
Journal of Automated Reasoning (2021) 65:775–807
https://doi.org/10.1007/s10817-021-09588-x

Extensional Higher-Order Paramodulation in Leo-III

Alexander Steen1 · Christoph Benzmüller1,2

Received: 26 July 2019 / Accepted: 8 March 2021 / Published online: 27 March 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Leo-III is an automated theorem prover for extensional type theory with Henkin semantics
and choice. Reasoning with primitive equality is enabled by adapting paramodulation-based
proof search to higher-order logic. The provermay cooperate withmultiple external specialist
reasoning systems such as first-order provers and SMT solvers. Leo-III is compatible with
the TPTP/TSTP framework for input formats, reporting results and proofs, and standardized
communication between reasoning systems, enabling, e.g., proof reconstruction from within
proof assistants such as Isabelle/HOL. Leo-III supports reasoning in polymorphic first-order
and higher-order logic, inmany quantified normalmodal logics, as well as in different deontic
logics. Its development had initiated the ongoing extension of the TPTP infrastructure to
reasoning within non-classical logics.

Keywords Higher-Order logic · Henkin semantics · Extensionality · Leo-III · Equational
reasoning · Automated theorem proving · Non-classical logics · Quantified modal logics

1 Introduction

Leo-III is an automated theorem prover (ATP) for classical higher-order logic (HOL) with
Henkin semantics and choice. In contrast to its predecessors, LEO and LEO-II [25,33], that
were based on resolution proof search, Leo-III implements a higher-order paramodulation
calculus, which aims at improved performance for equational reasoning [89]. In the tradition
of the Leo prover family, Leo-III collaborates with external reasoning systems, in particular,
with first-order ATP systems, such as E [85], iProver [70] and Vampire [83], and with SMT
solvers such as CVC4 [14]. Cooperation is not restricted to first-order systems, and further
specialized systems such as higher-order (counter)model finders may be utilized by Leo-III.

This work has been supported by the DFG under Grant BE 2501/11-1 (Leo-III) and by the
Volkswagenstiftung (“Consistent Rational Argumentation in Politics”).

B Alexander Steen
alexander.steen@uni.lu

Christoph Benzmüller
c.benzmueller@fu-berlin.de

1 University of Luxembourg, FSTM, Esch-sur-Alzette, Luxembourg

2 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-021-09588-x&domain=pdf
https://orcid.org/0000-0001-8781-9462
https://orcid.org/0000-0002-3392-3093

776 A. Steen, C. Benzmüller

Leo-III accepts all common TPTP dialects [99] as well as their recent extensions to poly-
morphic types [44,67]. During the development of Leo-III, careful attention has been paid to
providing maximal compatibility with existing systems and conventions of the peer commu-
nity, especially to those of the TPTP infrastructure. The prover returns results according to the
standardized TPTP SZS ontology, and it additionally produces verifiable TPTP-compatible
proof certificates for each proof that it finds.

The predecessor systems LEO and LEO-II pioneered the area of cooperative resolution-
based theorem proving for Henkin semantics. LEO (or LEO-I) was designed as an ATP
component of the proof assistant and proof planner �MEGA [86] and hard-wired to it. Its
successor, LEO-II, is a stand-alone HOL ATP system based on Resolution by Unification
and Extensionality (RUE) [18], and it supports reasoning with primitive equality.

The most recent incarnation of the Leo prover family, Leo-III, comes with improved
reasoning performance in particular for equational problems, and with a more flexible and
effective architecture for cooperation with external specialists.1 Reasoning in higher-order
quantified non-classical logics, including many normal modal logics, and different versions
of deontic logic is enabled by an integrated shallow semantical embedding approach [29].
In contrast to other HOL ATP systems, including LEO-II, for which it was necessary for the
user to manually conduct the tedious and error-prone encoding procedure before passing it
to the prover, Leo-III is the first ATP system to include a rich library of these embeddings,
transparent to the user [59]. These broad logic competencies make Leo-III, up to the authors’
knowledge, themost widely applicableATP system for propositional and quantified, classical
and non-classical logics available to date. This work has also stimulated the currently ongoing
extension of the TPTP library to non-classical reasoning.2

Leo-III is implemented in Scala and its source code, and that of related projects presented
in this article, is publicly available under BSD-3 license on GitHub.3 Installing Leo-III does
not require any special libraries, apart from a reasonably current version of the JDK and
Scala. Also, Leo-III is readily available via the SystemOnTPTP web interface [99], and it
can be called via Sledgehammer [41], from the interactive proof assistant Isabelle/HOL [79]
for automatically discharging user’s proof goals.

In a recent evaluation study of 19 different first-order and higher-order ATP systems, Leo-
III was found the most versatile (in terms of supported logic formalisms) and best performing
ATP system overall [48].

This article presents a consolidated summary of previous conference andworkshop contri-
butions [32,91,93,94,104] as well as contributions from the first author’s Ph.D. thesis [89]. It
is structured as follows: §2 briefly introduces HOL and summarizes challenging automation
aspects. In §3, the basic paramodulation calculus that is extended by Leo-III is presented,
and practically motivated extensions that are implemented in the prover are outlined. Subse-
quently, the implementation of Leo-III is described in more detail in §4, and §5 presents the
technology that enables Leo-III to reason in various non-classical logics. An evaluation of
Leo-III on a heterogeneous set of benchmarks, including problems in non-classical logics, is
presented in §6. Finally, §7 concludes this article and sketches further work.

1 Note the different capitalization of Leo-III as opposed to LEO-I and LEO-II. This is motivated by the fact
that Leo-III is designed to be a general-purpose system rather than a subcomponent to another system. Hence,
the original capitalization derived from the phrase “Logical Engine for Omega” (LEO) is not continued.
2 See http://tptp.org/TPTP/Proposals/LogicSpecification.html.
3 See the individual projects related to the Leo prover family at https://github.com/leoprover. Further infor-
mation is available at http://inf.fu-berlin.de/~lex/leo3.

123

http://tptp.org/TPTP/Proposals/LogicSpecification.html
https://github.com/leoprover
http://inf.fu-berlin.de/~lex/leo3

Extensional Higher-Order Paramodulation in Leo-III 777

2 Higher-Order Theorem Proving

The term higher-order logic refers to expressive logical formalisms that allow for quan-
tification over predicate and function variables; such a logic was first studied by Frege in
the 1870s [56]. An alternative and more handy formulation was proposed by Church in the
1940s [51]. He defined a higher-order logic on top of the simply typed λ-calculus. His partic-
ular formalism, referred to as simple type theory (STT), was later further studied and refined
by Henkin [64], Andrews [2–4] and others [22,77]. In the remainder, the term HOL is used
synonymously to Henkin’s extensional type theory (ExTT) [26]; it constitutes the foundation
of many contemporary higher-order automated reasoning systems. HOL provides lambda-
notation as an elegant and useful means to denote unnamed functions, predicates and sets (by
their characteristic functions), and it comes with built-in principles of Boolean and functional
extensionality as well as type-restricted comprehension.

Amore in-depth presentation of HOL, its historical development, metatheory and automa-
tion is provided by Benzmüller and Miller [26].

2.1 Syntax and Semantics

HOL is a typed logic; every term of HOL is associated with a fixed and unique type, written
as subscript. The set T of simple types is freely generated from a non-empty set S of sort
symbols (base types) and juxtaposition ντ of two types τ, ν ∈ T, the latter denoting the type of
functions from objects of type τ to objects of type ν. Function types are assumed to associate
to the left and parentheses may be dropped if consistent with the intended reading. The base
types are usually chosen to be S:={ι, o}, where ι and o represent the type of individuals and
the type of Boolean truth values, respectively.

Let� be a typed signature and let V denote a set of typed variable symbols such that there
exist infinitely many variables for each type. Following Andrews [5], it is assumed that the
only primitive logical connective is equality, denoted =τ

oττ∈ �, for each type τ ∈ T (called
Q by Andrews). In the extensional setting of HOL, all remaining logical connectives such as
disjunction ∨ooo, conjunction ∧ooo and negation ¬oo can be defined in terms of them. The
terms of HOL are given by the following abstract syntax (where τ, ν ∈ T are types):

s, t : :=cτ ∈ � | Xτ ∈ V | (λ Xτ . sν)ντ | (sντ tτ)ν .

The terms are called constants, variables, abstractions and applications, respectively. Appli-
cation is assumed to associate to the left and parentheses may again be dropped whenever

possible. Conventionally, vector notation fντ n ···τ 1 t iτ i is used to abbreviate nested applications(
fντ n ···τ 1 t1τ 1 · · · tnτ n

)
, where f is a function term and the t i , 1 ≤ i ≤ n, are argument terms

of appropriate types. The type of a termmay be dropped for legibility reasons if obvious from
the context. Notions such as α-, β-, and η-conversion, denoted −→
, for
 ∈ {α, β, η}, free
variables fv(.) of a term, etc., are defined as usual [13]. The notion s{t/X} is used to denote
the (capture-free) substitution of variable X by term t in s. Syntactical equality between
HOL terms, denoted ≡
, for
 ⊆ {α, β, η}, is defined with respect to the assumed underlying
conversion rules. Terms so of type o are formulas, and they are sentences if they are closed.
By convention, infix notation for fully applied logical connectives is used, e.g., so∨ to instead
of (∨ooo so) to.

As a consequence of Gödel’s Incompleteness Theorem, HOL with standard semantics
is necessarily incomplete. In contrast, theorem proving in HOL is usually considered with
respect to so-called general semantics (or Henkin semantics) in which a meaningful notion

123

778 A. Steen, C. Benzmüller

of completeness can be achieved [3,64]. The usual notions of general model structures,
validity in these structures and related notions are assumed in the following. Note that we do
not assume that the general model structures validate choice. Intensional models have been
described by Muskens [77] and studies of further general notions of semantics have been
presented by Andrews [2] and Benzmüller et al. [22].

2.2 Challenges to HOL Automation

HOL validates functional and Boolean extensionality principles, referred to as EXTντ and
EXTo. These principles can be formulated within HOL’s term language as

EXTντ :=∀Fντ .∀Gντ . (∀Xτ . F X =ν G X) ⇒ F =ντ G

EXTo:=∀Po.∀Qo. (P ⇔ Q) ⇒ P =o Q.

These principles state that two functions are equal if they correspond on every argument,
and that two formulas are equal if they are equivalent (where ⇔ooo denotes equiva-
lence), respectively. Using these principles, one can infer that two functions such as
λ Po.� and λ Po. P ∨ ¬P are in fact equal (where � denotes syntactical truth), and that
(λ Po. λ Qo. P ∨ Q) = (λ Po. λ Qo. Q ∨ P) is a theorem. Boolean Extensionality, in par-
ticular, poses a considerable challenge for HOL automation: Two terms may be equal, and
thus subject to generating inferences, if the equivalence of all Boolean-typed subterms can
be inferred. As a consequence, a complete implementation of non-ground proof calculi that
make use of higher-order unification procedures cannot simply use syntactical unification
for locally deciding which inferences are to be generated. In contrast to first-order theorem
proving, it is hence necessary to interleave syntactical unification and (semantical) proof
search, which is more difficult to control in practice.

As a further complication, higher-order unification is only semi-decidable and not uni-
tary [60,65]. It is not clear howmanyandwhichunifiers producedby ahigher-order unification
routine should be chosen during proof search, and the unification procedure may never ter-
minate on non-unifiable terms.

In the context of first-order logic with equality, superposition-based calculi have proven an
effective basis for reasoning systems and provide a powerful notion of redundancy [9,10,78].
Reasoning with equality can also be addressed, e.g., by an RUE resolution approach [55]
and, in the higher-order case, by reducing equality to equivalent formulas not containing the
equality predicate [18], as done in LEO. The latter approaches however lack effectivity in
practical applications of large-scale equality reasoning.

There are further practical challenges as there are only few implementation techniques
available for efficient data structures and indexing methods. This hampers the effectivity of
HOL reasoning systems and their application in practice.

2.3 HOL ATP Systems

Next to the LEO prover family [25,33,91], there are further HOL ATP systems available:
This includes TPS [7] as one of the earliest systems, as well as Satallax [47], coqATP [37],
agsyHOL [72] and the higher-order (counter)model finder Nitpick [43]. Additionally, there
is ongoing work on extending the first-order theorem prover Vampire to full higher-order
reasoning [38,39], and some interactive proof assistants such as Isabelle/HOL [79] can also
be used for automated reasoning in HOL. Further related systems include higher-order exten-

123

Extensional Higher-Order Paramodulation in Leo-III 779

sions of SMT solvers [11], and there is ongoing work to lift first-order ATP systems based
on superposition to fragments of HOL, including E [85,102] and Zipperposition [16,53].

Further notable higher-order reasoning systems include proof assistants such as PVS [81],
Isabelle/HOL, the HOL prover family including HOL4 [61], and the HOL Light system [63].
In contrast to ATP systems, proof assistants do not find proofs automatically but are rather
used to formalize and verify handwritten proofs for correctness.

2.4 Applications

The expressivity of higher-order logic has been exploited for encoding various expressive
non-classical logics within HOL. Semantical embeddings of, among others, higher-order
modal logics [29,59], conditional logics [20], many-valued logics [90], deontic logic [24],
free logics [31] and combinations of such logics [19] can be used to automate reasoningwithin
those logics using ATP systems for classical HOL. A prominent result from the applications
of automated reasoning in non-classical logics, here in quantified modal logics, was the
detection of a major flaw in Gödel’s Ontological Argument [36,57] as well as the verification
of Scott’s variant of that argument [35] using LEO-II and Isabelle/HOL. Similar and further
enhanced techniques were used to assess foundational questions in metaphysics [34,69].

Additionally, Isabelle/HOL and the Nitpick system were used to assess the correctness of
concurrent C++ programs against a previously formalized memory model [45]. The higher-
order proof assistant HOL Light played a key role in the verification of Kepler’s conjecture
within the Flyspeck project [62].

3 Extensional Higher-Order Paramodulation

Leo-III is a refutationalATP system. The initial, possibly empty, set of axioms and the negated
conjecture are transformed into an equisatisfiable set of formulas in clause normal form
(CNF), which is then iteratively saturated until the empty clause is found. Leo-III extends the
complete, paramodulation-based calculus EP for HOL (cf. §3.1) with practically motivated,
partly heuristic inference rules. Paramodulation extends resolution by a native treatment of
equality at the calculus level. In the context of first-order logic, it was developed in the
late 1960s by G. Robinson and L. Wos [84] as an attempt to overcome the shortcomings of
resolution-based approaches to handling equality. A paramodulation inference incorporates
the principle of replacing equals by equals and can be regarded as a speculative conditional
rewriting step. In the context of first-order theorem proving, superposition-based calculi
[9,10,78] improve the naive paramodulation approach by imposing ordering restrictions on
the inference rules such that only a relevant subset of all possible inferences are generated.
However, due to the more complex structure of the term language of HOL, there do not
exist suitable term orderings that allow a straightforward adaption of this approach to the
higher-order setting.4 However, there is recent work to overcome this situation by relaxing
restrictions on the employed orderings [15].

4 As a simple counterexample, consider a (strict) term ordering
 for HOL terms that satisfies the usual
properties from first-order superposition (e.g., the subterm property) and is compatible with β-reduction. For
any non-empty signature �, c ∈ �, the chain c ≡β (λ X . c) c
 c can be constructed, implying c
 c and

thus contradicting irreflexivity of
. Note that (λ X . c) c
 c since the right-hand side is a proper subterm of
the left-hand side (assuming an adequately lifted definition of subterm property to HO terms).

123

780 A. Steen, C. Benzmüller

3.1 The EP Calculus

Higher-order paramodulation for extensional type theory was first presented by Benzmüller
[17,18]. This calculus was mainly theoretically motivated and extended a resolution calculus
with a paramodulation rule instead of being based on a paramodulation rule alone. Addition-
ally, that calculus contained a rule that expanded equality literals by their definition due to
Leibniz.5 As Leibniz equality formulas effectively enable cut-simulation [23], the proposed
calculus seems unsuited for automation. The calculus EP presented in the following, in con-
trast, avoids the expansion of equality predicates but adapts the use of dedicated calculus
rules for extensionality principles from Benzmüller [18].

An equation, denoted s � t , is a pair of HOL terms of the same type, where � is assumed
to be symmetric (i.e., s � t represents both s � t and t � s). A literal � is a signed equation,
written [s � t]α , where α ∈ {tt, ff} is the polarity of �. Literals of form [so]α are shorthand
for [so � �]α , and negative literals [s � t]ff are also referred to as unification constraints. A
negative literal � is called a flex–flex unification constraint if � is of the form [X si � Y t j]ff,
where X , Y are variables. A clause C is a multiset of literals, denoting its disjunction. For
brevity, if C,D are clauses and � is a literal, C ∨ � and C ∨ D denote the multi-union C ∪ {�}
and C ∪ D, respectively. s|π is the subterm of s at position π , and s[r]π denotes the term
that is obtained by replacing the subterm of s at position π by r . α-conversion is applied
implicitly to globally and consistently rename bound variables such that it can be assumed
in the following, without loss of generality, that no variable capture occurs. This is always
possible since there are infinitely many different variables of every type.6

The EP calculus can be divided into four groups of inference rules:

3.1.1 Clause normalization

The clausification rules of EP are mostly standard, cf. Fig. 1. Every non-normal clause is
transformed into an equisatisfiable set of clauses in CNF. Multiple conclusions are written
one below the other. Note that the clausification rules are proper inference rules rather than
a dedicated meta-operation. This is due to the fact that non-CNF clauses may be generated
from the application of the remaining inferences rules, hence renormalization during proof
search may be necessary. In the following, we use CNF to refer to the entirety of the CNF
rules.

For the elimination of existential quantifiers, see rule (CNFExists) in Fig. 1, the sound
Skolemization technique of Miller [75,76] is assumed.

3.1.2 Primary inferences

The primary inference rules of EP are paramodulation (Para), equality factoring (EqFac) and
primitive substitution (PS), cf. Fig. 1.

5 The Identity of Indiscernibles (also known as Leibniz’s law) refers to a principle first formulated byGottfried
Leibniz in the context of theoretical philosophy [71]. The principle states that if two objects X and Y coincide
on every property P , then they are equal, i.e., ∀Xτ .∀Yτ . (∀Poτ .P X ⇔ P Y) ⇒ X = Y , where “=” denotes
the desired equality predicate. Since this principle can easily be formulated in HOL, it is possible to encode
equality in higher-order logic without using the primitive equality predicate. An extensive analysis of the
intricate differences between primitive equality and defined notions of equality is presented by Benzmüller et
al. [22] to which the authors refer for further details.
6 In fact, the implementation of Leo-III employs a nameless representation of bound variables such that
variable capture is avoided by design, cf. §4.5 for details.

123

Extensional Higher-Order Paramodulation in Leo-III 781

Fig. 1 Extensionality and unification rules of EP

The paramodulation rule (Para) replaces subterms of literalswithin clauses by (potentially)
equal terms given from a positive equality literal. Since the latter clause might not be a unit
clause, the rewriting step can be considered conditional where the remaining literals represent
the respective additional conditions. Factorization (EqFac) contracts two literals that are
semantically overlapping (i.e., one is more general than the other) but not syntactically
equal. This reduces the size of the clause, given that the unification of the respective two
literals is successful. These two rules introduce unification constraints that are encoded as
negative equality literals: A generating inference is semantically justified if the unification
constraint(s) can be solved. Since higher-order unification is not decidable, these constraints
are explicitly encoded into the result clause for subsequent analysis. Note that a resolution
inference between clauses C ≡ C′ ∨ [p]tt and D ≡ D′ ∨ [p]ff can be simulated by the
(Para) rule as the literals [p]α are actually shorthands for [p � �]α and the clause [� �
�]ff ∨ C′ ∨ D′ ∨ [p � p]ff, which eventually simplifies to C′ ∨ D′, is generated.

Moreover, note that both (Para) and (EqFac) are unordered and produce numerous redun-
dant clauses. In practice, Leo-III tries to remedy this situation by using heuristics to restrict the
number of generated clauses, including a higher-order term ordering, cf. §4. Such heuristics,
e.g., prevent redundant paramodulation inferences between positive propositional literals in
clauses C ∨ [p]tt and D ∨ [q]tt.

The primitive substitution inference (PS) approximates the logical structure of literals
with flexible heads. In contrast to early attempts that blindly guessed a concrete instance
of head variables, (PS) uses so-called general bindings, denoted GBt

τ [33, §2], to step-wise
approximate the instantiated term structure and hence limit the explosive growth of primitive
substitution. Nevertheless, (PS) still enumerates the whole universe of terms but, in practical
applications, often few applications of the rule are sufficient to find a refutation. An example

123

782 A. Steen, C. Benzmüller

Fig. 2 Primary inference rules and extensionality rules of EP

where primitive substitution is necessary is the following: Consider a clause C given by
C ≡ [Po]tt where P is a Boolean variable. This clause corresponds to the formula ∀Po. P
which is clearly not a theorem.Neither (Para) nor (EqFac) or anyother calculus rules presented
so far or further below (except for (PS)) allow to construct a derivation to the empty clause.
However, using (PS), there exists a derivation [P]tt �(PS),(Bind) [¬P ′]tt �CNFNeg [P ′]ff.
Note that {¬P ′/P} is a substitution applying a general binding from GB{¬,∨}∪{
τ ,=τ | τ∈T}

o

that approximates logical negation. Now, a simple refutation involving [P]tt and [P ′]ff can
be found.

3.1.3 Extensionality Rules

The rules (NBE) and (PBE)—for negative resp. positive Boolean extensionality—as well as
(NFE) and (PFE)—for negative resp. positive functional extensionality—are the extension-
ality rules of EP, cf. Fig. 2.
While the functional extensionality rules gradually ground the literals to base types and pro-
vide witnesses for the (in-)equality of function symbols to the search space, the Boolean
extensionality rules enable the application of clausification rules to the Boolean-typed sides
of the literal, thereby lifting them into semantical proof search. These rules eliminate the need
for explicit extensionality axioms in the search space,whichwould enable cut-simulation [23]
and hence drastically hamper proof search.

123

Extensional Higher-Order Paramodulation in Leo-III 783

3.1.4 Unification

The unification rules of EP are a variant of Huet’s unification rules and presented in Fig. 2.
They can be eagerly applied to the unification constraints in clauses. In an extensional setting,
syntactical search for unifiers and semantical proof search coincide, and unification trans-
formations are regarded proper calculus rules. As a result, the unification rules might only
partly solve (i.e., simplify) unification constraints and unification constraints themselves are
eligible to subsequent inferences. The bundled unification rules are referred to as UNI.
A set � of sentences has a refutation in EP, denoted � � �, iff the empty clause can be
derived in EP. A clause is the empty clause, written �, if it contains no or only flex–flex
unification constraints. This is motivated by the fact that flex–flex unification problems can
always be solved, and hence any clause consisting of only flex–flex constraints is necessarily
unsatisfiable [64].

Theorem 1 (Soundness and Completeness of EP) EP is sound and refutationally complete
for HOL with Henkin semantics.

Proof Soundness is guaranteed by [89, Theorem 3.8]. For completeness, the following argu-
ment is used (cf. [89, §3] for the detailed definitions and notions): By [89, Lemma 3.24],
the set of sentences that cannot be refuted in EP is an abstract consistency class [89, Def.
3.11], and by [89, Lemma 3.17] this abstract consistency class can be extended to a Hintikka
set. The existence of a Henkin model that satisfies this Hintikka set is guaranteed by [92,
Theorem 5]. ��

An example for a refutation in EP is given in the following:

Example 1 (Cantor’s Theorem) Cantor’s Theorem states that, given a set A, the power set
of A has a strictly greater cardinality than A itself. The core argument of the proof can be
formalized as follows:

¬∃ foιι.∀Yoι. ∃X ι. f X = Y . (C)

Formula C states that there exists no surjective function f from a set to its power set. A
proof of C in EP makes use of functional extensionality, Boolean extensionality, primitive
substitution as well as non-trivial higher-order pre-unification; it is given below.

By convention, the application of a calculus rule (or of a compound rule) is stated with
the respective premise clauses enclosed in parentheses after the rule name. For rule (PS),
the second argument describes which general binding was used for the instantiation, e.g.,
PS(C,GBt

τ) denotes an instantiation with an approximation of term t for goal type τ .7

7 The set GBtτ of approximating/partial bindings parametric to a type τ = βαn . . . α1 (for n ≥ 0) and
to a constant t of type βγm . . . γ 1 (for m ≥ 0) is defined as follows (for further details see also [88]):
Given a “name” k (where a name is either a constant or a variable) of type βγm . . . γ 1, the term l having
form λ X1

α1
. . . . λ Xn

αn .(k r1 . . . rm) is a partial binding of type βαn . . . α1 and head k. Each r i≤m has form

Hi X1
α1

. . . Xn
αn where H

i≤m are fresh variables typed γ i≤mαn . . . α1. Projection bindings are partial bindings

whose head k is one of Xi≤l . Imitation bindings are partial bindings whose head k is identical to the given
constant symbol t in the superscript of GBtτ . GBtτ is the set of all projection and imitation bindings modulo
type τ and constant t . In our example derivation we twice use imitation bindings of form λ Xι.¬(HoιXι) from
GB¬

oι.

123

784 A. Steen, C. Benzmüller

CNF(¬C) : C1 : [sk1 (sk2 X1) � X1]tt
PFE(C1) : C2 : [sk1 (sk2 X1) X2 � X1 X2]tt
PBE(C2) : C3 : [sk1 (sk2 X1) X2]tt ∨ [X1 X2]ff

C4 : [sk1 (sk2 X3) X4]ff ∨ [X3 X4]tt
PS(C3,GB¬

oι),CNF : C5 : [sk1 (
sk2 (λ Zι.¬(X5 Z))

)
X2]tt ∨ [X5 X2]tt

PS(C4,GB¬
oι),CNF : C6 : [sk1 (

sk2 (λ Zι.¬(X6 Z))
)
X4]ff ∨ [X6 X4]ff

EqFac(C5),UNI : C7 : [sk1 (
sk2 λ Zι.¬(sk1 Z Z)

) (
sk2 λ Zι.¬(sk1 Z Z)

)]tt
EqFac(C6),UNI : C8 : [sk1 (

sk2 λ Zι.¬(sk1 Z Z)
) (

sk2 λ Zι.¬(sk1 Z Z)
)]ff

Para(C7, C8),UNI : �

The Skolem symbols sk1 and sk2 used in the above proof have type oιι and ι(oι), respec-
tively, and the Xi denote fresh free variables of appropriate type. A unifier σC7 generated by
UNI for producing C7 is given by (analogously for C8):

σC7 ≡
{
sk2

(
λ Zι.¬(sk1 Z Z)

)
/X2,

(
λ Zι. sk

1 Z Z
)
/X5

}

Note that, together with the substitution σC3 ≡ {
λ Zι.¬(X5 Z)/X1

}
generated by approx-

imating ¬oo via (PS) on C3, the free variable X1 in C1 is instantiated by σC7 ◦ σC3(X
1) ≡

λ Zι.¬(sk1 Z Z). Intuitively, this instantiation encodes the diagonal set of sk1, given by
{x |x /∈ sk1(x)}, as used in the traditional proofs of Cantor’s Theorem; see, e.g., Andrews [8].

The TSTP representation of Leo-III’s proof for this problem is presented in Fig. 6.

3.2 Extended Calculus

As indicated further above, Leo-III targets automation of HOL with Henkin semantics and
choice. The calculus EP from §3.1, however, does not address choice. To this end, Leo-
III implements several additional calculus rules that either accommodate further reasoning
capabilities (e.g., reasoning with choice) or address the inevitable explosive growth of the
search space during proof search (e.g., simplification routines). The latter kind of rules
are practically motivated, partly heuristic, and hence primarily target technical issues that
complicate effective automation in practice. Note that no completeness claims are made for
the extended calculus with respect to HOL with choice. Furthermore, some of the below
features of Leo-III are unsound with respect to HOL without choice. Since, however, Leo-III
is designed as a prover for HOL with choice, this is not a concern here.

The additional rules address the follows aspects (cf. Steen’s monograph [89, §4.2] for
details and examples):

3.2.1 Improved Clausification

Leo-III employs definitional clausification [106] to reduce the number of clauses created
during clause normalization (replacing, e.g., (a ∧ b∧ c)∨ (d ∧ e∧ f) by (a ∧ b∧ c)∨ r and
r ⇒ (d∧e∧ f) obviously reduces the number of generated clauses).Moreover, miniscoping,
i.e., moving quantifiers inward, is employed prior to clausification.

3.2.2 Clause Contraction

Leo-III implements equational simplification procedures, including subsumption, destructive
equality resolution, heuristic rewriting and contextual unit cutting (simplify-reflect) [85].

123

Extensional Higher-Order Paramodulation in Leo-III 785

These rules contract the search space in a satisfiability-preserving way using simplification
transformations or by removing (redundant) clauses from the search space altogether.

3.2.3 Defined Equalities

Common notions of defined equality predicates (e.g., Leibniz equality andAndrews equality)
are heuristically replaced with primitive equality predicates. For example, an axiom (Leibniz
equation) of form ∀Poι.¬P a ∨ P b gets replaced by a = b. This is motivated by the fact
that formulas of the former form, but not the latter, enable cut-simulation [23] and thus
significantly increase the search space.

3.2.4 Choice

Leo-III implements additional calculus rules for reasoning with choice, i.e., with statements
of the form εP , where Poτ is a predicate on terms of some type τ ∈ T and ε is an (indefinite)
choice operator. To that end, the calculus rules will insert additional clauses to the search
space that instantiate the axiom of choice for the respective predicate at hand.

3.2.5 Function Synthesis

If plain unification fails for a set of unification constraints, Leo-III may try to synthesize
functions that meet the specifications represented by the unification constraint. This is done
using special choice instances that simulate if-then-else terms which explicitly enumerate
the desired input output relation of that function. In general, this rule tremendously increases
the search space, but it also enables Leo-III to solve some hard problems with TPTP rating
1.0 that were not solved by any ATP system before. As an example, function synthesis will
generate the function term λ X ι. ε

(
λ Zι. ((X = a) ⇒ (Z = b)) ∧ ((X = b) ⇒ (Z = a))

)

for the proof problem ∃Fιι. (F a = b)∧(F b = a); this function termwitnesses the existence
of a function F that returns a for argument b and vice versa, and it is then used in the proof.

3.2.6 Injective Functions

Leo-III addresses improved reasoning with injective functions by postulating the existence of
left inverses for function symbols that are inferred to be injective. An exemplary application
of this inference rule is depicted in Example 2.

3.2.7 Further Rules

Prior to clause normalization, Leo-III might instantiate universally quantified variables with
heuristically chosen terms. This includes the exhaustive instantiation of finite types (such
as o and oo) as well as partial instantiation for other interesting types (such as oτ for some
type τ). A universally quantified formula of form ∀Poo.P t , for example, might get replaced
by (λ Xo.X) t ∧ (λ Xo.¬X) t ∧ (λ Xo.�) t ∧ (λ Xo.⊥) t . The addition of the above calculus
rules to EP in Leo-III enables the system to solve various problems that can otherwise not
be solved (in reasonable resource limits). An example problem that could not be solved by
any higher-order ATP system before is the following, cf. [6, Problem X5309]:

123

786 A. Steen, C. Benzmüller

Example 2 (Cantor’s Theorem, revisited) Another possibility to encode Cantor’s Theorem is
by using a formulation based on injectivity:

¬(∃ fι(oι).∀Xoι.∀Yoι. (f X = f Y) ⇒ X = Y
)

(C’)

Here, the nonexistence of an injective function from a set’s power set to the original set is
postulated. This conjecture can easily be proved using Leo-III’s injectivity rule (INJ) that,
given a fact stating that some function symbol f is injective, introduces the left inverse of
f , say f inv, as fresh function symbol to the search space. The advantage is that f inv is then
available to subsequent inferences and can act as an explicit evidence for the (assumed)
existence of such a function which is then refuted. The full proof of C’ is as follows:

CNF(¬C’) : C0 : [sk X1 � sk X2]ff ∨ [X1 � X2]tt
PFE(C0) : C1 : [sk X1 � sk X2]ff ∨ [X1 X3 � X2 X3]tt
INJ(C0) : C2 : [skinv (sk X4) � X4]tt
PFE(C2) : C3 : [skinv (sk X4) X5 � X4 X5]tt
Para(C3, C1) : C4 : [sk X1 � sk X2]ff ∨ [X1 X3 � X4 X5]tt∨

[skinv (sk X4) X5 � X2 X3]ff
UNI(C4) : C5 : [skinv (

sk (X7 X3)
)

(X6 X3) � X7 X3 (X6 X3)]tt
PBE(C3) : C6 : [skinv (sk X4) X5]ff ∨ [X4 X5]tt
PS(C6,GB¬

oι),CNF : C7 : [skinv (sk (λ Zι.¬(X6 Z))) X5]ff ∨ [X6 X5]ff
EqFac(C7),UNI,CNF : C8 : [skinv (

sk λ Zι.¬(skinv Z Z)
) (

sk λ Zι.¬(skinv Z Z)
)]ff

Para(C5, C8),UNI, CNF : C9 : [skinv (
sk λ Zι.¬(skinv Z Z)

) (
sk λ Zι.¬(skinv Z Z)

)]tt
Para(C9, C8),UNI : �
The introduced Skolem symbol sk is of type ι(oι) and its (assumed) left inverse, denoted
skinv of type oιι, is inferred by (INJ) based on the injectivity specification given by clause
C0. The inferred property of skinv is given by C2. The injective Cantor’s Theorem is part of
the TPTP library as problem SYO037^1 and could not be solved by any existing HO ATP
system before.

4 System Architecture and Implementation

As mentioned before, the main goal of the Leo-III prover is to achieve effective automa-
tion of reasoning in HOL, and, in particular, to address the shortcomings of resolution-based
approaches when handling equality. To that end, the implementation of Leo-III uses the com-
plete EP calculus presented in §3 as a starting point, and furthermore implements the rules
from §3.2. Although EP is still unordered and Leo-III therefore generally suffers from the
same drawbacks as experienced in first-order paramodulation, including state space explo-
sions and a prolific proof search, the idea is to use EP anyway as a basis for Leo-III and
to pragmatically tackle the problems with additional calculus rules (cf. §3.2), and optimiza-
tions and heuristics on the implementation level. As a further technical adjustment, the term
representation data structures of Leo-III do not assume primitive equality to be the only
primitive logical connective. While this is handy from a theoretical point of view, an explicit
representation of further primitive logical connectives is beneficial from a practical side.

An overview of Leo-III’s top level architecture is displayed in Fig. 3. After parsing the
problem statement, a symbol-based relevance filter adopted from Meng and Paulson [74] is
employed for premise selection. The input formulas that pass the relevance filter are translated

123

Extensional Higher-Order Paramodulation in Leo-III 787

Fig. 3 Schematic diagramofLeo-III’s architecture. The arrows indicate directed informationflow.The external
reasoners are executed asynchronously (non-blocking) as dedicated processes of the operating system

into polymorphically typed λ-terms (Interpreter) and are then passed to the Proof Search
component. In this component, the main top-level proof search algorithm is implemented.
Subsequent to initial preprocessing, this algorithm repeatedly invokes procedures from a
dedicated component, denoted Control, that acts as a facade to the concrete calculus rules,
and moreover manages, selects and applies different heuristics that may restrict or guide
the application of the calculus rules. These decisions are based on current features of the
proof search progress and user-provided parameter values; such information is bundled in a
dedicated State object. If the proof search is successful, the Proof Search component may
output a proof object that is constructed by the Control module on request. Indexing data
structures are employed for speeding up frequently used procedures.

Note that the proof search procedure itself does not have direct access to the Calculus
module in Fig. 3: Leo-III implements a layered multi-tier architecture in which lower tiers
(e.g., the Calculus component) are only accessed through a higher tier (e.g., the Control). This
allows for a modular and more flexible structure in which single components can be replaced
or enriched without major changes to others. It furthermore improves maintainability as
individual components implement fewer functionality (separation of concerns). Following
this approach, the Calculus component merely implements the inference rules of Leo-III’s
calculus but it does not specify when to apply them, nor does it provide functionality to
decide whether individual calculus rules should be applied in a given situation (e.g., with
respect to some heuristics). The functions provided by this module are low-level; invariantly,
there are approximately as many functions in the Calculus module as there are inference
rules. The Control component, in contrast, bundles certain inference rule applications with
simplification routines, indexing data structure updates and heuristic decision procedures in
single high-level procedures. These procedures are then invoked by the Proof Search which
passes its current search state as an argument to the calls. The State component is then updated
accordingly by the Proof Search using the results of such function calls. The Proof Search
module implements a saturation loop that is discussed further below.

Leo-III makes use of external (mostly first-order) ATP systems for discharging proof
obligations. If any external reasoning system finds the submitted proof obligation to be
unsatisfiable, the original HOL problem is unsatisfiable as well and a proof for the original

123

788 A. Steen, C. Benzmüller

conjecture is found. Invocation, translation and utilization of the external results are also
bundled by the Control module, cf. further below for details.

4.1 Proof Search

The overall proof search procedure of Leo-III consists of three consecutive phases: prepro-
cessing, saturation and proof reconstruction.

During preprocessing, the input formulas are transformed into a fully Skolemized
βη-normal clausal normal form. In addition, methods including definition expansion, sim-
plification, miniscoping, replacement of defined equalities and clause renaming [106] are
applied, cf. Steen’s thesis for details [89].

Saturation is organized as a sequential procedure that iteratively saturates the set of input
clauses with respect to EP (and its extensions) until the empty clause is derived. The clausal
search space is structured using two sets U and P of unprocessed clauses and processed
clauses, respectively. Initially, P is empty and U contains all clauses generated from the
input problem. Intuitively, the algorithm iteratively selects an unprocessed clause g (the given
clause) from U . If g is the empty clause, the initial clause set is shown to be inconsistent
and the algorithm terminates. If g is not the empty clause, all inferences involving g and
(possibly) clauses in P are generated and inserted into U . The resulting invariant is that
all inferences between clauses in P have already been performed. Since in most cases the
number of clauses that can be generated during proof search is infinite, the saturation process
is limited artificially using time resource bounds that can be configured by the user.

Leo-III employs a variant of the DISCOUNT [54] loop that has its intellectual roots
in the E prover [85]. Nevertheless, some modifications are necessary to address the specific
requirements of reasoning in HOL. Firstly, since formulas can occur within subterm positions
and, in particular, within proper equalities, many of the generating and modifying inferences
may produce non-CNF clauses albeit having proper clauses as premises. This implies that,
during a proof loop iteration, potentially every clause needs to be renormalized. Secondly,
since higher-order unification is undecidable, unification procedures cannot be used as an
eager inference filtering mechanism (e.g., for paramodulation and factoring) nor can they be
integrated as an isolated procedure on the meta-level as done in first-order procedures. As
opposed to the first-order case, clauses that have unsolvable unification constraints are not
discarded but nevertheless inserted into the search space. This is necessary in order to retain
completeness.

If the empty clause was inferred during saturation and the user requested a proof output, a
proof object is generated using backward traversal of the respective search subspace. Proofs
in Leo-III are presented as TSTP refutations [97], cf. §4.4 for details.

4.2 Polymorphic Reasoning

Proof assistants such as Isabelle/HOL [79] and Coq [37] are based on type systems that
extend simple types with, e.g., polymorphism, type classes, dependent types and further type
concepts. Such expressive type systems allow structuring knowledge in terms of reusability
and are of major importance in practice.

Leo-III supports reasoning in first-order and higher-order logicwith rank-1 polymorphism.
The support for polymorphism has been strongly influenced by the recent development of
the TH1 format for representing problems in rank-1 polymorphic HOL [67], extending the
standard THF syntax [100] for HOL. The extension of Leo-III to polymorphic reasoning

123

Extensional Higher-Order Paramodulation in Leo-III 789

does not require modifications of the general proof search process as presented further above.
Also, the data structures of Leo-III are already expressive enough to represent polymorphic
formulas, cf. technical details in earlier work [94].

Central to the polymorphic variant of Leo-III’s calculus is the notion of type unification.
Type unification between two types τ and ν yields a substitution σ such that τσ ≡ νσ , if
such a substitution exists. The most general type unifier is then defined analogously to term
unifiers. Since unification on rank-1 polymorphic types is essentially a first-order unification
problem, it is decidable and unitary, i.e., it yields a unique most general unifier if one exists.
Intuitively, whenever a calculus rule of EP requires two premises to have the same type, it
then suffices in the polymorphic extension of EP to require that the types are unifiable. For
a concrete inference, the type unification is then applied first to the clauses, followed by the
standard inference rule itself.

Additionally, Skolemization needs to be adapted to account for free type variables in
the scope of existentially quantified variables. As a consequence, Skolem constants that are
introduced, e.g., during clausification are polymorphically typed symbols sk that are applied
to the free type variables αi followed by the free term variables Xi , yielding the final Skolem
term (sk αi X i), where sk is the fresh Skolem constant. A similar construction is used for
general bindings that are employed by primitive substitution or projection bindings during
unification. A related approach is employed by Wand in the extension of the first-order ATP
system SPASS to polymorphic types [103].

A full investigation of the formal properties of these calculus extensions to polymorphic
HOL is further work.

4.3 External Cooperation

Leo-III’s saturation procedure periodically requests the invocation of external reasoning
systems at the Controlmodule for discharging proof obligations that originate from its current
search space. Upon request the Control module checks, among other things, whether the set
of processed clauses P changed significantly since the last request. If this is the case and
the request is granted, the search space is enqueued for submission to external provers. If
there are no external calls awaiting to be executed, the request is automatically granted.
This process is visualized in Fig. 4. The invocation of an external ATP system is executed
asynchronously (non-blocking), hence the internal proof search continues while awaiting
the result of the external system. Furthermore, as a consequence of the non-blocking nature
of external cooperation, multiple external reasoning systems (or multiple instances of the
same) may be employed in parallel. To that end, a dedicated I/O driver is implemented that
manages the asynchronous calls to external processes and collects the incoming results.

The use of different external reasoning systems is also challenging from a practical per-
spective: Different ATP systems support different logics and furthermore different syntactical
fragments of these logics. This is addressed in Leo-III using an encodingmodule (cf.Encoder
in Fig. 3 resp. Fig. 4) that translates the polymorphically typed higher-order clauses to
monomorphic higher-order formulas, or to polymorphic or monomorphic typed first-order
clauses. It also removes unsupported language features and replaces them with equivalent
formulations. Figure 5 displays the translation pipeline of Leo-III for connecting to external
ATP systems. The Control module of Leo-III will automatically select the encoding target
to be the most expressive logical language that is still supported by the external system [95].
The translation process combines heuristic monomorphization [42,46] steps with standard
encodings of higher-order language features [73] in first-order logic. For some configura-

123

790 A. Steen, C. Benzmüller

Fig. 4 Invocation of external reasoning systems during proof search. The solid arrows denote data flow through
the respective modules of Leo-III. A dotted line indicates indirect use of auxiliary information. Postponed
calls are selected by the I/O driver after termination of outstanding external calls

Fig. 5 Translation process in the encoder module of Leo-III. Depending on the supported logic fragments
of the respective external reasoner, the clause set is translated to different logic formalisms: Polymorphic
HOL (TH1), monomorphic HOL (TH0), polymorphic first-order logic (TF1) or monomorphic (many-sorted)
first-order logic (TF0)

tions, there are multiple possible approaches (e.g., either monomorphize from TH1 to TH0
and then encode to TF1, or encode directly to TF1), in these cases a default is fixed but the
user may choose otherwise via command-line parameters.

While LEO-II relied on cooperation with untyped first-order provers, Leo-III aims at
exploiting the relatively young support of simple types in first-order ATP systems. As a
consequence, the translation of higher-order proof obligations does not require the encoding
of types as terms, e.g., by type guards or type tags [42,52]. This approach reduces clutter
and hence promises more effective cooperation. Cooperation within Leo-III is by no means
limited to first-order provers. Various different systems, including first-order and higher-
order ATP systems and model finders, can in fact be used simultaneously, provided that they
complywith some commonTPTP language standard. Supported TPTP languages for external
cooperation include the TPTP dialects TF0 [101], TF1 [44], TH0 [100] and TH1 [67].

4.4 Input and Output

Leo-III accepts all commonTPTPdialects [99], including untyped clause normal form (CNF),
untyped and typed first-order logic (FOF and TFF, respectively) and, as primary input format,
monomorphic higher-order logic (THF) [100]. Additionally, Leo-III is one of the first higher-
order ATP systems to support reasoning in rank-1 polymorphic variants of these logics using
the TF1 [44] and TH1 [67] languages.

123

Extensional Higher-Order Paramodulation in Leo-III 791

Leo-III rigorously implements the machine-readable TSTP result standard [97] and
hence outputs appropriate SZS ontology values [98]. The use of the TSTP output format
allows for simple means of communication and exchange of reasoning results between
different reasoning tools and, consequently, eases the employment of Leo-III within exter-
nal tools. Novel to the list of supported SZS result values for the Leo prover family is
ContradictoryAxioms [98], which is reported if the input axioms were found to be
inconsistent during the proof run (i.e., if the empty clause could be derived without using the
conjecture even once). Using this simple approach, Leo-III identified 15 problems from the
TPTP library to be inconsistent without any special setup.

Additional to the above described SZS result value, Leo-III produces machine-readable
proof certificates if a proof was found and such a certificate has been requested. Proof cer-
tificates are an ASCII encoded, linearized, directed acyclic graph (DAG) of inferences that
refutes the negated input conjecture by ultimately generating the empty clause. The root
sources of the inference DAG are the given conjecture (if any) and all axioms that have
been used in the refutation. The proof output records all intermediate inferences. The rep-
resentation again follows the TSTP format and records the inferences using annotated THF
formulas. Due to the fine granularity of Leo-III proofs, it is often possible to verify them
step-by-step using external tools such as GDV [96]. A detailed description of Leo-III’s proof
output format and the information contained therein can be found in Steen’s Ph.D. thesis [89,
§4.5]. An example of such a proof output is displayed in Fig. 6.

4.5 Data Structures

Leo-III implements a combination of term representation techniques; term data structures are
provided that admit expressive typing, efficient basic term operations and reasonablememory
consumption [32]. Leo-III employs a so-called spine notation [50], which imitates first-order-
like terms in a higher-order setting. Here, terms are either type abstractions, term abstractions
or applications of the form f · (s1; s2; . . .), where the head f is either a constant symbol, a
bound variable or a complex term, and the spine (s1; s2; . . .) is a linear list of arguments that
are, again, spine terms. Note that if a term is β-normal, f cannot be a complex term. This
observation leads to an internal distinction between β-normal and (possibly) non-β-normal
spine terms. The first kind has an optimized representation, where the head is only associated
with an integer representing a constant symbol or variable.

Additionally, the term representation incorporates explicit substitutions [1]. In a setting of
explicit substitutions, substitutions are part of the term language and can thus be postponed
and composed before being applied to the term. This technique admits more efficient β-
normalization and substitution operations as terms are traversed only once, regardless of the
number of substitutions applied.

Furthermore, Leo-III implements a locally nameless representation using de Bruijn
indices [49]. In the setting of polymorphism [94], types may also contain variables. Con-
sequently, the nameless representation of variables is extended to type variables [68]. The
definition of de Bruijn indices for type variables is analogous to the one for term variables.
In fact, since only rank-1 polymorphism is used, type indices are much easier to manage
than term indices. This is due to the fact that there are no type quantifications except for
those on top level. One of the most important advantages of nameless representations over
representations with explicit variable names is that α-equivalence is reduced to syntactical
equality, i.e., two terms are α-equivalent if and only if their nameless representations are
equal.

123

792 A. Steen, C. Benzmüller

Fig. 6 Proof output of Leo-III for the polymorphic variant (TH1 syntax) of the surjective variant of Cantor’s
Theorem

Terms are perfectly shared within Leo-III, meaning that each term is only constructed
once and then reused between different occurrences. This reduces memory consumption in
large knowledge bases and it allows constant time term comparison for syntactic equality
using the term’s pointer to its unique physical representation. For fast basic term retrieval
operations (such as access of a head symbol and subterm occurrences) terms are kept in
β-normal η-long form.

A collection of basic data structures and algorithms for the implementation of higher-order
reasoning systems has been isolated from the implementation of Leo-III into a dedicated
framework called LeoPARD [104], which is freely available at GitHub.8 This framework
provides many stand-alone components, including a term data structure for polymorphic λ-
terms, unification and subsumption procedures, parsers for all TPTP languages, and further
utility procedures and pretty printers for TSTP compatible proof representations.

8 Leo’s Parallel Architecture and Datastructures (LeoPARD) can be found at https://github.com/leoprover/
LeoPARD.

123

https://github.com/leoprover/LeoPARD
https://github.com/leoprover/LeoPARD

Extensional Higher-Order Paramodulation in Leo-III 793

Fig. 7 A corollary of Becker’s postulate formulated in modal THF, representing the formula
∀Poι.∀Fιι. ∀Xι. ∃Gιι. (♦�P(F(X)) ⇒ �P(G(X))). The first statement specifies the modal logic to be
logic S5 with constant domain quantification, rigid constant symbols and a global consequence relation

5 Reasoning in Non-classical Logics

Computer-assisted reasoning in non-classical logics (NCL) is of increasing relevance for
applications in artificial intelligence, computer science, mathematics and philosophy. How-
ever, with a few exceptions, most of the available reasoning systems focus on classical logics
only, including common contemporary first-order and higher-order theorem proving systems.
In particular for quantified NCLs there are only very few systems available to date.

As an alternative to the development of specialized theorem proving systems, usually
one for each targeted NCL, a shallow semantical embedding (SSE) approach allows for a
simple adaptation of existing higher-order reasoning systems to a broad variety of expressive
logics [21]. In the SSE approach, the non-classical target logic is shallowly embedded in
HOL by providing a direct encoding of its semantics, typically a set theoretic or relational
semantics, within the term language of HOL. As a consequence, showing validity in the
target logic is reduced to higher-order reasoning and HOL ATP systems can be applied for
this task. Note that this technique, in principle, also allows off-the-shelf automation even
for quantified NCLs as quantification and binding mechanisms of the HOL meta-logic can
be utilized. This is an interesting option in many application areas, e.g., in ethical and legal
reasoning, as the respective communities do not yet agree on which logical system should
actually be preferred. The resource-intensive implementation of dedicated new provers for
each potential system is not an adequate option for rapid prototyping of prospective candidate
logics and can be avoided using SSEs.

Leo-III is addressing this gap. In addition to its HOL reasoning capabilities, it is the
first system that natively supports reasoning in a wide range of normal higher-order modal
logics (HOMLs) [59]. To achieve this, Leo-III internally implements the SSE approach for
quantified modal logics based on their Kripke-style semantics [28,40].

Quantified modal logics are associated with many different notions of semantics [40].
Differences may, e.g., occur in the interaction between quantifiers and the modal operators,
as expressed by the Barcan formulas [12], or regarding the interpretation of constant symbols
as rigid or non-rigid. Hence, there are various subtle but meaningful variations in multiple
individual facets of which many combinations yield a distinct modal logic. Since many of
those variations have their particular applications, there is no reasonably small subset of
generally preferred modal logics to which a theorem proving system should be restricted.
This, of course, poses a major practical challenge. Leo-III, therefore, supports all quantified
Kripke-complete normal modal logics [59]. In contrast, other ATP systems for (first-order)
quantifiedmodal logics such asMleanCoP [80] andMSPASS [66] only support a comparably
small subset of all possible semantic variants.

Unlike in classical logic, a problem statement comprised only of axioms and a conjecture
to prove does not yet fully specify a reasoning task in quantified modal logic. It is neces-
sary to also explicitly state the intended semantical details in which the problem is to be
attacked. This is realized by including a meta-logical specification entry in the header of the

123

794 A. Steen, C. Benzmüller

Fig. 8 Schematic structure of the embedding preprocessing procedure in Leo-III

modal logic problem file in form of a TPTP THF formula of role logic. This formula then
specifies respective details for each relevant semantic dimension, cf. [58] for more details on
the specification syntax. An example is displayed in Fig. 7. The identifiers $constants,
$quantification and $consequence in the given case specify that constant sym-
bols are rigid, that the quantification semantics is constant domain, and that the consequence
relation is global, respectively, and $modalities specify the properties of the modal con-
nectives by means of fixed modal logic system names, such as S5 in the given case, or,
alternatively, by listing individual names of modal axiom schemes. This logic specification
approach was developed in earlier work [105] and subsequently improved and enhanced to
a work-in-progress TPTP language extension proposal.9

When being invoked on a modal logic problem file as displayed in Fig. 7, Leo-III parses
and analyses, the logic specification part, automatically selects and unfolds the corresponding
definitions of the SSE approach, adds appropriate axioms and then starts reasoning in (meta-
logic) HOL. This process is visualized in Fig. 8. Subsequently, Leo-III returns SZS compliant
result information and, if successful, also aproof object inTSTP format.Leo-III’s proof output
for the example from Fig. 7 is displayed in Appendix 1; it shows the relevant SSE definitions
that have been automatically generated by Leo-III according to the given logic specification,
and this file can be verified by GDV [99]. Previous experiments [30,59] have shown that the
SSE approach offers an effective automation of embedded non-classical logics for the case
of quantified modal logics.

As of version 1.2, Leo-III supports, but is not limited to, first-order and higher-order
extensions of the well-known modal logic cube [40]. When taking the different parameter
combinations into account this amounts to more than 120 supported HOMLs. The exact
number of supported logics is in fact much higher, since Leo-III also supports multi-modal
logics with independent modal system specification for each modality. Also, user-defined
combinations of rigid and non-rigid constants and different quantification semantics per type
domain are possible. In addition to modal logic reasoning, Leo-III also integrates SSEs of
deontic logics [24].

6 Evaluation

In order to quantify the performance of Leo-III, an evaluation based on various benchmarks
was conducted, cf. [91]. Three benchmark data sets were used:

– TPTP TH0 (2463 problems) is the set of all monomorphic HOL (TH0) problems from
the TPTP library v7.0.0 [99] that are annotated as theorems. The TPTP library is a de
facto standard for the evaluation of ATP systems.

9 See http://tptp.org/TPTP/Proposals/LogicSpecification.html.

123

http://tptp.org/TPTP/Proposals/LogicSpecification.html

Extensional Higher-Order Paramodulation in Leo-III 795

– TPTP TH1 (442 problems) is the subset of all 666 polymorphic HOL (TH1) problems
from TPTP v7.0.0 that are annotated as theorems and do not contain arithmetic. The
problems mainly consist of HOL Light core exports and Sledgehammer translations of
various Isabelle/HOL theories.

– QMLTP (580 problems) is the subset of all mono-modal benchmarks from the QMLTP
library 1.1 [82]. The QMLTP library only contains propositional and first-order modal
logic problems. Since each problemmay have a different validity status for each semantic
notion of modal logic, all problems are selected. The total number of tested benchmarks
in this category thus is 580 (raw problems) × 5 (modal systems) × 3 (quantification
semantics). QMLTP assumes rigid constant symbols and a local consequence relation;
this is adopted here.

The evaluation measurements were taken on the StarExec cluster in which each compute
node is a 64 bit Red Hat Linux (kernel 3.10.0) machine with 2.40GHz quad-core processors
and a main memory of 128GB. For each problem, every prover was given a CPU time limit
of 240 s. The following theorem provers were employed in one or more of the benchmark sets
(indicated in parentheses): Leo-III 1.2 (TH0, TH1, QMLTP) used with E, CVC4 and iProver
as external first-order ATP systems, Isabelle/HOL 2016 [79] (TH0, TH1), Satallax 3.0 [47]
(TH0), Satallax 3.2 (TH0), LEO-II 1.7.0 (TH0), Zipperposition 1.1 (TH0) and MleanCoP
1.3 [80] (QMLTP).

The experimental results are discussed next; additional details on Leo-III’s performance
are presented in Steen’s thesis [89].

6.1 TPTP TH0

Table 1a displays each system’s performance on the TPTP TH0 data set. For each system,
the absolute number (Abs.) and relative share (Rel.) of solutions are displayed. Solution
here means that a system is able to establish the SZS status Theorem and also emits a
proof certificate that substantiates this claim. All results of the system, whether successful or
not, are counted and categorized as THM (Theorem), CAX (ContradictoryAxioms),
GUP (GaveUp) and TMO (TimeOut) for the respective SZS status of the returned result.10

Additionally, the average and sum of all CPU times andwall clock (WC) times over all solved
problems are presented.

Leo-III successfully solves 2053 of 2463 problems (roughly 83.39%) from the TPTP TH0
data set. This is 735 (35.8%) more than Zipperposition, 264 (12.86%) more than LEO-II
and 81 (3.95%) more than Satallax 3.0. The only ATP system that solves more problems is
the most recent version of Satallax (3.2) that successfully solves 2140 problems, which is
approximately 4.24% more than Leo-III. Isabelle currently does not emit proof certificates
(hence zero solutions). Even if results without explicit proofs are counted, Leo-III would still
have a slightly higher number of problems solved than Satallax 3.0 and Isabelle/HOL with
25 (1.22%) and 31 (1.51%) additional solutions, respectively.

Leo-III, Satallax (3.2), Zipperposition and LEO-II produce 18, 17, 15 and 3 unique solu-
tions, respectively. Evidently, Leo-III currently produces more unique solutions than any
other ATP system in this setting.

10 Remark on CAX: In this special case of THM (theorem), the given axioms are inconsistent so that anything
follows, including the given conjecture. Hence, it is counted against solved problems.

123

796 A. Steen, C. Benzmüller

Table 1 Detailed result of the benchmark measurements

Systems Solutions SZS results Avg. time [s] � Time [s]
Abs. Rel. THM CAX GUP TMO CPU WC CPU WC

(a) TPTP TH0 data set (2463 problems)

Satallax 3.2 2140 86.89 2140 0 2 321 12.26 12.31 26238 26339

Leo-III 2053 83.39 2045 8 16 394 15.39 5.61 31490 11508

Satallax 3.0 1972 80.06 2028 0 2 433 17.83 17.89 36149 36289

LEO-II 1788 72.63 1789 0 43 631 5.84 5.96 10452 10661

Zipperposition 1318 53.51 1318 0 360 785 2.60 2.73 3421 3592

Isabelle/HOL 0 0.00 2022 0 1 440 46.46 33.44 93933 67610

(b) TPTP TH1 data set (442 problems)

Leo-III 185 41.86 183 2 8 249 49.18 24.93 9099 4613

Isabelle/HOL 0 0.00 237 0 23 182 93.53 81.44 22404 19300

Leo-III solves twelve problems that are currently not solved by any other system indexed
by TPTP.11

Satallax, LEO-II and Zipperposition show only small differences between their individual
CPU and WC time on average and sum. A more precise measure for a system’s utilization
of multiple cores is the so-called core usage. It is given by the average of the ratios of used
CPU time to used wall clock time over all solved problems. The core usage of Leo-III for
the TPTP TH0 data set is 2.52. This means that, on average, two to three CPU cores are
used during proof search by Leo-III. Satallax (3.2), LEO-II and Zipperposition show a quite
opposite behavior with core usages of 0.64, 0.56 and 0.47, respectively.

6.2 TPTP TH1

Currently, there exist only a few ATP systems that are capable of reasoning within poly-
morphic HOL as specified by TPTP TH1. The only exceptions are HOL(y)Hammer and
Isabelle/HOL that schedule proof tactics within HOL Light and Isabelle/HOL, respectively.
Unfortunately, only Isabelle/HOL was available for experimentation in a reasonably recent
and stable version.

Table 1b displays the measurement results for the TPTP TH1 data set. When disregarding
proof certificates, Isabelle/HOL finds 237 theorems (53.62%) which is roughly 28.1% more
than the number of solutions founds by Leo-III. Leo-III and Isabelle/HOL produce 35 and
69 unique solutions, respectively.

6.3 QMLTP

For each semantical setting supported by MleanCoP, which is the strongest first-order modal
logic prover available to date [27], the number of theorems found by both Leo-III andMlean-
CoP in the QMLTP data set is presented in Fig. 9.

11 This information is extracted from the TPTP problem rating information that is attached to each
problem. The unsolved problems are NLP004^7, SET013^7, SEU558^1, SEU683^1, SEV143^5,
SYO037^1, SYO062^4.004, SYO065^4.001, SYO066^4.004, MSC007^1.003.004, SEU938^5
and SEV106^5.

123

Extensional Higher-Order Paramodulation in Leo-III 797

Fig. 9 Comparison of Leo-III and MleanCoP on the QMLTP data set (580 problems)

Leo-III is fairly competitivewithMleanCoP (weaker bymaximal 14.05%,minimal 2.95%
and 8.90% on average) for all D and T variants. For all S4 variants, the gap between both
systems increases (weaker by maximal 20.00%, minimal 13.66% and 16.18% on average).
For S5 variants, Leo-III is very effective (stronger by 1.36% on average), and it is ahead
of MleanCoP for S5/const and S5/cumul (which coincide). This is due to the encoding of
the S5 accessibility relation in Leo-III 1.2 as the universal relation between possible worlds
as opposed to its prior encoding as an equivalence relation [59]. Note that this technically
changes the possible models, but it does not change the set of valid theorems. Leo-III con-
tributes 199 solutions to previously unsolved problems.

6.4 On Polymorphism

The GRUNGE evaluation by Brown et al. [48] aims at comparing ATP systems across dif-
ferent supported logics. For this purpose, theorems from the HOL4 standard library [87]
are translated into multiple different logical formalisms, including untyped first-order logic,
typed first-order logic (with and without polymorphic types) and higher-order logic (with and
without polymorphic types) using the different TPTP language dialects as discussed in §4.4.
Of the many first-order and higher-order ATP systems that are evaluated on these data sets,
Leo-III is one of the few to support polymorphic types.12 This seems to be a major strength
in the context of GRUNGE: Leo-III is identified as the most effective ATP system overall in
terms of solved problems in any formalism, with approx. 19% more solutions than the next
best system, and as the best ATP system in all higher-order formalisms, with up to 94%more
solutions than the next best higher-order system. Remarkably, it can be seen that over 90%
of all solved problems in the GRUNGE evaluation are contributed by Leo-III on the basis
of the polymorphic higher-order data set, and the next best result in any other formalism is
down by approx. 25%.

This suggests that reasoning in polymorphic formalisms is of particular benefit for appli-
cations inmathematics and, possibly, further domains. For systemswithout native support for
(polymorphic) types, types are usually encoded as terms, or they are removed by monomor-
phization. This increases the complexity of the problem representation and decreases

12 HOLyHammer (HOL ATP) and Zipperposition (first-order ATP) are the only other systems supporting
polymorphism.

123

798 A. Steen, C. Benzmüller

reasoning effectivity. Leo-III, on the other hand, handles polymorphic types natively and
requires no such indirection.

7 Conclusion and FutureWork

Leo-III is an ATP system for classical HOL with Henkin semantics, and it natively sup-
ports also various propositional and quantified non-classical logics. This includes typed and
untyped first-order logic, polymorphic HOL and a wide range of HOMLs, which makes
Leo-III, up to our knowledge, the most widely applicable theorem proving system available
to date. Recent evaluations show that Leo-III is very effective (in terms of problems solved)
and that in particular its extension to polymorphic HOL is practically relevant.

Future work includes extensions and specializations of Leo-III for selected deontic log-
ics and logic combinations, with the ultimate goal to support the effective automation of
normative reasoning. Additionally, stemming from the success of polymorphic reasoning in
Leo-III, a polymorphic adaption of the shallow semantical embedding approach for modal
logics is planned, potentially improving modal logic reasoning performance.

Leo-III Proof of Fig. 7

% S ZS s t a t u s T h e o r e m f or b e c k e r . p
% S ZS o u t p u t s t a r t C N F R e f u t a t i o n fo r b e c k e r . p
thf (m w o r l d _ t y p e , type ,(

m w o r l d : $ t T y p e)).

thf (m r e l _ t y p e , type ,(
m r e l : m w o r l d > m w o r l d > $o)).

thf (m e u c l i d e a n _ t y p e , type ,(
m e u c l i d e a n : (m w o r l d > m w o r l d > $o) > $o)).

thf (m e u c l i d e a n _ d e f , d e f i n i t i o n ,
(m e u c l i d e a n
= (^ [A : m w o r l d > m w o r l d > $o] :

! [B : mworld , C : mworld , D : m w o r l d] :
(((A @ B @ C)

& (A @ B @ D))
= > (A @ C @ D))))).

thf (m v a l i d _ t y p e , type ,(
m v a l i d : (m w o r l d > $o) > $o)) .

thf (m v a l i d _ d e f , d e f i n i t i o n ,
(m v a l i d
= (^ [A : m w o r l d > $o] :

! [B : m w o r l d] :
(A @ B)))).

thf (m i m p l i e s _ t y p e , type ,(
m i m p l i e s : (m w o r l d > $o) > (m w o r l d > $o)
> m w o r l d > $o)).

thf (m i m p l i e s _ d e f , d e f i n i t i o n ,
(m i m p l i e s
= (^ [A : m w o r l d > $o , B : m w o r l d > $o , C : m w o r l d] :

((A @ C)
= > (B @ C))))).

thf (m d i a _ t y p e , type ,(

123

Extensional Higher-Order Paramodulation in Leo-III 799

m d i a : (m w o r l d > $o) > m w o r l d > $o)).

thf (m d i a _ d e f , d e f i n i t i o n ,
(m d i a
= (^ [A : m w o r l d > $o , B : m w o r l d] :

? [C : m w o r l d] :
((m r e l @ B @ C)
& (A @ C))))).

thf (m b o x _ t y p e , type ,(
m b o x : (m w o r l d > $o) > m w o r l d > $o)).

thf (m b o x _ d e f , d e f i n i t i o n ,
(m b o x
= (^ [A : m w o r l d > $o , B : m w o r l d] :

! [C : m w o r l d] :
((m r e l @ B @ C)

= > (A @ C))))).

thf (m e x i s t s _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _ _ t y p e , type ,(
m e x i s t s _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _ : (($i > $i)

> m w o r l d > $o)
> m w o r l d > $o)).

thf (m e x i s t s _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _ _ d e f , d e f i n i t i o n ,
(m e x i s t s _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _
= (^ [A : ($i > $i) > m w o r l d > $o , B : m w o r l d] :

? [C : $i > $i] :
(A @ C @ B)))).

thf (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ o _ m w o r l d _ t _ _ d _ o _ c _ _ c _ _ t y p e ,
type ,(
m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ o _ m w o r l d _ t _ _ d _ o _ c _ _ c _ :

(($i > m w o r l d > $o)
> m w o r l d > $o)
> m w o r l d > $o)) .

thf (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ o _ m w o r l d _ t _ _ d _ o _ c _ _ c _ _ d e f ,
d e f i n i t i o n ,

(m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ o _ m w o r l d _ t _ _ d _ o _ c _ _ c _
= (^ [A : ($i > m w o r l d > $o) > m w o r l d > $o , B :
m w o r l d] :

! [C : $i > m w o r l d > $o] :
(A @ C @ B)))).

thf (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ c _ _ t y p e , type ,(
m f o r a l l _ c o n s t _ _ o _ _ d _ i _ c _ : ($i > m w o r l d > $o) >
m w o r l d > $o)).

thf (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ c _ _ d e f , d e f i n i t i o n ,
(m f o r a l l _ c o n s t _ _ o _ _ d _ i _ c _
= (^ [A : $i > m w o r l d > $o , B : m w o r l d] :

! [C : $i] :
(A @ C @ B)))).

thf (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _ _ t y p e , type ,(
m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _ : (($i > $i) >

m w o r l d > $o)
> m w o r l d > $o)).

thf (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _ _ d e f , d e f i n i t i o n ,
(m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _
= (^ [A : ($i > $i) > m w o r l d > $o , B : m w o r l d] :

! [C : $i > $i] :
(A @ C @ B)))).

thf (s k 1 _ t y p e , type ,(
s k1 : m w o r l d)) .

thf (s k 2 _ t y p e , type ,(

123

800 A. Steen, C. Benzmüller

s k2 : $i > m w o r l d > $o)).

thf (s k 3 _ t y p e , type ,(
sk3 : $i > $i)).

thf (s k 4 _ t y p e , type ,(
s k 4 : $i)) .

thf (s k 5 _ t y p e , type ,(
s k5 : m w o r l d)) .

thf (s k 6 _ t y p e , type ,(
s k6 : ($i > $i) > m w o r l d)).

thf (1 , c o n j e c t u r e ,
(m v a l i d
@ (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ o _ m w o r l d _ t _ _ d _ o _ c _ _ c _

@ ^ [A : $i > m w o r l d > $o] :
(m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _
@ ^ [B : $i > $i] :

(m f o r a l l _ c o n s t _ _ o _ _ d _ i _ c _
@ ^ [C : $i] :

(m e x i s t s _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _
@ ^ [D : $i > $i] :

(m i m p l i e s
@ (m d i a @ (m b o x @ (A @ (B

@ C))))
@ (m b o x @ (A @ (D @ C)))

)))))) ,
f i l e (’ b e c k e r . p ’ , 1)).

thf (2 , n e g a t e d _ c o n j e c t u r e ,(
~ (m v a l i d

@ (m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ o _ m w o r l d _ t _ _ d _ o _ c _ _ c _
@ ^ [A : $i > m w o r l d > $o] :

(m f o r a l l _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _
@ ^ [B : $i > $i] :

(m f o r a l l _ c o n s t _ _ o _ _ d _ i _ c _
@ ^ [C : $i] :

(m e x i s t s _ c o n s t _ _ o _ _ d _ i _ t _ _ d _ i _ c _
@ ^ [D : $i > $i] :

(m i m p l i e s
@ (m d i a @ (m b o x @ (A @

(B @ C))))
@ (m b o x @ (A @ (D @ C)))

))))))) ,
i n f e r e n c e (n e g _ c o n j e c t u r e ,[s t a t u s (c th)] , [1])) .

thf (5 , plain ,(
~ ! [A : m wor ld , B : $i > m w o r l d > $o , C : $i > $i , D : $i] :

? [E : $i > $i] :
(? [F : m w o r l d] :

((m r e l @ A @ F)
& ! [G : m w o r l d] :

((m r e l @ F @ G)
= > (B @ (C @ D) @ G)))

= > ! [F : m w o r l d] :
((m r e l @ A @ F)

= > (B @ (E @ D) @ F)))) ,
i n f e r e n c e (d e f e x p _ a n d _ s i m p _ a n d _ e t a e x p a n d ,[s t a t u s (th m)] ,

[2])) .

thf (6 , plain ,(
~ ! [A : m wor ld , B : $i > m w o r l d > $o , C : $i > $i , D : $i] :

(? [E : m w o r l d] :
((m r e l @ A @ E)
& ! [F : m w o r l d] :

((m r e l @ E @ F)
= > (B @ (C @ D) @ F)))

= > ? [E : $i > $i] :

123

Extensional Higher-Order Paramodulation in Leo-III 801

! [F : m w o r l d] :
((m r e l @ A @ F)

= > (B @ (E @ D) @ F)))) ,
i n f e r e n c e (m i n i s c o p e ,[s t a t u s (th m)] , [5])) .

thf (10 , plain ,(
m r e l @ s k1 @ sk5) ,
i n f e r e n c e (cnf ,[s t a t u s (esa)] , [6])) .

thf (4 , axiom ,(
m e u c l i d e a n @ m r e l) ,
f i l e (’ b e c k e r . p ’ , m r e l _ m e u c l i d e a n)).

thf (15 , plain ,(
! [A : m wo rld , B : m wo rld , C : m w o r l d] :

(((m r e l @ A @ B)
& (m r e l @ A @ C))

= > (m r e l @ B @ C))) ,
i n f e r e n c e (d e f e x p _ a n d _ s i m p _ a n d _ e t a e x p a n d ,[s t a t u s (th m)] ,
[4])) .

thf (16 , plain ,(
! [C : m wo rld , B : m wo rld , A : m w o r l d] :

(~ (m r e l @ A @ B)
| ~ (m r e l @ A @ C)
| (m r e l @ B @ C))) ,

i n f e r e n c e (cnf ,[s t a t u s (esa)] , [1 5])) .

thf (17 , plain ,(
! [C : m wo rld , B : m wo rld , A : m w o r l d] :

(~ (m r e l @ A @ C)
| (m r e l @ B @ C)
| ((m r e l @ s k1 @ sk 5)
!= (m r e l @ A @ B)))) ,

i n f e r e n c e (p a r a m o d _ o r d e r e d ,[s t a t u s (t hm)] , [1 0 , 1 6])) .

thf (18 , plain ,(
! [A : m w o r l d] :

(~ (m r e l @ s k1 @ A)
| (m r e l @ sk5 @ A))) ,

i n f e r e n c e (p a t t e r n _ u n i ,[s t a t u s (th m)] ,
[1 7 : [b i n d (A , $ t h f (sk 1)) , b i n d (B , $ t h f (sk 5))]])) .

thf (40 , plain ,(
! [A : m w o r l d] :

(~ (m r e l @ s k1 @ A)
| (m r e l @ sk5 @ A))) ,

i n f e r e n c e (simp ,[s t a t u s (thm)] , [1 8])) .

thf (9 , plain ,(
! [A : m w o r l d] :

(~ (m r e l @ s k5 @ A)
| (s k2 @ (sk3 @ sk 4) @ A))) ,

i n f e r e n c e (cnf ,[s t a t u s (esa)] , [6])) .

thf (7 , plain ,(
! [A : $i > $i] :

~ (s k2 @ (A @ s k4) @ (sk 6 @ A))) ,
i n f e r e n c e (cnf ,[s t a t u s (esa)] , [6])) .

thf (11 , plain ,(
! [A : $i > $i] :

~ (s k2 @ (A @ s k4) @ (sk 6 @ A))) ,
i n f e r e n c e (simp ,[s t a t u s (thm)] , [7])) .

thf (206 , plain ,(
! [B : $i > $i , A : m w o r l d] :

(~ (m r e l @ s k5 @ A)
| ((s k2 @ (s k3 @ sk4) @ A)
!= (s k2 @ (B @ sk 4) @ (sk 6 @ B))))) ,

123

802 A. Steen, C. Benzmüller

i n f e r e n c e (p a r a m o d _ o r d e r e d ,[s t a t u s (t hm)] , [9 , 1 1])) .

thf (213 , plain ,(
~ (m r e l @ sk 5 @ (sk 6 @ s k3))) ,
i n f e r e n c e (p r e _ u n i ,[s t a t u s (t hm)] ,

[2 0 6 : [b i n d (A , $ t h f (sk 6 @ s k3)) , b i n d (B , $ t h f (s k3))]])) .

thf (257 , plain ,(
! [A : m w o r l d] :

(~ (m r e l @ s k1 @ A)
| ((m r e l @ s k5 @ A)
!= (m r e l @ s k5 @ (sk6 @ sk3))))) ,

i n f e r e n c e (p a r a m o d _ o r d e r e d ,[s t a t u s (t hm)] , [4 0 , 2 1 3])) .

thf (258 , plain ,(
~ (m r e l @ sk 1 @ (sk 6 @ s k3))) ,
i n f e r e n c e (p a t t e r n _ u n i ,[s t a t u s (th m)] ,

[2 5 7 : [b i n d (A , $ t h f (s k6 @ sk3))]])) .

thf (8 , plain ,(
! [A : $i > $i] : (m r e l @ s k1 @ (s k6 @ A))) ,
i n f e r e n c e (cnf ,[s t a t u s (esa)] , [6])) .

thf (12 , plain ,(
! [A : $i > $i] : (m r e l @ s k1 @ (s k6 @ A))) ,
i n f e r e n c e (simp ,[s t a t u s (thm)] , [8])) .

thf (272 , plain ,(~ $ t r u e) ,
i n f e r e n c e (r e w r i t e ,[s t a t u s (t hm)] , [2 5 8 , 1 2])) .

thf (273 , plain ,($ f a l s e) ,
i n f e r e n c e (simp ,[s t a t u s (thm)] , [2 7 2])) .

References

1. Abadi, M., Cardelli, L., Curien, P., Lévy, J.: Explicit substitutions. J. Funct. Program. 1(4), 375–416
(1991). https://doi.org/10.1017/S0956796800000186

2. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
3. Andrews, P.B.: General models and extensionality. J. Symb. Log. 37(2), 395–397 (1972). https://doi.

org/10.2307/2272982
4. Andrews, P.B.: General models, descriptions, and choice in type theory. J. Symb. Log. 37(2), 385–394

(1972). https://doi.org/10.2307/2272981
5. Andrews, P.B.: An Introduction toMathematical Logic and Type Theory. Springer, Applied Logic Series

(2002)
6. Andrews, P.B., Bishop, M., Brown, C.E.: System description: TPS: A theorem proving system for type

theory. In: D.A. McAllester (ed.) Automated Deduction - CADE-17, 17th International Conference on
Automated Deduction, Pittsburgh, PA, USA, June 17-20, 2000, Proceedings, Lecture Notes in Computer
Science, vol. 1831, pp. 164–169. Springer (2000). https://doi.org/10.1007/10721959_11

7. Andrews, P.B., Brown, C.E.: TPS: a hybrid automatic-interactive system for developing proofs. J. Appl.
Logic 4(4), 367–395 (2006). https://doi.org/10.1016/j.jal.2005.10.002

8. Andrews, P.B., Miller, D.A., Cohen, E.L., Pfenning, F.: Automating higher-order logic. Contemp. Math.
29, 169–192 (1984)

9. Bachmair, L., Ganzinger, H.: On restrictions of ordered paramodulation with simplification. In: M.E.
Stickel (ed.) 10th International Conference on Automated Deduction, Kaiserslautern, FRG, July 24-27,
1990, Proceedings, Lecture Notes in Computer Science, vol. 449, pp. 427–441. Springer (1990). https://
doi.org/10.1007/3-540-52885-7_105

10. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplifica-
tion. J. Log. Comput. 4(3), 217–247 (1994). https://doi.org/10.1093/logcom/4.3.217

11. Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.W.: Extending SMT solvers to higher-
order logic. In: P. Fontaine (ed.) Automated Deduction - CADE 27 - 27th International Conference
on Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, Lecture Notes in Computer
Science, vol. 11716, pp. 35–54. Springer (2019). https://doi.org/10.1007/978-3-030-29436-6_3

123

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.2307/2272982
https://doi.org/10.2307/2272982
https://doi.org/10.2307/2272981
https://doi.org/10.1007/10721959_11
https://doi.org/10.1016/j.jal.2005.10.002
https://doi.org/10.1007/3-540-52885-7_105
https://doi.org/10.1007/3-540-52885-7_105
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1007/978-3-030-29436-6_3

Extensional Higher-Order Paramodulation in Leo-III 803

12. Barcan, R.C.: A functional calculus of first order based on strict implication. J. Symb. Log. 11(1), 1–16
(1946). https://doi.org/10.2307/2269159

13. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Perspectives in logic. Cam-
bridge University Press, Cambridge (2013)

14. Barrett, C., et al.: CVC4. In: G. Gopalakrishnan, S. Qadeer (eds.) Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, LNCS, vol.
6806, pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_14

15. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirovic, P., Waldmann, U.: Superposition with lambdas.
In: P. Fontaine (ed.) Automated Deduction - CADE 27 - 27th International Conference on Automated
Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, Lecture Notes in Computer Science, vol.
11716, pp. 55–73. Springer (2019). https://doi.org/10.1007/978-3-030-29436-6_4

16. Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for lambda-free higher-order
logic. In: D. Galmiche, S. Schulz, R. Sebastiani (eds.) Automated Reasoning - 9th International Joint
Conference, IJCAR 2018, Held as part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10900, pp. 28–46. Springer (2018).
https://doi.org/10.1007/978-3-319-94205-6_3

17. Benzmüller, C.: Equality and extensionality in automated higher order theorem proving. Ph.D. thesis,
Saarland University, Saarbrücken, Germany (1999)

18. Benzmüller, C.: Extensional higher-order paramodulation and RUE-resolution. In: H. Ganzinger (ed.)
AutomatedDeduction -CADE-16, 16th InternationalConferenceonAutomatedDeduction,Trento, Italy,
July 7-10, 1999, Proceedings, Lecture Notes in Computer Science, vol. 1632, pp. 399–413. Springer
(1999). https://doi.org/10.1007/3-540-48660-7_39

19. Benzmüller, C.: Combining and automating classical and non-classical logics in classical higher-order
logics. Ann. Math. Artif. Intell. 62(1–2), 103–128 (2011). https://doi.org/10.1007/s10472-011-9249-7

20. Benzmüller, C.: Cut-elimination for quantified conditional logic. J. Philos. Logic 46(3), 333–353 (2017).
https://doi.org/10.1007/s10992-016-9403-0

21. Benzmüller, C.: Universal (meta-)logical reasoning: recent successes. Sci. Comput. Prog. 172, 48–62
(2019). https://doi.org/10.1016/j.scico.2018.10.008

22. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extensionality. J. Symb. Log.
69(4), 1027–1088 (2004). https://doi.org/10.2178/jsl/1102022211

23. Benzmüller, C., Brown, C.E., Kohlhase, M.: Cut-simulation and impredicativity. Logical Methods Com-
put. Sci. 5(1), (2009)

24. Benzmüller, C., Farjami,A., Parent,X.:Adyadic deontic logic inHOL. In: J.M.Broersen,C.Condoravdi,
N. Shyam, G. Pigozzi (eds.) Deontic Logic and Normative Systems - 14th International Conference,
DEON 2018, Utrecht, The Netherlands, July 3-6, 2018., pp. 33–49. College Publications (2018)

25. Benzmüller, C.,Kohlhase,M.: Systemdescription: LEO -Ahigher-order theoremprover. In:C.Kirchner,
H. Kirchner (eds.) Automated Deduction - CADE-15, 15th International Conference on Automated
Deduction, Lindau, Germany, July 5-10, 1998, Proceedings, Lecture Notes in Computer Science, vol.
1421, pp. 139–144. Springer (1998). https://doi.org/10.1007/BFb0054256

26. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational
Logic, Handbook of the History of Logic. Elsevier, Amsterdam (2014)

27. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics.
In: L.D. Raedt, et al. (eds.) ECAI 2012 - 20th European Conference on Artificial Intelligence. Including
prestigious applications of artificial intelligence (PAIS-2012) system demonstrations track, montpellier,
France, August 27-31 , 2012, Frontiers in Artificial Intelligence and applications, vol. 242, pp. 163–168.
IOS Press (2012). https://doi.org/10.3233/978-1-61499-098-7-163

28. Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. Logic J. IGPL
18(6), 881–892 (2010). https://doi.org/10.1093/jigpal/jzp080

29. Benzmüller, C., Paulson, L.C.: Quantified multimodal logics in simple type theory. Logica Univ. 7(1),
7–20 (2013). https://doi.org/10.1007/s11787-012-0052-y

30. Benzmüller, C., Raths, T.: HOLbased first-ordermodal logic provers. In:K.L.McMillan,A.Middeldorp,
A. Voronkov (eds.) Logic for Programming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings, Lecture Notes
in Computer Science, vol. 8312, pp. 127–136. Springer (2013). https://doi.org/10.1007/978-3-642-
45221-5_9

31. Benzmüller, C., Scott, D.S.: Automating free logic in Isabelle/HOL. In: G. Greuel, T. Koch, P. Paule, A.J.
Sommese (eds.) Mathematical software - ICMS 2016 - 5th International Conference, Berlin, Germany,
July 11-14, 2016, Proceedings, Lecture Notes in Computer Science, vol. 9725, pp. 43–50. Springer
(2016). https://doi.org/10.1007/978-3-319-42432-3_6

123

https://doi.org/10.2307/2269159
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-29436-6_4
https://doi.org/10.1007/978-3-319-94205-6_3
https://doi.org/10.1007/3-540-48660-7_39
https://doi.org/10.1007/s10472-011-9249-7
https://doi.org/10.1007/s10992-016-9403-0
https://doi.org/10.1016/j.scico.2018.10.008
https://doi.org/10.2178/jsl/1102022211
https://doi.org/10.1007/BFb0054256
https://doi.org/10.3233/978-1-61499-098-7-163
https://doi.org/10.1093/jigpal/jzp080
https://doi.org/10.1007/s11787-012-0052-y
https://doi.org/10.1007/978-3-642-45221-5_9
https://doi.org/10.1007/978-3-642-45221-5_9
https://doi.org/10.1007/978-3-319-42432-3_6

804 A. Steen, C. Benzmüller

32. Benzmüller, C., Steen, A., Wisniewski, M.: Leo-III Version 1.1 (System description). In: T. Eiter,
D. Sands, G. Sutcliffe, A. Voronkov (eds.) IWIL@LPAR 2017 Workshop and LPAR-21 Short Presen-
tations, Maun, Botswana, May 7-12, 2017, Kalpa publications in computing, vol. 1. EasyChair (2017).
https://doi.org/10.29007/grmx

33. Benzmüller, C., Sultana,N., Paulson, L.C., Theiss, F.: The higher-order proverLEO-II. J.Autom.Reason.
55(4), 389–404 (2015). https://doi.org/10.1007/s10817-015-9348-y

34. Benzmüller, C., Weber, L., Woltzenlogel Paleo, B.: Computer-assisted analysis of the Anderson-Hájek
ontological controversy. Logica Univ. 11(1), 139–151 (2017). https://doi.org/10.1007/s11787-017-
0160-9

35. Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: A success
story for AI in metaphysics. In: S. Kambhampati (ed.) Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp.
936–942. IJCAI/AAAI Press (2016)

36. Benzmüller, C., Woltzenlogel Paleo, B.: Experiments in computational metaphysics: Gödel’s proof of
God’s existence Savijnanam scientific exploration for a spiritual paradigm. J. Bhaktivedanta Inst. 9,
43–57 (2017)

37. Bertot, Y., Castéran, P.: Interactive Theorem Proving and ProgramDevelopment - Coq’Art The Calculus
of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin
(2004)

38. Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: B. Konev, J. Urban, P. Rümmer (eds.)
Proceedings of the 6thWorkshop on practical aspects of automated reasoning co-located with Federated
Logic Conference 2018 (FLoC 2018), Oxford, UK, July 19th, 2018., CEUR Workshop Proceedings,
vol. 2162, pp. 2–16. CEUR-WS.org (2018)

39. Bhayat, A., Reger, G.: Restricted combinatory unification. In: P. Fontaine (ed.) Automated Deduction -
CADE 27 - 27th International Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019,
Proceedings, Lecture Notes in Computer Science, vol. 11716, pp. 74–93. Springer (2019). https://doi.
org/10.1007/978-3-030-29436-6_5

40. Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of modal logic, vol. 3. Elsevier, Amsterdam
(2006)

41. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. J. Autom.
Reason. 51(1), 109–128 (2013). https://doi.org/10.1007/s10817-013-9278-5

42. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic
types. Logicalmethods in computer science 12(4), (2016). https://doi.org/10.2168/LMCS-12(4:13)2016

43. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on
a relational model finder. In: M. Kaufmann, L.C. Paulson (eds.) Interactive Theorem Proving, First
International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, Lecture Notes in
Computer Science, vol. 6172, pp. 131–146. Springer (2010). https://doi.org/10.1007/978-3-642-14052-
5_11

44. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In:
M.P. Bonacina (ed.) Automated Deduction - CADE-24 - 24th International Conference on Automated
Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, LNCS, vol. 7898, pp. 414–420.
Springer (2013). https://doi.org/10.1007/978-3-642-38574-2_29

45. Blanchette, J.C., Weber, T., Batty, M., Owens, S., Sarkar, S.: Nitpicking C++ concurrency. In:
P. Schneider-Kamp, M. Hanus (eds.) Proceedings of the 13th International ACM SIGPLAN Confer-
ence on principles and practice of declarative programming, July 20-22, 2011, Odense, Denmark, pp.
113–124. ACM (2011). https://doi.org/10.1145/2003476.2003493

46. Böhme, S.: Proving theorems of higher-order logic with SMT solvers. Ph.D. thesis, Technische Univer-
sität München (2012)

47. Brown, C.E.: Satallax: An automatic higher-order prover. In: B. Gramlich, D. Miller, U. Sattler (eds.)
Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29,
2012. Proceedings, LectureNotes in Computer Science, vol. 7364, pp. 111–117. Springer (2012). https://
doi.org/10.1007/978-3-642-31365-3_11

48. Brown, C.E., Gauthier, T., Kaliszyk, C., Sutcliffe, G., Urban, J.: GRUNGE: A grand unified ATP chal-
lenge. In: P. Fontaine (ed.) Automated Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, Lecture Notes in Computer
Science, vol. 11716, pp. 123–141. Springer (2019). https://doi.org/10.1007/978-3-030-29436-6_8

49. Bruijn, N.G.D.: Lambda calculus notation with nameless dummies, a tool for automatic formula manip-
ulation, with application to the church-rosser theorem. INDAG. Math 34, 381–392 (1972)

50. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688 (2003). https://doi.
org/10.1093/logcom/13.5.639

123

https://doi.org/10.29007/grmx
https://doi.org/10.1007/s10817-015-9348-y
https://doi.org/10.1007/s11787-017-0160-9
https://doi.org/10.1007/s11787-017-0160-9
https://doi.org/10.1007/978-3-030-29436-6_5
https://doi.org/10.1007/978-3-030-29436-6_5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.2168/LMCS-12(4:13)2016
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1145/2003476.2003493
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-030-29436-6_8
https://doi.org/10.1093/logcom/13.5.639
https://doi.org/10.1093/logcom/13.5.639

Extensional Higher-Order Paramodulation in Leo-III 805

51. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940). https://doi.
org/10.2307/2266170

52. Couchot, J., Lescuyer, S.: Handling polymorphism in automated deduction. In: F. Pfenning (ed.)
Automated Deduction - CADE-21, 21st International Conference on Automated Deduction, Bremen,
Germany, July 17-20, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4603, pp. 263–278.
Springer (2007). https://doi.org/10.1007/978-3-540-73595-3_18

53. Cruanes, S.: Extending superposition with integer arithmetic, structural induction, and beyond. (exten-
sions de la superposition pour l’arithmétique linéaire entière, l’induction structurelle, et bien plus encore).
Ph.D. thesis, École Polytechnique, Palaiseau, France (2015)

54. Denzinger, J., Kronenburg, M., Schulz, S.: Discount-a distributed and learning equational prover. J.
Autom. Reason. 18(2), 189–198 (1997). https://doi.org/10.1023/A:1005879229581

55. Digricoli, V.J., Harrison,M.C.: Equality-based binary resolution. J. ACM 33(2), 253–289 (1986). https://
doi.org/10.1145/5383.5389

56. Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens.
Verlag von Louis Nebert, Halle (1879)

57. Fuenmayor, D., Benzmüller, C.: Types, tableaus and Gödel’s God in Isabelle/HOL. Arch. Formal Proofs
(2017)

58. Gleißner, T., Steen, A.: The MET: The art of flexible reasoning with modalities. In: C. Benzmüller,
F. Ricca, X. Parent, D. Roman (eds.) Rules and Reasoning - Second International Joint Conference,
RuleML+RR 2018, Luxembourg, September 18-21, 2018, Proceedings, LNCS, vol. 11092, pp. 274–
284. Springer (2018). https://doi.org/10.1007/978-3-319-99906-7_19

59. Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: T. Eiter,
D. Sands (eds.) LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, Maun, Botswana, May 7-12, 2017, EPiC Series in Computing, vol. 46, pp. 14–30.
EasyChair (2017). https://doi.org/10.29007/jsb9

60. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor. Comput. Sci. 13(2),
225–230 (1981)

61. Gordon, M.J., Melham, T.F.: Introduction to HOL A Theorem Proving Environment for Higher Order
Logic. Cambridge University Press, Cambridge (1993)

62. Hales, T.C., et al.: A formal proof of the kepler conjecture. CoRR abs/1501.02155 (2015)
63. Harrison, J.: HOLLight: An overview. In: S. Berghofer, T. Nipkow, C. Urban,M.Wenzel (eds.) Theorem

Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5674, pp. 60–66. Springer
(2009). https://doi.org/10.1007/978-3-642-03359-9_4

64. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950). https://doi.org/10.
2307/2266967

65. Huet, G.P.: The undecidability of unification in third order logic. Inf. control 22(3), 257–267 (1973)
66. Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In:

R. Dyckhoff (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, International
Conference, TABLEAUX 2000, St Andrews, Scotland, UK, July 3-7, 2000, Proceedings, Lecture Notes
in Computer Science, vol. 1847, pp. 67–71. Springer (2000). https://doi.org/10.1007/10722086_7

67. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order formwith rank-1 polymorphism.
In: P. Fontaine, S. Schulz, J. Urban (eds.) Proceedings of the 5th Workshop on Practical Aspects of
Automated Reasoning, CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

68. Kfoury, A.J., Rocca, S.R.D., Tiuryn, J., Urzyczyn, P.: Alpha-conversion and typability. Inf. Comput.
150(1), 1–21 (1999). https://doi.org/10.1006/inco.1998.2756

69. Kirchner, D., Benzmüller, C., Zalta, E.N.: Computer science andmetaphysics: a cross-fertilization. Open
Philos. 2(1), 230–251 (2019). https://doi.org/10.1515/opphil-2019-0015

70. Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic (system description). In:
A.Armando, P.Baumgartner,G.Dowek (eds.)AutomatedReasoning, 4th International JointConference,
IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings, LNCS, vol. 5195, pp. 292–298.
Springer (2008). https://doi.org/10.1007/978-3-540-71070-7_24

71. Leibniz, G.W.: Discourse on metaphysics. In: L.E. Loemker (ed.) Philosophical Papers and Letters, pp.
303–330. Springer Netherlands, Dordrecht (1989). https://doi.org/10.1007/978-94-010-1426-7_36

72. Lindblad, F.: A focused sequent calculus for higher-order logic. In: S. Demri, D. Kapur, C. Weidenbach
(eds.) Automated Reasoning - 7th International Joint Conference, IJCAR 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, Lecture Notes in
Computer Science, vol. 8562, pp. 61–75. Springer (2014). https://doi.org/10.1007/978-3-319-08587-
6_5

123

https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-540-73595-3_18
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1145/5383.5389
https://doi.org/10.1145/5383.5389
https://doi.org/10.1007/978-3-319-99906-7_19
https://doi.org/10.29007/jsb9
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.2307/2266967
https://doi.org/10.2307/2266967
https://doi.org/10.1007/10722086_7
https://doi.org/10.1006/inco.1998.2756
https://doi.org/10.1515/opphil-2019-0015
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-94-010-1426-7_36
https://doi.org/10.1007/978-3-319-08587-6_5
https://doi.org/10.1007/978-3-319-08587-6_5

806 A. Steen, C. Benzmüller

73. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning
40(1), 35–60 (2008). https://doi.org/10.1007/s10817-007-9085-y

74. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J.
Appl. Logic 7(1), 41–57 (2009)

75. Miller, D.A.: Proofs in higher-order logic. Ph.D. thesis, Carnegie-Mellon University (1983)
76. Miller, D.A.: A logic programming language with lambda-abstraction, function variables, and simple

unification. J. Log. Comput. 1(4), 497–536 (1991). https://doi.org/10.1093/logcom/1.4.497
77. Muskens, R.: Intensional models for the theory of types. J. Symb. Log. 72(1), 98–118 (2007). https://

doi.org/10.2178/jsl/1174668386
78. Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering constrained clauses. In: D. Kapur (ed.)

Automated Deduction - CADE-11, 11th International Conference on Automated Deduction, Saratoga
Springs, NY, USA, June 15-18, 1992, Proceedings, Lecture Notes in Computer Science, vol. 607, pp.
477–491. Springer (1992). https://doi.org/10.1007/3-540-55602-8_186

79. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
Lecture Notes in Computer Science. Springer, Berlin (2002)

80. Otten, J.: MleanCoP: A connection prover for first-order modal logic. In: S. Demri, D. Kapur, C. Wei-
denbach (eds.) Automated Reasoning - 7th International Joint Conference, IJCAR 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, Lecture
Notes in Computer Science, vol. 8562, pp. 269–276. Springer (2014). https://doi.org/10.1007/978-3-
319-08587-6_20

81. Owre, S., Rushby, J.M., Shankar, N.: PVS:Aprototype verification system. In:D.Kapur (ed.) Automated
Deduction - CADE-11, 11th International Conference on Automated Deduction, Saratoga Springs, NY,
USA, June 15-18, 1992, Proceedings, Lecture Notes in Computer Science, vol. 607, pp. 748–752.
Springer (1992). https://doi.org/10.1007/3-540-55602-8_217

82. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: B. Gramlich, D. Miller,
U. Sattler (eds.) Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester,
UK, June 26-29, 2012. Proceedings, LNCS, vol. 7364, pp. 454–461. Springer (2012). https://doi.org/
10.1007/978-3-642-31365-3_35

83. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2–3), 91–
110 (2002)

84. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. Mach.
Intell. 4, 135–150 (1969)

85. Schulz, S.: E-A Brainiac theorem prover. AI Commun. 15(3), 111–126 (2002)
86. Siekmann, J.H., Benzmüller, C., Autexier, S.: Computer supported mathematics with �MEGA. J. Appl.

Logic 4(4), 533–559 (2006). https://doi.org/10.1016/j.jal.2005.10.008
87. Slind, K., Norrish, M.: A brief overview of HOL4. In: O.A. Mohamed, C.A. Muñoz, S. Tahar (eds.)

Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal,
Canada, August 18-21, 2008. Proceedings, Lecture Notes in Computer Science, vol. 5170, pp. 28–32.
Springer (2008). https://doi.org/10.1007/978-3-540-71067-7_6

88. Snyder, W., Gallier, J.: Higher-Order unification revisited: complete sets of transformations. J. Symb.
Comput. 8, 101–140 (1989)

89. Steen, A.: Extensional paramodulation for Higher-Order logic and its effective implementation Leo-III,
DISKI, vol. 345. Akademische Verlagsgesellschaft AKAGmbH, Berlin, : Dissertation. Freie Universität
Berlin, Germany (2018)

90. Steen, A., Benzmüller, C.: Sweet SIXTEEN: automation via embedding into classical higher-order logic.
Logic Logical Philos. 25(4), 535–554 (2016)

91. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: D. Galmiche, S. Schulz, R. Sebastiani
(eds.) Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as part of the
federated logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, LNCS, vol. 10900,
pp. 108–116. Springer (2018). https://doi.org/10.1007/978-3-319-94205-6_8

92. Steen, A., Benzmüller, C.: On reductions of Hintikka sets for higher-Order logic. arXiv:2004.07506
(2020). arxiv.org/abs/2004.07506

93. Steen,A.,Wisniewski,M., Benzmüller, C.: Agent-basedHOL reasoning. In:G.Greuel, T.Koch, P. Paule,
A.J. Sommese (eds.) Mathematical Software - ICMS 2016 - 5th International Conference, Berlin, Ger-
many, July 11-14, 2016, Proceedings, LNCS, vol. 9725, pp. 75–81. Springer (2016). https://doi.org/10.
1007/978-3-319-42432-3_10

94. Steen, A., Wisniewski, M., Benzmüller, C.: Going polymorphic - TH1 reasoning for Leo-III. In: T. Eiter,
D. Sands, G. Sutcliffe, A. Voronkov (eds.) IWIL@LPAR 2017 Workshop and LPAR-21 short presenta-
tions, Maun, Botswana, May 7-12, 2017, Kalpa Publications in Computing, vol. 1. EasyChair (2017).
https://doi.org/10.29007/jgkw

123

https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.2178/jsl/1174668386
https://doi.org/10.2178/jsl/1174668386
https://doi.org/10.1007/3-540-55602-8_186
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-642-31365-3_35
https://doi.org/10.1007/978-3-642-31365-3_35
https://doi.org/10.1016/j.jal.2005.10.008
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-319-94205-6_8
http://arxiv.org/abs/2004.07506
http://arxiv.org/abs/org/abs/2004.07506
https://doi.org/10.1007/978-3-319-42432-3_10
https://doi.org/10.1007/978-3-319-42432-3_10
https://doi.org/10.29007/jgkw

Extensional Higher-Order Paramodulation in Leo-III 807

95. Steen, A., Wisniewski, M., Schurr, H., Benzmüller, C.: Capability discovery for automated reasoning
systems. In: T. Eiter, D. Sands, G. Sutcliffe, A. Voronkov (eds.) IWIL@LPAR 2017 Workshop and
LPAR-21 Short presentations, Maun, Botswana, May 7-12, 2017, Kalpa Publications in Computing,
vol. 1. EasyChair (2017). https://doi.org/10.29007/fsv3

96. Sutcliffe, G.: Semantic derivation verification: techniques and implementation. Int. J. Artif. Intell. Tools
15(6), 1053–1070 (2006). https://doi.org/10.1142/S0218213006003119

97. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: V. Diekert, M. Volkov, A. Voronkov (eds.) Proceedings of
the 2nd International computer science Symposium in Russia, no. 4649 in lecture notes in computer
science, pp. 7–23. Springer (2007)

98. Sutcliffe, G.: The SZS Ontologies for automated reasoning software. In: LPAR Workshops: knowl-
edge exchange: automated provers and proof assistants, and The 7th International Workshop on the
Implementation of Logics (Doha, Qatar), vol. 418, pp. 38–49. CEUR Workshop Proceedings (2008)

99. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to TH0, TPTP v6.4.0.
J. Autom. Reason. 59(4), 483–502 (2017)

100. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infras-
tructure. J. Formaliz. Reason. 3(1), 1–27 (2010). https://doi.org/10.6092/issn.1972-5787/1710

101. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order formwith arithmetic.
In: N. Bjørner, A. Voronkov (eds.) Logic for programming, Artificial Intelligence, and Reasoning -
18th International Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings, Lecture
Notes in Computer Science, vol. 7180, pp. 406–419. Springer (2012). https://doi.org/10.1007/978-3-
642-28717-6_32

102. Vukmirovic, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac prover to lambda-free
higher-order logic. In: T. Vojnar, L. Zhang (eds.) Tools and Algorithms for the Construction andAnalysis
of Systems - 25th International Conference, TACAS 2019, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 11427, pp. 192–210. Springer (2019).
https://doi.org/10.1007/978-3-030-17462-0_11

103. Wand, D.: Superposition: Types and induction. (superposition: types et induction). Ph.D. thesis, Saarland
University, Saarbrücken, Germany (2017)

104. Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD - A generic platform for the implementation
of higher-order reasoners. In: M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, V. Sorge (eds.) Intelligent
Computer Mathematics - International Conference, CICM 2015, Washington, DC, USA, July 13-17,
2015, Proceedings, LNCS, vol. 9150, pp. 325–330. Springer (2015). https://doi.org/10.1007/978-3-
319-20615-8_22

105. Wisniewski,M., Steen, A., Benzmüller, C.: TPTP and beyond: Representation of quantified non-classical
logics. In: C. Benzmüller, J. Otten (eds.) Proceedings of the 2nd International Workshop Automated
Reasoning in Quantified Non-Classical Logics (ARQNL 2016) affiliated with the International Joint
Conference onAutomatedReasoning (IJCAR2016)., Coimbra, Portugal, July 1, 2016., CEURWorkshop
Proceedings, vol. 1770, pp. 51–65. CEUR-WS.org (2016)

106. Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normalization techniques for HOL. In:
N. Olivetti, A. Tiwari (eds.) Automated Reasoning - 8th International Joint Conference, IJCAR 2016,
Coimbra, Portugal, June 27 - July 2, 2016, Proceedings, LNCS, vol. 9706, pp. 362–370. Springer (2016).
https://doi.org/10.1007/978-3-319-40229-1_25

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.29007/fsv3
https://doi.org/10.1142/S0218213006003119
https://doi.org/10.6092/issn.1972-5787/1710
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-030-17462-0_11
https://doi.org/10.1007/978-3-319-20615-8_22
https://doi.org/10.1007/978-3-319-20615-8_22
https://doi.org/10.1007/978-3-319-40229-1_25

	Extensional Higher-Order Paramodulation in Leo-III
	Abstract
	1 Introduction
	2 Higher-Order Theorem Proving
	2.1 Syntax and Semantics
	2.2 Challenges to HOL Automation
	2.3 HOL ATP Systems
	2.4 Applications

	3 Extensional Higher-Order Paramodulation
	3.1 The EP Calculus
	3.1.1 Clause normalization
	3.1.2 Primary inferences
	3.1.3 Extensionality Rules
	3.1.4 Unification

	3.2 Extended Calculus
	3.2.1 Improved Clausification
	3.2.2 Clause Contraction
	3.2.3 Defined Equalities
	3.2.4 Choice
	3.2.5 Function Synthesis
	3.2.6 Injective Functions
	3.2.7 Further Rules

	4 System Architecture and Implementation
	4.1 Proof Search
	4.2 Polymorphic Reasoning
	4.3 External Cooperation
	4.4 Input and Output
	4.5 Data Structures

	5 Reasoning in Non-classical Logics
	6 Evaluation
	6.1 TPTP TH0
	6.2 TPTP TH1
	6.3 QMLTP
	6.4 On Polymorphism

	7 Conclusion and Future Work
	Leo-III Proof of Fig. 7
	References

