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Abstract
The main topic of this article are SGGS decision procedures for fragments of first-order logic
without equality. SGGS (Semantically-Guided Goal-Sensitive reasoning) is an attractive
basis for decision procedures, because it generalizes to first-order logic the Conflict-
Driven Clause Learning (CDCL) procedure for propositional satisfiability. As SGGS is both
refutationally complete and model-complete in the limit, SGGS decision procedures are
model-constructing. We investigate the termination of SGGS with both positive and negative
results: for example, SGGS decidesDatalog and the stratified fragment (includingEffectively
PRopositional logic) that are relevant to many applications. Then we discover several new
decidable fragments, by showing that SGGS decides them. These fragments have the small
model property, as the cardinality of their SGGS-generated models can be upper bounded,
and for most of them termination tools can be applied to test a set of clauses for membership.
We also present the first implementation of SGGS—the Koala theorem prover—andwe report
on experiments with Koala.

Keywords SGGS · Decidable fragments · First-order logic · Hyperresolution · Ordered
resolution · Rewriting · Termination tools

1 Introduction

Many applications of automated reasoning require to combine the decidability of satisfiability
with an expressive logic. In first-order logic (FOL), validity, or equivalently unsatisfiability,
is semidecidable, whereas satisfiability is not even semidecidable. Therefore, the quest for
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decidable fragments of FOL is key in advancing the field, and many classes of formulae
were shown decidable (e.g., [25, 36, 43] for surveys). An approach to prove the decidability
of a class is to show that a refutationally complete inference system for first-order theorem
proving is guaranteed to terminate on all inputs in that class. It follows that any theorem
proving strategy given by that inference system and a fair search plan is a decision procedure
for satisfiability in that class.

In this paper we apply this approach to SGGS, or Semantically-Guided Goal-Sensitive
reasoning [19, 20]. Similar to semantic resolution [76] and hyperresolution [71], SGGS is
semantically guided by a fixed initial interpretation. However, SGGS generates primarily
instances of clauses, not resolvents. By this characteristic, SGGS is a descendant of hyper-
linking [53] and ordered semantic hyperlinking [67]. Other methods with this characteristic
include hypertableaux [8, 11, 13] and Inst-Gen [39, 46]. Nonetheless, the essential features of
SGGSset it apart from the theorem-provingmethods based on resolution, instance generation,
or tableaux.

SGGS is a generalization to FOL of the CDCL (Conflict-Driven Clause Learning) pro-
cedure for propositional satisfiability (SAT) [56]. Indeed, SGGS searches for a model of the
input set of clauses by building candidate models, represented by selected literals on a trail
of clauses. In this sense SGGS ismodel-based, meaning that the state of an SGGS-derivation
is a representation of a candidate model (cf. [22] for a survey of first-order model-based
methods). The initial interpretation in SGGS acts as a starting point, as the candidate models
are built by selecting preferably literals that are not true in the initial interpretation, but may
be needed to get a model of the clauses. In this process, a conflict may arise in the form of
a conflict clause. SGGS applies a restricted form of resolution only to explain the conflict,
which is then solved bymoving the conflict clauses and flipping the sign of its selected literal.
In this sense SGGS is also conflict-driven (cf. [15] for a survey of conflict-driven methods).

By these features, SGGS is afirst-order search-based satisfiability procedure, similar to the
methods that generalize CDCL to satisfiability modulo theories (SMT), such as CDCL(T )
[63]1, CDCL(Γ +T ) [21], MCSAT [28], and CDSAT [23, 24]. For CDCL, termination
descends from the finitary nature of the SAT problem. The termination of CDCL(T ) in its
original formulation stems from the fact that it does not create new atoms. As CDCL(Γ+T )
integrates superposition in CDCL(T ), the result is a semidecision procedure whose termi-
nation is guaranteed only under suitable hypotheses and using speculative inferences [21].
MCSAT, CDSAT, and an extension of CDCL(T ) [7] create new terms and atoms, and they
are proved to be terminating by showing that all new objects come from a finite basis [7, 23,
28].

The termination of SGGS is challenging, because SGGS is refutationally complete for
FOL, and especially significant, since SGGS ismodel complete in the limit: given a satisfiable
input, the limit of any fair SGGS-derivation represents a model. Thus, model generation is
guaranteed if termination is, and SGGS-based decision procedures are model-constructing,
a standard feature for SAT and SMT procedures, but not for first-order theorem-proving
methods.

With this motivation, we apply the finite basis approach to SGGS. A finite basis for SGGS
is a finite subset of the Herbrand base of the input set of clauses. An SGGS-derivation is in
a finite basis if all ground instances of all clauses generated during the derivation are made
of atoms coming from the finite basis. Previous work showed that if the length of the trail
during a fair SGGS-derivation is upper bounded, the derivation is finite [20, Thm. 6 and Cor.

1 The name of the procedure in [63] is DPLL(T ), but the recent literature calls it CDCL(T ), since the DPLL
(Davis-Putnam-Logemann-Loveland) [27] and CDCL procedures have been recognized as distinct. The same
remark applies to DPLL(Γ +T ) [21].
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2]. We show that if a fair SGGS-derivation is in a finite basis, the length of the trail is upper
bounded, and hence the derivation is finite. Also, we prove that given a satisfiable input, the
cardinality of the SGGS-generated model is upper bounded. These results hold regardless
of the initial Herbrand interpretation guiding SGGS. If for all clause sets in a class F it is
possible to identify a finite basis, F is SGGS-decidable and has the small model property.

It follows that SGGSwith any guiding interpretation decides all fragments where the Her-
brandbase itself is finite, including theDatalog language (e.g., [26]), theBernays–Schönfinkel
class [14, 68], whose clausal version is known as EPR for Effectively PRopositional logic [3,
37, 65], and the stratified fragment [1, 47], which is the generalization of EPR to many-sorted
logic.2 EPR and the stratified fragment find application in verification (e.g., [57, 64]), while
Datalog is a fundamental language for deductive databases and knowledge representation,
and has been applied also in connection with neural networks [58].

These positive results are balanced by negative ones: we show by counterexamples that
SGGS with sign-based semantic guidance (i.e., either all-negative—all negative literals are
true—-or all-positive—all positive literals are true) does not decide the Ackermann [2, 35,
44], monadic [2, 38, 44], FO2 [38, 41], and guarded [4, 29] fragments. Since the sets of
clauses in these counterexamples admit finite model, these counterexamples also show that
the existence of a finite model does not imply the termination of SGGS with sign-based
semantic guidance. However, we also give examples where SGGS terminates and represents
with a finite trail an infinite Herbrand model. Thus, the termination of SGGS does not imply
the existence of a finite Herbrand model.

A clause is positively/negatively ground-preserving, or range-restricted, if all its variables
occur in its negative/positive literals. This property is used in deductive databases [61, 78], as
it is also a property of Datalog clauses, in theorem proving [49, 50, 55], model building [25,
34], and decision procedures [9, 21, 25, 34, 52]. The role of sign in the definition of ground-
preserving clauses suggests to adopt sign-based semantic guidance for SGGS and compare it
with hyperresolution, that is semantic resolution with sign-based semantic guidance. Under
the assumption that the input clauses are ground-preserving,weprove two results: first, similar
to hyperresolution, SGGSgenerates only ground clauses; second, SGGS terminateswhenever
hyperresolution does. It follows that SGGS decides all ground-preserving fragments decided
by hyperresolution, such as the positive variable dominated (PVD) [25, 34] and the bounded
depth increase (BDI) [52] fragments. However, many theorem-proving problems do not
belong to any known decidable class.

Example 1 Problem HWV036-2 from TPTP 7.3.0 [77] specifies a full-adder in 51 clauses,
including for instance:

¬andok(x) ∨ ¬1(in1(x)) ∨ ¬1(in2(x)) ∨ 1(out1(x)) ¬fulladd(x) ∨ halfadd(h1(x))
¬halfadd(x) ∨ connection(in1(x), in1(or1(x))) ¬lor(x) ∨ orok(x) ∨ error(x).

This set is satisfiable, but it does not belong to any known decidable fragments.

In the second part of the paper we apply SGGS to find new decidable fragments. We
define the positively/negatively restrained fragments by adding to ground-preservingness
an ordering-based restriction. By distinguishing between sorts populated by finitely or
infinitely many ground terms, we define the positively/negatively sort-restrained classes,
where restrainedness is imposed only to the literals having infinitely many ground instances.
These fragments generalize the respective restrained fragments and the stratified fragment,

2 In this paper stratified is used in the sense of sort-stratified [1, 47, 57], not in the sense of stratified logic
programs (e.g., [26]).
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which represents the special case where there are finitely many ground terms for all sorts.
The sort-refined-PVD class is defined analogously with the PVD restrictions in place of
restrainedness, so that it generalizes the PVD and the stratified fragments. We show that
SGGS with sign-based semantic guidance decides all these new classes by the finite basis
approach, so that the new classes have the small model property.We prove that sign-based res-
olution strategies (e.g., hyperresolution and PO-resolution) decide the restrained fragments.
However, they do not decide the sort-restrained and sort-refined-PVD classes, because they
do not decide the stratified fragment.

The introduction of a new decidable class poses the problem of how to determine that
a clause set belongs to the class and whether this test is decidable. We reduce the problem
of deciding whether a clause set is restrained or sort-restrained to that of deciding whether
rewriting by an associated rewrite system terminates. It follows that membership in these
fragments is undecidable in general, but can be tested in practice by termination tools for
rewriting such as TTT2 [48] and AProVE [40].

In the experiments, we applied these tools to discover restrained and sort-restrained prob-
lems in the TPTP library [77]. The other decidability criteria (e.g., stratification, PVD) can
also be tested automatically, resulting in a classification of TPTP problems. This allows us to
evaluate empirically the relevance of the new classes and discover problems not previously
known to be decidable. For instance, the axiomatization in Example 1 and all the TPTP prob-
lems that include it are restrained. Then we describe the Koala theorem prover, which is the
first implementation of SGGS.We report on applying Koala to TPTP problems, including both
SGGS-decidable and semidecidable problems. We present and analyze these experiments,
which show promising performances especially on satisfiable problems.

The paper is organized as follows. After the basic definitions (Sect. 2) we give an overview
of SGGS (Sect. 3). Section 4 presents the finite basis approach, and all the results about SGGS
and already known decidable fragments. Section 5 introduces the new decidable fragments
and contains the results showing that they are SGGS-decidable. Section 6 covers the reduction
of membership in the new fragments to the termination of rewriting, the application of the
termination tools, the Koala prover, and the experiments. Discussions of related and future
work conclude the paper. A short version of this paper appeared [17].

2 Basic Definitions

A signature is given by a setΣ of sorts and a set of constant, function, and predicate symbols.
We use s, s1, s2, . . . for sorts, a,b, 0, 1 for constants, P,Q, R for predicates, f,g,h, s for
functions, v,w, x, y, z for variables, t, u for terms, Var(t) for the set of variables in t ,
Vars(t) for those of sort s, top(t) for the top symbol of t . Sorts are nonempty (there is a
ground term for every sort), and t : s says that t has sort s. We use L, M, P, Q for literals,
at(L) for L’s atom, α, σ, ϑ, τ for substitutions, C, D, E for clauses, that are disjunctions
of literals where all variables are implicitly universally quantified, and S for a (finite) set of
clauses, understood as the conjunction of its elements.

The top notation is extended to atoms, Var and Vars to atoms, literals, and clauses, and
at to sets of literals, clauses, and sets of clauses. A clause C is positive if all its literals are
positive, negative if all its literals are negative, and mixed otherwise. C+ and C− denote the
disjunctions of the positive and negative literals in C . A unit clause has exactly one literal,
and aHorn clause has at most one positive literal. AHorn clause is a fact if it is a positive unit,
a query if it is negative, and a rule if it is mixed. We use I and J for Herbrand interpretations
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and I for other interpretations. The symbol |� is overloaded to mean satisfaction of a clause
or set of clauses in an interpretation, validity in the sense of satisfaction in all Herbrand
interpretations, and logical entailment.

Viewing terms as trees, the depth of a term t is defined as depth(t) = 0, if t is a constant or a
variable, and depth(t) = 1+max{depth(ti ) : 1≤ i≤n}, if t is a compound term f(t1, . . . , tn).
The depth of a literal L is defined as depth(L) = depth(at(L)) = 1+ max{depth(ti ) : 1≤
i ≤ n} if t1, . . . , tn are the predicate’s arguments in at(L). By labeling arcs with natural
numbers, every subterm has a position defined as the string of natural numbers from the root
to the subterm. We use p, q , r , and o for positions. The subterm of t at position p, denoted
as t |p , is defined by t |Λ = t , where Λ is the top position, and f (t1, . . . , tn)|i p = ti |p for
all i , 1≤ i ≤n. The notation t = c[u]p says that t is equal to a context c where u occurs as
subterm at position p. A term t has occurrence depth k in atom L if L|p = t and k is the
length of position p.

An ordering > on terms is well-founded, if it admits no infinite descending chain, stable,
if t > u implies tσ > uσ for all substitutions σ , monotonic, if t > u implies c[t]p > c[u]p
for all contexts c and positions p, and has the subterm property, if c[t]p > t for all contexts
c and positions p with p �= Λ. A simplification ordering is stable, monotonic, and has
the subterm property. A complete simplification ordering (CSO) is also total on ground
terms.A simplification ordering iswell-founded [30].Recursive path orderings (RPO’s) [30],
lexicographic (recursive) path orderings (LPO’s), andKnuth-Bendix orderings (KBO’s) [45,
54] employ a precedence, which is a partial ordering �p on the symbols in the signature.
A KBO attributes non-negative weights to terms: all variables have weight w0, a weight
function w attributes a weight to every non-variable symbol, and the weight of a term is the
sum of the weights of its symbols. RPO’s, LPO’s, and KBO’s are simplification orderings.
If �p is total, KBO’s and LPO’s are CSO’s (see e.g., [31] for a survey on orderings).

We recapitulate resolution [72], because resolution-based strategies appear in later sec-
tions. Binary resolution generates from parents ¬L ∨C and L ′ ∨ D the resolvent (C ∨ D)σ ,
if Lσ = L ′σ with most general unifier (mgu) σ . Factoring generates from parent
L1∨ . . .∨ Lk ∨C the factor (L1∨C)σ , if L1σ = L2σ = . . .= Lkσ with mgu σ . Many refine-
ments of resolution preserve its refutational completeness. Positive resolution, also known as
the P1-strategy [42, 71] or P1-deduction [66], requires that every binary resolution step has a
positive parent. Negative resolution, also known as all-negative-resolution [66], requires that
every binary resolution step has a negative parent. Semantic resolution [76] generates only
resolvents that are false in a fixed guiding interpretation I . Hyperresolution [71] is semantic
resolution where I is either the all-negative interpretation I− or the all-positive interpreta-
tion I+. Positive hyperresolution resolves a non-positive clauseC , called the nucleus, with as
many positive clauses, termed satellites, as needed to resolve away with a simultaneous mgu
all literals in C− and get a positive clause, which is false in I−. Negative hyperresolution is
defined dually.Ordered resolution [42] assumes a CSO> on literals and requires that in every
binary resolution step¬Lσ is>-maximal in (¬L∨C)σ and L ′σ is>-maximal in (L ′∨D)σ ;
and in every factoring step L1σ is >-maximal in (L1 ∨ . . .∨ Lk ∨C)σ . PO-resolution adds
the requirement that L ′ ∨ D is positive and drops the >-maximality constraint on ¬Lσ .

3 SGGS: An Overview

SGGS [19, 20] works with constrained clauses, written A � C , where A is a constraint
and C is a clause. The atomic constraints are true, false, top(t)= f , and t ≡ u, where ≡ is
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identity. For ground terms t and u, |� top(t)= f if the top symbol of t is f , and |� t ≡ u
if t and u are the same term. The negation, conjunction, and disjunction of constraints is a
constraint. Any variable that appears in A and not in C is implicitly existentially quantified.
Thus, if A is ground, either |� A or |� ¬A, and if A is not ground, |� A means that the
existential closure of A is valid. A constraint is in standard form if it is true, false, or a
conjunction of distinct atomic constraints of the form x �≡ y or top(x) �= f . SGGS keeps
constraints in standard form [20, Sect. 7]. Substitutions are sort-preserving (i.e., xσ has the
same sort as x) so that instantiation respects sorts. For a constrained clause A �C the set of
its constrained ground instances (cgi’s) is Gr(A�C) = {Cϑ : Cϑ is ground and |� Aϑ}.
Thus, Gr(false� C) = ∅, Gr(true�C) = Gr(C), and true�C can be written C . Literals
A�L and B�M intersect if at(Gr(A�L))∩at(Gr(B�M)) �= ∅ and are disjoint otherwise.
The notation Gr is extended to sets of atoms. Constraints can be omitted if irrelevant or for
brevity.

Example 2 Given a signature with constant symbols a : s1 and b : s2, function symbol
f : s1→ s2, and predicate symbol P ⊆ s2× s2, the only term of sort s1 is a, and the only terms
of sort s2 are b and f(a). Thus,Gr(P(x, y)) = {P(b,b), P(f(a),b), P(b, f(a)), P(f(a), f(a))}.
Then, top(x) �= a�P(f(x), y) is equivalent to false�P(f(x), y),while top(y) �= a�P(f(x), y)
is equivalent to true � P(f(x), y) with cgi’s P(f(a),b) and P(f(a), f(a)).

SGGS is semantically guided by an initial interpretation I : if I �|� S, SGGS seeks a
Herbrandmodel of S, by building candidate partial interpretations different from I , and using
I as the default to complete them. If the empty clause⊥ arises in the process, unsatisfiability
is reported. While I can be any Herbrand interpretation, in this section I is either I− or I+.
If I is I− (I+) SGGS discovers which positive (negative) literals need to be true to satisfy S.

A literal L is uniformly false in an interpretation J if J |� ¬L , that is, if J |� ¬L ′ for
all L ′ ∈ Gr(L). Then, L is said to be I -true if it is true in I , and I -false if it is uniformly
false in I . A clause is I -all-true if all its literals are I -true, and I -all-false if all its literals are
I -false. If I = I− negative literals are I -true, positive literals are I -false, negative clauses are
I -all-true, positive clauses are I -all-false, and mixed clauses are neither. If I = I+ positive
literals are I -true, negative literals are I -false, positive clauses are I -all-true, negative clauses
are I -all-false, and mixed clauses are neither.

SGGS builds a trail Γ of constrained clauses with selected literals. The selected literals
form the partial interpretation represented by the trail. Initially the trail is empty, written
ε. Then SGGS adds clauses forming a sequence A1 � C1[L1], . . . , An � Cn[Ln] (n ≥ 1).
Clause Ai � Ci [Li ] is the clause at index i in Γ . The notation Ci [Li ] means that Li is the
literal of Ci that is selected. SGGS requires that every literal in Γ is either I -true or I -false
(trivial if I is I+ or I−). SGGS also requires that if clause Ci [Li ] has I -false literals, then
Li is an I -false literal. The selected literal Li is I -true only if Ci [Li ] is an I -all-true clause.
I -false literals are preferred for selection because I �|� S and hence SGGS tries to change
something wrt I towards finding a model of S.

In order to see how the selected literals form a partial interpretation, let the length of a trail
Γ , written |Γ |, be the number of clauses in Γ , and let Γ | j denote the prefix of length j of Γ .
Then, the partial interpretation I p(Γ ) represented by Γ is defined inductively as follows. If
Γ = ε, then I p(Γ ) = ∅. If Γ = A1 �C1[L1], . . . , An �Cn[Ln], we define I p(Γ ) in terms
of I p(Γ |n−1). Consider a cgi C[L] of An �Cn[Ln]. If I p(Γ |n−1)∩C[L] �= ∅, it means that
I p(Γ |n−1) already satisfies C[L]. If I p(Γ |n−1) ∩ C[L] = ∅, it means that I p(Γ |n−1) does
not satisfyC[L]: if¬L /∈ I p(Γ |n−1), we can satisfyC[L] by adding L to I p(Γ |n−1) to form
I p(Γ ). Such an instanceC[L] is a proper (or productive) constrained ground instance (pcgi)
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Fig. 1 SGGS rules for model search

of An �Cn[Ln] and L is a pcgi of An �Ln . Then, I p(Γ ) = I p(Γ |n−1)∪ pcgi(An �Ln, Γ ),
where pcgi(An � Ln, Γ ) is the set of all the pcgi’s of An � Ln in Γ .

From the partial interpretation I p(Γ )we get the interpretation I [Γ ] represented by trailΓ
as follows: for all ground literals L , if I p(Γ ) determines the truth value of L , then I [Γ ] |� L
iff I p(Γ ) |� L; otherwise, I [Γ ] |� L iff I |� L . Suppose that all cgi’s of An � Cn[Ln] are
pcgi’s: this clause contributes all the ground instances of its selected literal to I p(Γ ). The
longest prefix of Γ that is made of clauses with this property is called the disjoint prefix of Γ

and is denoted dp(Γ ). The name descends from the fact that the selected literals of clauses
in dp(Γ ) are all disjoint. Suppose that I p(Γ |n−1) satisfies all the cgi’s of An �Cn[Ln] and
hence An �Cn[Ln] itself. Such a clause is disposable and can be removed by SGGS-deletion
(rule delete in Fig. 1). A clause An �Cn[Ln] is a conflict clause, if all the literals of Cn are
uniformly false in I [Γ ].

An SGGS-derivation (named Θ if needed) is a series of trails Γ0 � Γ1 � . . . Γ j � . . .,
where Γ0 = ε, and ∀ j , j > 0, SGGS generates Γ j from Γ j−1 and S by applying either a
model-search rule in Fig. 1 or a conflict-solving rule in Fig. 2. If I [Γ ] |� S, a model has
been found, and rule sat in Fig. 1 fires to report the success of the model search. If ⊥ ∈ Γ ,
it means that in the attempt to solve a conflict, the conflict-solving rule SGGS-resolution
(resolve in Fig. 2) has generated the empty clause, which signals that the conflict cannot
be solved, because S itself is unsatisfiable, so that rule unsat in Fig. 2 fires to report that a
refutation has been found.

Otherwise, SGGS makes progress in two ways. If Γ = dp(Γ ), the trail is in order, but
since I [Γ ] �|� S, there exists some C ′ ∈Gr(C) for C ∈ S, such that I [Γ ] �|� C ′. Then,
SGGS applies SGGS-extension (rule extend in Fig. 1) to generate from C and Γ a clause
A � E , called extension clause, such that E is an instance of C and C ′ ∈ Gr(A � E), in
order to extend I p(Γ ) to try to satisfy C ′. If Γ �= dp(Γ ), the trail needs repair: either there
are disposable clauses and SGGS-deletion removes them, or there are intersections between
selected literals that can be exposed by SGGS-splitting (rules s-split and d-split in Fig. 1), or
there is a conflict clause to be handled by the conflict-solving rules of Fig. 2. The following
example illustrates the model-search rules, demonstrating how SGGS halts on the input set
used to show that hyperresolution cannot decide EPR ([36, Ex. 4.8] and [25, Ex. 3.17]).
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Fig. 2 SGGS rules for conflict solving

Example 3 The set S consisting of clauses

P(x, x, a) (i) P(x, y, w) ∨ P(y, z, w) ∨ ¬P(x, z, w) (i i)

¬P(x, x,b) (i i i) P(x, z, w) ∨ ¬P(x, y, w) ∨ ¬P(y, z, w) (iv)

defeats hyperresolution, because (iv) is obtained from (i i) by flipping signs, and likewise
for (i i i) and (i) plus renaming the constant. Positive hyperresolution generates infinitely
many clauses of the form P(x1, x2, a)∨P(x2, x3, a)∨ · · ·∨P(xn−1, xn, a)∨P(xn, x1, a), for
n ≥ 2, using (i i) as nucleus, (i) as initial satellite, and then each resulting hyperresolvent
as next satellite. Negative hyperresolution generates infinitely many clauses of the form
¬P(x1, x2,b)∨¬P(x2, x3,b)∨· · ·∨¬P(xn−1, xn,b)∨¬P(xn, x1,b), for n ≥ 2, using (iv)

as nucleus, (i i i) as initial satellite, and then each resulting hyperresolvent as next satellite.
In contrast, SGGS detects that S is satisfiable with either I− or I+. Assume that I = I−: all
input clauses are satisfied except (i). Thus, SGGS-extension puts it on the trail selecting its
single literal:

Γ0 : ε � Γ1 : [P(x, x, a)] extend (i)

At this point, I [Γ1] satisfies P(x, x, a), but not the ground instances of clause (i i) where the
third literal is an instance of ¬P(x, x, a). Thus, SGGS-extension unifies the third literal of
clause (i i) with [P(x, x, a)], and adds to the trail the resulting instance of clause (i i):

� Γ2 : [P(x, x, a)], P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) extend (i i)

An I−-false (i.e., positive) literal is selected in the added clause (choosing the other makes
no difference). Also, SGGS assigns the literal ¬P(x, x, a) to [P(x, x, a)] to record that
¬P(x, x, a) (which is true in I−) is uniformly false in I p(Γ2), and hence in I [Γ2], due
to the selection of P(x, x, a). I [Γ2] satisfies P(y, x, a) and hence all the ground instances of
clause (i i) that had been lost in order to satisfy P(x, x, a). However, the selected literals in
Γ2 intersect. Thus, SGGS-splitting partitions the second clause into two clauses:
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� Γ3 : [P(x, x, a)], P(x, x, a) ∨ [P(x, x, a)] ∨ ¬P(x, x, a),
y �= x � P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) s-split

where both occurrences of ¬P(x, x, a) are assigned to [P(x, x, a)]. A partition of a clause
A � C[L] is a set of clauses {Ai � Ci [Li ]}ni=1 that covers the same ground instances (i.e.,
Gr(A � C) = ⋃n

i=1{Gr(Ai � Ci )}), but such that the selected literals Ai � Li are disjoint
(cf. [20, Def. 13]). SGGS-splitting replaces a clause by the partition dictated by another
clause: given a clause B � D[M] at a smaller index on the trail ([P(x, x, a)] in Γ2) and a
clause A � C[L] at a larger index on the trail (P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) in Γ2)
such that their selected literals intersect, SGGS-splitting replaces A � C[L] by a partition
{Ai �Ci [Li ]}ni=1 where one of the selected literals A j � L j captures exactly the intersection
between B� M and A� L (cf. [20, Def. 14]). This partition is called a splitting of A�C[L]
by B � D[M] and is denoted split(C, D). Clause A � C[L] is the split clause. Clause
A j � C j [L j ] is the representative of B � D[M] in split(C, D). The SGGS-splitting rule
applied here is s-splitting (abbreviated s-split) for splitting by similar literals, because L and
M have the same sign (cf. [20, Def. 23]). Now the second clause in Γ3 is disposable, and
SGGS-deletion removes it eliminating the intersection:

� Γ4 : [P(x, x, a)], y �= x � P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a) delete

This holds in general: after an s-splitting, D’s representative in split(C, D) is disposable (cf.
[20, Lemma 3]). As I [Γ4] |� S, rule sat reports satisfiable. The derivation with I+ proceeds
dually with (i i i) and (iv).

As seen in Example 3, a derivation starts with an SGGS-extension that puts on the trail
an I -all-false input clause and selects one of its literals. All such steps can be done as one
and we assume they are. In general, SGGS-extension adds to the trail an instance of an input
clause C called main premise. SGGS-extension generates this instance by simultaneously
unifying the I -true literals L1, . . . , Ln of C with as many I -false selected literals of opposite
sign in the side premises B1 � D1[M1], . . . , Bn � Dn[Mn] in dp(Γ ).

Definition 1 (SGGS-extension scheme) Let S be the input clause set and Γ be the current
trail. Let C ∈ S be a clause such that L1, . . . , Ln (n ≥ 0) are all its I -true literals, and
B1 � D1[M1], . . . , Bn � Dn[Mn] be clauses in dp(Γ ) such that M1, . . . , Mn are I -false. If
∀ j , 1 ≤ j ≤ n, L jα = ¬Mjα with simultaneous mgu α, then SGGS-extension adds the
extension clause A � E = (

∧n
j=1 Bjα) � Cα to Γ .

An SGGS-extension is conflicting if the extension clause A � E is a conflict clause, non-
conflicting otherwise, that is, if A � E has pcgi’s that get added to I p(Γ ). Definition 1 is a
simplification of the original [20, Def. 12] under the assumption that I = I− or I = I+, and
rule extend in Fig. 1 abstracts away for simplicity the details of the SGGS-extension rules
[20, Defs. 18, 19, 20, and 21] that instantiate the SGGS-extension scheme.

As seen in Example 3, if the selection of an I -false literal M makes an I -true literal L on
the trail uniformly false in I p(Γ ), SGGS assigns L to the clause where M is selected (cf.
[20, Defs. 8, 9]). These assignments record why literals that are true in I are uniformly false
in I [Γ ]. SGGS requires that an I -true literal L on the trail is assigned unless it is selected.
Therefore, the SGGS rules establish or preserve assignments. For example, the I -true literals
of an extension clause are assigned to the side premises; the I -true literals in the clauses of a
partition inherit the assignments from the split clause; and the clauses with literals assigned
to a split clause can be deleted after the splitting [20, Def. 36]. This assignment mechanism
achieves first-order propagation in SGGS: for all I -all-true clauses C[L] on the trail, either
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all literals of C[L] are assigned (with L assigned rightmost) and C[L] is a conflict clause, or
all literals of C[L] except L are assigned, which means that L is an implied literal, C[L] is
its justification, and C[L] is in dp(Γ ). First-order propagation applies to I -all-true clauses
because it is relative to I .

CDCL [56] uses the two-watched-literals scheme to detect conflict clauses and implied
literals without checking the truth value (true, false, or undefined) of every literal in every
clause. It suffices to watch two non-false (i.e., either true or undefined) literals per clause: if
the clause has zero non-false literals, it is a conflict clause; if it has one, the literal is implied
and the clause is its justification. Since the assignmentmechanism is built into the SGGS rules,
SGGS does not need a first-order analogue of the two-watched-literals scheme to compute
propagations ex post. The dependencies among literals that determine the propagations are
stored with the clauses.

In SGGS the assignment of I -true literals to clauses also drives the application of the
conflict-solving rules in Fig. 2. Suppose that SGGS-extension appends to the trail a conflict
clause A � C[L] with I -false literals. This means that L is I -false. Then SGGS-resolution
[20, Def. 26] (rule resolve in Fig. 2) explains the conflict by resolving upon L in A � C[L]
and M in B � D[M], where B � D[M] is the I -all-true clause in dp(Γ ) to which L is
assigned.

Definition 2 (SGGS-Resolution) Let B � D[M] and A � C[L] be clauses in Γ such that
B � D[M] is I -all-true, is in dp(Γ ), and occurs at a smaller index than A � C[L], L is
I -false, L = ¬Mϑ for some substitution ϑ , and A |� Bϑ . Then SGGS-resolution replaces
A�C[L] by the SGGS-resolvent Res(C, D) = A� R, where R is (C \ {L})∪ (D \ {M})ϑ .

The I -true literals in the resolvent inherit their assignments from the I -true literals in
the parents. Since M is the implied literal in B � D[M], the resolvent is still a conflict
clause. SGGS-extension ensures that every I -false literal in a conflict clause is assigned to a
justification in dp(Γ ) (cf. [20, Def. 19]) and therefore can be resolved away. Thus, conflict
explanation by one ormore SGGS-resolution steps generates either⊥ or an I -all-true conflict
clause.

Suppose that SGGS-extension appends to the trail an I -all-true conflict clause B�D[M],
or that B�D[M] is the result of conflict explanation by SGGS-resolution. Then SGGS-move
[20,Def. 25] (rulemove in Fig. 2)moves B�D[M] to the left of the clause A�C[L] in dp(Γ )

to which M is assigned. The effect is to solve the conflict by flipping the I -true literal M from
being uniformly false in I [Γ ] to being an implied literal with justification B � D[M]. This
is why the selected literal in an I -all-true conflict clause is the one assigned rightmost: when
the clause moves left, all other I -true literals remain assigned. After the move, B � D[M]
resolves with A � C[L]. Prior to the move, B � D[M] may split A � C[L] by left-splitting
[20, Def. 25] (rule l-split in Fig. 2), and then move to the left of its representative in the
splitting. If B � D[M] has another literal Q that is assigned to A �C[L], has the same sign
as M , and unifies with M , SGGS-factoring [20, Def. 27] (rule factor in Fig. 2) applies to
avoid a situation where Q has nowhere to be assigned after the move.

The fairness of an SGGS-derivation involves several properties: an inference is applied
whenever ⊥ /∈ Γ and I [Γ ] �|� S; no splitting is trivial;3 SGGS-deletion is applied eagerly;
all conflicting SGGS-extensions are followed right away by conflict solving; and inferences
applying to shorter prefixes of the trail are never neglected in favor of others applying to
longer prefixes (cf. [20, Defs. 32, 37, and 49]). The limit of a fair derivation Γ0 � Γ1

3 An SGGS-splitting is trivial if it produces a singleton partition, such as when trying to split a ground clause
or trying to split a clause by a more general one.
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� . . . Γ j � Γ j+1 � . . . is the longest trail Γ∞ such that ∀i , i ≤ |Γ∞|, there exists an ni such
that ∀ j , j ≥ ni , if |Γ j | ≥ i then Γ j |i ≈c Γ∞|i , where ≈c is the equivalence associated to
a convergence ordering >c on trails ([20, Defs. 46, 50]). In words, all prefixes of the trail
stabilize eventually. Both the derivation and its limit Γ∞ may be infinite, but if the derivation
halts at stage k, then Γ∞ = Γk . The following results are used in this paper:

1. Finiteness of descending chains of length-bounded trails [20, Thm. 6 and Cor. 2]: A chain
Γ0 >c Γ1 >c . . . Γ j >c Γ j+1 . . . where ∀ j , j ≥ 0, |Γ j | ≤ n, for some n ≥ 0, is finite.

2. Descending chain theorem [20, Thm. 8]: A fair SGGS-derivation forms a descending
chain Γ0 >c Γ1 >c . . . >c Γ j >c Γ j+1 . . ..

3. Completeness [20, Thm. 9 and 11]: For all input clause sets S, initial interpretations I ,
and fair SGGS-derivations, if S is satisfiable, I [Γ∞] |� S (model completeness in the
limit), and if S is unsatisfiable, ⊥ ∈ Γk for some k (refutational completeness).

Results (1.) and (2.) above lead to prove termination and decidability by showing that the
length of trails in a fair SGGS-derivation is upper bounded.

4 SGGS and Known Decidable Fragments

In this section we use the concept of finite basis to ensure that the length of trails in a fair
SGGS-derivation is upper bounded, so that the derivation is guaranteed to halt. If the input
is satisfiable, the cardinality of the finite basis offers an upper bound on the cardinality of
the generated model. The SGGS-decidability of Datalog and of the stratified fragment is a
straightforward consequence.On the other hand, counterexamples show that SGGSwith sign-
based semantic guidance cannot decide other known decidable fragments. These derivations
are useful to understand SGGS. Then we show that if clauses are ground-preserving, SGGS
terminates whenever hyperresolution does.

4.1 SGGS-Derivations in a Finite Basis are Finite

Let S be the input set of clauses,H its Herbrand universe, and A its Herbrand base. A finite
subset B ⊆ A is a finite basis for an SGGS-derivation if all cgi’s of all clauses on the trail
during the derivation are made of atoms in B.

Definition 3 (SGGS-Derivation in a basis) A clause A � C is in B if at(Gr(A � C)) ⊆ B.
A trail is in B if all its clauses are. An SGGS-derivation is in B if all its trails are.

The next lemma shows that the cardinality of B provides an upper bound on the length of
the trail during a fair SGGS-derivation.

Lemma 1 If a fair SGGS-derivation Γ0 � Γ1 � . . . Γ j � Γ j+1 � . . . is in a finite basis B,
then ∀ j , j ≥ 0, |Γ j | ≤ |B|+1, and if dp(Γ j ) = Γ j then |Γ j | ≤ |B|.
Proof SGGS cannot do worse than generating a ground trail where every atom in B appears
selected with either positive or negative sign: any trail with non-ground clauses cannot be
longer, since a non-ground clause covers many (possibly infinitely many) ground instances.
By fairness, if the trail contains an intersection given by clauses C[L] and D[L], or C[L]
and D[¬L]with L ∈B, the clause on the right is either deleted eagerly by SGGS-deletion, or
replaced with a resolvent by SGGS-resolution before SGGS-extension applies. Thus, there
can be at most one such intersection, and the first claim follows. The second claim holds,
because dp(Γ j ) = Γ j implies that there is no such intersection. ��
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By the descending chain theorem and the finiteness of descending chains of length-
bounded trails, the following general result follows:

Theorem 1 A fair SGGS-derivation in a finite basis is finite.

If for all sets S of clauses in a fragmentF there exists a finite basisB, whichmay depend on
S, such that all SGGS-derivations from S are in B, all fair SGGS-derivations from problems
in F terminate, and SGGS decides F . Assuming for simplicity the one-sorted case, where
the cardinality of a model is that of its domain, we show that F also has the small model
property: every satisfiable clause set inF admits amodel whose cardinality is upper bounded.
Let H(B) = {t : t is a strict subterm of L for L ∈B}, where “strict” says that the elements
of B are not included. Since B is finite, H(B) also is finite.

Theorem 2 If a fair SGGS-derivation from a satisfiable set S of clauses is in a finite basis
B, then S has a model of cardinality |H(B)| + 1 that can be extracted from the limit of the
derivation.

Proof Let I be the initial interpretation. By Theorem 1 the derivation halts with some trail Γ
which is its limit. Since SGGS is model complete in the limit, I [Γ ] |� S. The domain of I [Γ ]
isH, which is infinite in general. However, since the derivation is inB, all cgi’s of all clauses in
Γ are inB, and therefore we can extract from I [Γ ] amodel J with domainH(B)�{u}, where
u is a new constant symbol. For every constant symbol c, let cJ = c if c ∈ H(B), and cJ = u
otherwise; for every n-ary (n ≥ 1) function symbol f , let f J (t1, . . . , tn) = f (t J1 , . . . , t Jn )

if f (t1, . . . , tn) ∈ H(B), and f J (t1, . . . , tn) = u otherwise; for every predicate symbol P ,
(t1, . . . , tn) ∈ P J if and only if I [Γ ] |� P(t1, . . . , tn). Note that J is well-defined because if
f (t1, . . . , tn) ∈ H(B) then t1, . . . , tn are also, hence all terms are interpreted inH(B)� {u}.
As J agrees with I [Γ ] on all atoms, J |� S, and its cardinality is |H(B)|+1 by construction.

��
In summary, the finite basis approach for SGGS yields termination, decidability, and the

small model property.

4.2 SGGS Decides Datalog, EPR, and the Stratified Fragment

A set of Datalog clauses, or Datalog program (e.g., [26]), is a set of Horn clauses where (i)
there are no functions, so that all terms are either constants or variables, (ii) every fact is
ground, and (iii) every variable that occurs in the positive literal of a rule C also occurs in
at least one negative literal of C . Since the Herbrand universe and the Herbrand base A of
a Datalog program are finite, A itself is the finite basis, and Theorem 1, together with the
completeness theorems for SGGS, yields the following.

Theorem 3 Given a Datalog program S, every fair SGGS-derivation halts, is a refutation if
S is unsatisfiable, and constructs a model of S if S is satisfiable.

The Bernays–Schönfinkel (BS) class [14, 68] includes the sentences of the form ∃∗∀∗ϕ,
where ϕ is a formula with no occurrences of either quantifiers or functions, while constants
are allowed. The reduction of BS formulae to clausal form yields Effectively PRopositional
logic [3, 37, 65], abbreviated EPR. The stratified fragment generalizes EPR to many-sorted
logic [1, 47, 64].

A signature is stratified [1, 47, 64], if there is a well-founded ordering <s on the set Σ

of sorts, and for all functions f : s1 × · · · × sn → s, it holds that si >s s for all i , 1≤ i ≤ n.
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The sort-dependency graph displays dependencies between sorts: it is a directed graph such
that the set of vertices is Σ and there is an arc from s to s′ if and only if there is a function
symbol f : s1 × · · · × sn → s′ such that si = s for some i , 1≤ i ≤ n. A sort s is cyclic, if
there exists a non-trivial path (i.e., a path of length greater or equal than 1) from s to s in the
graph, and acyclic otherwise. In a stratified signature all sorts are acyclic. If a sentence over
a stratified signature belongs to the ∃∗∀∗ fragment, Skolemization only introduces constants
and preserves stratification. If there is only one sort, this fragment reduces to EPR, because
stratification over a single sort implies that there are no function symbols. However, also
stratified sentences with a prefix other than ∃∗∀∗ can yield stratified clauses [57].

Example 4 Assume the signature from Example 2, which is stratified with ordering s1 >s

s2. The Skolemization of ∀x∃y. P(f(x), y) preserves stratification, as clause P(f(x),g(x))
with Skolem symbol g : s1→s2 is still stratified. On the other hand, the Skolemization of
∀x∃y. P(f(y), x) yields P(f(g(x)), x) with Skolem symbol g : s2→s1, so that stratification is
lost.

A set of clauses whose signature is stratified is also called stratified. Since stratification
prevents building terms of unbounded depth, the Herbrand universe and the Herbrand base
are again finite, and we have the next theorem.

Theorem 4 Given a stratified input set S, every fair SGGS-derivation halts, is a refutation if
S is unsatisfiable, and constructs a model of S if S is satisfiable.

However, SGGS-derivations inEPRcanbe exponentially long, as in the following example
with a clause set Sk that describes a k-digits binary counter. Let Q be a predicate symbol of
arity k, and for all i , 1≤ i ≤ k, let 0i , 1i , and xi be i-tuples of 0’s, 1’s, and distinct variables
x1, . . . , xi , respectively. Then Sk consists of the following k+2 clauses, for 0 ≤ m ≤ k−1:

C0 : Q(0k) Cm : ¬Q(xm, 0, 1k−m−1) ∨ Q(xm, 1, 0k−m−1) Ck+1 : ¬Q(1k).

This set was used in the context of an analysis of first-order theorem-proving strategies [66,
Def. 2.4.10] to show that resolution can do better than hyperresolution or positive/negative
resolution. Indeed, resolution offers a refutation in 2k+1 steps [66, Thm. 2.4.11], whereas
positive resolution and positive hyperresolution simulate the binary counter, and negative
resolution and negative hyperresolution do the same counting in reverse, so that all four
strategies generate exponentially long derivations [66, Thm. 2.4.12]. As these sign-based
refinements of resolution only generate ground clauses from Sk , this set was also used to
show that generating ground instances and applying a propositional proof system can do
exponentially worse than resolution in EPR [59, Sect. 2.1]. A recent model-based clause-
learning decision procedure for EPR named SCL and evolved from NRCL [3] also behaves
exponentially on Sk [37, Sect. 4]. Unlike in Example 3, SGGS behaves like hyperresolution
on Sk .

Example 5 Given as input the k-digits binary counter clause set Sk , and I− as initial inter-
pretation, SGGS generates a derivation that simulates binary counting with a series of 2k+1
SGGS-extension steps, each adding a clause:

Γ0 : ε � Γ1 : [Q(0k)] extend (C0)

� Γ2 : [Q(0k)], ¬Q(0k) ∨ [Q(0k−1, 1)] extend (Ck−1)

� Γ3 : . . . ,¬Q(0k−1, 1) ∨ [Q(0k−2, 1, 0)] extend (Ck−2)

� Γ4 : . . . ,¬Q(0k−2, 1, 0) ∨ [Q(0k−2, 1, 1)] extend (Ck−1)
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� Γ5 : . . . ,¬Q(0k−2, 1, 1) ∨ [Q(0k−3, 1, 0, 0)] extend (Ck−3)

. . . . . .

� Γ2k−1 : . . . ,¬Q(1k−2, 0, 1) ∨ [Q(1k−1, 0)] extend (Ck−2)

� Γ2k : . . . ,¬Q(1k−1, 0) ∨ [Q(1k)] extend (Ck−1)

� Γ2k+1 : . . . ,¬Q(1k−1, 0) ∨ [Q(1k)], [¬Q(1k)] extend (Ck+1).

At this stage a conflict emerges with I−-all-true conflict clause [¬Q(1k)]. After another
2k+1 steps, alternating SGGS-move (abbreviated move) and SGGS-resolution (abbreviated
resolve), unsatisfiability is detected:

� Γ2k+2 : . . . , [¬Q(1k)], ¬Q(1k−1, 0) ∨ [Q(1k)] move

� Γ2k+3 : . . . , [¬Q(1k)], [¬Q(1k−1, 0)] resolve

� Γ2k+4 : . . . , [¬Q(1k−1, 0)], ¬Q(1k−2, 0, 1) ∨ [Q(1k−1, 0)], [¬Q(1k)] move

� Γ2k+5 : . . . , [¬Q(1k−1, 0)], [¬Q(1k−2, 0, 1)], [¬Q(1k)] resolve

. . . . . .

� Γ2k+2 : [¬Q(0k)], [Q(0k)], . . . move

� Γ2k+2+1 : ⊥, . . . resolve

SGGS with I+ also behaves exponentially operating the counter in reverse.

In essence, this set of clauses appears to defeat simultaneously sign-based semantic guidance,
instance generation, and conflict-driven clause learning.

4.3 SGGS Does Not Decide the Ackermann, Monadic, and FO2 Classes

In this section we show that SGGS with sign-based semantic guidance does not decide the
Ackermann, monadic, and FO2 fragments. Let ϕ be a formula with no occurrences of either
quantifiers or functions, while constants are allowed. The Ackermann class comprises the
sentences of the form ∃∗∀∃∗ϕ [2, 35, 44]. The monadic, or Löwenheim, class contains the
sentenceswhere there are no functions and predicates are unary [2, 38, 44]. In the two-variable
fragment, denoted FO2, there are only two variables and no functions [38, 41].

We consider three sets of clauses to illustrate how SGGS works. Two of them are well-
known in the literature. As these clause sets admit finitemodels, the nontermination of SGGS
in these examples shows that SGGS is not guaranteed to terminate whenever the input set
has a finite model. We conclude the section with an example that shows that it is not the case
that whenever SGGS terminates there is a finite Herbrand model. Indeed, a finite SGGS trail
can represent an infinite Herbrand model by using non-ground selected literals (SGGS is not
restricted to generate ground instances of clauses) and by borrowing infinitely many literals
from the initial interpretation.

The first set is S0 = {P(x)∨ P(f(x)), ¬P(x ′)∨¬P(f(x ′))} [44, Sect. 5]. Set S0 is in FO2,
because there are only two variables; and it is in the Ackermann and monadic classes because
it is obtained from the Skolemization of the sentence ∀x∃y.(P(x)∨P(y))∧(¬P(x)∨¬P(y)).
S0 has a finite model I with domain {0, 1}, interpreting P as PI = {0}, and f as fI(0) = 1
and fI(1) = 0. Adding to the signature a constant a to form Herbrand universe and Herbrand
base, S0 has two infinite Herbrand models: J1 = {P(f2k(a)),¬P(f2k+1(a)) : k ≥ 0} and
J2 = {¬P(f2k(a)), P(f2k+1(a)) : k ≥ 0}.
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The addition of P(a) selects only J1 as Herbrand model, yielding a simpler problem
S1 = {P(a), P(x) ∨ P(f(x)), ¬P(x ′) ∨ ¬P(f(x ′))}. S1 is in the same classes (membership
in the Ackermann and monadic classes stems from the Skolemization of ∃w∀x∃y.P(w) ∧
(P(x)∨P(y))∧ (¬P(x)∨¬P(y))), and it is satisfied by finite model I extended with aI = 0.

By enriching the signature so that binary clauses are mixed one gets S2 =
{P(a), ¬P(b), ¬P(x) ∨ P(f(x)), P(x ′) ∨ ¬P(g(x ′))}, which is in the same classes (mem-
bership in the Ackermann and monadic classes descends from the Skolemization of
∃v∃w∀x∃y∃z.P(v)∧¬P(w)∧ (¬P(x)∨ P(y))∧ (P(x)∨¬P(z))), has only Herbrand model
J3 = {P(a),¬P(b), P(fk(a)),¬P(gk(b)) : k≥0}, and finite model I extended with bI = 1
and gI = fI . Problem S2 is even simpler, because it is made of Horn clauses, and because
with binary mixed clauses every sign-guided hyperinference unifies only one pair of literals.

Resolution, even with subsumption, generates infinitely many clauses from S0, S1, and
S2, and so does hyperresolution [44]. From S0 positive hyperresolution generates {P(x) ∨
P(f2k+1(x)) : k ≥ 1} and negative hyperresolution generates {¬P(x)∨¬P(f2k+1(x)) : k ≥
1}. From S1 positive hyperresolution also adds {P(f2k(a) : k ≥ 1}, while negative hyper-
resolution also adds {¬P(f2k+1(a) : k ≥ 0}. From S2 positive hyperresolution generates
{P(fk(a)) : k ≥ 1} and negative hyperresolution generates {¬P(gk(b)) : k ≥ 1}. Ordered
resolution with an ordering > on literals such that P(f(x)) > P(x), and P(g(x)) > P(x) for
S2, plus tautology elimination for S0 and S1, terminates right away.

The first example of this section shows how SGGS generates infinite derivations from S2,
working to modify I− or I+ to get model J3 in the limit. Set S2 is so simple that derivations
made only of SGGS-extensions are possible.

Example 6 Given S2 and I = I−, the SGGS-derivation begins by putting on trail Γ the
I -all-false (i.e., positive) clause P(a). Thus, I [Γ ] |� P(a), but I [Γ ] �|� ¬P(x)∨ P(f(x)), and
an infinite series of instances gets generated:

ε � [P(a)] extend

� [P(a)], ¬P(a) ∨ [P(f(a))] extend

� [P(a)], ¬P(a) ∨ [P(f(a))], ¬P(f(a)) ∨ [P(f(f(a)))] extend

� . . .

The derivation lists as selected the positive literals of J3, while I [Γ ] gets the negative ones
from I−. If the initial interpretation is I+, SGGS starts by putting [¬P(b)] on the trail, and
then generates the instances of P(x ′) ∨ ¬P(g(x ′)) by an infinite series of SGGS-extensions.
The derivation lists as selected the negative literals of J3, as I [Γ ] imports the positive ones
from I+.

The next example shows how input set S1 induces SGGS to embark in infinite derivations4

aiming at reaching model J1 in the limit.

Example 7 Given S1 = {P(a), P(x)∨P(f(x)), ¬P(x ′)∨¬P(f(x ′))} and I = I−, the SGGS-
derivation starts by placing the I -all-false input clauses on the trail:

ε � [P(a)], [P(x)] ∨ P(f(x)) extend

where either literal can be selected in the second clause. Selecting P(f(x)) avoids an inter-
section with P(a), but suppose that P(x) is selected. Then the first clause splits the second

4 The SGGS-derivation with I− given for this set in [17, Ex. 11] is incorrect.
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one by s-splitting and SGGS-deletion removes the representative because it is disposable.
We abbreviate top(x) �= a � ϕ[x] as ϕ[f(x)] where x is a new variable.

� [P(a)], [P(a)] ∨ P(f(a)), [P(f(x))] ∨ P(f2(x)) s-split

� [P(a)], [P(f(x))] ∨ P(f2(x)) delete

At this point I [Γ ] satisfies no instance of the I -all-true input clause ¬P(x ′) ∨ ¬P(f(x ′)).
SGGS-extension fires unifying the two literals of this clause with the two selected literals on
the trail (the mgu is α = {x ′ ← a, x ← a}):

� [P(a)], [P(f(x))] ∨ P(f2(x)), ¬P(a) ∨ [¬P(f(a))] extend

The added clause is a conflict clause with ¬P(a) assigned to the first clause, and ¬P(f(a))
to the second one, so that ¬P(f(a)) is selected, because the selected literal in an I -all-true
clause, if selected, must be assigned rightmost. Since P(f(a)) is less general than P(f(x))
(¬Gr(¬P(f(a))) ⊂ Pcgi(P(f(x)), Γ )), the third clause splits the second one by left splitting
(abbreviated l-split), which enables SGGS-move followed by SGGS-resolution:

� [P(a)], [P(f(a))] ∨ P(f2(a)), [P(f2(x))] ∨ P(f3(x)),

¬P(a) ∨ [¬P(f(a))] l-split

� [P(a)], ¬P(a) ∨ [¬P(f(a))], [P(f(a))] ∨ P(f2(a)),

[P(f2(x))] ∨ P(f3(x)) move

� [P(a)], ¬P(a) ∨ [¬P(f(a))], ¬P(a) ∨ [P(f2(a))],
[P(f2(x))] ∨ P(f3(x)) resolve

� . . .

The infinite derivation lists as selected the literals P(a), ¬P(f(a)), P(f2(a)), . . . of model J1,
and so do three other infinite derivations, one with I = I− and P(f(x)) selected in the second
extension clause, one with I = I+ and P(x) selected, and one with I = I+ and P(f(x))
selected.

The following example illustrates how SGGS generates infinite derivations from S0 to get
either model J1 or model J2 depending on literal selection.

Example 8 Given S0 = {P(x) ∨ P(f(x)), ¬P(x ′) ∨ ¬P(f(x ′))}, and I = I−, the first SGGS-
extension adds the I -all-false input clause

ε � [P(x)] ∨ P(f(x)) extend

where either literal can be selected and P(x) is. If P(x) is selected, SGGS builds model
J1, and if P(f(x)) is selected, SGGS builds model J2. SGGS-extension applies next with
¬P(x ′)∨¬P(f(x ′)) asmain premise and two variants [P(x1)]∨P(f(x1)) and [P(x2)]∨P(f(x2))
of the clause in Γ as side premises. There are two mgu’s, hence two possible steps with
extension clause¬P(x)∨¬P(f(x)): α1 = {x1 ← x ′, x2 ← f(x ′)} and α2 = {x2 ← x ′, x1 ←
f(x ′)}. If α1 is applied,¬P(x) is assigned to the first variant and¬P(f(x)) to the second one, so
that¬P(f(x)) is selected, because the selected literal in an I -all-true clause, if assigned, must
be assigned rightmost. If α2 is applied, ¬P(f(x)) is assigned to the first variant and ¬P(x)
to the second one, so that ¬P(x) is selected. Putting both variants on the trail is useless,
since SGGS-deletion removes the second one, and both literals of the extension clause can
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be assigned to the first clause on the trail, but distinguishing the two mgu’s is useful to see
which literal gets selected in the extension clause. If α2 is applied, the result is:

� [P(x)] ∨ P(f(x)), [¬P(x)] ∨ ¬P(f(x)) extend

However at this point the derivation is stuck, because neither SGGS-move nor SGGS-
factoring nor left splitting apply to the I -all-true conflict clause. SGGS-move does not
apply because the second clause has two literals assigned to the first one. SGGS-factoring
does not apply because the two literals do not unify. Left splitting does not apply because
¬Gr(¬P(x)) = pcgi(P(x), Γ ). Since a stuck derivation is not fair, a stuck state must be
avoided by looking ahead or undoing. If α1 is applied, the derivation proceeds with left
splitting:

� [P(x)] ∨ P(f(x)), ¬P(x) ∨ [¬P(f(x))] extend

� top(x) �= f � [P(x)] ∨ P(f(x)), [P(f(x))] ∨ P(f2(x)) l-split

where ¬P(x) ∨ [¬P(f(x))] is removed, because it has literals assigned to the split clause.
SGGS-extension applies again with ¬P(x ′)∨¬P(f(x ′)) as main premise, the two clauses in
Γ as side premises, and mgu α = {x ′ ← x}:

� top(x) �= f � [P(x)] ∨ P(f(x)), [P(f(x))] ∨ P(f2(x)),

top(x) �= f � ¬P(x) ∨ [¬P(f(x))] extend

The first and the second literal of the extension clause are assigned to the first and second
clause, respectively, so that the second literal is selected. Then left splitting applies:

� top(x) �= f � [P(x)] ∨ P(f(x)), top(x) �= f � [P(f(x))] ∨ P(f2(x)),

[P(f2(x))] ∨ P(f3(x)), top(x) �= f � ¬P(x) ∨ [¬P(f(x))] l-split

so that SGGS-move and SGGS-resolution can solve the conflict:

� top(x) �= f � [P(x)] ∨ P(f(x)), top(x) �= f � ¬P(x) ∨ [¬P(f(x))],
top(x) �= f � [P(f(x))] ∨ P(f2(x)), [P(f2(x))] ∨ P(f3(x)) move

� top(x) �= f � [P(x)] ∨ P(f(x)), top(x) �= f � ¬P(x) ∨ [¬P(f(x))],
top(x) �= f � ¬P(x) ∨ [P(f2(x))], [P(f2(x))] ∨ P(f3(x)) resolve

As the selected literals of the third and fourth clauses intersect, s-splitting applies, followed
by the deletion of the representative:

� top(x) �= f � [P(x)] ∨ P(f(x)), top(x) �= f � ¬P(x) ∨ [¬P(f(x))],
top(x) �= f � ¬P(x) ∨ [P(f2(x))],
top(x) �= f � [P(f2(x))] ∨ P(f3(x)), [P(f3(x))] ∨ P(f4(x)) s-split

� top(x) �= f � [P(x)] ∨ P(f(x)), top(x) �= f � ¬P(x) ∨ [¬P(f(x))],
top(x) �= f � ¬P(x) ∨ [P(f2(x))], [P(f3(x))] ∨ P(f4(x)) delete

� . . .
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Since top(x) �= f is satisfied by {x ← a} in the Herbrand universe, the infinite derivation
is listing J1 = {P(a), ¬P(f(a)), P(f2(a)), . . .}. If P(f(x)) is selected in the first clause, the
same sequence of inference rules is applied:

ε � P(x) ∨ [P(f(x))] extend

� P(x) ∨ [P(f(x))], ¬P(f(x)) ∨ [¬P(f2(x))] extend

� top(x) �= f � P(x) ∨ [P(f(x))], P(f(x)) ∨ [P(f2(x))] l-split

� top(x) �= f � P(x) ∨ [P(f(x))], P(f(x)) ∨ [P(f2(x))],
top(x) �= f � ¬P(f(x)) ∨ [¬P(f2(x))] extend

� top(x) �= f � P(x) ∨ [P(f(x))], top(x) �= f � P(f(x)) ∨ [P(f2(x))],
P(f2(x)) ∨ [P(f3(x))], top(x) �= f � ¬P(f(x)) ∨ [¬P(f2(x))] l-split

� top(x) �= f � P(x) ∨ [P(f(x))],
top(x) �= f � ¬P(f(x)) ∨ [¬P(f2(x))],
top(x) �= f � P(f(x)) ∨ [P(f2(x))], P(f2(x)) ∨ [P(f3(x))] move

� top(x) �= f � P(x) ∨ [P(f(x))],
top(x) �= f � ¬P(f(x)) ∨ [¬P(f2(x))],
top(x) �= f � ¬P(f(x)) ∨ [P(f(x))], P(f2(x)) ∨ [P(f3(x))] resolve

Unlike in the first derivation, the resolvent is disposable and gets deleted:

� top(x) �= f � P(x) ∨ [P(f(x))],
top(x) �= f � ¬P(f(x)) ∨ [¬P(f2(x))], P(f2(x)) ∨ [P(f3(x))] delete

The derivation continues with SGGS-extension with ¬P(x ′) ∨ ¬P(f(x ′)) as main premise,
the third and first clauses in Γ as side premises, and mgu α = {x ′ ← f3(y), x ← f(y)},
renaming as y the x in the third clause of Γ :

� top(x) �= f � P(x) ∨ [P(f(x))],
top(x) �= f � ¬P(f(x)) ∨ [¬P(f2(x))], P(f2(x)) ∨ [P(f3(x))],
top(x) �= f � ¬P(f3(x)) ∨ [¬P(f4(x))] extend

� top(x) �= f � P(x) ∨ [P(f(x))],
top(x) �= f � ¬P(f(x)) ∨ [¬P(f2(x))],
top(x) �= f � P(f2(x)) ∨ [P(f3(x))], P(f3(x)) ∨ [P(f4(x))] l-split

� . . .

The first three selected literals are P(f(a)), ¬P(f2(a)), and P(f3(a)), and since I [Γ ] gets
¬P(a) from I−, model J2 = {¬P(a), P(f(a)), ¬P(f2(a)), P(f3(a)) . . .} emerges. Since S0
is symmetric with respect to sign, with I = I+ one gets two derivations identical to those
above, except that all signs of all literals on the trail are flipped: the first derivation yields J2
and the second one yields J1.

Terminating SGGS-derivations can capture infinite Herbrand models, as a finite SGGS
trail can represent an infinite Herbrand model by using non-ground selected literals and by
borrowing infinitely many literals from I .
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Example 9 Let the input set of clauses be S = {(i) P(x, a), (i i) ¬P(x, y) ∨ R(y) ∨
P(x, f(y)), (i i i) ¬R(f(x)) ∨ ¬P(x, f(x))}. SGGS with I+ halts after putting clause (i i i)
on the trail. If the first literal is selected, we have

Γ0 : ε � Γ1 : [¬R(f(x))] ∨ ¬P(x, f(x)),
where I p(Γ1) = {¬R(fk(a)) : k ≥ 1} and I [Γ1] is the infinite Herbrand model given by
I p[Γ1] plus all the positive literals whose complement is not in I p(Γ1). If the second literal
is selected,

Γ0 : ε � Γ1 : ¬R(f(x)) ∨ [¬P(x, f(x))],
we have I p(Γ1) = {¬P(fk(a), fk+1(a)) : k ≥ 0} and I [Γ1] is the infinite Herbrand model
given by I p[Γ1] plus all the positive literals whose complement is not in I p(Γ1). If I is I−,
the termination of SGGS depends on literal selection. The following derivation halts:

Γ0 : ε � Γ1 : [P(x, a)] � Γ2 : [P(x, a)], ¬P(x, a) ∨ [R(a)] ∨ P(x, f(a)),

with I p(Γ2) = {P(fk(a), a) : k ≥ 0}∪{R(a)} and I [Γ2] given by I p(Γ2) plus all the negative
literals whose atom is not in I p(Γ2). If the last literal in the instances of ¬P(x, y) ∨ R(y) ∨
P(x, f(y)) is systematically selected, SGGS with I− diverges:

ε � [P(x, a)] � [P(x, a)], ¬P(x, a) ∨ R(a) ∨ [P(x, f(a))]
� [P(x, a)], ¬P(x, a) ∨ R(a) ∨ [P(x, f(a))],
¬P(x, f(a)) ∨ R(f(a)) ∨ [P(x, f2(a))] � . . . .

Hyperresolution generates infinitely many clauses from this set. For example, using (i i) as
nucleus, (i) as initial satellite, and then each resulting hyperresolvent as next satellite, positive
hyperresolution produces R(a) ∨ P(x, f(a)), R(a) ∨ R(f(a)) ∨ P(x, f2(a)), R(a) ∨ R(f(a)) ∨
R(f2(a)) ∨ P(x, f3(a)), and so on.

4.4 SGGS Does Not Decide the Guarded Fragment

In this section we show by counterexamples that SGGS with sign-based semantic guidance
does not decide the guarded fragment [4, 29]. The guarded fragment admits no function
symbols and restricts quantification to the following schemes: ∀ȳ.(R(x̄, ȳ) ⊃ ψ[x̄, ȳ]) and
∃ȳ.(R(x̄, ȳ) ∧ ψ[x̄, ȳ]), where ψ is also a guarded formula, and all the variables that occur
in ψ must appear in the atomic guard R(x̄, ȳ). For the fragments considered in the previous
sections, the clausal version of a fragment contains the sets of clauses generated by trans-
forming into clausal form the formulae of the fragment. For the guarded fragment this is not
the case: we adopt the existing notion of guarded clauses [29] and we refer to [29] for a
discussion of reduction to clausal form in the guarded fragment.

A clause C is guarded, if (i) for all non-ground compound subterms t of C , Var(t) =
Var(C), and (ii) if Var(C) �= ∅, there exists a literal L ∈ C−, called a guard, such that
Var(L) = Var(C) and every compound subterm of L is ground [29]. Although formulæ
in the guarded fragment have no function symbols, guarded clauses may contain function
symbols introduced by Skolemization. A guarded set is a set of guarded clauses. For example,
G0 = {R(f(a)), ¬P(x) ∨ R(x) ∨ Q(f(x))} is a guarded set. Given G0, SGGS with I+ halts
right away, and SGGS with I− halts after placing R(f(a)) on the trail. However, it is simple
to give a guarded set where the termination of SGGS depends on the initial interpretation.
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Example 10 Given the guarded set G1 = {P(a), ¬P(x)∨P(f(x))}, SGGS with I+ halts right
away, but the SGGS-derivation with I− is infinite:

ε � [P(a)] extend

� [P(a)], ¬P(a) ∨ [P(f(a))] extend

� [P(a)], ¬P(a) ∨ [P(f(a))], ¬P(f(a)) ∨ [P(f2(a))] extend

� . . .

In the next example the termination of SGGS depends on both initial interpretation and
literal selection.

Example 11 Given the guarded set G2 = {¬P(a), ¬Q(x) ∨ P(x) ∨ ¬P(f(x))}, SGGS halts
right away with I−, but goes on forever with I+:

ε � [¬P(a)]
� [¬P(a)], ¬Q(a) ∨ P(a) ∨ [¬P(f(a))]
� [¬P(a)], ¬Q(a) ∨ P(a) ∨ [¬P(f(a))], ¬Q(f(a)) ∨ P(f(a)) ∨ [¬P(f2(a))]
� . . .

where SGGS-extension is applied at every step. However, it suffices to select ¬Q(fn(a)) in
place of ¬P(fn+1(a)), for some n ≥ 0, that the derivation halts.

In the following example SGGS does not terminate regardless of literal selection and
choice between I− and I+.

Example 12 The set G3 = {P(a), ¬P(x)∨ P(f(f(x))), ¬P(x)∨¬P(f(x))} is guarded and is
satisfied by the same finite model I and infinite Herbrand model J1 given for S1 from the
previous section. With I− SGGS generates an infinite derivation that lists as selected the
positive literals of model J1:

ε � [P(a)] extend

� [P(a)], ¬P(a) ∨ [P(f2(a))] extend

� [P(a)], ¬P(a) ∨ [P(f2(a))], ¬P(f2(a)) ∨ [P(f4(a))] extend

� . . .

The SGGS-derivation with I+ is infinite even if literals of lower depth are preferred for
selection, as the literals of model J1 are listed as selected:

ε � [¬P(x)] ∨ ¬P(f(x)) extend

� [¬P(x)] ∨ ¬P(f(x)), [P(a)] extend

� [¬P(a)] ∨ ¬P(f(a)), [¬P(f(x))] ∨ ¬P(f2(x)), [P(a)] l-split

� [P(a)], [¬P(a)] ∨ ¬P(f(a)), [¬P(f(x))] ∨ ¬P(f2(x)) move

� [P(a)], [¬P(f(a))], [¬P(f(x))] ∨ ¬P(f2(x)) resolve

� [P(a)], [¬P(f(a))], [¬P(f(a))] ∨ ¬P(f2(a)),
[¬P(f2(x))] ∨ ¬P(f3(x)) s-split

� [P(a)], [¬P(f(a))], [¬P(f2(x))] ∨ ¬P(f3(x)) delete

� [P(a)], [¬P(f(a))], [¬P(f2(x))] ∨ ¬P(f3(x)), [¬P(a)] ∨ P(f2(a)) extend
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� [P(a)], [¬P(f(a))], [¬P(f2(x))] ∨ ¬P(f3(x)), [P(f2(a))] resolve

� [P(a)], [¬P(f(a))], [¬P(f2(a))] ∨ ¬P(f3(a)),
[¬P(f3(x))] ∨ ¬P(f4(x)), [P(f2(a))] l-split

� [P(a)], [¬P(f(a))], [P(f2(a))], [¬P(f2(a))] ∨ ¬P(f3(a)),
[¬P(f3(x))] ∨ ¬P(f4(x)) move

� [P(a)], [¬P(f(a))], [P(f2(a))], [¬P(f3(a))],
[¬P(f3(x))] ∨ ¬P(f4(x)) resolve

� . . .

Resolution generates infinitely many clauses from these sets, while hyperresolution
behaves similarly to SGGS. From G0 both positive and negative hyperresolution gen-
erate nothing. From G1 negative hyperresolution does not generate anything, whereas
positive hyperresolution yields the infinite series {P(fk(a)) : k ≥ 1}. From G2 positive
hyperresolution does not generate anything, whereas negative hyperresolution yields the
infinite series {∨k

i=0 ¬Q(fi (a)) ∨ ¬P(fk+1(a)) : k ≥ 0}. From G3 positive hyperreso-
lution yields the infinite series {P(f2k(a))}k≥0, while negative hyperresolution generates
¬P(f(a)) from nucleus P(a) and satellite ¬P(x) ∨ ¬P(f(x)), and then the infinite series
{¬P(x)∨¬P(f2k+1(x)) : k ≥ 1} from nucleus ¬P(x)∨ P(f(f(x))) using ¬P(x)∨¬P(f(x))
as initial satellite and then each resulting hyperresolvent as next satellite. Given an ordering
> on literals such that P(f(x)) > P(x) for G1 and G2, and such that P(f(x)) > P(x) and
P(f2(x)) > P(x) for G3, ordered resolution halts right away.

4.5 SGGS Decides the Ground-Preserving Sets Decided by Hyperresolution

SGGS with I− or I+ as initial interpretation and hyperresolution share sign-based semantic
guidance. We show that if the input clauses are positively ground-preserving, SGGS with
I− terminates whenever positive hyperresolution does. The result for SGGS with I+ and
negative hyperresolution is dual.

Definition 4 (Ground-Preserving) A clause C is positively ground-preserving if Var(C) ⊆
Var(C−), and negatively ground-preserving if Var(C) ⊆ Var(C+). A set of clauses is
positively/negatively ground-preserving if all its clauses are, and ground-preserving if it is
one or the other.

For example, ¬P(x, y, z) ∨ Q(y) ∨ Q(f(z)) and ¬Q(x) ∨ ¬Q(y) are positively ground-
preserving. Datalog clauses are positively ground-preserving. The binary counter clauses
of Example 5 are both positively and negatively ground-preserving. Guarded clauses are
positively ground-preserving, since the guard is negative and contains all variables.

If a set S is positively ground-preserving, the positive clauses in S are ground, hence the
initial satellites are ground, and positive hyperresolution generates only ground clauses, as at
every step all variables in the nucleus get instantiated with ground terms by the simultaneous
mgu with literals in ground satellites. The dual properties hold for the negative variant.

We begin by showing that SGGS also has this property, which implies that SGGS-splitting
inferences do not apply and hence SGGS-constraints do not appear. Let I be suitable for a
ground-preserving set S if either I is I− and S is positively ground-preserving, or I is I+
and S is negatively ground-preserving.
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Lemma 2 If the input set S is ground-preserving, all clauses on the trail of a fair SGGS-
derivation with initial interpretation suitable for S are ground.

Proof Assume that S is positively ground-preserving and I is I− (the other case is dual).
The proof is by induction on the stage k such that the step Γk � Γk+1 adds clause C to the
trail (i.e., C appears in Γk+1).

Base case: k = 0, and C is one of the I−-all-false (i.e., positive) input clauses added by the
first SGGS-extension that yields Γ1. (S must contain at least an I−-all-false clause, because
otherwise it would be satisfied by I− and the derivation would not even start.) Since S is
ground-preserving, C is ground.
Induction hypothesis: for all j , 0 ≤ j < k, all clauses C added by the step Γ j � Γ j+1 are
ground.
Inductive case: letC be a clause added to the trail by the step Γk � Γk+1. The only inferences
that generate new clauses are SGGS-splitting, SGGS-resolution, and SGGS-extension. Γk �
Γk+1 cannot be a splitting step, because the splitting of a ground clause is trivial, hence
excluded by fairness. If Γk � Γk+1 is an SGGS-resolution step, a resolvent of ground clauses
is also ground. If Γk � Γk+1 is an SGGS-extension step, it adds an instance Cα of a clause
C ∈ S, where α is the simultaneous mgu of all I−-true (i.e., negative) literals L1, . . . , Ln

in C with as many I−-false (i.e., positive) selected literals M1, . . . , Mn in clauses in Γ . By
induction hypothesis, the clauses containing M1, . . . , Mn are ground. Thus, L1α, . . . , Lnα

are also ground. The I−-false (i.e., positive) literals ofCα are ground, becauseC is positively
ground-preserving, so that all its variables appear in a negative literal and get grounded by
α. Thus, Cα is ground. ��

Let Res+H (S) be the set of positive hyperresolvents generated from S; R0
H (S) = S,

Rk+1
H (S) = Rk

H (S) ∪ Res+H (Rk
H (S)), and R∗H (S) = ⋃

k≥0 Rk
H (S). If S is positively

ground-preserving, all clauses in R∗H (S) \ S are ground.

Lemma 3 If the input set S is positively ground-preserving, for all fair SGGS-derivations
with I− as initial interpretation, for every clause C on the trail during the derivation, there
exists a positive clause C ′ ∈ R∗H (S) such that C+ ⊆ C ′.

Proof By Lemma 2 all clauses C that appear on the trail during the derivation are ground.
The proof is by induction on the stage k such that the step Γk � Γk+1 adds clause C to the
trail (i.e., C appears in Γk+1).
Base case: k = 0, and C is one of the I−-all-false (i.e., positive) input clauses added by the
first SGGS-extension that yields Γ1. Then C+ = C and C ′ = C ∈ S ⊆ R∗H (S).
Induction hypothesis: for all j , 0 ≤ j < k, for all clauses C added by step Γ j � Γ j+1 the
claim holds.
Inductive case: let C be a clause added to the trail by step Γk � Γk+1. By fairness, SGGS-
splitting does not apply to ground clauses, and we only need to consider SGGS-resolution
and SGGS-extension. If Γk � Γk+1 is an SGGS-resolution step, the added clause is the
SGGS-resolvent R generated from (ground) parentsC1[L] and C2[¬L], where L is I−-false
(i.e., positive) and C2[¬L] is I−-all-true (i.e., negative), so that R+ ⊆ C1

+. By induction
hypothesis there exists a positive clause C ′ ∈ R∗H (S) such that C1

+ ⊆ C ′, and hence R+ ⊆
C ′. If Γk � Γk+1 is an SGGS-extension step with main premise C ∈ S and side premises
D1[M1], . . . , Dn[Mn] in Γk , the added clause is the instance Cα, for α the simultaneous
mgu of all I−-true (i.e., negative) literals L1, . . . , Ln in C with the I−-false (i.e., positive)
selected literals M1, . . . , Mn . By induction hypothesis, for all i , 1 ≤ i ≤ n, there exists a

123



SGGS Reasoning: Decision Procedures and Koala Page 23 of 42 6

positive clause D̂i ∈ R∗H (S) such that D+
i ⊆ D̂i , so that Mi is a literal of D̂i . Thus, positive

hyperresolution applies to nucleusC and satellites D̂1, . . . , D̂n resolving upon all the negative
literals L1, . . . , Ln in C and the positive literals Mi in D̂i (1 ≤ i ≤ n) with simultaneous
mgu α. The generated positive hyperresolvent isC ′ = (C+∨ D̂1 \{M1}∨ . . .∨ D̂n \{Mn})α.
Since C+α ⊆ C ′, the claim holds. ��

Given a set S of clauses, positive hyperresolution is guaranteed to halt if and only if R∗H (S)

is finite. The next theorem shows that if positive hyperresolution is guaranteed to halt, so is
SGGS.

Theorem 5 If the input set S is positively ground-preserving and R∗H (S) is finite, all fair
SGGS-derivations with I− as initial interpretation are finite.

Proof Since S is positively ground-preserving, all clauses in R∗H (S) \ S are ground, and all
clauses on the trail during an SGGS-derivation are ground. We prove the claim by proving
the contrapositive: if there exists an infinite SGGS-derivationΘ with initial interpretation I−
and input S, then R∗H (S)must be infinite. An SGGS-derivation can be infinite only if there are
infinitely many SGGS-extension inferences, because the model fixing and conflict-solving
activities of SGGS are inherently finite. Thus, Θ features infinitely many SGGS-extensions,
adding ground clauses involving atoms of increasing depth. (If the depth of atoms were
upper bounded, Θ would be in a finite basis and would be finite by Theorem 1.) Whenever
an SGGS-extension adds a ground instance Cα of a clause C ∈ S, the substitution α is the
simultaneous mgu of all the negative literals in C with positive selected literals on the trail.
Since S is finite, there are finitely many candidates for main premise. Therefore, infinitely
many SGGS-extensions can occur only if there are infinitely many distinct sets of side
premises in Θ involving atoms of increasing depth. Since the selected literals in the side
premises are positive, this means that in the derivation Θ infinitely many distinct C+

j ⊆ C j

appear on the trail. By Lemma 3, for all (ground) clauses C j on the trail during Θ there
exists a positive (ground) clause C ′ ∈ R∗H (S) such that C+

j ⊆ C ′. Therefore, R∗H (S) must
be infinite. ��

Thedual variants ofLemma3andTheorem5hold for SGGS-derivationswith I+ andnega-
tive hyperresolution. Since thepositive variable dominated (PVD) [25, 34] andboundeddepth
increase (BDI) [52] fragments are positively ground-preserving, and positive hyperresolution
decides them, so does SGGS.5

Corollary 1 Given a PVD or BDI input set S, every fair SGGS-derivation with I− as initial
interpretation halts, is a refutation if S is unsatisfiable, and constructs a model of S if S is
satisfiable.

5 SGGS Decides Three New Fragments of First-Order Logic

In this section we introduce three new decidable fragments of first-order logic, by show-
ing that SGGS decides them. The first one is the restrained fragment, which combines
ground-preservigness with an ordering-based property. The other two are the sort-restrained
fragment, which generalizes the stratified and restrained fragments, and the sort-refined-PVD
fragment, which generalizes the stratified and PVD fragments.

5 For PVD also the finite basis approach applies implying the small model property [17].
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5.1 SGGS Decides the Restrained Fragments

The following example gives the intuition for restrained clauses.

Example 13 Consider the set S = {(i) P(s10(0), s9(0)), (i i) ¬P(s(s(x)), y) ∨ P(x, s(y))},
which is positively ground-preserving. Let I− be the initial interpretation. SGGS-extension
puts P(10, 9) on the trail, abbreviating sn(0) as n. This stirs a series of SGGS-extensions
aiming at adding to I [Γ ] the positive ground literals needed to satisfy (i i) while satisfying
(i). Each SGGS-extension unifies the negative literal in (i i) with a selected positive ground
literal in Γ , so that new literals in added clauses are positive:

Γ0 : ε � Γ1 : [P(10, 9)]
� Γ2 : [P(10, 9)], ¬P(10, 9) ∨ [P(8, 10)]
� Γ3 : [P(10, 9)], ¬P(10, 9) ∨ [P(8, 10)], ¬P(8, 10) ∨ [P(6, 11)].

After adding¬P(6,11) ∨ [P(4,12)],¬P(4,12) ∨ [P(2,13)], and¬P(2,13) ∨ [P(0,14)], SGGS
halts with a model of S. The size of positive literals decreases as the derivation progresses,
reflecting the fact that P(s(s(x)), y) � P(x, s(y)) in clause (i i), for � any KBO or any LPO
with P �p s in the precedence.

This observation suggests to strengthen ground-preservingness with an ordering-based
condition in order to get a finite basis.

Definition 5 (Restraining quasi-ordering)Aquasi-ordering� on terms and atoms is restrain-
ing, if (i) it is stable, (ii) the strict ordering � = � \ � is well-founded, and (iii) the
equivalence ≈ = � ∩ � has finite equivalence classes.

Condition (i) implies that � and ≈ are also stable. Let � be a restraining quasi-ordering.

Definition 6 (Restrained) A clause C is (strictly) positively restrained if it is positively
ground-preserving, and for all non-ground literals L ∈ C+ there exists a literal M ∈ C−
such that at(M) � at(L) (at(M) � at(L)). A set of clauses is positively restrained if all its
clauses are.

Negatively restrained clauses and clause sets are defined dually, and a set of clauses is
restrained if it is positively or negatively restrained.The set ofExample 13 is strictly positively
restrained. The next example clarifies why a quasi-ordering is used.

Example 14 Problem PLA030-1 in TPTP is neither stratified, nor monadic, nor guarded. It
includes a clause differ(x, y)∨¬differ(y, x) that cannot be strictly restrained. Let�acrpo be
an AC-compatible [73] RPOwith differ as an AC-symbol, where AC abbreviates associative-
commutative. The quasi-ordering�acrpo, built from�acrpo and the AC-equivalence≈AC that
hasfinite equivalence classes, satisfiesdiffer(x, y) ≈AC differ(y, x)hencediffer(x, y) �acrpo
differ(y, x), so that PLA030-1 is negatively restrained.

Definition 7 (Basis for a restrained set) Given a restrained set S of clauses with Herbrand
base A, let AS be the set of ground atoms occurring in S. Then the basis for S is A�

S =
{L : L ∈ A, ∃M ∈ AS such that M � L}.
In words, A�

S contains all the ground atoms upper bounded by those occurring in clauses
in S. By Conditions (ii) and (iii) in Definition 5, A�

S is a finite basis. Since restrained sets
are ground-preserving, the notion of suitable initial interpretation is the same as for ground-
preserving sets.

123



SGGS Reasoning: Decision Procedures and Koala Page 25 of 42 6

Lemma 4 If the input set S is restrained, every fair SGGS-derivation with suitable initial
interpretation is in the finite basis A�

S .

Proof We consider S positively ground-preserving and I− (for the dual case one exchanges
the signs). Since the set is restrained hence ground-preserving, the derivation is ground by
Lemma 2 (†). The proof is by induction on the length k of the derivation, and it follows the
same pattern as that of Lemma 2. Let Γ � Γ ′ be the (k+1)-th step. By induction hypothesis,
Γ is in A�

S . If Γ � Γ ′ is an SGGS-resolution step, it is a ground resolution step which
does not generate new atoms, and also Γ ′ is in A�

S . If Γ � Γ ′ is an SGGS-extension step,
it adds an instance Cα of a clause C ∈ S, where α is the simultaneous mgu of all I−-true
(i.e., negative) literals ¬L1, . . . ,¬Ln in C with as many I−-false (i.e., positive) selected
literals M1, . . . , Mn in Γ . The literals M1, . . . , Mn are ground by (†), and by induction
hypothesis they are in A�

S . We have to show that at(Cα) ⊆ A�
S . For the negative literals

¬L1α, . . . ,¬Lnα we have Liα = Miα = Mi ∈ A�
S . Let L be a literal inC+. If L is ground,

then Lα = L ∈ AS ⊆ A�
S . If L is not ground, by positive restrainedness there exists a ¬Li ,

1≤ i ≤ n, such that Li � L . By stability, Liα � Lα. Since for all i , 1≤ i ≤ n, Mi ∈ A�
S and

Mi = Miα = Liα � Lα, we have Lα ∈ A�
S . ��

Therefore, Theorems 1 and 2 yield decidability and the small model property.

Theorem 6 Given a restrained input set S, every fair SGGS-derivation with suitable initial
interpretation halts, is a refutation if S is unsatisfiable, and constructs a model of S if S is
satisfiable.

Corollary 2 A restrained satisfiable set S of clauses has a model of cardinality |H(A�
S )| + 1

that can be extracted from the limit of any fair SGGS-derivation with input S and suitable
initial interpretation.

Example 15 The clause set of Example 13 is a subset of the following satisfiable clause set
S from problem PUZ054-1 in TPTP:

P(s10(0), s9(0)), ¬P(s(s(x)), y) ∨ P(x, s(y)), ¬P(x, s(s(y))) ∨ P(x, s(y)),

¬P(s(0), 0), ¬P(s(x), s(y)) ∨ P(s(x), y).

This set, which is neither EPR nor FO2 nor monadic, can be shown strictly positively
restrained by any LPO with P �p s in the precedence or by any KBO. Let � be
a KBO with empty precedence, w(P) = 0, and w(s) = w(0) = w0 = 1. AS is
{P(s10(0), s9(0)), P(s(0), 0)} and its largest atom has weight w(P(s10(0), s9(0))) = 21.A�

S
cannot contain an atom L = P(sn(0), sm(0)), with n ≥ 0 and m ≥ 0, if n > 19 or m > 19,
because otherwise w(L) > w(P(s10(0), s9(0))). Therefore, H(A�

S ) = {si (0) : 0≤i≤19}
and S has a model of cardinality 21 by Corollary 2.

Sign-based semantic guidance makes SGGS well suited for the restrained fragments. We see
next that this holds also for sign-based resolution strategies.

5.2 Sign-Based Resolution Strategies Decide the Restrained Fragments

We consider PO-resolution and the positively restrained fragment. The results will then
be extended to other positive strategies and to the dual case. Let Res+>(S) be the set of
PO-resolvents generated from clauses in S, where > is the CSO on literals assumed by
PO-resolution. Then, R0

>(S) = S, Rk+1
> (S) = Rk

>(S) ∪ Res+>(Rk
>(S)), and R∗>(S) =⋃

k≥0 Rk
>(S).
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Lemma 5 If S is positively restrained, then for all C ∈ R∗>(S), for all L ∈ C+ either L ∈ A�
S

or at(M) � at(L) for some M ∈ C−.

Proof The proof is by induction on the stage k of the construction of R∗>(S). For k=0, the
clauses in R0

>(S) = S satisfy the claimbyDefinitions 6 and 7. The induction hypothesis is that
all clauses in Rk

>(S) satisfy the claim. For the inductive case, let (C ∨ D)σ ∈ Res+>(Rk
>(S))

be a PO-resolvent with mgu σ from parents ¬L ∨ C and L ′ ∨ D in Rk
>(S), where L ′ ∨ D

is a positive clause. By induction hypothesis at(L ′ ∨ D) ⊆ A�
S (†), which means L ′ ∨ D is

ground, (L ′ ∨ D)σ = L ′ ∨ D, and at(Dσ) ⊆ A�
S . For the positive literals in Cσ , let Qσ

be one of them, so Q ∈ C+. By induction hypothesis, either (i) Q ∈ A�
S , or (ii) M � Q for

some negative literal ¬M in ¬L ∨ C . In case (i), Q is ground, Qσ = Q, and Qσ ∈ A�
S .

In case (ii), if ¬M is one of the literals in C , then ¬Mσ ∈ Cσ , and Mσ � Qσ holds
by stability, so that the claim follows. Otherwise, ¬M is the resolved-upon literal ¬L with
Lσ = L ′σ . Thus, L = M � Q, which implies Lσ � Qσ by stability. By (†), L ′ ∈ A�

S ,
L ′ is ground, and L ′σ = L ′. Since L ′ ∈ A�

S and L ′ = L ′σ = Lσ � Qσ , it follows that
Qσ ∈ A�

S by Definition 7. ��
Thus, a positive clause C ∈ R∗>(S) is ground, as all its literals are in A�

S .

Theorem 7 Given a positively restrained input set S, every fair PO-resolution derivation
terminates and is a refutation if S is unsatisfiable.

Proof We prove that if S is positively restrained then R∗>(S) is finite, which guarantees termi-
nation. The second part of the claim follows by refutational completeness of PO-resolution
[42]. Consider any PO-resolvent (C ∨ D)σ ∈ R∗>(S) from parents ¬L ∨C and L ′ ∨ D with
mgu σ . Since L ′ ∨ D is positive, (C ∨ D)σ has strictly fewer negative literals than ¬L ∨C .
By way of contradiction, suppose that R∗>(S) is infinite. Since the number of negative literals
in PO-resolvents decreases at every resolution step, an infinite R∗>(S) must contain infinitely
many positive clauses. By Lemma 5, all positive clauses in R∗>(S) are ground clauses made
of atoms from A�

S . Since A�
S is finite, and repeated literals in ground clauses disappear by

merging, only finitely many clauses can be built from A�
S , which contradicts R∗>(S) being

infinite. ��
These results6 extend to positive resolution, since the >-maximality of L ′σ in (L ′ ∨ D)σ

is not used in the proofs, and to positive hyperresolution, for which the proof of Theorem 7
is trivial, since only positive clauses get generated.

Corollary 3 PO-resolution, positive hyperresolution, and positive resolution decide the
positively restrained fragment.

Thus, Theorem 6 follows also from Theorem 5 and Corollary 3. Dually, negative resolution
and negative hyperresolution decide the negatively restrained fragment. The next exam-
ple shows that SGGS can be exponentially more efficient than saturation-based resolution
strategies because it is model-based.

Example 16 Consider the following parametric clause set Sn consisting of n + 1 clauses,
using i+1-ary predicates Pi and constants ci , for all i , 0≤i≤n:
6 Lemma 5 and Theorem 7 were proved for ordered resolution assuming > ensures that L ′ ∨ D is positive
[17, Lem. 5 and Thm. 6]; it is better to work with PO-resolution.
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P0(c0) ∨ P0(c1) ∨ · · · ∨ P0(cn) (C0),

¬P0(x1) ∨ P1(x1, c0) ∨ P1(x1, c1) ∨ · · · ∨ P1(x1, cn) (C1),

¬P1(x1, x2) ∨ P2(x1, x2, c0) ∨ · · · ∨ P2(x1, x2, cn) (C2),

. . . . . .

¬Pn−1(x1, . . . , xn) ∨ Pn(x1, . . . , xn, c0) ∨ · · · ∨ Pn(x1, . . . , xn, cn) (Cn).

The set Sn is positively restrained by an LPO with precedence P0 > · · · > Pn > ci for all
i , 0≤i≤n. SGGS with I− detects satisfiability after n + 1 SGGS-extension steps, selecting
for instance the leftmost positive literal in each extension clause, so that the model where
P0(c0), P1(c0, c0), . . . , Pn(c0, . . . , c0) are true and all other positive literals are false is pro-
duced. A saturation by PO-resolution or positive hyperresolution produces exponentially
many clauses, because for all i , 0≤i≤n, all n positive literals in Ci unify with the negative
literal in Ci+1, generating ni+1 positive clauses, so that the total clause count is given by∑n

i=0 n
i+1 or equivalently

∑n+1
k=1 n

k .

5.3 Sort-RefinedVersions of the Restrained and PVD Fragments

As observed for the stratified fragment, where all sorts are acyclic, such sorts are harmless
for termination. In this section we consider a signature with both cyclic and acyclic sorts.
Since the key point for termination is the existence of a finite basis, we reason in terms of
whether there are finitely or infinitely many ground terms of a given sort.

Definition 8 (Infinite domain) A sort has infinite domain if there are infinitely many ground
terms of that sort, and it has finite domain otherwise. A variable has infinite domain if its sort
does, and finite otherwise.

Clearly, a cyclic sort has infinite domain. For example, if the signature contains a constant
a : s and a function f : s → s, sort s has infinite domain, as the infinitely many terms fn(a),
for all n ≥ 0, have sort s. If the signature also contains a function g : s → s′, also s′ has
infinite domain, as the infinitely many terms g( f n(a)), for all n ≥ 0, have sort s′. In general,
a sort s has infinite domain if and only if there exists a path from a cyclic sort to s in the
sort dependency graph. A term, or atom, or literal has infinitely many ground instances if
and only if it contains a variable with infinite domain. The idea is to apply the restrictions
of the restrained, or PVD [34], fragments, respectively, only to the variables of infinite
domain and the literals where such variables occur. The result will be the sort-restrained and
sort-refined-PVD fragments. We begin by making ground-preservingness relative to a sort:

Definition 9 (Ground-preserving for a sort) A clause C is positively ground-preserving for
sort s if Vars(C) ⊆ Vars(C−), and negatively ground-preserving for sort s if Vars(C) ⊆
Vars(C+). A set of clauses is positively/negatively ground-preserving for sort s if all its
clauses are.

Both sort-restrained and sort-refined-PVD fragments will require that clauses are ground-
preserving for all sorts of infinite domain.

5.3.1 SGGS Decides the Sort-restrained Fragments

The next example gives the intuition for the sort-restrained fragment.
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Example 17 Consider the following set S of clauses with sorts {s1, s2}:
P(x, f(b)) (i) ¬Q(x, a) ∨ Q(a, x) (i i) ¬P(x, f(y)) ∨ Q(x, x) ∨ P(x, y) (i i i)

where a : s1, b : s2, f : s2 → s2, P ⊆ s1× s2, andQ ⊆ s1× s1. This clause set is not restrained
because it is not ground-preserving since the positive clause (i) is not ground, and it is not
stratified because function symbol f induces a cycle over sort s2. However, S is positively
ground-preserving for sort s2: there are no variables of sort s2 in positive clause (i), and
the only variable of sort s2 in a mixed clause, namely y in (i i i), occurs in negative literal
¬P(x, f(y)). Moreover, P(x, y) in clause (i i i) is dominated by ¬P(x, f(y)) in the sense of
positive restrainedness, since P(x, f(y)) � P(x, y) for � any LPO or KBO. Indeed, SGGS
using I− terminates on input S:

ε � [P(x, f(b))] extend (i)

� [P(x, f(b))], ¬P(x, f(b)) ∨ Q(x, x) ∨ [P(x,b)] extend (i i i)

In the second extension clause either positive literal can be selected with either choice leading
to termination.

Let � be a restraining quasi-ordering with the subterm property.

Definition 10 (Sort-Restrained) A clause C is positively sort-restrained if it is positively
ground-preserving for all sorts with infinite domain, and for all literals L ∈ C+ such that
Gr(L) is infinite there exists a literal M ∈ C− such that at(M) � at(L). A set is positively
sort-restrained if all its clauses are.

Negatively sort-restrained clauses and clause sets are defined dually, and a set of clauses
is sort-restrained if it is positively or negatively sort-restrained. The set of Example 17 is
positively sort-restrained.

Let a set of atoms L be (i) closed with respect to instantiation, or instantiation-closed for
short, if Lσ ∈ L whenever L ∈ L; and (ii) closed under �, or �-closed for short, if M ∈ L
whenever M � L for some L ∈ L.

Definition 11 (Basis for a sort-restrained set) Given a sort-restrained set S of clauses with
set of sorts Σ , let L↓Σ be the set of all atoms L such that L occurs in a clause of S and Gr(L)

is finite. Let L�Σ be the smallest instantiation-closed and�-closed superset of L↓Σ . The basis
for S is A�

S,Σ = Gr(L�Σ), that is, the set of the ground instances of the atoms in L�Σ .

Note that A�
S,Σ ⊆ L�Σ because L�Σ is instantiation-closed.

Example 18 For the clause set of Example 17 let � be the reflexive closure of an LPO
with empty precedence. L↓Σ is {P(x, f(b)),Q(x, a),Q(a, x),Q(x, x)}. L�Σ is the union of

four sets: L↓Σ , the singleton set {P(x,b)} by �-closure since P(x,b) ≺ P(x, f(b)), the set
{P(a, f(b)),Q(a, a), P(a,b)} by instantiation-closure, and the set of all the variants of these
atoms (i.e., all the variants of P(x, f(b)), Q(x, a), Q(a, x), Q(x, x), and P(x,b)). ThenA�

S,Σ

is the set of the ground instances of the atoms in L�Σ , that is, {P(a, f(b)), Q(a, a), P(a,b)}.
The above definition of closure lets instantiation introduce variables, but this is not a

problem for the finiteness ofA�
S,Σ for the following reason: a substitution replaces a variable

with finite domain by a term of the same sort, hence with finite domain, and such a term
cannot contain a variable with infinite domain, because a term of a sort with finite domain
cannot have a subterm of a sort with infinite domain.
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Lemma 6 For all sort-restrained sets S of clauses, the basis A�
S,Σ is finite.

Proof In order to show that A�
S,Σ = Gr(L�Σ) is finite, it suffices to show that all variables

occurring in atoms in L�Σ have finite domain. The set L↓Σ satisfies this property by definition.
The closure with respect to instantiation introduces no variable with infinite domain by the
above observation. The �-closure does not introduce variables, because L � M implies
Var(M) ⊆ Var(L) by the stability and subterm properties of the restraining quasi-ordering.

��
Similar to the ground-preserving and restrained cases, an initial interpretation I is suitable

for a sort-restrained set S if either I is I− and S is positively sort-restrained, or I is I+ and
S is negatively sort-restrained.

Lemma 7 Given a sort-restrained input set S, every fair SGGS-derivationwith suitable initial
interpretation is in A�

S,Σ .

Proof We consider S positively sort-restrained and I− (for the dual case one flips the signs).
We show that the derivation is in A�

S,Σ = Gr(L�Σ) by showing that all atoms of all clauses
appearing on the trail during the derivation are inL�Σ . The proof is by induction on the length
k of Θ . The base case (k = 0) is vacuously true. The induction hypothesis is that all atoms
of all clauses on a trail Γ produced by a derivation of length k are in L�Σ . Let Γ � Γ ′ be
the (k+1)-th step. If Γ � Γ ′ is a splitting step, the atoms in the split clause are in L�Σ by
induction hypothesis, and so are those in the instances generated by splitting, since L�Σ is
closed with respect to instantiation. If Γ � Γ ′ is an SGGS-resolution step, the atoms in
the parents are in L�Σ by induction hypothesis, and so are those in the SGGS-resolvent, by
the closure of L�Σ with respect to instantiation. If Γ � Γ ′ is an SGGS-extension step, it
adds an instance Cα of a clause C ∈ S, where α is the simultaneous mgu of all I−-true
(i.e., negative) literals ¬L1, . . . ,¬Ln in C with as many I−-false (i.e., positive) selected
literals M1, . . . , Mn in Γ . For all i , 1 ≤ i ≤ n, Mi ∈ L�Σ by induction hypothesis, and
Liα = Miα ∈ L�Σ by instantiation closure. For an L ∈ C+, there are two cases. If Gr(L) is
finite, L ∈ L↓Σ ⊆ L�Σ by Definition 11, and Lα ∈ L�Σ by instantiation closure. Otherwise, by
positive sort-restrainedness there exists a ¬Li , for some i , 1≤ i ≤ n, such that L � Li . By
stability of �, Lα � Liα. It follows that Lα � Liα = Miα ∈ L�Σ because L�Σ is �-closed.

��
Since the basis A�

S,Σ is finite, decidability and the small model property follow
by Theorems 1 and 2.

Theorem 8 Given a sort-restrained input set S, every fair SGGS-derivation with suitable
initial interpretation halts, is a refutation if S is unsatisfiable, and constructs a model of S if
S is satisfiable.

Corollary 4 A sort-restrained satisfiable set S of clauses has a model of cardinality at most
|H(A�

S,Σ )| + 1 that can be extracted from the limit of any fair SGGS-derivation with input
S and suitable initial interpretation.

While sign-based resolution strategies decide the restrained fragments (cf. Sect. 5.2), they
do not decide the sort-restrained ones, because they do not decide the stratified fragment
(cf. Example 3), which is contained in each sort-restrained fragment as the special case
where all sorts have finite domain.
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5.3.2 SGGS Decides the Sort-refined-PVD Class

We recall the PVD property [25, 34] in order to apply it to the variables of infinite domain. For
a clause C , let depthx (C) be the maximum occurrence depth in C of a variable x ∈ Var(C).

Definition 12 (PVD fragment) Aset S of clauses is in thePVDfragment if every clauseC ∈ S
is positively ground-preserving and ∀x ∈ Var(C+) it holds that depthx (C

+) ≤ depthx (C
−).

The next example captures the intuition for the sort-refined-PVD fragment.

Example 19 Assume a signature with sorts {s1, s2, s3, s4} and symbols a : s1, b : s2, c : s3,
f : s1 → s1, g : s3 → s2, h : s1 × s2 → s4, P ⊆ s1 × s2, Q ⊆ s4, and R ⊆ s1 × s1, so that the
sort-dependency graph is as follows:

s1 s4 s2 s3

Sort s1 is cyclic, and both s1 and s4 have infinite domain, while s2 and s3 have finite domain.
Consider the set S made of the following clauses:

P(f(a), y) (i) ¬P(x, y) ∨ P(x,g(z)) (i i)

¬P(f(x), y) ∨ Q(h(x, y)) (i i i) ¬P(x, z) ∨ ¬P(y, z) ∨ R(x, y) (iv)

This set is neither stratified nor ground-preserving, hence neither restrained nor PVD.Neither
it is sort-restrained, because the positive literal R(x, y) in clause (iv) involves sort s1, but no
negative literal in (iv) can dominate R(x, y) in a restraining quasi-ordering, since no negative
literal in (iv) contains both x and y. However, S is positively ground-preserving for s1 and s4,
and all variables of sorts with infinite domain that occur in a positive literal also occur in a
negative literal of the same clause. Furthermore, such variables occur in the negative literals
at greater or equal depth. In other words, S satisfies the PVD property restricted to sorts with
infinite domain.

Definition 13 (Sort-refined-PVD) A clause C is sort-refined-PVD if it is positively ground-
preserving for all sorts with infinite domain, and for all variables x ∈ Var(C+) of infinite
domain it holds that depthx (C

+) ≤ depthx (C
−). A set of clauses is sort-refined-PVD if all

its clauses are.

The set of Example 19 is sort-refined-PVD. We apply the finite basis approach to show
that SGGS decides also this fragment. While the essence of PVD is to control the depth
of variable occurrences, for sort-refined-PVD the crux is to exclude variables of infinite
domain and to ensure that the occurrence depth of terms whose sort has infinite domain
is upper bounded. Let d be the maximum depth of an atom in a set S of clauses, or d =
max{depth(L) : L is an atom in clause C and C ∈ S}.
Definition 14 (Basis for a sort-refined-PVD set) Given a sort-refined-PVD set S of clauses
with set of sorts Σ , let Ld

S,Σ be the set of all atoms where all variables have finite domain
and all subterms of a sort with infinite domain have occurrence depth at most d . Then the
basis for S is Ad

S,Σ = Gr(Ld
S,Σ ).

Note that Ld
S,Σ is instantiation-closed, because instantiation replaces variables with finite

domain with terms whose sort has finite domain, so that no subterm whose sort has infinite
domain can be introduced. It follows that Ad

S,Σ ⊆ Ld
S,Σ .

Lemma 8 For all sort-refined-PVD sets S of clauses, the basis Ad
S,Σ is finite.
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Proof We show that the depth of any ground atom Lσ ∈ Ad
S,Σ for L ∈ Ld

S,Σ is upper
bounded. The occurrence depth of any subterm of Lσ whose sort has finite domain is trivially
upper bounded. By Definition 14 the occurrence depth of any subterm of L whose sort has
infinite domain is upper bounded by d , and L does not contain variables of infinite domain.
Thus, the substitution σ cannot introduce subterms of infinite domain and also the occurrence
depth of any subterm of Lσ whose sort has infinite domain is upper bounded by d . As there
are only finitely many ground atoms of bounded depth, Ad

S,Σ is finite. ��

Example 20 In Example 19 the maximum depth of an atom in S is d = 2. Thus, Ad
S,Σ is the

set of all ground atoms where all subterms of sort s1 or s4 occur at depth at most 2:

P(a,b), P(f(a),b), P(a,g(c)), P(f(a),g(c)), Q(h(a,b)),

Q(h(a,g(c))), R(a, a), R(f(a), a), R(a, f(a)), R(f(a), f(a))

For instance, Q(h(f(a),b)) /∈ Ad
S,Σ as the subterm a occurs at depth 3.

Lemma 9 Given a sort-refined-PVD input set S, every fair SGGS-derivation with I− is in
the finite basis Ad

S,Σ .

Proof We show that the derivation is in Ad
S,Σ = Gr(Ld

S,Σ ) by showing that all atoms of all

clauses appearing on the trail during the derivation are in Ld
S,Σ . As Ld

S,Σ is instantiation-
closed, the proof is the same as that of Lemma 7 except for the case of SGGS-extension.
Consider an SGGS-extension step that adds an instance Cα of a clause C ∈ S, where α is
the simultaneous mgu of all I−-true (i.e., negative) literals¬L1, . . . ,¬Ln inC with as many
I−-false (i.e., positive) selected literals M1, . . . , Mn in Γ . For all i , 1 ≤ i ≤ n, Mi ∈ Ld

S,Σ

by induction hypothesis, and Liα = Miα ∈ Ld
S,Σ by instantiation closure. For an L ∈ C+,

let t be a subterm of Lα at position p (i.e., t = Lα|p) whose sort has infinite domain. We
show that for all such terms t , it holds that t is not a variable and that |p| ≤ d . We distinguish
two cases depending on whether p is a position in L or is introduced by α.

• If p is a position in L then |p| ≤ d because L ∈ C and C ∈ S. For the other part, by
way of contradiction, suppose that t is a variable. Then also L|p must be a variable x of
infinite domain such that xα = t . By Definition 13, x occurs in some Li , 1≤ i ≤ n, so
xα occurs in Liα = Miα. This gives a contradiction, because Mi ∈ Ld

S,Σ , Miα ∈ Ld
S,Σ ,

and hence xα = t cannot be a variable of infinite domain by Definition 14.
• If p is introduced by α, there must be two positions q and r and a variable y such that p =

qr , L|q = y, yα|r = t , and also ymust have infinite domain. ByDefinition 13, variable y
occurs in some Li , 1≤ i ≤ n, and depthy(L) ≤ depthy(Li ). Hence there is some position
o in Li such that Li |o = y and |q| ≤ |o|. It follows that Liα|or = Miα|or = t . Since
Mi ∈ Ld

S,Σ and Miα ∈ Ld
S,Σ , term t cannot be a variable. Moreover, by Definition 14

terms of sort with infinite domain occur at depth at most d , so that |or | ≤ d . From
|q| ≤ |o| it follows that |p| = |qr | ≤ |or | ≤ d , which proves the claim.

��
By Lemmas 8 and 9, Theorems 1 and 2 apply yielding the following results.

Theorem 9 Given a sort-refined-PVD input set S, every fair SGGS-derivation with I− as
initial interpretation halts, is a refutation if S is unsatisfiable, and constructs a model of S if
S is satisfiable.

123



6 Page 32 of 42 M. P. Bonacina, S. Winkler

Corollary 5 A sort-refined-PVD satisfiable set S of clauses has a model of cardinality at most
|H(Ad

S,Σ )| + 1 that can be extracted from the limit of any fair SGGS-derivation with I− as
initial interpretation and input set S.

Hyperresolution decides the PVD class [25, 34], but it does not decide sort-refined-PVD,
because it does not decide the stratified fragment (cf. Example 3), which is contained in
sort-refined-PVD as the special case where all sorts have finite domain.

6 Testing for Membership, the Koala Prover, and the Experiments

This section presents first an approach to determine whether a set of clauses is restrained, and
then the experiments. We show that a set S of clauses is positively restrained, if an associated
rewriting relation terminates and defines a restraining quasi-ordering. The case for negatively
restrained sets is dual. Thanks to this reduction, one can have a tool that extracts candidate
rewrite systems from a set of clauses and invokes a termination tool to test whether the
rewriting relation terminates. Our tool tries both TTT2 [48] and AProVE [40] to find restrained
and sort-restrained problems, and it also detects whether a problem belongs to any of the
other decidable classes considered in this article.

In the experiments, we applied this tool to classify the problems in the TPTP library [77].
This allows us to assess the relevance of the new decidable classes and the power of SGGS
as a decision procedure: it turns out that SGGS can decide 65% of the decidable problems
without interpreted symbols (e.g., equality)7 in TPTP 7.4.0. Then, we present Koala, the
first SGGS-based theorem prover. We tested Koala on all the problems without interpreted
symbols in TPTP 7.4.0. We analyze these experiments, report statistics, and compare Koala
with several state-of-the-art reasoners.

6.1 Discovering Restrained Sets

In order to show that a clause set S is positively restrained, one needs to find a restraining
quasi-ordering (cf. Definitions 5 and 6). Since the strict part of a restraining quasi-ordering
is a well-founded ordering, the first intuition is to extract from S a rewrite system RS on
atoms such that the rewrite relation→RS is terminating, so that its transitive closure→+

RS
is a well-founded ordering. Then the transitive and reflexive closure →∗

RS
is a restraining

quasi-ordering whose equivalence relation is identity.
If the problem requires a quasi-ordering whose equivalence is not identity as in Exam-

ple 14, one needs to extract from S a pair (RS, ES), whereRS is a rewrite system and ES is a
set of equations. Then the rewrite relation is the rewriting modulo relation→RS/ES , which
is defined by↔∗

ES
◦ →RS ◦ ↔∗

ES
. The crucial point is that→RS/ES is terminating, so that

its transitive and reflexive closure→∗
RS/ES

is a restraining quasi-ordering.

Definition 15 (Restraining system) Given a set S of clauses, a system (RS, ES) is positively
restraining for S if for all clauses C ∈ S, for all non-ground literals L ∈ C+, there exists a
literal ¬M ∈ C− such that (M → L) ∈ RS or (M $ L) ∈ ES .

Often ES contains permutative equations, such as differ(x, y) $ differ(y, x) in Example 14.
For Example 15, a possible choice is RS = {P(s(s(x)), y) → P(x, s(y)), P(x, s(s(y))) →
P(x, s(y)), P(s(x), s(y)) → P(s(x), y)} and ES = ∅.
7 SGGS and Koala do not have a built-in treatment of equality.
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Table 1 Number of problems found decidable according to different criteria

ground: 82 EPR: 1059 stratified: 1260 Ackermann: 102

monadic: 750 FO2: 932 guarded: 569 PVD: 347

restrained: 413 sort-restrained: 1398 sort-refined-PVD: 1304

Theorem 10 Given a set S of clauses, if there exists a positively restraining system (RS, ES)
for S such that (i)→RS/ES is terminating, (ii) for all t $ u in ES, Var(t) = Var(u), and (iii)
↔∗

ES
has finite equivalence classes, then S is positively restrained, and S is strictly positively

restrained if ES = ∅.

Proof We show that S is positively ground-preserving, that is, for all clauses C ∈ S, it holds
thatVar(C) ⊆ Var(C−). Suppose thatC has a non-ground literal L ∈ C+. ByDefinition 15,
there exists a rule t → u in RS or an equation t $ u in ES where t = M and u = L for
some literal¬M ∈ C−. In the first case, Var(u) ⊆ Var(t) by hypothesis (i), since otherwise
→RS , and hence→RS/ES , would not be terminating. In the second case, Var(u) = Var(t)
by hypothesis (ii). It follows that Var(C+) ⊆ Var(C−) and hence Var(C) ⊆ Var(C−).
To complete the proof, it suffices to check that →∗

RS/ES
is a restraining quasi-ordering.

Indeed,→∗
RS/ES

is stable, its strict part→+
RS/ES

is well-founded by hypothesis (i), and the
equivalence classes of ↔∗

ES
are finite by hypothesis (iii). If ES = ∅, the restraining quasi-

ordering is→∗
RS

. Indeed,→∗
RS

is stable, its strict part→+
RS

iswell-foundedbyhypothesis (i),
and the equivalence classes of→∗

RS
∩ ∗

RS
← are finite, because→∗

RS
∩ ∗

RS
← is identity. ��

6.2 Classifying Decidable Problems for the Experiments

The TPTP 7.4.0 library has over 17,000 first-order problems, 4005 of which do not have
interpreted symbols (e.g., equality, arithmetic). If a problem is not in clausal form, our testing
tool transforms it into clausal form. Given a set of clauses, the tool extracts all the candidates
for restraining rewrite systems. Then the tool invokes TTT2 and AProVE to determine whether
at least a candidate is a restraining rewrite systems satisfying the termination conditions for
a restrained set. For instance, problem HWV036-2 (cf. Example 1) is a set of axioms which
is combined with sets of ground clauses in several other TPTP problems (e.g., HWV008-
2.002 adds 23 ground clauses). We found a terminating positively restraining rewrite system
for HWV008-2.002, so that both this problem andHWV036-2 are strictly positively restrained.

Both the number of candidate rewrite systems and their size grow exponentially with the
number of literals in the clause set. Thus, 555 problems had to be excluded, because they
have more than 500 clauses and the candidate rewrite systems turned out to be too large
to handle. Also, for each clause set, TTT2 and AProVE were applied to at most 100 rewrite
systems, with a timeout of 10 sec each. Membership in the already known decidable classes
can also be determined automatically. For example, stratified input problems are recognized
by computing the sort dependency graph and testing it for acyclicity [47]. This test is applied
also to identify sort-restrained and sort-refined-PVD problems.

Table 1 shows how many of the remaining 3450 problems belong to the various (non-
disjoint) decidable classes. Initially, 377 problems were found restrained. For those still
undetermined, we tested whether it is sufficient to flip the sign of all literals with a certain
predicate to get a restrained problem,which succeeded in 36 cases, for a total of 413 restrained
problems. Overall, 2137 of the 3450 problems are decidable according to at least one of the
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criteria, and 1399 belong to at least one of the SGGS-decidable classes (i.e., ground, EPR,
stratified, PVD, restrained, sort-restrained, and sort-refined-PVD), so that SGGS can decide
65% of the available decidable problems.

We analyze next how many new decidable problems are discovered thanks to the classes
introduced in this paper. Of the 413 restrained problems in Table 1, 332 are positively
restrained, 202 negatively restrained, and 121 are both; 74 are ground, 266 are EPR, 277
are stratified, 89 are Ackermann, 169 are monadic, 204 are FO2, 209 are guarded, and 232
are PVD, but 77 problems fall in no other decidable class, and therefore, to the best of our
knowledge, they are found to be decidable for the first time.

Of the 1398 sort-restrained problems in Table 1, 82 are ground, 1059 are EPR, 1260 are
stratified, 93 are Ackermann, 406 are monadic, 534 are FO2, 569 are guarded, 346 are PVD,
413 are restrained, and 20 belong to no other decidable class. Adding these 20 to the above
77 gives 97 new decidable problems. The existence of problems that are sort-restrained, but
neither stratified nor restrained, shows that the generalization conquers more problems.

Of the 1304 sort-refined-PVD problems in Table 1, 82 are ground, 1059 are EPR, 1260
are stratified, 93 are Ackermann, 404 are monadic, 515 are FO2, 569 are guarded, and 347
are PVD. Since 26 sort-refined-PVD problems are neither stratified nor PVD, also this gen-
eralization is useful. However, the sort-refined-PVD class did not unveil previously unknown
decidable problems.

The averageTPTP rating of the problems in the newdecidable classes is low,8 whichmeans
that most provers can solve them. Nonetheless, the group of restrained problems includes
hard ones such as instances of the binary counter problem in Example 5 (MSC015-1.n), and
Rubik’s cube problems (e.g., PUZ052-1). For example, MSC015-1.030 is restrained and has
rating 1.00, that is, no theorem prover could solve it so far in the time allotted in competitions.

6.3 The Koala Prover and the Experiments

Koala is a new prototype theorem prover written in OCaml and it is the first implementation
of SGGS.9 In Koala, the trail is implemented as a list, with constraints maintained in standard
form, and selected literals stored in a discrimination tree to compute substitutions efficiently.
Koala computes the sort dependency graph, because it facilitates testing sorted constraints
for satisfiability. Thus, Koala can detect stratified problems on its own. The search plans in
Koala are fair, so that all derivations are fair.

In the experiments,10 the initial interpretation was I− by default and I+ for positively
ground-preserving problems. The time-out was 300 sec of wall-clock time. All experiments
were run single-threaded on a 12-core Intel i7-5930K 3.50GHz machine with 32GB of main
memory. Table 2 reports how many problems Koala showed satisfiable or unsatisfiable along
with statistics and the average running time. Considering all problems whose satisfiability
status is known, Koala succeeded on 64% of the satisfiable problems, and on 38% of the
unsatisfiable problems, with an overall success rate of 43%. Considering the problems in
SGGS-decidable fragments, Koala found 360 satisfiable sets and 726 unsatisfiable sets, solv-
ing 1086 problems out of 1399 (78% success rate). Koala solved 87 of the 97 problems that
were discovered decidable for the first time (90% success rate). Specifically, it solved 69 of

8 The average TPTP ratings of the discovered restrained, sort-restrained, and sort-refined-PVD problems are
0.06, 0.08, and 0.08, respectively.
9 Koala is available at https://github.com/bytekid/koala.
10 The experimental data are posted at http://cl-informatik.uibk.ac.at/users/swinkler/koala/, http://profs.sci.
univr.it/~bonacina/sggs.html or https://github.com/bytekid/koala.

123

https://github.com/bytekid/koala
http://cl-informatik.uibk.ac.at/users/swinkler/koala/
http://profs.sci.univr.it/~bonacina/sggs.html
http://profs.sci.univr.it/~bonacina/sggs.html
https://github.com/bytekid/koala


SGGS Reasoning: Decision Procedures and Koala Page 35 of 42 6

Table 2 Outcomes, statistics, and average running time for the Koala derivations

problem class SAT UNSAT #steps #ext #confl #gen #del max |Γ | avg time

Ground 11 68 345 117 141 245 99 8 0.74

EPR 220 538 496 250 154 399 183 106 20.41

Stratified 271 667 402 204 123 323 147 89 16.27

Monadic 57 223 120 43 46 85 32 9 0.32

FO2 213 371 143 75 40 113 35 46 6.30

Ackermann 14 79 295 100 120 209 84 7 0.63

Guarded 124 216 506 210 187 388 182 27 7.22

PVD 74 230 553 228 206 425 201 6 7.50

Sort-refined-PVD 274 699 389 198 119 313 142 87 15.74

Restrained 65 313 129 53 46 96 41 19 1.32

Sort-restrained 290 772 371 189 114 299 136 84 14.91

Other problems 110 288 67 48 8 56 20 46 6.73

All problems 481 1153 270 143 77 219 96 74 12.79

the 77 restrained problems, finding 61 unsatisfiable sets and 8 satisfiable sets, and 18 of the
20 sort-restrained problems, finding 16 unsatisfiable sets and 2 satisfiable sets.

In Table 2, the columns labeled #steps, #ext, and #confl report the average derivation
length, average number of SGGS-extensions, and average number of conflicts, respectively.
The latter two give some intuition about the time spent in model building and conflict solving,
respectively, where the number of conflicts may measure the difficulty of the search. The
columns labeled #gen, #del, and max |Γ | report space-related statistics: average number of
generated clauses, average number of deleted clauses, and average maximum trail length
during the derivation. Deleted clauses include disposable clauses and clauses deleted because
they have literals assigned to either a split clause or the parent that gets deleted in an SGGS-
resolution step. Across all problem classes, SGGS-extensions represent between one third
and one half of all inferences, and about half of the generated clauses are extension clauses.
The number of deletions is in a similar magnitude as the number of extensions, though
somewhat smaller. The number of conflicts equals about one third of the number of inference
steps. A comparison of the columns labeled #steps and max |Γ | shows that the maximum
trail length is much smaller than the derivation length on average. The SGGS trail grows
when SGGS-extension expands the model and shrinks when the other rules fix it.

We compared Koala with E 2.4 [74], Vampire 4.4 [51], iProver 3.5 [33], CVC5 1.0.0
[6], and Darwin 1.4.4 [12]. E and Vampire are saturation-based theorem provers, and hence
feature ordered resolution, which decides the Ackermann, monadic, FO2, and guarded frag-
ments [29, 36, 44].11 iProver implements both saturation and a model-driven instance-based
engine that generates instances of clauses by the Inst-Gen method [39, 46], grounds them,
and submits them to a SAT-solver: if a ground set is found unsatisfiable, so is the input; other-
wise, the next round of instance generation gets instances that are false in the model. Darwin
implements the model evolution calculus (MEC) [10], which lifts to FOL the DPLL proce-
dure for propositional satisfiability [27]. Inst-Gen and MEC decide the stratified [47] but not
the restrained fragments: if Inst-Gen picks an unfortunate literal selection for Example 15,

11 Ordered resolution decides FO2 via a reduction to the Gödel fragment [41, 75] that is unlikely to be
implemented in provers.
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Table 3 Problems found unsatisfiable by Koala and some state-of-the-art tools

Problem class # sets Koala E Vampire iProver CVC5 -fm Darwin -fm

Ground 71 68 70 71 71 71 71 71 70

EPR 790 538 561 756 774 628 685 750 595

Stratified 933 667 698 900 918 741 823 894 618

Monadic 620 223 408 560 558 343 363 590 195

FO2 575 372 403 518 531 406 492 512 283

Ackermann 84 79 83 84 84 78 84 84 73

Guarded 403 216 241 385 387 320 347 384 258

PVD 261 230 226 251 251 219 242 248 213

Sort-refined PVD 969 699 729 932 953 771 855 929 622

Restrained 338 313 317 329 328 316 310 325 216

Sort-restrained 1045 772 796 1007 1029 837 916 1002 624

Others problems 131 288 585 815 870 535 664 768 131

All Problems 769 1153 1675 2189 2279 1462 1733 2164 769

Table 4 Problems found satisfiable by Koala and some state-of-the-art tools

Problem class # sets Koala E Vampire iProver CVC5 -fm Darwin -fm

Ground 11 11 11 11 11 11 11 11 11

EPR 267 220 118 211 264 15 251 263 246

Stratified 324 271 144 260 320 15 306 319 300

Monadic 122 57 56 87 100 14 98 84 108

FO2 349 213 145 240 288 13 271 244 287

Ackermann 18 14 18 18 18 13 18 14 18

Guarded 164 124 85 140 162 15 150 161 145

PVD 84 74 44 60 82 13 80 81 76

Sort-refined PVD 330 274 146 262 324 15 311 323 303

Restrained 72 65 57 66 68 13 67 64 65

Sort-restrained 348 290 154 278 342 15 327 337 319

Others problems 199 110 52 78 178 0 200 146 199

All Problems 713 481 288 456 681 24 676 586 713

it does not halt, and MEC may not halt on satisfiable negatively restrained sets (e.g., Exam-
ple 14), as it starts with I+ as candidate model. CVC5 is a CDCL(T )-based SMT solver with
instance generation to handle unversally quantified variables; it also features superposition.
We included the finite model (-fm) versions of CVC5 and Darwin that search for a finite
model by iterative deepening on the model’s cardinality, generating all the ground instances
of the clauses for a given cardinality, and giving them to a SAT solver.

Table 3 reports how many problems each prover found unsatisfiable in each class, and
Table 4 does the same for the problems found satisfiable. The column #sets gives for each
category the number of problems that have status unsatisfiable (in Table 3) or satisfiable
(in Table 4) in TPTP 7.4.0 (these data are not necessarily current, hence the tools may find
more). The best performance is highlighted in boldface. On unsatisfiable problems, Koala
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trails behind most systems on most or all classes, except for Darwin -fm. Finite model search
pays the price of the exponential growth of the search space by iterative deepening, and is
less suitable for unsatisfiable instances. However, CVC5 -fm does better, possibly due to a
different underlying CDCL-based SAT solver. On satisfiable problems, Koala solves more
problems than E, CVC5, and even Vampire in most classes, but remains behind CVC5 -fm,
both versions of Darwin, and iProver, which emerges as the strongest system in both tables.

7 RelatedWork

Several methods decide Datalog (e.g., positive hyperresolution) or the EPR or stratified
fragments (e.g., [3, 37, 47, 65]) that are popular for applications [1, 57, 64]. The other SGGS-
decidable fragments in this article involve ground-preserving clauses. Positively ground-pre-
serving clauses are also termed range-restricted [9, 25, 55, 61]. Manthey and Bry introduced
“range-restricted” for positively ground-preserving clauses [55]. At the same conference
Kounalis and Rusinowitch introduced “ground-preserving” for negatively ground-preserving
clauses [49, 50]. Ground-preservingwas used for positively ground-preserving in [21] and for
either positively or negatively ground-preserving in [17]. Ground-preserving captures exactly
the property we are interested in, namely that only ground clauses get generated. Since the
two names are equally old and ground-preserving is more expressive for our purposes, we
chose to use it.

Ground-preserving clauses were introduced in Horn logic [49, 50, 55]. When reasoning
forward or bottom-up, that is, from the facts (e.g., by positive hyperresolution) variables that
appear in the positive but not in the negative literals of a rule were deemed problematic,
because they get introduced in the forward chaining process. In other words, even if we start
from ground facts we get non-ground facts. The restriction to positively ground-preserving
clauses was introduced to prevent this phenomenon [55].

When reasoning backward or top-down, that is, from a query (e.g., by negative hyper-
resolution) variables that appear in the negative but not in the positive literals of a rule get
introduced in the backward chaining process. Even if we start from a ground query we get
non-ground queries. The restriction to negatively ground-preserving clauses was introduced
to prevent this phenomenon inHorn theorieswith equality [49, 50]. The purposewas to obtain
linear input proofs where all center clauses are ground and decreasing in the CSO used in
ordered resolution and superposition (see also [16, Sect. 5.2]). Thus, positively ground-
preserving clauses are convenient for positive strategies that reason forward or bottom-up,
and negatively ground-preserving clauses are convenient for negative strategies that reason
backward or top-down. SGGS with I− is another forward-reasoning or bottom-up method
and SGGS with I+ is another backward-reasoning or top-down method.

CDCL(Γ +T ), where Γ is an inference system including hyperresolution, superposition
with negative selection, and simplification, decides essentially finite theories with positively
ground-preserving axiomatizations [21]. Essentially finite means only one monadic function
f with finite range. This decidability result rests on adding speculative axioms of the form
f j (x)$ f k(x) ( j > k) for increasing values of j and k. Simplification applies the speculative
axioms to limit the depth of generated terms.

Example 21 The clause set {P(a), ¬P(x)∨P(f(f(x))), ¬P(x)∨¬P(f(x))} fromExample 12 is
essentially finite (the range of f is finite, because the set admits a finite model). CDCL(Γ+T )

tries f(x) $ x , detects a conflict, backtracks, tries f2(x) $ x , and halts reporting satisfiability.
Without speculative axioms and simplification, it is not surprising that SGGS does not halt.

123



6 Page 38 of 42 M. P. Bonacina, S. Winkler

Baumgartner and Schmidt offered a comprehensive treatment of bottom-up model-
generation (BUMG) methods, with an emphasis on positive hyperresolution enhanced with
first-order splitting [9]. First-order splitting [70, 80] generalizes to first-order clauses the
splitting of disjunctions of DPLL, at the expense of introducing backtracking in saturation.
The model generation and decidability results in [9] involve range-restriction transforma-
tions and a technique called blocking. A range-restriction transformation transforms a set of
clauses into an equisatisfiable set of range-restricted clauses. Blocking allows the BUMG
method to guess an equality on a splitting branch and its negation on another. If a guess causes
a conflict it can be undone by backtracking. Thus, these guesses are speculative inferences
in the sense of [21]. Since positive hyperresolution with these enhancements decides the
Bernays–Schönfinkel class with equality [9], one can conjecture that a generalization to the
many-sorted case could enable it to decide the sort-restrained and sort-refined-PVD classes.

8 FutureWork

A key open issue in automated reasoning is whether it is better to bring conflict-driven
reasoning to the first-order level (e.g., SGGS) or keep it at the propositional level, as done by
the instance-based approaches that perform instance generation on top of a CDCL-based SAT
solver. Some of the systems that we compared with Koala include in various ways the second
approach. We do not regard our experimental comparison as conclusive, because Koala is
only a prototype. This fundamental problem is open also in SMT, where it is still unknown
whether it is better to stick to the CDCL(T ) paradigm (conflict-driven reasoning only at
the propositional level) [21, 63] or move to the MCSAT/CDSAT paradigm (conflict-driven
reasoning in the theories) [23, 24, 28]. An answer based on experiments is premature, as not
enough engineering has been invested in first-order conflict-driven systems. Furthermore,
comparing implementations is necessary, but it is a comparison of tools, not methods [18].
This is all the more true given that contemporary reasoners implement multiple paradigms.
This is a welcome development to get more powerful and flexible provers, but it may make
it harder to know to which features a certain empirical behavior should be attributed.

In addition to this broad issue, there are several directions for future work on SGGS.
A main one is to add equality reasoning by building the equality axioms in both model
representation and rules. A natural candidate would be an SGGS-superposition rule, focused
on generating clauses needed to explain equality conflicts. For the ground case, one may
integrate in SGGS a congruence closure algorithm (e.g., [5, 32, 60, 62]). Congruence closure
and blocking [9] were used to import some equational reasoning in tableaux-based methods
[79]. SGGS could be enhanced with blocking or other speculative inferences. Speculative
inferences that cause conflicts are undone by backtracking [9, 21, 79]. SGGS does not have
backtracking in the sense of undoing inferences. Since the model in SGGS is read off the
trail in left-to-right order, it suffices to move a clause by the SGGS-move inference rule to
flip the truth value of a selected literal in the candidate model. One would have then to fit
speculative inferences in the SGGS approach to represent and fix models.

Methods that integrate first-order theorem proving and SMT solving have gained traction
(e.g., [21, 69]). One can envision composing SGGS with theory modules in CDSAT [23, 24],
viewing SGGS as a CDSAT module for FOL. Such a composition would lead to study how
to bridge Herbrand interpretations and models represented by assignments, including first-
order (i.e., non-Boolean) assignments. It would also be a context where to consider SGGS
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with initial interpretations that are not based on sign, since SGGS could assume as initial
interpretation some completion of a partial interpretation built by CDSAT.

An initial interpretation is goal-sensitive, if it satisfies all the input clauses except the
goal clauses, that is, those in the clausal form of the negation of the conjecture. If the initial
interpretation is goal-sensitive, SGGS is goal-sensitive,meaning that it generates only clauses
connected to goal clauses [20]. It is open whether goal-sensitivity is useful to reason in large
knowledge bases.

The experiments with Koala allow us to identify critical issues for the performance of
an SGGS prover. For example, instance generation by SGGS-extension may be a bottleneck
for problems with many input clauses, and forms of caching should be considered to avoid
repeating computations.
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