
Journal of Automated Reasoning (2020) 64:1333–1359
https://doi.org/10.1007/s10817-020-09573-w

Synthesizing Precise and Useful Commutativity Conditions

Kshitij Bansal1 · Eric Koskinen2 ·Omer Tripp3

Received: 20 June 2020 / Accepted: 27 June 2020 / Published online: 29 August 2020
© Springer Nature B.V. 2020

Abstract
Reasoning about commutativity between data-structure operations is an important prob-
lem with many applications. In the sequential setting, commutativity can be used to reason
about the correctness of refactoring, compiler transformations, and identify instances of non-
determinism. In parallel contexts, commutativity dates back to the database (Weihl in IEEE
Trans Comput 37(12):1488–1505, 1988) and compilers (Rinard and Diniz in ACM Trans
Program Lang Syst 19(6):942–991, 1997) communities and, more recently, appears in opti-
mistic parallelization (Herlihy and Koskinen in Proceedings of the 13th ACM SIGPLAN
symposium on principles and practice of parallel programming, 2008), dynamic concur-
rency (Tripp et al. in Proceedings of the 33rd ACM SIGPLAN conference on programming
language design and implementation, PLDI ’12, New York, NY, USA, ACM, pp 145–156,
2012; Dimitrov et al. in Proceedings of the 35th ACM SIGPLAN conference on program-
ming language design and implementation, 2014), scalable systems (Clements et al. in ACM
Trans Comput Syst 32(4):10, 2015) and even smart contracts (Dickerson et al. in Proceedings
of the ACM symposium on principles of distributed computing, PODC ’17, New York, NY,
USA, ACM, pp 303–312, 2017). There have been research results on automatic generation of
commutativity conditions, yet we are unaware of any fully automated technique to generate
conditions that are both sound and effective. We have designed such a technique, driven by
an algorithm that iteratively refines a conservative approximation of the commutativity (and
non-commutativity) condition for a pair of methods into an increasingly precise version. The
algorithm terminates if/when the entire state space has been considered, and can be aborted at
any time to obtain a partial yet sound commutativity condition.We have generalized our work
to left-/right-movers (Lipton in Commun ACM 8(12):717–721, 1975) and proved relative
completeness. We describe aspects of our technique that lead to useful commutativity con-
ditions, including how predicates are selected during refinement and heuristics that impact
the output shape of the condition. We have implemented our technique in a prototype open-

This article extends our prior work [3], with the addition of proofs (Theorems 1 and 2), support for left- and
right-movers (Sect. 6), and a new set of applications (Sect. 9), including memories and lock-based
synchronization, transactional memory, distributed systems, refactoring, verification, and code synthesis.

K. Bansal was partially supported by NSF award #1228768. E. Koskinen was partially supported by NSF
CCF Award #1421126, CCF Award #1618542, and CCF Award #1813745, and some of the work was done
while he was at New York University and at IBM Research. K. Bansal was at New York University when
part of the work was completed. The work by O. Tripp was done prior to him joining Amazon (while he was
at IBM Research and Google).

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09573-w&domain=pdf

1334 K. Bansal et al.

source tool Servois. Our algorithm produces quantifier-free queries that are dispatched to a
back-end SMT solver. We evaluate Servois first by synthesizing commutativity conditions
for a range of data structures including Set, HashTable, Accumulator, Counter, and Stack.
We then show several applications of our work including reasoning about memories and
locks, finding vulnerabilities in Ethereum smart contracts, improving transactional memory
performance, distributed applications, code refactoring, verification, and synthesis.

Keywords Commutativity · Abstraction refinement · Synthesis

1 Introduction

Reasoning about the conditions under which data-structure operations commute is an impor-
tant problem. The ability to derive sound yet effective commutativity conditions can improve
correctness of sequential programs, eg in validating refactoring transformations like code
motion [16], and further unlocks the potential of multicore architectures, including paral-
lelizing compilers [31,38], speculative execution (e.g. transactional memory [19]), peephole
partial-order reduction [41], futures, etc. In recent years, another important application
domain has emerged: Ethereum [15] smart contracts. Efficient execution of such contracts
hinges on exploiting their commutativity [11] and block-wise concurrency can lead to vul-
nerabilities [32]. Intuitively, commutativity is an important property because linearizable
data-structure operations that commute can be executed concurrently: their effects do not
interfere with each other in an observable way. When using a linearizable HashTable, for
example, knowledge that put(x,‘a’) commutes with get(y) provided that x �= y
enables significant parallelization opportunities. Indeed, it’s important for the commutativity
condition to be sufficiently granular so that parallelism can be exploited effectively [9]. At
the same time, to make safe use of a commutativity condition, it must be sound [24,25].
Achieving both of these goals using manual reasoning is burdensome and error prone.

In light of that, researchers have investigated ways of verifying user-provided commuta-
tivity conditions [23] as well as synthesizing such conditions automatically, e.g. based on
random interpretation [2], profiling [37] or sampling [18]. None of these approaches, how-
ever, meet the goal of computing a commutativity condition that is both sound and granular
in a fully automated manner.

In this paper, we present a refinement-based technique for synthesizing commutativity
conditions. Our technique builds on well-known

descriptions and representations of abstract data types (ADTs) in terms of logical specifica-
tions [6,14,17,20,27,29] denoted (Prem,Postm) for eachmethodm. Our algorithm iteratively
relaxes under-approximations of the commutativity and non-commutativity conditions of
methods m and n, starting from false, into increasingly precise versions. At each step, we
conjunctively subdivide the symbolic state space into regions, searching for areas where m
and n commute and where they don’t. Counterexamples to both the positive side and the
negative side are used in the next symbolic subdivision. Throughout this recursive process,
we accumulate the commutativity condition as a growing disjunction of these regions. The
output of our procedure is a logical formula ϕn

m which specifies when method m commutes
with method n. We have proven that the algorithm is sound, and can also be aborted at any
time to obtain a partial, yet useful [19,37], commutativity condition. We show that, under
certain conditions, termination is guaranteed (relative completeness).

We address several challenges that arise in using an iterative refinement approach to
generating precise and useful commutativity conditions. First, we show how to pose the

123

Synthesizing Precise and Useful Commutativity Conditions 1335

commutativity question in a way that does not introduce additional quantifiers. We also
show how to generate the predicate vocabulary for expressing the condition ϕn

m , as well as
how to choose the predicates throughout the refinement loop. A further question that we
address is how predicate selection impacts the conciseness and readability of the generated
commutativity conditions. We next show that our algorithm can be generalized to left-/right-
movers [28], a more precise version of commutativity.

We have implemented our approach as the Servois tool, whose code and documentation
are available online [33]. Servois is built on top of the CVC4 SMT solver [7]. We first
evaluate Servois through by generating commutativity conditions for a collection of popular
data structures, including Set, HashTable, Accumulator, Counter, and Stack. The conditions
typically combinemultiple theories, such as sets, integers, arrays, etc.We show the conditions
to be comparable in granularity to manually specified conditions [23].

We then explore a range of applications of how the commutativity conditions we use can
be employed in numerous contexts. We consider reasoning about memories and locks. We
also consider BlockKing [32], an Ethereum smart contract, with its known vulnerability. We
demonstrate how a developer can be guided by Servois to create a more robust implemen-
tation. Furthermore, we describe how Servois can aid transactional memory, distributed
systems, code refactoring, verification and synthesis.

Contributions In summary, this paper makes the following contributions:

– The first sound and precise technique to automatically generate commutativity conditions
(Sect. 5).

– Proofs of soundness and relative completeness (Sect. 5).
– A generalization to left- and right-movers (Sect. 6).
– An implementation that takes an abstract code specification and automatically generates

commutativity conditions using an SMT solver (Sect. 7).
– A novel technique for selecting refinement predicates that improves scalability and the

simplicity of the generated formulae (Sect. 7).
– Demonstrated efficacy for several key data structures (Sect. 8).
– Application of our work to a variety of contexts (Sect. 9).

An earlier version of this work was previously published. [3].

RelatedWork The closest to our contribution in this paper is a recent technique by Gehr et
al. [18] for learning, or inference, of commutativity conditions based on black-box sampling.
They draw concrete arguments, extract relevant predicates from the sampled set of examples,
and then search for a formula over the predicates. There are no soundness or completeness
guarantees.

Both Aleen and Clark [2] and Tripp et al. [37] identify sequences of actions that commute
(via random interpretation and dynamic analysis, respectively). However, neither technique
yields an explicit commutativity condition. Kulkarni et al. [26] point out that varying degrees
of commutativity specification precision are useful. Kim and Rinard [23] use Jahob to verify
manually specified commutativity conditions of several different linked data structures. Com-
mutativity is also of interest in the feature-oriented programming commutativity. Chechik
et al. [8] discuss how to identify non-commutativity by examining so-called feature trees. If
two operations in this tree may write to the same shared variables, the authors conservatively
conclude that these operations are non-commutative. Commutativity specifications are also
found in dynamic analysis techniques [12]. More distantly related is work on synthesis of
programs [35] and of synchronization [39,40].

123

1336 K. Bansal et al.

2 Example

Specifying commutativity conditions is generally nontrivial and it is easy to miss subtle
corner cases. Additionally, it has to be done pairwise for all methods. For ease of illustration,
we will focus on the relatively simple Set ADT, whose state consists of a single set S that
stores an unordered collection of unique elements. Let us consider one pair of operations:
(i) contains(x)/bool, a side-effect-free check whether the element x is in S; and (ii)
add(y)/bool adds y to S if it is not already there and returns true, or otherwise returns
false. add and contains clearly commute if they refer to different elements in the set.
There is another case that is less obvious: add and contains commute if they refer to the
same element e, as long as in the pre-state e ∈ S. In this case, under both orders of execution,
add and contains leave the set unmodified and return false and true, respectively. The
algorithm we describe in this paper completes within a few seconds, producing a precise
logical formula ϕ that captures this commutativity condition, i.e. the disjunction of the two
cases above: ϕ ≡ x �= y ∨ (x = y ∧ x ∈ S). The algorithm also generates the conditions
under which the methods do not commute: ϕ̃ ≡ x = y ∧ x /∈ S. These are precise, since ϕ

is the negation of ϕ̃.
A more complicated commutativity condition is generated by our tool Servoisin 1.4s

for Ethereum smart contract BlockKing. This contract has a method called enter(val1,
sendr1,bk1…) (Fig. 5, Sect. 8)whichdoes not commutewith itself enter(val2, sendr2,bk2…)
iff :

∨

⎧
⎨

⎩

val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 �= sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 �= val2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 = val2 ∧ bk1 �= bk2

This disjunction enumerates the non-commutativity cases and, as discussed in Sect. 8, directly
identifies a vulnerability.

Capturing precise conditions such as these by hand, and doing so for many pairs of
operations, is tedious and error prone. This paper instead presents a way to automate this.
Our algorithm recursively subdivides the state space via predicates until, at the base case,
regions are found that are either entirely commutative or else entirely non-commutative.
Returning to our Set example, the conditions we incrementally generate are denoted ϕ and
ϕ̃, respectively. The following diagram illustrates how our algorithm proceeds to generate
the commutativity conditions for add and contains (abbreviated as m and n).

In this diagram, each subsequent panel depicts a partitioning of the state space into regions
of commutativity (ϕ) or non-commutativity (ϕ̃). The counterexamples χc, χnc give values
for the arguments x , y and the current state S.

We denote by H the logical formula that describes the current state space at a given
recursive call. We begin with H0 = true, ϕ = false, and ϕ̃ = false. There are three cases
for a given H : (i) H describes a precondition for m and n in which they always commute;

123

Synthesizing Precise and Useful Commutativity Conditions 1337

(ii) H describes a precondition for m and n in which they never commute; or (iii) neither
of the above. The latter case drives the algorithm to subdivide the region by choosing a new
predicate.

We now detail the run of this refinement loop on our earlier Set example. We elaborate on
the other challenges that arise in later sections. At each step of the algorithm, we determine
which case we are in via carefully designed validity queries to an SMT solver (Sect. 4).

For H0, it returns the commutativity counterexample:χc = {x = 0, y = 0, S = ∅} as well
as the non-commutativity counterexample χnc = {x = 0, y = 1, S = {0}}. Since, therefore,
H0 = true is neither a commutativity nor a non-commutativity condition, we must refine
H0 into regions (or stronger conditions). In particular, we would like to perform a useful
subdivision: Divide H0 into an H1 that allows χc but disallows χnc, and an H ′

1 that allows χnc

but not χc. So we must choose a predicate p (from a suitable set of predicates P , discussed
later), such that H0 ∧ p ⇒ χc while H0 ∧ ¬p ⇒ χnc (or vice versa).

The predicate x = y satisfies this property. The algorithm then makes the next two
recursive calls, adding p as a conjunct to H , as shown in the second column of the diagram
above: one with H1 ≡ true ∧ x = y and one with H ′

1 ≡ true ∧ x �= y.
Taking the H ′

1 case, our algorithmmakes another SMT query and finds that x �= y implies
that add always commutes with contains. At this point, it can update the commutativity
condition ϕ, letting ϕ:=ϕ ∨ H ′

1, adding this H ′
1 region to the growing disjunction.

On the other hand, H1 is neither a sufficient commutativity nor a sufficient non-
commutativity condition, and so our algorithm, again, produces the respective counterex-
amples: χc = {x = 0, y = 0, S = ∅} and χnc = {x = 0, y = 0, S = {0}}. In this case,
our algorithm selects the predicate x ∈ S, and makes two further recursive calls: one with
H2 ≡ x = y ∧ x ∈ S and another with H ′

2 ≡ x = y ∧ x /∈ S. It now finds that H2 is
a sufficiently strong precondition for commutativity, while H ′

2 is a strong enough precon-
dition for non-commutativity. Consequently, H2 is added as a new conjunct to ϕ, yielding
ϕ ≡ x �= y ∨ (x = y ∧ x ∈ S). Similarly, ϕ̃ is updated to be: ϕ̃ ≡ (x = y ∧ x /∈ S).

No further recursive calls are made so the algorithm terminates and we have obtained a
precise (complete) commutativity/non-commutativity specification:ϕ∨ϕ̃ is valid (Lemma1).

Challenges and Outline While the algorithm outlined so far is a relatively standard refine-
ment, the above generated conditions were not immediate. We now discuss challenges
involved in generating sound and useful conditions.

(Section 4) A first question is how to pose the underlying commutativity queries for each
subsequent H in a way that avoids the introduction of additional quantifiers, so that we can
remain in fragments for which the solver has complete decision procedures. Thus, if the
data structure can be encoded using theories that are decidable, then the queries we pose
to the SMT solver are guaranteed to be decidable as well. Prem/Postm specifications that
are partial would introduce quantifier alternation, but we show how this can be avoided by,
instead, transforming them into total specifications.

(Section 5)We have proved that our algorithm is sound even if aborted or theADTdescrip-
tion involves undecidable theories. We further show that termination implies completeness,
and specify broad conditions that imply termination.

(Section 6)Wehave generalized our theory and algorithm to be able to synthesis conditions
for left- and right-movers [28], an asymmetric version of commutativity.

(Section 7) Another challenge is to prioritize predicates during the refinement loop. This
choice impacts not only the algorithm’s performance, but also the quality/conciseness of the
resulting conditions. Our choice of next predicate p is governed by two requirements. First,
for progress, p/¬pmust eliminate the counterexamples to commutativity/non-commutativity

123

1338 K. Bansal et al.

due to the last iteration . Thismay still leavemultiple choices, andwepropose twoheuristics—
called simple and poke—with different trade-offs to break ties.

(Section 8) We next provide an evaluation on a range of popular data structures including
a Counter, Stack, HashTable, Accumulator, and Set.

(Section 9)We show several applications of our work, includingmemories and lock-based
synchronization, a case study on the security of an Ethereum smart contract, and examples of
howServois commutativity conditions can be employed in transactionalmemory, distributed
systems, code refactoring, verification, and code synthesis.

3 Preliminaries

States, Actions, Methods We will work with a state space �, with decidable equality and
a set of actions A. For each α ∈ A, we have a transition function (|α|) : �⇁�. We denote a
single transition as σ

α−→ σ ′. We assume that each such action arc completes in finite time.
Let T ≡ (�, A, (| • |)). We say that two actions α1 and α2 commute [12], denoted α1 �
 α2,
provided that (|α1|) ◦ (|α2|) = (|α2|) ◦ (|α1|). Note that �
 is with respect to T = (�, A, (| • |)).
Our formalism, implementation, and evaluation all extend to a more fine-grained notion of
commutativity: an asymmetric version called left-movers and right-movers [28], where a
method commutes in one direction and not the other. We return to this in Sect. 6. Also, in
our evaluation (Sect. 8) we show left-/right-mover conditions that were generated by our
implementation.

An action α ∈ A is of the form m(x̄)/r̄ , where m, x̄ and r̄ are called a method, arguments
and return values respectively. As a convention, for actions corresponding to a method n, we
use ȳ for arguments and s̄ for return values. The set of methods will be finite, inducing a finite
partitioning of A. We refer to an action, say m(ā)/v̄, as corresponding to method m (where
ā and v̄ are vectors of values). The set of actions corresponding to a method m, denoted Am ,
might be infinite as arguments and return values may be from an infinite domain.

Definition 1 Methodsm and n commute, denotedm �
 n provided that ∀x̄ ȳ r̄ s̄. m(x̄)/r̄ �

n(ȳ)/s̄.

The quantification ∀x̄ r̄ above means ∀m(x̄)/r̄ ∈ Am , i.e., all vectors of arguments and return
values that constitute an action in Am .

Abstract Specifications We symbolically describe the actions of a method m as pre-
condition Prem and post-condition Postm . Pre-conditions are logical formulae over method
arguments and the initial state: [[Prem]] : x̄ → � → B. Post-conditions are over method
arguments, and return values, initial state and final state: [[Postm]] : x̄ → r̄ → � → � → B.
Given (Prem,Postm) for every method m, we define a transition system T = (�, A, (| • |))
such that σ

m(ā)/v̄−−−−→ σ ′ iff [[Prem]] ā σ and [[Postm]] ā v̄ σ σ ′.
Since our approach works on deterministic transition systems, we have implemented an

SMT-based check (Sect. 8) that ensures the input transition system is deterministic. Determin-
istic specifications were sufficient in our examples. This is unsurprising given the inherent
difficulty of creating efficient concurrent implementations of nondeterministic operations,
whose effects are hard to characterize. Reducing nondeterministic data-structure methods to
deterministic ones through symbolic partial determinization [1,10] is left as future work.

123

Synthesizing Precise and Useful Commutativity Conditions 1339

Logical Commutativity Formulae We will generate a commutativity condition for methods
m and n as logical formulae over initial states and the arguments/return values of themethods.
We denote a logical commutativity formula as ϕ and assume a decidable interpretation of
formulae, i.e. that [[ϕ]] : (σ, x̄, ȳ, r̄ , s̄) → B. (We tuple the arguments for brevity.) The first
argument is the initial state. Commutativity post- andmid-conditions can also be written [23]
but here, for simplicity, we focus on commutativity pre-conditions. We may write [[ϕ]] as ϕ

when it is clear from context that ϕ is meant to be interpreted.
We say that ϕn

m is a sound commutativity condition, and ϕ̂n
m a sound non-commutativity

condition resp., for m and n provided that

∀σ x̄ ȳr̄ s̄. [[ϕn
m]] σ x̄ ȳ r̄ s̄ ⇒ m(x̄)/r̄ �
 n(ȳ)/s̄, and

∀σ x̄ ȳr̄ s̄. [[ϕ̂n
m]] σ x̄ ȳ r̄ s̄ ⇒ ¬(m(x̄)/r̄ �
 n(ȳ)/s̄), resp.

4 Commutativity Without Quantifier Alternation

Definition 1 requires showing equivalence between different compositions of potentially
partial functions. That is, (|α1|) ◦ (|α2|) = (|α2|) ◦ (|α1|) if and only if:

∀σ0σ1σ12. (|α1|)σ0 = σ1 ∧ (|α2|)σ1 = σ12 ⇒ ∃σ3. (|α2|)σ0 = σ3 ∧ (|α1|)σ3 = σ12
(and a symmetric case for the other direction)

Even when the transition relation can be expressed in a decidable theory, because of ∀∃
quantifier alternation in the above encoding (which is undecidable in general), any procedure
requiring such a check would be incomplete. SMT solvers are particularly poor at handling
such constraints.

We observe that when the transition system is specified as Prem and Postm conditions,
and the Postm condition is consistent with Prem , then it is possible to avoid quantifier
alternation. By consistent we mean that whenever Prem holds, there is always some state
and return value for which Postm holds (i.e. for which the procedure does not abort).

∀ā σ. Prem(ā, σ) = true ⇒ ∃σ ′ r̄ . Postm(ā, r̄ , σ, σ ′).

That is, the procedure terminates for every Prem , which holds in particular for all of the
specifications in the examples we considered (see Sect. 8). This allows us to perform a
simple transformation on transition systems to a lifted domain, and enforce a definition
of commutativity in the lifted domain m �̂
 n that is equivalent to Definition 1. This new
definition (inspired by “type lifting”) requires only universal quantification, and as such, is
better suited to SMT-backed algorithms (Sect. 5).

Definition 2 (Lifted transition function) ForT = (�, A, (|•|)), we liftT to T̂ = (�̂, A, (|]•[|))
where �̂ = � ∪ {err}, err /∈ �, and (|]α[|) : �̂ → �̂, as:

(|]α[|)σ̂ ≡

⎧
⎪⎨

⎪⎩

err if σ̂ = err

(|α|)σ̂ if σ̂ ∈ dom((|α|))
err otherwise

Intuitively, (|]α[|) wraps (|α|) so that err loops back to err, and the (potentially partial) (|α|) is
made to be total bymapping elements to errwhen they are undefined in (|α|). It is not necessary
to lift the actions (or, indeed, the methods), but only the states and transition function. Once
lifted, for a given state σ̂0, the question of some successor state becomes equivalent to all
successor states because there is exactly one successor state.

123

1340 K. Bansal et al.

Abstraction Pre-/post-conditions (Prem,Postm) are suitable for specifications of poten-
tially partial transition systems. One can translate these into a new pair (P̂rem, P̂ostm) that
induces a corresponding lifted transition system that is total and remains deterministic.
These lifted specifications have types over lifted state spaces: [[P̂rem]] : x̄ → �̂ → B

and [[̂Postm]] : x̄ → r̄ → �̂ → �̂ → B. Our implementation performs this lifting via
translation denoted Lift from (Prem,Postm) to:

P̂rem(x̄, σ̂) ≡ true

P̂ostm(x̄, r̄ , σ̂ , σ̂ ′) ≡ ∨

⎧
⎪⎨

⎪⎩

σ̂ = err ∧ σ̂ ′ = err

σ̂ �= err ∧ Prem(x̄, σ̂) ∧ σ̂ ′ �= err ∧ Postm(x̄, r̄ , σ̂ , σ̂ ′)
σ̂ �= err ∧ ¬Prem(x̄, σ̂) ∧ σ̂ ′ = err

(For simplicity of presentation, we abuse notation, giving σ̂ as an argument to Prem , etc.) It
is easy to see that the lifted transition system induced by this translation (�̂, (|] • [|)) is of the
form given in Definition 2. Later, we show that our tool transforms a counter specification
(Fig. 2) into an an equivalent lifted version that is total (Fig. 3).

We use the notation �̂
 to mean �
 but over lifted transition system T̂. Since �̂
 is over
total, determinsitic transition functions, α1 �̂
 α2 is equivalent to:

∀σ̂0. σ̂0 �= err ⇒ ((|]α2[|) (|]α1[|) �= err ∨ (|]α1[|) (|]α2[|) �= err) ⇒
(|]α2[|) (|]α1[|) σ̂0 = (|]α1[|) (|]α2[|) σ̂0

(1)

The equivalence above is in terms of state equality. Importantly, this is a universally quantified
formula that translates to a ground satisfiability check in an SMT solver (modulo the theories
used to model the data structure). In our refinement algorithm (Sect. 5), we will use this
format to check whether candidate logical formulae describe commutative subregions.

5 Iterative Refinement

We now present an iterative refinement strategy that, when given a lifted abstract transition
system, generates the conditions for commutativity and non-commutativity. We then discuss
soundness and relative completeness and, in Sects. 7 and 8, challenges in generating precise
and useful commutativity conditions.

The refinement algorithm symbolically searches the state space for regions where the
operations commute (or do not commute) in a conjunctive manner, adding on one predi-
cate at a time. We add each subregion H (described conjunctively) in which commutativity
always holds to a growing disjunctive description of the commutativity condition ϕ, and each
subregion H in which commutativity never holds to a growing disjunctive description of the
non-commutativity condition ϕ̃.

The algorithm in Fig. 1 begins by setting ϕ = false and ϕ̃ = false. Refine begins a
symbolic binary search through the state space H , starting from the entire state: H = true. It
also may use a collection of predicates P (discussed later). At each iteration, Refine checks
whether the current H represents a region of space for whichm and n always commute: H ⇒
m �̂
 n (described below). If so, H can be disjunctively added to ϕ. It may, instead be the case
that H represents a region of space for whichm and n never commute: H ⇒ m \̂�
 n. If so, H
can be disjunctively added to ϕ̃. If neither of these cases hold, we have two counterexamples.
χc is the counterexample to commutativity, returned if the validity check on Line 2 fails. χnc

is the counterexample to non-commutativity, returned if the validity check on Line 4 fails.

123

Synthesizing Precise and Useful Commutativity Conditions 1341

Fig. 1 Algorithm for generating commutativity ϕ and non-commutativity ϕ̃

We now need to subdivide H into two regions. This is accomplished by selecting a new
predicate p via the Choose method. For now, let the method Choose and the choice of
predicate vocabularyP be parametric.Refine is sound regardless of the behavior ofChoose.
Belowwe give the conditions onChoose that ensure relative completeness, and in Sect. 8 we
discuss our particular strategy. Regardless of what p is returned by Choose, two recursive
calls are made to Refine, one with argument H ∧ p, and the other with argument H ∧ ¬p.
Sincewe branch on each predicate, the algorithm is exponential in the number of predicates in
the worst case. In Sect. 7 we discuss prioritizing predicates to make this practical in practice.

The refinement algorithm generates commutativity conditions in disjunctive normal form.
Hence, any finite logical formula can be represented. This logical language ismore expressive
than previous commutativity logics that, because they were designed for run-time purposes,
were restricted to conjunctions of inequalities [26] and boolean combinations of predicates
over finite domains [12].
Checking a Candidate Hn

m . Our algorithm involves checking whether (Hn
m ⇒ m �̂
 n) or

(Hn
m ⇒ m \̂�
 n). As shown in Sect. 4, we can check whether Hn

m specifies conditions under
which m �
 n via an SMT query that does not introduce quantifier alternation. For brevity,
we define:

valid(Hn
m ⇒ m �̂
 n) ≡ valid

(∀σ̂0 x̄ ȳ r̄ s̄. Hn
m(σ̂0, x̄, ȳ, r̄ , s̄) ⇒

m(x̄)/r̄ n(ȳ)/s̄ σ̂0 = n(ȳ)/s̄ m(x̄)/r̄ σ̂0

)

Above we assume as a black box an SMT solver providing valid. Here we have lifted the
universal quantification within �̂
 outside the implication.

We can similarly check whether Hn
m is a condition under whichm and n do not commute.

First, we define negative analogs of commutativity:

α1 \̂�
 α2 ≡ ∀σ̂0. σ̂0 �= err ⇒ (|]α2[|) (|]α1[|) σ̂0 �= (|]α1[|) (|]α2[|) σ̂0

m \̂�
 n ≡ ∀x̄ ȳ r̄ s̄. m(x̄)/r̄ \̂�
 n(ȳ)/s̄

We thus define a check for when ϕn
m is a non-commutativity condition with:

valid(Hn
m ⇒m \̂�
 n) ≡ valid

(∀σ̂0 x̄ ȳ r̄ s̄. Hn
m(σ̂0, x̄, ȳ, r̄ , s̄) ⇒ σ̂0 �= err ⇒

m(x̄)/r̄ n(ȳ)/s̄ σ̂0 �= n(ȳ)/s̄ m(x̄)/r̄ σ̂0

)

123

1342 K. Bansal et al.

Theorem 1 (Soundness) For each Refinemn iteration: ϕ ⇒ m �̂
 n and ϕ̃ ⇒ m \̂�
 n.

Proof We focus on the commutativity condition ϕ case; ϕ̃ is analogous. Initially, ϕ = false
is a sound condition for when commutativity holds. The Refinemn algorithm proceeds by
iteratively updating ϕ, constructing a DNF formula of the following shape:

ϕ = false ∨ (p00 ∧ · · · ∧ p0N0
) ∨ · · · ∨ (pM0 ∧ · · · ∧ pMNM

)

where there are some M disjuncts, each consisting of some Ni (for i ∈ [1, M]) predicate
conjuncts. For soundness, it suffices to show that each disjunct’s conjunction is a valid
commutativity condition. Fix one such conjunction H = p0 ∧ · · · ∧ pNi . This conjunction is
accumulated as the first parameter on the Refinemn call stack, in the recursive call made on
Lines 9 and 10. ϕ is only updated on Line 3 and it does so by adding this new conjunction
H . However, the addition of H is guarded by valid(H ⇒ m �̂
 n) on Line 2 and thus each
H must be a sound commutativity condition. ��
Because all additions to the (non)commutativity conditions are immediately proceeded by
a valid check, soundness depends only on simple local condition rather than a complicated
invariant. Note also that soundness holds regardless of what Choose returns and even when
the theories used to model the underlying data-structure are incomplete. Next we show
termination implies completeness:

Lemma 1 If Refinemn terminates, then ϕ ∨ ϕ̃.

Proof The recursive calls of the Refine algorithm induce a binary tree T , where nodes are
labeled by the conjunction of predicates. IfRefine terminates, then T is finite, and each node
is labeled with a finite conjunction p0 ∧ · · · ∧ pn .

Claim The disjunction of all leaf node labels is valid. Proof By induction on the tree. Base
case: a single-node tree has label true. Inductive case: for every new node created, labeled
with a new conjunct . . . ∧ p, there is a sibling node with label . . . ∧ ¬p.

Each leaf node of tree T , labeled with conjunction γ , arises from Refine reaching a base
case where, by construction, the conjunction γ is disjunctively added to either ϕ or ϕ̃. Since
Refine terminates, all conjunctions are added to either ϕ or ϕ̃, and thus ϕ ∨ ϕ̃ must be valid.
��
Theorem 2 (Conditions for termination) Refinemn terminates if 1. (expressiveness) the state
space � is partitionable into a finite set of regions �1, . . . , �N , each described by a finite
conjunction of predicatesψi , such that eitherψi ⇒ m �̂
 n orψi ⇒ m \̂�
 n; and 2. (fairness)
for every p ∈ P , Choose eventually picks p (note that this does not imply that P is finite),

Proof By contradiction. As in the proof for Lemma 1, we represent the algorithm’s execution
as a binary tree T , induced by the recursive Refine calls, whose nodes are labeled by the
conjunction of predicates (Lines 9 and 10 in Algorithm 1). Assume there exists an infinite
path along T , and let its respective labels be π = p0, p0 ∧ p1, p0 ∧ p1 ∧ p2,

Claim There is no finite prefix of π that contains all the predicates ψi . Proof Had there
been such a prefix � , by the expressiveness assumption the running condition H would
satisfy one of the validity checks at lines 2 and 4 within, or immediately after, � . This is
because H would be equal to, or stronger than, the conjunction of the predicates ψi . This
would have made π finite, as π is extended only if both of the validity checks fail, where we
assume π is infinite.

By the above claim, at least one of the predicates ψi is not contained in any finite prefix
of π . This contradicts the fairness assumption, whereby any predicate p ∈ P is chosen after
finitely many Choose invocations (provided the algorithm hasn’t terminated). ��

123

Synthesizing Precise and Useful Commutativity Conditions 1343

Note that while these conditions ensure termination, the bound on the number of iterations
depends on the predicate language and behavior of Choose.

6 Right-/Left-Movers

We now describe how the formalism and algorithm presented thus far can be extend to a
more fine-grained notion of commutativity: an asymmetric version called left-movers and
right-movers [28], where a method commutes in one direction and not the other.

Definition 3 (Right-mover [28]) We say that an action α1 moves to the right of action α2

commute, denoted α1 � α2, provided that (|α2|) ◦ (|α1|) ⊆ (|α1|) ◦ (|α2|). For methods m and
n,

m � n ≡ ∀x̄ ȳ r̄ s̄. m(x̄)/r̄ � n(ȳ)/s̄

Left-movers can be defined as right-movers, but with arguments swapped. A logical right-
mover condition denoted �n

m has the same type as a commutativity condition and, again
[[�n

m]] denotes interpretations of �n
m . Moreover, we say that �n

m is a right-mover condition
for m and n provided that ∀σ0 x̄ ȳ r̄ s̄. [[�n

m]] σ0 (m(x̄)/r̄) (n(ȳ)/s̄) = true ⇒ m � n and
similar for a non-right-mover condition denoted �̃n

m .
We also extend right-movers to lifted transition systems, as in Sect. 4. We use �̂ to mean

� but over lifted transition systems T̂.
Checking whether �n

m ⇒ m �̂ n. After performing the lifting transformation, we again are
able to reduce the question of whether a formula �n

m is a right-mover condition to a validity
check that does not introduce quantifier alternation.

valid(�n
m ⇒ m �̂ n)

≡ valid

⎛

⎜
⎜
⎝

∀σ̂0 x̄ ȳ r̄ s̄.
�n

m(σ̂0, x̄, ȳ, r̄ , s̄) ⇒ σ̂0 �= err ⇒
(|]n(ȳ)/s̄[|) (|]m(x̄)/r̄ [|) σ̂0 �= err ⇒
(|]n(ȳ)/s̄[|) (|]m(x̄)/r̄ [|) σ̂0 = (|]m(x̄)/r̄ [|) (|]n(ȳ)/s̄[|) σ̂0.

⎞

⎟
⎟
⎠

Notice that this is a generalization of the validity check for commutativity.

Lemma 2 If valid(Hn
m ⇒ m �̂ n) and valid(Hn

m ⇒ n �̂ m) then valid(Hn
m ⇒ m �
 n).

We define �̂Refinemn to be the same algorithm as in Fig. 1, except that valid(Hn
m ⇒ m �̂
 n)

is replaced with valid(Hn
m ⇒ m �̂ n). Then,

Theorem 3 (Left-mover soundness) For each �̂Refinemn iteration:�n
m ⇒ m �̂ n, and �̃n

m ⇒
m \̂� n.

Proof Similar to Theorem 1. ��

6.1 The Full Lay of the Land

Recall that commutativity implies both-moverness while non-commutativity implies either
non-left-, non-right- or non-both-moverness. We use the following notation for the three
subcases of a non-commutativity condition ϕ̃:

ϕ\�
 : left-, but non-right- mover condition.
ϕ�\
 : right-, but non-left- mover condition.
ϕ\�\
 : non-left- and non-right- mover condition.

123

1344 K. Bansal et al.

In some cases it may be helpful to distinguish these cases. Therefore, we now describe how
to combine the �̂Refinemn and
̂Refinemn algorithms so that we can fully identify all cases.
Let us denote �̂Refinemn (H ,P) to be the algorithms above, starting from state space H and
constructing/returning right-moverness/non-right-moverness pair (ψ,ψ ′).

1 let (ψr , ψ̃r) = �̂Refinemn (true,P) in
2 let (ψl , ψ̃l) =
̂Refinemn (true,P) in
3 ϕ̃ := ψ̃r ∨ ψ̃l ;
4 ϕ\�\
 := ψ̃r ∧ ψ̃l ;
5 ϕ�
 := ψr ∧ ψl ;
6 ϕ\�
 := ψ̃r ∧ ψl ;
7 ϕ�\
 := ψr ∧ ψ̃l ;

The above calls to Refine divide the state space into four quadrants. Properties
ϕ�
, ϕ\�
, ϕ�\
 and ϕ\�\
 are all defined via conjunction. Meanwhile, the weaker non-
commutativity ϕ̃ is definedwith disjunction.While ϕ̃ maintainsDNF form, the other formulas
have lost it. This can be rectified through formula manipulation. Alternatively, one could
explore modifications to the original Refine algorithm that query the state space at this more
precise granularity. We leave this to future work.

7 The Servois Tool and Practical Considerations

We have developed the open-source tool Servois [34]. Servois uses CVC4 [7] as a backend
SMT solver. It begins by parsing an input ADT specification and performing some pre-
processing, discussed below. It subsequently implementsRefine, Lift, predicate generation,
and a method for selecting predicates (Choose) discussed below.

Input We use an input specification language building on YAML (which has parser and
printer support for many programming languages) with SMTLIB as the logical language.
This can be automatically generated relatively easily, thus enabling the integration with other
tools [6,14,17,20,27,29]. Specifically, the input is specified by the following:

– name: name of the object being modeled.
– state: a list of name, type where name is name of the fields, and type the SMTLIB

type being used to model the corresponding field.
– states_equal: a SMT formula denoting when two states should be considered equal.
– methods: specification of themethods as pre andpost conditions. Specifically, following

things need to be specified for a method:

– args: a list of name, type where name is name of an argument, and type the
SMTLIB type being used to model the corresponding argument.

– return: a list of name, type where name is name of a return value, and type the
SMTLIB type being used to model the corresponding return value.

– requires: a SMT formula denoting the precondition of the method.
– ensures: a SMT formula denoting the postcondition of the method.
– terms: optionally, terms that should be used to generate predicates.

An example input for the Counter ADT specification can be seen in Fig. 2. It was derived
from the Pre and Post conditions used in earlier work [23]. The states of a transition system

123

Synthesizing Precise and Useful Commutativity Conditions 1345

Fig. 2 An example of the input ADT specification for Counter

123

1346 K. Bansal et al.

describing an ADT are encoded as list of variables (each as a name/type pair), and each
method specification requires a list of argument types, return type, and Pre/Post conditions.
Notice that the Counter specification (Fig. 2) involves methods that have preconditions (e.g.
increment) and therefore, the specification is not total. Servois performs the Lift trans-
formation1 as described in Sect. 4. An example of Lift applied to Counter is in Fig. 3. Notice
that the state space has been augmented with err and post-conditions of all methods now
account for err. Moreover, states_equal has also been amended.

Predicate Generation (PGen) Next, Servois automatically generates the predicate lan-
guage in addition to user-provided hints. If the predicate vocabulary is not sufficiently
expressive, then the algorithm would not be able to converge on precise commutativity and
non-commutativity conditions (Sect. 5).We generate predicates by using terms and operators
that appear in the specification, and generating well-typed atoms not trivially true or false.
For example, if size, 1, (size+1) are terms of sortZ that appear in the formula along
with the predicates = and ≥, then we generate (size = 1), (size ≥ 1), etc (a total of 18
predicates in this case). We filter out those that are trivial. As we demonstrate in Sect. 8,
our predicate generation strategy works well in practice. Intuitively, Pre and Post formulas
suffice to express the footprint of an operation. So the atoms comprising them are an effective
vocabulary to express when operations do or do not interfere.

Predicate Selection (Choose) Even though the number of computed predicates is rela-
tively small, since our algorithm is exponential in number of predicates it is essential to be
able to identify relevant predicates for the algorithm. To this end, in addition to filtering triv-
ial predicates, we prioritize predicates based on the two counterexamples generated by the
validity checks in Refine. Predicates that distinguish between the given counter examples
are tried first (call these distinguishing predicates). Choosemust return a predicate such that
χc ⇒ H ∧ p and χnc ⇒ H ∧ ¬p. This guarantees progress on both recursive calls. When
combined with a heuristic to favor less complex atoms, this ensured timely termination on
our examples. We refer to this as the simple heuristic.

Though this produced precise conditions, they were not always very concise, which is
desirable for human understanding and the inspection purposes. We thus introduced a new
heuristic which significantly improves the qualitative aspect of our algorithm. We found that
doing a lookahead (recurse on each predicate one level deep) and computing the number
of distinguishing predicates for the two branches as a good indicator of importance of the
predicate. More precisely, we pick the predicate with lowest sum of remaining number of
distinguishing predicates by the two calls. We call this strategy “poke.” As an aside, those
familiar with decision tree learning might see a connection with the notion of entropy gain.
This requires more calls to the SMT solver at each step, but it cuts down the total number
of branches to be explored. Also, all individual queries were relatively simple for CVC4.
The heuristic converges much faster to the relevant predicates, and produces smaller, concise
conditions.

8 Evaluation

We applied Servois to Set, HashTable, Accumulator, Counter, and Stack. The generated
commutativity conditions for these data structures typically combine multiple theories, such

1 https://github.com/kbansal/servois/blob/master/src/lift.py.

123

https://github.com/kbansal/servois/blob/master/src/lift.py

Synthesizing Precise and Useful Commutativity Conditions 1347

Fig. 3 An example of the ADT specification after lifting has been performed. (terms have been elided for
lack of space.)

123

1348 K. Bansal et al.

as sets, integers and arrays. We now discuss how we represented each of the data structures.
All evaluation data is available on the Servois homepage [33].

1. CounterTheCounter involves typical operations:increment,decrement,zero test
and reset. The counter can be thought of as an integer that can take only non-negative
values (the state is modeled in our language as one variable of sort Int, and non-negativity
is enforced using preconditions).
In particular, this breaks the assumption that a successor state always exists doesn’t hold
(Axiom 1). We get around this assumption in our encoding by introducing an Err state
as described in Sect. 3. Our abstract definition encodes this as pair of variables, one of
sort Int (for contents), and other sort Bool (for Err).

2. Accumulator This is a simple data structure which holds a natural number, initially
zero. There are only two methods: add(int x), which increments internal state by x ; and
read(), which returns the internal value. We represent the internal state using a single
variable of sort Int.

3. Set This is a Set data structure with four operations: add, remove, contains and
getsize. We encode the state in SMT using a two variables with Set sort [4] and
size as Int sort. The elements of the Set are of an uninterpreted sort. The operations are
straightforward. add and remove each take one argument and return true or false. The
return value is true if and only if the data structure is modified (e.g., add(x) returns true
if x is not in the data structure before the call). contains and getsize do not modify
the state of the data structure.

4. Hashtable We use the SMTLIB theories of arrays and finite sets to encode a Hashtable.
The state is represented as a tuple (keys,H). keys keeps track of the set of keys on
which the Hashtable is currently defined, this is encoded as a set of an uninterpreted sort:
(Set E). The values corresponding to keys in the Hashtable is encoded using the array
theory: H is an array from E to another uninterpreted sort for the values. get takes a
single argument of sort E , if it is not in keys it goes to an error state. Otherwise, it returns
the value in the Hashtable. put takes two arguments: a (key,value) pair and updates the
Hashtable. Similar to Set, it returns true (resp. false) if the data structure is modified (resp.
not modified). remove takes a single argument, the key to be removed if it exists. Other
methods are self-explanatory.

5. StackWe use an abstraction which tracks only the top two values and the size.We observe
that stack operations push and pop only modify the top element. Thus for the purposes
of commutativity conditions we are looking at the value of only top two elements are of
importance, other that we check that size is the same. A subtle point here though is that
even though top two values can be modified, we need to track up to four values since two
pop calls can cause the third from top value to become part of the top two values.

Depending on the pair of methods, the number of predicates generated by PGen were
as follows: We did not provide any hints to the algorithm for this case study. On all our

ADT Predicates After filtering

Counter 25–25 12–12
Accumulator 1–20 0–20
Set 17–55 17–34
HashTable 18–36 6–36
Stack 41–61 41–42

123

Synthesizing Precise and Useful Commutativity Conditions 1349

examples, the simple heuristic terminated with precise commutativity conditions. In Fig. 4,
we give the number of solver queries and total time (in paren.) consumed by this heuristic.
The experiments were run on a 2.53 GHz Intel Core 2 Duo machine with 8 GB RAM.
The conditions in Fig. 4 are those generated by the poke heuristic, and interested reader
may compare them with the simple heuristic in [5]. On the theoretical side, our Choose
implementation is fair (satisfies condition 2 of Theorem 2, as Lines 9–10 of the algorithm
remove fromP the predicate being tried). From our experiments we conclude that our choice
of predicates satisfies condition 1 of Theorem 2.

Evaluation of Various Abstract Data Structures Although our algorithm is sound, we man-
ually validated the implementation of Servois by examining its output and comparing the
generated commutativity conditions with those reported by prior studies. In the case of Accu-
mulator and Counter, our commutativity conditions were identical to those given in [23]. For
the Set data structure, the work of [23] used a less precise Set abstraction, so we instead
validated against the conditions of [26]. As for HashTable, we validated that our conditions
match those by Dimitrov et al. [12].

9 Applications

Commutativity has played a central role in a number of application domains. In this section
we discuss use cases that emerge from our automated reasoning about commutativity, as
performed by Servois.

9.1 Memory, Locks and Commutativity

We now apply Servois to the setting of memories and locks. We work with a set of variables
Vars (of uninterpreted sort) and a memory mem : Vars → Z. First, we consider the simple
setting where there are two operations: read(x)/v and write(y)/w, similar to a Hashtable
but with fewer methods. Not surprisingly, Servois generated the commutativity conditions
including the fact that write operations on the same variable commute provided that the
value being written is the same.

Next, we introduce locks and mix them with memory. Let L⊥ be the type of locks. We
use τ to represent a lock value (e.g. a thread IDs) with a special distinct lock ⊥ to indicate
unlocked. Finally, wemaintain a mapping locked : Vars → L⊥ to indicate whether a given
memory location is locked and, if so, by whom.

To represent these types and methods in Servois, we exploited the underlying SMT
solver’s ability to declare sorts and to declare datatypes such as a Pair. Technically, locked
maps variables to a Pair, consisting of a boolean flag (for ⊥) and a sort for thread IDs.
We define methods lock(τi , x) and unlock(τi , x) which, respectively, represent thread τi
locking and unlocking the variable x , following the usual semantics of locks. We then further
define tryread(τi , x) which attempts to read the value of x but can only do so if τi holds
the lock and returns -1 otherwise. We similarly define trywrite(τi , x, v).

For commutativity in this context, there are many different cases to consider. For example,
when considering only tryread and trywrite, Servois generated a commutativity
condition that had 11 different cases. This cases include:

123

1350 K. Bansal et al.

Fig. 4 Automatically generated commutativity conditions (ϕmn). Right-moverness (�) conditions identical
for a pair of methods denoted by �
. Qs denotes number of SMT queries. Running time in seconds. Longer
conditions have been truncated, see [5]

123

Synthesizing Precise and Useful Commutativity Conditions 1351

1. tryread �
 trywrite when operating on different variables.
2. tryread �
 trywrite when the value being written is the same as what’s already

there.
3. tryread �
 trywrite when it is the same thread, same variable, but the lock is not

held. (In this case both the read and write will fail.)
4. tryread �
 trywrite when they are different threads.

Running Servois, we also obtained commutativity conditions such as:

Method pair Example commutativity case

tryread �
 tryread always
trywrite(x, τi) �
 lock(y, τ j) when x �= y and the lock for y is not held.
lock(x, τi) �
 lock(y, τ j) whenever x �= y.
lock(x, τi) �
 lock(y, τ j) whenever x = y and the lock is held by anyone, including a third party.
lock(x, τi) �
 lock(y, τ j) whenever x = y and the lock is unheld, but τi = τ j .
lock(x, τi) �
 unlock(y, τ j) whenever x �= y.
lock(x, τi) �
 unlock(y, τ j) whenever τi = τ j and x = y, but the lock is held by someone else.
lock(x, τi) �
 unlock(y, τ j) for different threads with x = y, but it is already locked by τi .
lock(x, τi) �
 unlock(y, τ j) for different threads with x = y, but locked by a third party.

9.2 Ethereum Smart Contracts and BlockKing

We further validated our approach by examining a real-world situation in which non-
commutativity opens the door for attacks that exploit interleavings. We examined “smart
contracts”, which are programs written in the Solidity programming language [36] and exe-
cuted on the Ethereum blockchain [15]. Elidingmany details, smart contracts are like objects,
and blockchain participants can invoke methods on these objects. Although the initial intu-
ition is that smart contracts are executed sequentially, practitioners and academics [32] are
increasingly realizing that the blockchain is a concurrent environment due to the fact the
execution of one actor’s smart contract can be split across multiple blocks, with other actors’
smart contracts interleaved. Therefore, the execution model of the blockchain has been com-
pared to that of concurrent objects [32]. Unfortunately, many smart contracts are not written
with this in mind, and attackers can exploit interleavings to their benefit.

As an example, we study the BlockKing smart contract. Figure 5 provides a simplification
of its description, as discussed in [32]. This is a simple game in which the players—each
identified by an address sendr—participate by making calls to BlockKing.enter(), sending
money val to the contract. (The grey variables are external input that we have lifted to be
parameters. bk reflects the caller’s current block number and rnd is the outcome of a random
number generation, described shortly.) The variables on Line 1 are globals, writable in any
call to enter. On Line 3 there is a trivial case when the caller hasn’t put enough value into the
game, and the money is simply returned. Otherwise, the caller stores their address and value
into the shared state. A random number is then generated and, since this requires complex
algorithms, it is done via a remote procedure call to a third-party on Line 5, with a callback
method provided on Line 7. If the randomly generated number is equal to a modulus of the
current block number, then the caller is the winner, and warrior’s (caller’s) details are stored
to king and kingBlock on Line 10.

123

1352 K. Bansal et al.

Fig. 5 Simplified code for BlockKing in a C-like language

Since random number generation is done via an RPC, players’ invocations of enter can
be interleaved. Moreover, these calls all write sendr and val to shared variables, so the RPC
callback will always roll the dice for whomever most recently wrote to warriorBlock. An
attacker can use this to leverage other players’ investments to increase his/her own chance to
win.

We now explore how Servois can aid a programmer in developing a more secure imple-
mentation.We observe that, as in traditional parallel programming contexts, if smart contracts
are commutative then these interleavings are not problematic. Otherwise, there is cause for
concern. To this end, we translated the BlockKing game into Servois format (see Servois
source code [34]). Servois took 1.4s (on machine with 2.4 GHz Intel Core i5 processor and
8 GBRAM) and yielded the following non-commutativity condition for two calls to enter:

enter(val1, sendr1,bk1, rnd1) \̂�
 enter(val2, sendr2,bk2, rnd2) ⇔
∨

⎧
⎨

⎩

val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 �= sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 �= val2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ sendr1 = sendr2 ∧ val1 = val2 ∧ bk1 �= bk2

This disjunction effectively enumerates cases under which they contract calls do not com-
mute. Of particular note is the first disjunct. From this first disjunct, whenever sendr1 �=
sendr2, the calls will not commute. Since in practice sendr1 will always be different from
sendr2 (two different callers) and val1 ≥ 50∧val2 ≥ 50 is the non-trivial case, the operations
will almost never commute. This should be immediate cause for concern to the developer.
Fixed version of BlockKing. A commutative version of BlockKingwould mean that there are
no interleavings to be concerned about. Indeed, a simple way to improve commutativity is
for each player to write their respective sendr and val to distinct shared state, perhaps via a
hashtable keyed on sendr. To this end, we created a new version enter_fixed, shown in Fig. 6.
(YMLversions of these two programs,blockking.yml and blockking_fixed.yml,
can be found in our source code repository [34].) Servois generated the following non-
commutativity condition after 3.5s.

enter_fixed(val1, sendr1,bk1, rnd1) \̂�
 enter_fixed(val2, sendr2,bk2, rnd2) iff

∨

⎧
⎨

⎩

val1 ≥ 50 ∧ val2 ≥ 50 ∧ val1 = val2 ∧ bk1 �= bk2 ∧ sendr1 = sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ val1 �= val2 ∧ sendr1 = sendr2
val1 ≥ 50 ∧ val2 ≥ 50 ∧ md(bk2) = rnd2 ∧ md(bk1) = rnd1 ∧ sendr1 �= sendr2

In the above non-commutativity condition,md is shorthand formodFun. In the first two dis-
juncts above, sendr1 = sendr2 which is, again, a case that will not occur in practice. All that

123

Synthesizing Precise and Useful Commutativity Conditions 1353

Fig. 6 Our fixed version of BlockKing in a C-like language

remains is the third disjunct wheremd(bk2) = rnd2 andmd(bk1) = rnd1. This corresponds
to the case where both players have won. In this case, it is acceptable for the operations to not
commute, because whomever won more recently will store their address/block to the shared
king/kingBlock.

In summary, if we assume that sendr1 �= sendr2, the non-commutativity of the original
version is val1 ≥ 50 ∨ val2 ≥ 50 (very strong). By contrast, the non-commutativity of the
fixed version is val1 ≥ 50 ∧ val2 ≥ 50 ∧ md(bk2) = rnd2 ∧ md(bk1) = rnd1. We have
thus demonstrated that the commutativity (and non-commutativity) conditions generated by
Servois can help developers understand the model of interference between two concurrent
calls.

9.3 Transactional Memory

The output of Servois can be used for speculative concurrent execution, e.g. transactional
memory. Specifically, transactional boosting [19] is a form of transactional memory in which
transactions consist of operations on shared highly-concurrent objects rather than directly on
a shared memory. This strategy permits conflict to be defined—based on commutativity—
at the level of abstract data types rather than at the overly conservative level of memory
read/write operations. It has been shown to improve performance [19]. Here is an example
of an execution of two boosted transactions:

Thread 1 : begin v = sk.pop(); ht .put(5, v); commit
Thread 2 : begin w = ht .get(6); commit

The above transactions perform operations on a shared Stack sk and Hashtable ht , which
each must be implemented as linearizable objects with no shared state beyond the state of the
objects. Even though these are concurrent transactions, the boosting methodology permits
concurrent operations on the same objects, provided that the operations commute. As we

123

1354 K. Bansal et al.

have seen in Sect. 8, these hashtable methods indeed commute because they are operating
on distinct keys.

The impact of boosting on the performance of transactional memory critically depends
on the quality and completeness of the specification, which controls the extent to which
spurious rollbacks are avoided. Servois is unique among availably synthesis tools in its
ability to (i) always generate commutativity conditions, even if not fully precise, for arbitrary
data structures, and (ii) ensure the soundness of the generated conditions, so that none of the
guarantees of the underlying transactional memory system is lost.

9.4 Testing for Interactions Between Code Blocks

The importance of representing concurrent data structures according to their guarantees
has already been established by past studies, eg in the context of exposing impediments to
loop parallelization [38]. Again here, as with transactional memory, there is the challenge
of automatically coming up with a commutativity specification. The HawkEye approach is
to emulate concrete-level reads and writes w.r.t. the abstract representation of a concurrent
ADT implementation. This yields approximate commutativity conditions, whereas Servois
enables an alternative that is more precise while still practical (see discussion above). As an
illustrative example, consider concurrent calls to Counter’s decrement method. Servois is
able to establish that these always commute, as show in Sect. 8, yet writing to the value field
of the counter to decrement it would trigger a spurious conflict by HawkEye.

To show this, we extended our implementation of theCounter, to further support awrite(v)

operation, which directly wrote to the counter. Re-running Servois, we found that:

• incr �
 decr as long as the counter was not 0 (as in the original Counter).
• incr �
 incr in all cases (as in the original Counter).
• incr �
 write never.
• decr �
 write never.
• write �
 write when both are writing the same value (as in a Memory).

9.5 Parallel and Distributed Systems

As the BlockKing example (Sect. 9.2) illustrates, a major aspect of reasoning about the
correctness of parallel and distributed programs concerns the conditions under which con-
current execution of the code is safe. As long as these conditions meet the intentions of
the developer, and are enforced at the implementation level via appropriate synchroniza-
tion, concurrent execution is safe. From a formal standpoint, this amounts to commutativity
checking.

Servois exposes a convenient interface for this type of reasoning. The ability to focus
on operations of interest, using custom logical vocabularies, enables granular yet accurate
reasoning about their interactions. Here is an example, adapted from Xiao et al. [43]:

1 int max = 0;
2 int y = 0;
3 foreach (Row row in input) {
4 int x = row["x"].Integer;
5 if(max < x) {
6 max = x;
7 y = row["y"].Integer; }

123

Synthesizing Precise and Useful Commutativity Conditions 1355

Given two instances of the body of the foreach loop, Servois is able to report that com-
mutativity is not generally guaranteed. Indeed, while simply searching for the maximal value
is an operation that can be evaluated in a distributed fashion, using that value (x) to extract
another column value (y) yields deterministic output only if that other value is the same
across rows the share the maximal value.

9.6 Refactoring

A common use case in code maintenance and refactoring is to move statements [16]. That
occurs, for example, when trying to increase reuse via method extraction; hoisting statements
outside a loop structure for improved performance; or changing the order of statements to
organize the code better. In all of these cases, there is the danger of introducing unintended
side effects because of latent interactions between statements that have changed their relative
position.

IDE-integrated refactoring tools often take care of the change itself, but without being
able to (fully) reason about the correctness of the transformation. Ultimately it is up to the
developer to approve the change (eg via a dialog that presents the before and after versions
of the code).

An example follows:

1 int max = 0;
2 int y = 0;
3 foreach (String e in input) {
4 { "X" �= e }
5 Data x = map.Get("X");
6 Data y = map.Get(e);
7 Compute(x, y); }

It is safe to hoist Data x = map.get("x"); outside the loop given the knowledge
that ∀e ∈ input."X" �= e. However, this is beyond what a standard compiler or refactoring
tool is able to establish. Within this use case, Servois could suggest that "X" �= e is a
sufficient condition for the hoisting operation, which the developer can then review and
approve.

Servois is well positioned to integrate with IDE refactoring tools, in that it’s feasible to
create reusable vocabularies of predicates for popular languages, libraries and data structures,
andwith these, haveServoisperform resource-bounded reasoningwhen a refactoring request
ismade. The unique advantage of Servois, beyond features alreadymentioned above, is in its
ability to always generate sound commutativity conditions, even if stopped before reaching
a stable solution.

9.7 Verification and Test Case Generation

Testing and verification are yet another opportunity to apply Servois. Specifically, given
an encoding of a data structure and its associated operations, the conditions that Servois
computes for commutativity become a correctness checking objective.As a concrete example,
Servois can integrate with dynamic analysis tools to guide checking of the implementation
both under conditions where method calls are expected to commute and where they are
expected to interfere.

Here is an illustrative example:

123

1356 K. Bansal et al.

1 Object PutIfAbsent(Map m, Entry e) {
2 m.Put(e.Key, e.Value); }

Per specification, two calls to PutIfAbsent commute either if the Maps are different or
if the Entrys differ in their Key field or if the Values are the same. With this information
given by Servois, a testing tool can check for the behavior when PutIfAbsent calls
interfere. That would uncover a bug, whereby

PutIfAbsent(k,v1); PutIfAbsent(k,v2);

yields a state where k is mapped to v2 rather than v1.
Integrations of this sort bridge the step down from specification to implementation. Ser-

vois synthesizes commutativity conditions at the specification level, which are discharged to
a concrete-level checking tool for testing or verification against the implementation. Again in
this use case, the ability to generate conditionswithin a limited time budget, andwhile reusing
predicate vocabularies across verification tasks, makes Servois a practical alternative that
is easy to integrate with algorithms for verification or testing.

9.8 Code Synthesis

An analogous use case to correctness checking with Servois operating at the specification
level is code synthesis. In this scenario, the conditions computed by Servois are become the
specification for synchronization synthesis.
Consider the following program:

1 k1 := placement(v1);
2 k2 := placement(v2);
3 { k1 �= k2 } // ϕn

m
4 if (*)
5 put(k1, v1); put(k2, v2);
6 else
7 put(k2, v2); put(k1, v1);

The second part of this program (from Line 4 onward) is attempting to exploit the com-
mutativity of put and put operating on different keys, represented by commutativity
condition ϕn

m used as a precondition. The synthesis question becomes: what implementa-
tion of placement ensures that k1 �= k2?

Synthesis algorithms like that by Itzhaky et al. [22] can then be used to generate an
admissible implementation of placement.

Synchronization synthesis need to be fully optimal, but (i) the synthesis algorithm should
be reasonably efficient (not taking too long to complete), (ii) the synthesized synchronization
should be sound, and finally (iii) the algorithm should be (close to) complete, not failing too
often to synthesize synchronization. The Servois design, and guarantees, meet all three of
these requirements.

10 Conclusions and FutureWork

This paper demonstrates that it is possible to automatically generate sound and effective com-
mutativity conditions, a task that has so far been done manually or without soundness. Our

123

Synthesizing Precise and Useful Commutativity Conditions 1357

commutativity conditions are applicable in a variety of contexts including transactional boost-
ing [19], open nested transactions [30], and other non-transactional concurrency paradigms
such as race detection [12], parallelizing compilers [31,38], and, as we show, robustness
of Ethereum smart contracts [32]. It has been shown that understanding the commutativity
of data-structure operations provides a key avenue to improved performance [9] or ease of
verification [24,25].

This work opens several avenues of future research. For instance, leveraging the internal
state of the SMT solver (beyond counterexamples) in order to generate new predicates [21];
automatically building abstract representation or making inferences such as one we made for
the stack example; and exploring strategies to compute commutativity conditions directly
from the program’s code, without the need for an intermediate abstract representation [38].
Finally, it may be worth exploring how our approach of ensuring totality applies to other
properties such as safety and liveness.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82, 253–284 (1991)
2. Aleen,F., Clark, N.: Commutativity analysis for software parallelization: letting program transformations

see the big picture. In: Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XII), pp. 241–252. ACM (2009)

3. Bansal, K., Koskinen, E., Tripp, O.: Automatic generation of precise and useful commutativity conditions.
In: Tools and Algorithms for the Construction and Analysis of Systems—24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Greece, April 2018, Proceedings, Part II (2017)

4. Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for finite sets and cardinality
constraints in SMT. In: Proceedings of the 8th International Joint Conference on Automated Reasoning,
vol. 9706, pp. 82–98. Springer (2016)

5. Bansal, K.: Decision Procedures for Finite Sets with Cardinality and Local Theory Extensions. Ph.D.
Thesis, New York University (Jan. 2016)

6. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview. In: Proceedings
of the 2004 International Conference on Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, CASSIS’04, pp. 49–69 (2005)

7. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.:
CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.), Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV ’11), vol. 6806, pp. 171–177. Springer (July 2011)

8. Chechik, M., Stavropoulou, I., Disenfeld, C., Rubin, J.: FPH: efficient non-commutativity analysis of
feature-based systems. In: Fundamental Approaches to Software Engineering, 21st International Confer-
ence, FASE 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018, Proceedings, pp. 319–336 (2018)

9. Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris, R.T., Kohler, E.: The scalable commutativity
rule: designing scalable software for multicore processors. ACM Trans. Comput. Syst. 32(4), 10 (2015)

10. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26–28, 2011, pp. 399–410 (2011)

11. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart contracts. In: Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing, PODC ’17, New York, NY,
USA, pp. 303–312 (2017). ACM

12. Dimitrov,D., Raychev,V.,Vechev,M.T., Koskinen, E.: Commutativity race detection. In:O’Boyle,M.F.P.,
Pingali, K. (eds.) ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom, June 09–11, 2014, p. 33. ACM (2014)

13. Dimitrov, D., Raychev, V., Vechev, M., Koskinen, E.: Commutativity race detection. In: Proceedings of
the 35th ACM SIGPLANConference on Programming Language Design and Implementation (PLDI’14)
(2014)

14. Ernst, G.W., Ogden, W.F.: Specification of abstract data types in modula. ACM Trans. Program. Lang.
Syst. 2(4), 522–543 (1980)

123

1358 K. Bansal et al.

15. Ethereum. https://ethereum.org/. Accessed 26 Aug 2020
16. Ettinger, R.: Program sliding. In: ECOOP 2012—Object-Oriented Programming—26th European Con-

ference, Beijing, China, June 11–16, 2012. Proceedings, pp. 713–737 (2012)
17. Flon, L., Misra, J.: A unified approach to the specification and verification of abstract data types. In:

Proceedings of Specifications of Reliable Software Conference. IEEE Computer Society (1979)
18. Gehr, T., Dimitrov, D., Vechev, M.T.: Learning commutativity specifications. In: Computer Aided

Verification—27th International Conference, CAV 2015, San Francisco, CA, USA, July 18–24, 2015,
Proceedings, Part I, pp. 307–323 (2015)

19. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly concurrent transactional
objects. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’08) (2008)

20. Hoare, C.A.R.: Software pioneers. In: Broy, M., Denert, E. (eds.) Proof of Correctness of Data Represen-
tations, pp. 385–396. Springer, New York (2002)

21. Hu, Y., Barrett, C., Goldberg, B.: Theory and algorithms for the generation and validation of speculative
loop optimizations. In: Proceedings of the 2nd IEEE International Conference on Software Engineering
and Formal Methods (SEFM ’04), pp. 281–289. IEEE Computer Society (Sept. 2004)

22. Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: A simple inductive synthesis methodology and its
applications. In: Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, New York, NY, USA, pp. 36–46 (2010). ACM

23. Kim,D., Rinard,M.C.:Verification of semantic commutativity conditions and inverse operations on linked
data structures. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, pp. 528–541. ACM (2011)

24. Koskinen, E., Parkinson, M.J., Herlihy, M.: Coarse-grained transactions. In: Hermenegildo, M.V.,
Palsberg, J. (eds.) Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2010, pp. 19–30. ACM (2010)

25. Koskinen, E., Parkinson, M.J.: The push/pull model of transactions. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, Portland, OR, USA, June (2015)

26. Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the commutativity lattice. In:
Proceedings of the 32nd ACM SIGPLANConference on Programming Language Design and Implemen-
tation, PLDI 2011, pp. 542–555. ACM (2011)

27. Leino, K.R.M.: Specifying and verifying programs in spec#. In: Proceedings of the 6th International
Perspectives of Systems Informatics, Andrei Ershov Memorial Conference, PSI 2006, p. 20 (2006)

28. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Commun. ACM 18(12),
717–721 (1975)

29. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
30. Ni, Y.,Menon, V., Adl-Tabatabai, A., Hosking, A.L., Hudson, R.L.,Moss, J.E.B., Saha, B., Shpeisman, T.:

Open nesting in software transactional memory. In: Proceedings of the 12th ACMSIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2007, pp. 68–78. ACM (2007)

31. Rinard, M.C., Diniz, P.C.: Commutativity analysis: a new analysis technique for parallelizing compilers.
ACM Trans. Program. Lang. Syst. 19(6), 942–991 (1997)

32. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: 1st Workshop on Trusted Smart
Contracts (2017)

33. Servois homepage. http://cs.nyu.edu/~kshitij/projects/servois. Accessed 26 Aug 2020
34. Servois source code. https://github.com/kbansal/servois. Accessed 26 Aug 2020
35. Solar-Lezama, A., Jones, C. G., Bodík, R.: Sketching concurrent data structures. In: Proceedings of the

ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation PLDI 2008,
pp. 136–148 (2008)

36. Solidity programming language. https://solidity.readthedocs.io/en/develop/. Accessed 26 Aug 2020
37. Tripp, O., Manevich, R., Field, J., Sagiv, M.: Janus: exploiting parallelism via hindsight. In: Proceedings

of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’12, New York, NY, USA, pp. 145–156 (2012). ACM

38. Tripp, O., Yorsh, G., Field, J., Sagiv, M.: HAWKEYE: effective discovery of dataflow impediments to
parallelization. In: Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland,
OR, USA, October 22–27, 2011, pp. 207–224 (2011)

39. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization. In: Proceedings of
the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,
pp. 327–338 (2010)

123

https://ethereum.org/
http://cs.nyu.edu/~kshitij/projects/servois
https://github.com/kbansal/servois
https://solidity.readthedocs.io/en/develop/

Synthesizing Precise and Useful Commutativity Conditions 1359

40. Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In: Proceedings of the
ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, pp. 125–135
(2008)

41. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In: Vojnar, T., Zhang, L.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp. 382–396. Springer, Berlin
(2008)

42. Weihl,W.:Commutativity-based concurrency control for abstract data types. IEEETrans.Comput.37(12),
1488–1505 (1988)

43. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin, W., Chen, W., Zhou, L.: Nondeterminism
in mapreduce considered harmful? an empirical study on non-commutative aggregators in mapreduce
programs. In: Companion Proceedings of the 36th International Conference on Software Engineering,
ICSE Companion 2014, New York, NY, USA, pp. 44–53 (2014). ACM

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Kshitij Bansal1 · Eric Koskinen2 ·Omer Tripp3

B Omer Tripp
omertrip@amazon.com

Kshitij Bansal
kbk@google.com

Eric Koskinen
eric.koskinen@stevens.edu

1 Google Inc., Mountain View, CA, USA
2 Stevens Institute of Technology, Hoboken, NJ, USA
3 Amazon.com, East Palo Alto, CA, USA

123

	Synthesizing Precise and Useful Commutativity Conditions
	Abstract
	1 Introduction
	2 Example
	3 Preliminaries
	4 Commutativity Without Quantifier Alternation
	5 Iterative Refinement
	6 Right-/Left-Movers
	6.1 The Full Lay of the Land

	7 The Servois Tool and Practical Considerations
	8 Evaluation
	9 Applications
	9.1 Memory, Locks and Commutativity
	9.2 Ethereum Smart Contracts and BlockKing
	9.3 Transactional Memory
	9.4 Testing for Interactions Between Code Blocks
	9.5 Parallel and Distributed Systems
	9.6 Refactoring
	9.7 Verification and Test Case Generation
	9.8 Code Synthesis

	10 Conclusions and Future Work
	References

