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Abstract

Concrete domains have been introduced in the area of Description Logic to enable reference
to concrete objects (such as numbers) and predefined predicates on these objects (such as
numerical comparisons) when defining concepts. Unfortunately, in the presence of general
concept inclusions (GCls), which are supported by all modern DL systems, adding concrete
domains may easily lead to undecidability. To regain decidability of the DL ALC in the
presence of GClIs, quite strong restrictions, in sum called w-admissibility, were imposed
on the concrete domain. On the one hand, we generalize the notion of w-admissibility from
concrete domains with only binary predicates to concrete domains with predicates of arbitrary
arity. On the other hand, we relate w-admissibility to well-known notions from model theory.
In particular, we show that finitely bounded homogeneous structures yield w-admissible
concrete domains. This allows us to show w-admissibility of concrete domains using existing
results from model theory. When integrating concrete domains into lightweight DLs of the
€L family, achieving decidability is not enough. One wants reasoning in the resulting DL
to be tractable. This can be achieved by using so-called p-admissible concrete domains
and restricting the interaction between the DL and the concrete domain. We investigate p-
admissibility from an algebraic point of view. Again, this yields strong algebraic tools for
demonstrating p-admissibility. In particular, we obtain an expressive numerical p-admissible
concrete domain based on the rational numbers. Although w-admissibility and p-admissibility
are orthogonal conditions that are almost exclusive, our algebraic characterizations of these
two properties allow us to locate an infinite class of p-admissible concrete domains whose
integration into ALC yields decidable DLs.
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1 Introduction

Description Logics (DLs) [10, 12] are a well-investigated family of logic-based knowledge
representation languages, which are frequently used to formalize ontologies for application
domains such as the Semantic Web [52] or biology and medicine [51]. To define the important
notions of such an application domain as formal concepts, DLs state necessary and sufficient
conditions for an individual to belong to a concept. These conditions can be Boolean com-
binations of atomic properties required for the individual (expressed by concept names) or
properties that refer to relationships with other individuals and their properties (expressed
as role restrictions). For example, the concept of a father that has only daughters can be
formalized by the concept description C,y := —Female M 3child. Human 1 Vchild.Female,
which uses the concept names Female and Human and the role name child as well as the
concept constructors negation (—), conjunction (1), existential restriction (3r.D), and value
restriction (Vr.D). The GCIs Human T Vchild.Human and 3child. Human T Human say that
humans have only human children, and they are the only ones that can have human children.

DL systems provide their users with reasoning services that allow them to derive implicit
knowledge from the explicitly represented one. In our example, the above GCIs imply that
elements of our concept C,, also belong to the concept D, := Human N VYchild.Human,
i.e., Coy is subsumed by D, w.r.t. these GCIs. A specific DL is determined by which kind
of concept constructors are available. A major goal of DL research was and still is to find a
good compromise between expressiveness and the complexity of reasoning, i.e., to locate DLs
that are expressive enough for interesting applications, but still have inference problems (like
subsumption) that are decidable and preferably of alow complexity. For the DL ALC, in which
all the concept descriptions used in the above example can be expressed, the subsumption
problem w.r.t. GCIs is ExpTime-complete [12].

Classical DLs like ALC cannot refer to concrete objects and predefined relations over these
objects when defining concepts. For example, a constraint stating that parents are strictly older
than their children cannot be expressed in ALC. To overcome this deficit, a scheme for inte-
grating certain well-behaved concrete domains, called admissible, into ALC was introduced
in [2], and it was shown that this integration leaves the relevant inference problems (such
as subsumption) decidable. Basically, admissibility requires that the set of predicates of the
concrete domain is closed under negation and that the constraint satisfaction problem (CSP)
for the concrete domain is decidable. However, in this setting, GCIs were not considered since
they were not a standard feature of DLs then,! though a combination of concrete domains and
GClIs would be useful in many applications. For example, using the syntax employed in [65]
and also in the present article, the above constraint regarding the age of parents and their chil-
dren could be expressed by the GCI Human M age, child age.(x1 < x2) E L, which says
that there cannot be a human whose age is smaller than the age of one of his or her children.
Here L is the bottom concept, which is always interpreted as the empty set, age is a feature
that maps from the abstract domain populating concepts into the concrete domain of rational
numbers, and < is the usual “smaller than” predicate.

A first indication that concrete domains might be harmful for decidability was given in
[4], where it was shown that adding transitive closure of roles to the extension of ALC by
an admissible concrete domain based on real arithmetics renders the subsumption problem
undecidable. The proof of this result uses a reduction from the Post Correspondence Problem
(PCP). It was shown in [63] that this proof can be adapted to the case where transitive closure
of roles is replaced by GCls, and it actually works for considerably weaker concrete domains,

1 Actually, GCIs were introduced (with a different name) at about the same time as concrete domains [9, 71].
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such as the rational numbers QQ or the natural number N with a unary predicate =g for equality
with zero, a binary equality predicate =, and a unary predicate +; for incrementation. In
[6] it is shown, by a reduction from the halting problem of two-register machines, that
undecidability even holds without = and =g.

To regain decidability, one option is to impose syntactic restriction on how the DL can
interact with the concrete domain [45, 69]. The main idea is here to disallow paths (such
as child age in our example), which has the effect that concrete domain predicates cannot
compare properties (such as the age) of different individuals. Another option is to impose
stronger restrictions than admissibility on the concrete domain. After first positive results
for specific concrete domains (e.g., a concrete domain over the rational numbers with order
and equality [62, 64]), the notion of w-admissible concrete domains was introduced in [65],
and it was shown (by designing a tableau-based decision procedure) that integrating such a
concrete domain into ALC leaves reasoning decidable also in the presence of GClIs. In [6],
we generalize the notion of w-admissibility and the decidability result from concrete domains
with only binary predicates as in [65] to concrete domains with predicates of arbitrary arity.

When integrating a concrete domain into a lightweight DL like ££, one wants to preserve
tractability rather than just decidability. To achieve this, the notion of p-admissible concrete
domains was introduced in [11] and paths of length > 1 were disallowed in concrete domain
restrictions. Regarding the latter condition, note that, in the above example, we have used the
path child age, which has length 2. The restriction to paths of length 1 means (in our example)
that we can no longer compare the ages of different humans, but we can still define concepts
like teenager, using the GCI Teenager © Human M 3age.>10(x1) A <19(x1), where >19 and
<19 are unary predicates respectively interpreted as the rational numbers greater equal 10
and smaller equal 19. In a p-admissible concrete domain, satisfiability of conjunctions of
atomic formulae and validity of implications between such conjunctions must be tractable.
In addition, the concrete domain must be convex, which roughly speaking means that a
conjunction cannot imply a true disjunction. For example, the concrete domain (Q; <, =, >)
is w-admissible, but it is not convex since x < y Ax < zimpliesy <zVy=zVy >z,
but none of the disjuncts. In [11], two p-admissible concrete domains were exhibited, where
one of them is based on Q with unary predicates =, >, and binary predicates +,, =. To
the best of our knowledge, since then no other p-admissible concrete domains have been
described in the literature before our work in [8]. Similarly, after the publication of [65] and
before our work in [6], no new w-admissible concrete domains were exhibited. We believe
that the reason for this is that it is quite hard to prove w-admissibility or p-admissibility of a
concrete domain without appropriate mathematical tools.

The main contribution of this paper is to develop such tools based on a model-theoretic
analysis of the conditions required by these two notions of admissibility. It is based on
the conference publications [6] and [8], but differs from them w.r.t. some details and also
presents additional results. On the one hand, we show that there is a close relationship
between w-admissibility and well-known notions from model theory. In particular, we prove
that finitely bounded homogeneous structures yield w-admissible concrete domains. This
allows us to show w-admissibility of known such concrete domains (like Allen and RCC8
from [65]; see Example 2) and to locate new w-admissible concrete domains using exist-
ing results from model theory (see Examples 3, 4, and 5). We can even show that some of
the relevant properties can be algorithmically tested (see Sect. 6). On the other hand, we
devise an algebraic characterization of convexity based on the notion of square embeddings,
which are embeddings of the second power of a relational structure into itself. We investi-
gate the implications of this characterization further for so-called w-categorical structures,
finitely bounded structures, and numerical structures. Each of these cases provides us with

@ Springer



360 F.Baader, J. Rydval

new examples of p-admissible concrete domains. In particular, we exhibit a new and quite
expressive p-admissible concrete domain based on the rational numbers, whose predicates
are defined by linear equations over Q. The paper also investigates the connection between
p-admissibility and w-admissibility. It turns out that only trivial concrete domains can satisfy
both properties. However, we can show that convex finitely bounded homogeneous structures,
which are p-admissible, can be integrated into ALC (even without the length 1 restriction on
role paths) without losing decidability. Whereas these structures are not w-admissible, they
can be expressed in an w-admissible concrete domain.

To increase readability of the main text, some of the technical proofs have been moved
to an appendix. Due to space constraints, some of the results of [6, 8] are only cited without
proof here.

2 Preliminaries

In this section, we introduce the algebraic and logical notions that will be used in the rest
of the paper. The set {1, ..., n} is denoted by [n]. Given a set A, the diagonal relation (or
equality) on A is defined as the binary relation Eq4 := {(a,a) | a € A}. We use the bar
notation for tuples; for a tuple 7 indexed by a set I, the value of 7 at the position i € I is
denoted by 7[i]. For a function f: A¥ — B and n-tuples 71, ..., iy € A", we use the shortcut

[, . ) = (f(t_l[l], L), L f(fnd, fk[n])).

From a mathematical point of view, concrete domains are relational structures. A relational
signature T is a set of relation symbols, each with an associated natural number called arity.
For a relational signature 7, a relational t-structure 2| (or simply t-structure or structure)
consists of a set A (the domain) together with the relations R¥ C A for each relation
symbol R € t of arity k. Such a structure 2 is finite if its domain A is finite. We often
describe structures by listing their domain and relations; e.g., we write Q = (Q; <) for the
relational structure whose domain is the set of rational numbers QQ, and which has the usual
smaller relation < on Q as its only relation.?

The product of a family (2(;);¢; of t-structures is the t-structure [ |
such that, for each R € t of arity k, we have

2A; over [[;; Ai

iel

(@1, ..., ar) € R iff (@11, ..., agli) € R% foreveryi € I.

We denote the binary product of a structure 2 with itself as 2. An expansion of a T-structure
2 is a o-structure B with A = B such that 7 € o and R® = R for each relation symbol
R € 7. Conversely, we call 2 a reduct of 8. We use the notation (2, Ry, ..., R,) to describe
an expansion of 2 by the relations Ry, ..., R, over A; e.g., (2, #) stands for (Q; <, #).
One possibility to obtain an expansion of a t-structure is to use formulas of first-order
(fo) logic over the signature 7 to define new predicates, where a formula with & free variables
defines a k-ary predicate in the obvious way. We say that a first-order formula is k-ary if it has
k free variables. For a structure 2l we denote its first-order theory, i.e., the first-order sentences
that hold in 2, with Th(2(). We assume that equality = as well as the nullary predicate symbol

2 By a slight abuse of notation, we use < instead of <2 (o denote also the interpretation of the predicate
symbol < in 9.
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£ £ for falsity are always available when building these formulas. Thus, atomic formulas are
of the form £f, x; = x;, and R(xy, ..., x¢) for some k-ary R € 7 and variables xi, ..., xg.
In addition to full first-order logic, we also use standard fragments such as the existential
positive (3T), the quantifier-free (qf), and the primitive positive (pp) fragment. The existential
positive fragment consists of formulas built using conjunction, disjunction, and existential
quantification only. The quantifier-free fragment consists of Boolean combinations of atomic
formulas, and the primitive positive fragment of existentially quantified conjunctions of
atomic formulas. A formula is called equality-free if it does not contain any occurrence of
the default equality predicate =.> Let ¥ be a set of first-order formulas and ® a structure.
We say that a relation over D has a X-definition in D if it is of the form {f € D* | D = ¢ (1)}
for some ¢ € X. We refer to this relation by ¢®. For example, the formulay < x V y = x
is existential positive and quantifier-free. Interpreted in the structure £, it clearly defines the
binary relation > on Q. This shows that > is 3% and gf definable in . An example of a
pp formula is the formula x = x, which defines the unary relation interpreted as the whole
domain Q.

The definition of admissibility of a concrete domain in [2] requires that the constraint
satisfaction problem for this structure is decidable. For a fixed t-structure B, the constraint
satisfaction problem (CSP) for ®B [16] asks whether a given pp T-sentence is satisfiable in B.
An implication is of the form Vx. (¢ = ) where ¢ is a conjunction of atomic t-formulas,
Y is a disjunction of atomic t-formulas, and the tuple x consists of all the variables occurring
in ¢ or ¥. Such an implication is a Horn implication if i is a single atomic t-formula. A
universal sentence is called Horn if it is a conjunction of Horn implications. The CSP for 2(
can be reduced in polynomial time to the validity problem for Horn implications since ¢ is
satisfiable in 2( iff Vx. (¢ = ££) is not valid in . Conversely, validity of Horn implications
in a structure 2 can be reduced in polynomial time to CSP(2A™, ) where 2™ is the expansion
of 2 by the complements of all relations. In fact, the Horn implication Vx. (¢ = ) is valid
in 2L iff ¢ A =) is not satisfiable in (2™, #). Note that, in the signature of (™, #), = can
be expressed by an atomic formula.

A homomorphism h: A — B for t-structures 2 and ‘B is a mapping #: A — B that
preserves each relation of 21, i.e., if 7 € R* for some k-ary relation symbol R € t, then
h(f) € R®. The homomorphism /: 2 — B is strong if it additionally satisfies the inverse
condition: for every k-ary relation symbol R € 7 and 7 € AF we have h(7) € R® only if
7 € R*. An embedding is an injective strong homomorphism. We write 2 — B (2 < B)
if there is a homomorphism (embedding) from 2 to B. A substructure of B is a structure 2{
over the domain A C B such that the inclusion mapi: A — B is an embedding. Conversely,
we call ‘B an extension of A. We denote by Age(*B) the class of all finite structures 2
with A — ‘B. An isomorphism is a surjective embedding. Two structures 2 and ‘B are
isomorphic (written 2L = B) if there exists an isomorphism from 2 to B. An automorphism
is an isomorphism from 2 to 2(. Two structures 2l and *B are homomorphically equivalent if
A — B and B — A

If the signature t of ‘B is finite, the constraint satisfaction problem for B can also be
conveniently formulated using homomorphisms: given a finite 7-structure 2(, decide whether
A — B. A solution for such an instance 2 of the CSP is then simply a homomorphism
h: A — B and CSP(®B) is the class of all finite t-structures that homomorphically map to
8. Itis easy to see that this definition of the CSP coincides with the one given above. Indeed,
deciding whether a CSP instance 2( admits a solution amounts to evaluating a pp sentences in

3 In case the signature 7 of a structure contains a symbol that is interpreted as equality in that structure, an
equality-free formula can, of course, still use that symbol.
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B and vice versa [16]. For example, verifying whether the structure A = ({ay, a2, az}; <%
with <% := {(a1, @), (a2, a3), (a3, a1)} homomorphically maps into £ is the same as
checking whether the pp formula x| < xp A X2 < x3 A x3 < X7 is satisfiable in Q.

The CSP for 9 is tractable since a structure 2 = (A; <*) can homomorphically be
mapped into Q iff it does not contain a <-cycle, i.e., there are no n > 1 and elements
aip,...,a, € Asuchthata; <% ... <% g, <% 4. Testing whether such a cycle exists
can be done in non-deterministic logarithmic space since it requires solving the reachability
problem in a directed graph (digraph). In the example above, we obviously have a cycle, and
thus this instance of CSP(L) has no solution.

The definition of admissibility in [2] actually also requires that the predicates are closed
under negation and that there is a predicate for the whole domain. We have already seen that
the negation > of < is 3T definable in Q and that the predicate for the whole domain is pp
definable. The negation of this predicate has the pp definition x < x. The following lemma
implies that the expansion of £ by these predicates still has a decidable CSP.*

Lemma 1 ([16]) Let €, D be structures over the same domain with finite signatures.

1. If the relations of € have a pp definition in ®, then CSP(€) <pre CSP(D).
2. Ifthe relations of € have an 3T definition in ®, then CSP(€) <np1ive CSP(D).

3 Description Logics with Concrete Domains

‘We assume that the reader is familiar with the basic definitions and results in DL [10, 12], but
nevertheless briefly recall the definitions of the two DLs ALC and £ L relevant for this paper.
Then we describe how these DLs can be extended with concrete domains. The integrations
of concrete domains into DLs described in the literature [2, 11, 35, 60-62, 65] differ in
some details. The approaches described below for ALC and £L are close to the ones in [65]
and [11], respectively, but not identical, mainly as a matter of convenience of presentation.
Reasoning in DLs obtained this way may easily become undecidable, and thus one needs to
find conditions that guarantee decidability, and even tractability for the case of £L.

3.1 Basic Definitions and Undecidability Results

Given countably infinite sets Nc and Ng of concept and role names, ALC concepts are built
using the concept constructors top concept (T ), bottom concept (L), negation (—), conjunc-
tion (C 1 D), disjunction (C U D), existential restriction (Ir.C), and universal restriction
(Vr.C). The semantics of the constructors is defined in the usual way (see, e.g., [10, 12]).
It assigns to every ALC concept C a set CZ C AT, where A7 is the interpretation domain
of the given interpretation Z. The set of ££ concepts is obtained by restricting the available
constructors to T, C 11 D, and 3r.C. As usual, a TBox is defined to be a finite set of general
concept inclusions (GCIs) C T D, where C, D are concepts. The interpretation Z is a model
of such a TBox if CZ < DZ holds for all GCIs C T D occurring in it. Given a concept
description C and a TBox 7, we say that C is satisfiable w.rt. T if C* is non-empty for
some model Z of 7. Concept satisfiability w.r.t. GCIs is ExpTime-complete in ALC [71], but
trivial in £L since £L concepts are always satisfiable. Given concept descriptions C, D and
a TBox 7, we say that C is subsumed by D w.rt. T (written C =7 D) if CT < DT holds

4 The lemma actually only yields an NP decision procedure for this CSP, but it is easy to see that the above
polynomial-time cycle-checking algorithm can be adapted such that it also works for the expanded structure.
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for all models of 7. Subsumption w.r.t. TBoxes in ALC is also ExpTime-complete since it
interreducible with concept satisfiability, but tractable (i.e., decidable in polynomial time) in
EL[11,32].

From an algebraic point of view, a concrete domain is a t-structure ® with a relational
signature 7 without constant symbols. To integrate such a structure into ALC and £L£, we
complement concept and role names with a set of feature names N, which provide the
connection between the abstract domain AZ and the concrete domain D. A path is of the
form r f or f where r € Ng and f € Nf. In our example in the introduction, age is both a
feature name and a path of length 1, and child age is a path of length 2.

Definition 1 Concrete domain restrictions for a relational t-structure ® are concept con-
structors of the form 3py, ..., pr.d (x1, ..., xp) orVp1, ..., pr.¢(x1, ..., xx), where py, ..., pk
are paths and ¢ is a first-order t-formula with free variables xy, ..., x;. The DL ALC(D)
extends ALC with concrete domain restrictions where ¢ is allowed to be an arbitrary atomic
t-formula. The DL ££(D) is the sublanguage of ALC(®) where only the concept construc-
tors of £L together with existential concrete domain restrictions can be used. Let X' be a
set of first-order T-formulas and » a natural number. The DL ALCY. (D) extends ALC with
concrete domain restrictions where ¢ is allowed to be an at most n-ary formula from X.

In contrast to previous works on concrete domains [2, 65], we generally allow the use of
the equality predicate in concrete domain restrictions, even if it is not explicitly contained in
the signature of the concrete domain. This assumption will turn out to be useful later on, and
it is basically without loss of generality since virtually all concrete domains considered in the
literature can express equality in a way that does not impact on the complexity of reasoning.
Our assumption that ££ is an atom implies that ££(®) can express the bottom concept L
by the concrete domain restriction 3.££. A third difference is that, while features pointing
into the concrete domain are functional, we do not allow the use of functional roles in paths.
In [2], only functional roles are allowed to occur in paths whereas in [65] both functional
and other roles can occur there. For ALC, this does not really make a difference due to the
availability of universal concrete domain restrictions. For ££, the presence of functional roles
would destroy tractability even without concrete domains [11], and thus needs to be avoided
anyway.

To define the semantics of concrete domain restrictions, we assume that an interpretation 7
assigns functional binary relations fZ € A% x D to feature names f € Ng, where functional
means that (¢, d) € fand (a,d’) € f¥ implyd = d’. We extend the interpretation function
to paths of the form p = r f by setting

(r f)I ={(a,d) € AT x D | thereis b € AT such that (a,b) e rT and (b,d) € fI}.
The semantics of concrete domain restrictions is now defined as follows:

@Ap1, ..oy pr-@(x1, s xi)E = {a € AT | there are d, ..., di € D such that
(a,d;) € pf foralli € [kl and ® = ¢(di, ... di)},

~Yp1, oo P (x1, oo, xi))E = {a € AT | forall dy, ..., di € D such that
(a,d;) € p} foralli € [k] we have D = ¢ (di, ..., di)}.

As already mentioned above, the concrete domain restriction 3.f £ is unsatisfiable, and thus
equivalent to L. The restriction 3 f, f.(x; = x2) expresses that the value of the feature f
must be defined, without putting any constraint on this value.

Adding a concrete domain to a DL can easily lead to undecidability. Clearly, if the CSP
of the concrete domain is undecidable, then this transfers to the DL it is integrated in. If the
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concrete domain is admissible, i.e., its CSP is decidable and its relations are closed under
complements, then concept satisfiability without GClIs is decidable in a variant of ALC with
concrete domains that uses functional roles in paths [2]. But even for very simple concrete
domains with decidable CSPs, the presence of GCIs may cause undecidability. For instance,
ALC(®) is undecidable already when D is a structure over N that has access to the unary
predicate =g, which is interpreted as the singleton set {0}, and the binary predicate 4+, which
is interpreted as incrementation (i.e., it consists of the tuples (m, m 4 1) for m € N) [12].
We can improve on this result by showing undecidability for even less expressive concrete
domains without the predicate =q.

Proposition 1 ([6]) If © is of the form (D; +1) or (D; +) for D € {Q, Z, N}, then concept
satisfiability in ALC (D) w.r.t. TBoxes is undecidable.

This undecidability results also holds without our assumption that equality is always available,
but the proof given in [6] uses functional roles in paths. This proof can, however, easily be
adapted to work also without functional roles. One simply must use additional universal
quantification (i.e., value restrictions and universal concrete domain restrictions) to ensure
that all the successors of an individual w.r.t. a role that was assumed to be functional in the
original proof behave the same. More specifically, one must replace each occurrence of a
concrete domain restriction of the form 3py, ..., px.¢ for functional paths p; with the concept
description Apy, ..., pk.¢ M Vp1, ..., pr-¢. Then the functionality restriction on these paths
can be removed.

Even for ££, integrating a decidable concrete domain may cause undecidability if we
allow for role paths of length 2. Proving this is, however, more challenging, not only due to
the fact that not all Boolean operations are available, but also since the absence of functional
roles cannot be compensated by the use of universal quantification. To illustrate the latter
point, assume we have a concrete domain with binary predicates P and P’ that are disjoint. If
g is assumed to be a functional role, then the concept 3 f, g f.P(x1, x2)M3f, g f.P'(x1, x2)
is unsatisfiable, but if g is just an arbitrary role, then it is satisfiable since a given individual
belonging to the concept may have two different g-successors, one satisfying the P-constraint
and the other satisfying the P’-constraint. However, conjoining this concept with the cor-
responding universal concrete domain restrictions Vf, g f.P(x1,x2) OV f, g f.P'(x1, x2)
yields an unsatisfiable concept again.

To show undecidability for a concrete domain extension of ££ without functional roles, we
consider the relational structure @aff’@z over Qz, which has, for every affine transformation
Q* - Q% : X > AX + b, the binary relation R, ; := {(¥,7) € (Q*)? | y = A% + b}
as a predicate. We will show in Corollary 8 that the CSP for this structure is decidable
in polynomial time. Undecidability of subsumption w.r.t. TBoxes in EL(D 4 g2) can be
shown by a reduction from 2-Dimensional Affine Reachability, which is undecidable by
Corollary 4 in [14]. For this problem, one is given vectors v, w € Q? and a finite set S of
affine transformations from Q2 to Q2. The question is then whether w can be obtained from
v by repeated application of transformations from S.

Proposition 2 Subsumption w.r.t. TBoxes is undecidable in EL(Dqp )

Proof We define the reduction of 2-dimensional Affine Reachability to subsumption w.r.t.
general TBoxes in £L£(D 4 2) as follows. For given vectors v, w € Q? and affine transfor-
mations S = {X — M|X 4+ vy, ..., X — MyXx + vy}, the TBox 7 contains, for every i € [k],
the GCI T C 3f, g f.Rum;,5 (x1, x2). Additionally, 7" contains the GCIs 3g.L T L and
af, f.Rz.s(x1,x2) E L, where L is a fresh concept name and Z is the 2 x 2 zero matrix.
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Note that (x,x) € Rz iff ¥ = w. Each involved concept is either T, a concept name,
or an existential (concrete domain) restriction, and thus definable in EL(D g g2). We claim
that 3f, f.Rz 5(x1, x2) is subsumed by L w.r.t. 7 iff w can be obtained from v through an
application of a composition of affine transformations from S.

“«=": Suppose that there exists such a composition and let Z be a model of 7. Let a be
an arbitrary element of (3f, f.Rz 5(x1, )% ie., satisfying fZ(a) = v. Since T contains
T E3f, gf .Ru, 5 (x1, x2) foreveryi € [k]and w isreachable from v through an application
of a composition of affine transformations from S, there exists a role patha — oT T b
to some element b with fI(b) = w. Since 7 contains the GCI13f, f.Rz 5(x1,x2) E L, we
have b € L?. The GCI 3g.L E L then yields a € L”.

“=": Suppose that 3, f.Rz 5(x1, x2) is subsumed by L w.r.t. 7. Consider the following
interpretation Z. The domain of Z is Q*. We define f7 as the identity map on Q2 and set
g% == {(x.9) € (Q*? | 3i € [k] such that § = M;% +1;}. Finally, we set LT := {}U{% €
Q2 | there exists a role path x T T w}. It is easy to check that 7 is a model of
7. Since v € (Af, f.Rz,,;(xl,xz))I and 3f, f.Rz 5(x1, x2) is subsumed by L w.rt. 7,
we have v € LZ. The definition of L7 thus implies that w is reachable from ¥ through an
application of a composition of affine transformations from S. O

Note that the signature of D, @2 is infinite since there are infinitely many affine trans-
formations on Q2. One might think that this is important for our undecidability proof.

‘We can show, however, that this is not the case: a fixed finite set of affine transformations
is sufficient (see the appendix for a proof).

Corollary 1 There exists a finite signature reduct D of Dy g2 such that subsumption w.r..
TBoxes is undecidable in £L(D).

3.2 Decidable and Tractable DLs with Concrete Domains

There are two strategies for regaining decidability of DLs with concrete domains in the
presence of GCIs: syntactically restricting the interaction of the DL with the concrete domain
or limiting the expressiveness of the concrete domain itself. Typically, the former is realized by
restricting the length of paths in concrete domain restrictions to 1. We indicate this restriction
by writing square brackets around the concrete domain instead of round brackets.

Definition 2 The restriction of ££(D) and ALC(D) to paths of length 1 in concrete domain
restrictions is respectively denoted by ££[®] and ALC[D].

For ALC, this restriction results in decidability [45, 69] for concrete domains that are
admissible in the sense introduced in [2], i.e., whose predicates are closed under negation
and whose CSP is decidable. In the case of £L, the expectations are a bit higher: the aim there
is to regain tractability. To obtain tractability of £L[®], the notion of p-admissible concrete
domains was introduced in [11], and it was shown that subsumption in ££[®] is decidable
in polynomial time iff ® is p-admissible. Before defining this condition below, we introduce
a condition, called w-admissibility, which ensures decidability of ALC(®) in the presence
of GCIs and paths of length > 1.

3.2.1 @-Admissible Concrete Domains

The notion of w-admissibility was introduced in [65] to regain decidability of ALC with
concrete domains in the presence of GCIs. Motivated by binary constraint calculi like Allen’s
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interval calculus [1] and the region connection calculus [70], only concrete domains where
all predicates are binary were considered in [65]. In [6], the notion and the corresponding
decidability result were generalized to concrete domains with predicates of arbitrary arity.

We say that the structure ® has homomorphism w-compactness if the following holds
for every countable structure B: B — D iff A — D for every A € Age(*B). In [65], the
inputs to this condition were not formally restricted to countable structures. However, it is
clear that this is what the authors meant because (i) the structures produced by the original
tableau algorithm that need to be tested for a homomorphism to the concrete domain are
always countable, and (ii) the examples of w-admissible concrete domains presented in [65]
are not homomorphic compact for arbitrarily large cardinalities. A relational t-structure 2
is

— JEif, for every k > 1, either ® has no k-ary relations or | J{R® | R € 7, R® € DF} =
Dk;

—~ PDif RP N R® = ¢ forall pairwise distinct R, R et

— ID if equality EqP? has a (quantifier and equality)-free definition in .

Here JE stands for “jointly exhaustive,” PD for “pairwise disjoint,” and JD for “jointly diago-
nal.” In [6], JD was defined in a more restricted way as U{R:D ’ Ret, R®C EqP} = EqP,
which explains the name. The condition JD was not considered in [65]. We include it here
mainly because it makes the comparison with known notions from model theory easier. In
the setting considered in the present paper, where concrete domain restrictions always have
access to equality, JD is actually needed to ensure decidability. If the equality predicate is
dropped from concrete domain restrictions, then the decidability results in [7, 65] do not
depend on JD. However, all examples of w-admissible concrete domains presented in [65]
satisfy JD since equality is contained in the signature. In [39], k-ary structures, i.e., struc-
tures ® that have only k-ary predicates, are considered that have the k-ary equality relation
Eq,f’ ={d,...,d) € Dk | d € D}. For k > 2, such a structure satisfies JD in the sense
introduced above, since binary equality x = y can be defined as Eq,? (X, ¥, ey ¥).

A relational t-structure ® is a patchwork if it is JDJEPD, and for all finite JEPD -
structures A, B, By with ey : A — By, er: A — By, B, — D, and B, — D, there
exist f1: B; — Dand fo: By, - D with floe; = fro0en.

Definition 3 The relational structure © is w-admissible if it has a finite signature, CSP(D)
is decidable, © has homomorphism w-compactness, and ® is a patchwork.

The idea is now that one can use disjunctions of atomic formulas of the same arity
within concrete domain restrictions. By V™ we denote the set of all T-formulas of the form
O1(X1y ooy XE) V-V @y (X1, ..., Xx) Where each ¢; is a k-ary atomic t-formula.

The following theorem is shown in [6, 7] by extending the tableau-based decision proce-
dure given in [65] to our more general definition of w-admissibility.

Theorem 1 Let ® be an w-admissible t-structure with at most d-ary relations for some
d > 2. Then concept satisfiability in ALC\‘L(C‘D) w.r.t. TBoxes is decidable.

The main motivation for the definition of w-admissible concrete domains in [65] was that
they can capture qualitative calculi of time and space. In particular, it was shown in [65]
that Allen’s interval logic [1] as well as the region connection calculus RCC8 [70] can be
represented as w-admissible concrete domains. To the best of our knowledge, no other w-
admissible concrete domains have been exhibited in the literature before our investigations
in [6], which we will describe in detail in the next section. Among other things, we prove that
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the structure (Q; <, =, >) is w-admissible. The “discrete” version (Z; <, =, >), on the other
hand, is not w-admissible because it lacks homomorphism w-compactness (see Example 1
below). By the results in [60, 61], (Z; <, =, >) nevertheless yields a decidable concrete
domain extension of ALC, but proving this requires a more specialized approach than the
tableau algorithm provided by the original paper of Lutz and Mili¢i¢ [65]. This shows that
w-admissibility is not necessary for decidable reasoning in ALC with concrete domains in
the presence of GCls.

Example 1 The concept A € Nc is satisfiable w.r.t. the TBox

T = {A C (Elf, g.<(x1,x2)) mn (EIr.A) mn (Vf, r f.<(x1,x2)) mn (Vr g, 8.<(xy, xz))}

in ALC(Q; <, =, >), and this can be tested using the tableau algorithm from [65] because
(@Q; <, =, >) is w-admissible by Theorem 6. However, A is not satisfiable w.r.t. 7 in
ALC(Z; <, =, >) because its satisfiability would imply the existence of a homomorphism
to (Z; <, =, >) from a structure B with domain B = {f,, g, | » € N} and relations given
by fu <® fur1 <® gup1 <P g, for every n € N. Such a homomorphism cannot exist
because the ordering of the integers is not dense. Note that % — (Z; <, =, >) for every
2A € Age(®B), which shows that (Z; <, =, >) is not homomorphism compact.

3.2.2 p-Admissible Concrete Domains

The notion of p-admissibility was introduced in [11] to capture precisely those structures
® for which subsumption in EL£[D] is tractable. Clearly, this requires the CSP of © to
be decidable in polynomial time. However, this is not sufficient since even for a concrete
domain ® with tractable CSP disjunction may be expressible in ££[®], which then leads to
intractability [11]. To avoid this source of intractability, the concrete domain must be convex.
Unfortunately, the definition of convexity given in [11] was ambiguous, and what is really
needed in the setting considered in [11] is what we call guarded convexity in [8]. However,
in the setting considered in the present paper, where equality is always available in concrete
domain restrictions, we will see that convexity rather than guarded convexity is the adequate
notion.

We say that a t-structure ® is convex if the following holds: whenever a conjunction of
atomic t-formulas implies a disjunction of atomic t-formulas in D, then it already implies
one of the disjuncts. Note that this definition does not say anything about which variables
may occur in the left- and right-hand sides of such implications. Guarded convexity requires
this condition to hold only for guarded implications, where all variables occurring on the
right-hand side must also occur on the left-hand side.

To illustrate the difference between convexity and guarded convexity, let us consider the
structure O = (N; E, O) in which the unary predicates E and O are respectively interpreted
as the even and odd natural numbers. This structure is not convex since Vx, y.(E(x) =
E(y)V O(y)) holds in 1, but neither Vx, y.(E(x) = E(y))norVx, y.(E(x) = O(y)) does.
However, the first implication is not guarded, and it is easy to see that 91 is in fact guarded
convex. Note that, whereas Vx, y. (E(x) = E(y) V O(y)) holds in 91, the subsumption
Af.E(x1) Ey 3g.E(x1)U3g.0(x1) does not hold in the extension of £ L[] with disjunction
since the feature g need not have a value. However, as we have pointed out above, 3g, g.(x; =
Xx7) expresses that the value of g must be defined. Thus, 3g, g.(x; = x2) Ty Ig.E(x1) U
dg.O0(xy) is a valid subsumption in £L[IT]. This can be used to show that this DL is not
tractable [11], but only under the assumption that equality can be used in concrete domain
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restrictions. Consequently, in the setting of the present paper, convexity should be used in
the definition of p-admissibility.

Definition 4 A relational structure ® is p-admissible if it is convex and validity of Horn
implications in ® is decidable in polynomial time.

The main result of [11] concerning concrete domains can now be stated as follows.

Theorem 2 (Baader, Brandt, and Lutz [11]) Let © be a relational structure. Then subsumption
in EL[D] is decidable in polynomial time iff ® is p-admissible.

Note that the theorem above does not hold for the more expressive logic ££(®) where
paths of length 2 are allowed in concrete domain constructors. This is because we can show
that the concrete domain D, g2 from Proposition 2 is p-admissible (see Corollary 8). In
Sect. 5, we provide an algebraic characterization of convexity. Regarding the tractability
condition in the definition of p-admissibility, we have seen in Sect. 2 that it is closely related
to the constraint satisfaction problem for ® and (®7, #). Characterizing tractability of the
CSP in a given structure is a very hard problem. Whereas the Feder-Vardi conjecture [43] has
recently been confirmed after 25 years of intensive research in the field by giving an algebraic
criterion that can distinguish between finite structures with tractable and with NP-complete
CSP [34, 72], finding comprehensive criteria that ensure tractability for the case of infinite
structures is a wide open problem, though first results for special cases have been found (see,
e.g., [18,25-28, 58, 67]).

3.2.3 @-Admissibility Versus p-Admissibility

From an application point of view it would be desirable to have concrete domains ® that
preserve tractability if used in ££[®] and decidability if used in ALC (D). This would be the
case for concrete domains that are both w-admissible and p-admissible. Unfortunately, for
structures over a finite signature, JEPD (required for w-admissibility) and convexity (required
for p-admissibility) do not go well together.

Proposition 3 Let t be a finite signature and ® a relational t-structure that is both JEPD
and convex. Then R® € {§, D*} for all k-ary relation symbols R € t.

Proof Assume that R € 7 is a relation symbol of arity k such that R® # (. Then JE yields
D¥ = U?;l R?, where Ry, ..., R, are all the relation symbols of arity k in 7. Consequently,
the implication Vxi, ..., xk.(/\f-‘:1 xi = x;) = (/i Ri(x1, ..., x¢)) holds in D, and thus
convexity implies that there is an i, 1 < i < m, such that Vxq, ..., xk.(/\f:] X = Xxj) =
R;(x1, ..., xx) holds in ®. This means that R? = D¥. Since we have assumed that R® #0
and R is of arity k, PD yields that R = R;, and thus we are done. O

If t contains a symbol R that is interpreted as equality Eq? on D, then this proposition
implies that Eq? = R® = D x D, which can only be the case if |D| < 1. The proof of
Proposition 3 makes use of our assumption that equality is always available when building
formulas. But even without that assumption, concrete domains ® that are both p- and w-
admissible would have a rather restricted form. In that case, there always exists a finite
partition { V1, ..., V;,} of D such that the only non-empty k-ary relations of © are of the form
Vip x - x V, foriy, ..., ix € [m] [5].

Finally, let us point out another notable difference between the two conditions, namely that
p-admissibility permits infinite signatures whereas w-admissibility does not. It turns out that
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finiteness of the signature is a necessary part of w-admissibility to achieve decidability. If we
allowed the signature of ® to be infinite, then we would have the following counterexample.
Let ® be the structure over Z with the relations +,? = {(x,y) € 7% | y = x + k} for
every k € Z. It is easy to see that CSP(®) can be solved in polynomial time and that
® has homomorphism w-compactness. Moreover, one can show, using the results in Sect. 4
(Proposition 4 and Theorem 5), that ® is a patchwork. However, we have seen in Proposition 1
that concept satisfiability w.r.t. GCIs is undecidable already in ALC(Z; +1).

4 A Model-Theoretic Analysis of @-Admissibility

We introduce several model-theoretic properties of relational structures and show their
connection with w-admissibility. This allows us to formulate sufficient conditions for
w-admissibility using well-known notions from model theory, and thus to use existing model-
theoretic results to find new w-admissible concrete domains. We start with the notion of
w-categoricity in a countable signature, which is sufficient to obtain homomorphism w-
compactness. Next, we consider homogeneous structures with a finite relational signature,
which induce w-categorical patchworks with a finite signature. This provides us with patch-
works with a finite signature that also have homomorphism w-compactness. What is still
missing is decidability of the CSP. This can be achieved by restricting the attention to finitely
bounded structures since their CSP is always in NP. Thus, finitely bounded homogeneous
structures yield w-admissible concrete domains. Alternatively, we consider homogeneous
structures with a finite relational signature for which we can show by some other means
that the CSP is decidable. In this setting, the induced patchwork has a decidable CSP if the
structure is a so-called core. Conversely, we prove that every w-admissible structure is equiv-
alent to a particular homogeneous core in the sense that they both provide the same concrete
domain extension of ALC. The last part of this section investigates closure properties for
homogeneity and finite boundedness.

4.1 Homomorphism ®@-Compactness via @-Categoricity

We start by introducing w-categoricity since it gives us homomorphism w-compactness “for
free.” A structure is w-categorical if its first-order theory has exactly one countable model
up to isomorphism. For example, it is well known that £ is, up to isomorphism, the only
countable dense linear order without lower or upper bound. This result, which clearly implies
that £ is w-categorical, is due to Cantor.

For every structure 2, its automorphisms form a permutation group with composition as
binary operation, which we denote by Aut(2() (see Theorem 1.2.1 in [50]). Every relation R
with a first-order definition in 2l is easily seen to be preserved by Aut(21), i.e., f € R implies
h(t) € R for every h € Aut(2l). For w-categorical structures, the other direction holds as
well.

Theorem 3 (Engeler, Ryll-Nardzewski and Svenonius [50]) For a countable structure A with
a countable signature, the following are equivalent:

1. A is w-categorical.

2. For every k, only finitely many k-ary relations are first-order definable in 2.
3. Every relation over A preserved by Aut(2l) is first-order definable in 2.
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The following corollary to this theorem establishes the first important link between model
theory and w-admissibility.

Corollary 2 (Lemma 3.1.5in [16]) Every countable w-categorical structure with a countable
signature has homomorphism w-compactness.

4.2 Patchworks via Homogeneity and the Amalgamation Property

We show that, in order to obtain patchworks with homomorphism w-compactness, it is
sufficient to consider homogeneous structures. A structure 2 is homogeneous if every iso-
morphism between finite substructures of 2 extends to an automorphism of 2. We say that
a t-structure admits quantifier elimination if for every first-order t-formula there exists a
quantifier-free 7-formula that defines the same relation over this structure.

Theorem 4 ([50]) A countable relational structure with a finite signature is homogeneous iff
it is w-categorical and admits quantifier elimination.

The structure £ is homogeneous. This can be shown directly without using the theorem,
but we will also see later that £ admits quantifier elimination. Given finite substructures %5
and € of £ and an isomorphism between them, we know that B consists of finitely many
elements py, ..., p, and C of the same number of elements g1, ..., g, suchthat p; < ... < p,,
q1 < ... < gy, and the isomorphism maps p; to g; (fori = 1, ..., n). It is now easy to see
that < is also a dense linear order without lower or upper bound on the sets {p | p < p1}
and {g | ¢ < ¢1}, and thus there is an order isomorphism between these sets. The same is
true for the pairs of sets {p | pi < p < pi+1}and {q | ¢i < g < gqi+1}, and for the pair
{p| pn < pland{q | ¢ < qn}. Using the isomorphisms between these pairs, we can clearly
put together an isomorphisms from £ to £ that extends the original isomorphism from B to
¢.

Countable homogeneous structures can be obtained as Fraissé limits of so-called amal-
gamation classes. A class K of relational t-structures has the amalgamation property (AP)
if, for all A, B, B, € K with e;: A — By and ep: A — B, there exists & € K with
f1:B1— Cand fo: By — Csuchthat f1oe; = fro0e.

Theorem 5 (Fraissé [50]) For a class K of finite T-structures over a countable signature T,
the following are equivalent:

1. K = Age(®) for a countable homogeneous structure ®.
2. K contains countably many structures up to isomorphism, is closed under isomorphisms
and taking substructures, and has AP.

The homogeneous structure ® in 1. is unique up to isomorphism and called the Fraissé limit
of K

If IC satisfies 2. in Theorem 5, then we call it an amalgamation class. In general, amalgamation
classes are required to satisfy one additional condition called the joint embedding property
(JEP) [50], which we will introduce in Sect. 5. However, since in our case the signature
does not contain function symbols, JEP is actually implied by AP and closure under taking
substructures.

For our running example Q = (Q; <), the class Age(£Q) consists of all finite linear orders,
and thus by Fraissé’s theorem this class of structures is an amalgamation class. In addition,
£ is the Fraissé limit of this class.
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Proposition 4 below shows that there is a close connection between AP and the patchwork
property. Its proof uses the following lemma.

Lemma?2 Let A, B be JEPD t-structures, f: A — B a homomorphism, and ¢ a k-ary
(quantifier and equality)-free formula. Then, A |= ¢ (@) iff B = ¢ (f (@) for every a € AF.

Proof First, we show that f preserves complements of relations of 2. Let R be an £-ary
relation symbol in 7. Since 2 is JEPD, for every a € A® witha ¢ R there exists exactly
one R € 7\ {R} with @ € R%. This implies f(a) € R® since f is a homomorphism. It
follows that f(a) ¢ R® because B is PD.

Without loss of generality, we assume that ¢ is in DNF, i.e., ¢ is of the form ¢ Vv - - - V ¢,
where each ¢; is a conjunction of possibly negated atomic formulas of the form R(x) for
R € 7. Since f preserves such atomic formulas and their negations, it also preserves their
conjunctions, and thus also disjunctions of such conjunctions. O

Proposition4 A JDJEPD structure ® is a patchwork iff Age(®) has AP.

Proof For simplicity, every statement indexed by i is supposed to hold for both i € {1, 2}.
Let 7 be the signature of .

“«<=": Suppose that Age(®) has AP. Let 2, B, B, be finite JEPD t-structures with
ei: A — B; and h; : B; — . We must show that there exist f;: B; — D with floe] =
faoes. Let 5{1 and ﬁlz be the substructures of ® on (h1o0ej)(A) and (hp0e3)(A), respectively.
Clearly both 21y and 2, are JDJEPD, because they are substructures of ©. Note that JD is
witnessed in both 2; and 2, by an identical formula ¢ (x, y) inherited from ®. We claim
that there exists an 1som0rph1sm from Qll to le which commutes with /| o e and h o e;.
Consider the map g: A1 — Az given by g((h1 o el)(a)) := (h o e2)(a). By Lemma 2, for
every all a1, a; € A, we have

(hyoe)(ar) = (hyoer)(az) iff D ¢((hioer)(ar), (hioer)(az))
iff © = d¢(ar,a2)
iff D = ¢((hz20ex)(ar), (haoez)(az))
iff (hy 0 ex)(ar) = (h2 0 e2)(az).
This means that g is well defined and injective. Let R € t be an arbitrary symbol and £
its arity. Since 2 and 2(; are JEPD, by Lemma 2, i o e| preserves the complements of all
relations of 2. Thus, for every 7 € AL, if (hj oe))(7) € R%1, thent € R¥ and consequently
(hao er)(1) € R This means that gisa homomorphlsm from 2, to 2s. Since 2, and
20 are JEPD, by Lemma 2, g also preserves the complements of all relations of 21;. Hence
g is an isomorphism that additionally satisfies g o 1] o 1 = h o ez by its definition. Let
%1 and %2 be the substructures of ® on & (B;) and hy(B3), respectively. Now consider
the inclusions &; : 2; < B;. Since Age (D) has AP, there exists € € Age(D) together with
f, :B; <> Cande: € — D such that f1 oe; = f2 o3 o g. We define the homomorphisms
fi:B; —> Dby fi :=eo fjoh;. Then, forevery a € A, we have
(fioe(a) = (eo fiohjoe)(a)
=(eo fioéohioen)(a)
=(eo froérogohyoer)a)
= (eo fro0éohyoer)(a)
= (eo frohyoer)(a)
= (f20e2)(a).
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Note that, as inclusions, the mappings ¢; are the identity on the elements for which they are
defined. The above identities show that ® is a patchwork.

“="": Suppose that © is a patchwork. Let 2, B, B, be finite 7-structures with ¢; : 2 —
B; and h;: B; — D. Since B and B, are isomorphic to substructures of D, they are
clearly JDJEPD. Thus, as ® is a patchwork, there exist homomorphisms f;: B; — © with
fioer = froez. Let¢p(x, y) be aformula witnessing JD in both B and ‘B that is inherited
from ®. By Lemma 2, the operations f; preserve the complements of all relations of 5;,
and, for all by, b € B;, we have

fiby) = fi(b2) iff D [=¢(fi(b), fi(b2)) iff D |=¢(by,b2) iff by =by.

This means that the operations f; are embeddings. We obtain AP for Age(®) by choosing
¢ to be the substructure of © on f>(B1) U f1(B2). ]

4.3 JDJEPD for @-Categorical Structures

To apply Proposition 4, we need the structure to be JDJEPD. Given an w-categorical t-
structure 2(, we can obtain JDJEPD by replacing the original relations with appropriate
first-order definable ones, using the results of Theorem 3. The orbit of a tuple @ € AF under
the natural action of Aut(2) on A is the set {g(@) | g € Aut()}. By Theorem 3, the set
of all at most k-ary relations definable in 2 is finite for every & € N. Since every such set
is closed under intersections, it contains finitely many minimal non-empty relations. Since
every relation over A that is preserved by all automorphisms of 2 is first-order definable in
2, these minimal elements are precisely the orbits of tuples over A under the natural action
of Aut().

Definition 5 For a given arity bound d > 2, the d-ary decomposition of the w-categorical
T-structure 2, denoted by A= is the relational structure over A whose relations are all orbits
of at most d-ary tuples over A under Aut(2). We denote the signature of 2A=¢ by =4,

It is easy to see that A= is JDJEPD, and that every at most d-ary relation over A first-order
definable in 2 can be obtained as a disjunction of atomic r=¢-formulas.

As an example, consider the w-categorical structure Q. The orbits of k-tuples of elements
of QQ can be defined by quantifier-free formulas that are conjunctions of atomic formulas of
the form x; = x; or x; < x;. For example, the orbit of the tuple (2, 3, 2, 5) consists of all
tuples (g1, g2, 43, q4) € Q* that satisfy the formula x; < xo A x| = x3 Ax2 < xg if x; is
replaced by g; for i = 1, ..., 4. The first-order definable k-ary relations in £ are obtained
as unions of these orbits, where the defining formula is then the disjunction of the formulas
defining the respective orbits. Since these formulas are quantifier-free, this also shows that
0 admits quantifier elimination.

We have seen that, to obtain JDJEPD, we actually need to take the d-ary decomposition
of a given w-categorical structure, rather than the structure itself. Fortunately, homogeneity
transfers from ® to D=9,

Proposition 5 Let ® be a countable homogeneous structure with a finite relational signature
. Then ©=¢ is homogeneous for every d that exceeds or is equal to the maximal arity of a
symbol from t.

Proof By Theorem 4, ® has quantifier elimination. Note that the relations of ®=¢ and
® are first-order interdefinable, which implies Aut(D=9) = Aut(D) by Theorem 3. This
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shows in particular that ©=¢ is w-categorical. Every first-order 7=¢-formula ¢ defines a
relation in ©=7 that has a first-order definition ¢’ in ®. We can assume that ¢’ is quantifier-
free due to Theorem 4. We rep<lflce every atorgic formula ¥ (%) in ¢’ by \/7_, R;(X) with
Ry,....R, € 74 where R?’ U---u R;’?‘ is the unique decomposition of w@ into
orbits of k-tuples over D under Aut(®). The resulting formula is a quantifier-free first-order
definition of ¢’Df‘1 in ©=4. Thus =4 has quantifier elimination as well, which means that

it is homogeneous due to Theorem 4. O

4.4 Finitely Bounded Structures have a Decidable CSP

Above, we have described model-theoretic properties that provide us with all the ingredients
needed for w-admissibility, except for decidability of the CSP. Finding model-theoretic con-
ditions that guarantee decidability of the CSP for infinite structures is a very broad topic with
many open questions. Here we focus on a well-known condition that ensures that the CSP is
decidable in NP and the first-order theory in PSPACE.

Foraclass NV of t-structures (called bounds or forbidden patterns), we denote by Forb, ()
the class of all finite 7 -structures not embedding any member of A Following the terminology
in [20], we say that a relational structure 2 is finitely bounded if its signature is finite and
Age(2) = Forb, (N) for a finite set of bounds N The following lemma provides a second,
arguably more practical, definition of finite boundedness.

Lemma 3 A relational structure 2 with a finite signature t is finitely bounded iff Age(l) is
the class of all finite models of some universal t-sentence @ ().

Proof “=": Let Age(2l) = Forb,(N) for N' = {€, ..., €}. Forevery i, 1 <i <k, we can
write down a quantifier-free formula ¢¢; with free variables c1, ..., ¢,;, where {c1, ..., ¢p; }
is the domain of &;, that describes € up to isomorphism. Then we set

D) = [\ Yei....cn e (Cln Oy

1<i<k

“«": Given a universal t-sentence @ (2(), we define N\ as the set of all finite -structures €
of size at most n that do not satisfy @ (2(), where n is the number of variables in @ (2(). Then
Age(21) = Forb, (N) clearly holds. |

The structure 9 is finitely bounded. To show this, we can use the set A/ consisting of the
following four structures: the self-loop the 2-cycle, the 3-cycle, and two isolated vertices.
We must show that Age(£Q) = Forb, (). Clearly, none of the structures in N embeds into
a linear order, which shows Age(Q) C Forb, (). Conversely, assume that 2/ is an element
of Forb, (N). We must show that <% is a linear order. Since N contains the self-loop,we
have (a,a) ¢ <% forall a € A, which shows that <% is irreflexive. For distinct elements
a,b € A, we must have a < b or b <% g since otherwise the structure consisting of two
isolated vertices could be embedded into 2. This shows that any two distinct elements are
comparable w.r.t. <2 To show that <% is transitive, assume that a <% pand b <% ¢ holds.
Since the 2-cycle does not embed into 2(, a and ¢ must be distinct, and are thus comparable.
We cannot have ¢ <% a since then we could embed the 3-cycle into 2. Consequently, we
must have a <% ¢, which proves transitivity. This shows that 2 is a linear order. As formula
@ () we can take the conjunction of the usual axioms defining linear orders.

Finitely bounded structures are useful in the context of this paper due to the following
proposition.
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Proposition 6 Let D be a finitely bounded structure.

1. CSP(®) is in NP.
2. If® is homogeneous, then Th(®) is in PSPACE.

The first result is stated in [16, 19], and the second result is stated in [56, 59]. We include a
full proof of both in the appendix.

Proposition 6 applies not only to a given finitely bounded homogeneous structure ©, but
also to its d-ary decomposition D=?. This is a direct consequence of the following result.

Proposition 7 Let 2 be a finitely bounded homogeneous structure and B a structure with
the same domain and finitely many relations that are first-order definable in A. Then ‘B is a
reduct of a finitely bounded homogeneous structure.

Proof Let 2 be the expansion of 2 by the relations of 8, where we assume that the signatures
of 20 and B are disjoint. By Theorem 4, each of the new relations has a quantifier-free
definition in 2. Consequently, we can choose any universal sentence @ () for Age()
and extend it with universal sentences defining the relations of B, which yields a universal
sentence that shows finite boundedness of 2. The structure 2 is homogeneous since an
isomorphism between two finite substructures of 2l induces an isomorphism between their
reducts to the signature of 2, which extends to an automorphism of 2 by homogeneity of
2. This is also an automorphism of 2L since automorphisms preserve first-order definable
relations. Now we are done as B is a reduct of 2. O

4.5 Finitely Bounded Homogeneous Structures Yield @-Admissible Concrete
Domains

We are now ready to formulate the main results of this section.

Theorem 6 Let D be a finitely bounded homogeneous relational structure with at most d-ary
relations for some d > 2. Then D=4 is w-admissible.

Proof 1t follows directly from the definition of d-ary decompositions that ©=¢ is JDJEPD.
By Proposition 5, =7 is homogeneous. By Theorem 4, D=4 is w-categorical. Thus © has
homomorphism w-compactness by Corollary 2. By Theorem 5, Age(D=¢) has AP. Thus ®=¢
is a patchwork by Proposition 4. By Proposition 7, Lemma 1, and Proposition 6, CSP(D=¢)
is in NP. Hence ®=¢ is w-admissible. o

This theorem, together with Theorem 1, immediately yields decidability for concept satis-
fiability in ALC‘Vﬂ(D =4 The following corollary shows that we can even allow for arbitrary
first-order definable relations with arity bounded by d in the concrete domain. The idea for
proving this result is to reduce concept satisfiability in AﬁC‘fjo (D) to concept satisfiability in
ACC\‘/Q(E) =d) We know that every at most d-ary relation over D first-order definable in D
can be obtained as a disjunction of atomic formulas built using the signature of D=¢. What
still needs to be shown is that, given a first-order formula in the signature of ® with at most
d free variables, this disjunction can effectively be computed.

Corollary 3 Let ® be a reduct of a finitely bounded homogeneous relational structure with at

most d-ary relations for some d > 2. Then concept satisfiability in AﬁC?O(CD) w.r.t. TBoxes
is decidable.
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Proof Let T be the signature of ©. We claim that satisfiability of AﬁC?O(D) concepts
w.r.t. TBoxes can be reduced to satisfiability of A£C€+ (®=%) concepts w.r.t. TBoxes. For
this purpose, we need to replace first-order r-formulas ¢ in concrete domain constructors
VY pi, ..., pk-¢ or Ap1, ..., pr.¢ with disjunctions i of atomic formulas in the signature
=4 of D=4, By Theorem 4 together with Theorem 3, the (finitely many) relations in 7=¢
have quantifier-free definitions in . Since d and ® are fixed, we can make a list consist-
ing of the quantifier-free definitions for each of them in constant time. Given a first-order
t-formulas ¢ with k free variables, let v, ..., ¥, be the quantifier-free definitions in ©
for all the k-ary relations of 7=¢ that we have listed before. We test, for every i € [m],
whether © = 3y.¢(y) A ¥, (y), which is possible in PSPACE by Proposition 6. By selecting
those v;,, ..., ¥;, that tested positively, we know that, for every a € Dk, = ¢(a) iff
D E \/i=1 Y, (a). We replace each v;, (y) with R(y), where R is the unique k-ary relation
symbol from 7=¢ for which ® = ;, (a) iff ©=¢ |= R(a). This yields the desired formula
Y that replaces ¢. Now the claim follows from Theorem 6 and Theorem 1. O

Example 2 The examples for w-admissible concrete domains given in [65] were RCC8 and
Allen’s interval algebra, for which the patchwork property is proved “by hand” in [65]. Given
our Theorem 6, we obtain these results as a consequence of known results from model theory.
It was shown in [21] that RCC8 has a representation by a homogeneous structure R with
a finite relational signature (see Theorem 2 in [21]). Since Age(fR) has a finite universal
axiomatization (see Definition 3 in [21]), PR is finitely bounded. For Allen’s interval algebra,
it was shown in [48] that it has a representation by a homogeneous structure 2 with a finite
relational signature (see the second example on page 270 in [48]). Since Age(2l) has a
finite universal axiomatization (see the composition table from Figure 4 in [1]), 2 is finitely
bounded. The structure Q = (Q; <) we used as our running example also satisfies the
preconditions of Theorem 6, and thus Corollary 3 yields decidability of A[ZC?O(Q) with
TBoxes. For £ extended just with >, <, >, =, #, decidability was proved in [62], using
an automata-based procedure. Our results show that there is also a tableau-based decision
procedure for this logic.

4.6 Homogeneous Cores with Decidable CSP Yield @-Admissible Concrete Domains

Here, we consider the situation where we have a homogeneous relational structure ® with
finitely many at most d-ary relations that is not necessarily finitely bounded, but which we can
show (by some other means) to have a decidable CSP. In this setting, we obtain decidability
for .AEC’gJr (®) under the additional assumption that ® is a core. A structure ® is a core if
every endomorphism of ® is a self-embedding of ©. It is easy to see that this applies to our
running example £ = (Q; <). The structure 0= (Q; <), on the other hand, is not a core
because it has the trivial endomorphism x > 0 that is not a self-embedding of Q. Among
w-categorical structures, cores are characterized by the following condition. A countable w-
categorical structure ® with a countable signature is a core if and only if every relation with
an existential definition in ®© has an 3" definition in © [24]. Consider the binary inequality
relation # over Q which clearly has an existential definition in both Q and 9. Since the
complements of the basic relations defined by = and < in £ have a positive quantifier-free
definition in £, every relation with an existential definition in £ has an 3* definition in
9. Thus, 9 is a core according to the characterization of w-categorical cores from above.
However, there can be no 3t definition of # in £ because relations with an 3t definition
are always preserved by all endomorphisms and x + 0 does not preserve #.
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If © is ahomogeneous core, then the orbits of tuples over D under Aut(®) are pp definable
in ® [15]. As an easy consequence of this fact, we obtain the following sufficient condition
for w-admissibility.

Theorem 7 Let® be a homogeneous core with finitely many at most d-ary relations for some
d > 2 and decidable CSP. Then ©=4 is w-admissible.

Proof 1t follows directly from the definition of d-ary decompositions that ©=¢ is JDJEPD.
By Proposition 5, ©=¢ is homogeneous. By Theorem 4, D= is w-categorical. Thus © has
homomorphism w-compactness by Lemma 2. By Theorem 5, Age(D=¢) has AP. Thus, ®=¢
is a patchwork by Proposition 4. By the results of [15], orbits of tuples over D under Aut(®)
(i.e., the relations of ©=9) are pp definable in ®©. Thus, Lemma 1 yields CSP(D=9) <prve
CSP(D). Hence, D=4 is w-admissible. 0

Let ® be a structure as in the above theorem. By showing that concept satisfiability in
AﬁCng (®) can be reduced to concept satisfiability in .AECS+ (D=4), we obtain the following
decidability result.

Corollary 4 Let © be a homogeneous core with finitely many at most d-ary relations for
some d > 2 and a decidable CSP. Then concept satisfiability in AL‘,C‘Hi+ (®) w.rt. TBoxes is
decidable.

Proof Since satisfiability of AECf+ (©=7) concepts w.r.t. TBoxes is decidable by Theorems 7
and 1, it is sufficient to reduce concept satisfiability w.r.t. TBoxes in ACC‘31+ (®) to this
problem. As in the proof of Corollary 3, we do this by showing how existential positive
formulas ¢ occurring in concrete domain constructors can be replaced by disjunctions
of atomic formulas in the signature of ©=¢. By the results of [15], the relations of D=¢
have pp definitions in ©. Since d and ®© are fixed, we can make a list consisting of the pp
definitions for each of them in constant time. Given an existential positive T-formula ¢ with
k < d free variables, let {1, ..., ¥, be the pp definitions in © for all the k-ary relations
of =4 that we have listed before. Since CSP(D) is decidable, we can decide for i € [n]
whether © = 3y.(¥; A ¢)(¥). In fact, deciding whether an existential positive sentence
is true in ® only differs from solving CSP(®) in a non-deterministic step that deals with
disjunction. By selecting those ;,, ..., ¥;, that tested positively, we know that © = ¢ (a) iff
D E \/f:1 Y, (a) holds for every a € D¥. Now we replace each ¥; (y) with R(y), where
R is the unique k-ary relation symbol from the signature of D=¢ that satisfies ® = ¥, (@)
iff D=4 |= R(a). This yields the desired formula v/, which completes the reduction. m}

4.7 Coverage of the Developed Sufficient Conditions

The next example demonstrates that Theorem 7 and Corollary 4 cover structures to which
Theorem 6 and Corollary 3 do not apply. In fact, since the latter consider finitely bounded
structures, whose CSP is in NP by Proposition 6, they cannot provide us with w-admissible
concrete domains whose CSP has a higher complexity. Theorem 7 and Corollary 4 make
no assumption on the complexity of the CSP: they only require that the CSP is decidable.
However, for these results to apply, the structure needs to be a homogeneous core.

Example 3 The paper [44] provides us with examples of structures that are homogeneous
cores and whose CSP is considerably more complex than NP. Such structures are called CSP
monsters in [44]. To be more precise, Theorem 8 in [44] shows that, for every complexity
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class C for which there exist CONPC-complete problems, there exists a homogeneous structure
$c with a finite signature such that CSP($)¢) is CONPC-complete. By Theorem 4 together
with Theorem 3.6.23 and Proposition 3.6.24 from [16], for every such structure )¢, there
exists an up to isomorphism unique homogeneous core €c with the property that )¢ maps
homomorphically to € and vice versa. In particular, this implies that CSP($)¢) = CSP(&¢).
It follows from Theorem 7 that these structures yield w-admissible concrete domains whose
CSPs have arbitrarily high complexity. Recall that all previously known examples of w-
admissible concrete domains were finitely bounded (see Example 2), and thus their CSPs are
in NP by Proposition 6. However, already €NgxpTime cannot possibly be even a reduct of a
finitely bounded structure due to Proposition 6 because NP C NExpTime C coNPNExpTime,
Consequently, the homogeneous cores induced by the CSP monsters of [44] provide us with
previously unknown w-admissible concrete domains that are not covered by Theorem 6 and
Corollary 3.

Next, we investigated the coverage of Theorem 7. This theorem states that every homoge-
neous core with a finite signature and a decidable CSP yields an w-admissible structure via its
d-ary decomposition. The following two results show that, if we are interested in extensions
of ALC of the form AEC@(@), then w-admissible structures yields the same extensions of
ALC as homogeneous cores with decidable CSPs.

Theorem 8 Let B be an w-admissible t-structure. Then there exists an (up to isomorphism)
unique countable homogeneous t-structure 2 that is a core with decidable CSP and embeds
the same countable structures as B, i.e., € — A iff & — B for every countable structure

(O

Proof Since B is JDJEPD and a patchwork, Age(®8) has AP by Proposition 4. Since 7 is
finite, Age(*B) contains only countably many structures up to isomorphism, and thus is an
amalgamation class. By Theorem 5, there exists a countable homogeneous structure 2 with
Age() = Age(®B). Next, we show that € — 2 iff € — ‘B holds for every countable
structure €

“«<": Let € be a countable t-structure that embeds into 2. By Theorem 4, 2 is w-
categorical. It is known that w-categorical structures satisfy an even stronger property
than homomorphism w-compactness, which we refer to as embedding w-compactness
(Lemma 3.1.5in [16]). This property guarantees an embedding from a given countable struc-
ture if there exists an embedding from every structure in its age. Since Age(¢) C Age(B) =
Age(2l), we conclude that € — 2.

“=": Let € be a countable r-structure and e : € — 2 be an embedding. If we can show
that there is an embedding f : 2 — ‘B, then we are done since we can use the composition of
eand f asembedding from € to *B. Since 2 is countable, B has homomorphism compactness,
and Age(®B) = Age(Rl), there exists a homomorphism f: 20 — B. We show that f is in
fact an embedding.

We claim that 2 is JEPD since ‘B is so. In fact, assume the 2{ is not PD. Then there are
distinct k-ary relations Ry, R, and a k-tuple a such thata € ng‘ N Rzm. Thus, the substructure
of 2 consisting of the elements of a is an element of Age(2() that is not PD. But then
Age(®B) = Age() contains a structure that is not PD, which yields a contradiction since
B is PD. The fact that JE transfers from ‘B to 2 can be shown similarly. If ¢ (x, y) is the
formula witnessing that 5 is JD, then one can also show in a similar way that this formula
witnesses JD of 2 as well.

Since we now know that both 2( and B are JEPD, we can apply Lemma 2, which yields
that the homomorphism f preserves also the complements of all relations of 2. In addition, it
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preserves the formula ¢ witnessing JD. Thus, the following holds for all ay, ax € A: a1 = a»
iff A = ¢(ar, an) iff B = ¢ (f(ar), f(ar)) iff f(a1) = f(az). Thus f is an embedding,
which concludes the proof of “=".

Since 2 is JDJEPD, every endomorphism of 2l is a self-embedding of 2(, which can be
shown by a similar argument as above. Thus 2l is a core.

Decidability of the CSP transfers from B to 2 since the two CSPs coincide. If § is a finite
structure with § — 2, then the image € of § in 2l is a finite (and thus countable) structure
such that § — € < 2. But then € — ‘B, and thus § — ‘B. The inclusion in the other
direction can be shown in the same way. O

Since the structures 2l and ‘B in the theorem have the same signature, the DLs AEC@(%)

and AﬁC@ﬂ(%) have the same syntax. We show that they also have the same semantics when
it comes to concept satisfiability.

Corollary 5 Let A and B be as in Theorem 8 and let d be the largest arity of an atomic
t-formula. Then a concept C is satisfiable w.r.t. a TBox T in AEC@(Q[) iff it is satisfiable in

ALCE(B) wrt. T.

Proof First note that, since B is w-admissible, the DL AZJCC{L(’B) has the countable model
property, i.e., a concept C is satisfiable in this logic w.r.t. a TBox 7 iff there is a finite model
of 7 in which C is interpreted as a non-empty set. This is a direct consequence of the proof of
Theorem 1 in [7] because the model constructed in this proof is countable. Now suppose that
7 is a countable interpretation witnessing that C is satisfiable w.r.t. 7 in AEC@(%). LetCbe
the substructure of 98 on {b € B | thereis f € Nr and a € AT such that (a, b) € f*}. By
Theorem 8, there exists an embedding e: € — 2. Since e is an embedding, we can obtain
an interpretation witnessing that C is satisfiable w.r.t. 7 in AEC@(Q[) from Z by replacing
every (a,d) € fT with (a, e(d)).

The argument used above also works the other way round. Here 2 is a homogeneous
core with decidable CSP. The proof of Corollary 4 shows that satisfiability of concepts w.r.t.
TBoxes in .A[IC\‘/Q(QI) can be reduced to satisfiability of concepts w.r.t. TBoxes in .ALIC\‘/Q(@)
for an w-admissible concrete domain ®. As above, we can show that this yields the countable
model property for AﬁC@ﬂ(Ql). The rest of the proof is exactly as for the other direction. O

The following example shows that equi-satisfiability no longer holds if we replace vV with
fo in Corollary 5, i.e., the logics AEC?O (20) and AEC?O (*B) may have a different semantics.

Example 4 The random graph is the unique countably infinite homogeneous undirected graph
& = (G; E®) such that Age(®) consists of all finite undirected graphs [50]. Note that
Age(®) is defined by the universal sentence Vx.(E(x, x) = ff) A Vx, y.(E(x, y) =
E(y, x)). Thus, by Lemma 3, & is finitely bounded. It also has the extension property: if X
and Y are disjoint finite subsets of G, then there exists a vertex v € G \ (X U Y) that has an
edge in & to each vertex from X and to none from Y. To see this, let 2 be the extension of
the substructure of & on X U Y by a vertex u that has an edge to each vertex from X and to
none from Y. Then there exists an embedding e: 2 — &. Since & is homogeneous and the
map f: XUY — e(XUY),a > e(a) is an isomorphism between its finite substructures,
there exists f € Aut(®) extending f. Then v := f ~l(e(u)) has the desired property.
Consider the direct product § of & with itself. It is easy to see that Age(®) = Age(£)).
The inclusion from left to right holds since ) contains an isomorphic copy of &, and the one
from right to left since Age(®) contains all finite undirected graphs. The equality of the two
ages implies that Age($)) has AP by Theorem 5. Also, by Theorem 3 and Theorem 4, §) is
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w-categorical because its relations are first-order definable in the so-called full product of
® with itself and homogeneous structures are closed under building full products. We will
introduce the full product and show that it preserves homogeneity in Sect. 4.8.

However, $ does not have the extension property. To see this, let a, b, ¢ be three distinct
vertices in G and set X := {(a, b), (b, )}, and Y := {(a, c¢)}. Suppose that there exists
(u, v) € H thathas an edge in ) to each vertex from X and to none from Y. By the definition
of $ as the direct product of & with itself, there is an edge in & from u to a and from v to c. But
then there is an edge from (u, v) to (a, ¢) in $), which contradicts to our previous assumption.
This implies that & and §) are not isomorphic since the extension property is clearly preserved
under isomorphism. We conclude that §) is not homogeneous since homogeneous structures
are uniquely determined up to isomorphism by their age due to Theorem 5. Note that we
have just shown with this example that homogeneous structures are not closed under building
direct products.

Now consider the expansion 2 of & with two new relation symbols R;, Ry, where R; is
interpreted as the diagonal relation EqC and R, as G2\ (EqC U E®). Likewise we construct
the expansion B of §) with Ry, R>. Let € be a substructure of 2 and ¢ its {E}-reduct. Since
Age(®) = Age(), there exists an isomorphism f from ¢ to some substructure D of §). Let
D be the substructure of 9B on the domain D of . We claim that f is also an isomorphism
from € to ®. We have x € Rl'I = EqC iff f(x) € Rf‘) = EqP because f is bijective.
Moreover, we have

e RE iff ¥¢ (ECUBQC) iff f(¥) ¢ (E2UEQP) iff f(X)e RY.

We conclude that Age() < Age(®8). Using an analogous argument, we can show
Age() O Age(®B), and thus Age(2() = Age(*B). Since every homomorphism from a
finite structure has a finite range, Age(2l) = Age(*B) implies CSP() = CSP(28) (see the
last paragraph in the proof of Theorem 8).

The following two facts are direct consequences of R?l and RZQ[ being first-order definable
in . First, 2 is homogeneous since & is homogeneous and first-order definable relations are
preserved by automorphisms. Thus, Age(2() has AP by Theorem 5. Second, 2! is a reduct of
a finitely bounded structure by Proposition 7, and thus CSP(2() is in NP by Proposition 6.

By definition, B is JDJEPD. Since Age(®8) = Age(2() has AP, the structure ‘B is a
patchwork by Proposition 4. By Lemma 2, B has homomorphism w-compactness since it is
w-categorical. This is the case since $) is w-categorical and expansions by first-order definable
relations do not change the automorphism group. Since 2 and B are both countable but not
isomorphic, we conclude using Theorem 5 that B is w-admissible but not homogeneous.
Since Age(2l) = Age(B) and 2 is countable and homogeneous, it must be the homogeneous
core of B from Theorem 8.

It follows from our proof that §) does not have the extension property that the concept A
is satisfiable w.r.t. the TBox

{AC3f. (xi =x1 AVX, Y, z23u.E(u,x) N E(u,y,) N—E(u, z))}
in ALCZ (), but not in ALCZ (B).

4.8 Closure Properties of Finitely Bounded Homogeneous Structures
We have seen above that finitely bounded homogeneous structures provide us with w-

admissible concrete domains. Closure properties allow us to construct new w-admissible
concrete domains from ones satisfying these properties.
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For instance, when modeling concepts in a DL with a concrete domain, it is often useful
to be able to refer to specific elements ¢ of the domain, i.e., to have unary predicate symbols
=, that are interpreted as {c}. For example, when using the w-admissible concrete domain
£ of our running example, one can compare two numbers (e.g., describing the ages of two
individuals), but one cannot state that the value of a feature must be equal to some fixed
number (e.g., that a person’s age is 17). For a finitely bounded homogeneous structure (such
as ), adding finitely many such singleton predicates is harmless since the class of reducts
of finitely bounded homogeneous structures is closed under expansion by finitely many
predicates of the form =,.

Proposition 8 ([19]) Let A be a finitely bounded homogeneous structure. Any expansion of
A by a relation of the form {c} for ¢ € A is a reduct of a finitely bounded homogeneous
structure.

We have seen in Proposition 7 that this class is also closed under taking expansions by
first-order definable relations.

It would also be useful to be able to refer to predicates of different concrete domains (say
RCC8 and Allen) when defining concepts. This can sometimes be achieved by using the
disjoint union. The union of a family (2l;);<; of T-structures is the t-structure Uie ; 2 over
Uic; Ai such that RUier®i = [ J;_; R for each R € t. This union is called disjoint if
A; N A; = forall distinct i, j € 1.

In [3], it was shown that admissible concrete domains are closed under disjoint union.
We can show the corresponding result for finitely bounded homogeneous structures. In our
definition of the disjoint union, we have assumed that the component structures 2y, ..., Ak
have the same signature, but disjoint domains. In [3], the signatures of the structures are
assumed to be disjoint as well (as is, e.g., the case for RCCS8 and Allen). The case of disjoint
signatures can, however, be reduced to the case of a common signature: we simply expand the
structures to the union of their signatures by interpreting relation symbols not belonging to
the respective signature as the empty set. Since empty relations can be defined by first-order
formulas, such an expansion by empty relations leaves homogeneity and finite boundedness
intact (see Proposition 7). A proof of the following proposition can be found in the appendix.

Proposition 9 Letr Uy, ..., Ay be finitely bounded homogeneous structures over a common
signature t, but with disjoint domains. Then their disjoint union ULI A; is a reduct of a
finitely bounded homogeneous structure.

Using disjoint union to refer to several concrete domain works well if the paths employed
in concrete domain constructors contain only functional roles, which is the case considered
in [3], but it is not appropriate if non-functional roles occur in paths, as in the present paper.
This is illustrated by the following example.

Example 5 1f we want to refer to time and location of an event, we can use the disjoint union
of RCC8 and Allen, employing two feature names time and location. If succ is a functional
role, then the concept description

Event 1 Asucc.Event 1 3time, succ time.Before(x1, xo) M Alocation, succ location.EC(x1, x3)

describes an event e that takes place before its unique successor event ¢’, which happens in
a region that is externally connected to e. However, if succ is not functional, then the above
concept description does not express that e has a successor event ¢’ that satisfies both the
temporal and the spatial constraint. Instead, there could be two different successor events,
one satisfying the temporal constraint and the other the spatial one.
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To overcome this problem, we propose to use the so-called full product [16].5 Let
Ay, ..., A be relational structures with disjoint signatures i, ..., 7, and let =y, ..., =¢
be fresh binary symbols such that, for every i € [k], =; is interpreted as Eq4i over 2;. We
assume in the following that the relation =; is part of the signature of 2(;. This assump-
tion is without loss of generality since the equality predicate is first-order definable, and thus
extending a homogeneous structure with an explicit relation symbol for it leaves the structure
finitely bounded and homogeneous (see Proposition 7).

The full product of 2y, ..., Ak, denoted by 2 X - - - K, has as its domain the Cartesian
product A := A x --- x Ay and as its signature the union of the signatures t;. The relations
of A K- .. X Ay are defined by R® := {(@y, ..., a,) € A" | (ailil, ..., alil) € R%} for
every i € [k] and every n-ary relation R € 1.

Taking the full product of structures preserves homogeneity and finite boundedness, and
thus the prerequisites for Theorem 6 and Corollary 3 to apply (see the appendix for a proof).

Proposition 10 Let2y, ..., Ay be structures with disjoint relational signatures Ty, ... , T such
that, for i € [k], T; contains the symbol =;, which is defined in 2; as Eqi.

1. If Ay, ..., Ay are homogeneous, then A1 X - - - X Ay is also homogeneous.
2. If Ay, ..., Ay are finitely bounded, then ) X - - - X Uy, is also finitely bounded.

Coming back to Example 5, we can use a feature time&location that maps into the full
product of Allen and RCCS to describe an event e that has some successor event ¢’ (among
possibly others) such that e takes place before ¢’ and the regions where e and ¢’ happen are
externally connected:

Event M Asucc.Event 1 Atime&location, succ time&location.(Before(xy, x2) A EC(x1, x2)).

5 A Model-Theoretic Analysis of p-Admissibility

Recall that a structure ® is p-admissible if it is convex and validity of Horn implications
in ®© is tractable. As argued at the end of Sect. 3.2.2, developing algebraic conditions that
characterize tractability is way beyond the scope of this paper. For this reason, we will
concentrate on algebraic conditions that ensure convexity. We will see, however, that for
finitely bounded convex structures we obtain tractability for free.

5.1 Convexity via Square Embeddings

Convex structures can be characterized using the square embedding condition introduced in
the next theorem. Basically, this condition says that the square of every finite substructure of
B embeds into B. However, since we allow the signature to be infinite, the exact formulation
of the property is a bit more complicated. Note that the direction “2 = 17 is a slightly more
general version of a result commonly known as McKinsey’s lemma [49].

Theorem 9 For a structure B with a (not necessarily finite) relational signature t, the fol-
lowing are equivalent:

1. B is convex.

5 We have seen in Example 4 that employing the usual direct product of the structures does not work since
it does not preserve homogeneity.

@ Springer



382 F.Baader, J. Rydval

2. K = Age(®B) satisfies the square embedding property: for every finite o C t and every
A € K, there is € € K such that the o -reducts of U* and € coincide.

Proof “2 = 17: Suppose to the contrary that the implication Vxy, ..., x,. (¢ = ) is valid
in ®B, where ¢ is a conjunction of atomic formulas and  is a disjunction of atomic formulas
Y1, ..., Y, but we also have B [~ Vxy, ..., x,. (¢ = ;) for every i € [k]. Without loss of
generality, we assume that ¢, ¥, ..., ¥y all have the same free variables x, ..., x,, some of
which might not influence their truth value. For every i € [k], there exists a tuple #; € B"
such that

B ) A it ()

We show by induction on i that, for every i € [k], there exists a tuple 5; € B" that satisfies
the induction hypothesis

B oG A=\ YeG. (H

Leli]

In the base case (i = 1), it follows from (%) that 51 := #; satisfies (7).

Inthe induction step (i — i+1),lets; € B" be any tuple that satisfies (). Leto € 7 be the
finite set of relation symbols occurring in the implication Vx1, ..., x,,. (¢ = ), and let2(; be
the substructure of B on the set {5;[11, f;+1[1]1, ..., 5;[n], fi+1[n]}. Then 2A; = ¢ (5;) and ; =
¢ (7i41), and thus A7 = ¢ (5; X fi1) where §; X T4 := (Si[1], fi41011), .., Gilnl, i1 [n)).

By 2., there exists a structure €; € Age(®8) whose o-reduct coincides with Qll.z, which
implies that &; = ¢ (5; xtj+1). Let f; be the embedding of €; into 8. Since ¢ is a conjunction
of atomic o-formulas and f; is ahomomorphism, we have that B = ¢ (f; (5; xf;11)). Suppose
that B = Yit1(f; (5 x fi41)). Since f; is an embedding, we obtain €; = Vi1 (5 X fi41),
and thus 2l; &= ;41 (f;1+1). This implies B = ;41 (#11), which contradicts (x). Similarly,
we can show that assuming B |= ; ( fiGi X tiy 1)) for some j < i leads to a contradiction
with (). We conclude that 5;41 := f;(5; X t;41) satisfies ().

Since B = Vxi, ..., x,. (¢ = ), the existence of a tuple 5; € B" that satisfies () for
i = k leads to a contradiction. This completes the proof of “2 = 1” of our theorem.

Before we proceed with the proof of “1 = 27, let us take a closer look at the contraposition
of the convexity condition. Suppose that we have a conjunction ¢ of atomic formulas and
tuples 7 and § over B together with disjunctions ¥ and 15 of atomic formulas such that
B = (¢ A —Y7)(7) and B = (¢ A —5)(5). Then clearly there must exist a tuple 7 over
B such that B = (¢ A =5 A —5)(F) as otherwise B = Vxq, ..., x,. (¢ = (Y7 V ¥5)),
but neither B = Vxi, ..., x,. (@ = v¥7) nor B = Vxq, ..., x,. (¢ = V;) is true (which
contradicts convexity).

We are now ready to prove “1 = 2”. Let ¢ be a finite subset of 7 and 2 € Age(*B). In
addition, let {(r1, s1), ..., (n, $x)} be the domain of 2. Consider the tuples 7 := (ry, ..., rn)
and s := (sq, ..., Sp). Let ¢ (x1, ..., x,,) be the conjunction of all atomic o -formulas such that
A% ¢((r1,51), ..., (s Sp)), i.e., we consider all atomic o-formulas built using a relation
symbol from ¢ (or the equality predicate) and containing variables from {xp, ..., x,}, assign
(ri, s;) to the variable x;, and take those atomic o-formulas for which the corresponding
tuple of elements of A% belongs to the respective relation in 2.

Clearly, the tuples 7 and 5 both satisfy ¢ in 2B since the projection to a single coordinate
is a homomorphism from 22 to B. Now let y; be the disjunction of all atomic o -formulas
that do not hold on the tuple 7 in 8. Analogously, let {5 be the disjunction of all atomic
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o -formulas that do not hold on the tuple 5 in 5. Without loss of generality |A| > 1, and thus
both disjunctions are non-empty.

We have that B = ¢ A =7 (r) and B = ¢ A —5(5). Since B is convex, there must
exist a tuple 7 such that B = ¢ A —y7(f) A —5(f). Now consider the map f that sends, for
every i € [n], the tuple (r;, s;) to f[i]. Clearly f is a homomorphism from the o -reduct of
2 to the o-reduct of B because B | ¢ (7). Moreover, f is an embedding because, if ¥ is a
single atomic o -formula, then B = v (7) only if B = ¥ (F) and B = ¥ (5). We define € as
the substructure of B on f (A?). m]

Using Theorem 9, we can obtain a statement similar to that of Theorem 5, where convexity
replaces homogeneity and the square embedding property together with the joint embedding
property replaces AP. A class KC of relational t-structures has the joint embedding property
(JEP) if, for every B, B, € K there exists € € K such that B; — € fori € {1, 2}. Recall
our definition of the square embedding property from Theorem 9.

Corollary 6 For a class K of finite t-structures, the following are equivalent:

1. K = Age(®) for a countable convex structure 2.
2. K contains countably many structures up to isomorphism, is closed under isomorphisms
and building substructures, has JEP, and satisfies the square embedding property.

Proof The direction “1 = 2” is a direct consequence of Theorem 9 since classes of the form
Age(®) for arelational structure ® trivially satisfy JEP. The direction “2 = 1” follows from
Theorem 6.1.1 in [50] and Theorem 9. In fact, Theorem 6.1.1 in [50] implies that a class of
finite relational structures KC that is closed under building substructures and has JEP is of the
form K = Age(®) for a countable structure ©. An application of Theorem 9 then yields
convexity of ©. O

In contrast to homogeneous structures, countable convex structures are in general not uniquely
determined up to isomorphism by their age. The random graph can again serve as a coun-
terexample.

Example 6 The random graph & introduced in Example 4 is convex since Age(®) satisfies
the square embedding condition. In fact, since & embeds every finite undirected graph, it
also embeds 22 for any undirected graph 2. The direct product $) of & with itself is thus
also convex since Age($)) = Age(®). However, we have seen in Example 4 that & and $
are not isomorphic. It is not hard to see that & is actually p-admissible. Instead of proving
this directly, we will show it as a consequence of Theorem 12 below.

Corollary 6 can also be used to construct p-admissible concrete domains from structures
whose CSP is in P. This further substantiates our remark at the end of Sect. 3.2.2 that char-
acterizing all p-admissible concrete domains is at least as hard as characterizing all tractable
CSPs.

Definition 6 The canonical database DB(3x.¢(x)) for a satisfiable equality-free pp -
sentence 3x.¢ (x) is the t-structure whose domain consists of the quantified variables x
and whose relations are specified by the quantifier-free part ¢.

Proposition 11 For every structure B with a finite relational signature t, there exists a
countable convex t-structure ® such that CSP(B) = Age(®) = CSP(D). Moreover, ® is
p-admissible iff CSP(B) is in P.
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Proof Tt is easy to see that KL := CSP(*B) satisfies 2. in Corollary 6; for JEP we use the
fact that /C is closed under taking disjoint unions, and for the square embedding property
we use the fact that /C is closed under taking second powers. By Corollary 6, there exists
a countable convex structure © such that Age(®) = CSP(*B). Regarding the claim that
Age(®) = CSP(D), first note that the inclusion from left to right is trivial. Now, assume that
A € CSP(D), i.e., there is a homomorphism f: 2 — . Then the substructure € of © on
f(A) belongs to Age(®) = CSP(B). This yields a homomorphism from € to ‘B, and thus
from 2A to B. Consequently, 2 € CSP(28) = Age(D).

To show the second claim of the proposition, let Vx.(¢ = ) be a Horn implication.
Without loss of generality, we assume that ¢ does not contain equality axioms since we can
remove them by identifying variables in such equality axioms in ¢ and ¥r. We claim that,
under this assumption, ® = 3x.(¢ A =) iff © = Ix.¢ and ¥ does not occur as a conjunct
in ¢.

The only if direction is trivial. For the if direction, note that, by a standard result in
database theory, ® |= 3x.¢ iff the canonical database DB (3x.¢) homomorphically maps to
® [37]. Since ¢ does not occur as a conjunct in ¢, this atomic formula does not hold in
DB(3x.¢). This implies that ¢ does not hold in ® since DB(3x.¢) embeds into ® because
CSP(®) = Age(D).

We conclude that ® = Vx.(¢ = ) iff DB(3x. ¢ (x)) — © and ¢ contains ¢ as a
conjunct. This can be tested in polynomial time iff CSP(®) is in P. O

5.2 Convex @-Categorical Structures

For countably infinite w-categorical structures, the characterization of convexity of Theorem 9
can be improved to the following simpler statement.

Theorem 10 For a countably infinite w-categorical relational structure B with a countable
signature T, the following are equivalent:

1. B is convex.
2. B2 embeds into B.

Proof The direction “2 = 1” follows immediately from Theorem 9 since B> < B
obviously implies that Age(*B) satisfies the square embedding property. Note that for this
direction, w-categoricity of ®B is not required.

The proof of “1 = 2” combines the proof of this direction for Theorem 9 with the following
two facts, which are implied by w-categoricity of B. First, there exists an embedding from
B2 to B iff there exists an embedding from 2 to B for every A € Age(B?) (see, e.g.,
Lemma 3.1.5 in [16]). Second, to deal with the fact that T may be infinite we can use
Theorem 3, which ensures that, for every k > 1, there are only finitely many inequivalent
k-ary formulas over B consisting of a single atomic t-formula. O

In the CSP literature, one can find two interesting examples of countably infinite w-
categorical structures that satisfy Condition 2 of Theorem 10: atomless Boolean algebras and
countably infinite-dimensional vector spaces over finite fields. Since the CSP for atomless
Boolean algebras is NP-complete [13], this example does not provide us with a p-admissible
concrete domain; but the vector space example does.

As shown in [22], the relational representation U, = (V; R, R%, ... R%-1) of the
countably infinite-dimensional vector space over a finite field GF(q) is w-categorical, satisfies
?Ué = Y,, and its CSP is decidable in polynomial time, even if the complements of all
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predicates are added. Here R is a ternary predicate corresponding to addition of vectors,
and the R® are binary predicates corresponding to scalar multiplication of a vector with the
element s; of GF(q). These properties are preserved if we add finitely many unary predicates
R¢ that correspond to unit vectors ey, ..., €.

Corollary 7 The structure U, expanded with predicates R°', ..., R% for unit vectors
e, ..., ey is p-admissible.

Proof We have %2 = 9, and thus both structures are vector spaces over GF(g) of countably
infinite dimension. Now if we fix finitely many unit vectors ey, ..., ¢; € V, by expanding
U, with the unary predicates R°!, ..., R, we can still extend the map which sends (¢;, ¢;)
to ¢; for each i € [k] to a bijection between bases of both vector spaces. This bijection
then naturally extends to an isomorphism from (%, R“!, ..., Rek)2 to (U, R, ..., R%).
Thus, Theorem 10 yields convexity of (T, R°!, ..., R®). The CSP in its expansion by
inequality and the complements of all relations can be solved, similarly as in the Gaussian
elimination algorithm, by iterated elimination of variables from equations and subsequent
search for unsatisfiable equalities and/or inequalities between unit vectors (e.g., e; 7# e; or
e1 = ep) (see [22] for details). This implies that testing validity of Horn implications in
(U4, R, ..., R%) is tractable. We conclude that Uy, R, ..., R%) is p-admissible. O

For the case ¢ = 2, the vectors in V,, are one-sided infinite tuples of zeros and ones
containing only finitely many ones, which can be viewed as representing finite subsets of N.
Forexample, (0, 1, 1,0, 1, 0, 0, ...) represents the set {1, 2, 4}. Thus, if we use U, as concrete
domain, the features assign finite sets of natural numbers to individuals. For example, assume
that the feature dages assigns the set of ages of daughters to a person, and sages the set of
ages of sons. Then 3dages, sages, zero. R* (x|, x2, x3) describes persons that, for every age,
have either both a son and a daughter of this age, or no child at all of this age. The feature
zero is supposed to point to the zero vector, which can, e.g., be enforced using the GCI
T C 3Jzero, zero, zero. RT(x1, x2, x3). If ey is the unit vector (0, 1, 0, 0, ...) and ey is the unit
vector (0,0,0,0,1,0,0, ...), then the concept Jone, four, dages. R (x1, x2, x3) describes
humans that have daughters of age one and four, and of no other age, if the TBox contains
the GCI T C Jone. R (x1) M Ifour. R (x1).

5.3 Convex Numerical Structures

Outside of the scope of w-categoricity, we exhibit two new p-admissible concrete domain that
are respectively based on the real and the rational numbers, and whose predicates are defined
by linear equations. Let D jin be the relational structure over R that has, for every linear
equation system AX = b over Q, a relation consisting of all its solutions in R. We define
DQ,1in as the substructure of D jin on Q. For example, using the matrix A = (2 1 —1)
and the vector b = (0) one obtains the ternary relation {(p,q,r) € Q3 | 2p+¢ = r}in
D, 1in- Our proof of the fact these two structures are p-admissible uses the following simple
observation about pp definable relations.

Lemma4 Let ® be a structure for which there exists an isomorphism f: D% — D, and let
{R; | i € I} be a family of relations that are pp definable in ®. Then f is an isomorphism
from (D,{R; | i € IN?to (D, {R; |i €I}).

Proof By a standard result in model theory, if R is pp definable in ©, then f is also a homo-
morphism from (D, R)? to (D, R) (e.g., Proposition 5.2.2in [16]). Since f is bijective, it only
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remains to show that f is even an embedding from (D, R)?to (D, R). Let ¢ (x1, ..., xp) :=
Axk41, oee s Xo. Y (X1, ..., x¢) be the pp formula that defines R in D, where v is the quantifier-
free part of ¢. Let 7 € R be an arbitrary tuple of the form 7 = f (71, 7,) for some 71, 7, € DF.
Then there exists § € D¢ such that ® = W (7[11, ..., FIkl, 5111, ..., 5[¢ — k]). Since f is
surjective, there exist 51, 52 € D% such that 5 = f (51, 52). Since f is an embedding from
D2 to D, we have D = Y (rll, ..., rilkl, 5i[11, ..., 5;[¢ — k]) for both i € {1, 2}. This means
that 7, 7o € R, which confirms our claim. O

Theorem 11 The relational structures DR 1in and Dq 1in are p-admissible.

Proof To prove this theorem for R, we start with the well-known fact that (R; +, 0)2 and
(R; +, 0) are isomorphic [55]. Such an isomorphism exists because (R; +, 0)2 and (R; 4, 0)
are both vector spaces over ) whose dimensions are uncountably infinite and of the same
cardinality. Thus every bijective map from a basis of (R; +, 0)? to a basis of (R; +, 0) extends
to an isomorphism. Now we simply choose any two bases of (R; +, 0)2 and (R; +, 0) such
that the first basis contains (1, 1) and the second basis contains 1. Then we choose an arbitrary
bijection from the first basis to the second basis that sends (1, 1) to 1. This bijection extends
to an isomorphism f: (R; +,0, 1)> — (R; +, 0, 1). It is easy to see that every relation of
DR 1in can be defined in (R; 4, 0, 1) using a pp formula. By Lemma 4, f is an isomorphism
from @%R’ lin 10 DR lin, Which implies that D jiy is convex by Theorem 9.

Now recall that validity of Horn implications in DR ji, can be tested in polynomial time if
the CSP for (@ﬁqhn, #) isin P. It is easy to see that f is a homomorphism from (D 1., £)?
to (@Hﬁmn, #). It follows from Corollary 5.10 in [23] that both the CSP and validity of
Horn implications in DR ji, are decidable in polynomial time. We conclude that D jip is
p-admissible.

For Q, we cannot employ the same argument since (Q; +, 0)2 does not even embed into
(Q; +, 0). Instead, we use the well-known fact that the structures (Q; +, 0) and (R; +, 0)
satisfy the same first-order-sentences [55] to show that convexity of D jin implies convexity
of D lin-

We claim that a stronger statement is true, namely, that Th(Q; +, 0, 1) = Th(R; +, 0, 1).
Let ¢ be an arbitrary first-order sentence in the signature of (R; +, 0, 1). We obtain the
formula 1 (x) in the signature of (R; +, 0) by replacing the constant 1 in ¢ by a fresh free
variable x,i.e., (R; 4+, 0, 1) = ¢ iff (R; 4+, 0) = ¥ (1). Forevery ¢ € R\{0}, themapx > cx
is an automorphism of (R; +, 0) that sends 1 to c¢. Since {x € R | (R; +,0) = ¥ (x)} has
a first-order definition in (R; 4, 0), it is preserved by all automorphisms of (R; 4, 0) [50].
Now we distinguish the following two cases. If (R; +, 0) = ¥(0), then (R; +, 0, 1) = ¢ iff
(R; 4, 0) = 3x. ¥ (x). Otherwise (R; +, 0, 1) = ¢ iff (R; +, 0) = 3x. (—-(x =0)A W(x)).
Using an analogous argument we have either (Q; +,0, 1) = ¢ iff (Q; 4,0) = Jx. ¥ (x)
in the case where (Q; +,0) = ¥(0), or (Q;+,0,1) = ¢ iff (Q;+,0) E 3. (—(x =
0) A 1//(x)). Since ¢ was chosen arbitrarily, we conclude that indeed Th(Q; +,0,1) =
Th(R; 4, 0, 1).

Since the relations of D jin are definable in (Q; +, 0, 1) using the same pp formulas
as for their counterparts in O jin, and Th(Q; +, 0, 1) = Th(R; +, 0, 1), we conclude that
D,lin 1s p-admissible as well. O

In Sect. 3 we have introduced the structure D2 4 and have shown in Proposition 2 that
subsumption w.r.t. TBoxes is undecidable in E£(Dgp 4). Using Theorems 2 and 11 we
can now show that subsumption w.r.t. TBoxes is tractable in EL[Dqp 4] since D2 ypr 1S
p-admissible.
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Corollary 8 The relational structure Dy . is p-admissible.

Proof First, note that the CSP and validity of Horn implications in D2 , can be reduced
in linear time to the same problems for D jin.

It remains to show that D g2 4 is convex. Let o be a finite subset of the signature of D2 44
and let 21 € Age(Dqp ). We may assume without loss of generality that 2 is a substructure
of D2 - Itis sufficient to show that the o -reduct of 212 embeds into the o-reduct of D2, aff-

For every relation Ry, 5 of D i We consider the 4-ary relation {(x[11, X[2], y[11, y[2]) €
Q* | y = Mx + v} of Dg 1in Which we denote by R’M,,;. Consider the substructure 2 of
D.lin on the set A= {x € Q| thereis ¥ € A such that x € {X[1], X[2]}}. Let & be the
finite subset of the signature of D jin that contains a symbol for every relation IéMj for
which there exists a symbol in o interpreted as Rys ; in @Qz.aff. Since D 1in is convex,
Theorem 9 yields an embedding f from the & -reduct of 22 to the &-reduct of DQ,1in- Let f
be the mapping from A% to Q2 defined as f (¥, X2) := (f()?l[l], %010), f (X121, x[2])). It
is well defined by the definition of 2. Let (x1,x2), (31, M) € A? be arbitrary. Then, by the
definition of A, (¥;[11, ¥2[11), (¥112], ¥2[2]), (F1[1], $2l11), (F112], $212]) € A% and, for every
affine transformation x +— Mx + v, we have the following chain of equivalent statements.

x1[1] X1 S G, xal1)

X1 X2\ . x112] x[2] | . f(xil21, x202)) | . (f(ﬂiz))
B I S iff | _ N iff T _ iff 0
(M) <)’2> i 2l F Gl y2111) fO1, y2)
— — S112 12 - - [N —
€ Rus yil2l 2121 F(Gh121, y2l21) < Ry s
€ RM,ﬁ S RMj

The first equivalence follows from the definition of R M 5, the second from the fact that f is
an embedding, and the third from the definition of f. These equivalences also hold for the
equality predicate which can be written as R, ; for E the 2 x 2 identity matrix and Z = (0, 0).
It follows that f is an embedding from the o -reduct of 22 to the o-reduct of D@2 aft- O

5.4 Convex Structures with Forbidden Substructures

Finitely bounded structures also provide us with interesting examples of convex structures.
In this setting, convexity already implies tractability.

Theorem 12 For a finitely bounded structure B, the following are equivalent:

1. B is convex,
2. Age(®B) is defined by a universal Horn sentence,
3. B is p-admissible.

Proof “1 = 2”: Using the logical reformulation of finite boundedness in Lemma 3, we know
that ‘B is finitely bounded if its signature is finite and there is a universal first-order sentence
@ such that Age(*B) consists precisely of the finite models of @. We bring @ into prenex
normal form, and then transform its quantifier-free part in conjunctive normal form. This
shows that we can assume that @ is a conjunction of implications (in the sense defined in
Sect. 2). Note that a universal sentence holds in a relational structure iff it holds in each of
its finite substructures. In particular, we have ‘B |= @. For every implication in @ where the
conclusion consists of at least two atomic formulas we apply the definition of convexity and

@ Springer



388 F.Baader, J. Rydval

reduce @ to a universal Horn sentence @’ such that B = @’. This implies that @’ holds in
all elements of Age(B). In addition, by the construction of @', the original formula & is a
logical consequence of @’. Thus, if a finite T-structure satisfies @’, it also satisfies @, and
thus belongs to Age(B). This shows that @’ defines Age(*B).

“2 = 3”: We first show that ‘B is convex using Theorem 9. We set ¢ := 7 and select
an arbitrary finite substructure 2( of B. Let Vx. (¢; = ;) be one of the Horn implications
whose conjunction @ over i € [£] defines Age(B). Let 7 be a tuple over A” such that
A2 = ¢; (¢) for some i € [£] and let k be its arity. Then 7 is of the form ((x1, ¥1), ..., (Xx, Yk))
such that B = ¢;(x1, ..., xx) and B = ¢;(y1, ..., Yk). Since the substructure of B on
{x1, coos Xks Y1, ---» Y&} satisfies VX. (¢; = Vi), wehave B = Vi (X1, oo, XAV (V15 ov s Vi),
and thus 22 = (7). Since the tuple 7 and the index i € [£] were chosen arbitrarily, we
know that 22 = Vx.(¢; = ;) forall i € [£]. Thus, we have 2> = &, which implies
A% € Age(®B). We have shown that Age(*B) is closed under taking second powers, which is
a strong form of the square embedding property from Theorem 9.

Regarding tractability, note that the structure B satisfies a given Horn implication
Vx.(¢ = y)(x) iff this implication is satisfied by all elements of Age(*8). This is the
case iff the universal Horn sentence @ that defines Age(*5) implies the Horn implication
Vx. (¢ = v¥)(x). It is well known that the entailment problem is decidable in polynomial
time for Horn implications [41].

“3 = 17 This direction is trivial. O

This theorem yields the following two examples of p-admissible concrete domains.

Example 7 The random graph & is p-admissible since its age can be defined by the universal
Horn sentence Vx.(E(x, X) = ff) AVx, y.(E(x, y) = E(y, x)).

The structure (Q; >) is not convex, as otherwise Theorem 9 would imply that it contains
incomparable elements since the square of this linear order is not linear. In the universal
sentence defining Age(Q; >) (see Lemma 3), the totality axiom Vx, y. (x < yVx = yVx >
y) is the culprit since it is not Horn. If we remove this axiom, we obtain the theory of strict
partial orders.

It is well known that there exists a unique countable homogeneous strict partial order 3
[68], whose age is defined by the universal Horn sentence Vx, y,z.(x < y Ay < z =
X < ) AVx.(x < x = ££f). Thus, B is finitely bounded and convex. Using B as a
concrete domain means that the feature values satisfy the theory of strict partial orders, but
not more. One can, for instance, use this concrete domain to model preferences of people;
e.g., Italian M 3pizzapref, pastapref.(x1 > x2) is a concept describing Italians that like pizza
more than pasta. Using B3 here means that preferences may be incomparable. As we have
seen above, adding totality would break convexity and thus p-admissibility.

By combining Corollary 3 with Theorem 12, we can obtain non-trivial p-admissible con-
crete domains © for which subsumption in ALC(®) is decidable. Note that, according to
Proposition 3, such a non-trivial structure ® cannot be w-admissible, but it is the reduct of
the w-admissible structure D=9,

Corollary 9 Let® be a finitely bounded convex structure that is a reduct of a finitely bounded
homogeneous structure. Then subsumption w.r.t. TBoxes is tractable in EL[D] and decidable
in ALC(D).

Examples of infinitely many non-trivial structures satisfying the condition stated in this
corollary will be given in the next subsection.
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5.5 Convex Structures with Forbidden Homomorphic Images

Beside finitely bounded structures, the literature also considers structures whose age can
be described by a finite set of forbidden homomorphic images [38, 53]. For a class F of
t-structures, Forby, (F) stands for the class of all finite t-structures that do not contain a
homomorphic image of any member of F. A structure is connected if its so-called Gaifman
graph is connected. The Gaifiman graph of a structure 2l is the undirected graph (A, E) such
that there is an edge in E between two elements a, a’ € A iff they occur together in a tuple
from a relation of 2.

Theorem 13 (Cherlin, Shelah, and Shi [38]) Let F be a finite family of connected relational
structures with a finite signature t. Then there exists an w-categorical t-structure CSS(F)
that is a reduct of a finitely bounded homogeneous structure and Age(CSS(F)) = Forby, (F).

We can show that the structures of the form CSS(F) provided by this theorem are always
p-admissible.

Proposition 12 Let F be a finite family of connected relational structures with a finite sig-
nature t. Then CSS(F) is p-admissible.

Proof Let B := CSS(F). By Theorem 13, we have 2l € Age(8) iff 2 does not contain a
homomorphic image of any § € F as a substructure. If we can show Age(B%) C Age(B),
then it follows from Theorem 9 that CSS (F) is convex. Suppose that there exists € € Age(%z)
such that € ¢ Age(®8). Then there exists § € F such that § — €. Since the projection to
a single component is a homomorphism, this shows that there is a homomorphism § — ‘B.
But then the image of § under this homomorphism is a finite substructure of ‘B that does
not belong to Forby, (F), which contradicts the fact that Age(28) = Forby, (F). Thus indeed
Age(%z) C Age(®B) and CSS(F) is convex.

Since there are, up to isomorphisms, only finitely many homomorphic images of each
§ € F in B, there exists a finite set F’ of finite structures such that Age(8) = Forb, (F'),
which means that B is finitely bounded. Since CSS(F) is convex, its p-admissibility follows
from Theorem 12. o

Proposition 12 together with the next example provides us with infinitely many countable
p-admissible concrete domains satisfying the preconditions of Corollary 9, which all yield a
different extension of ££. The usefulness of these concrete domains for defining interesting
concepts is, however, as yet unclear.

Example 8 A directed graph is a tournament if every two distinct vertices in it are connected
by exactly one directed edge. Henson [47] proved that there are uncountably many homo-
geneous directed graphs by showing that, for any (not necessarily finite) set N of finite
tournaments (plus the loop and the 2-cycle) such that no member of A/ is embeddable into
any other member of V, Forb, (V) is an amalgamation class whose Fraissé limit is a homoge-
neous directed graph. Furthermore, the Fraissé limits for two distinct sets of such tournaments
are distinct as well. In the literature, such directed graphs are often called Henson digraphs
[66].

An important observation about Henson digraphs is that Forb, (A') = Forby, (V') holds for
any set V' of finite tournaments plus the loop and the 2-cycle. The inclusion Forb, (V) C
Forb, (V) holds since every embedding is a homomorphism. To show the other inclusion,
suppose that 20 € Forb, (). The loop clearly does not homomorphically map to 2( because
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every homomorphism from the loop to 2 is an embedding. Since the loop does not homo-
morphically map to 2, every homomorphism from the 2-cycle to 2 is an embedding. Thus,
the 2-cycle does not homomorphically map to 2. Since the loop and the 2-cycle do not
homomorphically map to 2, every homomorphism from a tournament to 2l is an embedding.
Thus, 2 does not admit any homomorphic image of a structure from A. We conclude that
Forb, (N) C Forb, (N).

For every selection A\ of finitely many tournaments that do not embed into each other, the
set V' consists of connected structures since tournaments as well as the loop and the 2-cycle
are connected. Moreover, if N7, N> are two distinct such sets, then Forby, (N7) # Forby, (NV3)
[66]. Since there are infinitely many such families A/, Theorem 13 and Proposition 12 yield
infinitely many non-isomorphic p-admissible and finitely bounded concrete domains that
have different ages. Consequently, the ages of these structures are defined by universal Horn
sentences that are not equivalent. This implies that, in the extension of ££ with these concrete
domains, different subsumptions hold.

To make this more precise, let ®; := CSS(N}) and D, := CSS(N;). Assume that
Vx. (¢ = ) isaHornimplication that is satisfied by all elements of Forb, (N]) = Age(D1),
but for which there is an element & of Forby, (V) = Age(D;) that does not satisfy it. We can
easily turn the conjunction of atomic formulas ¢ and the atomic formulas i into concepts
Cy and Cy, of the DLs ££[®] and ££[D>] by viewing the variables in x as features and
replacing the conjunct operators A in ¢ by DL conjunction . If we additionally ensure that
all these features are defined (using GCIs T C 3x, x.(x; = x2) for all x occurring in x),
then Cy is subsumed by Cy w.r.t. these GCls in £L£[D], but not in ££[D;] since one can
use & € Age(D,) to construct a counterexample to the subsumption.

A more general class of p-admissible structures can be obtained from connected MMSNP
(for monotone monadic strict NP) sentences. Recall the notion of a canonical database from
Definition 6.

Definition 7 A connected (equality-free) MMSNP sentence @ over a finite relational signa-
ture 7 is of the form @ = 3Py, ..., P,.Vx. /\l- —(a; A Bi) where

— Py, ..., P, are unary relation symbols not in 7,

— eachq; is a conjunction of atomic formulas of the form R(x) for R € t with free variables
x; such that DB(3x;. ;) is connected,

— each B; is a conjunction of atomic formulas of the form P;(x) for i € [n] and their
negations.

Note that, for every family § as in Theorem 13, the class Age(CSS(F)) consists of all finite
models of a particular MMSNP sentence of the form Vi. A ; —a; where each «; encodes a
single structure § € F up to homomorphic equivalence. The following result is thus as a
generalization of Theorem 13 to more complicated forbidden patterns involving existentially
quantified unary predicates.

Theorem 14 (Theorem 7 in [17]) For every connected MMSNP sentence ® over a finite
signature T, there exists an w-categorical T-structure B ¢ that is a reduct of a finitely bounded
homogeneous structure and such that Age(*B¢) consists of all finite models of ®.

Like Theorem 13, this theorem can be used to produce p-admissible concrete domains.
However, in contrast to the setting considered in Theorem 13, connected MMSNP is known to
exhibit a complexity dichotomy between P and NP-complete [26]. The following proposition
shows that, already within the class of reducts of finitely bounded homogeneous structures,
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p-admissibility does not only depend on convexity, in contrast to what holds for finitely
bounded structures (see Theorem 12).

Proposition 13 Let @ be a connected MMSNP sentence over a finite signature t. Then ‘B¢
is always convex, and it is p-admissible iff satisfiability of @ in finite t-structures can be
tested in polynomial time.

Proof We show convexity using Theorem 9. Let 2 be a finite substructure of B¢. Then
A = @ and this is witnessed by sets Py, ..., P, € A. Assume that 2 = @. For every
i € [n], we set Pl.’ = P; x A. Since 22 £ @, there exists a tuple § over AZ such that
(22, P{,..., P)) = (; A Bi)(5) for some i. Let 7 be the tuple over A obtained from §
by taking the projection of each entry in 5 to the first coordinate. By the definition of the
product of structures and of the sets Pi’ , we obtain (2, Py, ..., P,) = (a; A Bi)(r), which
contradicts our assumption that 2l = @ is witnessed by Py, ..., P,. Thus 22 = @, which
shows A% € Age(*Bg). An application of Theorem 9 thus yields convexity of B .

It remains to determine in which cases we can test validity of Horn implications in B¢
in polynomial time. The proof of Theorem 7 in [17] yields CSP(®B¢) = Age(*Bg). It can
be shown as in the proof of Proposition 11 that testing satisfiability of Horn implications
in B¢ reduces in polynomial time to CSP(®B¢ ), which amounts to testing satisfiability of
@ by Theorem 14 because CSP(®84) = Age(*Boy). Hence, testing satisfiability of Horn
implications in B¢ can be done in polynomial time iff testing satisfiability of @ in finite
structures can be done in polynomial time. O

Example 9 Consider the following two connected MMSNP sentences:
@1 :=3P.Vx,y.~(E(x,y) A P(x) A P(y)) A=(E(x,y) A=P(x) A=P(y))
@) :=3P.Vx,y,z.=(E(x,y) AN E(y.2) A E(z,x) A P(x) A P(y) A P(2))
A=(E(x,y) NE(y,2) A E(z,x) A=P(x) A=P(y) A=P(2))

It is easy to see that testing satisfiability of @ in finite structures corresponds to solving
the well-known 2-colorability problem, which is known to be tractable. Thus, the structure
B, is a p-admissible concrete domain. Satisfiability of @, in finite structures corresponds
to the problem No-Mono-Tri (for “no mono-chromatic triangle”), which is known to be NP-
complete [24]. Thus, the structure B, is convex, but it is not p-admissible (unless P=NP).
More examples of connected MMSNP sentences can be found in [24].

5.6 (Non-)closure Properties of Finitely Bounded Convex Structures

In contrast to homogeneity, convexity is quite fragile. For example, it is in general not
preserved under adding predicates of the form =, even under the assumption of finite bound-
edness.

Proposition 14 Finitely bounded convex structures are not closed under adding singleton
predicates =..

Proof The unique countable homogeneous strict partial order 3 was introduced and shown
to be convex in Example 7. Consider the extension P, of 3 by a smallest element ¢ ¢ P,
ie., ¢ < p forevery p € P. It is easy to see that Age('B,) = Age(]3), which means
that . is still finitely bounded and convex. Now consider its expansion 3. by the unary
relation =, which is interpreted as {c}. The structure 3. is not convex since Vx, y. (x = x A
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=:.(y)) = (y < x V =¢(x)) holds in it, but neither Vx, y. (x = x A =.(y)) = y < x nor
Vx, . (x = x A=c(y)) = =c(x). o

When it comes to expansions by first-order definable relations, we clearly run into prob-
lems if we allow definitions containing disjunctions of atomic formulas. However, except
for very specific situations as in Lemma 4, convexity is not even preserved under taking
expansions by pp definable relations.

Proposition 15 Finitely bounded convex structures are not closed under taking expansions
by pp definable relations.

Proof As shown in [46], there exists a unique countable homogeneous undirected graph $)
that embeds precisely those finite undirected graphs not containing the complete graph on
three vertices £3 as an induced subgraph. By Lemma 3, §) is finitely bounded because Age($))
is defined by the following universal Horn sentence:

Vx,y,z.(E(x,y) AE(y,2) A E(z, x) = £f)
AVx, y.(E(x,y) = E(y,x)) AVx.(E(x,x) = ££f).

By Theorem 12, §) is also convex. However, the expansion (3, #) is not convex since (£, #)
= VX1, x2, X3, X4. (X1 7# X2 AX3 # X4) = (X1 # X3V X] 7# X4), butboth x| = x3 # x4 and
X1 = x4 # x3 is possible in (), #). We claim that # can be pp-defined in $) by the formula

@ (x1, x4) = Ixz, x3. (E(x1, x2) A E(x2, x3) A E(x3, x4)).

First, suppose that §§ = ¢ (h1, ha) for some hy, hy € H. Then clearly h| # hq as otherwise
$ would embed R3. Second, let i1, hy be arbitrary distinct elements of H. Consider the
undirected path 4 with four vertices vy, va, v3, v4. Since PB4 does not embed K3, there
exists an embedding e: Py — $H. If there is an edge between i and hg4, then we can
take xp = h4 and x3 = hj to shows that $ = ¢ (hy, ha). Otherwise, the substructures of
9 on {h1, ha} and on {e(v}), e(v4)} are isomorphic. Since §) is homogeneous, there exists
o € Aut($)) which sends e(vy) to k1 and e(v4) to hg. Since « o e is a homomorphism, it
follows that (x1, ..., x4) := (¢ o e(vy), ..., @ 0 e(vs)) satisfies the quantifier-free part of ¢ in
9, and thus ) = ¢ (h1, hg) also in this case. O

Also, convexity is not preserved under taking disjoint unions.
Proposition 16 Finitely bounded convex structures are not closed under disjoint union.

Proof Consider a signature with a single unary predicate symbol and a structure (S; R)
where S is countably infinite and R is interpreted as the whole domain S. This structure is
finitely bounded and convex by Lemma 3 and Theorem 12 since its age is defined by the
universal Horn sentence Vx. R(x). If we build the union of (§; R) with an isomorphic copy
of itself over a domain disjoint with S, then we obtain a structure isomorphic to the structure
N = (N; E, O), of which we have seen in Sect. 3.2.2 that it is not convex. O

However, convexity is preserved under taking the full product. This is an easy conse-
quence of Theorem 9 combined with the fact that the mapping ((x1, x2), (y1, y2))
((x1, y1), (x2, y2)) is an isomorphism between @% X D% and (D] X D,)2.

Proposition 17 Convex structures are closed under taking the full product.
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6 Toward User-Definable Concrete Domains

DL systems that can handle concrete domains allow their users to employ a fixed set of
predicates of one or more fixed concrete domains when modeling concepts. They do not
provide their users with means for defining new predicates, let alone new concrete domains.
Our results in Sect. 4 alleviate the first restriction since Corollary 3 allows the use of first-
order definable predicates and Corollary 4 of predicates definable by existential positive
formulas. To overcome the second restriction, one would need to provide the user with (i) a
mechanism for defining a concrete domain; (ii) an algorithm that checks whether this concrete
domain is w- or p-admissible; and (iii) an automated way of generating the required reasoning
procedures for this concrete domain.

For the case of w-admissible concrete domains, one might think that Theorem 6 provides
us with these ingredients. To define a concrete domain satisfying the preconditions of this
theorem, one could start with selecting a finite set N of bounds (or equivalently, by Lemma 3,
a universal sentence). The question is then whether N really induces a finitely bounded
structure. The bad news is that this question is in general undecidable.

Proposition 18 Let t be a finite relational signature containing at least one binary symbol.
The question whether, for a given finite set N of finite t-structures, there is a T-structure ®
such that Age(®) = Forb,(N) is in general undecidable.

Proof Tt is shown in [33] that the joint embedding property (JEP) is undecidable for classes
of undirected graphs definable by finitely many bounds. In addition, it is known that a class
of structures definable by finitely many bounds has JEP iff this class is the age of some
countable structure (Theorem 6.1.1 in [50]). ]

However, to apply Theorem 6, we need AP rather than just JEP. In contrast to JEP, the
amalgamation property (AP) is decidable for classes over finite binary signatures defined by
finitely many forbidden finite substructures [57].

Theorem 15 The question whether, for a given finite set N of finite T -structures over a finite
relational signature T consisting of binary symbols, there exists a homogeneous t-structure
D such that Age(D) = Forb, (N is decidable in IT} .

Proof According to [57], it is decidable whether Forb, (N) has AP. By Theorem 35, this is
the case iff there is a homogeneous structure ® such that Age(®) = Forb,(N). A decision
procedure for this problem was also described recently in [29]. As mentioned in the proof of
Theorem 4 in [29], it is enough to show AP restricted to triples 2, B, B, such that

ej: A — B, is the identity map and B; \ A = {b;} fori =1, 2. #)

Let Ry, ..., R, be an enumeration of t. Suppose that there exists S C [n] such that the
formula

¢si,y2) = N\ RGLyD A N\ =R y) A N =R, 31)
ieS ie[n\S i€[n]

is not satisfiable in any § € N. Then Forb, (N') has AP because, for every triple 2, B, B>,
we can choose € with domain By U B, and relations

R RPVURP U {(by, by)} ifies
i =

RP'URP? ifi €]\ S.
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It is easy to see that € € Forb, (N): since § € N cannot embed into B or B,, the image of
an embedding of § into € would need to contain b; and b,, but then the formula ¢s(y;, y2)
would be satisfiable in §.

Now suppose that Forb, (A) does not have AP. We define the size of N as the sum of the
sizes of all structures in A/, where the size of a structure is the sum of the cardinalities of the
domain and all relations. By the argument in the previous paragraph, for every S C [n], the
formula ¢s(y1, y2) must be satisfiable in some § € A. Consequently, this structure contains
atuple (ay, az) such that ¢5(ay, az) holds, but ¢g (aj, az) does not hold for any S” # S. This
shows that, overall structures in A/, there are at least 2!7! tuples. Since all of them except for
one belongs to at least on relation and the cardinality of the structures in A is at least 1, this
shows that the size of A is at least 2!7!.

To prove that the original problem is in 77, it is sufficient to show that the complement
can be decided by an NP procedure that uses a coNP oracle. Given a finite set of bounds
N, we guess a triple 2, B, B, satisfying (#) and check whether this triple witnesses that
Forb, (N) does not have AP. According to the proof of Theorem 4 in [29], the size of a
smallest counterexample to AP for Forb,(N) is bounded by a polynomial in m - £ where
m = maxgen |F| and £ = 2171, Thus, by what we have shown above for the size of N,
we may assume that the size of 2, B, 9B is polynomial in the size of the input N, which
shows that this triple can be guessed within NP. To verify that it is a counterexample to AP,
we need to check that

1. 2, B, B, € Forb,(N), and
2. there exists no € € Forb, (N) with embeddings f;: B; < €&, i € [2], such that fi|4 =

f2la.

The test in item 1 can be performed by a coNP oracle. In fact, to check whether a finite
structure does not belong to Forb, (N), it is sufficient to guess an embedding from an element
of AV into this structure. Clearly, this can be done by an NP procedure.

For item 2, first note that it is clearly sufficient to consider structures € such that C =
Bi U B, and where the embeddings f; are the identity.® There are only polynomially many
structures of this kind. In fact, to determine such a structure, we need to decide for the
tuples (b1, b2) and (b3, b1) to which of the binary relations in 7 they belong. There are 27l
possibilities for each tuple, and we already know that 27! is polynomial in the size of the
input. The test whether € € Forb, (A) can again be solved by a coNP oracle.

Thus, we have shown that the complement of the problem of deciding AP can be solved
by an NP procedure that uses a coNP oracle, which finishes the proof of the lemma. O

Assume that, in the binary case, the test whether Forb, (\') has AP was successful, and let
® be the corresponding homogeneous structure. Using the results from Sect. 4, we can then
transform ® into an w-admissible concrete domain through a decomposition of its relations
into orbits under Aut(®). The required decision procedure for the CSP can then be obtained
from the proof of Proposition 6. Thus, for the case of binary signatures, Theorem 6 together
with related results in Sect. 4 provides us with the necessary ingredients for enabling user-
definable w-admissible concrete domains. This automated approach can be used to identify
RCCS8 and Allen as w-admissible concrete domains because they are both finitely bounded
(see Example 2). It is an open question whether the decidability result for AP in [57] can
be extended to finite signatures containing non-binary symbols. In the setting relevant for p-
admissibility, we can show that the analogous problem is undecidable already for signatures

6 The case where f1(b1) = f2(b2) can only yield a counterexample if B and B, are equal up to renaming
of by with by, which can easily be checked.
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containing at most binary symbols. This is an easy consequence of the following theorem,
whose proof can be found in [30].

Theorem 16 The question whether the class of all finite models of a given universal Horn
sentence in a finite signature T has JEP is undecidable even if T is limited to binary symbols.

This theorem yields the following undecidability result for p-admissibility of finitely
bounded structures.

Corollary 10 The question whether, for a given finite set N of finite t-structures over a
[inite relational signature t, there exists a p-admissible t-structure ® such that Age(®D) =
Forb, (N) is undecidable even if T is limited to binary symbols.

Proof By Lemma 3, for every universal Horn sentence @ in the signature t, there exists a
finite set Np of finite T-structures such that Forb, (Ng) is the set of all finite models of &.
By Corollary 6, there exists a structure ® with Age(®) = Forb, (Np) iff Forb,(Ng) has
JEP. Moreover, whenever there exists a structure ® with Age(®) = Forb,(Ng), then ® is
p-admissible by Theorem 12. Thus undecidability follows directly from Theorem 16. O

There is, however, a simple syntactic restriction that guarantees the existence of a p-
admissible structure whose age is described by a given universal Horn sentence.

Proposition 19 Let @ be a satisfiable universal Horn sentence over a finite signature such
that ¢ (x) is equality-free and DB (3x.¢ (X)) is connected for every conjunct Vx.¢ (xX) = ¥ (x)
in @, and let IC be the class of all finite models of ®. Then there exists a finitely bounded
p-admissible structure ® such that K = Age(D).

Proof Tt is easy to see that K has JEP because, due to the connectedness condition, it is
preserved under taking disjoint unions. Then the existence of an appropriate structure
follows from Corollary 6 and Theorem 12. O

The precondition of Proposition 19 is, for instance, satisfied for the class of all finite strict
partial orders (see Example 7).

7 Conclusion

The notions of w-admissibility and p-admissibility were respectively introduced in [65] and
[11] to obtain decidable and tractable extensions of DLs by concrete domains. In each of
these papers, two examples of concrete domains satisfying the respective restrictions were
given. To the best of our knowledge, no other w-admissible or p-admissible concrete domains
had been exhibited in the literature before our investigations in [6] and [8]. This appears to be
mainly due to the fact that it is not easy to show the conditions required by w-admissibility
or p-admissibility “by hand”. The main contribution of this work is that it provides us with
useful algebraic tools for proving these conditions.

We have shown that w-admissibility is closely related to well-known notions from model
theory such as homogeneity and finite boundedness. Given the fact that a large number of
homogeneous structures are known from the literature [66] and that homogeneous and finitely
bounded structures play an important rdle in the CSP community, we believe that our work
will turn out to be useful for locating new w-admissible concrete domains.
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This is not the first model-theoretic description of a sufficient condition for decidability
of reasoning in DLs with concrete domains in the presence of TBoxes. The existence of
homomorphism is definable (EHD) property was used in [35] to obtain decidability results
for DLs with concrete domains. However, the way the concrete domain is integrated into
the DL in [35] is different from the classical one employed by us and used in all other
papers on DLs with concrete domains. In [35], constraints are always placed along a linear
path stemming from a single individual, which is rather similar to the use of constraints in
temporal logics [36,40]. In contrast, in the classical setting of DLs with concrete domains, one
can compare feature values of siblings of an individual. Compared to homogeneity and finite
boundedness, the EHD property is not as well investigated. To the best of our knowledge, the
only article besides [35] where concrete domains satisfying the EHD property are studied
in the context of ALC with GClIs is [60, 61].7 There, the authors consider specific concrete
domains based on integers equipped with a linear order and provide an exponential upper
bound for reasoning using an automata-theoretic algorithm. Interestingly, their upper bound
holds not only for constraints along paths, but also for the traditional integration of concrete
domain into DLs. The results in [35, 60, 61] demonstrate that w-admissibility is not necessary
for decidable reasoning. However, all known non-w-admissible concrete domains with the
EHD property are based on “discrete” versions of w-admissible concrete domains, which are
patchworks but lack homomorphism w-compactness, e.g., (Z; <, =, >) or Allenz. Motivated
by this observation, we identify homomorphism w-compactness in its current form as the
most obvious “flaw” of the w-admissibility condition, in the sense that it may be too strong.
In fact, the correctness of the tableau algorithm from [65] only requires very specific infinite
structures to have a homomorphism to the concrete domain, e.g., their treewidth is bounded
by a computable function in the size of the input concept and TBox. But even if we restrict
the inputs to homomorphism w-compactness appropriately, the tableau algorithm from [65]
is not correct for “discrete” versions of w-admissible concrete domains, as illustrated by
Example 1. We conclude that, although a modified version of w-admissibility could in theory
be necessary for decidable reasoning in ALC with concrete domains in the presence of GCls,
showing this might require a non-trivial combination of the methods in [35, 60, 61, 65]. As
a closing remark on w-admissibility, we mention that concept satisfiability w.r.t. GCIs in
ALC with concrete domains is not the only known decision problem whose decidability was
shown under the assumption that a given parameterizing class of structures is closed under
taking amalgams. For instance, an amalgamation-based approach was used in [31] to show
decidability of various decision problems for so-called database-driven systems.

For p-admissibility, we have developed a very useful algebraic tool for showing convexity:
the square embedding property. We have shown that this tool can indeed be used to exhibit
new p-admissible concrete domains, such as countably infinite vector spaces over finite field,
the countable homogeneous partial order, and numerical concrete domains over R and Q
whose relations are defined by linear equations. The usefulness of these numerical concrete
domains for defining concepts should be evident. For the other two we have indicated their
potential usefulness by small examples.

We have also shown that, for finitely bounded structures, convexity is equivalent to p-
admissibility, and that this corresponds to the finite substructures being definable by a
universal Horn sentence. Interestingly, this provides us with infinitely many examples of
countable p-admissible concrete domains, which all yield a different extension of £L£: the
Henson digraphs. From a theoretical point of view, this is quite a feat, given that before

7 though EHD is not used in the proofs in [60, 61].
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only two p-admissible concrete domains were known. It is less clear whether these concrete
domains are useful for defining concepts.

Finitely bounded structures also provide us with examples of structures ® that can be
used both in the context of ££ and ALC, in the sense that subsumption is tractable in
EL[D]and decidable in ALC(D). Finally, we have shown that, when embedding p-admissible
concrete domains into £ L, the restriction to paths of length one in concrete domain restrictions
(indicated by the square brackets) is needed since there is a p-admissible concrete domain ©
such that subsumption in ££(®) is undecidable.
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Appendix
A Proof of Corollary 1

In the proof of Proposition 2, we use concepts of the form 3f, gf.Ru 5(x1, x2) where
X + MZX + © is an arbitrary affine transformation from Q2 to Q2. We show that every
such concept can be expressed as a conjunction of concepts built using only those affine
transformations x — Mx + v where M € {—1,0, l}2X2 and v € {—1,0, 1}2. This gives
us a conservative extension of the concept and the TBox used in the proof of Proposition 2.
Thus the statement then follows from Proposition 2.

Note that we can clearly express 3 f, gf. Ry 5(x1, x2) as

Ef, f/'RM,()(xl’ x2) M Hf/, f//'REz,I_)(xls xz) M Hf”, gf.(xl = xz)

where E» is the 2 x 2 unit matrix and f’, f” are fresh features. Thus, we only really need
to express concepts of the form 3 f, g.Rg, 3(x1, x2) and 3 f, 8-Ry 5(x1, x2) where M, v are
elements of our selected finite set of matrices and vectors.

Consider an arbitrary matrix M = (m;_;); jer2) where, w.lLo.g., m; ; = p; j/q; j for an
integer p;, ; and a positive integer g; ;. Then (x, y) € Ry, 5 iff

qi2pi 1 X1+ gi1pi2X[2] = gi 19 2ylil fori € {1,2}. ()

We claim that, for every n € Z, there exists a concept constructed using our selected set
of matrices and vectors that expresses the concept 3f, g.R, 0.0(x1, X2) where the affine
transformation x — A, ox multiplies the first component by n and the second component
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0
Apo = (8 0).

W.lo.g.,n > 1, the case n < 0 is similar and the case n € {0, 1} is trivial. For every i € [n],
we introduce a fresh feature f;. Then 37, g.R, | 5(x1, x2) can be expressed by

by 0, i.e.,

Cl¥ =31, iRy, 51, x2) N3f1, fo.Ry 50x1, 22N
N 3fu-1s o Ry, 50, x2) N3 S0, 8- Ry, 5(x1, x2)

00 11 . 10
A1=<10>, A,‘=(01> forze{Z,...,n}, An+1—<00>.

To see this, note that A1 - -- A; = A,,0. We assume that the features f1, ..., f, are unique

where

for C;, / ’Og , i.e., they do not appear in any other concept description.

Analogously, there exists a concept C constructed using our selected set of matrices and
vectors which expresses 3 f, g.R Ao 0(x1 x2) where the affine transformation x +— Ag ,x
multiplies the first component by 0 and the second component by n. Again, we assume that
each feature in C;) . g beside f and g does not appear in any other concept description.

Now, guided by (T) we can express the original concept 31, g. Ry, 5(x1, x2) by

fifin fifiz g.81 hi, fi1 h1 fi2 ~
qu,ZPI,l;Ol_lCO»(Il,IPlZ qu 1q120|—|C HC I_lElhl’gl'RB’l,O(xl’ x2)

|_|Cff21

fifr2 8,82 h2 Sfa1 h2 fa2
o ncC, necy nCy

0,g2.1p2,2 0,92,142.2 M3ha, 82.Rp, 5(x1, x2)

IOI_IC

where f1 1, f1.2, f2.1, 2.2, &1, &2, 1, hy are fresh features and

11 00
n=(00) 2= (1)

Now consider an arbitrary tuple v where, w.l.o.g., v[i] = p;/g; for an integer p; and a
positive integer ¢;. We have that (x, y) € Rg, ; iff

qixlil+ p; = g;ylilfori € {1,2}. (%)

For every n € Z, we can show similarly as above that there exist concepts D,{ ’Of and D({ hf
constructed using our selected finite set of matrices and vectors which express the con-
cepts Af, f.Rn (n,0)(x1,x2) and 3f, f.Rn (0.n) (X1, X2), Tespectively, where N is the 2 x 2
matrix of zeros. One can then express the concept 3 f, g.RE, (X1, x2) using the concepts
Cf0 , C({ DI{Of, and D(}; / while being guided by (). O

n

A Proof of Proposition 6

Let t be the signature of ®. Recall that, since ® is finitely bounded, by Lemma 3, there
exists a universal first-order sentence @ (®) that defines Age(®), i.e., a finite T-structure can
be embedded into ® iff it satisfies @ (®). Since the structure 2 is fixed, this sentence is also
fixed, which means that it has constant size. We refer to @ (D) simply by @.
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For (1), we show that CSP(®) is definable in existential second-order logic. Then (1)
follows from Fagin’s theorem [42] (see also [54]). Let Ry, ..., R; be an enumeration of the
symbols in t. For every i € [¢], we introduce a second-order variable S; of the same arity
as R;. Moreover, we introduce a binary second-order variable ~. We obtain &’ from & by
replacing each atomic formula of the form R; (x) fori € [£] in @ by S;(X), and each atomic
formula of the form (x = y) in @ by (x ~ y). For every i € [{], let n; be the arity of R;,
and let ®; be the sentence

®; = /\ VX1, e Xy YoSi (X1, s X ) A (X5~ Y) = Si(X1, ey X1, Yo Xjp s oen s X))
J€lnil

Now consider the existential second-order sentence ¥ defined as follows:

v :=3~.3S1o~'EISg.Vx,y,z.(x~y/\y~z:x~z)A(x~y=>y~x)/\(x~x)
AP AN O AVER(X) = Si(F).
ie[e]

Let 2 be an instance of CSP(®). Suppose that 2 satisfies ¥. By the definition of ¥, ~ is
an equivalence relation on A and also compatible with the relations S; fori € [€] (due to the
sentences ©;). This means that the structure 2(/~ on the equivalence classes of ~ and with
the relations

R,-QL/N = {(lx1l~, oo [xn; 1) € (A/)" | (X1, ooy X)) € Si}
is well defined. By the definition of ¥, we have that 2l — 2/~ and that A/~ = &.
Since @ defines Age(®), we conclude that 2t — 9. On the other hand, if there exists
a homomorphism 2: 2 — D, then §; := {x € A" | h(x) € R?} for i € [¢] and
~:={(x,y) € A% | h(x) = h(y)} witness that ¥ is satisfied in 2.

For (2), we describe a PSPACE algorithm that decides the first-order theory of ©. It is
based on the algorithm from the proof of Proposition 3.5 in [59], for which an exponential
time complexity is shown in [59]. Note that, since D is possibly infinite, we cannot simply
substitute all elements from D, one after the other, for a particular quantified variable.

Now, let by, by, ... be a countably infinite sequence of pairwise distinct symbols. For
a first-order t-formula ¢ with free variables xy, ..., x,, let [¢]o denote the set of all t-
structures B with domain {b, ..., b, } for which there exists an embedding 4 : 6 — D such
that ® = ¢ (h(by), ..., h(by)). Every such embedding /: B < D represents an injective8
substitution of elements from D for the variables xy, ..., x,,. We claim that [¢]p does not
depend on the choice of 4. To see this, consider two embeddings %y, hy : B — © such that
D E¢hi(by),..., h1(by)). Foreachi € [2], let ©B; be the substructure of © on the image
of {b1, ..., by} under h;. Consider the map f: By — B, thatsends, forevery j € [n], k(b))
to 712 (D). Using the definition of an embedding, it is easy to show that f is an isomorphism
from B to B,. By assumption, D is homogeneous. By homogeneity of ®, there exists an
automorphism f of D that extends f. Since ¢ is a first-order formula, ¢ is preserved by
f, which shows that ® = ¢ (ha(b1), ..., ha(by,)) holds as well.

We show by induction on the structure of a first-order r-formula ¢ with free variables
X1, ..., X, that, given a t-structure 8 with domain {b, ..., b,}, it can be decided in PSPACE
in the size of ¢ whether B € [¢]o. This proves the PSPACE upper bound claimed in the
proposition because, if ¢ has no free variables, then testing whether the empty structure is
contained in [¢]p is equivalent to answering © = ¢.

8 Inour proof we will ensure that injective substitutions are sufficient, by appropriately identifying variables.
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In the base case, we consider an atomic formula ¢(xi, ..., x,). Suppose that B is
a t-structure with domain {by,...,b,}. If B E —¢(by, ..., b,), then clearly B ¢
[¢(x1, ..., x»)]D because embeddings are injective and preserve complements of relations. If
B = ¢by,...,by), then® = ¢ (h(by), ..., h(by)) holds for every embedding i: B — D.
Consequently, testing whether B € [¢ (x, ..., x,)]o boils down to testing whether B — D,
which is the case iff ‘B = @. This can be done in PSPACE in the size of ¢ because it is well
known that first-order model checking with a fixed first-order sentence can be done in poly-
nomial time in the size of the input structure.

For the induction step, we can restrict the attention to formulas ¢ of the form | Vv v,
—¢ and 3Jx.v. Suppose that ¢ is of the form | V ¥ such that the induction hypothesis
applies to both vy and . For each i € [2], let 2B; be the substructure of 5 on those b s that
correspond to the free variables of ¥/;. We claim that B € [¢]o iff B = @ and B; € [V;lo
fori = 1 ori = 2. The forward direction is trivial. Now suppose that B; € [{;]p fori =1
ori =2 and B = @. Then we have an embedding #; : B; — © witnessing B; € [Vilo,
and we also have an embedding /: B — ©. But then B; € [;]p is also witnessed by £|p,
because [ ] does not depend on the choice of the embedding. This shows that 8 € [¢]op
is witnessed by h. Testing whether B; € [{;]p can be done in PSPACE in the size of y;
by the induction hypothesis, and we have already seen in the base case that testing whether
B = @ can be done in polynomial time in the size of ¢.

Suppose that ¢ is of the form —1 such that the induction hypothesis applies to . We
claim that B € [¢]p iff B ¢ [{]o. Suppose that there exists h: B — D such that
D &= =Y (h(by), ..., h(b,)). Then there cannot be an embedding #': B < D such that
D = Yy (W' (by), ..., h'(by)) because containment in [¢]p does not depend on the choice of
the embedding. The backward direction is analogous. By the induction hypothesis, testing
whether ‘B € [{]p can be done in PSPACE in the size of i and thus also in the size of ¢.

Now suppose that ¢ is of the form ¢ (x1, ..., x,) = Ix,41.¥ (x1, ..., Xn41) such that the
induction hypothesis applies to ¢. We claim that ‘B € [¢]o iff one of the following is true

1. there exists an extension B’ of B by b, 11 such that B’ € [V 1o,
2. there exists i € [n] such that B € [{;]p holds for the formula v/; obtained from i by
replacing each occurrence of the variable x,1 in ¥ by x;.

First, suppose that B € [¢]p is witnessed by some embedding % : B < 9. Then there
exists d € D such that ® = ¢ (h(by), ..., h(by), d). If d is distinct from h(by), ..., h(by,),
then we are in the case (1) and consider the extension 4’ of & that maps b, 4| to d. We define
B’ as the -structure with the domain {b1, ..., b,+1} such that, for every k-ary symbol R € T,
we have 1 € R® iff h'(r) € R®. Clearly h’ is an embedding that witnesses B’ € [¢]s.
Otherwise we have d = h(b;) for some i € [n]. We consider the formula /; from (2). Then
h is an embedding that witnesses 8 € [y;]o. Since the backward direction is obvious, it
remains to show that the tests required by (1) and (2) can be performed in PSPACE.

In case (1), we generate all extensions B’ of B by b, and test, using the induction
hypothesis, whether B’ € [ ] for some such extension. This can clearly be done in PSPACE
because 7 is fixed and finite, and for each extension B’ we can test B’ € [y ]o within PSPACE
due to the induction hypothesis. In case (2) we guess any such i € [n] and test, using the
induction hypothesis, whether B € [;]o. This completes the proof. O
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A Proof of Proposition 9

For brevity we write 2l for the disjoint union Uf‘z 1 ;. Let o be the signature 7 extended by
a unary symbol D; for each i € [k]. Consider the o-expansion 2" of 2 where D?l/ = A; for
eachi € [k].

To show that 21’ is homogeneous, we first observe the following. If, for each i € [k], f; is
an automorphism of &;, then the map f: A — A satisfying f|4, := f; is an automorphism
of 2’ since it additionally preserves D?[/ foreachi € [k]. Conversely, if f is an automorphism
of 2, then f|y4, is an automorphism of &; for each i € [k]. Now, let f: B — B, be an
isomorphism between two finite substructures of 2. Since f preserves D;B ' = B; N A; for
each i € [k], the restrictions f|g,na, are isomorphisms, and thus extend to automorphism
of ; for each i € [k] by homogeneity of the structures 2l;. By the observation about
automorphisms above, this implies that f itself extends to an automorphism of 2'.

Next we show that 2’ is finitely bounded. For each i € [k], let

DU =Vxip,s e, iy, Gi (X, e x,-ni) with ¢; quantifier-free

be a universal sentence that defines Age(2l;). Now consider the universal sentence

o) ::(Vx. A\ ~(Dix) A D; (x))) A (Vx. \k/ D; (x))

i#j i=1

nj
AN /\vxil, eee ,xl'”[ .( /\ Dl(xll) = ¢i('xi15 eeey 'xin,’))'
i=1

j=l1

Let B be a finite o -structure that satisfies @ (2(’). By the first line in @ ('), the unary relations
Di% are pairwise disjoint and exhaustive. By the second line in @ (2!'), the -reduct of the
substructure of 8 on D;B is contained in Age(2(;) foreachi € [k]. Hence B is a substructure
of 2. Conversely, every finite substructure of 21" must satisfy @ (2(’). This completes the proof
as 2 is the t-reduct of A'. O

A Proof of Proposition 10

By proj; we denote the usual projection function proj; : Ay x - - - x Ay — A; with proj; (7) =
t1i]. We use the abbreviation 2 := 24; X - - - X 20; and denote the signature of 2 by t.

For (1),let f: ®B1 — B, be an isomorphism between two finite substructures ‘B and ‘B,
of . For every i € [k], we define ‘B ; and ‘B ; as the substructure of 2(; on proj; (B1) and
proj; (B2), respectively. Forevery i € [k]and R € 1; U {=;}, the relation R®1 s preserved by
f. Consider the map f;: B1; — By, given by f; (t1i]) := f(D)[i]. It is well defined, since
for any 7, 7 € By with 7[i] = 7'[i], we have (7, 7') € =; 2!, which implies f(7)li1 = f({@)Iil,
because =; is preserved by f. Since f is an isomorphism, the previous argument can also be
read backwards, which implies that f; is injective. It follows directly from the definition of
fi that it is surjective, because f is surjective. Finally, f; is an isomorphism since, for every
R € 1; U {=;}, we have
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(1li1, ..., ixlil) € RTVff (@y1il, ..., ilil) € R® N proj; (By)*
iff (71, ..., %) € R* N B
iff (7,...,7r) € RD!
iff (f(@), ..., f(k)) € R®?
iff (f(f1), ..., (@) € R* N B%
it (f (@), ..., f@)Ii1) € R® N proj; (By)X
iff  (f (DL ..., f@L]) € RP2
it (fi (7L, ..., fi(@lil) € RB2i.

Each f; extends to an automorphism fl/ of 2l;, because 2l; is homogeneous. Let f’ be the
map from A to A defined by f'(7) := f{(t[1]), ..., f{(t[k]). Clearly, f is bijective because
each f/ is bijective. Let R € 7 be an arbitrary and n its arity. Then R € 7; U {=;} for some
i € [k]. Since f/ is an automorphism of 2;, for every (71, ..., #,) € A", we have

(f1, ... Iy) € R* iff (1[0, ..., Ipli]) € R™
i (f @), ..., £l (@liD) € R
iff (f' GO, ... f/(ELi]) € RY
iff (f'(f1), ..., f'(in) € R™.

Hence, f” is an automorphism of 2L. It follows from the definition of f; that f’ extends f.

For (2) let, for each i € [k], @ (2;) be the universal sentence that defines Age(2(;). Let
@’(21;) be the sentence obtained from @ (2;) by replacing each occurrence of an atomic
formula of the form (x = y) in ®'(2;) by (x =; y). Furthermore, for each symbol R € T;
of arity n other than =;, let {/g be the sentence

n
VX15 ey Xns Y15 ~--,Yn-(/\xj =i )’j) = (R(xlv s Xn) & R(y1, -~~yyn))-
j=1

Now consider the T-sentence

k
@ (2A) :=/\<Vx,y,z.(x=ix)A(x=iy<:>y=ix)A(x=,-y/\y=iz:>x=iz))
i=1

k k
Avera=ne Ae=v)aNo@r A v

i=1 i=1 Ret\{=1,...=¢}

We claim that @ (2() defines Age ().

For the forward direction, let B be a finite substructure of 2 := 2 X - - - X ;. By the

definition of X, the relation :?[

is an equivalence relation. Since ‘B is a substructure of 2, =i% is an equivalence relation
for each i € [k] as well. Thus 9B satisfies the first line in @ (). For all 7,5 € B we
have r = 5 iff :l.% s for each i € [k], because :l.% stands for the equality in the i-th
coordinate. Thus 8 satisfies the first clause on the second line in @ (). Let B; be the
substructure of 2(; on proj; (B). As a substructure of 2(;, B; satisfies @ (2(;) because @ (2;)
defines Age(2;). But then 9B; must also satisfy @’ (2;) because =; interprets as the binary
equality predicate in B;. We claim that 9B satisfies @’ (2l;) foreachi € [k]. Let?y, ..., I, € B
be any tuples to be substituted for the universally quantified variables xi, ..., x,, of ®@'(2l;).

i

is an equivalence relation for each i € [k], because =;
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Let ¢/ (xy, ..., X;») be a formula in DNF equivalent to the quantifier-free part of @'(2l;). Let
Y¥* be a disjunct in ¥’ such that B; = ¥*(71lil, ..., Im[il). Recall that @’(2;) contains no
atomic formulas of the form (x = y) Also recall that, for every n-ary symbol R € t;, we
have (7, , ..., ;,) € R® iff (,1i, ..., 7;,[i]) € R by the definition of X. This means that,
if ¥* contains an atomic formula of the form R(x;,, ..., x;,) for some n-ary symbol R € 1;,
then we have B; = R, [il, ..., 4, [i]) iff B = R(%,, ..., f;,). Likewise we have B; =
=R(#,lil, ..., £, li]) iff B = =R, ..., §;,). Since B |= ¥*(71, ..., hy) and 11, ..., f, were
chosen arbitrarily, we conclude that B = @’ (2;). It follows directly from the argumentation
above and the fact that =; interprets as the binary equality predicate in 2; that ‘B |= ¥z for
eachR e 7\ {=1, ..., =¢}. Hence B = @ ().

For the backward direction, let 8 be a finite T-structure that satisfies @ (2(). Then =:.B is
an equivalence relation for each i € [k]. For eachi € [k], consider the following z;-structure
B;. The domain of B; consists of the equivalence classes w.r.t. :;’B . Moreover, for each n-ary
symbol R € t;, we have (X1, ..., X;,) € RBi iff (by, ..., by) € R® for some representatives
b; € X;.Therelations of 98; are well defined because B |= g foreach R € t\{=y, ..., =¢}.
We claim that B; = @'(2;) foreachi € [k]. Recall that @’ (2l;) contains no atomic formulas
of the form (x = y).Let X1, ..., X,, be any equivalence classes of elements from B w.r.t. =l.%
to be substituted for the universally quantified variables x1, ..., x,;, of @' (2(;), and by, ..., by,
any representatives of these equivalence classes, respectively. Let ¥/ (x1, ..., x,,,) be a formula
in DNF equivalent to the quantifier-free part of @'(2l;). Since B = &’(2;), we have that
B = ¥/ (b1, ..., by). Let ¥* be a disjunct in ¥’ such that B = ¥* (b1, ..., by).

If * contains an atomic formula of the form (x;, =; x;,), then wehave B = (b;, =; b;,).
This means that b;, and b;, are contained in the same equivalence class w.r.t. :;’B, that is,
Xi, = Xi,. We conclude that B; |= (X;, =; X,) because the symbol =; interprets in B; as
the binary equality predicate. If 1/* contains the negation of an atomic formula of the form
(xi; =i xi,), then we have ‘B = —(b;, =; b;,) which means that ;, and b;, are contained in
distinct equivalence classes. Then clearly B; = —(X;, =; X;,).

If y* contains an atomic formula of the form R(x;, ..., x;, ) for some n-ary symbol
R € 1; \ {=;}, then we have B = R(b;,, ..., b;,). It follows directly from the definition of
B; that B; = R(X;,, ..., X;,). If ¥* contains the negation of an atomic formula of the form
R(x;,, ..., x;,) for some n-ary symbol R € t;, then we have B = —=R(b;,, ..., b;,). Suppose
that (X;,, ..., X;,) € R®i_Then (blf] Y, b;n) € R for some representatives bl/'/z of X;,. But
then (b;,, ..., b;,) € R® because B = YR, a contradiction. Thus B; = —R(X;, ..., X;,).

Since B; &= ¥'(X1, ..., X;») and X1, ..., X,, were chosen arbitrarily, we conclude that
B; = &'(2;). Since the symbol =; interprets in B; as the binary equality predicate, we
have that B; = @ (2;). Thus B; € Age(;) for each i € [k]. For each i € [k], let ¢; be
an embedding from B; into ;. For each b € B and each i € [k], we denote by [b]=,-% the

equivalence class of b € B w.r.t. :;B. Now consider the map

e:B—> Al x - x Ap, br> (el([b]:l%), ...,ek([b]:k%)).

Note that e is well defined because we map from elements to their equivalence classes and
not the other way around. By the first clause on the second line in @ (), for all x, y € B,
we have x = y iff x :i% y for each i € [k]. This means that e is injective. For every i € [k]
and every n-ary symbol R € 1;, we have
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(b1 e ba) € R® A ((b1]_w, ... [bal_») € R®
it (er([b1]_m). ... ei([bal_m)) € R™
iff (e(Plil, ..., e(bp)lil) € R™
iff (e(b1), ..., e(bn)) € R*.

Hence e is an embedding from 5 into 2. This completes the proof. O

References

Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832-843 (1983)

. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages. In: Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence (IJICAI’91), pp. 452—457 (1991).
Long version available as [6]

3. Baader, F.,, Hanschke, P.: A scheme for integrating concrete domains into concept languages. Tech. Rep.
RR-91-10, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz (DFKI) (1991). https://lat.inf.tu-
dresden.de/research/reports/1991/DFKI-RR-91-10.pdf

4. Baader, F.,, Hanschke, P.: Extensions of concept languages for a mechanical engineering application.
In: Proceedings of the 16th German Workshop on Artificial Intelligence (GWAI’92), Lecture Notes in
Computer Science, vol. 671, pp. 132—143. Springer, Berlin (1992)

5. Baader, F., Rydval, J.: An algebraic view on p-admissible concrete domains for lightweight description
logics (extended version). LTCS-Report 20-10, Chair of Automata Theory, Institute of Theoretical Com-
puter Science, Technische Universitidt Dresden, Dresden, Germany (2020). https://tu-dresden.de/inf/lat/
reports#BaRy-LTCS-20-10

6. Baader, F., Rydval, J.: Description logics with concrete domains and general concept inclusions revisited.
In: Stokkermans, V.S., Peltier, N. (eds.) Proceedings of the International Joint Conference on Automated
Reasoning (IICAR 2020), Lecture Notes in Computer Science, vol. 12166, pp. 413—431. Springer, New
York (2020)

7. Baader, F.,, Rydval, J.: Using model-theory to find w-admissible concrete domains. LTCS-Report 20-01,
Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universitidt Dresden,
Dresden, Germany (2020). https://tu-dresden.de/inf/1at/reports#BaRy-LTCS-20-01

8. Baader, F,, Rydval, J.: An algebraic view on p-admissible concrete domains for lightweight description
logics. In: Faber, W., Friedrich, D., Gebser, M. (eds.) 17th European Conference on Logics in Artificial
Intelligence (JELIA 2021), Lecture Notes in Artificial Intelligence, vol. 12678, pp. 194-209. Springer,
New York (2021)

9. Baader, F., Biirckert, H.J., Hollunder, B., Nutt, W., Siekmann, J.H.: Concept logics. In: Lloyd, J.W. (ed.)
Computational Logics, Symposium Proceedings, pp. 177-201. Springer, Berlin (1990)

10. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

11. Baader, FE, Brandt, S., Lutz, C.: Pushing the ££ envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364-369.
Morgan Kaufmann, Los Altos, Edinburgh (UK) (2005)

12. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University
Press, Cambridge (2017)

13. Barto, L., Kompatscher, M., Ol§dk, M., Van Pham, T., Pinsker, M.: Equations in oligomorphic clones and
the Constraint Satisfaction Problem for w-categorical structures. J. Math. Logic 19(2) (2019)

14. Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems. Theor. Comput. Sci. 391(1-
2), 3-13 (2008)

15. Bodirsky, M.: The core of a countably categorical structure. In: Diekert, V., Durand, B. (eds.) Proceedings
of the 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS 2005), Lecture
Notes in Computer Science, vol. 3404, pp. 110-120. Springer, Berlin (2005)

16. Bodirsky, M.: Complexity classification in infinite-domain constraint satisfaction (2012). Mémoire
d’Habilitation a Diriger des Recherches, Université Diderot—Paris 7. https://arxiv.org/pdf/1201.0856.
pdf

17. Bodirsky, M., Dalmau, V.: Datalog and constraint satisfaction with infinite templates. J. Comput. Syst.

Sci. 79(1), 79-100 (2013)

o —

@ Springer


https://lat.inf.tu-dresden.de/research/reports/1991/DFKI-RR-91-10.pdf
https://lat.inf.tu-dresden.de/research/reports/1991/DFKI-RR-91-10.pdf
https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-10
https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-10
https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-01
https://arxiv.org/pdf/1201.0856.pdf
https://arxiv.org/pdf/1201.0856.pdf

Using Model Theory to Find Decidable... 405

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Bodirsky, M., Kdra, J.: The complexity of temporal constraint satisfaction problems. J. ACM (JACM)
57(2), 1-41 (2010)

Bodirsky, M., Mottet, A.: Reducts of finitely bounded homogeneous structures, and lifting tractability
from finite-domain constraint satisfaction. In: Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2016), pp. 623-632. ACM/IEEE (2016). https://arxiv.org/pdf/1601.
04520v1.pdf

Bodirsky, M., Nesetfil, J.: Constraint satisfaction with countable homogeneous templates. J. Log. Comput.
16(3), 359-373 (2006)

Bodirsky, M., Wolfl, S.: RCC8 is polynomial on networks of bounded treewidth. In: Walsh, T. (ed.)
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IICAI 2011), pp. 756—
761. IICAI/AAAI (2011)

Bodirsky, M., Chen, H., Kéra, J., von Oertzen, T.: Maximal infinite-valued constraint languages. Theor.
Comput. Sci. 410(18), 1684-1693 (2009)

Bodirsky, M., Hils, M., Martin, B.: On the scope of the universal-algebraic approach to constraint sat-
isfaction. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS
2010), pp. 90-99. IEEE (2010)

Bodirsky, M., Chen, H., Feder, T.: On the complexity of MMSNP. SIAM J. Discret. Math. 26(1), 404414
(2012)

Bodirsky, M., Jonsson, P., Pham, T.V.: The complexity of phylogeny constraint satisfaction problems.
ACM Trans. Comput. Logic (TOCL) 18(3), 1-42 (2017)

Bodirsky, M., Madelaine, F., Mottet, A.: A universal-algebraic proof of the complexity dichotomy for
monotone monadic SNP. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS 2018), pp. 105-114 (2018)

Bodirsky, M., Martin, B., Mottet, A.: Discrete temporal constraint satisfaction problems. J. ACM (JACM)
65(2), 1-41 (2018)

Bodirsky, M., Martin, B., Pinsker, M., Pongracz, A.: Constraint satisfaction problems for reducts of
homogeneous graphs. SIAM J. Comput. 48(4), 1224-1264 (2019)

Bodirsky, M., Knéuer, S., Starke, F.: ASNP: A tame fragment of existential second-order logic. In:
Anselmo, M., Vedova, G.D., Manea, F., Pauly, A. (eds.) Beyond the Horizon of Computability—
Proceedings of the 16th Conference on Computability in Europe (CiE 2020), Lecture Notes in Computer
Science, vol. 12098, pp. 149-162. Springer (2020)

Bodirsky, M., Rydval, J., Schrottenloher, A.: Universal Horn sentences and the joint embedding property
(2021). https://arxiv.org/pdf/2104.11123.pdf

Bojanczyk, M., Segoufin, L., Toruriczyk, S.: Verification of database-driven systems via amalgamation.
In: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 63-74 (2013)

Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms,
and—what else? In: de Mdntaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI 2004), pp. 298-302 (2004)

Braunfeld, S.: The undecidability of joint embedding and joint homomorphism for hereditary graph
classes. Discret. Math. Theor. Comput. Sci. 21(2) (2019)

Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: Umans, C. (ed.) 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS 2017), pp. 319-330. IEEE Computer Society
(2017)

Carapelle, C., Turhan, A.: Description logics reasoning w.r.t. general tboxes is decidable for concrete
domains with the EHD-property. In: Kaminka, G.A., Fox, M., Bouquet, P., Hiillermeier, E., Dignum,
V., Dignum, F., van Harmelen, F. (eds.) Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI 2016), Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1440-1448.
10S Press (2016)

Carapelle, C., Feng, S., Kartzow, A., Lohrey, M.: Satisfiability of ECTL* with local tree constraints.
Theory Comput. Syst. 61(2), 689-720 (2017)

Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In:
Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 9th Annual ACM Symposium
on Theory of Computing (STOC 1977), pp. 77-90. ACM (1977)

Cherlin, G., Shelah, S., Shi, N.: Universal graphs with forbidden subgraphs and algebraic closure. Adv.
Appl. Math. 22(4), 454-491 (1999)

Dabrowski, K.K., Jonsson, P., Ordyniak, S., Osipov, G.: Solving infinite-domain CSPs using the patchwork
property. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI-21). AAAI
Press/The MIT Press (2021)

@ Springer


https://arxiv.org/pdf/1601.04520v1.pdf
https://arxiv.org/pdf/1601.04520v1.pdf
https://arxiv.org/pdf/2104.11123.pdf

406 F.Baader, J. Rydval

40. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf. Comput. 205(3), 380-415
(2007)

41. Dowling, W.E,, Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional horn
formulae. J. Log. Program. 1(3), 267-284 (1984)

42. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R. (ed.) SIAM-
AMS Proceedings on Complexity of Computation, vol. 7, pp. 43-73 (1974)

43. Feder, T., Vardi, M.Y.: Homomorphism closed vs. existential positive. In: Proceedings of the 18th Annual
IEEE Symposium of Logic in Computer Science (LICS 2003), pp. 311-320. IEEE (2003)

44. Gillibert, P., Jonusas, J., Kompatscher, M., Mottet, A., Pinsker, M.: Hrushovski’s encoding and w-
categorical CSP monsters. In: 47th International Colloquium on Automata, Languages, and Programming
(ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik (2020)

45. Haarslev, V., Moller, R., Wessel, M.: The description logic ALCN'H R+ extended with concrete domains:
a practically motivated approach. In: Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR 2001), Lecture Notes in Artificial Intelligence, vol. 2083, pp. 29—44. Springer, Berlin
(2001)

46. Henson, C.W.: A family of countable homogeneous graphs. Pac. J. Math. 38(1), 69-83 (1971)

47. Henson, C.W.: Countable homogeneous relational structures and Rg-categorical theories. J. Symbol.
Logic 37(3), 494-500 (1972)

48. Hirsch, R.: Relation algebras of intervals. Artif. Intell. 83(2), 267-295 (1996)

49. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)

50. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

51. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological and biomedical
research: a functional perspective. Brief. Bioinform. 16(6), 1069-1080 (2015)

52. Horrocks, 1., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web
ontology language. J. Web Semant. 1(1), 7-26 (2003)

53. Hubicka, J., NeSetiil, J.: Homomorphism and embedding universal structures for restricted classes. J.
Multiple-Valued Logic Soft Comput. 27, 229-253 (2016)

54. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science, Springer, Berlin (1999)

55. Kegel, O.H., Wehrfritz, B.A.: Locally Finite Groups. Elsevier, New York (2000)

56. Klin, B., Lasota, S., Ochremiak, J., Torunczyk, S.: Homomorphism problems for first-order definable
structures. In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

57. Knight, J., Lachlan, A.: Shrinking, stretching and codes for homogeneous structures. In: Classification
Theory (Chicago, IL, 1985), Lecture Notes in Mathematics, 1292, pp. 192-228. Springer, Berlin (1987)

58. Kompatscher, M., Van Pham, T.: A complexity dichotomy for poset constraint satisfaction. In: Vollmer,
H., Vallée, B. (eds.) 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), vol. 66,
pp. 47:1-47:12. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2017)

59. Kopcezynski, E., Torusiczyk, S.: LOIS: an application of SMT solvers. In: King, T., Piskac, R. (eds.) Proc.
of the 14th International Workshop on Satisfiability Modulo Theories (SMT 2016), CEUR Workshop
Procveedings, vol. 1617, pp. 51-60. ceur-ws.org (2016)

60. Labai, N.: Automata-based reasoning for decidable logics with data values. Dissertation, Technische
Universitdt Wien (2021). https://doi.org/10.34726/hss.2021.94060

61. Labai, N., Ortiz, M., Simkus, M.: An ExpTime upper bound for ALC with integers. In: Calvanese,
D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2020), pp. 614-623 (2020)

62. Lutz, C.: Interval-based temporal reasoning with general TBoxes. In: Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 89-94 (2001)

63. Lutz, C.: NExpTime-complete description logics with concrete domains. In: Goré, R., Leitsch, , A., Nip-
kow, T. (eds.) Proceedings of the International Joint Conference on Automated Reasoning (IJCAR 2001),
no. 2083 in Lecture Notes in Artificial Intelligence, pp. 45-60. Springer, Siena (2001)

64. Lutz, C.: Adding numbers to the SHZQ description logic—First results. In: Proceedings of the 8th
International Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp.
191-202. Morgan Kaufmann, Los Altos (2002)

65. Lutz, C., Mili¢i¢, M.: A tableau algorithm for description logics with concrete domains and general
TBoxes. J. Automated Reason. 38(1-3), 227-259 (2007)

66. Macpherson, D.: A survey of homogeneous structures. Discret. Math. 311(15), 1599-1634 (2011)

67. Mottet, A., Bodirsky, M.: A dichotomy for first-order reducts of unary structures. Logical Methods in
Computer Science 14 (2018)

68. Pach, P.P.,, Pinsker, M., Pluhdr, G., Pongricz, A., Szabd, C.: Reducts of the random partial order. Adv.
Math. 267, 94-120 (2014)

@ Springer


https://doi.org/10.34726/hss.2021.94060

Using Model Theory to Find Decidable... 407

69.

70.

71.

72.

Pan, J.Z., Horrocks, I.: Reasoning in the SHOQ(D;,) description logic. In: Horrocks, I., Tessaris, S.
(eds.) Proceedings of the 2002 Description Logic Workshop (DL 2002), CEUR Workshop Proceedings,
vol. 53. CEUR-WS.org (2002)

Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of
the 3rd International Conference on the Principles of Knowledge Representation and Reasoning (KR’92),
pp. 165-176. Morgan Kaufmann, Los Altos (1992)

Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of the
12th International Joint Conference on Artificial Intelligence (IJCAT’91), pp. 466471 (1991)

Zhuk, D.: A proof of CSP dichotomy conjecture. In: C. Umans (ed.) 58th IEEE Annual Symposium on
Foundations of Computer Science (FOCS 2017), pp. 331-342. IEEE Computer Society (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Using Model Theory to Find Decidable and Tractable Description Logics with Concrete Domains
	Abstract
	1 Introduction
	2 Preliminaries
	3 Description Logics with Concrete Domains
	3.1 Basic Definitions and Undecidability Results
	3.2 Decidable and Tractable DLs with Concrete Domains
	3.2.1 ω-Admissible Concrete Domains
	3.2.2 p-Admissible Concrete Domains
	3.2.3 ω-Admissibility Versus p-Admissibility


	4 A Model-Theoretic Analysis of ω-Admissibility
	4.1 Homomorphism ω-Compactness via ω-Categoricity
	4.2 Patchworks via Homogeneity and the Amalgamation Property
	4.3 JDJEPD for ω-Categorical Structures
	4.4 Finitely Bounded Structures have a Decidable CSP
	4.5 Finitely Bounded Homogeneous Structures Yield ω-Admissible Concrete Domains
	4.6 Homogeneous Cores with Decidable CSP Yield ω-Admissible Concrete Domains
	4.7 Coverage of the Developed Sufficient Conditions
	4.8 Closure Properties of Finitely Bounded Homogeneous Structures

	5 A Model-Theoretic Analysis of p-Admissibility
	5.1 Convexity via Square Embeddings
	5.2 Convex ω-Categorical Structures
	5.3 Convex Numerical Structures
	5.4 Convex Structures with Forbidden Substructures
	5.5 Convex Structures with Forbidden Homomorphic Images
	5.6 (Non-)closure Properties of Finitely Bounded Convex Structures

	6 Toward User-Definable Concrete Domains
	7 Conclusion
	Acknowledgements
	Appendix
	A Proof of Corollary 1
	A Proof of Proposition 6
	A Proof of Proposition 9
	A Proof of Proposition 10

	References




