseudocode include cons(x, l), which denotes the list constructed
from the element x and the list l, null which denotes the empty list, and map( f , l), used to
denote the list formed by the application of the function f to each element in l.

Dutle’s Procedure is a sound and complete procedure to decide the positive weight of
all circuits in a matrix-weighted graph and hence to check termination on an MWG. This
procedure has been formally verified in PVS as part of this work.

Several aspects of this procedure could be further optimized. For instance, both execution
time and storage space can be improved. The function expandWeightLists enlarges the lists
in the range of each fi+1 (with respect to its predecessor fi ), while it is enough to keep
such lists minimal, for instance by adding a new weight M to a list l only if there are no
M′ in l already such that M′ ≤ M. This is true because the measure matrices, along with
the multiplication operation defined on them, form a semi-group where the multiplication
operation respects the partial order on the matrices induced by the pointwise inequality
relation. This implies that keeping a minimal set of weights achieved at a point in the process
for each vertex is sufficient.

As implied by the discussion above, the check for i ≥ |Wp |·3N2+1 could also be removed,
since the saturation of fi is guaranteed by this point. Indeed, in a more general setting, the
measure matrices can be replaced by any partially ordered semi-group, and the notion of a
“non-positive” weight can be replaced with an arbitrary filter. Provided that the partial order
has finite width, and the descending chain condition, the same procedure is guaranteed to
terminate.6 A formal proof of this more general procedure has not been undertaken, as the
specific case of measure matrices was enough for the work under consideration.

As a test, the implementation of terminating? inside this development was temporarily
equipped to count the number of interactions of terminatingAt? required to finish compu-
tation, either by saturation or by reaching the cycle length bound. Using the matrix weighted
digraph from Fig. 6 developed for the Ackermann function, only 2 iterations were required
for saturation of the lists, while the cycle length bound is 244.

5.3 Automating Termination Analysis

The notion of Matrix Weighted Termination can be used to define a full procedure to auto-
matically prove termination of certain recursive functions in PVS. Such a procedure consists
of the steps described below.

1. Extract the calling contexts from the PVS program definition. The set of calling contexts
is finite and can be extracted from the program by syntactic analysis.

2. Generate a sound CCG for the program.

– A fully connected CCG is sound (the more edges the more inefficient the method,
and in fact superfluous edges may prevent a proof of termination entirely).

6 Essentially, the proof that the procedure terminates is that at each step, the list fi at a vertex will contain
(at most) a single minimal element from a chain cover of the poset. The number of such elements is bounded
due to the finite width, and either these elements stabilize, or decrease according to the poset order. The DCC
shows that this cannot happen infinitely often.
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– The theorem prover itself can be used to soundly remove edges from the graph, i.e.,
an edge cca, ccb can be removed if the condition ∀(va, vb : V ) : ε±(p)(Ca, va) ∧
ε(p)(ea, va, vb) ⇒ ¬ ε±(p)(Cb, vb) can be discharged.

– In order to select measures to form the family M , the following heuristics can be
used.
– The order relation < over natural numbers is usually a good starting point.
– SinceCCG allows for a family of measures, it is sound to add as many measures

as possible (of course the more measures the more inefficient the method).
– Predefined functions can be used, e.g., parameter projections (in the case of

natural numbers), natural size of parameters (in the case of data types), maxi-
mum/minimumof parameters, etc.More complex recursionsmay need heuristics
based on static analysis.

3. Construct a MWG for the program based on the CCG defined in the previous step in the
following way: all edges starting in a given calling context cca can be labeled with the
same matrix Ma . It is sound to set all its entries to −1. The theorem prover can then be
used to soundly set the entries inMa(i, j) to either 0 or 1 as follows,

– If � ∀(va, vb : V ) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ μi (va) > μ j (vb) can
be proved, set Ma(i, j) to 1.

– If � ∀(va, vb : V ) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ μi (va) ≥ μ j (vb) can
be proved, set Ma(i, j) to 0.

4. Use Dutle’s procedure to check termination on the MWG.

Besides the pure theoretical aspect of this work, one of its long-term goals is to increase
the automation of termination analysis of user-defined functions in PVS. A concrete imple-
mentation and integration of this procedure for users of PVS has not yet been achieved. Such
an implementation could take several possible variations, which can be grouped into two
main lines.

Integration into the PVS core: Integration of the MWG termination criteria into the PVS
prover itself poses several technical and philosophical issues, depending on how deeply the
procedure is embedded into PVS. As noted in Sect. 3, the PVS typechecker currently gen-
erates termination TCCs that are essentially Turing termination criteria on a user-provided
well-founded order. In the (arguably) most invasive embedding of the procedure, the type-
checker could be altered to offer an MWG termination TCC, where the PVS core essentially
does all of the steps of the procedure outlined above, including pruning of edges, choosing
measures, and executing the procedure. This route offers the most tighly integrated version
of MWG termination, but would add a significant amount of code to the PVS base. This
option has the highest probability of introducing unsoundness in PVS through some bug in
the implementation of the procedure, with modest improvement to termination automation.

A somewhat less invasive integration into the PVS prover would involve having the type-
checker offer parametricMWGcriteria that the userwould instantiate. The typecheckerwould
still be required to extract the calling context from a program, but instead of performing steps
2,3, and 4 from above, it would generate a TCC positing the existence of such structures. The
user would be required to input and prove the soundness of the CCG, choose measures to be
used in the MWG, and prove the validity of the entries of the measure matrices. While this
is certainly burdensome on the user, several existing strategies are already available in the
MWG development described here that automate many of these steps in a sound way. One
possible downside to such an implementation woud be the need to include many of the PVS
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theories that are used in this development in the prelude libraries. On the positive side, due
to the smaller impact on the PVS core, this route is less likely to introduce unsoundness.

A minimally invasive integration in the PVS prover may provide functionality for MWG
termination also. Currently PVS takes as part of the specification a keyword or a function
that is used to generate the termination TCC. The user provides (or points to) the well-
founded measure in the specification, and the TCCs ask to prove that it decreases on every
recursive call. Keeping the type checker essentially as it, the use of MWG termination can be
facilitated by moving the specification of this well-founded measure into the TCC.Assuming
that steps 1-4 above are able to be performed in the prover through strategies or minimal user
interaction (discussed below), the developments described in this paper, particularly the proof
thatMWG termination implies Turing termination, can be used to prove the existence of such
a well-founded measure. This method of incorporating MWG termination into the PVS core
is perhaps the most promising, since it requires the least amount of change to the system,
and even gives flexibility to incorporate future methods of termination analysis.

The developers of PVS are aware of the termination work detailed here, and are receptive
to the idea of possible incorporation of MWG termination in future releases. In the mean
time, another route is being explored which is non-invasive to PVS.

Using MWG termination external to the PVS core:An alternative method for usingMWG
termination in PVS involves not altering the theorem prover at all, instead externally pro-
cessing a recursive specification in a way that can apply the methods described. This method
is currently being investigated as a precursor to the full integration in PVS described above.

Currently, the MWG termination work described here can be used in PVS to prove some
termination TCCs that are generated. This process involves several steps. First, a version of
the recursive function is manually specified in the language of PVS0. This includes defining
a type that can contain the inputs to the function, and embody true and false values inside
PVS0, and also defining the operations and structure of the function. The measures used on
the function inputs are specified, and the calling context graph is created and proven sound.
As noted above, a complete graph is always sound, but pruning may make the graph more
effective. Measure matrices are defined, and assigned to the CCG, where they are required
to be proven sound for their assignment. Lemmas are written to embody that this structure
proves termination, and that the recursive function has a well founded measure. These can be
proven using the Dutle’s procedure, and the proof that MWG termination implies measure
termination.

This allmust occur in the PVSfile logically prior to the actual recursive function definition,
so that the measure which is proven to exist can be used in the actual recursive defintion.
Even with this complete, when using the measure, it must be shown that the measure which
applies to the PVS0 function applies to the normal specification, by proving essentially that
the two functions are equivalent.

Much of the proving in this process can, and has, been automated. For example, there is
a PVS strategy that can prove the functional equivalence of a given function with a PVS0
counterpart, a strategy that will take a given MWG and run Dutle’s procedure to determine if
the structure proves termination, and a strategy that will prove the existence of a well-founded
measure if the MWG proves termination.

The more difficult part of automating the procedure is in the specification. Particularly
the generation of the PVS0 function, the specification of a sound, pruned CCG, and the
specification and assignment of sound measure matrices. Some progress has been made on
automating the PVS0 function specification for PVS functionswith someparticular branching
structure, and limited types for input variables, but the general case is still elusive. Currently
only the fully connected CCG is able to be automatically generated and proven correct. Some
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concepts and heuristics for determining which edges of a CCGmust be kept and which edges
can be proven valid to remove are being investigated. Similarly, choosing measures, and
generating and proving that measure matrices are sound is still under development.

5.4 Applicability

While an automatic termination procedure is still in development, As a way to evaluate how
effective an integration of a termination analysis procedure based on MWG into the PVS
workflow might become, a survey of the recursive definitions declared in PVS is presented
below.

NASALib is currently the largest publicly-available collection of PVS formalizations. It
was developed collectively by a large number of researchers and practitioners over three
decades. It contains more than fifty different libraries covering a wide spectrum of topics
ranging from fundamental results on, for example, number theory, linear algebra, probabil-
ity, and graph theory among others, to advanced and specific numerical methods based on
Bernstein polynomials, Tarski and Sturm’s Theorems. It is currently curated and maintained
by the NASA Langley Formal Methods Team and is expanded year after year based on
internal and external contributions.

Table 1 presents detailed information about the recursive definitions declared inNASALib.
The first column (“recursive definitions”) shows the number of recursive declarations in each
library. Thedeclarations are further classified in four groups according to themeasure function
provided for each one of them.

The first group contains those declarations inwhich correspondingmeasures are expressed
just as one of the arguments. These are the simplest cases of recursion inwhich, for example, a
natural number is decremented or some element is removed from an inductively-defined data
structure in each recursive call. The function to calculate the length of a list or Fibonacci’s
Backward Trial Division procedure to check the primality of a given natural number are
canonical citizens of this group. The well-founded relation used to state the termination-
related proof obligations in these cases is the natural order on the type of the argument. For
example, the less-than relation on natural numbers or the structural inclusion in the case of
inductive data types.

The second group, depicted in the third column of the table, is composed of the recursive
definitions in which associated measures are expressed as the application of some function
denoting the size of just one of the arguments, in particular, the cardinality of a finite set; these
sets are not defined inductively in PVS but rather by means of their characteristic predicate.

The measures in the third group are denoted by more complex expressions, involving at
least two of the arguments of the recursive function. This group is composed of two kinds of
measures: subtraction between two arguments of numeric type, and the sum of the sizes of
two arguments with inductively defined data structure types. In the former case, one of the
arguments is incremented in each call while the other one is used as a bound for the growth.
In the latter, each recursive call reduces the size of at least one of the two arguments involved
in the measure.

The fourth group is populated by declarations associated with ad-hoc measures defined
by syntactically complex expressions involving cases analysis, the application of several
functions, or relating more than two arguments. These are the most complicated of the termi-
nation measure classes, which have little hope for automation. Figure8 shows an example of
a function from this group: a recursive definition of the Newton approximation for the square
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Table 1 Quantitative information on recursive definitions in NASALib

Library Recursive 1-argument Size 2-args Ad-hoc
Definitions Projection Function Comb Complex

Total 480 351 11 50 68

structures 48 34 2 7 5

sorting 42 33 0 6 3

PVS0 32 25 0 1 6

affine_arith 31 24 0 7 0

reals 30 23 0 4 3

Bernstein 27 20 0 6 1

Tarski 27 21 0 1 5

matrices 24 13 1 5 5

digraphs 22 16 2 0 4

TRS 21 17 0 0 4

Sturm 17 10 0 2 5

co_structures 16 13 0 0 3

interval_arith 14 12 0 1 1

while 14 14 0 0 0

CCG 13 11 0 0 2

fast_approx 11 4 0 0 7

exact_real_arith 10 6 0 1 3

analysis 7 6 1 0 0

ACCoRD 7 5 0 0 2

ints 6 2 1 1 2

orders 6 5 1 0 0

aviation 6 3 0 0 3

Riemann 6 5 0 1 0

numbers 5 3 0 0 2

algebra 5 3 0 2 0

sets_aux 4 3 1 0 0

trig 4 4 0 0 0

vectors 4 0 0 4 0

float 4 2 0 0 2

complex_alt 3 3 0 0 0

shapes 2 2 0 0 0

complex 2 2 0 0 0

graphs 2 0 2 0 0

PVSioChecker 2 1 0 1 0

ASP 2 2 0 0 0

lnexp 1 1 0 0 0

metric_space 1 1 0 0 0

measure_integration 1 1 0 0 0

linear_algebra 1 1 0 0 0

The libraries with no recursive definitions have been omitted from this table
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Fig. 8 Example of recursive declaration from group 4

root operation. This measure includes a case split, and a base-4 logarithm of a combination
of three numerical parameters.

As expected, the vast majority of the termination proofs rely on simple measures and
orders. The termination of about the 73% of the recursive declarations in NASALib (group 1)
can be proved using the simplest kind ofmeasures and this trend stands similarly inside almost
every library.While the terminationTCCsgenerated by the type checker on the functions from
that group are automatically discharged by the built-in proof strategies proposed by default
by PVS, the termination-related proof obligations generated on functions from the second
group require some user guidance. The groups 3 and 4, which involve more complicated
measures, account for no more than 25% of the total of recursive definitions. Nevertheless,
the proofs of the TCCs generated by type checking the functions from these groups require
a larger effort on the user side than for recursive declarations in the first two groups.

This classification of the recursive declarations in NASALib can also be helpful when
developing heuristics to propose measures and orders to be used as part of the procedure
outlined in Sect. 5. For example, the termination of all the functions in the first group can be
proved using the mentioned trivial measures. The measures needed to prove termination of
a recursive declaration from group 2 or 3 can be easily recognized by inspecting the way in
which the arguments of the recursive call are expressed. In particular, for all the functions in
the second group, the reduction on the size of the argument is obtained by the application of
the rest function, that removes deterministically one element from a non-empty set. The
group three functions contain two subgroups, the first subgroup using measures with some
form of safe subtraction between arguments, and containing recursive calls in which one of
the arguments is incremented. Since PVS supports the use of dependent types, sometimes
the bound on the growth of the argument is given in its type, which could be recognized and
utilized. The rest of the functions in group 3 involve recursive calls in which at least one
inductively defined structure shrinks. In particular, this group is comprised of functions on
lists. The operations that provoke a reduction in the size of the list are known and can be
recognized by a simple syntactic analysis on the recursive calls, just looking for the use of
such functions. This heuristic can be extended to other user-defined inductive datatypes as
long as the available size-reduction functions are known by the system. These functions could
be marked by the user using a specific annotation or keyword. It could even be possible to
try to automatically recognize these kinds of functions by analyzing the user-defined lemmas
regarding changes on the size of the structure.

It is important to note that the MWG technique allows for proof of termination using
simpler measures, with less interaction. Returning to the example of the Ackermann function,
the MWG technique proves termination based simply on the natural number order on each
of the parameters. A user would not need to recognize that a lexicographic order on them is
needed. As an example from group 3 functions, instead of specifying the measure function
as the sum of the lengths of lists, it would be possible to prove termination having the length
of each argument as the simple measure functions in the family of measures used by the
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MWG procedure. In such cases, the “size” function for the datatype is generally easy to
recognize, so could optimally be automatically chosen. While less hopeful, it is possible that
the measures needed to prove termination of functions such as the ones in group 4 could
be simpler than the ones currently used. But as stated above, the measures used for those
functions are mainly ad-hoc complex expressions for which a general rule does not seem to
exist.

In summary, the integration of the MWG technique in PVS, with the heuristics to propose
measures discussed in this section, could automate the proof of termination for around the
86% of the recursive declarations in NASALib (the first three groups from the table). It is
clear that the technique is particularly useful for the third group, which involve the interplay
of measures on more than one parameter. But even for functions from the first two groups,
(e.g., functions with a decrementing natural number parameter) the MWG technique offers
a small relief of burden on the user. Assuming the technique can be fully automated, the
user has no need to consider or specify the parameter that is decreasing, or identify it. While
replacing these termination proofs is not a goal per-se, since those termination TCCs are
already proven, it can be seen as an indicator of the usefulness of the technique in future
developments.

6 RelatedWork, FutureWork, and Conclusion

The termination of programs expressed in a language such as PVS0 can be guaranteed by
providing a measure on a well-founded relation that strictly decreases at every recursive call.
This criterion can be traced back to Turing [23]. A related practical approach was further
proposed by Floyd [8] and Hoare [9]. The inputs and outputs of program instructions are
enriched with assertions (Floyd-Hoare first-order well-known pre- and post-conditions) so
that if the pre-condition holds and the instruction is executed the post-condition must hold.
To verify termination, these assertions are enriched with decreasing assertions that are built
using a well-founded ordering according to somemeasure function on the inputs and outputs
of the program. This approach can also be used in recursive functions, as shown by Boyer
and Moore [6]. In this case, a measure is provided over the arguments of the function. The
measure must strictly decrease at every possible recursive call. The conditions to effectively
check if a recursive call is possible or not are statically given by the guards of branching
instructions that lead to the function call.

In PVS, as in many other proof assistants, the user provides a measure function and a
well-founded relation for each recursive function. The necessary conditions that guarantee
termination are built during type checking. In this paper, these conditions are referred to as
termination TCCs and the process that generates termination TCCs for PVS0 is formally
verified against other termination criteria.

The functional language foetus checks termination of programs automatically by finding
a lexicographic order on the parameters of the functions participating in the recursive-call
chain [1]. The termination prover of foetus tries to build a well-founded structural order on
the parameters of recursive calls such that the arguments in each call are smaller than the
input parameters regarding this order. This technique operates on multi-graphs whose edges
are labeled with call matrices providing information as the graphs and matrices used in this
paper in several aspects. In foetus each node represents a function instead of a calling context,
each edge represents a call, and the matrices labeling the edges relate the arguments used in
each call under the same order relation. Nevertheless, the algebraic articulations of MWGs
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differ from those in that paper. One of the main differences is that MWG algebra is designed
to detect the existence of orders that decrease in each possible cycle of execution and not an
order that decreases after each function call. Checking for termination on all possible cycles
of execution is the key concept coined in Lee et al. size-change principle seminal paper [13],
further nicely implemented by Manolios and Vroon in ACL2 [14]. However, neither of these
papers implemented the algebra of matrices as done by MWGs to build the transitive closure
of matrix multiplication that expresses decrement on possible execution cycles on the calling
context graphs through the notion of matrix positiveness. Another remarkable difference is
that in MWGs, the matrices allow for the inclusion of arbitrary families of orderings on all
parameters as opposed to orderings on a unique parameter, as is the case of call matrices,
designed to build exclusively lexicographic orderings. Despite these differences, it is relevant
to stress that such algebraic matrix construction is not novel. Indeed, the algebra of MWGs
is close to the ones applied in graph searching algorithms that use the adjacency and weight
matrix graph representations to solve reachability andminimum distance problems on graphs
by specialized matrix multiplication (e.g., Floyd-Warshall algorithm [7]). Closer to work in
this paper, Krauss formalizes the size-change termination principle in Isabelle/HOL [11].
He also developed a technology based on this principle and the dependency pair criterion
to verify the termination of a class of recursive functions specified in Isabelle/HOL. CCGs
are implemented in ACL2s by Manolios and Vroon, where they report that “[CCG] was able
to prove termination automatically for over 98% of the more than 10,000 functions in the
regression suite [of ACL2s]” [14]. In his Ph.D. thesis, Vroon provides a pencil and paper
proof of the correctness of the method based on CCGs [24].

The formalization presented in this paper includes proofs of equivalence among the follow-
ing termination criteria: ε-termination, χ-termination, TT , SCP<, TSCP , TCCG , TMWG , and
Dutle’s procedure. Other related formalizations that use or connect to the one presented here
have been previously presented. For example, Alves Almeida and Ayala-Rincón formalized
a notion of termination for term rewriting systems based on dependency pairs and showed
how it could be related to the notions explained in this paper [2, 3]. The relation between
size-change, rewriting and dependency pairs termination was first explored by Thiemann and
Giesl in [20, 21].Differently toKrauss et al. approach in [12] that proposes a transformation of
functional programs into orthogonal rewriting systems, AlvesAlmeida discusses an approach
that uses narrowing to transform functional programs allowing only Presburger arithmetic
guards in their branching instructions into rewriting systems whose matching conditions cor-
respond to the arithmetic guards. Also, Ferreira Ramos et al. presented a formalization of
the undecidability of termination constructed over the computational model of the functional
language PVS0 [18]. More recently, Ferreira Ramos et al. extended the PVS0 model to deal
with programs that allow multiple functions [17]; they formalized computational properties
such as Turing completeness, the Recursion theorem, Rice’s theorem, the undecidability of
the Halting problem, and the fixed-point theorem. The Matrix Weighted Graphs algebraic
approach, which is an implementation of the CCG technique, was first presented in Avelar’s
Ph.D. along with its formalization in PVS [4]. That formalization does not include Dutle’s
procedure.

The authors are currently working on the implementation of proof strategies, based on
computational reflection, that use the CCG/MWG technique to automate termination proofs
of PVS recursive functions. As part of such effort, the team is looking for ways to automate
two steps of the procedure that still require human intervention. Namely, the pruning of
the graph and the selection of the family of measures to be used. The former issue can be
addressed as a constraint solving problem, since the pruning step needs to decide if the
combination of the path conditions of calling contexts that are adjacent in the graph are
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satisfiable or not. One possible solution is to query some off-the-shelf solver as an external
oracle to decide if an edge can be removed. Additionally, the own PVS prover could be used
to try to decide on the satisfiability of the constraints, reducing in this way the trust kernel of
the approach. Regarding the measure family selection, some heuristics have been discussed
in previous sections. Furthermore, techniques usually used to synthesize invariants of loops
in imperative-language settings could also be adapted to propose more elaborate measure
functions.
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