
Vol.:(0123456789)

Journal of Automated Reasoning (2023) 67:13
https://doi.org/10.1007/s10817-022-09647-x

1 3

Synthetic Undecidability and Incompleteness of First‑Order
Axiom Systems in Coq

Extended Version

Dominik Kirst1  · Marc Hermes2

Received: 10 September 2021 / Accepted: 28 June 2022 / Published online: 12 March 2023
© The Author(s) 2023

Abstract
We mechanise the undecidability of various first-order axiom systems in Coq, employing
the synthetic approach to computability underlying the growing Coq Library of Undecid-
ability Proofs. Concretely, we cover both semantic and deductive entailment in fragments
of Peano arithmetic (PA) as well as ZF and related finitary set theories, with their undecid-
ability established by many-one reductions from solvability of Diophantine equations, i.e.
Hilbert’s tenth problem (H10), and the Post correspondence problem (PCP), respectively.
In the synthetic setting based on the computability of all functions definable in a construc-
tive foundation, such as Coq’s type theory, it suffices to define these reductions as meta-
level functions with no need for further encoding in a formalised model of computation.
The concrete cases of PA and the considered set theories are supplemented by a general
synthetic theory of undecidable axiomatisations, focusing on well-known connections to
consistency and incompleteness. Specifically, our reductions rely on the existence of stand-
ard models, necessitating additional assumptions in the case of full ZF, and all axiomatic
extensions still justified by such standard models are shown incomplete. As a by-product of
the undecidability of set theories formulated using only membership and no equality sym-
bol, we obtain the undecidability of first-order logic with a single binary relation.

Keywords  Undecidability · Synthetic computability · First-order logic · Incompleteness ·
Peano arithmetic · ZF set theory · Constructive type theory · Coq

1  Introduction

Being among the mainstream formalisms to underpin mathematics, first-order logic (FOL)
has been subject to investigation from many different perspectives since its concretisation
in the late 19th century. One of them is concerned with algorithmic properties, prominently
pushed by Hilbert and Ackermann with the formulation of the Entscheidungsproblem [18],

 *	 Dominik Kirst
	 kirst@cs.uni-saarland.de

1	 Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
2	 Department of Mathematics, Saarland University, Saarbrücken, Germany

http://orcid.org/0000-0003-4126-6975
http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-022-09647-x&domain=pdf

	 D. Kirst, M. Hermes

1 3

13  Page 2 of 31

namely the search for a decision procedure determining the formulas � that are valid in
all interpretations, usually written ⊨ 𝜑 . With their groundbreaking work in the 1930s,
Turing [47] and Church [7] established that such a general decision procedure cannot exist.
However, this outcome can change if one considers validity of � restricted to interpreta-
tions satisfying a given collection A of axioms, written A ⊨ 𝜑 . Already in 1929, Pres-
burger presented a decision procedure for an axiomatisation of linear arithmetic [33] and
Tarski contributed further instances with his work on Boolean algebras, real-closed ordered
fields, and Euclidean geometry in the 1940s [9].

On the other hand, as soon as an axiomatisation A is strong enough to express compu-
tation, the undecidability proof for the Entscheidungsproblem can be replayed within A ,
turning its entailed theory undecidable. Used as standard foundations for large branches
of mathematics exactly due to their expressiveness, Peano arithmetic ( �� ) and Zermelo-
Fraenkel set theory ( �� ) are prime examples of such axiomatisations. In this paper, we
use the Coq proof assistant [44] to mechanise the undecidability of �� and �� and related
finitary set theories, based on the synthetic approach to computability results available in
Coq’s constructive type theory.

As is common in constructive foundations, all functions definable in Coq’s axiom-free
type theory are effectively computable. So for instance any Boolean function on natural
numbers f ∶ ℕ → 𝔹 coinciding with a predicate P ⊆ ℕ may be understood as a decider
for P, even without explicitly relating f to some encoding as a Turing machine, �-recursive
function, or untyped �-term. In this fashion, many positive notions of computability theory
can be rendered synthetically, disposing of the need for an intermediate formal model of
computation [4, 11]. Moreover, negative notions like undecidability are mostly established
by transport along reductions, i.e. computable functions encoding instances of one problem
in terms of another problem. Synthetically, the requirement that reductions are comput-
able is again satisfied by construction. In fact, all problems included in the Coq Library of
Undecidability Proofs [13] are shown undecidable in the sense that their decidability would
entail the decidability of Turing machine halting by synthetic reduction from the latter.

Therefore, revisiting the undecidability of first-order axiom systems using a proof assis-
tant like Coq is worthwhile for several reasons. First, using the synthetic approach to unde-
cidability makes a mechanisation of these fundamental results of metamathematics pleas-
antly feasible [11, 22]. Our mechanisations follow the informal (and instructive) practice to
just define and verify reduction functions while leaving their computability implicit, with
the key difference that in our constructive setting this relaxation is formally justified.

Secondly, it is well-known that undecidable axiomatisations A are negation-incomplete,
i.e. admit � with neither A ⊨ 𝜑 nor A ⊨ ¬𝜑 . By characterising A ⊨ 𝜑 with an enumer-
able deduction system A ⊢ 𝜑 , this is a consequence of Post’s theorem [32] stating that
bi-enumerable predicates are decidable. Indeed, assuming negation-completeness, also
the complement A ⊭ 𝜑 would be enumerable via A ⊢ ¬𝜑 . Based on a synthetic proof of
Post’s theorem [4, 11], all axiomatisations shown synthetically undecidable in the present
paper are incomplete in the sense that their completeness would imply the decidability of
the halting problem (for Turing machines). These algorithmic observations complement
the otherwise notoriously hard to mechanise incompleteness proofs based on Gödel sen-
tences [29, 30].

Lastly, undecidability of a first-order axiomatisation A like �� or �� can only be estab-
lished in a stronger system, since a reduction from a non-trivial problem yields the con-
sistency of A . Coq exhibits standard models for �� and �� (the latter relying on classical
assumptions [23]), enabling proofs of their undecidability. In fact, we sharpen the results

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 3 of 31  13

for fragments �′ and �′ even strictly below Robinson arithmetic � and Zermelo set theory
� , respectively, with the latter now also admitting a fully constructive standard model.

In summary, the contributions of this paper can be listed as follows:

•	 We extend the Coq Library of Undecidability Proofs with verified reductions to �′ , � ,
�� , �′ , � , and ��(-regularity) , regarding both Tarski semantics and natural deduction.1

•	 We verify a translation of set theory over a convenient signature with function symbols
for set operations to smaller signatures just containing one or two binary relation sym-
bols.

•	 By composition, we obtain the undecidability of the Entscheidungsproblem for a single
binary relation, improving on a previous mechanisation with additional symbols [11].

•	 By isolating a generic theorem (Strategy 10), we obtain synthetic undecidability and
incompleteness for all axiomatisations extending the fragments �′ and �′ with respect
to standard models.

This extended version of [21] adds the following contributions:

•	 We eliminate the assumption of excluded middle in the treatment of �� by means of a
general Gödel-Gentzen-Friedman translation (Sect. 5).

•	 We mechanise direct and indirect reductions to various finitary set theories not requir-
ing or actively refuting infinite sets (Sect. 8).

•	 We extend on the signature transformation employed for set theory without function
symbols to obtain conservativity results (Lemma 53 - Fact 56).

•	 We analyse the abstract preconditions necessary for the synthetic approach to undecid-
ability and incompleteness of arbitrary formalisms (Sect. 9).

After a preliminary discussion of constructive type theory, synthetic undecidability, and
first-order logic in Sect. 2, we proceed with the general results relating undecidabilitity,
incompleteness, and consistency of first-order axiom systems in Sect. 3. This is followed by
the case studies concerning arithmetical axiomatisations (Sects. 4 and 5), set theory with
(Sect. 6) and without (Sect. 7) Skolem functions, as well as finitary set theories (Sect. 8).
We conclude with the abstract analysis of undecidability and incompleteness of arbitrary
formalisms (Sect. 9) and with a discussion of the Coq mechanisation as well as related and
future work Sect. 10.

2 � Preliminaries

In order to make this paper self-contained and accessible, we briefly outline the synthetic
approach to undecidability proofs and the representation of first-order logic in constructive
type theory used in previous papers.

1  The Coq development is available at www.​ps.​uni-​saarl​and.​de/​extras/​axiom​atisa​tions-​ext and systemati-
cally hyperlinked with every definition and fact in the PDF version of this document.

http://www.ps.uni-saarland.de/extras/axiomatisations-ext

	 D. Kirst, M. Hermes

1 3

13  Page 4 of 31

2.1 � Constructive Type Theory

We work in the framework of a constructive type theory such as the one implemented in
Coq, providing a predicative hierarchy of type universes above a single impredicative uni-
verse ℙ of propositions. On type level, we have the unit type � with a single element ∗ : � ,
the void type � , function spaces X → Y  , products X × Y  , sums X + Y  , dependent products
∀(x ∶ X).F x , and dependent sums Σ(x ∶ X).F x . On propositional level, these types are
denoted by the usual logical notation ( ⊤ , ⊥ , → , ∧ , ∨ , ∀ , and ∃ ). So-called large elimination
from ℙ into computational types is restricted, in particular case distinction on proofs of
∨ and ∃ to form computational values is disallowed. On the other hand, this restriction is
permeable enough to allow large elimination of the equality predicate =∶ ∀X.X → X → ℙ
specified by the constructor ∀(x ∶ X). x = x , as well as function definitions by well-founded
recursion.

We employ the basic inductive types of Booleans ( � ∶= �� ∣ �� ), Peano natu-
ral numbers ( n ∶ ℕ ∶= 0 ∣ n + 1 ), the option type ( �(X) ∶= ⌜x⌝ ∣ � ), and lists
( l ∶ �(X) ∶= [] ∣ x ∶∶ l ). We write |l| for the length of a list, l++l� for the concatenation of
l and l′ , x ∈ l for membership, and just f l for application of the pointwise map function.
We denote by Xn the type of vectors v⃗ of length n ∶ ℕ over X and reuse the definitions and
notations introduced for lists.

2.2 � Synthetic Undecidability

The base of the synthetic approach to computability theory [4, 35] is the fact that all func-
tions definable in a constructive foundation are computable. This fact applies to many vari-
ants of constructive type theory and we let the assumed variant sketched in the previous
section be one of those. Of course, we are confident that in particular the polymorphic
calculus of cumulative inductive constructions (pCuIC) [41] currently implemented in Coq
satisfies this condition although there is no formal proof yet.

Now beginning with positive notions, we can introduce decidability and enumerability
of decision problems synthetically, i.e. without reference to a formal model of computation:

Defin​ition​ 1  Let P ∶ X → ℙ be a predicate over a type X.

•	 P is decidable if there exists f ∶ X → � with P x iff f x = ��,
•	 P is enumerable if there exists f ∶ ℕ → 𝕆 (X) with P x iff ∃n. f n = ⌜x⌝.

Note that it is commonly accepted practice to mechanise decidability results in this syn-
thetic sense (e.g. [5, 27, 36]). In the present paper, however, we mostly consider negative
results in the form of undecidability of decision problems regarding first-order axiomatisa-
tions. Such negative results cannot be established in form of the actual negation of positive
results, since constructive type theory is consistent with strong classical axioms turning
every problem (synthetically) decidable (as witnessed by classical models, cf. [48]).

The approximation chosen in the Coq Library of Undecidability Proofs [13] is to call P
(synthetically) undecidable if the decidability of P would imply the decidability of a seed
problem known to be undecidable, specifically the halting problem for Turing machines.
Therefore the negative notion can be turned into a positive notion, namely the existence of
a computable reduction function, that again admits a synthetic rendering:

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.Synthetic.Definitions.html#decidable

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 5 of 31  13

Defin​ition​ 2  Given predicates P ∶ X → ℙ and Q ∶ Y → ℙ , we call a function f ∶ X → Y
a (many-one) reduction if P x iff Q (f x) for all x. We write P ⪯ Q if such a function exists.

Then interpreting reductions from the halting problem for Turing machines as unde-
cidability results is backed by the following fact:

Fact 3  If P ⪯ Q and Q is decidable, then so is P.

Such reductions have already been verified for Hilbert’s tenth problem ( �10) [25] and
the Post correspondence problem ( ���) [10] that we employ in the present paper, so by
transitivity it is enough to verify continuing reductions to the axiom systems considered.

2.3 � Syntax, Semantics, and Deduction Systems of FOL

We now review the representation of first-order syntax, semantics, and natural deduc-
tion systems developed in previous papers [11, 15, 22]. Beginning with the syntax,
we describe terms t ∶ � and formulas � ∶ � as inductive types over a fixed signature
Σ = (FΣ;PΣ) of function symbols f ∶ FΣ and relation symbols P ∶ PΣ with arities |f|
and |P|:

Negation ¬� and equivalence � ↔ � are obtained by the usual abbreviations.
In the chosen de Bruijn representation [8], a bound variable is encoded as the num-

ber of quantifiers shadowing its binder, e.g. ∀x.∃y.P x u → P y v may be represented by
∀∃P 𝗑1 𝗑4 → P 𝗑0 𝗑5 . For the sake of legibility, we write concrete formulas with named
binders where instructive and defer de Bruijn encodings to the Coq development. A for-
mula with all occurring variables bound by a quantifier is called closed.

Next, we define Tarski semantics providing an interpretation of formulas:

Defin​ition​ 4  A model M consists of a type D with functions fM ∶ D|f | → D and
PM ∶ D|P| → ℙ interpreting the symbols in Σ . We often use M itself to refer to its domain
D. Given an assignment � ∶ ℕ → M we define term evaluation 𝜌̂ ∶ � → M and formula
satisfaction 𝜌 ⊨ 𝜑 by

the remaining cases of 𝜌 ⊨ 𝜑 map each connective to its meta-level counterpart.

If a model M satisfies a formula � for all variable assignments � , we write M ⊨ 𝜑 .
Moreover, given a theory T ∶ 𝔽 → ℙ , we write M ⊨ T if M ⊨ 𝜓 for all � with T� and
T ⊨ 𝜑 if M ⊨ T implies M ⊨ 𝜑 for all M . The same notations apply to (finite) contexts
Γ ∶ �(�).

Finally, we represent deduction systems as inductive predicates of type
𝕃(𝔽) → 𝔽 → ℙ . We consider intuitionistic and classical natural deduction Γ ⊢i 𝜑 and
Γ ⊢c 𝜑 , respectively, and write Γ ⊢ 𝜑 if a statement applies to both variants. The rules
of the two systems are standard and listed in Appendix A, here we only highlight the
quantifier rules depending on the de Bruijn encoding

t ∶∶= 𝗑n ∣ f t⃗ (n ∶ ℕ, t⃗ ∶ 𝕋
|f |) 𝜑 ∶∶=P t⃗ ∣ ⊥ ∣ 𝜑 → 𝜓 ∣ 𝜑 ∧ 𝜓 ∣ 𝜑 ∨ 𝜓 ∣ ∀𝜑 ∣ ∃𝜑 (⃗t ∶ 𝕋

|P|)

𝜌̂ �n ∶= 𝜌 n 𝜌̂ (f t⃗) ∶= fM (𝜌̂ t⃗) 𝜌 ⊨ P t⃗ ∶= PM(𝜌̂ t⃗),

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.Synthetic.Definitions.html#reduction
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.Synthetic.ReducibilityFacts.html#dec_red
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FullTarski.html#interp

	 D. Kirst, M. Hermes

1 3

13  Page 6 of 31

where �[�] denotes the capture-avoiding instantiation of a formula � with a parallel sub-
stitution � ∶ ℕ → 𝕋  , where the substitution ↑ maps n to �n+1 , where the substitution (t;�)
maps 0 to t and n + 1 to � n , and where �[t] is short for �[t;(�n. �n)] . Extending the deduc-
tion systems to theories T ∶ 𝔽 → ℙ , we write T ⊢ 𝜑 if there is Γ ⊆ T with Γ ⊢ 𝜑.

Constructively, only soundness of the intuitionistic system ( T ⊢i 𝜑 implies T ⊨ 𝜑 ) is
provable without imposing a restriction on the admitted models (as done in [15]). However,
it is easy to verify the usual weakening ( Γ ⊢ 𝜑 implies Δ ⊢ 𝜑 for Γ ⊆ Δ ) and substitution
( Γ ⊢ 𝜑 implies Γ[𝜎] ⊢ 𝜑[𝜎]) properties of both variants by induction on the given deriva-
tions. The latter gives rise to named reformulations of (ai) and (ee) helpful in concrete
derivations

where �n ∉ Γ denotes that �n is fresh, i.e. does not occur in any formula of Γ.
The concrete signatures used in this paper all contain a reserved binary relation symbol

≡ for equality. Instead of making equality primitive in the syntax, semantics, and deduction
systems, we implicitly restrict M ⊨ 𝜑 to extensional models M interpreting ≡ as actual
equality = and define T ⊢ 𝜑 as derivability from T augmented with the standard axioms
characterising ≡ as an equivalence relation congruent for the symbols in Σ.

3 � Undecidable and Incomplete Axiom Systems

In this section, we record some general algorithmic facts concerning first-order axiomatisa-
tions and outline the common scheme underlying the undecidability proofs presented in the
subsequent two sections. We fix an enumerable and discrete signature Σ for the remainder
of this section and begin by introducing the central notion of axiom systems formally.

Defin​ition​ 5  We call A ∶ 𝔽 → ℙ an axiomatisation if A is enumerable.

Any axiomatisation induces two related decision problems, namely semantic entail-
ment A⊨ ∶= 𝜆𝜑.A ⊨ 𝜑 and deductive entailment A⊢ ∶= 𝜆𝜑.A ⊢ 𝜑 . Since in our con-
structive setting we can show the classical deduction system ⊢c neither sound nor complete
(cf. [15]), we mostly consider a combined notion of Tarski semantics and intuitionistic
deduction (reusing the ⪯-notation):

Defin​ition​ 6  We say that a predicate P ∶ X → ℙ reduces to A , written P ⪯ A , if there is a
function f ∶ X → � witnessing both P ⪯ A

⊨ and P ⪯ A
⊢i.

Assuming the law of excluded middle ��� ∶= ∀p ∶ ℙ. p ∨ ¬p would be sufficient to
obtain P ⪯ A

⊢c from P ⪯ A
⊨ , since then A ⊢c 𝜑 and A ⊨ 𝜑 coincide. In fact, already the

soundness direction is enough for our case studies on �� and �� , since for them it is still
feasible to verify A ⊢ f x given P x by hand without appealing to completeness and the
easier verification of A ⊨ f x.

Γ[↑] ⊢ 𝜑

Γ ⊢ ∀𝜑
AI

Γ ⊢ ∀𝜑

Γ ⊢ 𝜑[t]
AE

Γ ⊢ 𝜑[t]

Γ ⊢ ∃𝜑
EI

Γ ⊢ ∃𝜑 Γ[↑],𝜑 ⊢ 𝜓[↑]

Γ ⊢ 𝜓
EE

Γ ⊢ 𝜑[�n]

Γ ⊢ ∀𝜑
�n ∉ Γ,𝜑

Γ ⊢ ∃𝜑 Γ,𝜑[�n] ⊢ 𝜓

Γ ⊢ 𝜓
�n ∉ Γ,𝜑,𝜓

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#treduction

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 7 of 31  13

We now formulate two facts stating the well-known connections of undecidability with
consistency and incompleteness for our synthetic setting. The first observation is that veri-
fying a reduction from a non-trivial problem is at least as hard as a consistency proof.

Fact 7  If P ⪯ A
⊢ and there is x with ¬P x , then A ⊬ ⊥.

Proof  If f ∶ X → � witnesses P ⪯ A
⊢ , then by ¬P x we obtain A ⊬ f x . This prohibits a

derivation A ⊢ ⊥ by the explosion rule (see Appendix A). 	� ◻

The second observation is a synthetic version of (negation-)incompleteness for all axi-
omatisations strong enough to express an undecidable problem. We follow the common
practice to focus on incompleteness of the classical deduction system, see Sect. 10.1 for a
discussion.

Defin​ition​ 8  We call A complete if for all closed � , A ⊢c 𝜑 or A ⊢c ¬𝜑.

Fact 9   If A is complete and A ⊬c ⊥ , then A⊢c is decidable on closed formulas. Hence, if f
witnesses P ⪯ A

⊢c such that all f x are closed, then P is decidable.

Proof  By a synthetic version of Post’s theorem ([11, Lemma 2.15]) it suffices to show that
A

⊢c is bi-enumerable, i.e. both 𝜆𝜑.A ⊢c 𝜑 and 𝜆𝜑.A ⊬c 𝜑 are enumerable, and logically
decidable, i.e. A ⊢c 𝜑 or A ⊬c 𝜑 for all � . This follows by enumerability of ⊢c and since
by completeness A ⊬c 𝜑 iff A ⊢c ¬𝜑 . The consequence is by Fact 3. 	� ◻

Note that this fact is an approximation of the usual incompleteness theorem in two ways.
First, similar to the synthetic rendering of undecidability, axiomatisations A subject to a
reduction P ⪯ A

⊢c for P known to be undecidable are only shown incomplete in the sense
that their completeness would imply decidability of P. Deriving an actual contradiction
would rely on computability axioms (e.g. Church’s thesis [14, 24] or an undecidability
assumption [11]) or extraction to a concrete model (e.g. a weak call-by-value �-calcu-
lus [12]). Secondly, the fact does not produce a witness of an independent formula the way
a more informative proof based on Gödel sentences does. Also note that inconsistent axi-
omatisations are trivially decidable, so the requirement A ⊬c ⊥ is inessential (especially
given Fact 7).

Next, we outline the general pattern of the reductions verified in this paper:

1.	 We choose an undecidable seed problem P ∶ X → ℙ easy to encode in the target axi-
omatisation. This will be �10 for �� and ��� for ��.

2.	 We define the translation function X → � mapping instances x : X to formulas �x in a
way compact enough to be stated without developing much of the internal theory of A.

3.	 We isolate a finite fragment A ⊆ A of axioms that suffices to implement the main argu-
ment. This yields a reusable factorisation and is easier to mechanise.

4.	 We verify the semantic part locally by showing for every M with M ⊨ A that P x iff
M ⊨ 𝜑x . For the backwards direction, we in fact need to restrict M to satisfy a suitable
property of standardness allowing us to reconstruct an actual solution of P.

5.	 We construct standard models for A and A , possibly relying on assumptions.
6.	 We verify the deductive part by establishing that P x implies A ⊢ 𝜑x , closely following

the semantic proof from before. The backwards direction follows from soundness.

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#reduction_consistency
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#complete
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#complete_decidable

	 D. Kirst, M. Hermes

1 3

13  Page 8 of 31

7.	 We conclude that A, and any sound B ⊇ A are undecidable and incomplete:

Strat​egy 10   Let a problem P ∶ X → ℙ , an axiomatisation A , a notion of standardness on
models M ⊨ A , and a function �_ ∶ X → � be given with:

	 (i)	 P x implies A ⊨ 𝜑x.
	 (ii)	 Every standard model M ⊨ A with M ⊨ 𝜑x yields P x.
	 (iii)	 P x implies A ⊢ 𝜑x.

Then P ⪯ B for all B ⊇ A admitting a standard model. If we additionally assume ��� ,
then also P ⪯ B

⊢c.
Proof  We begin with P ⪯ B

⊨ . That P x implies B ⊨ 𝜑x is direct by (i) since every model
of B is a model of A . Conversely, if B ⊨ 𝜑x then in particular the assumed standard model
M ⊨ B satisfies �x . Thus we obtain P x by (ii).

Turning to P ⪯ B
⊢i , the first direction is again trivial, this time by (iii) and weakening.

For the converse, we assume that B ⊢i 𝜑x and hence B ⊨ 𝜑x by soundness. Thus we con-
clude P x with the previous argument relying on (ii).

Finally, with ��� we obtain P ⪯ B
⊢c since then B ⊢c 𝜑x implies B ⊨ 𝜑x . 	� ◻

Of course (i) follows from (iii) via soundness, so the initial semantic verification
could be eliminated from Strategy 10 and the informal strategy outlined before. How-
ever, we deem it more instructive to first present a self-contained semantic verification
without the overhead introduced by working in a syntactic deduction system, mostly
apparent in the Coq mechanisation. Also note that the necessity of a standard model
will be no burden in the treatment of �� but in the case of �� this will require a careful
analysis of preconditions.

We end this section with the unsurprising but still instructive fact that the decision
problem for finite axiomatisations A reduces to the general Entscheidungsproblem of
first-order logic concerning validity and provability in the empty context [18].

Fact 11   For A ∶ �(�) we have A⊨ ⪯ (𝜆𝜑. ⊨ 𝜑) and A⊢ ⪯ (𝜆𝜑. ⊢ 𝜑).

Proof  It is straightforward to verify that the function ��.
⋀

A → � prefixing � with the
conjunction of all formulas in A establishes both reductions. 	� ◻

So the reductions to finite fragments of �� and �� presented in the next sections in
particular complement the direct reductions to the Entscheidungsproblem given in [11].
More general variants of this insight can be formulated as follows:

Fact 12   Let A be finite and B be an arbitrary axiomatisation.

1.	 If A ⊢ B , then A ⪯ B.
2.	 If B ⊆ A , then A ⪯ B.
3.	 B ∪ A ⪯ B.

Proof  All witnessed by the reduction ��.
⋀

A → � , (2) is a special case of (1). 	� ◻

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#reduction_theorem
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#red_finite_valid
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#red_prv_prv

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 9 of 31  13

4 � Peano Arithmetic

We begin with a rather simple case study to illustrate our general approach to undecid-
ability and incompleteness. For the theory of Peano arithmetic ( �� ) we use a signature
containing symbols for the constant zero, the successor function, addition, multiplication
and equality:

The core of �� consists of axioms characterising addition and multiplication:

The finite list �′ consisting of these four axioms is strong enough to be undecidable. Unde-
cidability (and incompleteness) then transport in particular to the (infinite) axiomatisation
�� adding

and the axiom​ schem​e of induc​tion, which we define as a function on formulas:

Another typical reference point for incompleteness is Robinson arithmetic � , obtained by
replacing the induction scheme by ∀x. x ≡ O ∨ ∃y. x ≡ Sy.

Turning to undecidability, Hilbert’s 10th problem ( �10 ) is concerned with the solvability
of Diophantine equations and comes as a natural seed problem for showing the undecid-
ability of �� , since the equations are a syntactic fragment of �� formulas. To be more
precise, �10 consists of deciding whether a Diophantine equation p = q has a solution in
the natural numbers ℕ , where p, q are polynomials constructed by parameters, variables,
addition, and multiplication:

Evaluation [[p]]� of a polynomial p for an assignment � ∶ ℕ → ℕ is defined by

and a Diophantine equation p = q then has a solution, if there is � with [[p]]� = [[q]]� . Given
their similarity, it is easy to encode �10 into �� , beginning with numerals:

Defin​ition​ 13  We define �(n) ∶ � by �(0) ∶= O and �(n + 1) ∶= S(�(n)).

We now translate polynomials into �� terms by defining p∗ ∶ � recursively:

A Diophantine equation with greatest free variable N can now be encoded as the formula
�p,q ∶= ∃N p∗ ≡ q∗ where we use N leading existential quantifiers to internalise the solv-
ability condition. The formula �p,q thus asserts the existence of a solution for p = q which
gives us a natural encoding from Diophantine equations into ��.

(O, S_ , _⊕ _ , _⊗ _ ; _ ≡ _)

⊕-base: ∀x.O⊕ x ≡ x ⊕-recursion: ∀xy. (Sx)⊕ y ≡ S(x⊕ y)

⊗-base: ∀x.O⊗ x ≡ O ⊗-recursion: ∀xy. (Sx)⊗ y ≡ y⊕ x⊗ y

Disjointness: ∀x. Sx ≡ O → ⊥ Injectivity: ∀xy. Sx ≡ Sy → x ≡ y

��.�[O] → (∀x.�[x] → �[Sx]) → ∀x.�[x]

p, q ∶∶= �n ∣ ��� k | ��� p q ∣ ���� p q (n, k ∶ℕ)

[[an]]� ∶= n [[var k]]� ∶= � k [[add p q]]� ∶= [[p]]� + [[q]]� [[mult p q]]� ∶= [[p]]� × [[q]]�

�n
∗ ∶= 𝜈(n) (��� k)∗ ∶= �k (��� p q)∗ ∶= p∗ ⊕ q∗ (���� p q)∗ ∶= p∗ ⊗ q∗

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.PA.html#ax_induction
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FA_facts.html#num

	 D. Kirst, M. Hermes

1 3

13  Page 10 of 31

We prepare the verification of the three requirements (Facts 20, 22 and 25) necessary for
Strategy 10 with the following lemma about existential formulas:

Lemma​ 14  If ∃N� is closed, then

	 (i)	 M ⊨ ∃N𝜑 iff there is � ∶ ℕ → M such that 𝜌 ⊨ 𝜑,
	 (ii)	 Γ ⊢ ∃N𝜑 if there is � ∶ ℕ → 𝕋 such that Γ ⊢ 𝜑[𝜎].

Proof  We only provide some intuition for (i). For the implication from left to right,
the assumption M ⊨ ∃N𝜑 gives us x1,… , xN ∶ M such that x1;… ;xN ;𝜌 ⊨ 𝜑 for all
� , so in particular we have 𝜌′ ⊨ 𝜑 for �� ∶= x1;… ;xN ;(�x.O

M) , showing the claim.
For the other implication, we get � with 𝜌 ⊨ 𝜑 . By setting �� ∶= �x. �(x + N) we have
� = �(0);… ;�(N);�� and hence there are x1,… , xN ∶ M such that x1;… ;xN ;𝜌

� ⊨ 𝜑 . Since
� has at most N free variables, �′ can be exchanged with any other � ∶ ℕ → M . 	� ◻

By Lemma 14, showing �p,q is equivalent to finding a satisfying environment
� ∶ ℕ → M for p∗ ≡ q∗ in a model M or deductively showing that a substitution
� ∶ ℕ → 𝕋 solves it. This enables us to transport a solution for p = q to both the model and
the deduction system.

We now verify the semantic part of the reduction for the axiomatic fragment �′ . To this
end, we fix a model M ⊨ �′ for the next definitions and lemmas.

Defin​ition​ 15   We define �(n) ∶ D by �(0)∶=OM and �(n + 1)∶=SM(�(n)).

The axioms in �′ are sufficient to prove that � is a homomorphism.

Lemma​ 16   𝜇(n + m) = 𝜇(n)⊕M 𝜇(m) and 𝜇(n × m) = 𝜇(n)⊗M 𝜇(m).

Proof  The proof for addition is done by induction on n ∶ ℕ and using the axioms for addi-
tion in �′ . The proof for multiplication is done in the same fashion, using the axioms for
multiplication and the previous result for addition. 	� ◻

Lemma​ 17   For any � ∶ ℕ → M and n ∶ ℕ we have 𝜌̂ (𝜈(n)) = 𝜇(n).

Given an assignment � ∶ ℕ → ℕ , we can transport the evaluation of a polynomial [[p]]�
to any �′ model by applying � . The homomorphism property of � now makes it easy to
verify that we get the same result by evaluating the encoded version p∗ with the composi-
tion �◦�.

Lemma​ 18   For any p and � ∶ ℕ → ℕ we have (̂�◦�)(p∗) = �([[p]]�).

Proof  By induction on p, using Lemmas 16 and 17. 	� ◻

Corol​lary 19   If p = q has solution � , then in any �′ model (𝜇◦𝛼) ⊨ p∗ ≡ q∗.

Proof  𝜇([[p]]𝛼) = 𝜇([[q]]𝛼)
L.18

⟹ �(𝜇◦𝛼)(p∗) = �(𝜇◦𝛼)(q∗)
def.

⟹ (𝜇◦𝛼) ⊨ p∗ ≡ q∗ 	� ◻

Fact 20   If p = q has a solution, then �′ ⊨ 𝜑p,q.

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FA_facts.html#subst_exist_sat
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FA_facts.html#imu
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FA_facts.html#add_hom
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FA_facts.html#eval_num
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.H10p_to_FA.html#eval_poly
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.H10p_to_FA.html#problem_to_ext_model
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.H10p_to_FA.html#H10p_to_FA_ext_model’

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 11 of 31  13

Proof  Let � be the solution of p = q , then (𝜇◦𝛼) ⊨ p∗ ≡ q∗ holds by Corollary 19 and since
∃Np∗ ≡ q∗ is closed by construction, the goal follows by Lemma 14. 	� ◻

For the converse direction, we employ the type ℕ as standard model.

Lemma​ 21  ℕ is a model of �′ , � , and ��.

It is easy to extract a solution of p = q if ℕ ⊨ 𝜑p,q by the previous lemmas.

Fact 22   If ℕ ⊨ 𝜑p,q then p = q has a solution.

Proof  By assumption we have ℕ ⊨ 𝜑p,q which by Lemma 14 gives us � ∶ ℕ → ℕ with

Since over ℕ the function � is simply the identity, we conclude [[p]]� = [[q]]� . 	� ◻

The deductive part of the reduction can be shown analogously to Fact 20, encoding the
proofs of all intermediate results as syntactic derivations. We just list the relevant state-
ments and refer to the Coq code for more detail.

Lemma​ 23   �� ⊢ 𝜈(n + m) ≡ 𝜈(n)⊕ 𝜈(m) and �� ⊢ 𝜈(n × m) ≡ 𝜈(n)⊗ 𝜈(m).

Lemma​ 24   If p = q has a solution � , then we can deduce �� ⊢ (p∗ ≡ q∗)[𝜈◦𝛼].

Fact 25   If p = q has a solution then �′ ⊢ 𝜑p,q.

Now we have all facts in place to verify the reductions with Strategy 10.

Theor​em 26  �10 ⪯ �� , �10 ⪯ Q , and �10 ⪯ ��.

Proof  Since ℕ is a standard model for �′ , � , and �� , the claims follow by Strategy 10 since
we have shown the three necessary conditions in Facts 20, 22 and 25. 	� ◻

As a consequence of the reductions, we can directly conclude incompleteness appealing
to ��� . Note that in Sect. 5 we explain how this conclusion can be made constructively.

Theor​em 27   Assuming ��� , completeness of any extension A ⊇ �′ satisfied by the stand-
ard model ℕ would imply the decidability of the halting problem.

Proof  By Strategy 10 as in Theorem 26, with Fact 9 and the reductions in [25]. 	� ◻

In fact, all axiomatisations satisfied by ℕ are undecidable and incomplete:

Fact 28  �10 ⪯ A for any axiomatisation A satisfied by the standard model ℕ.

Proof  By Strategy 10 as in Theorem 26 we obtain �10 ⪯ A ∪ �� and by Fact 12 we obtain
A ∪ �� ⪯ A . Thus �10 ⪯ A by transitivity. 	� ◻

𝛼 ⊨ p∗ ≡ q∗
def.

⟹ �(𝜇◦𝛼)(p∗) = �(𝜇◦𝛼)(q∗)
L.18

⟹ 𝜇([[p]]𝛼) = 𝜇([[q]]𝛼).

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FA_facts.html#nat_is_FA_model
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.H10p_to_FA.html#nat_H10
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FA_facts.html#num_add_homomorphism
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.H10p_to_FA.html#problem_to_prv
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.H10p_to_FA.html#H10p_to_FA_prv’
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#undec_Q’
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#incompleteness_PA
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#undec_standard_prv

	 D. Kirst, M. Hermes

1 3

13  Page 12 of 31

We close this section with a few remarks about the theories �′ , � , and �� . The the-
ory �′ is trivially incomplete under ��� : using soundness of classical deduction, we have
�� ⊬c ∀xy. x = y because of the standard model ℕ and �� ⊬c ¬∀xy. x = y because of the
trivial model. Similarly, the formula ∀x. Sx ≠ x is independent in � , for instance violated
by the model ℕ∞ extending ℕ with a maximal number ∞ . Note that these models in particu-
lar show that the theories �′ , � , and �� are all distinct.

5 � Eliminating the Law of Excluded Middle

We can strengthen the result of Theorem 27 and remove its reliance on ��� by utilis-
ing a combination of the double negation and Friedman translations [16]. Given any sig-
nature Σ = (FΣ;PΣ) we add a new 0-ary predicate F to PΣ , giving us the new signature
ΣF∶=(FΣ,PΣ ∪ {F}) . This way of setting up the Friedman transform is easier to mechanise
compared to the syntactic version where ⊥ is replaced by a formula, and sufficient for our
purpose here.

Defin​ition​ 29   We recursively define the F-translation (⋅)F ∶ �Σ → �ΣF by:

where ¬̇𝜑 is short for � → F . We extend (⋅)F to contexts Γ as expectable.

We will state the crucial results concerning the F-translation with respect to minimal
natural deduction Γ ⊢m 𝜑 , which is natural deduction ⊢i without the explosion rule and
restricted to formulas without the ⊥ symbol.

Lemma​ 30   For any formula � we have ⊢m ¬̇¬̇𝜑F → 𝜑F.

Proof  By induction on the size of � . 	� ◻

Lemma​ 31   For any formula � and context Γ , if Γ ⊢c 𝜑 then ΓF ⊢m 𝜑F.

Proof  By induction on the deduction Γ ⊢c 𝜑 , some cases need Lemma 30. 	� ◻

Defin​ition​ 32   Given a proposition P ∶ ℙ and model M of the signature Σ , we can extend
M to a model MP of the extended signature ΣF by setting FM∶=P and following the inter-
pretation of M in all other cases. We will then write M ⊨ T

F to express that for every
Γ ⊆ T and P we have MP ⊨ ΓF.

We now apply the F-translation to the particular case of the �� signature to derive an
improved version of Theorem 27, eliminating the usage of ���.

Lemma​ 33   If MP ⊨ (𝜑p,q)
F then MP ⊨ ¬̇¬̇𝜑p,q.

Proof  By MP ⊨ ∃N ¬̇¬̇(p∗ ≡ q∗) → ¬̇¬̇∃N p∗ ≡ q∗ , proved inductively on N. 	� ◻

⊥F ∶= F (𝜑 → 𝜓)F ∶= 𝜑F → 𝜓F (∀𝜑)F ∶= ∀𝜑F

(Pt⃗)F ∶= ¬̇¬̇(Pt⃗) (𝜑 ∧ 𝜓)F ∶= 𝜑F ∧ 𝜓F (∃𝜑)F ∶= ¬̇¬̇∃𝜑F

(𝜑 ∨ 𝜓)F ∶= ¬̇¬̇(𝜑F ∨ 𝜓F)

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Friedman.html#Fr
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Friedman.html#DNE_Fr
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Friedman.html#Fr_cl_to_min
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Friedman.html#extend_interp
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Friedman.html#Fr_embed

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 13 of 31  13

Theor​em 34   Any axiomatisation A ⊇ �′ with ℕ ⊨ A
F witnesses �10 ⪯ A

⊢c . Hence, its
completeness would imply the decidability of the halting problem.

Proof  First we will show �10 ⪯ A
⊢c , by verifying that �p,q is a reduction, where the first part

of the verification follows from Fact 25. In the converse we are given Γ ⊆ A with Γ ⊢c 𝜑p,q
and need to find a solution for p = q or equivalently (Fact 22) need to show ℕ ⊨ 𝜑p,q . Uti-
lising Lemma 31 we get ΓF ⊢m (𝜑p,q)

F which by soundness gives MP ⊨
⋀

ΓF → (𝜑p,q)
F

in every model MP . Since ℕ ⊨ A
F we have ℕP ⊨ ΓF and therefore ℕP ⊨ (𝜑p,q)

F . By
Lemma 33 this gives us ℕP ⊨ ¬̇¬̇𝜑p,q , which reduces to ((ℕ ⊨ 𝜑p,q) → P) → P . The model
with P∶=ℕ ⊨ 𝜑p,q then proves that ℕ ⊨ 𝜑p,q.

Secondly, we can show that A is consistent (with respect to ⊢c ) by the fact that A ⊢c ⊥
together with Lemma 31 and soundness implies ℕP ⊨ ⊥F , which reduces to ⊥ in the model
with P∶=⊥ . Therefore by Fact 9, completeness of A would imply the decidability of �10
and thus also of the halting problem. 	� ◻

6 � ZF Set Theory with Skolem Functions

Turning to set theory, we first work in a signature providing function symbols for the oper-
ations of �� . So for the rest of this section we fix the signature

with function symbols denoting the empty set, pairing, union, power set, the set of natu-
ral numbers, next to the usual relation symbols for equality and membership. Using such
Skolem functions for axiomatic and other definable operations is common practice in set-
theoretic literature and eases the definition and verification of the undecidability reduction
in our case. That the undecidability result can be transported to minimal signatures just
containing equality and membership, or even just the latter, is subject of the next section.

We do not list all axioms in detail but refer the reader to Appendix B, the Coq code, and
standard literature (eg. [40]). The only point worth mentioning again is the representation
of axiom schemes as functions � → �  , for instance by the separ​ation​ scheme expressed as

We then distinguish the following axiomatisations:

•	 �′ contains extensionality and the specifications of the function symbols.
•	 � is obtained by adding all instances of the separation scheme.
•	 �� is obtained by further adding all instances of the replacement scheme.

Note that in �� we do not include the axiom of regularity since this would force the theory
classical and would require to extend Coq’s type theory even further to obtain a model [28].
Alternatively, one could add the more constructive axiom for �-induction, but instead we
opt for staying more general and just leave the well-foundedness of sets unspecified. So in
particular we do not rule out the addition of the anti-foundation axiom [2].

Following the general outline for the undecidability proofs in this paper, we first focus on
verifying a reduction to the base theory �′ and then extend to the stronger axiomatisations

Σ ∶= (�, {_, _},
⋃

, P(), � ; _ ≡ _, _ ∈ _)

��.∀x.∃y.∀z. (z ∈ y ↔ z ∈ x ∧ �[x]).

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Friedman.html#incompleteness_Q
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.ZF.html#ax_sep

	 D. Kirst, M. Hermes

1 3

13  Page 14 of 31

by use of Strategy 10. As a seed problem for this reduction, we could naturally pick just any
decision problem since set theory is a general purpose foundation expressive enough for most
standard mathematics. However, the concrete choice has an impact on the mechanisation over-
head, where formalising Turing machine halting directly is tricky enough in Coq’s type theory
itself, and even a simple problem like �10 used in the previous section would presuppose a
modest development of number theory and recursion in the axiomatic framework. We there-
fore base our reduction to �′ on the Post correspondence problem ( ��� ) which has a simple
inductive characterisation expressing a matching problem given a finite stack S of pairs (s, t)
of Boolean strings:

Informally, S is used to derive pairs (s, t), written S ⊳ (s, t) , by repeatedly appending the
pairs from the stack componentwise in any order or multitude. S admits a solution, written
��� S , if a matching pair (s, s) can be derived.

Encoding data like numbers and Booleans in set theory is standard, using usual notations
for binary union x ∪ y , singletons {x} , and ordered pairs (x, y):

• Numbers: 0 ∶= � and n + 1 ∶= n ∪ {n} • Strings: b
1

, ..., b
n
∶= (b

1

, (...(b
n
, �)...))

• Booleans: �� ∶= {�} and �� ∶= � • Stacks: S ∶= {(s
1

, t
1

), ..., (s
m
, t
m
)}

Starting informally, the solvability condition of ��� can be directly expressed in set theory
by just asserting the existence of a set encoding a match for S:

Unfortunately, formalizing this idea is not straightforward, since the iteration operation S
k

is described by recursion on set-theoretic numbers k ∈ � missing a native recursion prin-
ciple akin to the one for type-theoretic numbers n ∶ ℕ . Such a recursion principle can of
course be derived but in our case it is simpler to inline the main construction.

The main construction used in the recursion theorem for � is a sequence of finite approxi-
mations f accumulating the first k steps of the recursive equations. Since in our case we do not
need to form the limit of this sequence requiring the approximations to agree, it suffices to
ensure that at least the first k steps are contained without cutting off, namely

where we reuse the operation S⊠B appending the encoded elements of the stack S com-
ponent-wise to the elements of the set B as specified above. Note that this operation is not
definable as a function �(�(�) × �(�)) → � → � and needs to be circumvented by quan-
tifying over candidate sets satisfying the specification. However, for the sake of a more
accessible explanation, we leave this subtlety to the Coq code and continue using the nota-
tion S⊠B.

Now solvability of S can be expressed formally as the existence of a functional approxima-
tion f of length k containing a match (x, x):

(s, t) ∈ s

s ⊳ (s, t)

s ⊳ (u, v) (s, t) ∈ s

s ⊳ (su, tv)

s ⊳ (s, s)

��� s

∃x. (x, x) ∈
⋃

k∈𝜔

S
k

where S
0
= S and S

k+1
= S⊠ S

k
=

⋃

(s,t)∈S

{(sx, ty)∶=(x, y) ∈ S
k
}

f ≫ k ∶= (�, S) ∈ f ∧ ∀(l,B) ∈ f . l ∈ k → (l ∪ {l}, S⊠B) ∈ f

𝜑S ∶= ∃k, f ,B, x. k ∈ 𝜔 ∧ (∀(l,B), (l,B�) ∈ f .B = B�) ∧ f ≫ k ∧ (k,B) ∈ f ∧ (x, x) ∈ B

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 15 of 31  13

We proceed with the formal verification of the reduction function �S.�S by proving the
three facts necessary to apply Strategy 10. Again beginning with the semantic part for clar-
ity, we fix a model M ⊨ �′ for the next lemmas in preparation of the facts connecting
��� S with M ⊨ 𝜑S . We skip the development of basic set theory in M reviewable in the
Coq code and only state lemmas concerned with encodings and the reduction function:

Lemma​ 35   Let n,m ∶ ℕ and s, t ∶ �(�) be given, then the following hold:

(i) M ⊨ n ∈ 𝜔 (iii) M ⊨ n ≡ m implies n = m

(ii) M ⊨ n ∉ n (iv) M ⊨ s ≡ t implies s = t

Proof 

	 (i)	 By induction on n, employing the infinity axiom characterising �.
	 (ii)	 Again by induction on n, using the fact that numerals n are transitive sets.
	 (iii)	 By trichotomy we have n < m , m < n , or n = m as desired. If w.l.o.g. it were

n < m , then M ⊨ n ∈ m would follow by structural induction on the deriva-
tion of n < m . But then the assumption M ⊨ n ≡ m would yield M ⊨ n ∈ n in
conflict with (ii).

	 (iv)	 By induction on the given strings, employing injectivity of s . 	� ◻

In order to match the structure of iterated derivations encoded in �S , we reformu-
late S ⊳ (s, t) by referring to the composed derivations Sn of length n, now definable by
recursion on n ∶ ℕ via S0 ∶= S and Sn+1 ∶= S⊠ Sn reusing the operation ⊠ for lists as
expected.

Lemma​ 36   S ⊳ (s, t) iff there is n ∶ ℕ with (s, t) ∈ Sn.

Then Sn can be encoded as set-level functions f n
S
∶= {(�, S),… , (n, Sn)} that are indeed

recognised by the model M as correct approximations:

Lemma​ 37   For every n ∶ ℕ we have M ⊨ f n
S
≫ n.

Proof  In this proof we work inside of M to simplify intermediate statements. For the
first conjunct, we need to show that (�, S) ∈ f n

S
 which is straightforward since (�, S) ∈ f 0

S

and f m
S
⊆ f n

S
 whenever m ≤ n . Regarding the second conjunct, we assume (k,B) ∈ f n

S

with k ∈ n and need to show (k ∪ {k}, S⊠B) ∈ f n
S
 . From (k,B) ∈ f n

S
 we obtain that there

is m with k = m and B = Sm . Then from m ∈ n and hence m < n we deduce that also
(m + 1, Sm+1) ∈ f n

S
 . The claim follows since m + 1 = k ∪ {k} and

using that ⊠ on lists respectively sets interacts well with string encodings. 	� ◻

With these lemmas in place, we can now conclude the first part of the semantic
verification.

Sm+1 = S⊠ Sn = S⊠ Sn = S⊠B

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_ZF.html#numeral_omega
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_ZF.html#derivable_derivations
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_ZF.html#enc_derivations_solutions

	 D. Kirst, M. Hermes

1 3

13  Page 16 of 31

Fact 38   If ��� S then �′ ⊨ 𝜑S.

Proof  Assuming ��� S , there are s ∶ �(�) and n ∶ ℕ with (s, s) ∈ Sn using Lemma 36. Now
to prove �′ ⊨ 𝜑S we assume M ⊨ �′ and need to show M ⊨ 𝜑S . Instantiating the leading
existential quantifiers of �S with n , f n

S
 , Sn , and s leaves the following facts to verify:

•	 M ⊨ n ∈ 𝜔 , immediate by (i) of Lemma 35.
•	 Functionality of f n

S
 , straightforward by construction of f n

S
.

•	 M ⊨ f n
S
≫ n , immediate by Lemma 37.

•	 M ⊨ (n, Sn) ∈ f n
S  , again by construction of f n

S
.

•	 M ⊨ (s, s) ∈ Sn , by the assumption (s, s) ∈ Sn . 	� ◻

For the converse direction, we again need to restrict to models M only containing
standard natural numbers, i.e. satisfying that any k ∈ � is the numeral k = n for some
n ∶ ℕ . Then the internally recognised solutions correspond to actual external solutions
of ���.

Lemma​ 39   If in a standard model M there is a functional approximation f ≫ k for k ∈ �
with (k,B) ∈ f  , then for all p ∈ B there are s, t ∶ �(�) with p = (s, t) and S ⊳ (s, t).

Proof  Since M is standard, there is n ∶ ℕ with k = n , so we have f ≫ n and (n,B) ∈ f  .
In any model with f ≫ n we can show that (k, Sk) ∈ f by induction on k, so in particular
(n, Sn) ∈ f in M . But then by functionality of f it must be B = Sn , so for any p ∈ B we actu-
ally have p ∈ Sn for which it is easy to extract s, t ∶ �(�) with p = (s, t) and (s, t) ∈ Sn .
We then conclude S ⊳ (s, t) with Lemma 36. 	� ◻

Fact 40   Every standard model M ⊨ �′ with M ⊨ 𝜑S yields ��� S.

Proof  A standard model of �′ with M ⊨ 𝜑S yields a functional approximation f ≫ k for
k ∈ � with some (k,B) ∈ f and (x, x) ∈ B . Then by Lemma 39 there are s, t ∶ �(�) with
(x, x) = (s, t) and S ⊳ (s, t) . By the injectivity of ordered pairs and string encodings ((iv) of
Lemma 35) we obtain s = t and thus S ⊳ (s, s) . 	� ◻

Finally, we just record the fact that the semantic argument in Fact 40 can be repeated
deductively with an analogous intermediate structure.

Fact 41   If ��� S then �′ ⊢ 𝜑S.

With the three facts verifying �S , we conclude reductions as follows:

Theor​em 42   We have the following reductions.

•	 ��� ⪯ �� , provided a standard model of �′ exists.
•	 ��� ⪯ � , provided a standard model of � exists.
•	 ��� ⪯ �� , provided a standard model of �� exists.

Proof  By Facts 38, 40 and 41 as well as Strategy 10. 	� ◻

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_ZF.html#PCP_ZF1
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_ZF.html#M_solutions_el
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_ZF.html#PCP_ZF2
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_ZFD.html#PCP_ZFD
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#undec_Z’

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 17 of 31  13

In a previous paper [23] based on Aczel’s sets-as-trees interpretation [1, 3, 48], we ana-
lyse assumptions necessary to obtain models of higher-order set theories in Coq’s type the-
ory. The two relevant axioms concerning the type T of well-founded trees can be formu-
lated as the extensionality of classes, i.e. unary predicates, on trees ( �� ), and the existence
of a description operator for isomorphism classes [t]≈ of trees ( ��):

Then Theorem 42 can be reformulated as follows.

Corol​lary 43   Assuming �� implies both ��� ⪯ �� and ��� ⪯ � , and assuming both ��
and �� implies ��� ⪯ ��.

Proof  By Fact 5.4 and Theorem 5.9 of [23] �� and �� ∧ �� yield models of higher-order
Z and ZF set theory, respectively. It is easy to show that they are standard models and sat-
isfy the first-order axiomatisations � and �� . 	� ◻

Note that assuming �� to obtain a model of higher-order Z is unnecessary if we
allow the interpretation of equality by any equivalence relation congruent for member-
ship, backed by the fully constructive model given in Theorem 4.6 of [23]. This variant is
included in the Coq devel​opment but we focus on the simpler case of extensional models
in this text.

By these reductions, we can conclude the incompleteness of ��.

Theor​em 44   Assuming ��� , completeness of any extension A ⊇ �′ satisfied by a stand-
ard model would imply the decidability of the halting problem.

Proof  By Corollary 43, Strategy 10, Fact 9, and the reductions verified in [10]. 	� ◻

In principle, it should be possible to derive a constructive version of Theorem 44 using
the same technique as in Theorem 34. However, the reduction formula �S we use for the
undecidability of set theory is much more complex than the one for Peano arithmetic and
not immediately in the necessary syntactic fragment applicable to the Friedman translation.
We therefore leave a constructivisation of Theorem 44 as future work.

7 � ZF Set Theory without Skolem Functions

We now work in the signature Σ̃ ∶= (_ ≡ _, _ ∈ _) only containing equality and mem-
bership. To express set theory in this syntax, we refor​mulat​e the axioms specifying the
Skolem symbols used in the previous signature Σ to just assert the existence of respective
sets, for instance:

𝖢𝖤 ∶= ∀(P,P� ∶ T → ℙ). (∀t.P t ↔ P� t) → P = P�

𝖳𝖣 ∶= ∃(� ∶ (T → ℙ) → T).∀P. (∃t.P = [t]≈) → P (� P)

� ∶ ∀x. x ∉ � ⇝ ∃u.∀x. x ∉ u

P(x) ∶ ∀xy. (y ∈ P(x) ↔ y ⊆ x) ⇝ ∀x.∃u.∀y. (y ∈ u ↔ y ⊆ x)

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#CE_undec_Z’
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#refined_undec_Z’
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#incompleteness_ZF
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.minZF.html#ax_ext’

	 D. Kirst, M. Hermes

1 3

13  Page 18 of 31

In this way we obtain axiomatisations �̃′ , �̃ , and �̃� as the respective counterparts of �′ ,
� , and �� . In this section, we show that these symbol-free axiomatisations admit the same
reduction from ���.

Instead of reformulating the reduction given in the previous section to the smaller
signature, which would require us to replace the natural encoding of numbers and
strings as terms by a more obscure construction, we define a general translation 𝜑̃ ∶ �Σ̃
of formulas � ∶ �Σ . We then show that ��′ ⊨ 𝜑̃ implies �′ ⊨ 𝜑 (Fact 48) and that �′ ⊢ 𝜑
implies �̃′ ⊢ 𝜑̃ (Fact 51), which is enough to deduce the undecidability of �̃′ , �̃ , and �̃�
(Theorem 52).

The informal idea of the translation function is to replace terms t ∶ �Σ by formulas
𝜑t ∶ �Σ̃ characterising the index �0 to behave like t, for instance:

The formula expressing P(t) first asserts that there is a set satisfying �t (where the substitu-
tion ↑n shifts all indices by n) and then characterises �0 (appearing as �2 given the two quan-
tifiers) as its power set. Similarly, formulas are translated by descending recursively to the
atoms, which are replaced by formulas asserting the existence of characterised sets being in
the expected relation, for instance:

We now verify that the translation 𝜑̃ satisfies the two desired facts, starting with the easier
semantic implication. To this end, we denote by M̃ the Σ̃-model obtained from a Σ-model
M by forgetting the interpretation of the function symbols not present in Σ̃ . Then for a
model M ⊨ �′ , satisfiability is preserved for translated formulas, given that the term char-
acterisations are uniquely satisfied over the axioms of �′:

Lemma​ 45   x = 𝜌̂ t iff (x;𝜌) ⊨M̃ 𝜑t in all models M ⊨ �′.

Proof  By induction on t with x generalised. We consider the cases �n and ∅:

•	 We need to show x = 𝜌̂ �n iff (x;𝜌) ⊨M̃ �0 ≡ �n+1 which is immediate by definition.
•	 First assuming x = � , we need to show that ∀y. y ∉ x , which is immediate since M

satisfies the empty set axiom. Conversely assuming ∀y. y ∉ x yields x = � by using
the extensionality axiom also satisfied by M . 	� ◻

Lemma​ 46   𝜌 ⊨M 𝜑 iff 𝜌 ⊨M̃ 𝜑̃ in all models M ⊨ �′.

Proof  By induction on � with � generalised, all cases but atoms are directly inductive. Con-
sidering the case t ∈ t� , we first need to show that if 𝜌̂ t ∈ 𝜌̂ t� , then there are x and x′ with
x ∈ x� satisfying �t and �t′ , respectively. By Lemma 45 the choice x ∶= 𝜌̂ t and x� ∶= 𝜌̂ t� is
enough. Now conversely, if there are such x and x′ , by Lemma 45 we know that x = 𝜌̂ t and
x� = 𝜌̂ t� and thus conclude 𝜌̂ t ∈ 𝜌̂ t� . The case of t ≡ t′ is analogous. 	� ◻

Then the semantic implication follows since pruned models M̃ satisfy �̃′:

Lemma​ 47   If M ⊨ �′ then �M ⊨ ��′.

𝗑n ⇝ 𝗑0 ≡ 𝗑n+1 � ⇝ ∀ 𝗑0 ∉ 𝗑1 P(t) ⇝ ∃𝜑t[𝗑0; ↑
2] ∧ ∀ 𝗑0 ∈ 𝗑2 ↔ 𝗑0 ⊆ 𝗑1

t ∈ t� ⇝ ∃�t[𝗑0; ↑
2] ∧ ∃�t� [𝗑0; ↑

3] ∧ 𝗑1 ∈ 𝗑0

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_minZF.html#rm_const_tm_sat
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_minZF.html#rm_const_sat
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_minZF.html#min_axioms’

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 19 of 31  13

Proof  We only need to consider the axioms concerned with set operations, where we
instantiate the existential quantifiers introduced in �̃′ with the respective operations avail-
able in M . For instance, to show �M ⊨ ∃u.∀x. x ∉ u it suffices to show that ∀x. x ∉ � in M̃ ,
which is exactly the empty set axiom satisfied by M . 	� ◻

Fact 48   ��′ ⊨ 𝜑̃ implies �′ ⊨ 𝜑.

Proof  Straightforward by Lemmas 47 and 46. 	� ◻

We now turn to the more involved deductive verification of the translation, beginning
with the fact that �̃′ proves the unique existence of sets satisfying the term characterisa-
tions of terms t ∶ � in the set-theoretic signature:

Lemma​ 49   For all t ∶ � we have ��� ⊢ ∃𝜑
t
 and �𝖹� ⊢ 𝜑

t
[x] → 𝜑

t
[x�] → x ≡ x

�.

Proof  Both claims are by induction on t, the latter with x and x′ generalised. The
former is immediate for variables and ∅ , so here we just discuss the case of P(t) .
By induction we know ��� ⊢ ∃𝜑

t
 yielding a set x simulating t and need to show

�𝖹� ⊢ ∃∃𝜑
t
[𝗑

0

; ↑2] ∧ ∀ 𝗑
0

∈ 𝗑
2

↔ 𝗑
0

⊆ 𝗑
1

 . After instantiating the first quantifier with the
set u guaranteed by the existential power set axiom for the set x and the second quantifier
with x itself, it remains to show �t[x] and ∀ 𝗑0 ∈ u ↔ 𝗑0 ⊆ x which are both straightfor-
ward by the choice of x and u.

The second claim follows from extensionality given that the characterisation �t specifies
its satisfying sets exactly by their elements. So in fact the axioms concerning the set opera-
tions are not even used in the proof of uniqueness. 	� ◻

During translation, term can be simulated by variables:

Lemma​ 50   For all � ∶ � and t ∶ � we have �𝖹� ⊢ 𝜑
t
[x] → (𝜑̃[x] ↔ �𝜑[t]).

Proof  By induction on � , all cases but the atoms are straightforward, relying on the fact
that the syntax translation interacts well with variable renamings in the quantifier cases.
The proof for atoms relies on a similar lemma for terms stating that �s[y;x] and �s[t][y] are
interchangeable whenever �t[x] , the rest is routine. 	� ◻

This is the main ingredient to verify the desired proof transformation:

Fact 51   �′ ⊢ 𝜑 implies ��′ ⊢ 𝜑̃.

Proof  We prove the more general claim that Γ++�� ⊢ 𝜑 implies �Γ++�̃� ⊢ 𝜑̃ by induction
on the first derivation. All rules but the assumption rule (a), ∀-elimination (ae), and ∃-elim-
ination (ee) are straightforward, we explain the former two.

•	 If � ∈ Γ++�� , then either � ∈ Γ or � ∈ �� . In the former case we have 𝜑̃ ∈ Γ̃ , so
Γ̃++��� ⊢ 𝜑̃ by (a). Regarding the latter case, we can verify ��′ ⊢ 𝜑̃ for all � ∈ �� by
rather tedious derivations given the sheer size of some axiom translations.

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_minZF.html#ZF_to_minZF
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_minZF.html#rm_const_tm_prv
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_minZF.html#rm_const_fm_swap
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_minZF.html#rm_const_prv

	 D. Kirst, M. Hermes

1 3

13  Page 20 of 31

•	 If Γ++�� ⊢ 𝜑[t] was derived from Γ++�� ⊢ ∀𝜑 , then by the inductive hypothesis we
know Γ̃++��� ⊢ ∀ 𝜑̃ . Given Lemma 49 we may assume �t[x] for a fresh variable x. Then
by instantiating the inductive hypothesis to x via (ae) we obtain Γ̃++��� ⊢ 𝜑̃[x] and con-
clude the claim Γ̃++��� ⊢ �𝜑[t] with Lemma 50. 	� ◻

Now we obtain the undecidability of the symbol-free axiomatisations.

Theor​em 52   Assuming �� implies both ��� ⪯ �̃� and ��� ⪯ �̃ , and assuming both ��
and �� implies ��� ⪯ �̃�.

Proof  As Strategy 10, using Facts 48 and 51 and the reduction from Sect. 6. 	� ◻

Note that Fact 51 almost yields deductive conservativity, i.e. the fact that if �′ proves
a symbol-free formula over Σ̃ then so does �̃′ . The missing lemma is that from �̃′ such a
formula � is provably equivalent to its translation 𝜑̃ (after tacitly embedding � into the full
signature Σ):

Lemma​ 53   �𝖹′ ⊢ 𝜑 ↔ 𝜑̃ for all � over Σ̃.

Proof  By induction on � , all composite cases are trivial. For the atom x ∈ y , we have to
show its equivalence to ∃x�. x ≡ x� ∧ ∃y�. y ≡ y� ∧ x ∈ y , similarly for x ≡ y . 	� ◻

We can then record conservativity results as follows:

Fact 54   If �′ / � / �� proves a formula � over Σ̃ , then so does �̃′ / �̃ / �̃�.

Proof  First let �′ ⊢ 𝜑 . Then by Fact 51 we have ��′ ⊢ 𝜑̃ and thus ��′ ⊢ 𝜑 by Lemma 53.
If we instead suppose � ⊢ 𝜑 , we have in particular ��++Γ ⊢ 𝜑 , where Γ contains

finitely many instances of the separation scheme. Then by the generalised goal used in the
proof of Fact 51 also ���++Γ̃ ⊢ 𝜑̃ and therefore ���++Γ̃ ⊢ 𝜑 again using Lemma 53. We
hence conclude �� ⊢ 𝜑 since every translated instance of separation for a formula � can be
proved from the respective instance for 𝜓̃ available in �̃.

The case for �� is analogous by further decomposing into the finitely many used
instances of the replacement scheme. 	� ◻

For the sake of completeness, we also establish the converse directions. To this end, we
first verify a deductive counterpart of Lemma 47:

Lemma​ 55   �′ ⊢ ��′ , i.e. �′ proves every axiom from �̃′ (embedded into Σ).

Proof  By instantiating every existentially formulated axiom from �̃′ with the respective
symbol available in �′ . 	� ◻

Fact 56   If �̃′ / �̃ / �̃� proves a formula � over Σ̃ , then so does �′ / � / ��.

Proof  If ��′ ⊢ 𝜑 , we obtain the same deduction if we consider both �̃′ and � embedded into
the full signature. Then by Lemma 55 we can conclude that �′ ⊢ 𝜑.

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#undec_minZ’
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.ZF_conservativity.html#loop_deductive
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.ZF_conservativity.html#conservativity_ZF’
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.ZF_conservativity.html#embed_ZF’
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.ZF_conservativity.html#conservativity_back_ZF’

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 21 of 31  13

The respective results for �̃ and �̃� follow by similar decompositions regarding the
axiom schemes as used in the proof of Fact 54. 	� ◻

Note that in the absence of unique choice there is no direct proof for semantic conserva-
tivity, i.e. the fact that if �′ validates a symbol-free formula over Σ̃ then so does �̃′ , since
this would involve constructing a Σ-model from a Σ̃-model only existentially exhibiting the
set operations.

We conclude this section with a brief observation concerning the further reduced sig-
nature Σ̌ ∶= (_ ∈ _) , full detail can be found in the Coq development. Since equality is
expressible by x ≡ y ∶= ∀z. x ∈ z ↔ y ∈ z , we can rephrase the above translation to yield
formulas 𝜑̌ ∶ �Σ̌ satisfying the same properties as stated in Facts 48 and 51 for a corre-
sponding axiomatisation �̌′ . Moreover, since �̌′ does not refer to primitive equality, we can
freely interpret it with the fully constructive model given in Theorem 4.6 of [23] and there-
fore obtain ��� ⪯ �̌� without assumptions. This allows us to deduce the undecidability of
the Entscheidungsproblem in its sharpest possible form:

Theor​em 57   FOL with a single binary relation symbol is undecidable.

Proof  By Fact 11 and the reduction ��� ⪯ �̌� . 	� ◻

8 � Finitary Set Theories

In this section, we consider various finitary set theories, i.e. axiomatisations of set the-
ory that do not guarantee infinite sets or do even refute their existence. Given our setting,
the undecidability and incompleteness of such systems can be established either by indi-
rectly reducing from set theories such as �′ or by modifying the direct reduction function
��� ⪯ �� . We discuss both of these strategies where applicable.

A first way to axiomatise finite set theory is to work in the full signature used in Sect. 6
and simply leave the set � unspecified. Then on top, one can add an axiom ruling out any
inductive sets like � , i.e. sets containing ∅ and being closed under successors x ∪ {x}.

•	 ��′ denotes �′ without the axioms specifying � as the least inductive set.
•	 ��� + ¬��� denotes ��′ plus the axiom that no set is inductive.

That ��′ as a mere subset of �′ is undecidable follows immediately by Fact 12:

Fact 58   �� ⪯ ��� and therefore, provided �� , also ��� ⪯ ���.

Proof  By (2) of Fact 12 and Corollary 43. 	� ◻

However, this direct result is unsatisfactory by the reliance on the extensional standard
model T of �′ requiring �� and containing infinite sets. So in order to show ��� + ¬���
undecidable and dispense with �� , we have to rework the reduction ��� ⪯ �� from Sect. 6
to avoid mention of � such that the constructive model of hereditarily finite sets [39] can
be employed.

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Axiomatisations.html#undec_valid
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.ZF_to_HF.html#reduction_entailment

	 D. Kirst, M. Hermes

1 3

13  Page 22 of 31

In this model, the numerals are exactly the hereditarily transitive sets (i.e. sets x that
are transitive, meaning y ⊆ x for all y ∈ x , and every element of x is transitive, written
��(x) ), allowing us to modify the reduction formula �S given a ���-instance as follows:

Note that the bound k ∈ � was only used to express that k is a natural number such that (at
least in standard models) the approximation f ≫ k corresponds to a faithful accumulation
of ���-solutions. This bound can be replaced by any defining property of numerals in the
intended model and in the present case, ��(x) is particularly easy to express.

By according modification of the proofs for �S we can verify the new reduction �S
with respect to all standard models, i.e. models where every hereditarily transitive set is
a numeral:

Lemma​ 59   The following facts about �S hold:

1.	 If ��� S then ��′ ⊨ 𝜓S.
2.	 Every standard model M ⊨ ��′ with M ⊨ 𝜓S yields ��� S.
3.	 ��� S then ��′ ⊢ 𝜓S.

Proof  Analogous to Facts 38, 40 and 41, using the fact that ��(n) for all n ∶ ℕ . 	� ◻

Following the construction from [39], adopted more recently for, [22], a model T2
of ��′ can be obtained by taking the inductive type of binary trees quotiented by tree
equivalence and implementing the set operations by suitable tree manipulations. In par-
ticular, this model is standard in the above sense and does not contain inductive sets:

Lemma​ 60   T2 is a standard model of ��� + ¬���.

Proof  To establish that T2 is standard, we show that for every x ∶ T2 we can compute a
number nx ∶ ℕ such that x = nx . By induction on the well-foundedness of x we may assume
that every element y ∈ x is a numeral ny . Since x is finite, we can compute a bound n such
that ny < n for all y ∈ x . Then we can obtain that x is a numeral (and in fact compute nx )
since x is a transitive subset of the numeral n by induction on n.

Regarding the second claim, suppose x were inductive. By finiteness of x we obtain the
cardinality N of distinct elements in x. But since x is inductive, it must contain the set of
the first N + 1 numerals that are distinct by construction, yielding a contradiction. 	� ◻

So we can conclude the undecidability of ��′ and ��� + ¬��� as usual:

Theor​em 61   ��� ⪯ ��� and ��� ⪯ ��� + ¬���.

Proof  By applying Strategy 10 to Lemmas 59 and 60. 	� ◻

An alternative, more incisive formulation of finitary set theory just axiomatises the
empty set in addition to the adjunction operation {x} ∪ y (usually definable from union
and pairing) [20], i.e. we work in the signature

𝜑S ∶= ∃k, f ,B, x. k ∈ 𝜔 ∧ f ≫ k ∧… ⇒ 𝜓S ∶= ∃k, f ,B, x.𝖧𝖳(k) ∧ f ≫ k ∧…

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_HF.html
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.HF_model.html#HFN_model
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.ZF_undec.html#undecidable_entailment_HF

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 23 of 31  13

where the term x.y is enforced to behave like {x} ∪ y by the axiom

Moreover, to rule out infinite sets, one can require an induction scheme on top:

•	 �� denotes the axioms characterising ∅ and x.y as well as extensionality.
•	 �� + ��� denotes �� plus all intances of the induction scheme.

We again begin with the indirect argument to establish undecidability of the core axio-
matisation �� still compatible with �′ . First note that, while the usual ZF-operations can
define adjunction, the converse does not hold since the ZF-operations are strictly stronger
on infinite models. We can therefore not directly translate formulas in the ZF-signature to
the new signature Σ�� . Instead, the translation has to go through the function-free signature
Σ̃ ∶= (_ ≡ _, _ ∈ _) used in Sect. 7, reusing the verified translation 𝜑̃.

Fact 62   ��� ⪯ ��

Proof  We use the reduction formula 𝜑𝖯𝖲
S

∶=
⋀ �𝖹� → 𝜑

S
 tacitly embedding the translated

formulas from �̃′ and 𝜑S in Σ̃ into the signature Σ�� . Then the sufficient facts are that ��� S
implies �� ⊢ 𝜑��

S
 and that �� ⊨ 𝜑��

S
 implies ��� S.

Regarding the former, from ��� S we obtain ��′ ⊢ 𝜑
S
 from Facts 51 and 41. So in par-

ticular ⊢
⋀ �𝖹′ → 𝜑

S
 and by weakening (and correctness of the tacit embedding) �� ⊢ 𝜑��

S
.

Regarding the latter, suppose �� ⊨ 𝜑��
S

 . The (intensional) standard model T from
Facts 38 interprets the full ZF-signature, so in particular Σ�� and the axioms of �� . We
therefore obtain that T ⊨ 𝜑��

S
 . Then by Lemmas 46 and 47 we can deduce that T (now

equipped with the full ZF-structure again) satisfies �S and conclude ��� S with Fact 40. 	
� ◻

As with Fact 58 before, this indirect method does not extend to the axiomatisation
�� + ��� , which is not satisfied by the standard model T  . We therefore sketch the direct
reduction from ��� obtained by further modifying the formula �S , full detail is given in
the Coq forma​lisat​ion.

First, the encodings of numbers and strings is mostly unaffected since the adjunction
operation is exactly the natural successor function and can define unordered pairs {x, y} by
x.y.∅ , from which we obtained the ordered pairs used for strings. Secondly, the only other
usage of a ZF-function in �S is the (binary) union used to implement the operation S⊠B
recursively, which can be replaced by any set enforced to behave accordingly. Thus we
obtain a formula ���

S
 in the signature Σ�� that we can verify to capture ��� as usual:

Lemma​ 63   The following facts about ���
S

 hold:

1.	 If ��� S then �� ⊨ 𝜓��
S

.
2.	 Every standard model M ⊨ �� with M ⊨ 𝜓��

S
 yields ��� S.

Σ�� ∶= (�, _._ ; _ ≡ _, _ ∈ _)

∀z. z ∈ x.y ↔ z ≡ x ∨ z ∈ y.

��.�[�] → (∀xy.�[x] → �[y] → �[x.y]) → ∀x.�[x]

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.ZF_to_FST.html
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_FST.html
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.PCPb_to_FST.html

	 D. Kirst, M. Hermes

1 3

13  Page 24 of 31

3.	 If ��� S then �� ⊢ 𝜓��
S

.

Proof  Analogous to Lemma 59 with the expectable differences regarding the altered data
encodings and the elimination of binary unions. 	� ◻

Lemma​ 64   T2 is a standard model of �� + ���.

Proof  That T2 is standard was already part of Lemma 60 and that it models �� was shown
in [40]. They also established the higher-order induction principle

which is easily seen to entail the first-order induction scheme. 	� ◻

Theor​em 65   ��� ⪯ �� and ��� ⪯ �� + ���.

Proof  By applying Strategy 10 to Lemmas 63 and 64. 	� ◻

We conclude with a formulation of �� in the binary signature Σ̌ ∶= (_ ∈ _) introduced
in Sect. 7. As done with �′ to obtain �̌′ , we can replace the two axioms from �� specifying
∅ and x.y by existentially quantified versions, express equality via membership, and hence
obtain the axiomatisation �̌� over Σ̌ . This is a particularly compact system showing a single
binary relation symbol undecidable, by virtue of the following reduction:

Fact 66   �̌� ⪯ �̌� and thus also ��� ⪯ �̌�.

Proof  To obtain �̌� ⪯ �̌� we use (1) of Fact 12, so we have to show �̌′ ⊢ �̌� . The only
axiom of �̌� not already present in �̌′ is the existential specification of adjunction, which
can be established by the existential specification of union and pairing available in �̌′ . The
full reduction ��� ⪯ �̌� is obtained by composition with the reduction ��� ⪯ �̌� underly-
ing Theorem 57. 	� ◻

9 � Abstract Undecidability and Incompleteness

We conclude the technical part of this paper by isolating the synthetic arguments underly-
ing Fact 9 and Strategy 10, abstracting from the concrete formalism of FOL. This abstrac-
tion is in the spirit of Popescu and Traytel’s [31] analysis of the abstract preconditions
for Gödel’s two incompleteness theorems. Given our computational approach, much less
internal structure like substitution or numerals needs to be assumed, at the cost of essential
incompleteness and Gödel’s second incompleteness theorem remaining out of reach.

Overwriting all notation from before, our base setup is to assume an arbitrary discrete
type � representing formulas as well as an enumerable predicate 𝜆𝜑 ∶ � . ⊢ 𝜑 considered
the provable formulas. We do not have to commit to � only containing a specific sort of for-
mulas (e.g. the closed formulas) or to ⊢ being defined over a particular context (e.g. an axi-
omatisation of arithmetic) or coming in a specific flavour (e.g. intuitionistic or classical).

If we add a reasonably well-behaved negation operation, we obtain an abstract version
of the fact that negation-completeness implies decidability:

∀P ∶ T2 → ℙ.P � → (∀xy.P x → P y → P (x.y)) → ∀x.P x

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.FST_model.html#FSTI_model
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.FST_undec.html
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Reductions.binZF_to_binFST.html#reduction_entailment

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 25 of 31  13

Fact 67   We assume a negation operation ¬ ∶ � → � as follows:

•	 Discriminability: given � it is decidable if � is a negation ¬� for some �.
•	 Injectivity: we have � = � whenever ¬� = ¬�.
•	 Consistency: there is no � with both ⊢ 𝜑 and ⊢ ¬𝜑.

Then if ⊢ is complete (i.e. either ⊢ 𝜑 or ⊢ ¬𝜑 for all � ), then it is decidable.
Proof  As in the proof of Fact 9 we use Post’s theorem, leaving us to show logical decid-
ability and co-enumerability of provability (given enumerability by assumption):

•	 Given � , to (logically) decide whether ⊢ 𝜑 or ⊬ 𝜑 is the case, we analyse complete-
ness for � . In the non-trivial case where ⊢ ¬𝜑 we obtain ⊬ 𝜑 by consistency.

•	 For co-enumerability, by completeness and consistency it suffices to enumerate
𝜆𝜑. ⊢ ¬𝜑 instead of 𝜆𝜑. ⊬ 𝜑 . This is obtained by the enumerator of ⊢ , using dis-
criminability to check for each � if it is a negation, and injectivity for the correctness
proof. 	� ◻

If instead of a negation operation we add an abstract notion of (standard) models, we
obtain an abstract undecidability result analogous to Strategy 10:

Fact 68   We assume a type � of models together with the following data:

•	 Satisfaction: a relation M ⊨ 𝜑 inducing validity ⊨ 𝜑 as M ⊨ 𝜑 for all M.
•	 Soundness: all provable formulas are valid, i.e. ⊢ 𝜑 implies ⊨ 𝜑.
•	 Standardness: a predicate S ∶ 𝕄 → ℙ with at least one standard model SM.

If we further assume P ∶ X → ℙ and F ∶ X → � satisfying

•	 Whenever P x holds, we have a derivation ⊢ F x , and
•	 Whenever M ⊨ F x in a standard model SM , we obtain P x,

then the function F induces reductions P ⪯ (𝜆𝜑. ⊢ 𝜑) and P ⪯ (𝜆𝜑. ⊨ 𝜑).
Proof  The assumed standard model justifies that P x whenever ⊨ F x . We hence obtain the
two reductions, with soundness used for the missing directions.	� ◻

Note that if we extend the setting of Fact 68 with the negation operation from
Fact 67, we arrive at the conclusion that completeness of ⊢ would entail the decidability
of P.

It is easy to instantiate Fact 68 to obtain Strategy 10 concerning first-order axiomati-
sations B . We simply let � be the first-order formulas, ⊢ the formulas (intuitionistically)
provable from B , and � be the type of first-order models M with environments � such that
𝜌 ⊨ B . Then the remaining assumptions of Strategy 10 imply the assumptions of Fact 68.

Slightly more involved (at least on mechanisation level) is the insta​ntiat​ion of Fact 68
to Fact 9, since this time we pick � as the type of closed first-order formulas, to which
we have to adopt the negation operation and the (classical) deduction system as well as
the discreteness and enumerability proofs for arbitrary formulas.

Although these comments only show the applicability of our abstract analysis to the
case of first-order logic as examined in this paper, we remark that Facts 67 and 68 could

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Abstract.html#completeness_decidable
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Abstract.html#reduction_provable
https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/Undecidability.FOL.Util.Abstract.html#abstr_complete_decidable

	 D. Kirst, M. Hermes

1 3

13  Page 26 of 31

as well be instantiated to extended formalisms such as second- or higher-order logic, or
systems based on completely different primitives such as dependent type theories.

10 � Discussion

10.1 � General Remarks

In this paper, we have described a synthetic approach to the formalisation and mechanisa-
tion of undecidability and incompleteness results in first-order logic. The general approach
was then instantiated to case-studies concerned with arithmetical theories in the family of
�� as the typical systems considered in the investigation of incompleteness, and with vari-
ous formulations of set theory as one of the standard foundations of mathematics. The cho-
sen strategy complements the considerably harder to mechanise proofs relying on Gödel
sentences, and for �� the choice of ��� as seed problem instead of �10 or �� itself is a
slight simplification since only a single recursion needs to be simulated. We use this section
for some additional remarks based on the helpful feedback by the anonymous reviewers.

As formally stated in Definition 8, we only consider incompleteness as a property of
the classical deduction system. This is simply owing to the fact that much of the literature
on incompleteness seems focused on classical logic, with a notable exception of the more
agnostic treatment in [32]. Although perhaps weaker in general, incompleteness of the
intuitionistic deduction system can also be considered a meaningful property and follows
in an analogous way. Concretely, a corresponding version of Fact 9 holds for the intuition-
istic notion, yielding variants of Theorems 27 and 44 provable without ��� . Employing
the negative translation, incompleteness of classical systems could then be considered from
the perspective of intuitionistic systems.

In alignment with [11] but in contrast to [15], we define semantic entailment T ⊨ 𝜑
without restricting to classical models, i.e. models that satisfy all first-order instances of
��� . In our constructive meta-theory this relaxation is necessary to be able to use the
standard models of �� and �� , which would only be classical in a classical meta-theory.
Leaving T ⊨ 𝜑 in this sense constructively underspecified seems like a reasonable trade for
a more economical usage of ���.

Similarly, we leave it underspecified whether �� and �� are seen as classical theories
or their intuitionistic counterparts, namely Heyting arithmetic and a variant of intuition-
istic set theory, respectively. By the choice not to distinguish these explicitly by ��� as a
first-order axiom scheme, we leave it to the deduction system to discriminate between both
views while the Tarski-style semantics leans towards the classical interpretation (especially
in the presence of ��� ). For simplicity, we decided to only speak of �� and �� in the main
body of the text, especially since a discussion of intuitionistic set theories would involve
choosing a particular system. While ��� is an extension of �′ close to �� with collection
instead of replacement, the more predicative ��� does not have power sets as included in
�′.

10.2 � Coq Mechanisation

Our axiom-free mecha​nisat​ion contributes about 10k lines of code (loc) to the Coq Library
of Undecidability Proofs [13], on top of about 1500loc that could be reused from previous
developments [15, 23]. Remarkably, the axiomatisation, undecidability, and incompleteness

https://www.ps.uni-saarland.de/extras/axiomatisations-ext/website/toc.html

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 27 of 31  13

of �� add up to only 800loc, while already the initial reduction from ��� to �� in the skol-
emised signature is above 1800loc. The remaining development is mostly concerned with
the signature reduction for �� (2500loc) and the material on finitary set theories (3000loc).
Both contain files with very similar proofs, especially the reduction files for �′ and ��′
are nearly identical and therefore it should be possible to reduce the development size by
reorganisation (at the cost of a less transparent presentation). The abstract development
outlined in Sect. 9 is below 300loc, including the instantiation to FOL.

Our mechanisation of first-order logic unifies ideas from previous versions [11, 15, 22]
and is general enough to be reused in other use cases. Notably, we refrained from including
equality as a syntactic primitive to treat both intensional and extensional interpretations
without changing the underlying signature. On the other hand, with primitive equality,
the extensionality of models would hold definitionally and the deduction system could be
extended with the Leibniz rule, making the additional axiomatisation of equality obsolete.

Furthermore, manipulating deductive goals of the form Γ ⊢ 𝜑 benefitted a lot from
custom tactics, mostly to handle substitution and the quantifier rules. The former tactics
approximate the automation provided by the Autosubst 2 framework unfortunately relying
on functional extensionality [42] and the latter are based on the named reformulations of
(ai) and (ee) given in Sect. 2.3. We are currently working on a more scalable proof mode
for deductive goals including a HOAS input language hiding de Bruijn encodings [19],
implementing a two-level approach in comparison to the one-level compromise proposed
by Laurent [26].

10.3 � Related Work

We report on other mechanisations concerned with incompleteness and undecidabil-
ity results in first-order logic. Regarding the former, a fully mechanised proof of Gödel’s
first incompleteness theorem was first given by Shankar [37] using the Nqthm prover.
O’Connor [29] implements the same result fully constructively in Coq, and Paulson [30]
provides an Isabelle/HOL mechanisation of both incompleteness theorems using the theory
of hereditarily finite sets instead of a fragment of �� . Moreover, there are several partial
mechanisations [6, 34, 38], and Popescu and Traytel [31] investigate the abstract precondi-
tions of the incompleteness theorems using Isabelle/HOL. With the independence of the
continuum hypothesis, Han and van Doorn [17] mechanise a specific instance of incom-
pleteness for �� in Lean. None of these mechanisations approach incompleteness via
undecidability.

Turning to undecidability results, Forster, Kirst, and Smolka [11] mechanise the unde-
cidability of the Entscheidungsproblem in Coq, using a convenient signature to encode
��� , and Kirst and Larchey-Wendling [22] give a Coq mechanisation of Trakhtenbrot’s
theorem [46], stating the undecidability of finite satisfiability. They also begin with a cus-
tom signature for the encoding of ��� but provide the transformations necessary to obtain
the undecidability result for the small signature containing a single binary relation symbol.
We are not aware of any previous mechanisations of the undecidability of �� or ��.

10.4 � Future Work

There are two ways how our incompleteness results (Theorems 27 and 44) could be strength-
ened. First, while we were able to eliminate the use of ��� in the case of �� (Sect. 5), it is
unclear whether the same technique applies to the concrete reduction formulas used for ��

	 D. Kirst, M. Hermes

1 3

13  Page 28 of 31

and the related systems. It might be necessary to reformulate (and streamline) the reduction
to make the argument feasible for mechanisation. Secondly, that supposed negation-complete-
ness only implies synthetic decidability of a halting problem instead of a provable contradic-
tion could be sharpened by extracting all reduction functions to a concrete model of compu-
tation like the weak call-by-value �-calculus � [12]. Then the actual contradiction of an �
-decider for �-halting could be derived.

We plan to continue the work on �� with a constructive analysis of Tennenbaum’s theo-
rem [45], stating that no computable non-standard model of �� exists. Translated to the syn-
thetic setting where all functions are computable by construction, this would mean that no
non-standard model of �� can be defined in Coq’s type theory as long as function symbols are
interpreted with type-theoretic functions. It would be interesting to investigate which assump-
tions of synthetic computability [4] are necessary to derive this observation as an actual theo-
rem inside of Coq.

Complementing Theorem 57 and Fact 66, it would be interesting to find a more elemen-
tary characterisation of an undecidable binary relation usable for the sharp formulations of the
Entscheidungsproblem and Trakhtenbrot’s theorem. This might well work without an interme-
diate axiomatisation of set theory and express an undecidable decision problem more directly.

Regarding the signature translations and conservativity results for �� discussed in Sect. 7,
it should be possible to mechanise similar results for arbitrary axiom systems with definable
extensions. Results like these would pave the way for an abstract mechanisation of undecid-
able theories as outlined by Tarski [43].

Finally, we plan to mechanise similar undecidability and incompleteness results for sec-
ond-order logic. Since second-order �� is categorical, in particular the incompleteness of any
sound and enumerable deduction system for second-order logic would then follow easily.

A Deduction Systems

Intuitionistic natural deduction Γ ⊢i 𝜑 is defined by the following rules:

The classical variant Γ ⊢c 𝜑 adds the Peirce rule ((� → �) → �) → �.

B Axioms of Set Theory

We list the �� axioms over Σ ∶= (�, {_, _},
⋃

, P(), � ; _ ≡ _, _ ∈ _):

𝜑 ∈ Γ

Γ ⊢ 𝜑
C

Γ ⊢ ⊥

Γ ⊢ 𝜑
E

Γ,𝜑 ⊢ 𝜓

Γ ⊢ 𝜑 → 𝜓
II

Γ ⊢ 𝜑 → 𝜓 Γ ⊢ 𝜑

Γ ⊢ 𝜑
IE

Γ ⊢ 𝜑 Γ ⊢ 𝜓

Γ ⊢ 𝜑 ∧ 𝜓
CI

Γ ⊢ 𝜑 ∧ 𝜓

Γ ⊢ 𝜑
CE

1

Γ ⊢ 𝜑 ∧ 𝜓

Γ ⊢ 𝜓
CE

2

Γ ⊢ 𝜑

Γ ⊢ 𝜑 ∨ 𝜓
DI

1

Γ ⊢ 𝜓

Γ ⊢ 𝜑 ∨ 𝜓
DI

2

Γ ⊢ 𝜑 ∨ 𝜓 Γ,𝜑 ⊢ 𝜃 Γ,𝜓 ⊢ 𝜃

Γ ⊢ 𝜃
DE

Γ[↑] ⊢ 𝜑

Γ ⊢ ∀𝜑
AI

Γ ⊢ ∀𝜑

Γ ⊢ 𝜑[t]
AE

Γ ⊢ 𝜑[t]

Γ ⊢ ∃𝜑
EI

Γ ⊢ ∃𝜑 Γ[↑],𝜑 ⊢ 𝜓[↑]

Γ ⊢ 𝜓
EE

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 29 of 31  13

Structural axioms
Extensionality:	� ∀xy. x ⊆ y → y ⊆ x → x ≡ y

Set operations
Empty set:	� ∀x. x ∉ �

Unordered pair:	� ∀xyz. z ∈ {x, y} ↔ x ≡ y ∨ x ≡ z

Union:	� ∀xy. y ∈
⋃

x ↔ ∃z ∈ x. y ∈ z

Power set:	� ∀xy. y ∈ P(x) ↔ y ⊆ x

Infinity:	�
(� ∈ 𝜔 ∧ ∀x. x ∈ 𝜔 → x ∪ {x} ∈ 𝜔)

∧ (∀y. (� ∈ y ∧ ∀x. x ∈ y → x ∪ {x} ∈ y) → 𝜔 ⊆ y)

Axiom schemes
Separation:	 ���.∀x.∃y.∀z. z ∈ y ↔ z ∈ x ∧ �[x]

Replacement:	 �
��. (∀xyy�.�[x, y] → �[x, y�] → y ≡ y�)

→ ∀x.∃y.∀z. z ∈ y ↔ ∃u ∈ x.�[u, z]

Equality axioms
Reflexivity:	 �∀x . x ≡ x

Symmetry:	 �∀xy . x ≡ y → y ≡ x

Transitivity:	 �∀xyz . x ≡ y → y ≡ z → x ≡ z

Congruence:	 �∀xx�yy� . x ≡ x� → y ≡ y� → x ∈ y → x� ∈ y�

The core axiomatisation �′ contains extensionality and the set operation axioms, � adds
the separation scheme, and �� also adds the replacement scheme. The equality axioms are
added when working with the deduction system or in an intensional model.

Acknowledgements  The authors want to thank Andrej Dudenhefner, Yannick Forster, Lennard Gäher,
Julian Rosemann, Gert Smolka, and the anonymous reviewers for helpful comments and suggestions.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/

	 D. Kirst, M. Hermes

1 3

13  Page 30 of 31

References

	 1.	 Aczel, P.: The type theoretic interpretation of constructive set theory. In: Macintyre, A., Pacholski, L.,
Paris, J. (eds.) Studies in Logic and the Foundations of Mathematics, vol. Vol. 96, pp. 55–66. Springer,
Heidelberg (1978)

	 2.	 Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes, Palo Alto (1988)
	 3.	 Barras, B.: Sets in Coq, Coq in sets. J. Formaliz. Reason. 3(1), 29–48 (2010)
	 4.	 Bauer, A.: First steps in synthetic computability theory. Electron. Notes Theor. Comput. Sci. 155, 5–31

(2006)
	 5.	 Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In: International Confer-

ence on Interactive Theorem Proving, 163–178. Springer, Berlin, Heidelberg (2010)
	 6.	 Bundy, A., Giunchiglia, F., Villafiorita, A., Walsh, T.: An incompleteness theorem via abstraction.

Technical Report (1996)
	 7.	 Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1(1), 40–41 (1936)
	 8.	 de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church-Rosser theorem. Indag. Math. 75(5), 381–392 (1972)
	 9.	 Doner, J., Hodges, W.: Alfred Tarski and decidable theories. J. Symb. Logic 53(1), 20–35 (1988)
	10.	 Forster, Y., Heiter, E., Smolka, G.: Verification of PCP-related computational reductions in Coq. In:

International Conference on Interactive Theorem Proving, pp. 253–269 (2018). Springer
	11.	 Forster, Y., Kirst, D., Smolka, G.: On synthetic undecidability in coq, with an application to the entsc-

heidungsproblem. In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs (2019)

	12.	 Forster, Y., Kunze, F.: A Certifying Extraction with Time Bounds from Coq to Call-By-Value Lambda
Calculus. In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive
Theorem Proving. Leibniz International Proceedings in Informatics (LIPIcs), Vol.141, pp. 17–11719.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://​doi.​org/​10.​
4230/​LIPIcs.​ITP.​2019.​17. http://​drops.​dagst​uhl.​de/​opus/​vollt​exte/​2019/​11072

	13.	 Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F., Smolka, G., Spies,
S., Wehr, D., Wuttke, M.: A Coq library of undecidable problems. In: CoqPL 2020, New Orleans, LA,
United States (2020). https://​github.​com/​uds-​psl/​coq-​libra​ry-​undec​idabi​lity

	14.	 Forster, Y.: Church’s Thesis and related axioms in Coq’s type theory. In: Baier, C., Goubault-Larrecq,
J. (Eds.) 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). LIPIcs, Vol. 183,
pp. 21–12119. Dagstuhl, Germany (2021)

	15.	 Forster, Y., Kirst, D., Wehr, D.: Completeness theorems for first-order logic analysed in constructive
type theory: extended version. J. Logic Comput. 31(1), 112–151 (2021)

	16.	 Friedman, H.: Classically and intuitionistically provably recursive functions. In: Scott, D., Muller, G.
(eds.) Higher Set Theory, pp. 21–27. Springer, Berlin (1978)

	17.	 Han, J., van Doorn, F.: A formal proof of the independence of the continuum hypothesis. In: Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
353–366 (2020)

	18.	 Hilbert, D., Ackermann, W.: Grundzüge der Theoretischen Logik. Springer, Berlin (1928)
	19.	 Hostert, J., Koch, M., Kirst, D.: A toolbox for mechanised first-order logic. In: Coq Workshop, vol.

2021 (2021)
	20.	 Kirby, L.: Finitary set theory. Notre Dame J. Form. Log. 50(3), 227–244 (2009)
	21.	 Kirst, D., Hermes, M.: Synthetic undecidability and incompleteness of first-order axiom systems in

coq. In: 12th International Conference on Interactive Theorem Proving (ITP 2021) (2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik

	22.	 Kirst, D., Larchey-Wendling, D.: Trakhtenbrot’s theorem in Coq: a constructive approach to finite
model theory. In: International Joint Conference on Automated Reasoning (IJCAR 2020), Paris,
France. Springer, Paris, France (2020)

	23.	 Kirst, D., Smolka, G.: Large model constructions for second-order ZF in dependent type theory. Certi-
fiedPrograms and Proofs—7th International Conference, CPP 2018, Los Angeles, USA, 2018 (2018)

	24.	 Kreisel, G.: Church’s thesis: a kind of reducibility axiom for constructive mathematics. In: Studies in
Logic and the Foundations of Mathematics, Vol. 60, pp. 121–150 (1970)

	25.	 Larchey-Wendling, D., Forster, Y.: Hilbert’s tenth problem in Coq. In: 4th International Conference on
Formal Structures for Computation and Deduction. LIPIcs, 131, pp. 27–12720 (2019)

	26.	 Laurent, O.: An anti-locally-nameless approach to formalizing quantifiers. In: Proceedings of the 10th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 300–312 (2021)

	27.	 Maksimović, P., Schmitt, A.: HOCore in Coq. In: International Conference on Interactive Theorem
Proving, pp. 278–293. Springer, Berlin (2015)

https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://doi.org/10.4230/LIPIcs.ITP.2019.17
http://drops.dagstuhl.de/opus/volltexte/2019/11072
https://github.com/uds-psl/coq-library-undecidability

Synthetic Undecidability and Incompleteness of First‑Order…

1 3

Page 31 of 31  13

	28.	 Myhill, J.: Some properties of intuitionistic Zermelo-Frankel set theory. In: Cambridge Summer
School in Mathematical Logic, pp. 206–231. Springer, Berlin (1973)

	29.	 O’Connor, R.: Essential incompleteness of arithmetic verified by Coq. In: Hurd, J., Melham, T. (eds.)
Theorem Proving in Higher Order Logics, pp. 245–260. Springer, Berlin (2005)

	30.	 Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. J.
Autom. Reason. 55(1), 1–37 (2015)

	31.	 Popescu, A., Traytel, D.: A formally verified abstract account of Gödel’s incompleteness theorems. In:
International Conference on Automated Deduction, pp. 442–461 (2019). Springer

	32.	 Post, E..L.: Recursively enumerable sets of positive integers and their decision problems. Bull. Am.
Math. Soc. 50(5), 284–316 (1944)

	33.	 Presburger, M..z, Jabcquette, D.: On the completeness of a certain system of arithmetic of whole num-
bers in which addition occurs as the only operation. Hist. Philos. Logic 12(2), 225–233 (1991)

	34.	 Quaife, A.: Automated proofs of Löb’s theorem and Gödel’s two incompleteness theorems. J. Autom.
Reason. 4(2), 219–231 (1988)

	35.	 Richman, F.: Church’s thesis without tears. J. Symbol. Logic 48(3), 797–803 (1983)
	36.	 Schäfer, S., Smolka, G., Tebbi, T.: Completeness and decidability of de Bruijn substitution algebra

in Coq. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, pp. 67–73. ACM,
New York, NY, USA (2015)

	37.	 Shankar, N.: Proof-checking Metamathematics, The University of Texas at Austin (1986). PhD Thesis
	38.	 Sieg, W., Field, C.: Automated search for Gödel’s proofs. In: Deduction, Computation, Experiment,

pp. 117–140. Springer, Berlin (2008)
	39.	 Smolka, G., Stark, K.: Hereditarily finite sets in constructive type theory. In: Interactive Theorem

Proving - 7th International Conference, ITP 2016, Nancy, France, August 22–27, 2016. LNCS, vol.
9807, pp. 374–390. Springer, Cham (2016)

	40.	 Smullyan, R.M., Fitting, M.: Set Theory and the Continuum Problem. Dover Publications, Mineola
(2010)

	41.	 Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha, G., Tabareau, N., Win-
terhalter, T.: The MetaCoq Project. J. Autom. Reason. 64(5), 947–999 (2020)

	42.	 Stark, K., Schäfer, S., Kaiser, J.: Autosubst 2: reasoning with multi-sorted de Bruijn terms and vec-
tor substitutions. In: International Conference on Certified Programs and Proofs, pp. 166–180 (2019).
ACM

	43.	 Tarski, A.: I: A general method in proofs of undecidability. In: Tarski, A. (ed.) Undecidable Theories.
Studies in Logic and the Foundations of Mathematics, 13, pp. 1–34 (1953)

	44.	 Team, T.C.D.: The Coq Proof Assistant, version 8.12.0. Zenodo (2020). https://​doi.​org/​10.​5281/​
zenodo.​40219​12

	45.	 Tennenbaum, S.: Non-Archimedean models for arithmetic. Not. Am. Math. Soc. 6(270), 44 (1959)
	46.	 Trakhtenbrot, B.A.: The impossibility of an algorithm for the decidability problem on finite classes.

Dokl. Akad. Nok. SSSR 70(4), 569–572 (1950)
	47.	 Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings

of the London Mathematical Society 2(1), 230–265 (1937)
	48.	 Werner, B.: Sets in types, types in sets. In: Ito, T., Abadi, M. (eds.) Theoretical Aspects of Computer

Software, pp. 530–546. Springer, Berlin (1997)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.5281/zenodo.4021912
https://doi.org/10.5281/zenodo.4021912

	Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Constructive Type Theory
	2.2 Synthetic Undecidability
	2.3 Syntax, Semantics, and Deduction Systems of FOL

	3 Undecidable and Incomplete Axiom Systems
	4 Peano Arithmetic
	5 Eliminating the Law of Excluded Middle
	6 ZF Set Theory with Skolem Functions
	7 ZF Set Theory without Skolem Functions
	8 Finitary Set Theories
	9 Abstract Undecidability and Incompleteness
	10 Discussion
	10.1 General Remarks
	10.2 Coq Mechanisation
	10.3 Related Work
	10.4 Future Work

	A Deduction Systems
	B Axioms of Set Theory
	Acknowledgements
	References

