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Abstract
Integration, just as much as differentiation, is a fundamental calculus tool that is widely used
in many scientific domains. Formalizing the mathematical concept of integration and the
associated results in a formal proof assistant helps in providing the highest confidence on the
correctness of numerical programs involving the use of integration, directly or indirectly. By
its capability to extend the (Riemann) integral to a wide class of irregular functions, and to
functions defined on more general spaces than the real line, the Lebesgue integral is perfectly
suited for use in mathematical fields such as probability theory, numerical mathematics, and
real analysis. In this article, we present theCoq formalization of σ -algebras,measures, simple
functions, and integration of nonnegative measurable functions, up to the full formal proofs
of the Beppo Levi (monotone convergence) theorem and Fatou’s lemma. More than a plain
formalization of the known literature, we present several design choices made to balance the
harmony between mathematical readability and usability of Coq theorems. These results are
a first milestone toward the formalization of L p spaces such as Banach spaces.

Keywords Formal proof · Coq · Measure theory · Lebesgue integration

1 Introduction

This paper is dedicated to the Coq [25] formalization of Lebesgue integration theory. Among
many applications in mathematics, we focus on the objective of building Sobolev spaces
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[2] that are used in numerous fields: in functional analysis [18,62,69], and in statistical and
probabilistic mathematics [6,29,35,38,67], to name just a few.

Our main application is on the numerical resolution of partial differential equations
(PDEs), using the Finite Element Method (FEM). Our final and long-term goal is to for-
mally prove the correctness of the FEM and of parts of a library implementing it. The FEM
can be applied to compute numerical approximations to solutions of many problems arising
in physics, mechanics, and biology, for just a few examples. The success of the FEM is in
large part due to its sound mathematical foundation, see, for instance, [22,33,61,70] among
the extensive literature. Prior to this work, we established in [15] a formalization of the proof
of the Lax–Milgram theorem, that is a relatively simple way of proving the existence and
uniqueness of the PDE solution and their FEM approximations for a wide range of problems.
The Lax–Milgram theorem is set on a general Hilbert space (a complete vector space with
an inner product). In the context of PDEs, the next stage is then the application of the Lax–
Milgram theorem: typically, for the Poisson equation, one takes as Hilbert space a subspace
of the H1 Sobolev space, see, for instance, [33, Sect. 3.2]. The L p Lebesgue space is the
space of functions whose absolute value to the power p ≥ 1 is integrable, and H1 is defined
as functions in L2 having a weak derivative also in L2. We recall that L p is a Banach space
(a complete normed vector space), and L2 and H1 are Hilbert spaces. This paper deals with
the construction of the Lebesgue integral for nonnegative measurable functions, a first step
toward the formalization of L p , H1, and other Sobolev spaces. Future work will include the
formal definition and the proof that they are indeed complete normed vector spaces.

As far as the integral is concerned, several options are available, e.g., see [19]. The choice
must be driven by the properties required for our future developments. As mentioned before,
we are more interested in the completeness of the considered functional spaces (like L p),
than in the ability to integrate the most exotic irregular functions. On the one hand, the
Riemann integral is thus clearly not satisfactory as it is not compatible with limit: the limit of
Riemann-integrable functions is not necessarily a Riemann-integrable function. On the other
hand, the gauge (Henstock–Kurzweil) integral [4,42,47] has attractive properties, e.g., it is
often considered as the easiest powerful integral to teach. Unfortunately, its main drawback
is that defining a complete normed vector space of HK-integrable functions is not as obvious
as with the Lebesgue L p spaces [39,57]. This led us to choose the Lebesgue integral, which
has the additional desirable property of being very general: it is neither limited to functions
defined on Euclidean spaces, nor to the Lebesgue measure on R

n .
There are also several ways to build the integral of real-valued, or complex-valued, func-

tions for the Lebesguemeasure. First, the Daniell approach [26,36] allows the extension of an
elementary integral defined for elementary functions to a larger class of functions by means
of continuity and linearity. When applied to the Riemann integral for continuous real-valued
functions with compact support, it yields an integral equivalent to the Lebesgue integral for
the Lebesgue measure. Second, a not so different alternate path consists in the completion
of the normed vector space of continuous functions with compact support, and the extension
of the Riemann integral which is uniformly continuous [16,28]. Third, and the option we
chose to follow, is a modern form of the original works of Lebesgue [48]. The Riemann
integral is based on subdivisions of the domain of the function to integrate. In contrast, the
Lebesgue approach focuses on the codomain. For each preimage, we need to provide its
measure, whatever its irregularity.

This article covers the main concepts of measure theory such as the definitions of σ -
algebra, measurability of functions, measure, and simple functions. Then, the integral is built
following the Lebesgue scheme: first for nonnegative simple functions, then extended to all
nonnegative measurable functions by taking the supremum. The definition of the integral of
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a function with arbitrary sign can be made by the difference, when possible, of the integrals
of the positive and negative parts of the function; this is out of the scope of this paper and will
be tackled in future work. The objective of this paper is to formally prove the main results on
nonnegative measurable functions: the Beppo Levi (monotone convergence) theorem, and
Fatou’s lemma.

From a mathematical point of view, given a measure space defined by a set X , a σ -
algebra Σ , and a measure μ, the two statements can be expressed in a mathematical setting
as follows.

Textbook Theorem 1 (Beppo Levi, monotone convergence).
Let ( fn)n∈N be a sequence of nonnegative measurable functions that is pointwise non-
decreasing. Then, the pointwise limit limn→∞ fn is nonnegative and measurable, and
we have in R+ ∫

lim
n→∞ fn dμ = lim

n→∞

∫
fn dμ. (1)

Textbook Theorem 2 (Fatou’s lemma).
Let ( fn)n∈N be a sequence of nonnegative measurable functions. Then, the pointwise
limit lim infn→∞ fn is nonnegative and measurable, and we have in R+∫

lim inf
n→∞ fn dμ � lim inf

n→∞

∫
fn dμ. (2)

These are the cornerstones of our intended future work, such as the building of the L p

Lebesgue spaces as Banach spaces, the proofs of Lebesgue’s dominated convergence theorem
and of the Tonelli–Fubini theorems, and also the construction of the Lebesgue measure (for
instance, through Carathéodory’s extension theorem [20,29]). As a consequence, we do not
yet need technical results on subset systems such as the Dynkin π–λ theorem [29], or the
monotone class theorem [24], that are popular tools for the extension of some property to the
whole σ -algebra (e.g., the uniqueness of a measure).

Interactive theorem proving is more and more being used and adapted for formalizing
real and numerical analysis. Real-life applications, such as hybrid systems or cyber-physical
systems, are critical and rely on advanced analysis results. Until now, only the Riemann
integral was available in Coq. As useful as the Riemann integral is, the Lebesgue integral is
necessary for the numerical analysis we are examining. In addition, even though the Lebesgue
integral exists in other theorem provers (see Sect. 10), we have decided to formalize it in
Coq. Indeed, it is crucial for our future work to be able to merge results both from numerical
analysis and from computer arithmetic (to bound rounding errors for instance). For that,
we plan to rely on the Flocq library, which does not have a comparable equivalent in other
theorem provers.

We use the Coquelicot library [13], a modernization of the real standard library of Coq,
including a formalization of R, described in more detail in Sect. 2.1. This library provides
classical real numbers which correspond to the real analysis we deal with. For this reason, we
have also decided, as basic choices of our formalization, to use classical logic and to rely on
the following axioms: strong excluded middle and functional extensionality. These choices
are described in Sect. 2.2 and discussed in Sect. 9.

The mathematical definitions and proofs were mainly taken from textbooks [37,40,51],
detailed and compiled in a research report [23] in order to ease the formalization in Coq. The
Coq code is available at
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http://lipn.univ-paris13.fr/MILC/CoqLIntp/index.php,
or in the public repository

https://lipn.univ-paris13.fr/coq-num-analysis/tree/LInt_p.1.0/Lebesgue,
where the tag LInt_p.1.0 corresponds to the code of this article.

The paper is organized as follows. Section 2 presents the main basic Coq choices on which
our formalization is based. The sequel is our own contribution. Section 3 details auxiliary
results on reals. The concept of measurability is discussed in Sect. 4, and that of measure in
Sect. 5. Section 6 is devoted to simple functions, and Sect. 7 to integration of nonnegative
functions and themain theorems. The case of theDiracmeasure is studied in Sect. 8. Concerns
about proof engineering are discussed in Sect. 9. Section 10 presents some state of the art of
the formalization of the integral. Section 11 concludes and gives some perspectives.

2 Coquelicot Library and Other Basic Coq Choices

We first briefly review the few proof packages used in this work, and some technical and
logical choices we made. These are discussed further in Sects. 9.1 and 9.2.

2.1 The Coquelicot Library andR

The Coquelicot library is a conservative extension of the Coq real standard library (Reals),
with total functions for limit, derivative, and Riemann integral [13,49,50]. The features used
here are the generic topology, the hierarchy of algebraic structures based on canonical struc-
tures, and the extended real numbers.
Generic topology. The Coquelicot topology is defined using filters [17,21]. Intuitively, fil-
ters can be seen as sets of neighborhoods. For instance, the filter eventually on type nat

corresponds to the most intuitive neighborhoods of ∞.

Definition eventually : (nat → Prop) → Prop := fun P ⇒ ∃ N, ∀ n, N � n → P n.

It is used to define the convergence of sequences.

Algebraic hierarchy.Coquelicot also defines an algebraic hierarchy based on canonical struc-
tures. A useful level here is UniformSpace, that formalizes the mathematical concept of
uniform space [17,68]: it is a generalization of metric space with an abstraction of balls. In
a uniform space E, the property open : (E → Prop) → Prop characterizes its open subsets.

Extended real numbers. Coquelicot provides a definition of the extended real numbers R =
R ∪ {−∞,∞}. The formal definition contains three constructors: Finite for real numbers,
p_infty for∞ and m_infty for−∞. Conversely, the function real returns the real number
for finite numbers and 0 for ±∞.

Inductive Rbar :=
| Finite : R → Rbar
| p_infty : Rbar
| m_infty : Rbar.

Definition real : Rbar → R :=
fun x ⇒ match x with
| Finite r ⇒ r
| _ ⇒ 0
end.
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In addition to this definition, coercions from R to Rbar and vice versa, an order
with Rbar_lt and Rbar_le, total operations such as Rbar_opp, Rbar_plus, Rbar_minus,
Rbar_inv, Rbar_mult, Rbar_min and Rbar_abs with their properties are provided.

In particular, this means that addition on R is a total function [13] that always returns a
value. For instance, ∞ + (−∞) (i.e., ∞ − ∞) is 0, making some statements unintuitive,
see also Sect. 4.5. However, the case of multiplication is not an issue as the convention
0 × ±∞ = ±∞ × 0 = 0 is widely adopted for measure theory and Lebesgue integration,
because it yields more compact statements.

2.2 Axioms

Real analysis, as most mathematics, uses classical logic, and measure theory and Lebesgue
integration are no exception. For this reason, we chose to conduct this formalization in a
full-flavored classical framework.

We did not add our own axioms. In addition to the axioms defining R, we require some
classical properties from the standard library, listed here with the theorems we use.

Require Import ClassicalDescription.
Require Import PropExtensionality.
Require Import FunctionalExtensionality.
Require Import ClassicalChoice.

Check excluded_middle_informative.
: ∀ (P : Prop), {P} + {¬ P}

Check propositional_extensionality.
: ∀ (P Q : Prop), P ↔ Q → P = Q

Check functional_extensionality.
: ∀ {A B : Type} (f g : A → B), (∀ x, f x = g x) → f = g

Check choice.
: ∀ (A B : Type) (R : A → B → Prop),

(∀ x, ∃ y, R x y) → ∃ (f : A → B), ∀ x, R x (f x)

We rely on excluded_middle_informativemany times, including for instance the def-
inition of the characteristic function in Sect. 4.1. We have a brief use of dependent types in
Sect. 6.2 related to simple functions, and we then rely on propositional_extensionality

and functional_extensionality. Last, we rely on choice at a single point in the proof
of Lemma negligible_union_countable, and this is explained in Sect. 5.3.

3 Auxiliary Results About the Reals

From now on, we present our own contributions. A global dependency graph of our Coq files
and results is given in Fig. 1 page 38, with links back to the appropriate sections.

The theorems described in this section are not dedicated to the Lebesgue integral and
could be part of a support library. In Sect. 3.1, we show the expression of open subsets of R

and R
2 with a countable topological basis. Section 3.2 deals with sums on R. Section 3.3

presents some additional results about limits.
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3.1 Second-Countability of Real Numbers

In Sect. 4.4, we need to characterize and decompose the open subsets ofR.More precisely, we
build generators of the σ -algebras ofR andR

2 that contain the open subsets. Such generators
need to be of countable size to comply with the properties of σ -algebras. Thus, the concepts
of topological basis and second-countability appeared necessary.

Recall that a topological basis allows to express any open subset of a topological space as
the union of a subfamily of the basis. A topological space is called second-countable when
it admits a countable topological basis. Euclidean spaces R

n are second-countable. Indeed,
the open boxes with rational boundaries form such a countable topological basis. In the case
of R, this is expressed as follows. For any open subset A of R, there exists a sequence of
pairs of rationals (qn1 , qn2 )n∈N such that A is the union of the corresponding open intervals,
A = ⋃

n∈N(qn1 , qn2 ).
The mathematical proof is well known, but the road to formalization was tedious.

Countability.We define bijections from N to N
2, Z, Q and Q

2. It is not enough to prove they
have the same size, we need “perfect” bijections, meaning inverse functions from one type
to the other, handling correctly special cases such as zero.
Connected components. Given a subset A of R and a real x , we define the bounds of the
largest possible interval included in A and containing x (a.k.a. the connected component of x
in A).

Definition bottom_interv : (R → Prop) → R → Rbar :=
fun A x ⇒ Glb_Rbar (fun z ⇒ ∀ y, z < y < x → A y).

Definition top_interv : (R → Prop) → R → Rbar :=
fun A x ⇒ Lub_Rbar (fun z ⇒ ∀ y, x < y < z → A y).

The functions Glb_Rbar and Lub_Rbar are total functions from the Coquelicot library that
compute the greatest lower bound and the least upper bound of a subset of reals.

We prove many properties such as belonging to the closure of its own connected
component, bottom_interv A x � x � top_interv A x, and belonging to the interior of
its own connected component for points of open subsets, that is open A → A x →
bottom_interv A x < x < top_interv A x.

Using density of rational numbers. Given an open subset A of R, we prove through density
of Q in R that A contains at most a countable number of connected components.

Lemma open_R_charac_Q :
∀ (A : R → Prop), open A →

∀ x, A x ↔ (∃ q : Q, let y := Q2R q in
A y ∧ Rbar_lt (bottom_interv A y) x ∧ Rbar_lt x (top_interv A y)).

Countability appears in this lemma through the rationality of y (otherwise, the theoremwould
be trivial by using x).

In addition, using again the density of Q in R, we can take rational bounds for these
intervals (by taking countable unions of intervals with rational bounds to recover each initial
interval with real bounds). And then, using countability of Q

2, we have a bijection from the
integers to the rational bounds of the open intervals, and these serve as topological basis.

Definition topo_basis_R : nat → R → Prop :=
fun n x ⇒ Q2R (fst (bij_NQ2 n)) < x < Q2R (snd (bij_NQ2 n)).

Second-countability. Given an open subset A of R, we want to exhibit the qni ’s such that
A = ⋃

n∈N(qn1 , qn2 ). This means we need to choose among the possible intervals of the
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topological basis the useful ones by relying on a property P . Then, A is equivalent to the
countable union of the topo_basis_R n such that P n holds.

Lemma R_second_countable :
∀ (A : R → Prop), open A →

∃ (P : nat → Prop), (∀ x, A x ↔ ∃ n, P n ∧ topo_basis_R n x).

The same property holds for R
2. We can define a topological basis for R

2 (from the tensor
product of the topological basis of R) and prove

Lemma R2_second_countable :
∀ (A : R ∗ R → Prop), open A →

∃ (P : nat → Prop), (∀ x, A x ↔ ∃ n, P n ∧ topo_basis_R2 n x).

3.2 About Sums of Extended Real Numbers

Integrals of simple functions are defined in Sect. 6.2 as sums of extended reals. Even if we
only sum nonnegative extended reals, we decided to use only Rbar as discussed in Sect. 9.1.
But as in mathematics, the addition on Rbar as defined by Coquelicot is not associative.
Indeed,∞+ (∞−∞) = ∞, while (∞+∞)−∞ = 0. Our design choice therefore implies
that big operators [5] cannot be used.

Let us begin with sums of a finite number of values. The definition goes as expected, with
an equivalent alternative using fold_right for lists instead of functions.

Fixpoint sum_Rbar n (f : nat → Rbar) : Rbar :=
match n with
| 0 ⇒ f 0%nat
| S n1 ⇒ Rbar_plus (f (S n1)) (sum_Rbar n1 f)
end.

Definition sum_Rbar_l : list Rbar → Rbar := fun l ⇒ fold_right Rbar_plus 0 l.

In addition, we found it useful to define an “applied” sum that takes a function f and a
list � and returns the sum of the images Σi∈� f (i).

Definition sum_Rbar_map : ∀ {E : Type}, list E → (E → Rbar) → Rbar :=
fun E l f ⇒ sum_Rbar_l (map f l).

The curly brackets around E mean that this argument is implicit and need not be specified,
as Coq can guess it from the type of the list l.

This definition allows us to use extensionality either on the list l, on the function f,
or on the application map f l, which turned out to be more practical than what this obvious
definition seems. Examples of use are the following lemmas (that do not need nonnegativity).
The first one mixes two applications.

Lemma sum_Rbar_map_map :
∀ {E F : Type} (f : E → F) (g : F → Rbar) (l : list E),
sum_Rbar_map (map f l) g = sum_Rbar_map l (fun x ⇒ g (f x)).

The second one focuses on the statement Σi∈�1 f (i) = Σi∈�2 f (i). Such result is obvious
when �1 = �2, but it is also possible to prove it when the lists are identical except for items i
of the lists such that f (i) = 0, as these do not impact the final sums. Indeed, the sums may
be the same even if the two lists are different (and of different lengths for instance). The
function select is defined later in Sect. 6.1. It has type (E → Prop) → list E → list E and
selects the elements of a list that have a given property, without changing otherwise the order
in the lists.
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Lemma sum_Rbar_map_ext_l :
∀ {E : Type} (l1 l2 : list E) (f : E → Rbar),
select (fun x ⇒ (f x 
= 0)) l1 = select (fun x ⇒ f x 
= 0) l2 →
sum_Rbar_map l1 f = sum_Rbar_map l2 f.

When values are nonnegative, associativity is back and we have the expected theorems
on sums.

Lemma sum_Rbar_end :
∀ f n, (∀ i, (i � S n)%nat → Rbar_le 0 (f i)) →
(sum_Rbar (S n) f = Rbar_plus (f 0%nat) (sum_Rbar n (fun i ⇒ f (S i)))).

Lemma sum_Rbar_l_concat :
∀ (l1 l2 : list Rbar), non_neg_l l1 → non_neg_l l2 →
sum_Rbar_l (l1 ++ l2) = Rbar_plus (sum_Rbar_l l1) (sum_Rbar_l l2).

For the sake of brevity, we have defined the properties non_neg and non_neg_l for non-
negative functions and lists.

Themost interesting theorem about sums of lists is the ability to swap the order of a double
summation, ∑

i1∈�1

∑
i2∈�2

f (i1, i2) =
∑
i2∈�2

∑
i1∈�1

f (i1, i2).

Lemma sum_Rbar_map_switch :
∀ {E : Type} (f : E → E → Rbar) l1 l2,
(∀ x y, In x l1 → In y l2 → Rbar_le 0 (f x y)) →
sum_Rbar_map l1 (fun x ⇒ sum_Rbar_map l2 (fun y ⇒ f x y)) =
sum_Rbar_map l2 (fun y ⇒ sum_Rbar_map l1 (fun x ⇒ f x y)).

3.3 About Limits

We also need some additional results on limits and suprema.
First of all, the sums defined in Sect. 3.2 have a finite number of terms. But the main

theorems to come rely on infinite sums (i.e., series). The most common definition is the limit
of the finite partial sums, i.e., Lim_seq in Coquelicot [13]. Nevertheless, by virtue of the
least-upper-bound property in R and R, when a sequence is increasing (which happens when
adding only nonnegative values), the supremum is also the limit, and we may equivalently
use Sup_seq instead. This has proved more convenient and more suited to our needs. So
theorems of Sect. 7 such as the Beppo Levi theorem rely on Sup_seq.

Next, we are interested in the limit inferior of sequences in R. But, Coquelicot only
provides LimInf_seq of type (nat → R) → Rbar, and nothing for nat → Rbar sequences.
Therefore, we defined a minor variant of the desired type and proved a few lemmas by
directly copying their proofs from those for LimInf_seq in Coquelicot.

Definition LimInf_seq’ : (nat → Rbar) → Rbar :=
fun u ⇒ Sup_seq (fun m ⇒ Inf_seq (fun n ⇒ u (n + m)%nat)).
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4 Measurability

We present now the formalization of σ -algebras, which are defined as an inductive type.
They characterizemeasurable subsets, and particular attention is paid to R, R and R

2, where
the open subsets generate the Borel measurable subsets.

The issue of subsets is briefly addressed in Sect. 4.1. Section 4.2 is devoted to the mea-
surability of subsets, and Sect. 4.3 to Cartesian products. The Borel subsets of R and R are
detailed in Sect. 4.4. And Sect. 4.5 deals with the measurability of functions.

4.1 Subsets and Characteristic Functions

We consider a generic set E defined in Coq as E : Type. Usually, subsets of E are defined
in Coq as having type E → Prop, or E → bool. We choose Prop, and this is discussed in
Sect. 9.2. Then, the power set of E has type (E → Prop) → Prop.

Given a subset A, we define its characteristic function (or indicator function)1A that maps
elements of A to 1, and others to 0.

Context {E : Type}.

Definition charac : (E → Prop) → E → R :=
fun A x ⇒ match (excluded_middle_informative (A x)) with
| left _ ⇒ 1
| right _ ⇒ 0
end.

Indeed, it is very convenient for direct use in arithmetic expressions without exhibiting the
membership conditional in a dependent type or an assumption. It is used a lot in the context
of simple functions in Sect. 6.

The characteristic function is also convenient to simulate the restriction of a numerical
function to a subset, for instance, in Sect. 4.5. More precisely, the mathematical function f|A
could be formalized either as a record with a dependent type or as a total function. We have
explored the first way which became impractical as proofs creep into our statements and
prevent some rewritings. The total function is then f × 1A, which is the correct value when
needed and 0 elsewhere. This is perfectly suited to our context, as integrating zero has no
impact.

4.2 Measurability of Subsets

The design choice for themeasurability of subsets, i.e., the definition of σ -algebra, is a central
issue for this paper. Even though several equivalent definitions are possible, the use of an
inductive type has proved successful, with several proofs done by induction.

Among several possible informal definitions [23, Section 8.6], aσ -algebra is a subset of the
power set that contains the empty set and is closed under complement and countable unions.
In fact, a σ -algebra can be really huge and it is very convenient to represent it with a smaller
collection G of so-called generators, and to consider the smallest σ -algebra containing G.
This corresponds to the informal concept of generated σ -algebra. Indeed, in many situations,
it is sufficient to establish a property on G to have it on the whole σ -algebra generated by G.

While this may suggest the use of a record, we rely on an inductive type. More pre-
cisely, we “start” with a collection of generators genE : (E → Prop) → Prop. Then, a subset
is measurable if it is either a generator, empty, the complement of a measurable subset, or
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the countable union of measurable subsets. This design choice is discussed in Sect. 9.3. Note
that the issue of generators is at the center of Sect. 4.3 for Cartesian products and discussed
in Sect. 4.4 for the Borel subsets of real numbers.

Variable genE : (E → Prop) → Prop.

Inductive measurable : (E → Prop) → Prop :=
| measurable_gen : ∀ A, genE A → measurable A
| measurable_empty : measurable (fun _ ⇒ False)
| measurable_compl : ∀ A, measurable (fun x ⇒ ¬ A x) → measurable A
| measurable_union_countable :

∀ (A : nat → E → Prop), (∀ n, measurable (A n)) → measurable (fun x ⇒ ∃ n, A n x).

From this definition, we then prove various lemmas, relying on our classical setting, such
as measurability of the full set, and of countable intersections.

Lemma measurable_inter_countable :
∀ (A : nat → E → Prop), (∀ n, measurable (A n)) → measurable (fun x ⇒ ∀ n, A n x).

A mathematically unexpected, but quite useful theorem is the following.

Lemma measurable_Prop : ∀ P, measurable (fun _ ⇒ P).

Constant properties (that do not depend on a variable), be they true or false, are measurable
as both True (the full set) and False (the empty set) are measurable. When decomposing a
subset to prove its measurability, this comes in handy.

In many situations, several collections of generators are possible, and switching between
them may be convenient for the proof at hand. In fact, if G1 is included in the σ -algebra
generated by G2, and vice versa, then both generated σ -algebras are the same. This yields
the following extensionality result.

Lemma measurable_gen_ext :
∀ genE1 genE2,
(∀ A, genE1 A → measurable genE2 A) → (∀ A, genE2 A → measurable genE1 A) →
(∀ A, measurable genE1 A ↔ measurable genE2 A).

We now define what is a σ -algebra, but this definition is hardly used later on as we rely
mostly on the previous inductive. A σ -algebra is formally defined as a subset of the power
set that is equal to the σ -algebra induced by itself as generator.

Definition is_sigma_algebra: ((E → Prop) → Prop) → Prop :=
fun calS ⇒ calS = measurable calS.

We have the equivalence with one of the commonly used mathematical definitions: S is a
σ -algebra when it contains the empty set and is closed under complement and countable
unions.

Lemma is_sigma_algebra_correct :
∀ calS, is_sigma_algebra calS ↔
(calS (fun _ ⇒ False) ∧
(∀ A, calS (fun x ⇒ ¬ A x) → calS A) ∧
(∀ (A : nat → E → Prop), (∀ n, calS (A n)) → calS (fun x ⇒ ∃ n, A n x))).

We can of course prove that the basic σ -algebras are indeed compliant with our definition, be
it the discrete σ -algebra (the whole power set), or the trivial σ -algebra (reduced to {∅, E}).
Lemma is_sigma_algebra_discrete : is_sigma_algebra (fun _ ⇒ True).
Lemma is_sigma_algebra_trivial : is_sigma_algebra (fun A ⇒ (∀ x, ¬ A x) ∨ (∀ x, A x)).
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An immediate consequence of the extensionality result about generators is the idem-
potence of σ -algebra generation. Indeed, the σ -algebra generated by a given generated
σ -algebra is the very same σ -algebra. This may be expressed in Coq as
is_sigma_algebra (measurable genE), showing that our definition is indeed a σ -algebra
in the mathematical sense. In addition, the definition by induction gives us for free that our
definition represents the smallest generated σ -algebra.

To sumup, in our development, themeasurability of subsets ofE : Type is built by induction
from a generator genE : (E → Prop) → Prop, providing a σ -algebra.

4.3 Cartesian Product andMeasurability

Althoughwe do not deal with the Tonelli–Fubini theorems in this paper, the Cartesian product
is used in Sect. 4.5 to establish measurability of the addition and multiplication of two
measurable numerical functions.

Given two measurable spaces, i.e., two sets E and F and their associated generators GE

and GF , it is natural to ask the question of measurability on the Cartesian product E × F ; but
with which σ -algebra? Among other possibilities, the tensor product of the two σ -algebras is
of paramount interest, since it makes both canonical projections (the maps ((xE , xF ) �→ xE )

and ((xE , xF ) �→ xF )) measurable. It is the σ -algebra generated by the Cartesian products
of measurable subsets of E and F .

Unfortunately, on thematter of generator, simply taking theCartesian products of elements
of GE and GF is not correct: in this case, for instance, one cannot prove the measurability
of AE × F , for AE ∈ GE . We need to add the full sets to the initial generator, using the
following definition.

Definition gen2 : (E ∗ F → Prop) → Prop :=
fun A ⇒ ∃ AE AF, (genE AE ∨ AE = fun _ ⇒ True) ∧ (genF AF ∨ AF = fun _ ⇒ True) ∧
(∀ X, A X ↔ AE (fst X) ∧ AF (snd X)).

And we prove this satisfies the desired property.

Lemma gen2_is_product_measurable :
∀ AE AF, measurable genE AE → measurable genF AF →
measurable (gen2 genE genF) (fun X ⇒ AE (fst X) ∧ AF (snd X)).

4.4 Borel Subsets of Real Numbers

We specify now an important class of σ -algebras. When the measurable space has also a
topological space structure (e.g., UniformSpace in Coquelicot, see Sect. 2.1), one usually
selects the Borel σ -algebra. It is generated by all the open subsets, or equivalently by all the
closed subsets, and has the nice property of providing measurability for continuous functions
(see Sect. 4.5).

Lebesgue integration theory is essentially meant for real-valued functions (or with
codomain R, R

n , or C
n). Thus, we need to equip R, and R, with their Borel σ -algebras,

and we have some leeway in choosing the generators, instead of all open subsets. Now, we
present our choice and also prove that other possibilities define the same σ -algebras.
Borel subsets on R. Among many possibilities, we pick the closed intervals (of the form
[a, b], with a � b reals) for R.
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Definition gen_R_cc : (R → Prop) → Prop := fun A ⇒ ∃ a b, (∀ x, A x ↔ a � x � b).

This choice of gen_R_cc is somewhat arbitrary and could be changed. Thus, we introduce an
anonymous gen_R that will be used in the sequel of the paper for the definition of measurable
subsets of R.

Definition gen_R := gen_R_cc.
Definition measurable_R : (R → Prop) → Prop := measurable gen_R.

Other choices for R include the open intervals, or of the form [a, b), or the open left-rays
of the form (−∞, b). We proved, for instance, that measurability on R generated by closed
intervals (our definition) is the same as measurability generated by open intervals.

Definition gen_R_oo : (R → Prop) → Prop := fun A ⇒ ∃ a b, ∀ x, A x ↔ a < x < b.
Lemma measurable_R_equiv_oo : ∀ A, measurable_R A ↔ measurable gen_R_oo A.

The proof is a call to the generator extensionality lemma and then relies on basic properties
of measurability (closedness under complement and countable union), and on the definition
of a nested sequence of closed intervals (from gen_R_cc) whose union is an open interval
(from gen_R_oo), thanks to the Archimedean property ofR. Moreover, from the density ofQ

in R, we may only consider open intervals with rational endpoints.

Definition gen_R_Qoo : (R → Prop) → Prop := fun A ⇒ ∃ a b, ∀ x, A x ↔ Q2R a < x < Q2R b.
Lemma measurable_R_equiv_Qoo : ∀ A, measurable_R A ↔ measurable gen_R_Qoo A.

And finally, more interestingly from a mathematical viewpoint, we prove that our mea-
surable subsets on R (based on closed intervals) are indeed the Borel subsets generated by
open from UniformSpace.

Lemma measurable_R_open : ∀ A, measurable_R A ↔ measurable open A.

The proof is simply an application of lemma R_second_countable from Sect. 3.1 stating
that any open subset is the countable union of open intervals with rational endpoints. This is
needed in Sect. 4.5 where the measurability of the addition of two measurable real-valued
functions relies on the continuity of the addition in R.
Borel subsets on R

2. Combining the generator for a Cartesian product of Sect. 4.3 and the
second-countability of R

2 of Sect. 3.1, we have an equivalence result for the Borel subsets
of R

2.

Definition gen_R2 : (R ∗ R → Prop) → Prop := gen2 gen_R gen_R.
Definition measurable_R2 : (R ∗ R → Prop) → Prop := measurable gen_R2.
Lemma measurable_R2_open : ∀ (A : R ∗ R → Prop), measurable_R2 A ↔ measurable open A.

Here, open stands for the open subsets ofR
2. The canonical structures of Coquelicot deduce

that R
2, as product of two UniformSpaces, is a UniformSpace.

Borel subsets on R. For R, the generators we choose are the closed right-rays (of the form
[a,∞], a ∈ R), but we also define an anonymous gen_Rbar.

Definition gen_Rbar_cu : (Rbar → Prop) → Prop := fun A ⇒ ∃ a, ∀ x, A x ↔ Rbar_le a x.
Definition gen_Rbar := gen_Rbar_cu.
Definition measurable_Rbar : (Rbar → Prop) → Prop := measurable gen_Rbar.

We proved the equivalence with the measurability defined by closed left-rays (of the form
[−∞, a]). Unlike R, the measurability of the addition of two measurable R-valued functions
does not rely on continuity anymore (see Sect. 4.5), and we did not prove that our measurable
subsets on R (based on closed rays) are indeed the Borel subsets generated by the open
subsets of R, as we do not need it for now.

Next, we proved that measurability is compatible with scaling.
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Lemma measurable_scal_Rbar :
∀ A l, measurable_Rbar A → measurable_Rbar (fun x ⇒ A (Rbar_mult l x)).

Note that � may be any extended real, even 0 or ±∞. So one may imagine the numerous
subcases to ensure this lemma.

4.5 Measurability of Functions

From the measurability of subsets defined above, we can now define the measurability of a
function.
General case. Given two sets E and F and associated generators GE and GF , a function
f : E → F is measurable when for every measurable subset A, the subset f −1(A) is
measurable, i.e., {x | f (x) ∈ A} is measurable. Note that f −1 is obviously understood as a
function from the power set of F to the one of E . The measurability is then defined in Coq
as follows.

Definition measurable_fun : (E → F) → Prop :=
fun f ⇒ ∀ A, measurable genF A → measurable genE (fun x ⇒ A (f x)).

We then prove some basic properties. For instance, it is enough to consider the generators
to ensure the measurability of a function.

Lemma measurable_fun_gen :
∀ (f : E → F), measurable_fun f ↔ (∀ A, genF A → measurable genE (fun x ⇒ A (f x))).

When E and F are also UniformSpace (from Coquelicot, see Sect. 2.1), the use of Borel
σ -algebras (generated by the open subsets) ensures that continuous functions are measurable.
As explained in Sect. 2.1, the continuity definition is based on filters.

Lemma measurable_fun_continuous :
∀ f, (∀ x, continuous f x) → measurable_fun open open f.

This is simply due to the fact that the inverse image of an open subset by a continuous function
is an open subset.
Case of numerical functions. Now let us consider the case of numerical functions, with
codomain R, or R. The definition relies on the generators gen_R and gen_Rbar defined
above.

Definition measurable_fun_R : (E → R) → Prop := measurable_fun genE gen_R.
Definition measurable_fun_Rbar : (E → Rbar) → Prop := measurable_fun genE gen_Rbar.

Later on, we have to deal with piecewise-defined functions, and in such a situation, it is
interesting to treat each piece separately, and to use the restriction defined in Sect. 4.1 as the
multiplication by the characteristic function. The following result, simple but useful, states
that given a measurable subset A and a measurable function g, given a function f equal to g
on A, then f × 1A is measurable. Its proof is rather easy given the proved properties of the
measurability of subsets.

Lemma measurable_fun_when_charac :
∀ (f g : E → Rbar) A, measurable genE A →
(∀ x, A x → f x = g x) → measurable_fun_Rbar g →
measurable_fun_Rbar (fun x ⇒ Rbar_mult (f x) (charac A x)).

Themainmathematical result of the rest of this section is the compatibility ofmeasurability
of functions with algebraic operations (addition, scalar multiplication and multiplication);
the most complex one being the addition. From the mathematical standpoint, when extended
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real values are involved, it is assumed that these operations are well defined. In Coq, when
using operations on Rbar from Coquelicot that are total functions, the situation is different,
and somewhat more complex as explained below.
Functions to R. Let us prove first the measurability of the sum of two measurable real-
valued functions.

Lemma measurable_fun_Rplus :
∀ f1 f2, measurable_fun_R f1 → measurable_fun_R f2 →
measurable_fun_R (fun x ⇒ f1 x + f2 x).

The proof uses the compatibility of measurability with the composition of functions: if

both f and g are measurable, then so is f ◦ g. This is applied to f
def.= ((x, y) �→ x + y) of

type R
2 → R and g

def.= (x �→ ( f1(x), f2(x))) of type R → R
2.

Measurability on R
2 relies on gen_R2, the generator of the Borel subsets of R

2 defined in
Sect. 4.4. The proof is based on the generator equivalence between gen_R2 and open, and on
the continuity of addition. This proof was not difficult, but happened to be much higher-level
than expected. The multiplication of real-valued functions is treated exactly in the same way.

Scalar multiplication for measurable functions is deduced from a similar theorem about
scalar multiplication for measurable subsets. In the end, the measurable real-valued functions
form an algebra (over the field R); however, we have not stated it (with canonical structures
for instance) as we have no use for it, but all the needed lemmas are proved.
Functions to R. Let us consider now the addition of measurable extended real-valued func-
tions. The semantics of +

R
is more complex, as it raises the question of what is ∞ − ∞.

We rely on the Coquelicot definition of Rbar_plus. As a total function, it returns 0 in this
special case, see Sect. 2.1. The proof for R was based on the continuity of +; but that cannot

be used here, as +
R
is not continuous on the whole set R

2
(there are problems at infinity,

even for the total function).
In order to stick closely to the mathematics, we rely on a way to express the legality of

addition: the property ex_Rbar_plus that basically prevents adding ∞ and −∞. Thus, we
prove the following theorem.

Lemma measurable_fun_plus :
∀ f1 f2, measurable_fun_Rbar f1 → measurable_fun_Rbar f2 →
(∀ x, ex_Rbar_plus (f1 x) (f2 x)) →
measurable_fun_Rbar (fun x ⇒ Rbar_plus (f1 x) (f2 x)).

The proof is a little tedious as it splits E into all the possible cases using
measurable_fun_when_ charac: when both f1(x) and f2(x) are finite, the previous theo-
rem on R is used. Otherwise, the preimages of ±∞ are measurable since singletons are (as
closed subsets). Thus, we are able to finish all the cases.

Among the peculiarities of Coq compared to mathematics, note that a simpler theorem
can be devised.

Lemma measurable_fun_plus’ :
∀ f1 f2, measurable_fun_Rbar f1 → measurable_fun_Rbar f2 →
measurable_fun_Rbar (fun x ⇒ Rbar_plus (f1 x) (f2 x)).

It states the same conclusion, but without assuming the legality of addition. Indeed, the total
function (x �→ f1(x) +

R
f2(x)), with value 0 when both operands are infinite opposites, is

actually measurable. This subtlety when considering ∞ − ∞ is related to total functions,
a design choice that prevents dependent types but may give strange results when out of the
domain of the function. This strangeness also exists in the Coq standard library of reals [54]
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when considering the division as a total function, making 1/0 a valid real. This hard question
would be solved more naturally in other provers, for instance, in PVS relying on TCCs (Type-
Correctness Conditions) [60]. To conclude, the main problemwith this theorem is that it does
not state what the mathematicians read in it, so we have decided not to use it.

Themultiplication of two functions taking their values inR is treated similarly. However, it
does not raise the same issues as addition, because Coquelicot and mathematics for measure
theory use the same convention ±∞ × 0 = 0, see Sect. 2.1. Multiplication by a scalar is
deduced from a similar theorem on measurable subsets. Note that in contrast to the case
of R, measurable functions with values in Rbar do not form an algebra, as Rbar_plus is not
associative, see Sect. 3.2.

5 Measure

A measurable space with a σ -algebra can be equipped with a measure. A measure is a
mapping frommeasurable subsets to nonnegative extended real values that satisfies additivity
properties. Some well-knownmeasures are the Lebesgue measure, the counting measure, the
Dirac measure (see Sect. 8), and numerous probability measures (that take values in the
interval [0, 1]).

Measure theory is a general abstract setting that applies to any measure, and the axioma-
tization of their fundamental properties is formalized here with an instantiation in Sect. 8.

5.1 Specification and Basic Properties

Given a measurable space defined by a set E : Type and a generator genE of type
(E → Prop) → Prop (see Sect. 4.2), our design choice is to specify measures as a Record

type containing a map meas : (E → Prop) → Rbar together with the fundamental properties
making this map a measure.

Record measure := mk_measure {
meas :> (E → Prop) → Rbar;
meas_False : meas (fun _ ⇒ False) = 0;
meas_ge_0 : ∀ A, Rbar_le 0 (meas A);
meas_sigma_additivity : ∀ A : nat → E → Prop,
(∀ n, measurable genE (A n)) → (∀ n m x, A n x → A m x → n = m) →
meas (fun x ⇒ ∃ n, A n x) = Sup_seq (fun n ⇒ sum_Rbar n (fun m ⇒ meas (A m)))}.

The measure is defined as a record. For the sake of brevity, we want to use it directly as
a function, so we have a coercion (hence the symbol :> ) between the type measure and
(E→ Prop)→ Rbar.

The first two properties meas_False and meas_ge_0 are self-explanatory. Using stan-
dard mathematical notations (� denotes the disjoint union), the σ -additivity of a map μ

means that for any sequence (An)n∈N of pairwise disjoint measurable subsets of E , we have
μ

(⊎
n∈N An

) = ∑
n∈N μ(An). Note that infinite summations in R+ are formalized as the

supremum of partial sums (see Sect. 3.3).
From these fundamental axioms, we prove several other properties of measures among

which monotony (i.e., A ⊆ B ⇒ μ(A) � μ(B), for measurable subsets A and B), and
the weakening of σ -additivity into (finite) additivity, for finite unions of pairwise disjoint
subsets. For instance, the special case of the union of two disjoint subsets simplifies into
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Lemma measure_additivity :
∀ (μ : measure) A B, measurable genE A → measurable genE B →
(∀ x, A x → B x → False) → μ (fun x ⇒ A x ∨ B x) = Rbar_plus (μ A) (μ B).

Another interesting result is the following decomposition of the measure of a measurable
subset A : E → Prop using a countable partition B : nat → (E → Prop) of the set E.

Lemma measure_decomp :
∀ (μ : measure) A (B : nat → E → Prop),
measurable genE A → (∀ n, measurable genE (B n)) →
(∀ x, ∃ n, B n x) → (∀ n p x, B n x → B p x → n = p) →
μA = Sup_seq (fun N ⇒ sum_Rbar N (fun n ⇒ μ (fun x ⇒ A x ∧ B n x))).

The proof derives directly from σ -additivity. Aweakened version for finite partitions is useful
to establish additivity of the integral of nonnegative simple functions in Sect. 6.3.

5.2 Boole’s Inequality and Continuity from Below

The σ -additivity and additivity properties described in Sect. 5.1 deal with the union of
pairwise disjoint measurable subsets. When the union is not disjoint, the equality becomes an
inequality, and the resulting subadditivity property is calledBoole’s inequality. The proof path
we have followed first addresses the finite case, then establishes an important intermediate
result known as continuity from below, and finally deals with the infinite case of σ -sub-
additivity.

Let us first consider finite subadditivity. It states that for any finite sequence (An)n∈[0..N ]
of measurable subsets of E , we have

μ

⎛
⎝ ⋃

n∈[0..N ]
An

⎞
⎠ �

∑
n∈[0..N ]

μ(An).

The proof is performed by induction on the parameter N and uses several previously proved
results, such as additivity andmonotony ofmeasures, and compatibility ofmeasurability with
finite union and intersection. A specialization for the case N = 2, called measure_union,
will be handy in the sequel.

The next step is technical, it allows to transform any countable union of subsets into a
pairwise disjoint union, while keeping equal the partial unions. When the input sequence
(An)n∈N is nondecreasing, the new sequence of pairwise disjoint subsets somehow corre-

sponds to “nested onion peels”: B0
def.= A0, and for all n ∈ N, Bn+1

def.= An+1 \ An . The Coq
formalization is quasiliteral.

Definition layers : (nat → E → Prop) → nat → E → Prop :=
fun A n ⇒ match n with
| O ⇒ A O
| S n ⇒ fun x ⇒ A (S n) x ∧ ¬ A n x
end.

We prove several properties of layers, such as compatibility with partial and countable union
(i.e.,

⊎
n∈I Bn = ⋃

n∈I An with B := layers A, for I = [0..N ] and I = N), and compatibility
with measurability (i.e., the layers of a sequence of measurable subsets are measurable).

Our main application of layers and their properties is the continuity from below of mea-
sures. This results states that for any nondecreasing sequence (An)n∈N of measurable subsets
of E (i.e., An ⊆ An+1), we have
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μ

(⋃
n∈N

An

)
� lim

n→∞ μ(An).

Note that monotony of measures allows to replace the limit by a supremum (see Sect. 3.3).
Again, the Coq formalization is straightforward.

Definition continuous_from_below : ((E → Prop) → Rbar) → Prop :=
fun μ⇒ ∀ A : nat → E → Prop,
(∀ n, measurable genE (A n)) → (∀ n x, A n x → A (S n) x) →
μ (fun x ⇒ ∃ n, A n x) = Sup_seq (fun n ⇒ μ (A n)).

Lemma measure_continuous_from_below : ∀ (μ : measure), continuous_from_below μ.

The proof simply stems from finite additivity and σ -additivity of measures and from careful
use of the properties of layers.

Finally, let us consider σ -subadditivity, i.e., Boole’s inequality. It states that for any
sequence (An)n∈N of measurable subsets of E , we have

μ

(⋃
n∈N

An

)
�

∑
n∈N

μ(An).

It is formalized using Sup_seq.

Lemma measure_Boole_ineq :
∀ (μ : measure) (A : nat → E → Prop), (∀ n, measurable genE (A n)) →
Rbar_le (μ (fun x ⇒ ∃ n, A n x)) (Sup_seq (fun n ⇒ sum_Rbar n (fun m ⇒ μ (A m)))).

The proof is an application of continuity from below to the sequence of partial unions (BN
def.=⋃

n∈[0..N ] An). In Coq, partial unions are defined using existential quantification that makes
the proof process convenient and fluid.

Definition partial_union : (nat → E → Prop) → nat → E → Prop :=
fun A n x ⇒ ∃ m, (m � n)%nat ∧ A m x.

Then, the proof resumes by applying finite subadditivity to the nondecreasing sequence
partial_union A, and using properties of the supremum.

5.3 Negligible Subsets

The concepts of negligible subset and property satisfied almost everywhere are of major
importance in Lebesgue integration theory. They are the key ingredients to obtain the positive
definiteness property (i.e., ‖u‖ = 0 ⇒ u = 0) of the norm in L p Lebesgue spaces, which
will be the subject of future developments.

A subset A of E is said to be negligible for the measure μ, or simply μ-negligible, when
it is included in a measurable subset B of measure 0.

Definition negligible : (E → Prop) → Prop :=
fun A ⇒ ∃ B, (∀ x, A x → B x) ∧ measurable genE B ∧ μ B = 0.

We prove several simple results about negligible subsets. For instance, measurable subsets of
measure 0 are negligible, and subsets of negligible subsets are negligible. The negligibility
of the countable union of negligible subsets is a bit more challenging; it is a consequence of
Boole’s inequality.

Lemma negligible_union_countable :
∀ (A : nat → E → Prop), (∀ n, negligible (A n)) → negligible (fun x ⇒ ∃ n, A n x).
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This lemma is the only onewherewe rely on the choice property, see Sect. 2.2. The reason is as
follows. Given a natural number n, as we have negligible (A n), we deduce the existence of
a B containing An that is both measurable and of measure 0. But the use of Boole’s inequality
and of the measurability of a countable union of sets require a sequence of these B. So we
rely on choice to go from “for each n, we have a B” to a sequence of type nat → E → Prop

with the expected properties.
A property is said to holdμ-almost everywhere (ae) when its complement isμ-negligible.

Definition ae : (E → Prop) → Prop := fun A ⇒ negligible (fun x ⇒ ¬ A x).

We prove some simple results aboutμ-almost everywhere properties. For instance, the count-
able intersection of properties holding μ-almost everywhere holds μ-almost everywhere.
This derives from negligible_union_countable. An important instantiation of ae is the
equality μ-almost everywhere, used in Sect. 7.4.

Definition ae_eq : (E → F) → (E → F) → Prop := fun f g ⇒ ae (fun x ⇒ f x = g x).

6 Simple Functions

Simple functions are real-valued functions that attain only a finite number of values. But,
unlike step functions used forRiemann sums, each valuemay be taken here on a nonconnected
subset.

This is a very simple mathematical definition, but it will require some proof engineering to
have a usable formal definition. Another mathematical equivalent definition is that a simple
function is a finite linear combination of indicator functions, and can be expressed as

f =
∑

y∈ f (E)

y × 1 f −1({y}), (3)

where 1 is the characteristic function (see Sect. 4.1). This definition is impractical in Coq as
it sums over f (E) that may be infinite in general. Only the property of f makes this subset
finite. We choose to have a data structure that allows us to access the possible values, in
order to be able to compute the integral of simple functions, and we choose to have them as a
list. Indeed, the Coq List library is rather comprehensive, even if not perfectly suited for our
use. We also finally choose to have simple functions of type E → R and not E → Rbar; this is
discussed in Sect. 9.4.

We consider an ambient set E now required to be inhabited. The empty case is not of
interest here, and it would mean empty lists that make the following functions fail. Instead
of having additional hypotheses on the lists, it was easier not to consider empty types. Given
a function and a list, the property finite_vals states that the values taken by the function
belong to the list.

Definition finite_vals : (E → R) → list R → Prop := fun f l ⇒ ∀ x, In (f x) l.

Note that this list is far from unique: the elements may be in any order, can be taken several
times, and useless values may be in the list. Hence, the need for a canonical list that is
computed in Sect. 6.1, in order to integrate nonnegative simple functions, as described in
Sect. 6.2. The positive linearity of the integral is shown in Sect. 6.3.
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6.1 Canonical Representation

As explained above, the property finite_vals does not specify a unique list. To enforce
uniqueness, we need a strictly sorted list, with only the useful values.

Definition finite_vals_canonic : (E → R) → list R → Prop :=
fun f l ⇒ (LocallySorted Rlt l) ∧ (∀ y, In y l → ∃ x, f x = y) ∧ (∀ x, In (f x) l).

where LocallySorted P (from the Coq standard library) is the inductive definition of a
sorted list using the P relation. Here, we require the strict order Rlt to prevent duplicates.

The related proofs are then threefold. First, we need to prove that only one list fits the
requirement.

Lemma finite_vals_canonic_unique :
∀ f l1 l2, finite_vals_canonic f l1 → finite_vals_canonic f l2 → l1 = l2.

The proof is not difficult, but slightly tedious. An intermediate lemma states that if two lists
have the same elements (using In) and are both LocallySorted with Rlt, then they are
equal.

Second, to recover the fact that our simple functions are indeed a finite linear combination
of indicator functions, we also prove that finite_vals_canonic f �

implies the same equality as (3), but for y in the list: f = ∑
y∈� y × 1 f −1({y}).

Lemma finite_vals_sum_eq :
∀ (f : E → R) l, finite_vals_canonic f l →

∀ x, f x = sum_Rbar_map l (fun y ⇒ y ∗ (charac (fun z ⇒ f z = y) x)).

Last but not least, we need to be able to build this canonical list using several intermedi-
ate steps.

Fixpoint select {E : Type} (P : E → Prop) (l : list E) : list E :=
match l with
| nil ⇒ nil
| y :: l1 ⇒ match (excluded_middle_informative (P y)) with
| left _ ⇒ y :: select P l1
| right _ ⇒ select P l1
end

end.

Definition RemoveUseless : ∀ {E F : Type}, (E → F) → list F → list F :=
fun E F f l ⇒ select (fun y ⇒ ∃ x, f x = y) l.

Definition canonizer : (E → R) → list R → list R :=
fun f l ⇒ sort Rle (RemoveUseless (nodup Req_EM_T l) f).

Let us explain these functions. The select function takes advantage of the
excluded_middle_informative axiom to select the values of a list having a given prop-
erty. The RemoveUseless function then allows us to select only the useful values of the list
(such that there exists a preimage to it). The nodup function from the Coq standard library
removes duplicates (the decidability of equality on real numbers is given). We redefined the
sort function and call it with the nonstrict order Rle.

The canonizer function is then a successive call to nodup, RemoveUseless and sort. Note
that these operations are actually commuting, thus any ordering would have been correct.
We choose the one that eases the proofs. In particular, sort is the last called function as it
will imply an easy proof that the final list is sorted. The function nodup is called first as few
lemmas are available on it.
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The correctness of this canonizer is then proved.

Lemma finite_vals_canonizer :
∀ f l, finite_vals f l → finite_vals_canonic f (canonizer f l).

For instance, consider the case of the characteristic function of some proper subset A
(distinct from the empty set and from the full set, thus assuming that type E is neither
empty, nor representing a singleton). This function actually takes the values 0 and 1 (see
Sect. 4.1): it is a simple function. Starting with any list of real numbers containing 0 and 1,
e.g., l := [1; 0; 0; 2], we may show the property finite_vals (charac A) l. And thus, from
the previous lemma, we have finite_vals_canonic (charac A) (canonizer (charac A) l),
where the canonized list is simply [0; 1].

6.2 Integration of Nonnegative Simple Functions

Following the definition of simple functions, we retain those for which preimages of single-
tons are measurable and thus admit a measure, possibly infinite. Those measurable simple
functions are collected into the set SF , and the subset of nonnegative ones is denoted SF+.
The needed tools for integrating inSF+ are sumsonR as defined inSect. 3.2, and ameasureμ

as defined in Sect. 5. The integral of f ∈ SF+ is defined by∫
SF+

f dμ
def.=

∑
y∈ f (E)

y × μ
(
f −1({y})) . (4)

We first need to specify simple functions of SF that have measurable preimages.

Definition SF_aux : ((E → Prop) → Prop) → (E → R) → list R → Prop :=
fun genE f lf ⇒ finite_vals_canonic f lf ∧ (∀ y, measurable genE (fun x ⇒ f x = y)).

Definition SF : ((E → Prop) → Prop) → (E → R) → Set :=
fun genE f ⇒ {lf | SF_aux genE f lf}.

Note that the list is in Set as we need to get a hand on it to compute the integral. A weak
existential is not strong enough for our purpose. In Coq, the notation {x | P x} means there
exists x such that P x, but the type is Set. This means it is a strong existential, i.e., it is possible
to pick up the witness x.

Note also that since singletons are Borel subsets of R (as closed subsets), we are able to
prove measurability of functions in SF .

Lemma SF_aux_measurable_fun: ∀ genE f l, SF_aux genE f l → measurable_fun_R f.

Then, the definition of the integral in SF+ is straightforward from a proof of type SF.

Definition af1 : (E → R) → Rbar → Rbar :=
fun f y ⇒ Rbar_mult y (μ (fun x ⇒ Finite (f x) = y))).

Definition LInt_SFp : ∀ genE, ∀ (f : E → R), SF genE f → Rbar :=
fun f Hf ⇒ let lf := proj1_sig Hf in sum_Rbar_map lf (af1 f).

Note the required hypothesis Hf that encompasses both the proof that f is a valid simple
function, and the list witness � on which the definition depends. Then, proj1_sig returns
the first part of this proof, that is the list lf, in order to sum on it. This dependent type is
only inside the library and is not to be used outside: final users will make use only of a
total function for the Lebesgue integral. This limited use of dependent types has not proved
inconvenient.
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We first prove that the value of the integral does not depend on the chosen list/proof (Hf1
and Hf2 in the next lemma).

Lemma LInt_SFp_correct :
∀ f (Hf1 Hf2 : SF genE f), non_neg f → LInt_SFp f Hf1 = LInt_SFp f Hf2.

A first easy example of integration is the relationship between this integral and the char-
acteristic function. The characteristic function has two possible values (0 and 1), so it is a
simple function. When the subset A is measurable, 1A belongs to SF+, and its integral is,
as expected, the measure of A.

Lemma LInt_SFp_charac :
∀ A (HA : measurable genE A), LInt_SFp (charac A) (SF_charac A HA) = μ A.

6.3 Linearity of the Integral of Simple Functions

Then comes a proof that is unexpectedly complex, the additivity of the integral in SF+ :∫
SF+( f + g) dμ = ∫

SF+ f dμ + ∫
SF+ g dμ.

Alternate proofs are available, e.g., see [37,62], but were not considered in this work.
We choose a proof using a change of variable, from the sumof values taken by each function f
and g to the values taken by their sum f +g. Themain difficulty is that the canonical list � f +g

associated with f + g has nothing to do with any kind of “addition” of the lists � f and �g
associated with f and g.

The first stage is a lemma stating that SF is closed under addition.

Lemma SF_plus : ∀ f (Hf : SF genE f) g (Hg : SF genE g), SF genE (fun x ⇒ f x + g x).

For that, we rely on

Definition cartesian_Rplus : list R → list R → list R :=
fun l1 l2 ⇒ flat_map (fun a1 ⇒ (map (fun a2 ⇒ a1 + a2) l2)) l1.

that gathers all possible sums from two lists.When applied to � f and �g , the result may be too
large a list, but no useful value is missing. Thus, we may strip unwanted values by applying
the previously defined canonizer(see Sect. 6.1).

The second stage is a couple of lemmas coming from the fact that the subsets f −1({y}) for
y ∈ f (E) constitute a partition of the domain E of the function f . First, a specialization of
the finite version of the lemma measure_decomp (see Sect. 5.1) for preimages by functions f
and g provides

Lemma SFp_decomp :
∀ f g lf lg y, SF_aux genE f lf → SF_aux genE g lg →

μ(fun x ⇒ f x = y) = sum_Rbar_map lg (fun z ⇒ μ (fun x ⇒ f x = y ∧ g x = z)).

Note that this result is first proved with the assumption that y is actually a value taken by f .
But this premise can be dropped as for all other values of y, the equality to show simplifies
into the trivial 0 = 0.

Then, the result is lifted to the integral level,

∑
y∈ f (E)

y × μ
(
f −1({y})) =

∑
y∈ f (E)

y

⎛
⎝ ∑

z∈g(E)

μ
(
f −1({y}) ∩ g−1({z}))

⎞
⎠ ,

which is formalized as
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Lemma LInt_SFp_decomp :
∀ f g lf lg, SF_aux genE f lf → SF_aux genE g lg →
(* LInt_SFp f H = *) sum_Rbar_map lf (af1 f) = sum_Rbar_map lf
(fun y ⇒ Rbar_mult y (sum_Rbar_map lg (fun z ⇒ μ (fun x ⇒ f x = y ∧ g x = z)))).

The third stage consists in applying the latter lemma to justify the rewritings in the equa-
tions below. First, for both integrals in the sum.

∫
SF+

f dμ +
∫
SF+

g dμ =
∑

y∈ f (E)

y μ
(
f −1({y})) +

∑
z∈g(E)

z μ
(
g−1({z}))

=
∑

y∈ f (E)

∑
z∈g(E)

y μ
(
f −1({y}) ∩ g−1({z}))

+
∑

z∈g(E)

∑
y∈ f (E)

z μ
(
g−1({z}) ∩ f −1({y}))

=
∑

y∈ f (E)

∑
z∈g(E)

(y + z) μ
(
f −1({y}) ∩ g−1({z})) .

And then, for the integral of the sum, where the lemma is applied with f = f +g and g = f .
∫
SF+

( f + g) dμ =
∑

t∈( f +g)(E)

t μ
(
( f + g)−1({t}))

=
∑

t∈( f +g)(E)

t
∑

y∈ f (E)

μ
(
( f + g)−1({t}) ∩ f −1({y}))

=
∑

y∈ f (E)

∑
t∈( f +g)(E)

t μ
(
f −1({y}) ∩ ( f + g)−1({t})) .

Finally, the last step of the additivity proof is to connect both sets of equalities by estab-
lishing the following “horrible” change of variable formula

∑
z∈g(E)

(y + z) μ
(
f −1({y}) ∩ g−1({z}))

=
∑

t∈( f +g)(E)

t μ
(
f −1({y}) ∩ ( f + g)−1({t})) ,

that is formalized as

Lemma sum_Rbar_map_change_of_variable :
∀ f g lf lg y, SF_aux genE f lf → SF_aux genE g lg →
let lfpg := canonizer (fun x ⇒ f x + g x) (cartesian_Rplus lf lg) in
sum_Rbar_map lg (fun z ⇒ Rbar_mult (y + z) (μ (fun x ⇒ f x = y ∧ g x = z))) =
sum_Rbar_map lfpg
(fun t (* = y + z *) ⇒ Rbar_mult t (μ (fun x ⇒ f x = y ∧ f x + g x = t))).

The key ingredient here is that sums may be restricted to only their nonzero terms, which
makes the change of variable z �→ t = y + z (for fixed y) a bijection.

An interesting point is that this lemma is hardly explicit in mathematical textbooks and
we had to puzzle it out to fulfill the proof. We had to write it explicitly as it was a key point
in our design choice for simple functions, see Sect. 9.4.

Ultimately, we end up with similar double summations, and we are able to prove the
additivity of the integral in SF+.
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Lemma LInt_SFp_plus :
∀ f (Hf : SF genE f) g (Hg : SF genE g), non_neg f → non_neg g →
let Hfpg := SF_plus f Hf g Hg in
LInt_SFp (fun x ⇒ f x + g x) Hfpg = Rbar_plus (LInt_SFp f Hf) (LInt_SFp g Hg).

As a break, we establish the compatibility of the integral inSF+ with nonnegative scaling.

Lemma LInt_SFp_scal :
∀ f (Hf : SF genE f) a, non_neg f → 0 � a →
let Haf := SF_scal f Hf in
LInt_SFp (fun x ⇒ a ∗ f x) Haf = Rbar_mult a (LInt_SFp f Hf).

This calls for a proof Haf that a simple function multiplied by a scalar is indeed a simple
function. Then, we only need to require that both the scalar and the function are nonnegative
to ensure that

∫
SF+ a × f dμ = a × ∫

SF+ f dμ. Then, monotony of the integral in SF+ is
a direct consequence of additivity, since the relation g = f + (g − f ) holds in SF+ when
f � g.

7 Integration of Nonnegative Functions

Let us now consider functions of type E → Rbar that may take an infinite number of (possibly
infinite) values. The set of measurable functions to R is denoted by M, and its subset of
nonnegative functions byM+. The key idea for the definition of the integral inM+ is to use
approximations from below by simple functions in SF+, and surprisingly, we benefit from
the use of computer arithmetic.

The integral is presented in Sect. 7.1 together with some preliminary properties. Then,
Sect. 7.2 is devoted to the crucial Beppo Levi (monotone convergence) theorem. Adapted
sequences are defined in Sect. 7.3. Linearity and other properties of the integral are displayed
in Sect. 7.4. Finally, Sect. 7.5 is devoted to Fatou’s lemma, the other major result on the
integral for nonnegative functions.

7.1 Definition and First Properties

We now want to define the Lebesgue integral for nonnegative integrable functions. The
mathematical definition is

∀ f ∈ M+,

∫
M+

f dμ
def.= sup

ψ∈SF+
ψ� f

∫
SF+

ψ dμ

where the supremum is taken for nonnegative measurable simple functions ψ less than or
equal to f pointwise, and where the integral in SF+ is defined in Sect. 6.2.

Keeping on with total functions, we prescribe a value whatever the input function f , with
a Coq definition quite similar to the mathematical one.

Definition LInt_p : (E → Rbar) → Rbar :=
fun f ⇒ Rbar_lub (fun z : Rbar ⇒ ∃ (ψ : E → R) (Hψ : SF genE ψ),
non_neg ψ ∧ (∀ x, Rbar_le (ψ x) (f x)) ∧ LInt_SFp μ ψ Hψ = z).

The supremum is taken on a subset of extended reals z such that there exists a simple function
ψ less than or equal to f having z for integral.
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The first thing to prove is that this newly defined integral is the same as the already-defined
integral when the function is a simple function, i.e.,

∫
M+ f dμ is equal to

∫
SF+ f dμ for

all f in SF+, and in Coq

Lemma LInt_p_SFp_eq :
∀ (f : E → R) (Hf : SF genE f), non_neg f → LInt_p f = LInt_SFp μ f Hf.

Then comes the monotony of the integral.

∀ f , g ∈ M+, f � g �⇒
∫
M+

f dμ �
∫
M+

g dμ.

The Coq translation becomes

Lemma LInt_p_monotone :
∀ (f g : E → Rbar), (∀ x, Rbar_le (f x) (g x)) → Rbar_le (LInt_p f) (LInt_p g).

Indeed, the least upper bound (LUB) in the definition of the total function is enough to ensure
monotony for any functions f and g, not only for the nonnegative and measurable ones as
in the mathematical statement.

Another easy result is about the multiplication by a nonnegative scalar value.

Lemma LInt_p_scal_finite :
∀ (f : E → Rbar) (a : R), 0 � a →
LInt_p (fun x ⇒ Rbar_mult a (f x)) = Rbar_mult a (LInt_p f).

As before, there is no assumption on the fact that f is nonnegative.
The following extensionality result instantiated for restricted functions has proved useful.

It states that when functions are equal on a measurable subset, then the integral of their
restriction to that subset are equal. This is hardly mentioned in mathematics. As before, there
is no requirement on the properties of A, f and g. The total function LInt_p gives something
that is the same in both cases, even for nonmeasurable functions.

Lemma LInt_p_when_charac :
∀ f g (A : E → Prop), (∀ x, A x → f x = g x) →
LInt_p (fun x ⇒ Rbar_mult (f x) (charac A x)) =
LInt_p (fun x ⇒ Rbar_mult (g x) (charac A x)).

7.2 The Beppo Levi Theorem

The Beppo Levi theorem (see Textbook Theorem 1, page 3), also known as the monotone
convergence theorem, is one of the most fundamental results in measure and integration
theories. It states that for any sequence ( fn)n∈N of pointwise nondecreasing and nonnegative
measurable functions (i.e., in M+), the pointwise limit limn→∞ fn (which actually equals
supn∈N fn , see Sect. 3.3) is also inM+. This property is proved using standard properties of
measurable functions such as monotony and is not particularly challenging. The Beppo Levi
theorem also states the following integral-limit exchange formula∫

M+
sup
n∈N

fn dμ = sup
n∈N

∫
M+

fn dμ

which is stated in Coq as

Lemma Beppo_Levi :
∀ (f : nat → E → Rbar), (∀ x n, Rbar_le (f n x) (f (S n) x)) →
(∀ n, non_neg (f n)) → (∀ n, measurable_fun_Rbar genE (f n)) →
LInt_p μ (fun x ⇒ Sup_seq (fun n ⇒ f n x)) = Sup_seq (fun n ⇒ LInt_p μ (f n)).
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The proof of this equality is technical and relies on a wide variety of previously
proved results. It can be divided into two inequalities. The easy one, supn∈N

∫
M+ fn dμ �∫

M+ supn∈N fn dμ, is proved using monotony of the integral, and fundamental properties of
the supremum. The other one,∫

M+
sup
n∈N

fn dμ � sup
n∈N

∫
M+

fn dμ, (5)

is more intricate. The first step of the proof is to show that for any ψ ∈ SF+ less than or
equal to supn∈N fn , and any number 0 < a < 1, we have the bound∫

M+
ψ dμ � 1

a
sup
n∈N

∫
M+

fn dμ. (6)

For that purpose, the subsets An = {x ∈ E | aψ � fn} are first shown to be nondecreasing
and measurable, the latter coming from the measurability of functions aψ − fn . Then, they
are shown to cover the full set E , which is stated in Coq as ∀ x, ∃ n, A n x , and the existential is
exhibited as a rank N above which we have aψ(x) � fn(x). Then, the proof of Eq. (6) relies
on continuity from below of the measure (see Sect. 5.2), measurability of simple functions
(see Sect. 6.2), linearity properties of the integral in SF+ (see Sect. 6.3), and monotony and
compatibility with characteristic functions for the integral in M+ (see Sect. 7.1).

Finally, the inequality (5) is obtained by taking in (6) the limit as a goes up to 1, and from
the definition of the integral inM+ (see Sect. 7.1) and properties of the supremum.

This concludes the proof of the Beppo Levi theorem.

7.3 Adapted Sequences

As for simple functions, a real difficulty is the additivity property of the integral in M+ :∫
M+( f + g) dμ = ∫

M+ f dμ + ∫
M+ g dμ. Given the definition of the Lebesgue integral

(see Sect. 7.1), the common proof relies on adapted sequences in SF+.
An adapted sequence for a function f is a pointwise nondecreasing sequence of non-

negative functions that is pointwise converging from below toward f .

Definition is_adapted_seq : (E → Rbar) → (nat → E → R) → Prop :=
fun f ψ ⇒ (∀ n, non_neg (ψ n)) ∧ (∀ x n, ψn x � ψ (S n) x) ∧
(∀ x, is_sup_seq (fun n ⇒ ψ n x) (f x)).

In our case, the adapted sequences of interest are the measurable simple functions of SF .
We then deduce that the sequence of integrals of such a sequence converges toward the
integral of f from below.

Definition SF_seq : (nat → E → R) → Set := fun ψ ⇒ ∀ n, SF genE (ψ n).

Lemma LInt_p_with_adapted_seq :
∀ f ψ , is_adapted_seq f ψ → SF_seq genE ψ →
Sup_seq (fun n ⇒ LInt_p μ (ψ n)) = LInt_p μ f.

Having this definition and its link to the integral is far from enough. We need to have
an adapted sequence corresponding to any function in M+. This building is quite easy in
mathematics: for f nonnegative, the chosen adapted sequence is

ϕn(x)
def.=

{ �2n f (x)�
2n

when f (x) < n,

n otherwise.
(7)
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We began by translating literally this definition. Then, we tried to prove that the sequence
is nondecreasing, and so on. One of the authors then noticed that such proofs were already
done and available in the library Flocq [10] dedicated to computer arithmetic. Flocq is a
formalization of floating-point arithmetic that provides a comprehensive library of theorems
on a multi-radix multi-precision arithmetic. It also supports efficient numerical computa-
tions inside Coq. As it aims at genericity, even computer arithmetic formats are abstract to
encompass floating-point and fixed-point arithmetics and many proved results also hold in
fixed-point arithmetic. Seen from a computer science point of view, the definition of ϕn in
Eq. (7) indeed relies on a fixed-point rounding downward with a least significant bit (lsb)
of −n. It is formalized in Coq as

Definition mk_adapted_seq (* = ϕn *) : nat → E → R :=
fun n x ⇒ match (Rbar_le_lt_dec (INR n) (f x)) with
| left _ ⇒ INR n
| right _ ⇒ round radix2 (FIX_exp (−Z.of_nat n)) Zfloor (f x)
end.

Many proofs related to inequalities (such as (ϕn)n∈N is bounded and nondecreasing) are
really smooth, relyingon the support library of Flocq. For instance, the theoremϕn(x) ≤ f (x)
is a split whether f (x) < n, followed by a call to a property of the rounding downward.

A more involved example lies in the proof of ϕn(x) ≤ ϕn+1(x). We first split depending
whether f (x) < n or n + 1, and handle three simple cases. The most difficult case should
be to prove that

�2n f (x)�
2n

≤
⌊
2n+1 f (x)

⌋
2n+1

when f (x) < n. Indeed, a direct proof does not seem so straightforward. Taking the computer
arithmetic point of view, it becomes�n(x) ≤ �n+1(x), with�n the rounding down in fixed-
point arithmetic with least significant bit (lsb) n. Then, we rely on the following floating-point
theorem: if u ≤ v and u ∈ F, then u ≤ ◦(v) for any reasonable format F and rounding ◦.
Applying it, there is left to prove both that�n(x) ≤ x (trivial by the properties of the rounding
down) and that �n(x) fits in the fixed-point format with least significant bit −n − 1 (easy as
it has a lsb of −n). The proof of this subcase has been done in 10 lines of standard Coq.

Even the convergence was eased by existing Flocq error lemmas. The main result states
that the ϕn are indeed an adapted sequence.

Lemma mk_adapted_seq_is_adapted_seq : is_adapted_seq f mk_adapted_seq.

The part left to prove is that the ϕn are in SF . The first thing to prove is that the preimages
of ϕn are measurable subsets.

Lemma mk_adapted_seq_SF_aux : ∀ n y, measurable genE (fun x ⇒ mk_adapted_seq n x = y).

There are several proof paths. The chosen one is to prove that the subset is either empty (so
measurable), or y ≤ n. We also prove that y is a fixed-point number with lsb n. Then, we
have

ϕn(x) = y ⇐⇒ y ≤ f (x) < succ(y)

where succ is the successor in fixed-point arithmetic, meaning the next number in the format
with lsb n. This subset is measurable as f is measurable, and from the properties of Borel
subsets of Sect. 4.4. There are some special cases related to ∞ and to y = n that are tedious
but easy.
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Last is to prove that the ϕn only take a finite number of values, making them valid simple
functions.

Lemma mk_adapted_seq_SF : SF_seq genE mk_adapted_seq.

The mathematical definition is clear, but this is the first proof of this kind (the only previously
proved simple function is the characteristic function). So we have to build by hand the list
of all possible values of ϕn : first the list of integers i with 0 ≤ i ≤ n, and then the list of all
the i/2n for 0 ≤ i ≤ n2n . This kind of proof could clearly be automated, or simplified by
dedicated lemmas if need be. From this very generic list, we only have to apply the canonizer
defined in Sect. 6.1 to f . Then, we end up the proof, relying on the various properties of the
canonizer, the fixed-point rounding, and the measurability above.

To conclude, we have defined explicitly an adapted sequence that we may give to the
theorem LInt_p_with_adapted_seq, thus providing an explicit formula for the integral
in M+ :

∫
M+ f dμ = supn∈N

∫
M+ ϕn dμ.

Lemma LInt_p_with_mk_adapted_seq :
∀ f, non_neg f → measurable_fun_Rbar genE f →
Sup_seq (fun n ⇒ LInt_p μ (mk_adapted_seq f n)) = LInt_p μ f.

7.4 Linearity and Other Properties of the Integral

We present now some theorems about the integration of nonnegative measurable functions
that we consider essential for a library user. They are all consequences of the Beppo Levi
(monotone convergence) theorem (see Sect. 7.2). They are gathered in Table 1.

Coq statements Mathematical statements

Lemma LInt_p_plus :
∀ f g,
non_neg f → measurable_fun_Rbar genE f →
non_neg g → measurable_fun_Rbar genE g →
LInt_p μ (fun x ⇒ Rbar_plus (f x) (g x)) =
Rbar_plus (LInt_p μ f) (LInt_p μ g).

∀ f , g ∈ M+,∫
M+( f + g) dμ =∫

M+ f dμ + ∫
M+ g dμ.

Lemma LInt_p_scal :
∀ a f, Rbar_le 0 a →
non_neg f → measurable_fun_Rbar genE f →
LInt_p μ (fun x ⇒ Rbar_mult a (f x)) =
Rbar_mult a (LInt_p μ f).

∀a ∈ R+, ∀ f ∈ M+,∫
M+(a× f ) dμ = a×∫

M+ f dμ.

Lemma LInt_p_ae_definite :
∀ f,
non_neg f → measurable_fun_Rbar genE f →
(ae_eq μ f (fun _ ⇒ 0) ↔ LInt_p μ f = 0).

∀ f ∈ M+,

f
μ a.e.= 0 ⇔ ∫

M+ f dμ = 0.

Lemma LInt_p_decomp :
∀ f A, measurable genE A →
non_neg f → measurable_fun_Rbar genE f →
LInt_p μ f = Rbar_plus
(LInt_p μ (fun x ⇒ Rbar_mult (f x)
(charac A x)))

(LInt_p μ (fun x ⇒ Rbar_mult (f x)
(charac (fun y ⇒ ¬ A y) x))).

∀ f ∈ M+, ∀A measurable,∫
M+ f dμ = ∫

M+( f × 1A) dμ
+ ∫

M+( f × 1Ac ) dμ.
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Lemma LInt_p_ae_eq_compat:
∀ f g,
non_neg f → measurable_fun_Rbar genE f →
non_neg g → measurable_fun_Rbar genE g →
ae_eq μ f g →
LInt_p μ f = LInt_p μ g.

∀ f , g ∈ M+,

f
μ a.e.= g ⇒∫

M+ f dμ = ∫
M+ g dμ.

Table 1 : Linearity and other properties of the integral inM+.

The first entry (LInt_p_plus) is for additivity of the integral inM+. The proof is rather
smooth, now that additivity of the integral in SF+ (see Sect. 6.3), the monotone conver-
gence (see Sect. 7.2), and existence of an adapted sequence (see Sect. 7.3) are established.
The second entry (LInt_p_cal) generalizes the nonnegative scaling property (see Sect. 7.1)
to the infinite case too. Both will be significant ingredients of the linearity of the Lebesgue
integral for arbitrary sign functions, to build the structure of vector space of the integrable
functions (out of the scope of this paper).

The remaining entries actually follow from the first two linearity results. The characteri-
zation of zero-integral functions (LInt_p_ae_definite) relies on the scaling property and
the compatibility result with characteristic functions (see Sect. 7.1), while the decomposition
on a partition (LInt_p_decomp) relies on the additivity property. Finally, the compatibility
result with almost equality (LInt_p_ae_eq_compat) relies on the last two. Note that this lat-
ter possesses a companion lemma about inequalities, and both share the same proof through
the abstraction of their binary relation.

7.5 Fatou’s Lemma

Fatou’s lemma (see Textbook Theorem 2) is the other fundamental result in Lebesgue inte-
gration theory for nonnegative functions. It specifies how the situation deteriorates when the
sequence in the Beppo Levi theorem is no longer monotone: the equality becomes an inequal-
ity and limits (i.e., suprema) become limits inferior. It states that for any sequence ( fn)n∈N of
nonnegative measurable functions (i.e., in M+), the pointwise limit lim infn→∞ fn is also
in M+, and the integral of the limit inferior is less than or equal to the limit inferior of the
integrals, ∫

M+
lim inf
n→∞ fn dμ � lim inf

n→∞

∫
M+

fn dμ,

which is stated in Coq as

Theorem Fatou_lemma :
∀ (f : nat → E → Rbar), (∀ n, non_neg (f n)) →
(∀ n, measurable_fun_Rbar genE (f n)) →
Rbar_le (LInt_p μ (fun x ⇒ LimInf_seq’ (fun n ⇒ f n x)))

(LimInf_seq’ (fun n ⇒ LInt_p μ (f n))).

The proof is rather short. The principle is to apply the Beppo Levi theorem (see Sect. 7.2)
to the sequence (infm∈N fn+m)n∈N which is shown nondecreasing, nonnegative, and mea-
surable. We get ∫

M+
lim inf
n→∞ fn dμ = sup

n∈N

∫
M+

inf
m∈N fn+mdμ.
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Then, by the monotony result of Sect. 7.1 and the definitions of infimum and limit inferior,
we have

sup
n∈N

∫
M+

inf
m∈N fn+mdμ � lim inf

n→∞

∫
M+

fn dμ,

proving the result.
Note that a less common proof path is also possible: establish first Fatou’s lemma, and

then the Beppo Levi theorem.
Fatou’s lemma is essential to establish other fundamental results such as the Fatou–

Lebesgue theorem that collects a chain of inequalities involving both inferior and superior
limits, and above all, Lebesgue’s dominated convergence theorem whose result is similar to
that of the Beppo Levi theorem, but only through the dominance of the sequence (both left
as future work).

8 A Simple Case Study: The Dirac Measure

It makes sense to exhibit an example of measure to test the specifications described in the
previous sections and especially the axiomatic definition of Sect. 5.

For instance, the Lebesgue measure, which extends the notion of length of intervals in R,
is ubiquitous on Euclidean spaces R

n . And the counting measure, which returns the cardinal,
is pertinent on countable sets. But both present formalization issues, and their study is left
for future works.

We present the construction and usage of a very simple measure, the Dirac measure. It is
used, for instance, in physics to model a point mass.

The Dirac map associated with an element a ∈ E is the function δa mapping any subset
A ⊆ E to 1A(a) (see Sect. 4.1).

Definition Dirac : E → (E → Prop) → Rbar := fun a A ⇒ charac A a.

As a measure, the total function defined above only makes sense for measurable subsets.
But the Dirac measure has the salient property to be a measure for any σ -algebra on E, even
for the discrete σ -algebra (see Sect. 4.2).

To instantiate the Dirac map δa as a measure, we prove that it meets the specification
of measures of Sect. 5.1. The first two properties, homogeneity (Dirac_False) and non-
negativeness (Dirac_ge_0), are obvious. The proof of σ -additivity is based on the following
argument, that is valid for any pairwise disjoint sequence of subsets (An)n∈N (there is at most
one nonzero term in the sum).

δa

(⊎
n∈N

An

)
= 1⊎

n∈N An (a) =
∑
n∈N

1An (a) =
∑
n∈N

δa(An).

Then, the Dirac measure can be built for any generator genE.

Definition Dirac_measure : E → measure genE :=
fun a ⇒ mk_measure genE (Dirac a)
(Dirac_False a) (Dirac_ge_0 a) (Dirac_sigma_additivity a).

The integral of any function f : E → Rbar with the Dirac measure is
∫

f dδa = f (a).
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The formalization in SF+ for nonnegative measurable simple functions, and any generator
genE, is (see Sect. 6.2)

Lemma LInt_SFp_Dirac :
∀ (f : E → R) (Hf : SF genE f) a, LInt_SFp (Dirac_measure genE a) f Hf = f a.

The proof is a direct application of lemma finite_vals_sum_eq of Sect. 6.1. The version
in M+ for nonnegative measurable functions, and any generator genE, is (see Sect. 7.1)

Lemma LInt_p_Dirac :
∀ (f : E → Rbar) a, non_neg f → measurable_fun_Rbar genE f →
LInt_p E genE (Dirac_measure genE a) f = f a.

Its proof is an application of lemma LInt_p_with_mk_adapted_seq of Sect. 7.3.

9 Discussion on Proof-Engineering Concerns

During our development, we had to make several choices regarding logic and the formaliza-
tion of mathematics.

9.1 Extended Real Numbers

Measure theory and integration of nonnegative functions that are investigated here only
manipulate values in R+. Thus arises the question of the most practical Coq formalization
for nonnegative extended real numbers among the following three possible choices: either
[0,∞], R ∪ {∞}, or R ∪ {−∞,∞}.

From a mathematical point of view, all solutions are acceptable because, in addition, we
either prove or require that values are nonnegative. But we also need to keep in mind that
eventually we will have to deal with arbitrary sign functions. And despite the absence of
algebraic structure, extended real numbers with both infinities are the usual framework often
used by mathematicians to allow for simplified expressions of many statements. We have
chosen to follow this practice and to use Rbar from Coquelicot (see Sect. 2.1). But let us
review the other possibilities we considered.
First solution: [0,∞]. For example with a specific type Rbarplus. This would be very
difficult to use in Coq because it would not be directly related to the type R, so we would
need a coercion or some subtyping to use this type in formulas with reals. Moreover, it
would make ∞ appear explicitly a lot. This would lead to very verbose statements with few
automation possibilities.
Second solution: R ∪ {∞}. For example with a type with two constructors R and p_infty.
This would keep validity of usual algebraic properties such as associativity and distributivity
without the need for additional hypotheses, and would favor a low number of cases in proofs.
But it would still be a new type that would lead to Coq coercions. Moreover, when −∞ will
enter the picture for functions with arbitrary sign, it would make necessary coercions from/to
the three types, which would be as difficult to handle as coercions from/to N, Z, and R.
Chosen (third) solution: R ∪ {−∞,∞}. Which is the type Rbar. This has the advantage of
being already defined in Coquelicotwith several lemmas proved, and is related to the type R.
Of course, for the present developments on nonnegative functions, we have to deal with
meaningless negative cases and additional hypotheses. However, this drawback is balanced
by the fact that we are ready to treat arbitrary sign functions.
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9.2 Classical Logic Aspects

In our previous work, we tried to minimize the use of classical aspects. For example, in the
formal proof of the Lax–Milgram theorem [15], we had a few decidability hypotheses and
some statements relied on double negations to avoid using a stronger classical property. We
consider here that it is no longer worth the effort compared to the theoretical gain. For this
reason, we have decided to use the classical theorems listed in Sect. 2.2.

Moreover, as explained in Sect. 4.1, we choose that subsets have the type E → Prop.
We could have chosen E → bool and it would have simplified some proofs as we rely a lot on
the excluded middle axiom for deciding whether a point is in a subset or not. Nevertheless,
this use of bool would not have fully removed the excluded middle axiom. Indeed, when
selecting in a list the elements that have a property (function select of Sect. 6.1), we need
to decide inside this function whether a property holds or not. And this is then applied to
the following property: fun x ⇒ ∃ y, f y = x. We need, for each x ∈ E to decide whether it
belongs to the image of f and that requires the informative excluded middle axiom. So, as it
has no logical impact, we have chosen Prop for convenience as it fits better in the libraries
we rely on.

9.3 Measurability of Subsets

Implementing the concept of (generated) σ -algebra, i.e., the measurability of subsets, as an
inductive type allows to conduct proofs by induction. This is proposed in Isabelle/HOL1 and
Lean,2 and it is useful in Coq too (see Sect. 4.2). But this design choice can also have an
impact on howmathematics results are stated. Of course, there is a constructor for each basic
property of σ -algebras. But it is also necessary to add a constructor, measurable_gen, that
embodies the belonging to the collection of generators. Indeed, this is required to initiate the
constructive process of specifying a measurable subset. In other words, our Coq definition
also encompasses the mathematical concept of generated σ -algebra.

As a consequence, we cannot instantiate a σ -algebra without exhibiting a generator.
But fortunately, nothing prevents from setting the whole σ -algebra as the generator, and
specify, or prove, that it satisfies is_sigma_algebra predicate. A notable effect is that the
mathematical result stating that any generated σ -algebra is the smallest σ -algebra containing
its generator is already structurally granted by the inductive type measurable. Our defi-
nition of generated σ -algebra then precedes the definition of σ -algebra, which is not the
common order in mathematics. It is, however, common to have several possible orders
or equivalent definitions in mathematics. We found that this formalization of generated
σ -algebra was easy to use. For example, the Coq proof of lemma measurable_fun_gen

(see Sect. 4.5) is done very simply by induction on the measurable subset defined induc-
tively and applying directly the three properties measurable_empty, measurable_compl
and measurable_union_countable.

Whatever the definitions (or the order of them), the most difficult point was related to the
equivalence of generators. More precisely, the equivalence between the σ -algebra generated
by compact intervals,measurable gen_R, and theBorelσ -algebra generated by open subsets,

1 The sigma_sets inductive set from https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/Sigma_
Algebra.html.
2 The measurable_space.generate_measurable inductive type from https://leanprover-
community.github.io/mathlib_docs/measure_theory/measurable_space_def.html#measurable_space.
generate_measurable.
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measurable open, of Sect. 4.4 has proved tedious, long, and with harder ingredients than
expected: many bijections, connected components, density of Q, second-countability.

9.4 Simple Functions

About simple functions, we had difficulties designing them andwe triedmanyCoq definitions
for the same mathematical object before deciding for the one described in Sect. 6.

Note, for instance, that we have chosen the total function approach as much as possible
in our development to ensure the simplicity in writing formulas. But valid simple functions
come as a dependent type SF with the function, the list of values and the corresponding
proof. This was needed as the list is required to compute the integral. To give the value of
this integral, we need to sum over a finite list and therefore we need this list to be given. A
solution would be to have an easy mechanism to sum over arbitrary sets (possibly infinite
and possibly bigger than N) like done in Lean.3 This extension of total function would make
a practical addition to Coq and may simplify some of our statements but is out of the scope
of this paper. Note also that this dependent type SF is not supposed to appear to a library user,
contrary to measurable functions and subsets, and to the integral.

Another design choice is about the type of simple functions: either E → R, or E → Rbar.
Mathematicians usually consider R (in fact R+) as codomain for SF+, and reserve R (in
fact R+) for M+ (as limits of functions in SF+). We first tried to have simple functions
of type E → Rbar for coherence and simplicity, but it failed in the proof of the difficult
sum_Rbar_map_change_of_variable of Sect. 6.3. We could have kept the same type with
an assumption that all values taken are finite, but we found it less convenient than using types
for this requirement. As suggested in mathematics, we ended up by having simple functions
of type E → R.

A surprising successful choice is related to a particular type of simple functions: adapted
sequences. Even if the mathematical definitions and proofs are given, we chose to take a
computer scientist (or even a computer arithmetic) point of view. The use of Flocq has made
trivial many proofs.

10 State of the Art

Interactive theoremproversmaybe classified into several distinct familieswith respect to their
inherent logic. It may rely on set theory or type theory, on classical logic (e.g., with a built-in
axiom of choice) or intuitionistic logic, and so on. Similarly to programming languages, the
choice of a proof assistant is driven by the kind of formal proofs to be developed, the support
libraries, the ease of the developer, and so on. It is currently either impractical or impossible
to automatically “translate” developments done within some proof assistant into another,
especially when they do not share the same inherent logic or theory.

This is the main reason for this work: providing to Coq users a practical formalization of
Lebesgue integration. As explained below, this already exists in several other provers. We
have taken inspiration (within the limits set by the various logics), we have made various
design choices and proved the common lemmas and theorems. Our goal is to offer to Coq
users (so that theymay rely on it for their own Coq development) this library. This also allows
this library to be eventually mixed it with Flocq for proving floating-point programs.

3 The tsum operator from https://leanprover-community.github.io/mathlib_docs/topology/algebra/infinite_
sum.html#tsum.
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Lebesgue measure and integration is known to be an important chapter in mathematics.
For instance, it belongs to a “top 100” of mathematical theorems established at the turn of
the millennium for which F. Wiedijk is keeping track of the formalization within the main
proof assistants.4 This state of the art focuses on the formalization of the Lebesgue measure
and integration; for a larger view about real analysis (in ACL2, Coq, HOL, HOL Light,Mizar,
and PVS), we refer the reader to this survey [14].

Regarding intrinsically classical proof assistants, we may cite Mizar [53], Isabelle/HOL
[58], and PVS [59].

Mizar libraries have been very advanced since the 1990s on the formalization of mathe-
matics in general. The Lebesgue integral has been addressed continuously during the last two
decades, for instance, the integral of simple functions [31], Fatou’s lemma [32], and Fubini’s
theorem [30].

More recently, a large library of results, including many results about measure theory [43]
and nonnegative Lebesgue integration,5 Ordinary differential equations (ODEs) [44–46], and
a formalization of Green’s theorem [1] have been developed in Isabelle/HOL, and Fourier
transform [41] in HOL4. In HOL4 [55] and in PVS,6 Lebesgue integration theory has also
been developed in 2010.

In these provers, the definition of the Lebesgue integral is quite similar to ours. The
main difference lies in the definition of simple functions. Leaving measurability aside, they
consider the image set and the function is simple when this set is finite. For instance, in PVS,
is_finite(image(f,fullset[T])).

Regarding intrinsically intuitionistic proof assistants, we may cite Lean [27], and Coq
[25].

About Lean, we only found out in [66] that the Bochner integral is available. Note that the
Bochner integral extends the Lebesgue integral to functions taking their values in a Banach
space. There is no description on how all this is formalized and the available theorems. We
investigated the source, and found the Beppo Levi (monotone convergence) theorem and
Fatou’s lemma, with some formalization key points. First, Borel spaces7 are generated from
the open sets (only) with a kind of inductive definition, so this ends up being similar to us,
even if our genericity in terms of generators has proved useful. Second, as in other provers,
simple function definitions8 rely on a predicate that says whether a set is finite or not (used
on the image of the function), which relies on the logical underlying framework that is quite
different from the one of Coq.

As mentioned in Introduction, our work relies on the Coq proof assistant. As a previous
work about analysis in Coq we can cite formalization of Picard’s operator for ODEs [52],
which uses the constructive CoRN and the Math Classes libraries. Regarding analysis with
classical reals, our previous works in Coq include the full formalization of the discretization
of the wave equation [11,12], and the formalization of Lax–Milgram theorem [15]. For both
of these works, we paid particular attention to the statements and their proof to avoid the
use of classical axioms (we have now chosen the classical side, see Sect. 9.2). Another
recent development is the formal proof of the Lax equivalence theorem for finite difference

4 https://www.cs.ru.nl/~freek/100/.
5 https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/Nonnegative_Lebesgue_Integration.html.
6 https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/library/measure_integration.html, https://shemesh.
larc.nasa.gov/fm/ftp/larc/PVS-library/library/lebesgue.html.
7 https://leanprover-community.github.io/mathlib_docs/measure_theory/constructions/borel_space.html#
borel_space.
8 https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/lebesgue.html#measure_
theory.simple_func.
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schemes [65], it is based on the classical standard real numbers, Coquelicot libraries, and
our formalization of the Lax–Milgram theorem.

On the other hand, the math-comp/analysis library is currently being developed [3]. It
aims at providing numerical analysis results in classical logic, building upon math-comp.
This library has been developed in parallel to ours and is still in development, with few
documentation and many branches, so it is hard to trace proved theorems.9 We found out
similar definitions for σ -algebra (by induction), connected components and the Lebesgue
integral. In one branch, we found out a very experimental generic integral but in another one
dedicated to the Lebesgue integral, we found some of the lemmas described in this article.
As for the differences, they define simple functions by a dependent type including a unique
list. Our adapted sequences are more smooth as based on Flocq, while they handle dyadic
intervals by hand. They have a full definition of the Lebesgue measure using Carathéodory’s
extension theorem.

Last, following the rebuilding of the standard real library [64], in which a constructive and
classical basis was built up, constructive analysis lemmas were also introduced by Vincent
Semeria, based on the constructive analysis of Bishop [7].

11 Conclusion and Perspectives

This work is a second stone that paves the way toward the formal correctness of the Finite
Element Method, the first one being the formal proof of the Lax–Milgram theorem [15].
The contributions are the Coq formalizations and proofs of σ -algebras, measures, simple
functions, and Lebesgue integration of nonnegative measurable functions, and the formal
proofs of the Beppo Levi (monotone convergence) theorem and Fatou’s lemma.

The subset addressed in the present paper is more than 50-page long (6000 lines of code
(LOC) of LATEX, and weighs 220 kB) in its mathematics counterpart [23]. These Coq source
files add up to about 11 kLOC, and weigh 370 kB. In total, the cumulative development
including the Lax–Milgram theorem [15], finite-dimensional vector spaces [34], and this
formalization is about 21 kLOC/650 kB.

As in [12], we observe here again that in-depth pen-and-paper proofs can be an order of
magnitude longer than usual proofs from textbooks, and the lengths of formal and detailed
pen-and-paper proofs are similar. In the present case, we can notice that the extra effort
deployed on Rbar (in Rbar_compl and sum_Rbar_nonneg, roughly 3 kLOC/90 kB) explains
part of the gap between the respective sizes of the Coq formalization and the pen-and-paper
proof, where R received far less detail.

The hyperlinked dependency graph is detailed in Fig. 1 where our target development, the
Lebesgue integral (built on simple functions), is represented in blue . For this purpose, we
had to formalize σ -algebras, measurable functions, and measures (represented in green ),
as well as some preliminary developments on countability, topological bases in R, and the
handling of sums in R (represented in yellow ). We also had to develop results that were
missing both in the standard libraries (in the subdirectories Logic, Lists, Sorting, and Reals)
and Coquelicot (represented in brown ), including some tactics for Rbar. As usual, we can
note that a large number of prerequisites are necessary to reach the desired formalization.
In our case, this distributes roughly into one third for the complements (either in kLOC or

9 https://github.com/math-comp/analysis.
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R_compl

Rbar_compl
(Section 3.3)

UniformSpace_compllist_compl

logic_compl

sort_compl

subset_compl
(Section 4.1)

countable_sets
(Section 4.1)

topo_bases_R
(Section 3.1)

sum_Rbar_nonneg
(Section 3.2)

measurable_fun
(Section 4.5)

sigma_algebra_R_Rbar
(Section 4.4)

measure
(Section 5)

sigma_algebra
(Sections 4.2, 4.3)

LInt_p
(Section 7)

simple_fun
(Section 6)

Fig. 1 Dependency graph of our Coq development.
Brown : complements to standard libraries and Coquelicot.

Yellow : new preliminary developments.

Green : new developments in measure theory.

Blue : new developments in Lebesgue integration

in kB), one seventh for the preliminaries , one third for measure theory , and one fifth for

the target Lebesgue integral .
As usual, formalization is not just straightforward translation of mathematical texts and

formulas. Some design choices have to be made and proof paths may differ, mainly to favor
usability of Coq theorems and ease formal developments.

After both the Lax–Milgram theorem [15] and this work, the road is still long to be able to
tackle the formal proof of scientific computation programs using the Finite Element Method
(FEM).

The next step is to formalize the construction of the Lebesgue measure (for instance,
using Carathéodory’s extension theorem [20,29]), and the Lebesgue integral for measurable
functions with arbitrary sign, with the proofs of Lebesgue’s dominated convergence theorem
and of the Tonelli–Fubini theorems as the next milestones. Then comes the formalization of
the L p Lebesgue spaces as complete normed vector spaces (a.k.a. Banach spaces), and in
particular of L2 as a complete inner product space (a.k.a. a Hilbert space). We expect the
completeness to be the most challenging part of the proof. And finally, the formalization of
simple Sobolev spaces H1 and H1

0 will need part of the distribution theory [63]. Further steps
will include the formalization of parts of interpolation and approximation theories to end up
with the FEM.

In parallel, we plan to merge with recent works on constructive reals [64] now included
in the Coq standard library, and in particular with the constructive measure theory [8] based
on the Daniell integral [26]. We also plan to formalize the Bochner integral [9,56] that
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generalizes the Lebesgue integral to the case of functions taking their values in a Banach
space, for instance, such as the Euclidean spaces R

n and the Hermitian spaces C
n .
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