Journal of Automated Reasoning (2022) 66:905-952
https://doi.org/10.1007/510817-022-09638-y

®

Check for
updates

From Specification to Testing: Semantics Engineering for Lua
5.2

Mallku Soldevila'® - Beta Ziliani2(® - Bruno Silvestre3

Received: 6 July 2021 / Accepted: 22 June 2022 / Published online: 11 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

We provide a formal semantics for a large subset of the Lua programming language, in its
version 5.2. The semantics is a major part of an ongoing effort to construct reliable tools
to analyze Lua code. In this work, we present the details of several key aspects of the lan-
guage, like the semantics of its only structured data-type (fables), its meta-programming
mechanism (metatables), error handling, and how these mechanisms are used to define a
complex dynamic semantics that must deal with several possible erroneous situations during
run time, given the nature of the language. The semantics is mechanized in Redex, a DSL
specially designed to specify and debug operational semantics. We validated the mechaniza-
tion in two ways: first, by executing within Redex the test suite of the reference interpreter of
Lua, and second, by specifying and performing random testing of its fundamental properties
using the redex-check tool. Together, they evidence that our model soundly captures the
semantics of the selected fragment of the language. Additionally, we address some of the
performance problems that typically arise when testing a mechanization in Redex, by using
a simple implementation of a reachability-based garbage collector that captures key aspects
of Lua’s. By collecting syntactic garbage, we reduce the size of configurations during run
time. Finally, we briefly discuss this avenue of development of our semantics, together with
the implementation of a prototype tool to perform static analysis of Lua programs.

Keywords Semantics - Operational semantics - Imperative languages - Domain specific
languages - Lua - Reduction semantics - Randomized testing

Mathematics Subject Classification 10011311 - 10010134 - 10011010 - 10011017

DX Mallku Soldevila
mes0107 @famaf.unc.edu.ar

Beta Ziliani
beta@mpi-sws.org

Bruno Silvestre

brunoos @inf.ufg.br
1 FAMAF, UNC and CONICET, Cérdoba, Argentina
2 FAMAF, UNC and Manas.Tech, Cérdoba, Argentina
3 INF, UFG, Goiania, Brazil

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-022-09638-y&domain=pdf
http://orcid.org/0000-0002-8653-8084
http://orcid.org/0000-0001-7071-6010
http://orcid.org/0000-0002-5774-1948

906 M. Soldevila et al.

1 Introduction

Lua is a lightweight imperative scripting language, featuring dynamic typing, automatic
memory management, data description facilities, and meta-programming mechanisms to
adapt the language to specific domains [11]. The typical use case of a Lua application is as
an extension library embedded in a host application, commonly written in C or C++. In that
setting, Lua offers the possibility to add scripting facilities to the host application, combining
the flexibility and rapid prototyping of a dynamic language within the static guarantees and
optimizations of stricter programming languages.

Lua is extensively used in many diverse applications, ranging from game development,
most notably by “AAA” games [12] but also in mobile games and game frameworks, plug-in
development (for example, in the photo-editing software Adobe Photoshop Lightroom [1]
and the type-setting system LuaTex [28]), web application firewalls [7], and embedded sys-
tems [27].

Lua is informally specified by both its reference manual and its reference interpreter,
developed and maintained by the core Lua authors. Thanks to Lua’s success, several alterna-
tive implementations as well as code linters and static analyzers can be found in the wild [24,
25]. However, the informal nature of the specification means that developers of these tools
must resort to their intuition, formed by study of the reference manual, inspection of the
source code of the interpreter, and experimentation.

Even if Lua is considered a small language, it is not unusual to stumble across some
puzzling behaviors that may not be easily inferred from the official documentation. As a
simple example consider the following program:

Example 1 (To return or not to return.)

1 function f () return nil end

2

3 function g() end

4

sprint(f(), f(, f() ——>>nil nil nil
6 print(g(), g(), g()) ——>>nil nil

In this example, we have f returning Lua’s null value (nil), and g not returning anything.
Then, when printing three identical calls to f and g, respectively, we see a difference: in
the former case three nils are printed, while in the latter only two are (we write ——>> to
indicate the output of the interpreter; —— is Lua’s token for comments). The different outputs
can be explained by two related aspects of Lua: fuples and vararg arguments. Briefly, some
Lua functions can receive a list of arbitrary length of actual parameters. Such functions are
known as vararg functions. The print service is an example of a vararg function. Internally,
the list of zero or more actual parameters are manipulated through what we will call a tuple.
Also, a function can return a list of zero or more values, which will be also modeled as tuples.
Over a tuple there are a set of rules that apply, in order to extract their values and use them
in the context where the tuple appears: if it appears into a list of values (for example, the
list of actual parameters in a function call, as in lines 5-6 in the code shown), we need to
append the tuple’s values to the list; if it appears where a single value is required, we need
to truncate the tuple and extract just its first value. As in the example shown, said rules may
shield unexpected results, mostly when we deal with empty tuples.

In this work, we present an extensive formalization—mechanized in Redex [5]—of a large
subset of Lua 5.2, explaining in detail its different mechanisms, like its particular take on

@ Springer

From Specification to Testing: Semantics. .. 907

tuples, and providing sound grounds for developing alternative implementations, extensions,
and analysis tools for the language. In fact, the present work refines, extends, and greatly
improves [37], which was the basis to formalize Lua’s garbage collector [38], including the
development of a small tool to verify simple programs making use of Lua’s weak tables (akin
to weak references). As a side note, Lua 5.2 includes interfaces with the garbage collector,
namely weak tables and finalizers, which have an observable impact on the behavior of user
programs. In order to account for this, we include on top of our semantics a simple syntactic,
non-deterministic, garbage collector to which it is possible to communicate through said
interfaces, and we show how the impact on user programs’ semantics manifests in that
setting.

In order to gain confidence in our model, we took three measures: first, we developed
a semantics that (mostly) contains each programming concept from the reference manual,
in a one-to-one correspondence, instead of focusing on an idealized core of the language.
Second, we successfully run the test suite of the reference interpreter of the language [21]
directly within Redex, checking that our semantics is correct to the extent of what is tested
within the suite. That is, unlike many other works in the literature (e.g., [8, 35]), we did
not pay the cost—confidence-wise—of building a new interpreter. Last, we used Redex’s
support for formal systems and random testing [15] to random test soundness properties of
our semantics. This allowed us to detect a plethora of errors and omissions that were not
caught during the development of the semantics, even after successfully passing the tests of
the test suite.

In overall, we obtain evidence that our semantics is sound and corresponds to that of the
selected subset of the language’s features, including

Every type of Lua value, except coroutines and userdata (see below);
Tuples;

Metatables (Lua’s configurable dynamic dispatch);

Identity of closures;

— Dynamic execution of source code;

Error handling;

— A large collection of services from the standard library;

— Garbage collection (presented in [38]).

For reasons of simplicity, we purposely excluded the following features for future work:

— Coroutines, in essence single-shot delimited continuations;

— Userdata, opaque handles to data from the host application and native libraries;

— The goto statement;

— Services from the standard library that interface with the operating system, such as file
manipulation, or have large complex C implementations, such as string pattern matching.

We develop further the main reasons behind the exclusion of some of these features in
Sect. 9.

1.1 Contributions

As a summary, we present

1. A formalization of a large portion of Lua, in its version 5.2, including several semantics
relevant details of the official interpreter not covered in the reference manual.
2. A mechanization of said formalization in Redex.

@ Springer

908 M. Soldevila et al.

3. Aninterpreter based on the mechanization that successfully passes all relevant tests cases
from Lua’s interpreter test suite.

4. A formalization and a randomly tested mechanization of the soundness property of the
semantics.

5. A brief discussion of applications of the semantics model presented.

The mechanization can be downloaded from

https://github.com/Mallku?2/lua-gc-redex-model

1.2 Quick Tour

Section 2 presents a brief description of Lua, with emphasis on particular features that
we formalize in later sections. Its reading is non-essential for the Lua connoisseur.
Section 3 presents the basic concepts that our model uses, via a formalization of a very
small subset of Lua. Its reading is important to understand the following sections.

Example 2 (Memoization in Lua.)

1 local function memoize(fn)

2 local t = {}

3 return function(x)

4 local y = t[x]

5 if y ==nil theny =fn(x); t[x] =y end
6 return y

7 end

8 end

9 local memsum = memoize(function(x)
10 local a =1

11 fori =1,xdoa=a+i end
12 return a
13 end)

Section 4 expands Sect. 3 with the formalization of the most interesting parts of the
semantics. Of special interests are the formalization of metatables (Sect. 4.4) and tuples
(Sect. 4.2.3).

Section 5 presents some relevant properties of the language.

Section 6 presents the software artifact (the mechanization in Redex of the language),
and the results of the two types of testing performed. It is an essential part of the work;
its reading being most recommended.

Section 7 introduces two related applications of this work, modeling garbage collection,
and developing static analysis tools.

Section 8 discusses related work.

Section 9 reflects on the experience of formalizing and mechanizing Lua, and discusses
future avenues of research.

2 Lua: An Extensible Scripting Language

In this section, we present a quick tour to some of Lua’s most salient characteristics and
features captured in our model. The Lua expert can safely skip this section and come back
to it only if necessary.

@ Springer

https://github.com/Mallku2/lua-gc-redex-model

From Specification to Testing: Semantics. .. 909

2.1 First-Class Closures and Tables

We start with a simple memoization function,! listed in Example 2, which takes a function
fn as argument and returns its memoized version. The values of fn already computed will be
stored in a table (t in line 2). Tables are, in essence, associative arrays indexed by any Lua
value except the null value (nil). They also come with syntax sugar and metaprogramming
facilities that can greatly extend their functionality beyond simple associative arrays, as we
will see in Sect. 2.3 below.

Example 3 (The environment _ENV)

1x =10

2 print(_ENV['X']) ——>>10

3_ENV['X'] =0

4 print(x) ——>>0

5_ENV={}

6 print() ——>> error, print is not anymore in _ENV

The memoized version of fn is returned through an anonymous function in line 3. This
function takes x as argument and, before computing fn(x), performs a look-up in the table for
value x (line 4). If the result of the look-up is nil, it means no result was found, so it proceeds
to compute fn(x) and store it in the table (line 5). The resulting value, either computed or
retrieved from the table, is returned in line 6. Note that the memoization only works for
values fn(x) different than nil. The function memoize is used in lines 10-14 to improve the
performance of a function that performs a sum from 1 to x.

It is important to note that all procedures in Lua, anonymous or named, are first-class
values, and form lexically scoped closures. The anonymous function that memoize returns
will effectively capture into its scope the table t, as expected.

2.2 Local Definitions and the Environment _ENV

Note that the definitions of memoize, t, and memsum are prefixed by the keyword local.
As its name suggests, local creates a local variable, initialized with the rvalue (what comes
after the ‘=" operator). If we omit this keyword, a declaration is considered an assignment,
and if the variable was declared local before, then it performs an update of its value, as
usual. More interestingly, if there is no such variable in scope, then Lua looks up for the
variable in a table called the environment, which is bound to the identifier _ENV, using the
variable’s identifier as the key. Similarly, reading the value of a variable that is not within
scope triggers the search for the value associated with that name in the environment. Abusing
the notation, this means that any occurrence of a variable x that is not in scope, is just syntax
sugar for _ENV[’x"]. Variables in the environment are called global variables. Services from
the standard library (like print) are accessible through global variables, and are, therefore,
bound by this environment.

Since _ENVisinitself a variable, the programmer can, at any time, change the environment
in which a program is executed by simply assigning another table to _ENV. Example 3 shows
some simple interactions with the environment to illustrate this concept.

! Taken from http://lua-users.org/wiki/FuncTables .

@ Springer

http://lua-users.org/wiki/FuncTables

910 M. Soldevila et al.

2.3 Metatables

The most notable feature of Lua is its meta-programming mechanism, metatables, that lets the
programmer adapt the language to specific domains. Thanks to metatables, Lua can maintain
its original design decision to keep the language simple and small [12], while still being able
to cope with a variety of programming concepts (Section “Code Structure/Programming
Paradigms" of [26]).

Example 4 (OOP based on Lua’s metatable mechanism.)

1 local MyClass = {}

2 MyClass.__index = MyClass

3

4 function MyClass.new(init)

5 local self = setmetatable({}, MyClass)

6 selfvalue = init
7 return self

8 end

9

10 function MyClass:set_value (newval)
11 self.value = newval

12 end

13

14 function MyClass:get_value ()

15 return selfvalue

16 end

17

18 local mc = MyClass.new(5)

19 print(mc:get_value()) ——>>5
20 mc:set_value (6)

21 print(mc:get_value()) ——>>6

As an example, we show the implementation of some basic concepts of object-oriented
programming. The example? is listed in Example 4, and it models classes and objects by
combining tables, first-class functions—which we already saw in Sect. 2.1—and the metat-
able mechanism. It also introduces some syntax sugar provided by Lua to better support
OOP.

In Lua, a class is essentially implemented as a dictionary (e.g., table), in which the method
names form the keys of the dictionary, and the method implementations are the associated
values. Objects are also modeled with tables, containing in their fields their attributes.

In the example, we have a class MyClass with its corresponding constructor (line 4) and
only one field value with its setter (line 10) and getter (line 14). The function declara-
tions in these lines are actually syntax sugar for assignments, where the left-hand sides are,
respectively, MyClass['new”], MyClass[’set_value”], and MyClass["get_value”]. For the two
methods on line 10 and line 14, the use of : instead of . also includes an implicit first parameter
for these functions, named self.

In the last lines of Fig. 4, we show how to create an instance of MyClass (line 18), and
how to invoke the methods. In line 20, we can observe the invocation of set_value with yet
another syntax sugar: mc:set_value(6) is equivalent to mc[’set_value”](mc, 6) (remember
that the first, implicit, parameter of set_value is self).

2 Taken from http://lua-users.org/wiki/ObjectOrientationTutorial .

@ Springer

http://lua-users.org/wiki/ObjectOrientationTutorial

From Specification to Testing: Semantics. .. 911

Example 5 (Taking the maximum element of an array, together with is index.)

1 function maximum (a)

2 local mi=1 —— maximum index
3 local m=a[mi] —— maximum value
4 for i,val in ipairs(a) do

5 if val > mthen

6 mi=i

7 m = val

8 end

9 end

10 return m, mi

11 end
12
13 print(maximum({8,10,23,12,5})) ——>>23 3

If classes contain methods, and objects contain fields, how is mc[*set_value”] looking up
the set_value method? The answer is the metatable mechanism, used in lines 2 and 5. In
line 5, the call to setmetatable assigns MyClass as the metatable of the table provided as
argument (the empty table {}). The (empty) table returned is our self object.

A metatable can modify the behavior of a table with regard to most of Lua’s operations. For
this example, the behavior we are modifying is look-up of non-existing keys. Each behavior
can be modified through a metamethod that, despite its name, is a value associated with a
specific key in the metatable. In this case, the key is __index (line 2), and the value is the table
MyClass. The overall effect will be that a miss when looking up for a key in the table (mc) will
trigger a look-up for the same key in the metatable (MyClass). This is how mc[’set_value”]
results in the method set_value from MyClass.

Lua also allows metamethods for an indexing with a non-existing key, for a function
call over a value that is not a closure, for unexpected circumstances involving binary and
unary operators, for setting finalizers, and even for some functions in the standard library.
Lua programmers typically use metatables for object-oriented programming (including more
elaborated object models than class-based single inheritance), for operator overloading, and
for proxies.

2.4 Tuples

A Lua function may return several values in what we call a fuple. Tuples are particular in the
sense that several of Lua constructs treat them specially. Take for instance Example 5 ([10],
Chp. 5.1). The function maximum takes an array a and returns its maximum element, together
with its index. It uses the iterator, obtained from the function ipairs of the standard library
(line 4), which, in a first call, returns a tuple with three values: an iterator function, the table
to be iterated, and 0. By calling repeatedly this iterator, supplying the table to be iterated and
a position, we can traverse the table following its numeric integer indexes, beginning at 1.
Accordingly, the for-in construct knows how to use the iterator to obtain, at each iteration,
an index to the table being iterated and the value at that position. When the for-loop ends,
we have in m the maximum value, and in mi, its index in the array. These are returned by
maximum in line 10.

Example 6 (Converting an array of elements into a tuple.)

1 function unpack (t, i)

@ Springer

912 M. Soldevila et al.

2 i=iorl

3 if t[i] ~= nil then

4 return t[i], unpack(t, i + 1)

5 end

6 end

;

g8al, a2 =unpack ({1,23}) ——al=1landa2=2

9
10b1, b2, b3, b4 =unpack ({1,23}) ——b1=1,b2=2, b3 =3, b4 = nil

The size of a tuple does not need to be statically determined. An example of dynamically
constructed tuples is presented in Example 6, where function unpack takes an array of
elements and produces a tuple containing such elements. There are a couple of niceties in
the code that needs some explanation. To begin with, in Lua, a function can be called with
fewer or extra arguments. Every argument that is not passed by the caller of the function has
value nil, and every extra argument is simply discarded. This feature allows, for example, to
avoid having an auxiliary function performing recursion, and then the main function calling
it with the base case. Instead, we can combine the two. In unpack, the index i used to index
the array can be omitted, in which case we ensure it starts at 1 (arrays are 1-based indexed)
thanks to the or operator (line 2). If i is nil, then or will return its second argument, 1.

Another aspect of tuples worth discussing is that we can choose to ignore elements from a
tuple, or even take more elements than actually present in the tuple. The first case is illustrated
in line 8, where we assign only the first two elements from the tuple returned by unpack,
discarding the third. The second is illustrated in line 10, where the first three variables get
the three elements from the tuple, while the fourth gets value nil.

2.5 Vararg Arguments

It is possible to specify a variadic function, i.e., a function that can receive an arbitrary
quantity of parameters, by appending the vararg parameter to the list of formal parameters
of a function. Noted with ..., this argument collects all the extra arguments that are provided
to a function. In Fig. 7, we see a function dual to unpack: it receives a list of arguments of
arbitrary length and returns a vector containing those arguments: a table whose elements are
indexed by natural numbers.

Example 7 (Converting a list of arguments into a table.)

1 function pack (...)

2 return {...}

3 end

4

5t = pack(1,2,3)

6 print(t[1], t[2], t[3], t[4) ——>>1 2 3 nil

3 Basics of the Formalization

In this section, we gently introduce the semantic framework used throughout the paper by
providing semantics to Luag, a toy subset of Lua. We write the semantics in a small-step
operational semantics with evaluation contexts. Evaluation contexts, taken from Felleisen—
Hieb’s Reduction Semantics (RS) [5], are used for the specific purposes of modularization;

@ Springer

From Specification to Testing: Semantics. .. 913

for providing a concise description of the context-sensitive semantics; and to define the
execution order. In this, we follow the path taken by [8, 34, 35], where RS is similarly
applied for successfully formalizing real programming languages. However, we choose a
different path with regard to the presentation of our formal semantics and the relation with
its mechanization:

1. We emphasize the distinction between what constitutes the language we want to model,
and what are the run-time constructs: concepts proper of the dynamic semantics required
to provide an operational semantics.

2. We reduce the complexity of the desugaring process, by staying as close as possible to
the source language.

3. We maintain a short-yet-noticeable distance between what is the formal model presented
in the paper and its corresponding Redex mechanization.

The first two respond to the need of building the model as comprehensible as possible,
mainly for the developers of the language and tools: Point 1 helps distinguishing the syntax
developers care about from the constructs that are not visible to them when executing pro-
grams, and Point 2 reduces the gap between the code shown in the rules and actual Lua code,
which helps building frust in the model (also noted in [2, 29]).

The motivation behind Point 3—discussed in depth in Sect. 6—is to present the rules of
the language in a more natural form (as seen in many books on semantics, e.g., [33]), instead
of presenting Redex code directly.

For the small subset of the Lua language presented in this section, we have two fragments:
pure statements and expressions (following Lua’s distinction of statements and expressions),
and stateful (i.e., memory changing) statements. We describe each of them in isolation, each
with their own relation. Then, we compose the two using a third relation which will also deal
with execution order, providing semantics to entire programs.

Some comments on notation: in the following, we will use nt to refer to, either, the non-
terminal nt or the set of terms generated from the production of said non-terminal (resorting
to context for disambiguation); an nt, possibly with a numeric sub-index, to refer to a term
that belongs to the set of terms generated by nt.

3.1 The Pure Fragment of Luag

We show the grammar and semantics for stateless programs in Fig. 1. As statements (s), we
only include conditional branching and skip (;). The condition is an expression e, which can
be a value (v), a fully applied and infix binary operator (binop), or a fully applied and prefix
unary operator (unop). Values are nil or boolean literals (true or false). Operators are the
logical connectives and, or, and not. Of course, with this language, we are not able to write
any useful program, but in the coming sections, we will grow the language until we reach
Lua.

The operational semantics for the pure fragment are modeled with the —*/¢ relation
between statements and expressions. Rule IF- T states that if the conditional of the if is any
value different from niland false, then it is considered true, and therefore, the then branch
is taken. Note that we write above the line the conditions in which the rule applies. We omit
the line in the case that no condition is required. Rule IF- F states that, for false or nil, the
else branch is taken.

The reader may wonder why we have not put true instead of v in the first rule, since there
are no other values. The reason is that we will grow the language to have more values, like

s/e

@ Springer

914 M. Soldevila et al.

Grammar

s :=if e then s else s | ; binop ::= and | or
e =v | e binop e | unop e unop ::= not
v == nil | bool_literal
v nil, false v € {nil, false
71 } 7 (Ir-T) { ; 7 (Tr-F)
if vthen s; elses; —%°¢ s; if vthens; elses; —*°¢ s
not v —°/¢ §(not,v) (Not) v binop e —*/¢ §(binop, v, e) (BINoOP)

if v € {nil, false}

5(and, v, ¢) = {

otherwise
[v ifv & {nil false}
o(or,v,e) = { e otherwise

true if v € {nil, false}
false otherwise

S(not,v) = {

Fig. 1 Pure fragment of Luag

numbers, and we will still take this rule as is. Indeed, in Lua, a value like the number O is
considered true, unlike in languages like C.

As for the semantics of expressions, instead of providing operational rules for each oper-
ator, we follow [8] and use a function, called the interpretation function §, which provides
meaning to operators using a declarative style of semantics. That is, we put the emphases on
what is the result obtained from using an operator, rather than describing how each operator
produces a result step by step. The benefits of using this style are more clearly seen in coming
sections when providing semantics to more complex operations than arithmetic operators.
To maintain cohesion in our semantics, we will use § to provide semantics to every primitive
operator and service.

In this section, § provides meaning to the shortcut boolean operators, in which the right
operand of a binary operator is not expected to be a value. As with the conditional, a value
that is distinct from false and nil is considered true.

A final note regarding the model introduced so far: to present a familiar grammar to the
Lua programmer, we maintain the syntactic distinction between statements and expressions.
However, we do notletit to scale up to the level of the semantics relations. First, this distinction
is merely a concrete grammar issue [23]. Second, previous experience with the formulation
of a formal semantics for Lua [37] shows that defining semantics relations following that
distinction does not result in an improved understanding of the concepts, but it does result in
an unnecessary proliferation of relations.

@ Springer

From Specification to Testing: Semantics. .. 915

Run-time terms |

su=...|local z = ein s|z = ¢ en=...|r

Semantics

o' =(rv),o
(rv), (Locar-DEcr)

o:local x=vins —7 o' :s[x\r]

o' =olr:=v|

(LoCAL-ASSGN) o:r—7 o:0(r) (LOCAL-DEREF)

1

o
o:r=v —° 0o :;

Fig.2 Stateful fragment of Luag

3.2 The Stateful Fragment

We extend the language presented so far with imperative features, namely imperative variables
(Fig. 2). Statements are extended with local variable definitions and assignment. There are
two things to note about a variable declaration: first, as mentioned in Sect. 2.2, they must be
preceded with local; otherwise, in Lua, they are global. Second, we make here the first of
a few modifications to Lua’s syntax: we explicitly declare the scope of a variable with the
in keyword, absent in real Lua. This minor change in the grammar allows us to have a very
simple representation of state that, as will become clear, brings several benefits.

The operational semantics of imperative features are commonly understood in terms of
state and state change; therefore, we enrich our semantics with a model of state: a partial
function from a set of references to values, denoted as o. We refer to o as the “values’ store,’
or simply store.

As for the domain of o, referred as to dom (o), we do not force any specific representation
and just require it to be a finite set, with elements that must be syntactically represented
and different from any other syntactic object in the language. We further assume it is always
possible to obtain a fresh reference from the store. We will write (r, v), o to mean the extension
of store o with reference r pointing to value v, and we will assume that r is fresh, i.e., not in
the domain of 0.

For the semantics of the new constructs, we use a new relation —°, which maps a pair
of a store o and a term t (either a statement or an expression) to another pair of a new store
o’ and the resulting term t’. The first rule (LOCAL- DECL) models the declaration of a local
variable. When the definition is a value v, we put it in the store mapped with a fresh reference
r. Then, we replace each occurrence of variable x in the program s with r, denoted as s[x\r].

By substituting every occurrence of the variable with a fresh reference (e.g., [4]), we obtain
two benefits: we avoid having to carry around the environment (a mapping between variables
and references), and we obtain a simple representation for closures (c.f., Sect. 4.2.3). As a
little downside, it forces us to add a semantic component to the language, making references
be part of the grammar of expressions. We call a run-time term such an extension to the
language needed to express its semantics. In more advanced sections, they will also serve us
to cleanly modularize the semantics.

As for variable assignment (LOCAL- ASSGN), we update the store using the notation o [r :=
v] to mean a new store in which the value of r is replaced with v. This is only defined if
r € dom (o), which is an implicit side condition of LOCAL- ASSGN that must hold in order to

@ Springer

916 M. Soldevila et al.

| Evaluation contexts |

E =[] |if E then selse s |local z = E in s
| z = E | E binop e | unop E

| Standard relation |

/ /

c:t =% ot
o:E[t] = o :E[t]

t =¥t

— (FWD-PURE)
o:E[t] — o:E[t]

(FWD-0)

Fig.3 Semantics of Luagy programs

be able to apply it. Formally, o [r := v] denotes a new store o, such that dom (¢”) = dom (o),
where ¢’(r) = v and Vr' € dom(c’),r' # r = o'(r') = o(r'). Note that the assignment
reduces to a skip, indicating that there is nothing else to do for this particular statement.
Finally, rule LOCAL- DEREF shows that references are implicitly dereferenced.

3.3 Executing Entire Programs

We have already defined two different relations, each of them computing a bit of a program:
—5/¢ relates stateless statements or expressions and — stateful ones. Now we are ready to
combine the two relations to perform the execution of a complete program. To that effect, we
define the — relation. This relation selects the next term to be executed within a program,
called the redex and forwards it to the corresponding relation. We are aiming at a deterministic
semantics, so there should be only one redex in every program.

We capture the notion of redex syntactically with an evaluation context (Fig. 3): a program
with a hole [] specifying where the redex is to be found. For every constructor of a term
from our language, and for a given position into the term where the next redex must be
found, there will be one evaluation context’s constructor labeling that position with [. The
determinism of the semantics emanates then from the fact that, for every program, either it
is a final computation, or there is only one way of decomposing it into an evaluation context
and a term, and that term can be executed using only one rule (see Sect. 5).

We can observe from the definition of E the expected evaluation order: in an if statement,
the guard must be evaluated first. For defining local variables, we evaluate the rvalues first.
In a binary operation, we evaluate the left operand first.> Note that, unlike with the grammar
presented so far, for simplicity, we are using a single category of evaluation contexts for
statements and expressions.

As stated above, the semantics of programs is given with the > relation. E[t]] denotes an
evaluation context where its hole has been filled with the term t, yielding a program. This
relation simply forwards execution to the relations defined in previous sections.

3.4 Example

Figure 4 presents the reduction of a simple program that flips boolean variable b. In the right-
most column, we write the corresponding evaluation context considered for the step, leaving

3 Our definition enforces left-to-right evaluation of expressions. Even if this is left unspecified in Lua’s
reference manual, that is how expressions are evaluated in the two most popular implementations of Lua, the
reference interpreter and LuaJIT (luajit.org).

@ Springer

From Specification to Testing: Semantics. .. 917

o t E
0 _local b = false in
" if not b then b = true else b = false []

— (rl, false) : if not rl then rl = true else r1 = false if not [] then ... else
— (rl, false) : if not false then rl = true else r1 = false|if [] then ... else
— (r1, false) : if true then rl = true else rl = false [1
— (rl, false) : rl = true [l
— (rl, true) :;

Fig.4 Trace of execution of a simple program

to the reader the other two components of a reduction step: the fragment of the program
filling the hole and the rule being used. Note how in the first step, the variable b is replaced
with reference r1.

With all of the main ingredients in place, we are now ready to provide semantics to Lua.

4 A Formal Description of Lua

In this section, we describe the highlights of our formalization of the semantics of Lua, the
main contribution of this work. Section 4.1 covers the stateless subset of the language, Sect.
4.2 covers the imperative subset, Sect. 4.3 describes the concepts added to support standard
library services, Sect. 4.4 covers the semantics of metatables, and Sect. 4.5 completes the
semantics with execution order, to be able to explain the execution of complete programs
and error handling.

4.1 Stateless Lua

We extend the stateless subset of Luag presented in Sect. 3 with new statements (while loops,
breaks, composition of statements) and new values and expressions (numbers and strings,
with their corresponding operations). To ease the presentation, we present each addition
separately, starting with the new statements.

4.1.1 Statements

Figure 5 shows the new statements. As mentioned, these are compositions of statements
(essentially, one statement after the other) and while loops (with their break operation). We
purposely do not include for loops and instead translate them into while loops, following
Lua’s reference manual definition (3.3.5 [22]).

As for the semantics, we start with the composition of statements (SEQ): once the left-most
statement has been executed to an end (;), the execution continues with what follows (s).

More interesting is the semantics of while loops. First, a while loop is labeled with a BREak
label (WHILE- START), renaming while to $iter. The labeling and $iter are new run-time
statement created for the purpose of executing whiles: the label marks the point from which
a break should continue the execution, and $iter is necessary to avoid repeatedly unfolding
a while, stacking up labels.

A loop marked with $iter is then unfolded as usual, using an if-then-else to check the
guard and perform a new iteration (WHILE- ITER). We took from [8] the idea of labeling the
while loop to mark the exit point of a break; however, our label is inserted at run time,

@ Springer

918 M. Soldevila et al.

Grammar | Evaluation contexts |

s = ...| s s | while e do s | break Ej::=[] | if Ejthen s else s
|Ioca| T = E/fin S |J,‘ = E/f
| Eir binop e | unop Ei | Ej s

| Run-time terms |

s = ... | Siter e do s | (3)aper E = extend Ej with (E)Brpak
label ::= BREAK
i's /¢ s (SEQ) while e dos —*/¢ ($iter e do s) grpax (WHILE-START)

Siter edo s —°/¢ if ethens ; Siter edo s

W -1
else ; (WHILE-ITER)

(Eir [break]|)Breax —°/¢ 5 (WHILE-BREAK) (' DBrEAK —°/¢ ; (WHiLE-END)

Fig.5 The stateless subset of Lua (statements)

while in the aforementioned work, it is inserted when desugaring the code. Our take reduces
the complexity of the desugared code, but at the expense of requiring the extra run-time
construct $iter and the labeling step. While in this particular case, the gain is little, in the
case of function calls (Sect. 4.2.3), the gain is more evident. For consistency, thus, we decided
to do the same for while loops.

When the execution finds a break inside a labeled block (WHILE- BREAK), the whole
program contained in the inner-most BREAK label is discarded, effectively modeling the jump
out of the body of the loop. To model the program within the label, we use a new category
of evaluation context, Ej (label-free contexts), which represents a program in which no
other labeled term or while loop occurs. In order to avoid repetition, we decided to split the
evaluation context in two: first, Ejs is like the evaluation context from Sect. 3.3, also adding
the case for composition of statements; second, we define the new E context as an extension
of Ej. Extending an evaluation context like Ejs to create a new evaluation context E has the
effect of renaming each occurrence of Ej¢ with E.

When the execution of the loop ends normally (WHILE- END), we just discard the label.

The presented features cover the main aspects of the semantics and control flow of the
while statement. Note that Lua 5.2 does not have a continue statement, yet some of the
proposed ways of emulating it* involve concepts already present into our model: using
conditionals, Lua’s error mechanism (to be introduced in Sect. 4.5), or using a break.

4.1.2 Expressions

We turn our attention to the evaluation of expressions, which we break in two: evaluation
of equality and the application of the remaining binary operators. We omit the evaluation of
boolean expressions and of the unary minus operator since they follow a similar pattern.
Binary operators, except equality, are treated in Fig. 6. As for the grammar, we define the
class strictbinop to differentiate binary operators that requires the two values to be evaluated

4 See http://lua-users.org/wiki/ContinueProposal

@ Springer

http://lua-users.org/wiki/ContinueProposal

From Specification to Testing: Semantics. .. 919

Grammar | Run-time terms |

v = ... | number_literal | string_literal e = ... (eiavel
e = ... | e strictbinop e label ::= ... | BINOPWO | EQFAIL
strictbinop ==+ [- [* | /[7| % | . |Evaluation Contexts|
<< [>]2]==
unop = ... |- | # Ei ::= ... | Ej strictbinop e

| v strictbinop Ej

Semantics of binary operators |

op S {+7_a*7/a'\7 A’a") <a <:} 5(0p,v1,v2) e v

V1 Op Va2 /e 5(op, v1,v2)

(Bivop)

op € {+7_7*7/;7 A)w-y <7 <:} 6(Op,V17V2) ¢ v

viopvz =% (Vi opva)Biorwo

(Binopr-WO)

Fig.6 The stateless subset of Lua (binary operators)

prior to execution, unlike with the boolean operators. Note how we extend the evaluation
context Ejs, and assume that E is extended likewise.

Turning to their semantics, BINOP states that the actual semantics of the application of
op over operands v; and v; is captured by the function §(op). The semantics of the binary
operators shown is mostly standard, the only exception being an internal step of coercion
done between numbers and strings: in every Lua’s primitive operator and library service,
each time that the semantics dictates that a number is expected, it is possible to provide a
string representation of a number, and internally, Lua tries to coerce it to a number, following
certain lexical conventions. The same happens when a string is expected and a number is
provided. These details, together with the remaining aspects of the standard semantics of
binary operations, are all captured in §. The only role of the semantics relations is to interface
with 6, checking that it is actually possible to apply op over operands v and vy, i.e., the
application returns a value v, and not, for example, an error object.

On the other hand, rule BINOP- WO shows the case when the binary operator cannot be
applied successfully (6 (op, vi, v2) ¢ V). Thiscould mean that we tried to perform arithmetic
over values that cannot be interpreted as numbers, or tried to compare values for which
there is no standard order relation built-in in Lua. In this case, we label the expression with
information about what has gone wrong (BinopWO, where WO stands for Wrong Operands).
We, therefore, extend the class of expressions to include labeled expressions and extend the
set of labels with the new labels, in Fig. 6.

At this point, execution is stuck here. If we were not to extend the semantics any further,
these error labels will only serve the purpose of informing the user what caused her program
to fail. Later on, we will see how metatables try to resolve the situation, either by providing
an alternative value, or by throwing an error (Sect. 4.4). Such errors can be caught with the
primitive xpcall (Sect. 4.5).

In case of equality, the behavior is a bit more intricate (Fig. 7). As with previous operators,
we abstractinto 6 (==) the corresponding details of equality comparison, but we perform some
extra processing of the result. However, note that the equality relation is not trivial: e.g., in

@ Springer

920 M. Soldevila et al.

0(==,v1,v2) = true

s/e

(Eq-TRUE)

V] ==vVvy — true

d(==,v1,v2) = false d(type,v1) # "table” V §(type,va) # "table”

(EQ-FALSE)
vi ==vs —°/¢ false
d0(==,v1,vz2) = false d(type,v1) = "table” 0(type, va) = "table”
/e (EqQ-FaIL)
Vi ==va — (vi == v2)Eqran

Fig.7 The stateless subset of Lua (equality)

order to obtain a semantics that can be tested against the official test suites, it must define
proper comparison of IEEE 754 floating point numbers (as in a standard binary of the official
interpreter).

In essence, §(==) compares numbers and strings by value, and tables and closures by
reference—with values of different types being always distinct. That is, unlike other dynamic
languages like JavaScript, 0 == "0" evaluates to false.

When the objects are equal (EQ- TRUE), we simply return true. But if the objects are
distinct (for instance, they have distinct types), we have two options: if the operands involved
are not tables (EQ- FALSE), equality comparison reduces to false. Otherwise, if they are
tables (EQ- FAIL), instead of returning false, we label the expression and defer its result to
the metatable mechanism (Sect. 4.4). The metatable mechanism will then look up for user-
defined functions (metamethods) implementing a comparison method for non-equal table
values. In that way, Lua allows for the definition of arbitrary (reflexive) relations over table
values.

4.2 Imperative Lua

In this section, we grow the imperative fragment presented in Sect. 3 to include tables (Sect.
4.2.1), multiple local variables definition and assignment (Sect. 4.2.2), and functions (Sect.
4.2.3). The latter is presented here for reasons that will become clear in time.

4.2.1 Tables

The syntax of table constructors, table field indexing and assignment, is presented in Fig. 8,
together with their associated semantic rules. Essentially, they are mutable associative arrays:
data structures where we can store key/value pairs, where keys cannot be nil or nan (a value
in the set of numbers used for undefined or not representable numeric results), and values
cannot be nil.

Tables are manipulated through references, so, to that end, we create a new mapping
between tables’ identities (#id) and tables (and associated meta-data), called 6. The elements
from the domain of 6 are considered values and satisfy the same properties as references in o,
with the reasonable addition that the former should be syntactically distinguishable from the
latter. The image of 6 only contains tables and any table-related meta-data. For the present
model, this meta-data reduce to information about the associated metatable, introduced later.
Formally, 6 : tid — tables x {nil, tid}, where tables denotes the set of tables as described
by the grammar in Fig. 8, and nil or fid are the possible metatable-related values associated

@ Springer

From Specification to Testing: Semantics. .. 921

| Evaluation context |

en=...|{fleld, ...} Efu=... | Efle]|v][Er]
|z [e] | { efield , ... ,[Ex]=ce¢, field, ... }
Id e _ | { efield , ... ,[v]= Er, field, ... }
fie ellel=e | { efield , ... , By, field , ... }
efield :==v |[[v] =
| Run-time terms I
vu=... | tid
label ::= ... | WRONGKEY | NONTABLE
| Function for adding numeric keys (excerpt) l
addkeys({vi,..., vn, [ki] = Vat1,... }) ={[1] =v1,..., [n] = vn, [ki’] = Vot1,...}

where ki, ... € {ki,... }\ [1,n]

Semantics

0> = (tid, (addkeys({efields, ...}) , nil)), 61
6, : {efield;, ..} —7 6, :tid

(TABLE-CONSTR)

0 (rawget, tid, v1, 61) # nil (62, tid) = o(rawset, tid, v1,v2, 01)

- i (TABLE-UPDATE)
01 :tid [vi] =v2 —7 02 :;

6 (rawget, tid, v1, 0) = nil
(rawget, tid, v, 6) (TABLE-UPDATE-WK)

0:tid [vi] =v2 —7 6 (tid [vi] = v2)wroncKey

o(type, v1) # "table”

0:v1 [V2] =v3 —>9 0:(v1 [V2] = V3) NonTABLE

(TABLE-UPDATE-NT)

Fig.8 Formalization of tables (excerpt)

with the given table, to be introduced later. We capture a new store 6 resulting from, either,
extending a previous store with a new pair tid/table or changing the content of a previously
stored table, using the same devices and notation as with o (Sect. 3.2).

The construction of a table is formalized in Rule TABLE- CONSTR (Fig. 8), which acts
when all of its fields have been evaluated. Fields are evaluated from left to right, with each
key being evaluated before each value. Note the new syntax non-terminal efield to denote
evaluated fields, which can be just a value or a key/value pair (denoted [v] = v). The meta-
function addkeys adds absent keys—namely, consecutive natural numbers—to fields of the
form v. It also discards fields already present in the constructor that contain numeric keys in
the interval [1, n]. Here, n is the quantity of fields without keys in the constructor (hence,
the fields for which addkeys adds the corresponding numeric keys). We show an excerpt
of its formal definition, in Fig. 8. Note that Lua’s reference manual is not precise in this
point, and different definitions of addkeys can have an observable impact on the semantics
of operations like computing the length of a table (through the operator #), or iterating a table,

@ Springer

922 M. Soldevila et al.

d(rawget,vi,vo,0) = d(error,...) if 0(type,v1) # "table”
if 0(tid) = ({..., [V{]=v;, ...}, -0)

vi
d(rawget, tid, vi, 0) = ! and §(==,v;,V{) = true
nil otherwise

5(rawset,tid,v1,VQ,01) = (92,tid),

vi ¢ {nil, nan}

01(tid) = ({..., efield;_1, [vi]=v3, efieldi 11, ...}, ...)

where § §(==,v1,v}) = true
0, — O1[tid := ({..., efield;_1, efieldi+1, ...}, ...)] if v2 = nil
2= O1[tid := ({..., efield;_1, [Vi]=v2, efieldi 1, ...}, ...)] if v2 # nil

d(rawset, tid, v, v/, 61) = (62, tid),

v ¢ {nil, nan}

01(tid) = ({[vi]=VL, -, [Va]=Vi s -o0)

where ¢ YV k € {vi,...,va},6(==,v, k) = false

g — L0 if V' = nil
27\ 0uftid := ({[v]=V, [Vi]=Ve, oo [va] =V,)] if Vil

0 (rawset, v, va,v3,0) = (0, d(error,...)) , if d(type,vi) # "table” V vo € {nil, nan}

Fig.9 Formalization of tables (primitives for table assignment and indexing)

through library services like ipairs. Our mechanization of addkeys successfully passes the
official interpreter’s tests, and as such, can serve as a frame for future implementations.

Finally, returning to TABLE- CONSTR (Fig. 8), note that we are actually mapping a fresh
table id tid with an ordered pair: the first component contains the actual table and the second
one the id of the metatable or nil, if absent, as is in this case. Metatables are discussed in
depth in Sect. 4.4.

Assignment to table fields has three cases: the successful update of the field (TABLE-
UPDATE), and two special scenarios. The first comes from trying to update a non-existing
key (TABLE- UPDATE- WK); while the second comes from trying to update an object which
is not a table (TABLE- UPDATE- NT). The semantics of these special scenarios can be meta-
programmed, so, as we did with similar situations, we just label the term with information
about what has occurred, to delegate the execution to the metatables mechanism.

To know if a key exists in a table and to update the field, we use two services of Lua, rawget
and rawset, formalized in Fig. 9. §(rawget, tid, v, 0) yields either the value associated with
v in O(tid) or nil, if there is no associated value. Note that we use the equality compari-
son function (§(==)) to determine which field is being indexed with the given key. Recall
from Sect. 4.1.2 that §(==) should define the details of a proper comparison between Lua
values, and, also, should not resort to the metatables mechanism when comparing different
table values (which is not the case with the language == comparison operator).

S(rawset, tid, vq, vo, 0) yields a new 6 where the table referenced by tid associates v, with
value vi. In the first equation, we consider an existing key, in which case we remove or update
the field, depending of the value v,. Note how nil and nan cannot be the keys of a table field.
As with rawget, the keys are compared using § (==), and the same considerations apply with

@ Springer

From Specification to Testing: Semantics. .. 923

Grammar | Evaluation context |

su=...|var,...=e, ... Eir = ...
|[local z,... = e, ... ins [localz, ... =v,... ,Ef,e,...ins
var =z | e[e] |evar , ..., Efle]l,...=e,...
evar = 1| v [v] |evar , ... ,v[E¢],... =€, ...
|evar , ... =v,..., Ef, ...
k>1 Vh—k4+1 = nil, ..., vy = nil

o/e (ASSGN-FEWER)
evari,...,evar, = Vi,...,Vp—k —

evari,...,evar, = Vi,...,Vn—k:Vn—k+13---sVn

k>1

7 (AssGN-MORE)
€Vari,...,evar = Vi,...,Vn,...;Vntk —> €vari,...,evarn = Vi,...,Vn

n>2

/e (AsseN-SpLIT)
evari,...,evary = vi,..,Vn —

evar; = evar] evarp,...,evar, = V2,...,Vp

o' = (r,vi1), ..., (fn,vn), o

o :local x1,...5%0 = Vi,...vn ins =7 o i s[x1\r1, .. Xn \In]

(LocaL-DEcL)

Fig. 10 Multiple variables declaration and assignment (excerpt)

regard to the semantics consequences when using user-defined equality comparison relations.
The second equation of rawset considers the case when the key does not exist in the table. In
this case, the pair is added, only if the value is not nil. The last equation considers the error
cases.

Accessing a field of a table follows a similar pattern so we omit the rules of this operation.
4.2.2 Local Variables

We introduce a small change in the language in order to support multiple-variable definition
and assignment (Fig. 10). Essentially, we can have arbitrary lists of variables and terms as
the lvalues and rvalues of a local declaration, respectively. Similarly, we can have arbitrary
lists in the assignment, with the addition that we can update variables and tables’ fields.

For multiple-variable assignment, the following steps are performed. First, the execution
evaluates all Ivalues before the rvalues, as indicated by the evaluation contexts. Second, the
quantity of rvalues is adapted to match the Ivalues, either adding extra nil rvalues when there
are fewer rvalues than lvalues (ASSGN- FEWER), or discarding the extra rvalues when there
are more rvalues than lvalues (ASSGN- MORE). Once the number of lvalues matches that of
rvalues, a multiple assignment is decomposed into a sequence of single assignments. This is
so since rvalues can be local variables and/or table fields, and we need to distinguish each
case in order to properly explain their semantics. Note that we need not to make any further
step: each assignment will be handled by the corresponding rules (LOCAL- ASSGN, from Sect.
3.2, and TABLE- UPDATE, from Sect. 4.2.1). Finally, by splitting a multiple assignment into
several single variable assignments, we also model what happens in Lua when there is an
lvalue that is repeated: the assignments are effectively repeated over the local variable or
table field.

@ Springer

924 M. Soldevila et al.

vu=...|function ¢ (z,...) s|function £ (z,... ,su.) s
s = ... |9statFcall e (e, ...)| $statFcall e : z (e, ...)
| return e, ...

ex=...le(e,...)|lerz(e,...) (e)

| Run-time terms |

en=... | <e,..>|(5)abel

label ::= ... | RETSTAT | RETEXP | WFUNCALL

| Evaluation context |

Ee|::= ’U,...,E/f,e,...

Ejf::= ... | $statFcall Es (e, ...) | $statFcall v (Eq)
| $statFcall Ef:z (e, ...) | return Eg
|E/f(€,...)|’U(Ee|)|E/f:fl2(e,...)|(E[f)

| (] By DRETEXP | Q Ey DRETSTAT

Fig. 11 Functions and function calls (grammar)

The introduction of local variables follows the same steps, which we omit for brevity. The
creation of new references is modeled with a simultaneous substitution operation (LOCAL-
DECL, which subsumes the previously defined rule with the same name in Sect. 3.2). Repeated
occurrences of variable identifiers (as lvalues) are allowed, and their correspondent rvalues
are evaluated. Then, when the introduction of the variable in the corresponding scope is
applied (through the substitution function), only the last variable definition is taken into
account.

4.2.3 Functions, Function Applications, and Tuples

It might at first look suspicious to consider Lua’s functions and application as belonging to
the imperative subset. However, Lua’s functions are first-class values internally represented
with closures closing over their external variables’ references, and, also, the parameters of a
function are modeled as imperative variables. Therefore, we need the state to define functions
and function’s applications. Tuples are also considered here because they are required to
model functions.

Figure 11 shows the grammar involved in the formalization of function definitions and
calls. The first thing to note is that functions are values, and that each function is labeled with
a new countable set of elements £, which should not to be confused with a function’s name:
the label {—inserted at desugaring—is used for closure comparison (Sect. 4.2.4), and in
practice, it is akin to the line number, in the source code. As an example, function f () end
is desugared as f = function ¢, () end.

Functions have two constructors; the difference being the vararg arguments . . . (we use
this special notation to avoid confusion with ellipses also used in the grammar; when showing
Lua code, we will use the conventional syntax ...). This special token refers to the extra
arguments passed to a function beyond of those explicitly named in its definition. Within the

@ Springer

From Specification to Testing: Semantics. .. 925

1 <i<min(m,n)=vVv;=v;
i>m = v'; =nil a/:(rl,v'l),...,(rn,v’n),cf

- E-CALL)
o : (function £ (x1, ..., %n) S) (Vi, .oy vim) —7 (s [x1\r1, - Xn \n] DReTEXP (

1 <i<min(m,n)=Vv;=yv;
. y . / i 1
i >m = v'; =nil tuple = < Vo1, .oy Vi, > o' =(ri,v'1),., (rn,V'n), 0

E-CALLVARG
o : (function £ (x1,...,xn, s e 2) S) (V1, .0y vim) —7 ()

o (s [Xl\h, -~~7Xn\rn7 .. '\tuple])RETEXP

d(type,v) # "function”

s/e (E-CALLWRONG)
v (Vis) = (v (vi;-svn) Dwroscare

v:name (e1,...,en) sl v['name"] (v,e1,...,en) (E-MCALL)

(Ej[return (function £ (x1,...) s) (v1,...)] DRerExe ysle (

E-P F
(function ¢ (x1,...) s) (vi,...) oPSF)

Fig. 12 Functions and function calls (semantics, 2nd step)

function body, ... is treated as a tuple. Tuples are run-time expressions, noted as < e, ... >,
and cannot be constructed by the user. They are not values and, hence, cannot be stored.

Then, we have the return statement, which allows the return of multiple values; function
calls, with a special syntax for calling an object’s method; and parenthesized expressions (e),
which takes the first value of a list of values.

As for function calls, we need to distinguish their occurrences: they can appear in a
statement, as in f(); print('hi’), or in an expression, as in print(f()). A function call used as an
expression can return none, one or more values, while a function call used as a statement is
useful just for its side effects, with any value returned from such function being discarded.
Our parser is in charge of distinguishing and compiling each case into syntactically different
objects, tagging with $statFcall the latter case.’

Function calls are not plain B-contractions: they allow us to call a given function with an
arbitrary quantity of parameters, regardless of what is specified in its signature, discarding
or completing with extra nil values as required, like the following simple example shows:

Example 8 (Calling a function with different number of parameters.)

function f(x1, x2) return x1, x2 end

print(f()) ——>>nil nil
print(f (1)) ——>>1 nil
print(f (1,2)) ——>>1 2
print(f (1,23)) ——>>1 2

Additionally, the result of a call might be in a position where the returned values must be
appended to existing ones or trimmed. For instance, consider the following short example,
in which maximum is the function from Example 5:

Example 9 (Returned values are appended to the argument list or trimmed.)

m = maximum({1, maximum{1,2,2,3}}) ——m:4

5 This distinction helped simplify the model, as we do not need to define new notions of evaluation contexts
to distinguish among either case—a task that proved to be cumbersome and difficult to maintain through the
evolution of the model.

@ Springer

926 M. Soldevila et al.

Remember that maximum returns the greatest number of a list together with its position.
To understand this result, first note that the inner call returns 3 and 4. These values are then
appended to the outer list, resulting in {1, 3, 4}. Therefore, the second call to maximum
yields values 4 and 3, the second value being trimmed out and the first one being assigned
tom.
A last aspect of function calls that can be captured into the model presented so far, is
related with tail calls: nested function calls can reuse the stack frame of the actual called
function, if the function call is the last instruction.® Specifically, in Lua 5.2, tail calls are
calls of the form return (function ¢ (x,...) s) (vi,...). In that case, the called function
will reuse the stack frame of the actual function from which it is being called. In our model,
we include just one piece of information from a regular stack frame: the position to which
the function must return, denoted with the labels RerStaT and RETEXxp. And by means of the
manipulation of this representation, we can model tail calls. We explain it below.
In order to specify these behaviors, we take the following actions:

. Evaluate the function position and then the arguments, from left to right.

. Recognize function calls in tail position and act accordingly.

. Adjust the list of actual parameters and perform the function call itself.

. According to the place of the call (statement or expression), discard the returned values
or put them in a tuple.

5. In the case of an expression, distinguish if the tuple must be appended to other values or

trimmed.

AW N =

The first step is specified with the help of the evaluation contexts, as can be seen in Fig. 11.
As a shorthand, we introduce a new non-terminal E¢ to mean a list of arguments whose
elements to the left of the evaluation point are fully evaluated.

The second step is partially described by in Fig. 12, last rule, only for the case of a nested
function call made from another function call embedded into an expression. In order to better
understand it, we first explain the next step.

The third step is shown in Fig. 12, only for the case of function calls in expressions, as
the other case is analogous. Rule E- CALL models a simple call, with the parameters of the
function treated as mutable variables, so a fresh reference is used to model each parameter.
If there are fewer arguments, the value nil is assigned to the remaining parameters of the
function, and if there are more, they are simply silently ignored. The resulting term—the
body of the function with the fresh references replacing the parameters—is labeled with a
new run-time expression (-)rgrpxp- This labeling serves two purposes: first, it allows to
recognize the function call as, in this case, an expression, something needed when reasoning
about tuples (see below); and second, it marks the place where a return statement must jump
to. In the case of a function call in a statement, the label is RETSTAT.

Rule E- CALLVARG shows the case of a vararg function call, with the difference residing
on what is done with surplus arguments: instead of being ignored they are put into a tuple,
which replaces the vararg expression (...) in the body of the function. Note that they are
not stored, as it does occur with the remaining actual parameters. Formally, we treat the
vararg mark occurrence in the signature of a function as a binding occurrence, with special
scoping rules in order to account for a particularity discussed in ([30], Issue #1): the binding
occurrence binds any vararg mark that occurs in the body of the function, except if it appears
in the body of a nested function definition, regardless of it being or not a vararg function.
The following interaction with the official interpreter (taken from [30], Issue #1) illustrates
this scoping rule:

6 We thank the reviewers for inviting us to enrich our model with this and other features.

@ Springer

From Specification to Testing: Semantics. .. 927

> function f(...)
return function() return .. end
end

’ ’ ’ ’

stdin :1: cannot use outside a vararg function near

Rule E- CALLWRONG describes the exceptional situation that might be handled by the
metatable mechanism: a function calls over a non-function value. As with previous special
situations, we just label the whole expression with a tag documenting what happened.

Finally, E- MCALL describes method invocation: it is simply translated into a table look-
up, with the object being injected as the first argument of the function.

Now, previous to the function call itself, we try to recognize if it is in tail position.
Remember that, in Lua 5.2, tail calls reduce to calls of the form:

return (function 2 (x;,...)s) (vi,...)

This step will be responsibility of the top level relation > : it will be in charge of guar-
anteeing that a tail call is correctly processed before actually executing the function call
itself. Once that a tail call is recognized, we manipulate the stack of calls: in our model, we
just look for the inner-most RETSTAT or RETExP label around the function call, and remove it
together with the whole rest of computation between the label and the tail call itself. That
is, we remove the computations that would be discarded when performing the return of the
function being called in tail position. More formally, we look for a function call that looks
like this, for the case of a tail call nested into another function call done in the position of an
expression:

(Ei¢ [return (function ¢ (x;,...) s) (Vi,...)] DRerExe

In that case, and in terms closer to an actual implementation, we could say that we pop the
actual stack frame from the call stack, obtaining

(function £ (xq,...)s) (vq,...)

This is performed by rule E- POPSF, in Figure 12. Then, the actual execution of the function
call, as described by the previous semantics rules, will install a new stack frame for the current
tail call. Together, all these steps model the phenomenon of a tail call.

A last remark: in the context of a programming language with interfaces with the garbage
collector, like finalizers, these implementation details have an observable effect on the seman-
tics of programs. As an example, consider the following program:

function f(a)

local b= {}
return f(b)
end
local a = {}
f(a)

In the previous program, given that the recursive call to f is in tail position, at each recursive
call the whole content of the stack frame of the previous call is discarded. This implies that,
at each recursive call, the reference to the parameter a from the previous call is lost (except
for the first call, made in the last line). On the other hand, if the recursive call to f would be
just f (), instead of return f (), then the call would not be in tail position, and every stack
frame of every call would be preserved, including the reference to the parameter a. As we

@ Springer

928 M. Soldevila et al.

(5 DRETSTAT —ele (S-RETSKIP) (Ex[return v, ...] DRerSTAT /e (S-RETURN)
(5 DrRerEXP /e < > (E-RETSKIP)
(Ex[return v, ...] DRerExe —°/¢ < v, ... > (E-RETURN)

(Er[return v, ...] DBreax —°/¢ return v, ... (S-RETURNBREAK)

Fig. 13 Functions and function calls (semantics, 3rd step)

explain in [38] and Sect. 7, Lua 5.2 has a reachability-based garbage collector that, in each
recursive tail call of f, would consider unreachable the parameter of the previous call. Given
that we have interfaces with the garbage collector, this difference in the internal treatment of
the stack frames could be observed at the semantics level.

The fourth step is split in two. First, the body of the function is executed to an end, either a skip
or areturn. Second, as listed in Fig. 13, the values are processed as follow: a function call as a
statement simply returns skip (S- RETSKIP), discarding the values if needed to (S- RETURN).
Instead, in an expression, it returns a tuple, either empty (E- RETSKIP) or containing the
values (E- RETURN). A return might occur inside the body of a while (S- RETURNBREAK),
in which case we must jump outside of the loop.

The fifth step kicks in once we have a tuple. As noted in Example 9, we need to know if values
are appended to some existing list of values or trimmed to just obtain the first value. The
process requires some machinery but is simple in essence. If the context, in which the tuple
is immersed, requires a list of values, the tuple’ values are appended to the values existing in
the context, else, the first value is taken. To know the context, as the name suggests, we use
the same type of contexts used for evaluation.

Figure 14 shows the details of the fourth step. Rule TUPLE- ONE replaces the tuple with
its first value. For this rule to be executed, the tuple must be in a context E; (the t stands
for truncate), which for brevity is shown partially. This means that the tuple is, for instance,
in the conditional of an if-then-else, or in a list of values (but not at the end), or in a
parenthesized expression, etc. If the tuple is empty, under the same context, it is replaced
with nil (TUPLE- ZERO).

Rule TUPLE- APPEND shows the case when the tuple must be appended to a list. This rule
uses a new context, £, (a for append), which only applies if the tuple is at the end of a list
of values. Then, the result of the tuple is computed with the meta-function append, which is
also shown in abridged form. This function takes the context and the tuple and simply insert
the values of the tuple to the end of the list, or does nothing if the tuple is empty.

With the semantics shown in this section, we can understand the example from the intro-
duction (Example 1). We explain it in two bits. First, we have function f returning nil:

function f () return nil end
print(f(), f(, f()) ——>>nilnil nil

The execution of the print statement occurs after each call to f is resolved. Since they are
in the positions of expressions, after E- CALL, we get (return nil)gpreyp. With an empty
Ejs context, we perform one E- RETURN step and get a tuple with a nil inside. In the first
two calls to f, the tuple is in a position where a value is expected, therefore after executing
TUPLE- ONE we simply get nil. In the third call, instead, we append the tuple to the values

@ Springer

From Specification to Testing: Semantics. .. 929

| Contexts for tuple processing (excerpt) ‘

Eei=v,...,[],e1,e2...
Ei ==if [] then selse s|local z,... = Ein s | evar, ... = By

L(ID) | { efield, [, field1 , fielda, ... }|...

Eal i=v, ..., []
E, =localz,... =Eqins|evar,... = Eq | {efield, ... ,[]}]---

| Appending function (excerpt) |

append(evar,... =vi,...,[], <v2,v3,... >) =evar,...=Vi,..., V2, V3,...
append(evar,... =vi,...,[[, <>) =evar,...=vy,...

Semantics

E[<vi,va,... >] =% E [v1] (TupLE-ONE)
E[<>] —%¢ E [nil] (TurLe-ZeRrO)

Ea[<vi,... >] —*° append(Ea, < vi, ... >) (TUPLE-APPEND)

Fig. 14 Functions and function calls (semantics, 4th step)

computed so far (TUPLE- APPEND). Therefore, we end with print(nil, nil, nil), whichin
turn prints the three nils.
Different is the case when we do not return anything:

function g() end
print(g(), g0, g()) ——>>nil nil

Note that the body of g is an implicit skip. Therefore, in the first two calls to g we obtain a
skip that is converted to an empty tuple by E- RETSKIP, and then to nil by TUPLE- ZERO. In
the last call, as in the previous case, TUPLEAPPEND applies and append discards the empty
tuple. Therefore, we now end with print(nil, nil).

4.2.4 Function Comparison and Caching

Lua 5.2 admits an unspecified caching of closures: when their definitions have no observable
difference ([13], Chapter 8.1). We implement this caching in a way that is compatible with
the official interpreter, correctly mimicking the following interactions:’

Example 10 (Caching of functions.)

1 f = function() end

2 g = function() end

3 print(f ==g) ——>> false
(

4 h = function() return function() end end

7 Note that LuaJIT 2.0, the other major implementation of (part of) Lua 5.2, does not perform caching of
closures.

@ Springer

930 M. Soldevila et al.

sprint(h() ==h()) ——>>true

The first two functions are equal; however, Lua creates a closure for each of them, as line 3
shows. But when the function is created from the same function definition, it does cache its
definition (lines 4-5).

As mentioned at the beginning of Sect. 4.2.3, our function’s definitions include a label ¢,
which is what distinguishes different occurrences of definitions in the program. Observe the
partially unsugared code obtained from Example 10:

f = (function $1 () ; end)

g = (function $2 () ; end)

print(f ==g)

h = (function $3 () return (function $4 () ; end) end
print(h() ==h()

Each function created from calling h shares its label ($4), and therefore, we can treat each
instance as the same. But this is not enough to identify a function, as the following example
shows:

Example 11 [Same function yet different closures.]

for i=1,10 do print(function() return i end) end
——>> function: 0x1c4d970 function: 0x1c4e3d0

Note how at each iteration it prints a new address: the function is not cached. The reason
is that its body refers to a variable, i, which is different at each iteration (for loops makes the
iteration variable immutable by creating a fresh variable at each iteration). The environment
of a closure, including every local variable in which scope reaches to the given closure, is part
of what the official interpreter recognizes as “observable difference” (besides the function
definition itself), and, accordingly, differences in a scope are what triggers the creation of
new closures, from the same function definition. In our formalization, we consider, as a
representation of a closure, the whole function definition with its embedded environment,
as it is when the focus of reduction reaches to the function definition (see Corollary 2, Sect.
5). Therefore, returning to the previous example, we would include in the corresponding
representation of the closures created, each new instance from each iteration of the variable
i. At each iteration, we would end up with a different closure and, hence, no closure would
be reused.

4.3 Built-in Services

As we saw throughout this work, the interpretation function § defines the semantics of built-in
services (type, rawget, ...) and operators (+, .., ...). Originally introduced in ISWIM ([5])
for the purpose of abstracting the semantics over a set of primitive operators, we use it here
motivated by different purposes. As mentioned in Sect. 3, instead of describing operationally
the semantics of built-in services and primitive operators, we use a declarative style; i.e., we
specify just the result of the call to a service or the application of an operator, instead of
describing how we obtain such results. This approach reflects the style of the reference
manual: there is no operational specification from which the results can be obtained, just a
description of what is expected from calling a given service or applying a given operator.

@ Springer

From Specification to Testing: Semantics. .. 931

svc = assert | error | ...
e = ... | $builtln svc (e,...))

Semantics

svc € {type, assert, error, pcall, select, ...}
s/e

(Sve-NOSTATE)

$builtln svc (vi,...,vn) =/ §(svc, vi,...,vp)

svc € {ipairs, next, pairs, getmetatable, ...}

Svc-CONST
6 : $builtin svc (vi,...,vy) R 8(sve, Vi, ...y Vi, 6) ()

svc € {rawset, setmetatable} (02,v) = 0(sve, Vi, ...,Vp, 01)

(Sve-UppATE)
01 : $builtln svc (vi,...,vn) =% 62 1 v

Fig. 15 Interface with the § function

While there may be some services or operators for which it could be possible to extract a
simple operational semantics, for purposes of cohesion we apply the same approach to the
semantics of all of them.

4.3.1 Calling a Service

There are two different types of calls to services: those that are internal of other services and
operators (e.g., the iterator function next calls the type service), and those that are invoked
by the user. This distinction is important because it is possible to change the binding of a
service but only in the latter situation:

Example 12 (Overriding a built-in service.)

print(type ({})) ——>> table

type = function () return 'foo’ end

print(type ({})) ——>>foo

next(1) ——>> error: bad argument (table expected, got number)

As we can see from this example, the next function was unaffected by the change to the
type function, while the user is now unable to call Lua’s built-in service.

From the point of view of the formalization, we introduce a new expression $builtin
which simply acts as a dispatch to the § function (Fig. 15). Note that we cannot simply let a
program refer directly to the § function: § is a meta-function, and it does not belong to the
programming language. Therefore, we need an interface within the language. Then, prior to
the execution of a program, the _ENV table is populated with functions from the standard
library as wrappers to the $builtln constructor.

The semantics of the new expression is simple: it just reduces to an application of 4§,
providing the necessary arguments and processing its output when needed. We distinguish
three cases, according to the semantics of the service: if it does not use the store (SvC-
NOSTATE); if it inspects the objects store (SVC- CONST); or if it updates the object store

@ Springer

932 M. Soldevila et al.

indexmeta(tid, v, 8) = §(rawget, tid,v,)
protmeta(tid, #) = indexmeta(tid,”__metatable”, 6)
prot?(tid,#) = protmeta(tid, 8) # nil

d(setmetatable, tid, v, 01) = (tid, 62) if d(type,v) € {"table","nil" }
A —prot?(tid, 01)
A B2 = 61]tid := (01(tid) (1), V)]
d(setmetatable, vi,v2,0) = (d(error,”..."),0) if §(type,v2) ¢ {"table”,"nil" }
V prot?(tid, 61)
V (type, vi) # "table”

tmeta(tid, 6) t?(tid, 0
d(getmetatable, tid, 0) {pro meta(tid, 6) if prot?(tid, 6)

0(tid)(2) otherwise
nil if tid6(type,v) ¢ dom(@)
tid 5 (type,v) if tids(type,v) € dom(0)

d(getmetatable,v,0) = A —prot? (tids ype.) . 6)

protmeta(tids iype,v),) otherwise

Fig. 16 Primitives for setting and getting metatables

(Svc- UPDATE).® Each rule lists some of the services that fit into each category. The actual
list of services includes almost all the built-in basic functions of the Lua language, together
with several services from the libraries math, string, and table.

4.4 Metatables

We have seen in repeated occasions how several operations required the intervention of
metatables, usually in special situations, like trying to add two values that are not numbers nor
strings. Metatables are plain tables that let programmers specify metamethods for resolving
such situations, associating specific string keys with—typically—functions. For instance,
" _add"” is the key for associating a handler to the addition operator.

We first explain how to obtain and set metatables. Then, we show with an example how
the metatable mechanism triggers once a labeled term if found.

4.4.1 Setting and Getting Metatables

For each Lua type except tables (and userdata, not included in our model), it is only possible
to define one single metatable. That is, for example, the type of numbers has one metatable
ruling every possible interaction with numbers. For tables, instead, it is possible to define a
metatable per value. To this effect, the basic library provides two primitives, setmetatable,
to set the metatable of a given table, and getmetatable, to obtain the metatable associated
with a given value (of any type). Being services of the basic library, we provide a declarative
description of their behavior using §. Their semantics is shown in Fig. 16.

8 We do not include the value store since our subset implemented so far does not require it, but this may
change in the future.

@ Springer

From Specification to Testing: Semantics. .. 933

The first equation of setmetatable shows the normal behavior: we are setting v as the
metatable of tid, and v is itself a table or nil; and tid is not protected. If these conditions
apply, the output of setmetatable is the identifier of the table together with a new object
store, resulting from updating 67 to include v as the second component of the value stored
for tid. If v is nil, this has the effect of removing any previous association between the table
and a metatable.

If a metatable has a field having key ”__metatable”, it is said to be protected. The concept
is specified by the predicate prot?. Semantically, a protected metatable cannot be overridden.

The second equation of setmetatable deals with different erroneous situations: trying to
set a metatable for a value which is not a table; trying to set, as a metatable, a value which is
not a table or nil; or trying to modify a protected metatable. In any of these cases, an error is
issued. We write ... to abbreviate the message, which depends on the condition that produced
the failure.

The first equation for getmetatable shows its normal behavior: when applied over a table
value tid, it either returns the value set in its ”__metatable” field, if present, or the second
component in the 0 store associated with tid.

More interestingly is the situation when we want to obtain a metatable for a non-table value
(the second equation of getmetatable). As it turns out, for values such as numbers or strings,
it is possible to set the metatable by using the C API or, in the official interpreter, by calling
the debug.setmetatable function. In our model, we assume that, if set, the metatables for
these types are identified by fixed tables’ ids: for a given value v, we assume that its metatable
must be identified with tidssype,v)- Then, determining if such metatable is set reduces to ask
if tids(ype,v) € 6. Note that such metatables might be protected too.

4.4.2 Resolving Labeled Terms (Excerpt)

In this section, we introduce a new relation — ™M€@ that takes a labeled term and acts according
to the case that originated the exceptional situation. We do not show all the rules that apply
to each different label; instead, we focus on one example rich enough to show how this
mechanism works.

Figure 17 describes the — relation for field updates. The inner workings of the
metatables mechanism is handled by the meta-function new_index, while —™Me® serves
as an interface with it (M- UPD). Recall from Sect. 4.2.1 that we have two situations, each
marked by its distinctive label: either the update is attempted on a value that is not a table
(NoNTABLE), or the value is a table, yet the key does not belong to it (WRONGKEY). In either
case, if there is a function associated with the key ”__newindex” in the metatable of the object
(first equation of new_index), the function is called with the arguments of the update. If,
instead, the handler is not a function, nor nil, the update is performed on the handler (second
equation).

If the handler is nil, we need to distinguish according to the label. For WRONGKEY, we
try creating the field with rawset. If it succeeds (third equation), we return the modified 6
store and the skip statement. If it fails (fourth equation), because the key is nil or nan, we
propagate the error. Note that we need to inspect the returned error object $err—the result
of § (error)—which is introduced later in Sect. 4.5. Finally, if the label is NONTABLE, we just
produce an error (last equation of new_index).

meta

@ Springer

934 M. Soldevila et al.

new_index(6 : (vi [v2] = v3 Draser) = 0 : $statFcall v4 (vi,va,vs)
LABEL € {WRONGKEY, NONTABLE }
if ¢ va = indexmeta(vi, -_newindex", 9)
d(type, va) = "function”

new_index(6 : (vi [v2] = v3 raser) = 0 : va [v2] = v3
LABEL € { WRONGKEY, NONTABLE }
. v4 = indexmeta(vy, "-_newindex” , 0)
if .
va # nil
d(type, va) # "function”

new_index (61 : (tid [vi] = v2)wronckry) = 02 :
% indexmeta(tid, "__newindex" , 61) = nil
k (62, tid) = d(rawset, tid, vi, vo, 61)

new_index(01 : (tid [vi] = v2)wronckey) = 02 : $err...
% indexmeta(tid, "__newindex", 61) = nil
‘ (62, Serr...) = d(rawset, tid, v1, vz, 01)

new_index(0: : (tid [vi] = v2)NonTasLe) = 02 : d(error, "error updating...")
if indexmeta(tid,”__newindex", 61) = nil

new_index(01 : (vi [v2] = v3 Draser =62 : s

M-UprD
O1: (V1 [V2] = V3 |)LaBEL —ymeta O :s ()

Fig. 17 Metatable mechanism for field update

4.5 Semantics of Programs and Error Handling

We concluded the presentation of the different relations used to provide semantics to Lua.
Following Sect. 3, we must now provide meaning to entire programs, defining a new relation
> that includes execution order and forwards to the specific relation the next piece of the
program to be executed. Since its definition is mostly an extension of the relation shown in
Fig. 3, but now adding also the 0 context, we will omit these definitions for brevity. More
interestingly, we develop in this section the treatment of errors in Lua, whose propagation
requires its formulation at the level of the — relation, for soundness reasons.

4.5.1 Errors and Protected Mode

Lua provides mechanisms to generate and catch errors. Errors are represented with error
objects or error messages. They can be explicitly generated by user code, using the function
error, and it is possible to attach information about the error using any Lua value. The
semantics of error objects consist, essentially, in aborting the execution of the program where
they are generated.

In order to catch an error, the user is provided with two functions, pcall and xpcall,
the former being a specialization of the latter. They allow to execute a function under a
protected mode: any error thrown by the function is caught, avoiding error propagation. For

@ Springer

From Specification to Testing: Semantics. .. 935

an erroneous function call, pcall returns false and the error object. Otherwise, it returns true
together with the values returned by the function call. xpcall behaves as pcall, but instead of
returning the error object in case of error, it forwards it to a user-provided handler function
to continue the execution.

4.5.2 Formalization

In formalizing error propagation, we need to take into account that it is a context-sensitive
computation, requiring to look at the whole remaining program in order to decide about
program termination. Therefore, we need to be cautious if we want to obtain a deterministic
model. To understand this, let us consider a program of the form E [$err v], where E does
not contain a protected mode. What we want for such a program is to completely halt in one
step, ending as $err v. This suggests to include a step:

E'[$errv] —*/¢ Serrv
But, since — closes over —3/¢ as follows:
t =8 ¢

o:0:E'[t] = o:60:E'[t]

we have several possible ways of propagating an error, depending on the decomposition of
context E between contexts E' and E”, offending the intended determinism of the semantics.

The common workaround to this problem is to propagate errors directly from . In
absence of a protected mode to catch an error, it will make the whole program to halt.

Figure 18 shows the new constructions added to the model for formalizing errors and pro-
tected mode. Error objects will be denoted with the construction $err v, which allows for the
inclusion of any Lua value as information attached to the error. (e)5, .o and (£)p oonip
represent an expression or a context that must run in protected mode, where v is the error
handler passed to xpcall. Treating function calls in protected mode just as expressions will
simplify the semantics, as shown below. We also include the same protected mode labels but
without the handlers, which has a particular meaning to be shown below. Error propagation
will be decided in terms of the presence or absence of a protected mode. To define the absence,
we use a new context £, that is a subset of E but without protected modes (omitted for
brevity).

With the given constructions, we can formalize what it means for an error to propagate or
to be caught in protected mode. The first rule (E- TERMINATION) aborts the whole program if
there is no protected mode around the error object. This is the only rule from error handling
that is defined in the — relation.

The remaining rules are defined in the —»3/¢ relation, and concerns the execution of code
inside a protected mode. If the code executed in protected mode runs until completion without
an error (E- PROTTRUE), then its values are appended to the tuple starting with true. Instead,
if there is an error, we have two situations: if the handler is a function, then it is executed
within a protected mode (without a new handler, E- PROTHANDLER). Note how the call is
performed within parenthesis, to take just the first value. Also, note how it is not possible to
call the handler if it is not a function (E- PROTHANDLERERR), that is, this scenario cannot be
meta-programmed through metatables. In this case, we return a tuple starting with false and
a descriptive error message.

Once the code of a handler is executed in protected mode (denoted by a PROTMD con-
text without a handler), we find two options: in a successful execution of the handler, its

@ Springer

936 M. Soldevila et al.

su=...|S%errv
eux=...[8err v |(e)prormp | (€)pProrMD
Ea=... | (E)prormp | (E)prorMmD

Enp #1]

c:0:E,,[$errv] — o:0 : Serrv

(E-TERMINATION)

(<V, ..> Dromvp —°/¢ <true, v, ...> (E-PROTTRUE)

d(type, v2) = "function”

(Enp [Serr vi])Brormb /% (| (va(v1)))proraD

(E-PROTHANDLER)

0(type, v2) # "function”

" e - —— (E-PROTHANDLERERR)
(Bnp [Serrvi])prorup — <false, "error” >

(v)prormp —*/¢ <false, v> (E-PROTFALSE)

(Enp [$err vi] DProrMD —%/¢ <false, "error’ > (PROTERR)

d(xpeall, vi, vo, v3, ...) = (v2 (v3, «+.) DErormb

Fig. 18 Error object and protected mode

only returned value is appended to a tuple starting with false (to signal that a handled error
occurred, E- PROTFALSE), and, in an erroneous execution of the handler, an error is returned
(E- PROTERR), exactly as in E- PROTHANDLERERR. Finally, note that, by considering func-
tion calls in protected mode just as expression, we simplify the last step of the mechanism:
we do not need to reason if a given tuple must be discarded or not. We are into an expression,
so the tuples are always returned.

Here concludes our tour of the semantics of the language, proceeding to state its properties
and discuss its mechanization in the coming sections.

5 Properties of the Semantics

In this section, we state two fundamental properties of our model: soundness (as the traditional
combination of progress and preservation) and determinism. Their statements were tested
using a lightweight approach enabled by Redex [17], in which we specify a property and use
random testing to try to falsify it. Together with the successful execution of the code from
the test suite of Lua, they help build trust in the model. The details of the experience with

@ Springer

From Specification to Testing: Semantics. .. 937

| Contexts for well-formedness of terms (excerpt) |

C =[] | while e then C | (C)reax |local z , ... = e, ... in C
| function {(z , ...) C'end | ...

|Well—formedness of terms (selected rules) |

Chuypro:0:e Chupro:6:s1 Chuypto:0:s2

p (WF-Ir)
Chupt o :0:if e thens; else s>
r € dom(o) (WE-Re)
Cluypo:0:r
C' [local X1, ...,%,x2, ... =¢,...in C"] Fype 0 : 0 : x (WF-VARLOCAL)

C’' [function x; (x2,...,%, %3, ...) C"] Fupe 0 : 0 : x (WF-VARFUN)

C' # C" [function £ (z,...) C"" end]
C[whileedo C' end | k- 0 : 0 : break

(WF-BREAKWHILE)

C' # C" [function { (z,...) C"" end]
CIN c DBREAK]] wac o : 0 : break

(WF-BREAKUNFOLDED)

Chypto:0:e.. Cllocalx,... =e,...in[[]Fuyro:0:s

- (WF-LocAL)
Chyto:0:localx,... =e,...ins

Chuypto:6:e Clwhileedo [] Fypro:0:s
Chuyft0:0:whileedos

(WF-WHILE)

C F“,ft (o2 0 I V1
Chuyfto:0:va Chyfpro:6:vs vi € dom(6) vo ¢ dom(6(v1)(1))

C wat 0:0: (]Vl[VZ] = V3 D\VRO]\'GKEY

(WF-WRONCGKEY)

Well-formedness of configurations |

Chyfco:0:t = Vredom(c),Clypo:0:0(r) (1)
A Vtid € dom(6), C e o : 0 : 0(tid)(1) (2)

A Chype o060 :6(tid)(2) (3)

ANChypo:0:t (4)

Fig. 19 Well-formedness of configurations (excerpt)

the mechanization are presented in Sect. 6, but it is worth mentioning that we were able to
catch, with little effort, several ambiguities and ill-defined cases.

When we say preservation, we say that a well-formed configuration that can perform a
step results in another well-formed configuration. As for progress, we say that a well-formed
configuration represents the final computation of a program, or it can perform a step of
computation. In essence, together they allow us to exclude stuck terms, computations that
are incorrect from the point of view of the semantics, like a program with references not
allocated in the store. We explicit all these terms next.

@ Springer

938 M. Soldevila et al.

The most important ingredient is the predicate that captures well-formedness of configu-
rations (bottom of Fig. 19), which states the conditions that a given configuration o : 6 : t
must hold to be well formed, for the given stores o and 6, and term t (a statement or expres-
sion). This predicate is parametrized by a new context C, whose excerpt can be found at the
top of Fig. 19, and which captures the contextual information required to check the well-
formedness of t. In essence, C keeps track of local variables, while loops, labeled terms, and
function definitions. Using just term contexts to keep track of contextual information allows
us to include every information needed to reason about well-formedness in a single object
that is also just a kind of term context. That is, we do not need to define new constructs with
the corresponding operations to manipulate them. We just reuse the language constructions,
and the operations for matching and manipulation of contexts. For example, we can maintain
not only information about variables in scope, but also occurrences of while loops or labeled
terms, with the same kind of construction, and ask about that information by means of plain
pattern matching.

A configuration o : 0 : tis well formed for a context C, written C F,rc o : 0 : t, if every
term of o and every table in 0 is well formed, and also t is. When the context is [], we omit it
and simply write F-,,rc o : 6 : t. In order to check when a given term is well formed (w.r.t. the
well-formed stores), we use a new relation st and show only a representative set of rules.

Fwrt is defined recursively over the structure of the term t, as can be seen, for example, in
WF- IF. Some rules require checking side conditions, like WF- REF, in which the reference
must exists in the corresponding store, in order to check for the absence of free occurrences of
references that would render the corresponding term stuck. Additionally, some rules require
specific contextual information: for a variable x, we need to check that the context contains
a local or function signature binding x (WF- VARLOCAL and WF- VARFUN, respectively).
Similarly, a break can only occur if the context contains a yet-to-be-executed while (WF-
BREAKWHILE) or an already-executed one (WF- BREAKUNFOLDED). In both cases, we also
need to check that the break statement is actually immediately inside the loop or labeled
term: this is that the statement is not inside another construction surrounding it, like a function
definition. The contextual information is extended each time we check certain constructs. For
instance, WF- LOCAL shows how local variables are inserted in the context C prior to checking
the inner statement s. Similarly, WF- WHILE shows how the while construct is inserted in the
context C in order to check the body of the loop. Finally, for labeled expressions or statements
representing situations that must be handled by metatables, we need to make sure that the
conditions that created the labeling holds. For instance, for WrRoNGKEY, we need to check that
the key indeed does not exist (WF- WRONGKEY).

Now that we have a precise meaning of what constitutes a well-formed configuration, and
prior to state the main property of the formalization, we enunciate what final computations
are

Definition 1 We say that a statement s is final if it is one of the following, for some value v:

(a) Serrv
(b) returnv, ...

© ;

Lemma 1 (Soundness of b-rc) For given stores o, 0, statement s, if =ypc 0 : 0 S, then one
of the following situations holds:

(a) sis final.

(b) There exists a configuration ¢’ : 0’ : s’ such that o : 0 : s — o' : 0 : s and

’

Fupco’ 16 s

@ Springer

From Specification to Testing: Semantics. .. 939

Note that in order to prove this and the following statements, we require a clear formaliza-
tion of the operations of matching and decomposition.Then, we could prove the soundness
of k¢ by induction on the structure of the proof of Fyrc 0 : 6 :s.

The previous property does not state that the step is unique. In order to have deterministic
semantics there should always be at most one redex pointed by an evaluation context, into a
given term:

Lemma 2 (Unique decomposition) Given stores o, 8, and statement s, such thatypc o : 6 :
s, then one of the following situations holds:

(a) sis final.
(b) There exist only one evaluation context E and term t such that s matches against the
pattern E[t], in such a way that only one of the following is a redex:

()t

2) o:t
3)o:t
4 o:0:t

In order to prove it, given that we are looking for the next redex into a given term, we
could rely on the information that we have in the proof of t-,sc o : 0 : s. It checks the side
conditions of every semantics rule, in order to guarantee that a given term is not stuck: that
is, if it is not a result, then it is a redex. Then, we could prove this statement by means of
induction on the structure of the proof of Fyrc o : 6 : 5.

Additionally, the proof will depend on a correct correspondence between evaluation con-
texts and semantics relations. That is, that each evaluation context should point to just one
term that is the next redex, according to the semantics relations.

From these properties, we infer two relevant corollaries. The first one is a direct conse-
quence of the previous lemmas: there are no stuck terms, and the semantics is deterministic.
Hence:

Corollary 1 A well-formed configuration runs until completion, or loops forever. In other
words, every erroneous situation is handled properly by the error handling mechanism:

For every configuration o : 0 : s, such that =y o : 6 : s, just one of the following
situations holds:

(a) The execution diverges.
(b) The execution ends with a configuration o’ : 6’ : s’, such that bypc o' : 0" : 5" and s is
final.

Finally, the following corollary of soundness of I, justifies the representation of closures
explained in Sect. 4.2.3:

Corollary 2 (No free variables introduced) For a given closed term s (i.e., without unbounded
occurrences of variables’ identifiers), and well-formed configuration o : 0 : s, if there exists
o' and 0" suchthato : 0 :s+> o’ : 0" : s, thens'is a closed term.

Note that, otherwise, the resulting configuration o’ : 6’ : s’ could not be considered well
formed, as the soundness of -, guarantees. This means that, once the focus of execution
has reached to a closure, every external local variable in its body has been replaced by the
corresponding reference, i.e., the environment of the closure is completely embedded into its
body, avoiding stuck terms.

@ Springer

940 M. Soldevila et al.

6 Mechanization

In this section, we discuss the mechanization in Redex of the model presented in this paper.
We begin by explaining the differences between the formal model and its mechanization and
then discuss the results of executing the tests from the test suite and of randomly testing
fundamental properties.

6.1 Correspondence with the Formal Model

During the process of formalizing the language, we went back-and-forth between our pen-
and-paper formalization and its mechanization in Redex. This tool was of great help, as the
resulting mechanized formalization can be executed and traced; therefore, we could recognize
problems in our first attempts at formalizing the language, experiment with new ideas before
landing them on the formalization and testing the mechanization against the test suite for the
official interpreter, prior to verifying the desired properties.

Given that we produced two documents—the formalization on paper and its mechanization
—we did not follow closely the original philosophy of Redex, consisting in considering
semantic models as software artifacts [17]. Although it is indeed an interesting approach,
with a real potential to optimize the time spent in a formalization effort, we still need to
observe that reading the mechanization alone is at times a difficult task: some concepts from
our model are not possible to express directly in Redex, forcing us to obtain a mechanization
that loses some abstraction and clarity. This occurs, for example, when dealing with concepts
specified in terms of a quantification over an arbitrary predicate: Lua function calls, operations
that filter fields of a given table, etc.

This said, the formalization presented in this paper and its mechanization are remarkably
similar. There are, however, four groups of differences that are worth mentioning.

6.1.1 Particularities of the Tool

Redex fully supports the set of concepts of reduction semantics with evaluation contexts;
namely, the definition of languages, evaluation contexts, meta-functions, and reduction rules.
In particular, reduction rules are described as relations over terms of a defined language. In
practice, this means that we must represent some semantics elements of our model as phrases
of a language. For instance, we presented the stores as partial functions in Sect. 3, but they
must be defined as terms in the mechanization. This is observable for instance in the rule for
updating a variable:

o' =olr :=v]

———— (LOCAL- ASSGN)
o:r=v =% o':;

The same rule in Redex is written as follows:
[-—>0 ((vsp_1l ... (r v_1) vsp_ 2 ...) : (r =v_2))
((vsp_1l ... (r v_2) vsp_2 ...) : \;)
Local-Assgn]
where the o store is now described in terms of a phrase, and vsp is a new syntactic class for

describing a pair containing a reference and a value, something that we did not considered

@ Springer

From Specification to Testing: Semantics. .. 941

part of the language in the pen-and-paper formalization.® Also, the substitution of the value
associated with the reference r by the value v_2, is now performed using pattern matching
and a term template [16], which builds a new o storage that differs from the first one just in
the value associated with the reference r: now, v_1 is replaced by v_2 (a pair of a reference
and a value is noted with (rv)).

While in this simple example, the distance is short, in some complex rules, the difference
becomes more noticeable.

6.1.2 Particularities of the Use of the Semantics

When using our model to build a tool to check misuses of weak tables [38] (briefly introduced
in Sect. 7), we had to introduce two changes in order to better emulate the behavior of a garbage
collector. First, we change the introduction of local variables (e.g., LOCAL- DECL in Sect.
4.2.2) and the instantiation of formal parameters of functions (e.g., E- CALL in Sect. 4.2.3).
We do it in a way that the variables’ references that are still in scope are maintained (in some
structure) through the whole execution of the code in their scope.

In a common implementation of a compiler of a programming language with reachability-
based garbage collection, a variable that is in scope is always considered reachable, regardless
of its actual reachability from what is left to be computed. This is so because of the way in
which the root set of references is calculated (for example, just by looking at the stack of a
function call).10 On the other hand, in the model presented so far, once that a variable is not
reachable from what is left to be computed in its scope, we would consider it unreachable. It
does not matter if the code that belongs to its scope is still under execution. This difference
with real implementations naturally introduces some observable effects in the context of a
programming language with interfaces to its garbage collector, as it happens with Lua 5.2.

In order to better approximate the behavior of a real implementation, we keep the ref-
erences that correspond to introduced variables within a local statement or function call,
annexed to the code in which they are replaced. This allows for a simple representation of the
set of references of variables that are in scope, regardless of their presence in what remains to
be computed. Second, and for similar reasons, closures are manipulated through references,
analogous to the manipulation of tables. In fact, this is closer as to how the official imple-
mentation of Lua works, and allows us to have a model that better represents the common
phenomenons associated with garbage collection.

6.1.3 Particularities of the Official Interpreter

In order to stay close to the official interpreter and its corresponding test suite, we had to
enrich our specification with implementation details that might not be strictly considered
as belonging to the semantics of the language. In many cases, these were just corner cases
of the services of the language and its standard library (discussed in Sect. 6.3). But a more
interesting example is how to deal with mutually recursive references between metatables
and handlers, as the following program illustrates

9 The language of patterns from Redex is expressive enough to be able to impose, for example, the expected
representation invariant for a term that describes a finite functional mapping.

10 The first set of references from which reachability is computed.

@ Springer

942 M. Soldevila et al.

Example 13 (Mutually recursive references in metatables.)

1local a = {}
2a.__newindex=a

3 setmetatable(a, a)
4al1] =2

From the point of view of the semantics of metatables (Sect. 4.4), the previous program
is an infinite loop: the instruction in line 4 triggers the metatable mechanism, looking for
the metatable of a to index it with the key ”__newindex” (rule M-UpdNotFun in Fig. 17),
obtaining the handler. But this is a itself, as specified in line 2, repeating the assignment in
an endless loop.

While the reference manual does not specify a particular way to handle these situations, the
official interpreter implements some intelligence that is capable of recognizing these loops.
In particular, the execution of the previous program results in an error with the message “loop
in settable”.

Given that the previous behavior is tested in the official test suites, we include it into our
semantics by maintaining, in the instruction term, the tids to the metatables is used while
trying to solve a labeled term. In this way, we can recognize when the same metatable is
being indexed repeatedly and raise the appropriate error.

6.1.4 Particularities of the Implementation: The load Service

Like many scripting languages, Lua includes a service to execute an arbitrary program coded
in a string. This service, called load, has little interest from the point of view of its semantics:
given a string s, it returns a function that, when called, executes the code written in s. The
service returns nil if there are syntax errors or unbound identifiers in the resulting program.

From the point of view of its mechanization, however, it is interesting to mention that its
inclusion was rather trivial: our parser and the desugaring process are both written in Racket,
the underlying language of Redex, and Redex itself.

As in [34], we also split desugaring into 2 pieces: a compiler from Lua source code to
our language that produces (possible) open terms; and a definition of an evaluation context
into which the previously compiled term is plugged. This context contains the standard
implementation of the execution environment: a table, containing the set of bindings to
library services, which, in our model, are just invocations to the services through the $builtin
construction. This is our definition of the original execution environment _ENV (see Sect. 2.2).
Under normal circumstances, load will assume that the global variables in the interpreted
code refer to said environment: they are just fields of the table bound to _ENV. However, the
user can pass, as an argument to load, a table that will be used as a replacement to _ENV. In
that case, global variables will be interpreted as fields of the given table.

6.2 Tests Coverage

From the 25 files present in Lua’s test suite [21], we successfully run 12 files (including
garbage collection; see [38]), with varying degrees of coverage (Fig. 20). Each file from the
test suite is a sequence of assertions about the expected outcome of the code. Those files and
lines not tested are due to the following reasons:

@ Springer

From Specification to Testing: Semantics. .. 943

| File | Features tested | LOGCs (total/tested) | Coverage |
calls.lua functions and calls 221/162 73.3%
closure.lua closures 198/139" 70.2%
constructs.lua syntax and 237/193" 81.4%
short-circuit opts.
errors.lua errors 317/137" 43.2%
events.lua metatables 302/300 99.3%
gc.lua garbage collection 445/181" 40.1%
locals.lua local variables 114/75 65.8%
and environments
math.lua numbers and 219/191 87.2%
math lib
nextvar.lua tables, next, and for 355/226* 63.7%
sort.lua (parts of) table 133/46 34.9%
library
strings.lua strings and string 233/88" 37.8%
library
vararg.lua vararg functions 95/95 100%
[Total | [2869/1833 | 63.9% |

“ These files where slightly modified in order to increase performance and
coverage of tests. Counted LOCS do not include extra lines added for these
purposes.

Fig.20 Lua 5.2’s test suite coverage

— Language features not covered by our formalization: coroutines, the goto statement,
some standard library functions (mostly related with file handling), and other standard
libraries implemented in C (bit32, coroutine, debug, io, erc.).

— Tests covering implementation details of the interpreter and not relevant to the language’s
semantics: tail call implementation, manipulation of large tables (not tested for perfor-
mance reasons), generation of bytecode, and the like.!!

In pursuit of reasonable running times for each module of tests, we divided each .lua file
in smaller modules. Also, when necessary, we reduced the iterations performed by loops
and added explicit calls to the garbage collector (16 LOCs, affecting results in a few other
lines). Additionally, while looking for more coverage, we changed a handful lines in modules
errors.lua and strings.lua to remove services that are not yet included. In the case of errors.lua,
the lines were in functions used throughout the code to test the error messages. By modifying
them, we obtained weaker predicates for testing our formalization of the error mechanism,
without testing details of the produced error messages.

With the addition of parallel threads of execution, enabled by modern-day processors, the
whole selected fraction of Lua’s test suite can take, roughly, 26 min to completion without

11 While we do model tail calls, the actual testing of the mechanism in the official test suite consists in
performing several recursive calls, beyond the stack limit, to actually test if the mechanism is being used.
Given that performing such amount of recursive calls is not feasible within our mechanization (because of the
time required), we do not include such tests.

@ Springer

944 M. Soldevila et al.

testing garbage collection, and 1:22 h including it.!> Therefore, it is possible to add the
execution of these tests in CI to ensure that new features and fixes included in the language
do not break existing ones.

The accompanying material includes the modified files with relevant information to inspect
the changes and run the tests.

6.2.1 Improving Performance Thanks to Semantics-Preserving Garbage Collection

As mentioned, in order to reduce the timings of the test, we introduce explicit calls to our
mechanization of Lua’s garbage collector. To understand the reasons, consider the execution
of the following Lua program:

for i =1, 100 do; end
for i =1, 100 do; end

Without the intervention of the garbage collector, each iteration of both loops generates
garbage that will persist in the configurations until the end of the execution.!> Given the
computational model of reduction semantics—in which at each step, the whole configuration
is matched against the (possible) several patterns of the left side of each execution rule—
increasing the size of the store impacts negatively on the performance of this task. Hence, if
we reduce the size of the store during run time, in a way that preserves the semantics of the
program, we obtain some performance benefits without compromising soundness.

For instance, the execution of the previous program takes roughly 2 minutes on the same
hardware. By adding a single call to the garbage collector, right after the first loop, the
execution time is shortened by more than a half. This said, in smaller configurations the
performance of the execution of the garbage collector can also impact negatively. For example,
if we consider a modification of the previous program where both loops iterate 10 times, the
program that performs garbage collection after the first loop is slower (by a couple of tenths
of a second) than the one that runs until the end carrying all the garbage generated by both
loops. We understand this as the cost of having to execute our garbage collector, which
inherits some of the complexities of Lua’s—yet not its efficiency.

Together with the modularization of the code into smaller files, adding explicit calls to the
garbage collector allowed us to mitigate the known problems with performance that comes
with mechanizing an interpreter in Redex [35], and in a semantic-preserving way [38].

6.3 Random Testing of Properties

Redex’s features for implementing formal systems and random testing (redex-check[15])
allowed us to mechanize the desired check for well-formedness of programs and to stress
test its soundness property, together with the expected determinism of the semantics.

Interestingly, the randomly generated terms showed unexpected errors and omissions in
our mechanization that were not caught during testing against the test suite. As it turns out,
redex-check proceeds completely uninhibited, unaware of the semantics [17], providing
intricate, hard-to-decipher terms that proved to be useful to uncover:

12 0na system running Arch Linux updated to May, 2022, Racket v8.3, and 12 parallel processes on an Intel
Core i7-10870H CPU @ 4GHz x 8, with 16GB of RAM.

13 Remember that, at each iteration, a new local variable i is created, to contain the corresponding value in
the interval [1, 100].

@ Springer

From Specification to Testing: Semantics. .. 945

1. Missing border cases and implicit coercions of the parameters of some library services.
2. Erroneously handled cases of the table constructor, mostly related with the generation of
numeric keys.
. Misinterpretations from our part of the reference manual.
4. Errors in our first attempts at defining a suitable notion of well-formed configuration for
our semantics.

W

With respect to 1, these omissions can be understood as behavior that is assumed or which
does not belong to the essentials of the semantics. Naturally, the later cases cannot be eluded
from our semantics, since we aim at an executable model. As an example, the results of the
following invocations of library services cannot be inferred from the reference manual:

Example 14 (Special cases in library services)

1 ——sub(s,i,j): substring of s from position i and with length j

2 print(string.sub("abc", 1, —3)) ——>>"3"

3

4 ——rep(s,n,sep): repeat string s n times, each copy separated by sep
5 print(string.rep ("abc", 1.99999, "")) ——>>"abc"

In the call to string.sub the third argument is negative, a situation that—while mentioned
in the reference manual—its semantics is not actually specified. In the call to string.rep
the parameter n is not an integer. In this case, the official implementation takes the floor,
although this is not mentioned in the manual.'*

Even though our first attempt at mechanizing the semantics contained several of these
errors, it actually managed to pass the tests. We remark that it is not necessarily a problem
of the tests of the interpreter, since several services are just wrappers around already tested
C’s libraries.

In this scenario, using redex-check, for testing easily verifiable properties like progress,
served as a lightweight approach to stress testing our implementation in search of omissions
and errors, with a reasonable time overhead.

6.3.1 Preparation of Test Cases

Naturally, if run inhibited, most of the terms generated by redex-check are ill-formed, since
the grammar does not enforce well-formedness. To alleviate this, it is possible to provide
redex-check with a preparing function that manipulates the generated term and turns it into
a well-formed one, when possible.

Additionally, to obtain a better coverage of the rules, redex-check offers the possibility
of generating terms following the pattern of the left-hand side of each of the rules. However,
while we obtain full coverage, this selection of patterns is too restrictive: the properties that we
are interested in random testing, are predicates quantified over a well-formed configuration
o : 0 :s,ie., notjust terms that matches against the left-hand side of the semantic rules.
Therefore, to increase the confidence on the testing, we generate just a fraction of the total
cases following the semantics rules, and ask redex-check to generate the remaining terms
by just following the pattern o : 0 : s.

14 Note about numeric representations: The official interpreter follows the IEEE 754 standard, while Racket
has aricher set of numbers and behaviors, even including complex numbers. Therefore, it is required to convert
to the required representation of numbers in order to correctly emulate the behavior of Lua.

@ Springer

946 M. Soldevila et al.

6.3.2 Properties Tested and Results

For every well-formed term generated, we tested progress and preservation of well-
formedness, together with the determinism of our semantics. For a run of 50,000 attempts, we
obtain, in an average of ten runs, close to 43,000 well-formed configurations that successfully
pass the tests, with complete coverage of the rules.

To better understand the high percentage of well-formed configurations, note that our
preparation function takes ill-formed terms and tries to turn them into well-formed ones, also
attempting to directly replace conflicting sub-terms by (simpler) well-formed ones.

During random testing, the terms produced by redex-check may grow in size and com-
plexity after each failed attempt at generating a term. It is possible to specify a rate at which
the terms grow in size, by providing a bound to it. According to the documentation of redex-
check, said bound “bounds the height of the generated term (measured as the height of its
parse tree)”. We used the default bound growth rate which grows as the base 5 logarithm
of the number of previous attempts at generating terms. To get a general idea of the com-
plexity of the terms generated, on a run with 50,000 attempts, the maximum bound used is
6, which may generate configurations with programs consisting of, roughly, 250 statements
(each with its expressions), and stores with 30 elements (without counting those added by
the preparation function).!3

7 A Use Case: Modeling Garbage Collection

In this section, we present a brief tour to an existing application of the dynamic semantics
presented so far. The content is a distilled version of [38].

7.1 Garbage Collection

As we already mentioned, we used our dynamic semantics to model garbage collection (GC)
in Lua. In essence, the task reduces to include a non-deterministic semantics rule that performs
a GC cycle. Now, in order to reason about its behavior, we need to study it in the context of
a complete dynamic semantics and see how it interacts with the rest of the semantics model.
For plain GC, i.e., without considering the interfaces with the garbage collector, we expect
each collection step to preserve the semantics of the program. This amounts to observing the
same behavior of the program before and after the GC step.

A more interesting situation arises when we include the interfaces with the garbage collec-
tor: weak tables and finalizers. Weak tables are tables whose keys and/or values are referred
by weak references. These references are not taken into account by the garbage collector
when determining reachability and can, therefore, be collected at any time. Finalizers are
similar, but not equal, to destructors in languages with explicitly managed memory. Such
interfaces might introduce observably diverging results. Our work enables the development
and certification of static analyzers for ruling out potentially dangerous non-determinism
from a program.

15 To obtain these measures we added custom Racket code to our module Tests/ RandomTesting/sound-
ness/soundness_rand_test.rkt. We do not include it in the provided source code, tough the code reduces to
counting well-formed configurations and recognizing the biggest configurations generated.

@ Springer

From Specification to Testing: Semantics. .. 947

In this section, we first present LuaSafe (Sect. 7.2), a tool that uses the modeled semantics
of weak tables to ensure deterministic execution of programs, and then we take a sneak peak
at how we model (simple) garbage collection (Sect. 7.3).

7.2 LuaSafe in a Nutshell

LuaSafe is a prototype static analyzer that aims at the detection of misuses of weak tables
that could lead to non-deterministic behavior. While the general problem is known to be
undecidable [3], we propose an approximation to the solution by combining techniques from
statics semantics (type inference, type checking, and data-flow analysis) together with weak
tables’ semantics.

For a given Lua program p, we say that p is gc-safe if it exhibits a deterministic behavior
under — extended with GC and its interfaces. Then, we denote with Py, the set of gc-safe
programs. In our approach, we aim at taking a user program and trying our best to guess if
it belongs to Pyqp, without asking the user for modifications of the program or to use weak
tables according to some particular idioms, as proposed in [3].

In order to achieve this, LuaSafe proceeds in a series of steps, including a type system
which makes heavy use of the formal tools required to understand Lua’s GC. In the coming
section we make a dip at the underlying formalism.

7.3 Modeling Garbage Collection

The purpose of GC is to remove from memory (the store) information that will not be used
by the remaining computations of the program. One of the simplest and commonly used
approaches to find such information is based on the notion of reachability (e.g., [6]). The
idea is simple: given the set of references that literally occur in the program (the root set), it
must be the case that any information (e.g., value in a store) that may be used by the program
must be reachable from that set. Conversely, any binding (a reference with its value) in the
store that cannot be reached from the root set, will not be accessible from the program and,
therefore, can be safely removed as it will not be needed in the remaining computations of
the program.

Lua implements two reachability-based GC strategies: a mark-and-sweep collector (the
default) and a generational collector. In this section, we will provide a specification for the
behavior of a typical reachability-based GC that encompasses the essential details of the
behavior of the two algorithms included in Lua and any other based on reachability.

In the context of this work, those values which are not reachable will be called garbage.
This notion, sufficient to model Lua’s GC, is purely syntactic: it will take into account just
the literal occurrence of references in the program, or their reachability from this set of
references that occur literally, to determine if a given value is garbage or not. In contrast,
there are approaches, to identify garbage, where also the semantics of the program may be
taken into account (e.g., [3]).

To formally capture the notion of garbage, it will be easier to begin with the definition
of reachable references. The only difference worth to mention, in comparison with common
definitions found in the literature [6, 19], is the inclusion of metatables: a metatable of a
reachable table is considered reachable, so a reachability path, that is, a path between a
reference and the root set, might also go through a metatable.

Informally, a location (value reference or an identifier) will be reachable with respect to
a given term t, and corresponding stores, if one of the following conditions hold:

@ Springer

948 M. Soldevila et al.

— The location occurs literally in t.
— The location is reachable from the information associated with a reachable location. This
includes

— The location is reachable from the closure associated with a reachable location.
— The location is reachable from the table associated with a reachable location.
— The location is reachable from a metatable of a reachable table identifier.

This is formalized in the following definition:

Definition 2 (Reachability for Simple GC) We say that a location | € r U tid is reachable in
term t, given stores o and 0, iff:

reach(l, t,0,0) =let v
3r e t,reach(l,o(r),o \r,0)) Vv
Jtid € t, (reach(l, 71 (O (tid)), o, 0 \ tid) Vv
reach(l, mp (6 (tid)), o, 6 \ tid))

The model proposed in [38] manages closures through references, in a similar fashion as
with tables. Here, we avoid that aspect in order to keep it simpler and closer to the model
presented in this work, keeping in mind that it is only and approximation of the actual notion
of reachability we use in the cited work.

We write [€ ¢t to indicate that [occurs literally in term ¢ and write y \ [as the store
obtained by removing the binding of / in y. Informally, this predicate states that either |
occurs in t, or there is a reference in t such that | is reachable from it.

To avoid cycles generated from mutually recursive definitions, in the stores that would
render undefined the preceding predicate, we remove from the stores the bindings already
considered. We assume the predicate is false if a given location occurs in t but does not
belong to the domain of any of the stores.

Note that for a table tid, we not only check its content (771 (0 (tid))) but also its metatable
(m2(0(tid))). That is, a table’s metatable is considered reachable when the table itself is
reachable. Observe that, being metatables ordinary tables, they can contain other tables’ ids
or even closures, which in turn may have other locations embedded into them. Naturally, if
metatables were not taken into account for reachability, we could run straight into the problem
of dangling references any time a metamethod is recovered from the metatable. Also, note
that during the recursive call reach(l, w2 (0(tid)), o, 0 \ tid), at first it will determine if | is
exactly (6 (tid)) (because it asks for | € m(6(tid)), for w2 (0 (tid)) being either nil or a
table identifier) and, if not, it will continue with the inspection of the content of the metatable,
by dereferencing its id, given that it is not nil. Hence, we do not remove 7 (6 (tid)) from 0
in the mentioned recursive call.

7.3.1 Specification of a Garbage Collection Cycle

We keep abstract the specification of a cycle of GC in order to accommodate to any imple-
mentation of GC:

Definition 3 (Simple GC cycle) gc(s, o, 0) = (o1, 61), where:

—o0o=01Yo
-0 =60,W0,
— VI =€ dom(o,) U dom(#,), —reach(l, s, o, 6)

@ Springer

From Specification to Testing: Semantics. .. 949

We use y1 Wy to denote the union of stores with disjoint domains. This specification states
that gc(s, o,) returns two stores, o and 6, which are a subsets of the stores provided as
arguments, o and 6. We do not specify how these subsets are determined. We just require
that the remaining part of the stores (02 and 6>) do not contain references that are reachable
from the program s. Satisfied this condition, it is safe to run code s in the new stores o and
01, as no dereferencing of a dangling pointer may occur.

Observe that the previous specification does not impose o and 6; to be maximal, meaning
they might have non-reachable references with respect to s.

Using the previous specification of GC, we can extend our model of Lua with a non-
deterministic step of GC:

(0',0") =gc(s,0,0)c’ o Vv #£6

oc:0:s—0 :6:s

We require it to actually perform some changes to the stores to ensure progress. This
obviously introduces non-determinism: at any time, as long as there is some garbage left, we
can choose to collect the garbage or to continue with the execution of the program. But, for
the definition provided so far, this non-determinism should not change the behavior of the
program: every execution path will eventually lead to the same result. This property will not
longer be true when extending GC with the interfaces with the garbage collector present in
Lua 5.2. We further develop the model in the cited bibliography.

8 Related Work

As mentioned throughout the text, the major source of inspiration are the line of work by
[8, 34, 35]. The first two of these works formalize JavaScript, and the third one formalizes
Python. At a broad view, we share with these works several of the characteristics of the
semantic models and their corresponding mechanization in Redex, although there are several
differences important to note. First, our model includes particularly interesting features, like
Lua’s mechanism for meta-programming. While similar to Python’s metaclass construction,
this feature is not covered in [35]. Second, we purposely do not focus on identifying a
core set of features, but instead model the language as a whole (approach enabled by Lua’s
relatively small size). As mentioned in Sect. 6, we have a very thin desugaring process,
staying very close to the surface language. Fourth, and related to the previous one, we tested
our mechanization using the language’s own test suite directly within Redex, instead of
writing another interpreter, as done for performance reasons in [8, 35]. This increases the
confidence in our mechanization, at the expenses of spending more testing time. Lastly, we
pay special attention on the specification and random testing of the model’s properties.

By not following the core language approach, we avoided known complexities in the
resulting model [2, 29]: verbose desugared code and a reduced confidence on the compliance
of the given semantics with respect to the original language’s specification. Additionally,
maintaining the proximity with the original language paves the way to a mechanization that
also Lua developers could use and verify, as their intuition about the language’s semantics
is better expressed. This goal is shared with WebAssembly, whose semantics is formally
specified in its core documentation [36], and introduced in [9].

Another major step in formal semantics for JavaScript is JSCert [2]: a formalization of
ESS5 in the Coq proof assistant, together with an interpreter extracted from the formalization
(JSRef). It presents a big-step semantics for the specification of ESS. In order to gain confi-
dence about the compliance of their formalization with respect to the specification of ES5,

@ Springer

950 M. Soldevila et al.

the authors recognize the importance of the revision of their Coq model by people of differ-
ent areas, ranging from developers of analysis tools for JavaScript, developers of JavaScript
VMs and even ECMA authors. In our project, it is our hope to include Lua developers. This
may be difficult to achieve over a Coq model because, as the authors from [2] recognize,
using proof assistants requires considerable more learning than using, for example, tools
specifically designed for mechanizing language specifications. While we pursue in the future
the mechanization of proofs of properties of our model, perhaps using Coq, we want to take
advantage of the ease of use of Redex.

Besides the aforementioned [8, 34], [29] introduces a small-step operational semantics
for the full language specified in ECMA-262 Standard, 3rd Edition, including proofs of
several properties of the model. The authors recognize that, by defining the semantics of each
construction as described by the ECMA specification, it gives them the greatest likelihood
that the model is correct. While this approach resulted in a model that inherited the size and
complexities of the language being defined, the experience is interesting for our investigations
on Lua, as we are dealing with a smaller, simpler language.

Specific to Lua’s semantics, to the best of our knowledge, there is just one other experience
for Lua 5.2: [20] presents an operational semantics for Lua, in the style of Featherweight
Java [14], i.e., with a strong focus on recognizing a core language. It considers a subset of the
features from the ones presented here and provides a reference implementation in Haskell.
Lua 5.1’s dynamic semantics has been studied in [31], together with type inference, to obtain
an optimized compiler.

9 Final Thoughts and Future Work

This project aims at understanding Lua to the point of being able to construct certified tools,
being [38] our first step in this direction. Currently, we are at the point where it is possible to
analyze realistic programs, perhaps with coroutines and goto being the most salient missing
features.

With respect to the mechanization, Redex proved to be a great tool for the semanticist: it
is flexible and it is equipped with a well-suited collection of tools. However, as is expected
with a dynamic language as Redex, this flexibility is at times a double-edge sword, as it gives
path to several simple bugs to crawl in, bugs that are easily avoided with a type system. This
said, we ended up eliminating a large amount of bugs by random testing the semantics.

The interpreter resulting from the mechanization is significantly slow, but it is of no surprise
taking into account that the whole mechanization takes about 8k LOCs (without counting
comments and tests). Some researchers [8, 35] decided to construct another interpreter by
hand, testing this interpreter instead of the mechanization in Redex. In our case, we were still
able to execute files with hundreds of lines of code within Redex, by splitting the files and/or
adding specific calls to the garbage collector.

An interesting possibility to explore is to port and formally prove the properties in a
proof assistant. Then, one could extract a verified interpreter based on abstract machines
that should, in principle, run faster than executing the model within Redex, that follows the
computation model of reduction semantics. Also, this automated step should help in building
trust about the correspondence of the obtained interpreter and the original formal semantics.
We are currently interested in that venue of research, and leave for future research extending
and updating the model to current versions of Lua.

From the missing aspects of the semantics, the most interesting ones from a semantic
point of view are goto and coroutines. About the former, it is relevant to mention that it is

@ Springer

From Specification to Testing: Semantics. .. 951

not a widely used keyword. A code search!® shows only 37k occurrences of “goto” in about
two millions of files, including a significant fraction of spurious occurrences in comments.
As such, it seems the effort required to extend the semantics seems unjustified: program
configurations has to be enriched to include information about possible jumps and always
keep the already-executed code. This is studied in detail in [18] for a C-like language.

Coroutines, on the other hand, are significantly more used (a similar search returns about
164k hits). Luckily, they are already understood from a formal point of view: [32] presents
a reduction semantics specifically tailored for expressing Lua’s coroutines, and it seems it
could be easily added on top of the concepts already present in our model.

Acknowledgements We thank Dr. Daniel Fridlender and Dr. Fabio Mascarenhas for their useful insights and
support during the development of this research. We also thank wholeheartedly the anonymous reviewers,
whose attention to detail helped us deliver a significantly improved paper.

Funding This work was funded by the following projects: Consolidar IT 33620180101063CB, UNC SECyT
(Argentina) PICT D 2017-3315, ANPCyT (Argentina). The first author received a grant from CONICET,
Argentina.

Data availability The claims made in the present work are supported by the provided mechanization. With it,
it is possible to reproduce the results shown in the paper.

Code Availability The mechanization is publicly available at https://github.com/Mallku2/lua- gc-redex-model.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Adobe: Adobe Lightroom®. https://www.adobe.io/apis/creativecloud/lightroom.html (2019). Accessed
04 May 2020

2. Bodin, M., Chargueraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene, D., Schmitt, A., Smith,
G.: A trusted mechanised JavaScript specification. In: POPL *14 (2014)

3. Donnelly, K., Hallett, J.J., Kfoury, A.: Formal semantics of weak references. In: ISMM ’06 Proceedings
of the 5th international symposium on Memory management, pp. 126—137 (2006)

4. Felleisen, M.: The calculi of lambda-v-cs conversion: a syntactic theory of control and state in imperative
higher-order programming languages. PhD thesis, Indiana University (1987)

5. Felleisen, M., Finlder, R.B., Flatt, M.: Semantics Engineering with PLT Redex. The MIT Press, Cambridge
(2009)

6. Gabay, Y., Kfoury, A.J.: A calculus for java’s reference objects. SIGPLAN Not 42(8), 9—17 (2007). https://
doi.org/10.1145/1294297.1294299

7. Graham-Cumming, J.: CloudFlare’s new WAF: compiling to Lua. https://blog.cloudflare.com/
cloudflares-new-waf-compiling-to-lua (2013). accessed 04 May 2020

8. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: ECOOP *10 (2010)

9. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wagner, L., Zakai, A.,
Bastien, J.: Bringing the web up to speed with WebAssembly. In: Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, Association for Computing
Machinery, New York, NY, USA, PLDI 2017, pp. 185-200. https://doi.org/10.1145/3062341.3062363
(2017)

10. Ierusalimschy, R.: Programming in Lua. Lua.org (2003)
11. Terusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua—an extensible extension language. Software 26(6),
635-652 (1996)

16 https://sourcegraph.com/search?q=context:global+lang:Lua+%?22+goto+%?22+count: 1000000&
patternType=regexp&case=yes.

@ Springer

https://github.com/Mallku2/lua-gc-redex-model
https://www.adobe.io/apis/creativecloud/lightroom.html
https://doi.org/10.1145/1294297.1294299
https://doi.org/10.1145/1294297.1294299
https://blog.cloudflare.com/cloudflares-new-waf-compiling-to-lua
https://blog.cloudflare.com/cloudflares-new-waf-compiling-to-lua
https://doi.org/10.1145/3062341.3062363
https://sourcegraph.com/search?q=context:global+lang:Lua+%22+goto+%22+count:1000000&patternType=regexp&case=yes
https://sourcegraph.com/search?q=context:global+lang:Lua+%22+goto+%22+count:1000000&patternType=regexp&case=yes

M. Soldevila et al.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.

35.

36.

37.

38.

Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: The evolution of an extension language: a history of
lua. In: Brazilian Symposium on Programming Languages (2001)

Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua 5.2 Reference Manual. www.lua.org/manual/5.2/
manual.html (2013)

Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java and GJ.
TOPLAS 23, 396450 (2001)

Klein, C.: Randomized testing in PLT Redex. In: Proc. Scheme and Functional Programming, pp. 26-36
(2009)

Klein, C., McCarthy, J., Jaconette, S., Findler, R.B.: A semantics for context-sensitive reduction semantics.
In: APLAS’11 (2011)

Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M., McCarthy, J.A., Rafkind,
J., Tobin-Hochstadt, S., Findler, R.B.: Run your research: On the effectiveness of lightweight mecha-
nization. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ACM, New York, NY, USA, POPL ’12, pp 285-296, https://doi.org/10.1145/
2103656.2103691 (2012)

Krebbers, R., Wiedijk, F.: Separation logic for non-local control flow and block scope variables. In:
FOSSACS’13, https://doi.org/10.1007/978-3-642-37075-5_17 (2013)

Leal, M.A., Ierusalimschy, R.: A formal semantics for finalizers. J UCS 11(7), 1198-1214 (2005). https://
doi.org/10.3217/jucs-011-07-1198

Lin, H.: Operational Semantics for Featherweight Lua. Master’s thesis, San José State University (2015)
Lua Dev Team: Lua 5.2 test suite. https://www.lua.org/tests/ (2013). Accessed 04 May 2020

LuaDev Team: Lua 5.2 reference manual. https://www.lua.org/manual/5.2/manual.html (2015). Accessed
04 May 2020

Lua Developers: Expression as statements. http://lua-users.org/wiki/ExpressionsAsStatements (2009).
Accessed 04 May 2020

Lua Developers: Lua analyzers. http://lua-users.org/wiki/ProgramAnalysis (2014). Accessed 04 May
2020

Lua Developers: Lua implementations. http://lua-users.org/wiki/Lualmplementations (2018). Accessed
04 May 2020

Lua Developers: Lua directory. http://lua-users.org/wiki/LuaDirectory (2020). Accessed 04 May 2020
Lua Developers: Uses. https://www.lua.org/uses.html (2017). Accessed 04 May 2020

LuaTex: Luatex. http://www.luatex.org/languages.html (2018). Accessed 04 May 2020

Matftfeis, S., Mitchell, J.C., Taly, A.: An operational semantics for JavaScript. In: APLAS 08 (2008)
Manura, D.: Vararg the second class citizen. http://lua-users.org/wiki/VarargTheSecondClassCitizen
(2007). Accessed 04 May 2020

Mascarenhas de Queiroz, F.: Optimized compilation of a dynamic language to a managed runtime envi-
ronment. PhD thesis, Pontificia Universidade Catdlica do Rio de Janeiro (2009)

Moura, A., Rodriguez, N., Ierusalimschy, R.: Coroutines in lua. J. Univers. Comput. Sci. 10(7), 910-25
(2004)

Pierce, B.C.: Types and Programming Languages, 1st edn. The MIT Press, Cambridge (2002)

Politz, J.G., Carroll, M.J., Lerner, B.S., Pombrio, J., Krishnamurthi, S.: A tested semantics for getters,
setters, and eval in JavaScript. In: DLS 12 (2012)

Politz, J.G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chitipothu, A., Krishnamurthi,
S.: Python: the full monty: a tested semantics for the Python programming language. In: OOPSLA 13
(2013)

Rossberg, A., (eds): Webassembly specification. https://webassembly.github.io/spec/core/ (2021).
Accessed 20 Feb 2021

Soldevila, M., Ziliani, B., Silvestre, B., Fridlender, D., Mascarenhas, F.: Decoding Lua: Formal semantics
for the developer and the semanticist. In: Proceedings of the 13th ACM SIGPLAN Dynamic Languages
Symposium, DLS 2017 (2017)

Soldevila, M., Ziliani, B., Fridlender, D.: Understanding Lua’s garbage collection: Towards a formal-
ized static analyzer. In: Proceedings of the 22nd International Symposium on Principles and Practice of
Declarative Programming, PPDP 2020 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

@ Springer

www.lua.org/manual/5.2/manual.html
www.lua.org/manual/5.2/manual.html
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.3217/jucs-011-07-1198
https://doi.org/10.3217/jucs-011-07-1198
https://www.lua.org/tests/
https://www.lua.org/manual/5.2/manual.html
http://lua-users.org/wiki/ExpressionsAsStatements
http://lua-users.org/wiki/ProgramAnalysis
http://lua-users.org/wiki/LuaImplementations
http://lua-users.org/wiki/LuaDirectory
https://www.lua.org/uses.html
http://www.luatex.org/languages.html
http://lua-users.org/wiki/VarargTheSecondClassCitizen
https://webassembly.github.io/spec/core/

	From Specification to Testing: Semantics Engineering for Lua 5.2
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Quick Tour

	2 Lua: An Extensible Scripting Language
	2.1 First-Class Closures and Tables
	2.2 Local Definitions and the Environment _ENV
	2.3 Metatables
	2.4 Tuples
	2.5 Vararg Arguments

	3 Basics of the Formalization
	3.1 The Pure Fragment of Lua0
	3.2 The Stateful Fragment
	3.3 Executing Entire Programs
	3.4 Example

	4 A Formal Description of Lua
	4.1 Stateless Lua
	4.1.1 Statements
	4.1.2 Expressions

	4.2 Imperative Lua
	4.2.1 Tables
	4.2.2 Local Variables
	4.2.3 Functions, Function Applications, and Tuples
	4.2.4 Function Comparison and Caching

	4.3 Built-in Services
	4.3.1 Calling a Service

	4.4 Metatables
	4.4.1 Setting and Getting Metatables
	4.4.2 Resolving Labeled Terms (Excerpt)

	4.5 Semantics of Programs and Error Handling
	4.5.1 Errors and Protected Mode
	4.5.2 Formalization

	5 Properties of the Semantics
	6 Mechanization
	6.1 Correspondence with the Formal Model
	6.1.1 Particularities of the Tool
	6.1.2 Particularities of the Use of the Semantics
	6.1.3 Particularities of the Official Interpreter
	6.1.4 Particularities of the Implementation: The |load| Service

	6.2 Tests Coverage
	6.2.1 Improving Performance Thanks to Semantics-Preserving Garbage Collection

	6.3 Random Testing of Properties
	6.3.1 Preparation of Test Cases
	6.3.2 Properties Tested and Results

	7 A Use Case: Modeling Garbage Collection
	7.1 Garbage Collection
	7.2 LuaSafe in a Nutshell
	7.3 Modeling Garbage Collection
	7.3.1 Specification of a Garbage Collection Cycle

	8 Related Work
	9 Final Thoughts and Future Work
	Acknowledgements
	References

