
Journal of Automated Reasoning (2020) 64:1307–1330
https://doi.org/10.1007/s10817-020-09565-w

Parameterized Model Checking on the TSOWeak Memory
Model

Sylvain Conchon1,2 · David Declerck3 · Fatiha Zaïdi1

Received: 5 May 2020 / Accepted: 11 May 2020 / Published online: 27 June 2020
© Springer Nature B.V. 2020

Abstract
We present an extended version of the model checking modulo theories framework for ver-
ifying parameterized systems under the TSO weak memory model. Our extension relies on
three main ingredients: (1) an axiomatic theory of the TSO memory model based on rela-
tions over (read, write) events, (2) a TSO-specific backward reachability algorithm and (3)
an SMT solver for reasoning about TSO formulas. One of the main originality of our work
is a partial order reduction technique that exploits specificities of the TSO memory model.
We have implemented this framework in a new version of the Cubicle model checker called
Cubicle-W . Our experiments show that Cubicle-W is expressive and efficient enough to
automatically prove safety of concurrent algorithms, for an arbitrary number of processes,
ranging from mutual exclusion to synchronization barriers translated from actual x86-TSO
implementations.

Keywords Parameterized model checking · MCMT · SMT · Weak memory · Partial order
reduction

1 Introduction

Concurrent algorithms are usually designed under the sequential consistency (SC) memory
model [24] which enforces a global-time linear ordering of (read or write) accesses to shared
memories. However, modern multiprocessor architectures do not follow this SC semantics.

Work supported by the French ANR Project PARDI (ANR-16-CE25-0006).

B David Declerck
david.declerck@ocamlpro.com

Sylvain Conchon
sylvain.conchon@lri.fr

Fatiha Zaïdi
fatiha.zaidi@lri.fr

1 LRI (CNRS & Univ. Paris-Sud), Université Paris-Saclay, 91405 Orsay, France

2 Inria, Université Paris-Saclay, 91120 Palaiseau, France

3 OCamlPro, 91190 Gif-sur-Yvette, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09565-w&domain=pdf
http://orcid.org/0000-0003-0864-0953

1308 S. Conchon et al.

Instead, they implement several optimizations which lead to relaxed consistency models on
shared memory where read and write operations may be reordered. For instance, in x86-TSO
[25,26] writes can be delayed after reads due to a store buffering mechanism. Other relaxed
models (PowerPC [6], ARM) allow even more types of reorderings.

The new behaviors induced by these models may make out-of-the-shelf algorithms incor-
rect for subtle reasons mixing interleaving and reordering of events. In this context, finding
bugs or proving the correctness of concurrent algorithms is very challenging. The challenge is
even more difficult if we consider that most algorithms are parameterized, that is designed to
be run on architectures containing an arbitrary (large) number of processors andmanipulating
an arbitrary number of variables.

One of the most efficient technique for verifying concurrent systems is model checking.
While this technique has been used to verify parameterized algorithms [1,3,4,10,13,19] and
systems under some relaxed memory assumptions [1,2,7,11,12], hardly any state-of-the-art
model checker supports both parameterized verification and weak memory models (the only
exception we could find is Dual-TSO [1], which supports a finite number of variables).

In this paper, we present a new model checking algorithm for verifying parameterized
systems running under the TSO weak memory model. Our approach relies on the model
checking modulo theories (MCMT) framework by Ghilardi and Ranise [21]. This is a sym-
bolic SMT-based model checking technique where logical formulas (expressed in a fragment
of first-order logic) are used to represent both transitions and sets of states, and safety prop-
erties are verified by backward reachability analysis.

Our extended version of MCMT for weak memory implements a new pre-image com-
putation which takes into account the delays between write and read operations. In order to
consider only coherent read/write pairs, our framework relies on a buffer-free memory model
inspired by the logical framework of [9] which is implemented as a new theory in its SMT
solver. To reduce the state space explosion problem made worse by weak memories, our
reachability algorithm embeds a partial order reduction technique that exploits specificities
of the TSO memory model.

We have implemented this framework in Cubicle-W [14,18], the new version of the
Cubicle model checker [15–17]. Cubicle-W is a conservative extension which allows the
user to manipulate both SC and weak variables. Its relaxed consistency model is similar to
x86-TSO: each process has a FIFO buffer of pending store operations whose side effect is to
delay the outcome of its memory writes to all processes. Our experiments show that Cubicle-
W is expressive and efficient enough to automatically prove safety of concurrent algorithms,
for an arbitrary number of processes, ranging from mutual exclusion to synchronization
barriers translated from actual x86 implementations.

The paper is organized as follows. In the next section, we present the axiomatic framework
we used for modeling weak memory models. In Sect. 3, we present our extension of the
backward reachability analysis of MCMT for weak memories. Section 4 contains the TSO-
specific partial order reduction optimization.Wegive the new syntactic features ofCubicle-W
and some experimental evaluation in Sect. 5. Then, we conclude in Sect. 6.

2 Axiomatic WeakMemoryModels

Models for reasoning about weak memory generally fall into two categories: operational
models, which rely on explicit buffers to simulate the possible behaviors of a program on a

123

Parameterized Model Checking on the TSOWeak Memory Model 1309

given architecture, and axiomatic models, which use events and relations over these events
to describe the possible executions of a program.

For instance, consider the TSO memory model. Under this model, the write operations
do not take effect immediately: when a process performs a write, followed by a read, the
write might still be pending when the read is performed. An operational model of TSO
would typically use write buffers to simulate such behavior: the write would be immediately
buffered when encountered, but committed to the shared memory later, possibly after the
following read occurs. An axiomatic model of TSO would instead state that there is a write
event and a read event, and these two events are not ordered by any relation, meaning they
can occur in any order.

In our approach, we make use of on an axiomatic model of weak memory. We adopt the
formalism of Alglave et al. introduced in [5,9]. This framework is generic enough to describe
a broad variety of models, though we only introduce the subset we need to cover TSO. The
rest of the framework easily fits into our approach.

2.1 Events

The axiomatic approach relies on the use of execution traces to describe the semantics of a
program.The instructions of a programgenerate events, described by a unique event identifier,
and characterized by their direction (W for a write, R for a read), the process performing
the operation, the accessed variable1 and the read or written value. When an instruction is
repeated several times, for instance when it belongs to a loop, it generates as many events as
the number of times it is executed, each having a distinct event identifier. Additionally, there
exists an initial write event for each variable ; that event not being associated to any process.
We call E the generated set of events.

As an example, we take the following program, involving two processes i and j , in which
R1 and R2 are registers and α is a shared variable initially set to 0:

i j

α ← 1 α ← 2
R1 ← α R2 ← α

The events generated by this program are as follows:

e1 :Wα=0

e2 :Wi
α=1

e3 :Riα=?

e4 :W
j
α=2

e5 :R
j
α=?

The instruction α ← 1 from process i is a write (W) of the value 1 into the shared variable
α. As such, it generates the event e2:Wi

α=1, where e2 represents its unique identifier. The
instruction R1 ← α from process i is a read (R) from the shared variable α, whose value
we don’t (yet) know. As such, it generates the event e3:Ri

α=?. The same reasoning applies
to the two instructions from process j . Finally, as the initial value of α is 0, we add the
event e1:Wα=0, which isn’t associated to any process. From now on, to avoid cluttering the
schemas, we’ll omit the process prefix on events: since events from the same process are

1 By variable, we mean a distinct memory location.

123

1310 S. Conchon et al.

displayed in columns, there won’t be any ambiguity as to which event belongs to which
process.

2.2 Main Relations

In order to give a semantics to these events, we then define a number of relations over events,
representing different kind of interactions between them.
Relation po (Program Order) All events issued by the same process are ordered by a strict
order relation po, according to the order in which the instructions that generated them appear
in the program’s source code. As such, it is a partial relation over the set of all events E, but
a total relation over the events of a single process. Naturally, events corresponding to initial
writes are not included in this relation.

The events described in the previous schema yield the following po relation:

e1 :Wα=0

e2 :Wα=1

e3 :Rα=?

e4 :Wα=2

e5 :Rα=?

po po

Relation rf (Read-From) Every read event must take its value from a unique write event. The
rf relation allows to link each read to the write that it takes its value from. As a consequence,
there exist many different ways to build this relation. Also, a single write event can provide
its value to several different read events.

Using the events described earlier, we may build the nine rf relations depicted below:

e1 :Wα=0

e2 :Wα=1

e3 :Rα=0

e4 :Wα=2

e5 :Rα=0

rf rf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=0

e4 :Wα=2

e5 :Rα=1

rf

rf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=0

e4 :Wα=2

e5 :Rα=2

rf

rf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=1

e4 :Wα=2

e5 :Rα=0

rf

rf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=1

e4 :Wα=2

e5 :Rα=1

rf
rf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=1

e4 :Wα=2

e5 :Rα=2

rf rf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=2

e4 :Wα=2

e5 :Rα=0
rf

rf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=2

e4 :Wα=2

e5 :Rα=1

rfrf

e1 :Wα=0

e2 :Wα=1

e3 :Rα=2

e4 :Wα=2

e5 :Rα=2
rf

rf

Relation co (Coherence) Independently of the underlying memory model, there exists a total
order in which all the writes to the same variable become globally visible to all processes,
regardless of any local view a process could have of this variable. This can be seen as the order
in which these writes are actually committed in the shared memory. This order is expressed
using the co relation. Note that the initial writes are necessarily before all the other writes in
this relation.

Still using the events described earlier, we obtain the two co relations presented below:

123

Parameterized Model Checking on the TSOWeak Memory Model 1311

e1 :Wα=0

e2 :Wα=1

e3 :Rα=?

e4 :Wα=2

e5 :Rα=?

co co
co

e1 :Wα=0

e2 :Wα=1

e3 :Rα=?

e4 :Wα=2

e5 :Rα=?

co co
co

2.3 Candidate andValid Executions

Using the relations described above, an execution will be defined by a tuple of the form
(E, po, rf, co). The definition of the various relations being minimalist, they leave a high
degree of freedom in the way executions can be built. However, executions created in this
manner may not necessarily be correct, so at this stage, we call them candidate executions.
Additional constraintswill allow tofilter these executions dependingwhether they are actually
feasible or not.

In order to express the constraints that allow to check whether a candidate execution is
actually a valid execution, we need to define new relations, derived from the previous ones.
Relation ppo (Preserved ProgramOrder)One of the main effects of a weakmemorymodel is
to relax the order in which the memory operations of a single process are actually performed.
In other words, the order of memory operations does not necessarily follows po. Different
memory models allow different kind of relaxations. Under the TSO model, only the W →
R order is relaxed, so we define ppo as the restriction of po to events pairs other than WR
(write followed by read).
Relation fence Since a weak memory model does not preserve in ppo all the event pairs from
po, the semantics of a program is different compared to the one it has under SC and this
can lead to incorrect behaviors. In order to enforce an order between specific pairs of event
that were not preserved in ppo, the programmer may insert memory fences in his program.
Different kind of memory barriers allow to prevent different kind of relaxations. Under TSO,
memory fences allow to enforce an ordering between all writes preceding it and all reads
following it. The fence relation then represents the event pairs from the same process that are
separated by a memory barrier.
Relation fr (From-Read) We saw earlier that in every execution, there is a total order in
which all writes to the same variable become globally visible to all processes (co). As a
consequence, when a read takes its value from a write, then all the writes that are after this
specific write in the co relation also have to occur after the read. We express this constraint
by the smallest relation fr that satisfies the following axiom:

∀e1, e2, e3 · co(e1, e2) ∧ r f (e1, e3) → f r(e3, e2) fr

For instance, if we consider two write events e1 et e2 such that co(e1,e2) and a read event
e3 that takes its value from e1 (i.e. we have rf (e1,e3)), thenwe obtain the following fr relation:

e1 :Wα=1

e2 :Wα=2

e3 :Rα=1

co

rf

fr

Relations rfe and rfi (External and Internal Read-From) The rf relation may be split in two
sub-relations, depending on whether it relates to events issued by the same process or events

123

1312 S. Conchon et al.

issued by distinct processes. We call rfi the restriction of rf to the pairs of events from the
same process, and rfe the restriction of rf to the pairs of event from distinct processes.2

Relations fre and fri (External and Internal From-Read) Similarly, the fr relation may be
split in two sub-relations: fri for the pairs of events from fr relative to the same process, and
fre, for the pairs of events from fr relative to distinct processes

Relation ghb (global happens-before) The previous relations allow us to define a strict
(partial) order relation ghb that represents the order in which the memory operations are
performed, from a global viewpoint. All relations do not necessarily contribute to this global
order, whichmoreover depends on the underlyingmemorymodel. Under TSO, ghb is defined
as the smallest relation that satisfies the following axioms:

∀e· ¬ghb(e, e) ghb- ir
∀e1, e2, e3 · ghb(e1, e2) ∧ ghb(e2, e3) → ghb(e1, e3) ghb- t

∀e1, e2 · ppo(e1, e2) → ghb(e1, e2) ghb- ppo
∀e1, e2 · fence(e1, e2) → ghb(e1, e2) ghb- fence

∀e1, e2 · rfe(e1, e2) → ghb(e1, e2) ghb- rfe
∀e1, e2 · co(e1, e2) → ghb(e1, e2) ghb- co
∀e1, e2 · fr(e1, e2) → ghb(e1, e2) ghb- fr

Note that we use the ppo relation and not po. Indeed, the event pairs from po that are not
preserved by the memory model do not contribute to the global ordering of memory events.
Also, we consider the rfe relation, and not rf : when a process performs an intra-process read,
that read might occur from the process’ write buffer, which does not have any consequences
on the global ordering of events. As such, rfi doesn’t contribute to the ghb relation either.

Additionally, in a single process, a read can’t take its value from a write that appears after
it. Similarly, a write that appears before a read can’t occur after it, from the viewpoint of
the process performing these two operations. In other words, these constraints state that the
relations rfi and fri must be compatible with po. They can be expressed as follows:

∀e1, e2 · rfi(e1, e2) → po(e1, e2) uniprocRW
∀e1, e2 · fri(e1, e2) → po(e1, e2) uniprocWR

Finally, we can define when a candidate execution is considered valid (or feasible). A
candidate execution is valid when it allows to derive a ghb relation that is a valid partial
order, i.e an acyclic relation, and when the properties uniprocRW and uniprocWR are
verified.

2.4 Taking Into Account Atomic Operations

The model we’ve just introduced lacks features to express atomic accesses to a variable,
which is necessary to model atomic read-modify-write operations. Moreover, in the context
of transition systems, we may also need to simultaneously read or write several different
variables at once. In other words, we need a way to express that several events occur “at the
same time”. To do so, we will rely on two mechanisms.

Firstly, all events of the same kind (read or write) issued by the same process in a single
transition will be given the same identifier. As such, an identifier will no longer identify a
single event, but a set of events of the same kind, only distinguishable by the variable they
access. The relations introduced earlier will thus be defined on these event sets, and will be
established when at least two events from distinct sets satisfy the conditions to establish the

2 e = external, i = internal.

123

Parameterized Model Checking on the TSOWeak Memory Model 1313

relation. For instance, if ew identifies a set of writes and er a set of reads from a different
process, we will have rf(ew, er) if at least one of the reads identified by er is satisfied by
one of the writes identified by ew . As a consequence, we will need no more than two event
identifiers per transition: one for the reads, and one for the writes.

Secondly, when a transition contains both reads and writes, it represents a read-modify-
write operation. In certain cases, we may want to make this operation atomic. In order to do
so, we define an equivalence relation atom. The set of all read er and all writes ew from the
same transition will be made atomic by injecting the constraint atom(er , ew). That relation
may also be used to define synchronization point between events from distinct processes: we
will use this possibility under some specific circumstances.

To take into account this new relation, we simply add the following axioms when building
ghb:

∀e1, e2, e3 · ghb(e1, e2) ∧ atom(e2, e3) → ghb(e1, e3) ghb- atom- r
∀e1, e2, e3 · atom(e1, e2) ∧ ghb(e2, e3) → ghb(e1, e3) ghb- atom- l

A complete axiomatization of this model can be found in “Appendix”.

3 Model CheckingModulo Theories for WeakMemoryModels

Our approach relies on theMCMT framework ofGhilardi andRanise [20,21]which combines
an SMT solver and a backward reachability algorithm. In this section, we first briefly recall
howMCMTworks, then we give details about howwe extend it to support our weak memory
model. In the rest of this paper, we assume the usual syntactic and semantic notions of first-
order logic. In particular, we use the symbol |� for the logical entailment relation between
sets of formulas. For convenience, disjunctions are represented by sets of formulas.

3.1 Model CheckingModulo Theories

MCMT is a declarative framework for parameterized systems in which (set of) states, tran-
sitions and properties are expressed in a particular fragment of first order logic. Systems
expressible in this framework are called array-based transition systems because their states
can be seen as a set of unbounded arrays (denoted by capital letters X , Y , . . .)whose indexes
range over elements of a parameterized domain, called proc, of process identifiers (denoted
by i, j, p, k). Given an array variable X and a process variable i , we write X [i] for an array
access of X at index i . Systems may also contain variables but, from a theoretical point of
view, a variable is seen as an arraywith the same value in all its cells. Arraysmay contain inte-
ger or real numbers, booleans (or constructors from an enumerative user-defined datatype),
or process identifiers.

A parameterized array-based system S is defined by a triplet (X , I , τ) where X is a
set of array symbols, I is a formula describing the initial states of the system and τ is a set
of (possibly quantified) formulas, called transitions, relating states of S . The formula I is
a universal conjunction of literals of the form ∀�i .∧n �n which characterizes the values for
some array entries. Each literal �n is a comparison (=, �=, <, ≤) between two terms. A term
can be a constant (integer, boolean, real, constructor), a process variable (i), an array access
X [i]. A transition t ∈ τ is represented by a formula parameterized by the set of variables
before and after the transition (X andX ′) and prefixed by the existentially quantified process

123

1314 S. Conchon et al.

variables involved in the transition:

t(X ,X ′) = ∃�i . Δ(�i) ∧ γ (�i,X)

∧ ∧

X ′∈X ′
∀k.∧n

(
Cn(�i, k,X) ⇒ X ′[k] = vn(�i, k,X)

)

where Δ(�i) is the conjunction of all disequations between the variables in �i , the for-
mula γ (�i,X) is a conjunction of literals that represents the transition’s guard, i.e.
the conditions that must be met for the transition to be triggered and the conjunction
∧

n

(
Cn(�i, k,X) ⇒ X ′[k] = vn(�i, k,X)

)
represents the updated value of each array X

defined by a case-split expression where each conjunction of literals Cn(�i, k,X) and term
vn(�i, k,X) may depend on �i, k and X .

Safety properties to be verified on array-based systems are expressed in their negated
form as formulas that represent unsafe states. Each unsafe formula ϕ(X) must be a cube,
i.e., have the form ∃�k.(Δ(�k) ∧ ∧

m �m(�k,X)), where each literal �m(�k,X) may depend on
�k and array symbols in X .

For a state formula ϕ and a transition t ∈ τ , let pret (ϕ) be the formula describing the
set of states from which a ϕ-state can be reached in one t-step. The pre-image of a formula
ϕ(X) by a transition t is given by:

pret (ϕ)(X) = ∃X ′. t(X ,X ′) ∧ ϕ(X ′)

which is proven to be equivalent to a disjunction of cubes (Proposition 3.2 in [20]).
The pre-image closure of ϕ w.r.t a set of transitions τ , denoted by Pre∗

τ (ϕ), is defined as
follows:

⎧
⎨

⎩

Pre0τ (ϕ) � ϕ

Prenτ (ϕ) �
⋃{pret (ψ) | ψ ∈ Pren−1

τ (ϕ), t ∈ τ }
Pre∗

τ (ϕ) �
⋃

k∈N Prekτ (ϕ)

and the pre-image of a set of formulas V is defined by Pre∗
τ (V) = ⋃

ϕ∈V Pre∗
τ (ϕ). We

also write Preτ (ϕ) for Pre1τ (ϕ).

Definition 1 A set of formulas V is said to be reachable iff Pre∗
τ (V) ∧ I satisfiable.

The core of the analysis of MCMT is a symbolic backward reachability loop (Algorithm
1) that computes the pre-image closure of a (set of) unsafe states.

Given an array-based parameterized system S = (X , I , τ) and a set of unsafe states
represented by a cube U , the algorithm maintains two collections of states: Q contains the
(unsafe) states to visit (it is initialized withU) and V is filled with the visited states (initially
empty). Each iteration of the loop performs the following operations:

1. (pop) retrieve and remove a formula ϕ from Q
2. (safety test) check the satisfiability of ϕ ∧ I , i.e. determine if the states described by ϕ

intersect with the initial states I . If so, the system is declared as unsafe
3. (fixpoint test) check if ϕ |� V is valid, i.e. determine if the states described by ϕ have

already been visited. If so, discard ϕ and go back to 1
4. (pre-image computation) compute the pre-image Preτ (ϕ) of ϕ and add these new (set

of) states to Q and add ϕ to V .

If Q is empty at step 1, then all the states space has been explored and the system is declared
safe. Note that the (non-trivial) fixpoint and safety tests are discharged to an embedded SMT
solver.

123

Parameterized Model Checking on the TSOWeak Memory Model 1315

3.2 MCMT forWeakMemoryModels

Our extension of MCMT to weak memory models uses the same procedure, but the logical
language and some operations have been extended to reasonmodulo an axiomatic description
of our weak memory model, as described in the previous section.

The first step to define a parameterized weak array-based transition system is to consider
given a set W of weak array symbols (denoted by α, β, . . .).
Event Identifiers and Predicates In order to reason about the semantics of weak arrays, as
defined by the axiomaticmodel, we introduce the notion of events and new literals to represent
read and write operations. For that, we assume given a (countable) set of events E whose
elements are denoted by e letters (e1, e2, . . .). A literal of the form e:Rdiα[j] denotes a read
access to the cell α[j] by a process i labeled with an event identifier e. Similarly, literals of
the form e:Wriα[j] represent write accesses. The value returned by a read (resp. assigned by
a write) on a weak array α is given by the term valα(e, j), where e is the event identifier
associated to the operation and j the cell being accessed. We also introduce literals of the
form e:Fcei which indicate that a process i has a memory barrier on the event e, where e is
an event identifier associated to a read by the same process. We define a family of predicates
pendingα(e, j) to denote that the read event identified by e on α[j] is pending, that is not
linked to some write event.

Transitions in weak array-based transition systems. Transitions are also very similar to
the ones in MCMT. However, as the semantics of read and write operations depends on the
process which performs the operation, we have to define the notion of current process in a
transition t as the process which performs all reads and writes operations of t . By convention,
the identifier of the current process is given as the first parameter of t . Furthermore, the
combination of SC and weak arrays is also limited in weak memory models: as SC variables
correspond to the (private) registers of a process, it makes no sense for a process to access to
the registers of another process. Therefore, operations on SC arrays are restricted to accessing
only the cell belonging to the current process. In order to enforce such discipline, we write
X [i ← u] for updating only the cell i of an SC array X and leaving the other cells unchanged.
Transitions in MCMT for weak memory models have a form very similar to the ones for SC

123

1316 S. Conchon et al.

memory models:

t(X ,X ′, er , ew) = ∃i, �j . Δ(i, �j) ∧ γ (i, �j ,X , er ,W) ∧
∧

X ′∈X ′
X ′ = X [i ← u(i, �j,X , er ,W)]∧

∧

α∈W t

∀k. (∧m Cm(i, �j , k,X , er ,W) ⇒
ew:Wriα[k] ∧ valα(ew, k) = vm(i, �j , k,X , er))]

This definition allows us to instantiate a transition t with fresh read and write event identifiers
er and ew (it is assumed that t only refers to those events). The first existential variable i is the
current process of t (it is also assumed that all read or write predicates in that formula are done
by i). The transition’s guard γ (i, �j ,X , er ,W) and the case-splits Cm(i, �j, k,X , er ,W)

are conjunctions of literals that may contain reads to weak variables represented by liter-
als of the form er :Rdiα[.]. It is worth noting that any read to a weak variable α must be
associated to a literal pendingα(e, .) so as to express that reads introduced in a transition
are not currently linked. Updates of weak arrays in a transition only concern a subset Wt

of W . Each update takes the form of case-split formulas where assignments are of the form
ew:Wriα[k]∧valα(ew, k) = vm(i, �j, k,X , er),where each termvm maydependon i, �j, k,X
and er .
Reachability Loop The reachability loop implemented in our extended framework is based
on a new pre-image computation prew

t (ϕ)(X) defined below. Unsafe states ϕ(X) are now
described by cubes of the following form:

ϕ(X) = ∃�e.∃�k.Δ(�e) ∧ Δ(�k) ∧ ∧
m �m(�k, �e,X ,W)

where literals �m(�k, �e,X ,W) are defined in a logic extended with various predicates over
pairs of event identifiers (e1, e2) to represent the relations po(e1, e2), r f (e1, e2), co(e1, e2),
ppo(e1, e2), f r(e1, e2), f ence(e1, e2), atom(e1, e2), ghb(e1, e2), etc. The pre-image of an
unsafe formula ϕ(X) is of the form:

prew
t (ϕ)(X) = ∃X ′. ∃er , ew, �e. t(X ,X ′, er , ew) ∧ extend_rels(er , ew, �e)

∧∃�k.Δ(�k) ∧ ∧
m �m(�k, �e,X ,W)

where the extend_rels function adds the po, rf and co relations as prescribed by our
axiomatic memory model. In particular:

– for each event e in �e, we add po(er , e) and po(ew, e) predicates when the events belong
to the same process

– for each write event e in �e, we add co(ew, e) or co(e, ew) predicates when the events
relate to the same variable ; all possible co combinations must be generated

– for each read event e in �e, we add an rf (ew, e) predicate when we decide that the write
event satisfies the read event ; all possible rf combinations must be generated

It is worth noting that the pre-image computation generates as many formulas as possible
combinations of co an rf predicates. Also, whenever a formula contains both rf (ew, e) and
pendingα(e, .) the former is replaced by¬pendingα(e, .), indicating the read has been linked
to some write.

Initial states and safety test. The initial states of a parameterized weak array-based system
are defined by a universal conjunction I of literals of the form ∀�i .∀�e.∧m �m(�i, �e) which
characterizes the values of some weak and SC arrays. Literals about SC arrays are as in
MCMT. The initializations of weak arrays take the form of pending read events. For instance,

123

Parameterized Model Checking on the TSOWeak Memory Model 1317

the initialization of all cells of an array α to 0 takes the following form:

∀i, j .∀e. e:Rdiα[j] ∧ valα(e, j) = 0 ∧ pendingα(e)

As it is defined, the formula I cannot be coherent with unsafe states that contain reads
linked to some writes. Indeed, any instantiation of I will immediately contradict the lit-
erals characterizing read operations linked to some writes, represented by a sub-formula
R(i, j, e, α) of the form e : Rdiα[j] ∧ valα(e, j) = v ∧ ¬pendingα(e).

As a consequence, to be correct, the safety test on line 6 of Algorithm 1 is modified to
check satisfiability of I ∧ filter(ϕ), where filter is a function that removes all sub-formulas
R from ϕ.
SMT Solving Finally, we assume that the embedded SMT solver involving in the backward
reachability analysis is given the axioms of our model, allowing to build the derived relations
and check for the validity of executions, as shown in “Appendix”.

3.3 Example

As an example, we consider an extension of the simple program from the previous section
to an arbitrary number of processes. This variant has two weak variables (α and β) and three
SC arrays: PC , that contains the program counter of each process, R1 (resp. R2) a register
used to store the value of α (resp. β). Initially, α and β both contain 0 and the registers Ri

are assumed to contain an arbitrary value, but not 0. We assume given three user-defined
constructors L1, L2 and L3 used to represent the locations of each process (initially, each
program counter contains L1).

∀i .∀e1, e2. PC[i] = L1 ∧ Init
e1:Rdiα ∧ pendingα(e1) ∧ valα(e1) = 0 ∧
e2:Rdiβ ∧ pendingβ(e2) ∧ valβ(e2) = 0

∃i1, i2. i1 �= i2 ∧ PC[i1] = L3 ∧ PC[i2] = L3 ∧ Unsafe
R1[i1] = 0 ∧ R2[i2] = 0

∃i .∃e. PC[i] = L1∧ Trans11
e:Wriα ∧ valα(e) = 1 ∧ PC ′[i] = L2

∃i .∃e. PC[i] = L2∧ Trans12
e:Rdiβ ∧ R′

1[i] = valβ(e) ∧ pendingβ(e) ∧ PC ′[i] = L3

∃i .∃e. PC[i] = L1 Trans21
e:Wriβ ∧ valβ(e) = 1 ∧ PC ′[i] = L2

∃i .∃e. PC[i] = L2 Trans22
e:Rdiα ∧ R′

2[i] = valα(e) ∧ pendingα(e) ∧ PC ′[i] = L3

123

1318 S. Conchon et al.

Let’s consider the unsafe formula. After pre-image by Trans22, we obtain (changes are
underlined):

∃i1, i2, e1. i1 �= i2 ∧
PC[i1] = L3 ∧ PC[i2] = L2 ∧
R1[i1] = 0 ∧ valα(e1) = 0 ∧
e1:Rdi2α ∧ pendingα(e1)

We now compute the pre-image by Trans12, which gives:

∃i1, i2, e1, e2. i1 �= i2 ∧ e1 �= e2 ∧
PC[i1] = L2 ∧ PC[i2] = L2 ∧
valβ(e2) = 0 ∧ valα(e1) = 0 ∧
e1:Rdi2α ∧ pendingα(e1) ∧
e2:Rdi1β ∧ pendingβ(e2)

When computing the pre-image by Trans21, we have to consider every possibility to
satisfy or not the read e2 with the new write e3, hence we have two possible formulas. If the
write satisfies the read, we have:

∃i1, i2, e1, e2, e3. i1 �= i2 ∧ e1 �= e2 ∧ e1 �= e3 ∧ e2 �= e3 ∧
PC[i1] = L2 ∧ PC[i2] = L1 ∧
valβ(e2) = 0 ∧ valα(e1) = 0 ∧
e1:Rdi2α ∧ pendingα(e1) ∧
e2:Rdi1β ∧ ¬pendingβ(e2) ∧
e3:Wri2β ∧ valβ(e3) = 1

po(e3, e1) ∧ r f (e3, e2) ∧ valβ(e3) = valβ(e2)

This formula contains an obvious contradiction (valβ(e3) = valβ(e2) is false because the
values are different), so it is discarded. The other possibility is simply that the write e3 does
not satisfy the read e2, and we have:

∃i1, i2, e1, e2, e3. i1 �= i2 ∧ e1 �= e2 ∧ e1 �= e3 ∧ e2 �= e3 ∧
PC[i1] = L2 ∧ PC[i2] = L1 ∧
valβ(e2) = 0 ∧ valα(e1) = 0 ∧
e1:Rdi2X ∧ pendingα(e1) ∧
e2:Rdi1β ∧ pendingβ(e2) ∧
e3:Wri2β ∧ valβ(e3) = 1

po(e3, e1)

123

Parameterized Model Checking on the TSOWeak Memory Model 1319

Wecan then compute the pre-image byTrans11, which for the same reason only produces
a single valid formula:

∃i1, i2, e1, e2, e3, e4. i1 �= i2 ∧
e1 �= e2 ∧ e1 �= e3 ∧ e1 �= e4 ∧
e2 �= e3 ∧ e2 �= e4 ∧ e3 �= e4 ∧
PC[i1] = L1 ∧ PC[i2] = L1 ∧
valβ(e2) = 0 ∧ valα(e1) = 0 ∧
e1:Rdi2α ∧ pendingα(e1) ∧
e2:Rdi1β ∧ pendingβ(e2) ∧
e3:Wri2β ∧ valβ(e3) = 1

e4:Wri1α ∧ valα(e4) = 1
po(e3, e1) ∧ po(e4, e2)

This formula intersects with the formula Init which we described earlier, thus, there is a
path from the initial states to the dangerous states and the system is declared unsafe.

4 A TSO-Specific Partial Order Reduction Technique for an Efficient
Analysis

While generic, the analysis scheme presented in the previous section may lead to a high
number of states being built, due to the many ways the co and rf relations can be built.
In this section, we propose a TSO-specific partial order reduction technique that allows to
drastically reduce the exploration state space.

This technique relies on the fact that our backward reachability algorithm can be seen as an
implicit (backward) scheduling of a system’s transitions. We choose to make this scheduling
explicit, using a strict order relation sched that totally orders the events according to the order
in which the instructions that generated them are executed. We build this relation during the
backward analysis: any new event encountered will be considered scheduled before all the
events already in sched.

We also define the notion of compatibility with a scheduling:

Definition 2 A relation r is compatible with a scheduling sched if there does not exist any
pair of events (e1, e2) such that sched(e1, e2) and r(e2, e1) are both true.

For instance, the po relation and any relation based upon it, i.e. ppo and fence, are neces-
sarily compatible with the scheduling, since theymatchwith the order in which the program’s
instructions are executed. As such, the following executions are invalid with respect to sched:

e1 :Wα=1

e2 :Rβ=?

posched

e1 :Rα=?

e2 :Wβ=2

pposched

e1 :Wα=1

e2 :Rβ=?

fencesched

Moreover, since a read can only take its value from a write that was scheduled before, we
also have that rf must be compatible with sched, which forbids the following executions:

e1 :Rα=1

e2 :Wα=1

rfsched

e1 :Rα=1

e2 :Wα=1

rf

sched

123

1320 S. Conchon et al.

However, we note that the co relation may be ordered independently from the scheduling.
Indeed, because of the “theoretical” write buffers in TSO, two writes ordered in sched may
be committed to the shared memory in the opposite order.

Yet, we will show that in practice, we can actually consider only co pairs that are compat-
iblewith the scheduling, without loosing any feasible execution. In the end, this yields a very
powerful partial order reduction technique, since the extend_rels function only has to build
the base relations of our model according to the scheduling. Note however that the derived
relations, in particular fr and ghb, do not have to be compatible with sched (otherwise it
would not make sense to use such an axiomatic model and we would just be in the SC case).

4.1 Correctness of Our Partial Reduction Technique

In order to prove the correctness of our partial reduction approach, we first redefine ghb so
as to isolate the relations that depend on the scheduling, as well as the co relation. We thus
define a new relation hb as the smallest relation that satisfies the following axioms:

∀e· ¬hb(e, e) hb- ir
∀e1, e2, e3 · hb(e1, e2) ∧ hb(e2, e3) → hb(e1, e3) hb- t

∀e1, e2 · ppo(e1, e2) → hb(e1, e2) hb- ppo
∀e1, e2 · fence(e1, e2) → hb(e1, e2) hb- fence

∀e1, e2 · rfe(e1, e2) → hb(e1, e2) hb- rfe
∀e1, e2 · co(e1, e2) → hb(e1, e2) hb- co

Then, the ghb relation is redefined as the smallest relation that satisfies the following
axioms:

∀e· ¬ghb(e, e) ghb- ir
∀e1, e2, e3 · ghb(e1, e2) ∧ ghb(e2, e3) → ghb(e1, e3) ghb- t

∀e1, e2 · hb(e1, e2) → ghb(e1, e2) ghb- hb
∀e1, e2 · fr(e1, e2) → ghb(e1, e2) ghb- fr

We will now show that, for any co relation that belongs to a valid execution, there exists
a scheduling that is compatible with that co relation. We first state and demonstrate the
intermediary lemmas we use, before proving this theorem.

Definition 3 Let E be an event set and sched a scheduling of all the events in E. We call
scheduling sequence a sequence S of length l = |E| containing once and only once each and
every event of E and such that ∀i, j ∈ {1..l} · i < j ↔ sched(S[i], S[j]).
Lemma 1 For every execution E = (E, po, rf, co) and every scheduling sched of a program
P , for every pair of write events (e1, e2) issued by two different processes and such that
sched(e1, e2) is true, if hb(e1, e2) is false, then the scheduling sequence S corresponding to
sched can be split into two sub-sequences S1 and S2 such that:

– ∃i · S1[i] = e1
– ∃ j · S2[j] = e2
– ∀k1, k2 · i ≤ k1 ∧ k2 ≤ j → ¬hb(S1[k1], S2[k2])
– ∀k1, k2 · i ≤ k1 ∧ k2 ≤ j → ¬po(S1[k1], S2[k2])

Proof Let S be the scheduling sequence corresponding to sched. In this sequence, we focus
on two write events to the same variable, S[i] = e1 and S[j] = e2, issued by two different
processes and such that i < j and hb(S[i], S[j]) is false. The following schema depicts this
sequence and the relative position of the two write events S[i] and S[j]:

123

Parameterized Model Checking on the TSOWeak Memory Model 1321

S A e1:Wα

i

C e2:Wα

j

B

Since hb(S[i], S[j]) is false, we know that there does not exist any index k such that
hb(S[i], S[k]) and hb(S[k], S[j]), otherwise we would have hb(S[i], S[j]). We can then
propose to split S into two sub-sequences S1 and S2 such that, for every index k:

– if k ≤ i then S[k] ∈ S1
– if k ≥ j then S[k] ∈ S2
– if i < k < j and (S[i], S[k]) ∈ (hb ∪ po)+ then S[k] ∈ S1
– if i < k < j and (S[k], S[j]) ∈ (hb ∪ po)+ then S[k] ∈ S2
– if none of the previous rules applies, S[k] may belong either to S1 or S2, but every event

in the same case must belong to the same sub-sequence, hence we arbitrarily decide
that S[k] ∈ S1 ; in other words: if i < k < j and (S[i], S[k]) /∈ (hb ∪ po)+ and
(S[k], S[j]) /∈ (hb ∪ po)+ then S[k] ∈ S1

The following schema depicts the resulting splitting:

AS1

↑

e1:Wα

i

C1,1

↑ ↑

C1,m

↑

C2,1

↓ ↓

C2,n

↓

e2:Wα

j

B S2

↓
The rules we used to create this splitting imply that no event from C1 is before an event

from C2 in the hb and po relations, otherwise those events would have to be in the same
sub-sequence, which would also imply that e1 and e2 would be in the same sub-sequence (by
transitivity), which contradicts the construction rules.

We can then pack these two sub-sequences as follows:

S1 A e1:Wα C1

i j

C2 e2:Wα B S2

As a consequence, we now have two sub-sequences S1 and S2 such that:

– ∃i · S1[i] = e1
– ∃ j · S2[j] = e2
– ∀k1, k2 · i ≤ k1 ∧ k2 ≤ j → ¬hb(S1[k1], S2[k2])
– ∀k1, k2 · i ≤ k1 ∧ k2 ≤ j → ¬po(S1[k1], S2[k2])

��
Lemma 2 For every execution E = (E, po, rf, co) and every scheduling sched of a program
P , for every pair of write events (e1, e2) issued by two different processes and such that
sched(e1, e2) is true, if co(e2, e1) is also true, then there necessarily exists another scheduling
sched ′ such that:

123

1322 S. Conchon et al.

– sched ′(e2, e1) is true
– for every pair of events (e3, e4) such that hb(e3, e4) and sched(e3, e4) are both true,

sched ′(e3, e4) is true

Proof Let S be the scheduling corresponding to sched. In this sequence, we focus on two
write events to the same variable, S[i] = e1 and S[j] = e2, issued by two different processes
and such that i < j and co(S[j], S[i]) is true. The following schema depicts this sequence
and the relative position of the two write events S[i] et S[j]:

S A e1:Wα

i

C e2:Wα

j

B

Since co(S[j], S[i]) is true, then necessarily hb(S[j], S[i]) is true, hence hb(S[i], S[j])
is false. We may then use Lemma 1, which allows us to split the sequence S into two sub-
sequences S1 and S2 such that:

– ∃i · S1[i] = e1
– ∃ j · S2[j] = e2
– ∀k1, k2 · i ≤ k1 ∧ k2 ≤ j → ¬hb(S1[k1], S2[k2])
– ∀k1, k2 · i ≤ k1 ∧ k2 ≤ j → ¬po(S1[k1], S2[k2])
The following schema illustrate such splitting:

S1 A e1:Wα C1

i j

C2 e2:Wα B S2

For every pair of events (eC1 , eC2) such that eC1 ∈ C1 and eC2 ∈ C2, we have that
hb(eC1 , eC2) and po(eC1 , eC2) are both false (by definition of the splitting produced by
Lemma 1). As such, (eC1 , eC2) may freely be scheduled in one way or the other without
contradicting hb nor po. As a consequence, any scheduling of the events of C1 with the
events of C2 constitutes a valid scheduling, since the relative order of events from C1 and C2

is preserved in the resulting scheduling. In particular, we may reschedule all the events from
C2 before the events from C1, as depicted in the following schema:

S′ A C2 e2:Wα

j

e1:Wα

i

C1 B

That sequence S′ constitutes a new scheduling sched ′ in which we do have both
sched ′(e2, e1) and co(e2, e1), and for every pair of events (e3, e4) such that hb(e3, e4) and
sched(e3, e4) are both true, sched ′(e3, e4) is true. ��
Theorem 1 For every execution E = (E, po, rf, co) and every scheduling sched of a program
P , there exists a scheduling sched ′ such that co is compatible with sched ′.

Proof By induction on the number of event pairs in co that are incompatible with sched. Let
n be the number of event pairs (e1, e2) such that co(e2, e1) and sched(e1, e2) are both true.
Base Case If n = 0, then sched ′ = sched and the theorem is true
Inductive Case If n > 0, then there exist a pair of write events (e1, e2) such that co(e2, e1)
and sched(e1, e2) are both true.

123

Parameterized Model Checking on the TSOWeak Memory Model 1323

Then, according to Lemma 2, there exists another scheduling sched ′ such that
sched ′(e2, e1) is true and for every event pair (e3, e4) such that hb(e3, e4) and sched(e3, e4)
are both true, sched ′(e3, e4) is true.

As a consequence, all event pairs that were already both in co and sched still are in sched ′,
and a pair of events that was in co but not in sched is now in sched ′.

We then substitute the scheduling sched by the scheduling sched ′. We now have one
less event pair such that co(e2, e1) and sched(e1, e2) are both true ; in other words, n has
decreased. ��

4.2 A NewTSO-Specific Backward Strategy to Build ghb

Using the additional knowledge brought by the scheduling sched, together with the co/sched
compatibility property shown in the previous section, we can now build the different relations
more efficiently. In fact, we can now even compute ghb directly, instead of computing po,
fence, co and rf and letting the SMT solver derive ghb. As a consequence, we remove all the
relation predicates except ghb and atom, and remove all the weak memory axioms from the
solver. We also perform the ghb acyclicity test outside the solver to make it more efficient.

We give a new strategy to build ghb, that replaces the extend_rels function from the
pre-image. In the following, we call a new event an event generated on a new iteration of the
reachability algorithm, and an old event an event that was already known before the iteration
(as if the time flowed backwards). The new events are thus before the old ones in sched. We
then establish the ghb building rules as follows:

– a new read er will be before any old event e from the same process in ghb, according to
ghb- ppo

– a new write ew1 will be before any old write ew2 from the same process in ghb, according
to ghb- ppo

– a new write ew will be before any old read er from the same process in ghb if they are
separated by a memory barrier, according to ghb- fence

– a new write ew1 will be before any old write ew2 on the same variable in ghb, according
to ghb- co and using the compatibility property between co and sched

– a new write ew will be before any old read er from a different process that it satisfies in
ghb, according to ghb- rfe

– a newwrite ew will be after any old read er from a different process that it does not satisfy
in ghb, according to ghb- fr

– a new read er will be before any old write ew on the same variable in ghb, according to
ghb- fr

Building ghb in thismanner also guarantees that the uniprocRW axiom is always verified:
a new read er will never be able to take its value from an old write ew , thus we will never
have po(er , ew) and rf(ew, er). As such, we do not need to explicitly check uniprocRW.

We can also save us the burden of explicitly checking uniprocWR by wisely choosing
the rf pairs that we build: when we discover a new write ew , that write must satisfy all the
reads er from the same process that are not yet satisfied. Indeed, if we have po(ew, er) but
not rf(ew, er) that means the read er has to take its value from another write that has not
been discovered yet. When this new write ew2 will be discovered, we will necessarily have
co(ew2, ew) (by the compatibility property of co and sched), and by fr we will also have
fr(er , ew), which contradicts po(ew, er).

123

1324 S. Conchon et al.

5 Experimental Evaluation

The algorithm described earlier has been implemented in Cubicle-W , an extension of the
Cubicle model checker for weak memory models. Its concrete syntax extends Cubicle’s with
new constructs for manipulating weak memories, following the logic syntax given in Sect. 3.
The reader can refer to [16] for the description of Cubicle’s input language.

Variable and array declarations can be prefixed by the keyword weak for defining weak
memories.

weak var X : int
weak array A[proc] : bool

Transitions must now have at least one parameter which represents the process that per-
forms the operations. This parameter is identified using the [.] notation. For instance, in the
following example, the parameter [i] of transition t1 represents the process performing
all read/write operations on X, A[i] and A[j] when t1 is triggered.

transition t1 ([i] j)
requires { X = 42 && A[i] = False }
{ A[j] := False }

Even if there is no use of parameter [i] in transitions’ guards and actions, this parameter
is still mandatory, as in the transition t2 below, to indicate which process performs the
operations.

transition t2 ([i]) { X := 42 }

As we implement a weak memory model, we have to allow enforcing the global visibility
of a write operation, using a memory barrier. In Cubicle-W , barriers are provided as a new
built-in predicatefence().When used in the guard of a transition,fence is true onlywhen
the (theoretical) write buffer of the parameter [i] of the transition is empty. For instance, if
a process executes t2 then the following transition t3:

transition t3 ([i]) requires { fence() }{ ... }

the fence predicate in t3’s guard ensures that the effect of all previous assignments done
by i are visible to all processes after t3. Note that fence is not an action: it does not force
buffers to be flushed on memory, but just waits for a buffer to be empty. As a consequence,
it can only be used in a guard.

Implicit memory barriers are also activated when a transition contains both a read and a
write toweak variables (not necessarily the same). For instance, the execution of the following
transition t4 guarantees that the buffer of process i is empty before and after t4.

transition t4 ([i])
requires { A[i] = False }
{ X := 1 }

Because there is no unique view of the contents of weak variables, one can not talk about
the value of X, but rather the value of X from the point of view of a process i, denoted
i@X in Cubicle-W . This notation is used when describing unsafe states. For instance, in the
following formula, a state is defined as unsafe when there exist two (distinct) processes i
and j reading respectively 42 and 0 in the weak variable X:

unsafe (i j) { i@X = 42 && j@X = 0 }

123

Parameterized Model Checking on the TSOWeak Memory Model 1325

This notation is not used for describing initial states as Cubicle-W implicitly assumes
that all processes have the same view of each weak variable in those states. For instance, the
following formula defines initial states where, for all processes, X equals 0 and all cells of
array A contain False.

init (i) { X = 0 && A[i] = False }

We have evaluated Cubicle-W on some classical parameterized concurrent algorithms
(available on the tool’s webpage [18]). Most of these algorithms are abstractions of real
world protocols, expressed with up to eight transitions and up to four weak variables or
two unbounded weak arrays. The spinlock example is a manual translation of an actual
x86 implementation of a spinlock from the Linux 2.6 kernel. We compared Cubicle-W ’s
performances with state-of-the-art model checkers supporting the TSOweakmemorymodel,
since our model is similar. The model checkers we used are CBMC [8], Trencher [11,12],
MEMORAX [2] and Dual-TSO [1]. As most of these tools do not support parameterized
systems, we used them on fixed-size instances of our benchmarks and increased the number
of processes until we obtained a timeout (or until we reached a high number of processes, i.e.
11 in our case). Dual-TSO supports a restricted form of parameterized systems, but does not
allow process-indexed arrays, which are often needed to express parameterized programs.
When it was possible, we used it on both parameterized and non parameterized versions of
our benchmarks.

123

1326 S. Conchon et al.

C
ub

ic
le

M
em

or
ax

M
em

or
ax

T
re
nc
he
r

C
B
M
C

C
B
M
C

D
ua
l

W
SB

PB
U
nw

in
d
2

U
nw

in
d
3

T
SO

n
a
i
v
e

U
S

0.
04

s
[N

]
–

–
–

–
–

N
T
[N

]
m
u
t
e
x

T
O
[6
]

T
O
[1
0]

T
O
[5
]

23
.6

s
[1
1]

5
m
37

s
[1
1]

T
O
[6
]

7
m
54

s
[5
]

12
m
02

s
[9
]

10
.1
s
[4
]

14
.7
s
[1
0]

3
m
39

s
[1
0]

1
m
12

s
[5
]

n
a
i
v
e

S
0.
30

s
[N

]
–

–
–

–
–

N
T
[N

]
m
u
t
e
x

T
O
[5
]

T
O
[1
1]

T
O
[6
]

T
O
[5
]

T
O
[3
]

T
O
[5
]

23
.3
s
[4
]

2
m
28

s
[1
0]

54
.8
s
[5
]

2
m
24

s
[4
]

19
.4
s
[2
]

35
.7
s
[4
]

l
a
m
p
o
r
t

U
S

0.
10

s
[N

]
–

–
–

–
–

N
T
[N

]
T
O
[4
]

T
O
[4
]

K
O
[4
]

7
m
42

s
[1
1]

T
O
[7
]

T
O
[6
]

17
.4
s
[3
]

25
.4

s
[3
]

1.
73

s
[3
]

4
m
29

s
[1
0]

5
m
12

s
[6
]

13
m
12

s
[5
]

l
a
m
p
o
r
t

S
0.
60

s
[N

]
–

–
–

–
–

N
T
[N

]
T
O
[3
]

T
O
[4
]

K
O
[5
]

T
O
[4
]

T
O
[3
]

T
O
[4
]

0.
14

s
[2
]

3
m
02

s
[3
]

3.
37

s
[4
]

8
m
39

s
[3
]

1
m
55

s
[2
]

9.
42

s
[3
]

s
p
i
n
l
o
c
k

S
0.
07

s
[N

]
–

–
–

–
–

T
O
[N

]
[2
6]

T
O
[5
]

T
O
[7
]

T
O
[7
]

T
O
[3
]

T
O
[3
]

T
O
[6
]

8
m
51

s
[4
]

9
m
52

s
[6
]

21
.4
5
s
[6
]

19
.5
8
s
[2
]

5
m
08

s
[2
]

1
m
16

s
[5
]

s
e
n
s
e
[2
3]

S
0.
06

s
[N

]
–

–
–

–
–

N
T
[N

]
r
e
v
e
r
s
i
n
g

T
O
[3
]

T
O
[3
]

T
O
[5
]

T
O
[9
]

T
O
[4
]

T
O
[3
]

b
a
r
r
i
e
r

0.
34

s
[2
]

0.
09

s
[2
]

12
m
25

s
[8
]

1
m
43

s
[3
]

0.
09

s
[2
]

a
r
b
i
t
e
r

S
0.
18

s
[N

]
–

–
–

–
–

N
T
[N

]
v
1
[2
2]

T
O
[3
]

T
O
[3
]

K
O
[6
]

T
O
[7
]

T
O
[4
]

T
O
[7
]

4.
57

s
[5
]

12
m
02

s
[6
]

44
.3
s
[3
]

a
r
b
i
t
e
r

S
13
.5
s
[N

]
–

–
–

–
–

N
T
[N

]
v
2
[2
2]

T
O
[3
]

T
O
[3
]

K
O
[5
]

T
O
[5
]

T
O
[3
]

T
O
[4
]

1.
62

s
[4
]

2
m
56

s
[4
]

24
.2
s
[3
]

t
w
o

S
54
.1
s
[N

]
–

–
–

–
–

N
T
[N

]
p
h
a
s
e

T
O
[2
]

T
O
[4
]

T
O
[4
]

T
O
[1
1]

T
O
[1
1]

T
O
[3
]

c
o
m
m
i
t

39
.7

s
[3
]

12
m
39

s
[1
0]

13
m
41

s
[1
0]

12
.3
s
[2
]

123

Parameterized Model Checking on the TSOWeak Memory Model 1327

The table above gives the running time for each benchmark, with the number of processes
between square brackets, whereN indicates the parametric case. The second column indicates
whether the program is expected to be unsafe (US) or safe (S). Unsafe programs have a second

version that was fixed by adding fence predicates. indicates that a tool gave a wrong
answer. KO means that a tool crashed. NT indicates a benchmark that was not translatable
to Dual-TSO.

The tests were run on a MacBook Pro with an Intel Core i7 CPU @ 2,9 Ghz and 8GB of
RAM, under OSX 10.11.6. The timeout (TO) was set to 15 minutes.

These results show that in spite of the relatively small size of each benchmark, state-of-
the-art model checkers suffer from scalability issues, which justifies the use of parameterized
techniques. Cubicle-W is thus a very promising approach to the verification of concurrent
programs that are both parameterized and operating under weak memory.

6 Conclusions and Perspectives

We have presented in this paper an extended version of MCMT to verify parameterized sys-
tems under the TSO weak memory model. We have defined a new backward reachability
analysis by defining a new Pre-image computation. This later relies on an axiomatic model
of TSO weak memory model and events that correspond to write and read operations. The
axiomatic model enables to not model the buffer memory model and to consider only coher-
ent read/write pairs. To circumscribe the state space explosion, we have embedded in our
reachability algorithm a partial order reduction technique that relies on the specific feature
of the TSO memory model. We have implemented this theoretical framework in Cubicle-W ,
a new version of the model checker Cubicle, which is conservative and provides specific
constructs that allow to handle both SC and weak variables.

We have exercised our implementation on concurrent algorithms to prove their safety for
an unknown number of processes. The experiments range from mutual exclusion algorithms
to synchronization barriers translated form their x86 implementations. Experimental results
show that the approach is very promising.

Yet, there is still room for improvement in order to tackle larger programs and gain in
efficiency. We can adapt the Cubicle’s invariant generation mechanism to our weak memory
model. As future work, we would also like to add support for more complex weak memory
models, such as PSO, PowerPC and ARM.

Appendix: Axiomatic MemoryModel (with ppo Instantiated for TSO)

type eid
type proc

(* Model relations *)
logic po: eid,eid -> prop
logic ppo: eid,eid -> prop
logic co: eid,eid -> prop
logic rf: eid,eid -> prop
logic rfe: eid,eid -> prop
logic rfi: eid,eid -> prop
logic fr: eid,eid -> prop
logic fre: eid,eid -> prop
logic fri: eid,eid -> prop

123

1328 S. Conchon et al.

logic ghb: eid,eid -> prop
logic fence: eid,eid -> prop
logic atom: eid,eid -> prop

(* Helper predicates *)
logic isRd: eid -> prop
logic isWr: eid -> prop
logic evtProc: eid,proc -> prop
logic sameProc: eid,eid -> prop

(* Event predicates/functions, defined for each variable X *)
logic wrX: proc,eid -> prop
logic rdX: proc,eid -> prop
logic valX: proc,eid -> int

(* Helper predicates axioms, defined for each variable X *)
axiom isRd: forall e:eid,p:proc. rdX(p,e) -> isRd(e)
axiom isWr: forall e:eid,p:proc. wrX(p,e) -> isWr(e)
axiom evtProc: forall e:eid,p:proc. rdX(p,e) or wrX(p,e) -> evtProc(e,p)

(* Other helper predicates axioms *)
axiom sameProc:

forall e1,e2:eid,p:proc. evtProc(e1,p) and evtProc(e2,p) -> sameProc(e1,e2)

(* Preserved program order for TSO *)
axiom ppo:

forall e1,e2:eid. po(e1,e2) and (isRd(e1) or isWr(e2)) -> ppo(e1,e2)

(* From-read relation *)
axiom fr:

forall e1,e2,e3:eid (*[rf(e1,e2),co(e1,e3)|fr(e2,e3)]*).
rf(e1,e2) and co(e1,e3) -> fr(e2,e3)

(* Internal-external relation definitions *)
axiom rfi: forall e1,e2:eid. rf(e1, e2) and sameProc(e1,e2) -> rfi(e1,e2)
axiom rfe: forall e1,e2:eid. rf(e1, e2) and (not sameProc(e1,e2)) -> rfe(e1,e2)
axiom fri: forall e1,e2:eid. fr(e1, e2) and sameProc(e1,e2) -> fri(e1,e2)
axiom fre: forall e1,e2:eid. fr(e1, e2) and (not sameProc(e1,e2)) -> fre(e1,e2)

(* Transitivity axioms *)
axiom poTrans: forall e1,e2,e3:eid. po(e1,e2) and po(e2,e3) -> po(e1,e3)
axiom coTrans: forall e1,e2,e3:eid. co(e1,e2) and co(e2,e3) -> co(e1,e3)

(* Global-happens-before relation definition *)
axiom ghbIr: forall e:eid. not ghb(e,e)
axiom ghbPpo: forall e1,e2:eid. ppo(e1,e2) -> ghb(e1, e2)
axiom ghbFence: forall e1,e2:eid. fence(e1,e2) -> ghb(e1, e2)
axiom ghbRfe: forall e1,e2:eid. rfe(e1,e2) -> ghb(e1, e2)
axiom ghbCo: forall e1,e2:eid. co(e1,e2) -> ghb(e1, e2)
axiom ghbFr: forall e1,e2:eid. fr(e1,e2) -> ghb(e1, e2)
axiom ghbTrans: forall e1,e2,e3:eid. ghb(e1, e2) and ghb(e2,e3) -> ghb(e1, e3)
axiom ghbAtomR: forall e1,e2,e3:eid. ghb(e1, e2) and atom(e2,e3) -> ghb(e1, e3)
axiom ghbAtomL: forall e1,e2,e3:eid. atom(e1, e2) and ghb(e2,e3) -> ghb(e1, e3)

(* Uniproc axioms *)
axiom uniprocRW: forall e1,e2:eid. not (po(e1,e2) and rfi(e2,e1))
axiom uniprocWR: forall e1,e2:eid. not (po(e1,e2) and fri(e2,e1))

123

Parameterized Model Checking on the TSOWeak Memory Model 1329

References

1. Abdulla, P.A.,Atig,M.F.,Bouajjani,A.,Ngo,T.P.: Thebenefits of duality in verifying concurrent programs
under TSO. In: 27th International Conference on Concurrency Theory, CONCUR 2016, August 23–26,
2016, Québec City, Canada, pp. 5:1–5:15 (2016)

2. Abdulla, P.A., Atig, M.F., Chen, Y., Leonardsson, C., Rezine, A.: Memorax, a precise and sound tool
for automatic fence insertion under TSO. In: 19th International Conference Tools and Algorithms for the
Construction and Analysis of Systems—TACAS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16–24, 2013. Proceedings, pp.
530–536 (2013)

3. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking without transducers (on
efficient verification of parameterized systems). In: 13th International Conference Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2007, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24–April 1, 2007,
Proceedings, pp. 721–736 (2007)

4. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global
conditions. In: 19th International Conference on Computer Aided Verification, CAV 2007, Berlin, Ger-
many, July 3–7, 2007, Proceedings, pp. 145–157 (2007)

5. Alglave, J.: A Shared Memory Poetics. Ph.D. thesis, University of Paris 7 - Denis Diderot, Paris, France
(2010)

6. Alglave, J., Fox, A.C.J., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The semantics
of power and ARM multiprocessor machine code. In: Proceedings of the POPL 2009 Workshop on
Declarative Aspects of Multicore Programming, DAMP 2009, Savannah, GA, USA, January 20, 2009,
pp. 13–24 (2009)

7. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak memory via program
transformation. In: ProgrammingLanguages andSystems—22ndEuropeanSymposiumonProgramming,
ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings, pp. 512–532 (2013)

8. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model checking of con-
current software. In: 25th International Conference on Computer Aided Verification—CAV 2013, Saint
Petersburg, Russia, July 13–19, 2013. Proceedings, pp. 141–157 (2013)

9. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation, testing, and data mining
for weak memory. ACM Trans. Program. Lang. Syst. 36(2), 7:1–7:74 (2014)

10. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process.
Lett. 22(6), 307–309 (1986)

11. Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy TSO reachability. In: Fundamental Approaches
to Software Engineering—18th International Conference, FASE 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11–18, 2015.
Proceedings, pp. 267–282 (2015)

12. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness against TSO. In: Program-
ming Languages and Systems—22nd European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16–24, 2013. Proceedings, pp. 533–553 (2013)

13. Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many identical finite-state
processes. In: Proceedings of the Fifth Annual ACMSymposium on Principles of Distributed Computing,
Calgary, Alberta, Canada, August 11–13, 1986, pp. 240–248 (1986)

14. Conchon, S., Declerck, D., Zaïdi, F.: Cubicle-W : parameterized model checking on weak memory. In:
9th International Joint Conference System Descriptions—IJCAR 2018, Oxford, United Kingdom, July
14–17, 2018, Proceedings (2018)

15. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaïdi, F.: Invariants for finite instances and beyond. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20–23, 2013,
pp. 61–68 (2013)

16. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaïdi, F.: Cubicle: a parallel SMT-basedmodel checker for
parameterized systems—tool paper. In: 24th International Conference on Computer Aided Verification,
CAV 2012, Berkeley, CA, USA, July 7–13, 2012 Proceedings, pp. 718–724 (2012)

17. Conchon, S., Mebsout, A., Zaïdi, F.: Certificates for parameterized model checking. In: FM 2015: Formal
Methods in 20th International Symposium, Oslo, Norway, June 24–26, 2015, Proceedings, pp. 126–142
(2015)

18. Cubicle-W . http://cubicle.lri.fr/cubiclew/
19. German, S.M., Sistla, A.P.: Reasoning about systemswithmany processes. J. ACM 39(3), 675–735 (1992)

123

http://cubicle.lri.fr/cubiclew/

1330 S. Conchon et al.

20. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT solving: termination and
invariant synthesis. LMCS 6(4) (2010)

21. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: 5th International Joint Conference
Automated Reasoning, IJCAR 2010, Edinburgh, UK, July 16–19, 2010. Proceedings, pp. 22–29 (2010)

22. Goeman, H.J.M.: The arbiter: an active system component for implementing synchronizing primitives.
Fundam. Inform. 4, 517–530 (1981)

23. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, Burlington (2008)
24. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Trans. Comput. 28(9), 690–691 (1979)
25. Owens, S., Sarkar, S., Sewell, P.:Abetter x86memorymodel: x86-TSO. In: 22nd InternationalConference

Theorem Proving in Higher Order Logics, TPHOLs 2009, Munich, Germany, August 17–20, 2009.
Proceedings, pp. 391–407 (2009)

26. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous and usable program-
mer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Parameterized Model Checking on the TSO Weak Memory Model
	Abstract
	1 Introduction
	2 Axiomatic Weak Memory Models
	2.1 Events
	2.2 Main Relations
	2.3 Candidate and Valid Executions
	2.4 Taking Into Account Atomic Operations

	3 Model Checking Modulo Theories for Weak Memory Models
	3.1 Model Checking Modulo Theories
	3.2 MCMT for Weak Memory Models
	3.3 Example

	4 A TSO-Specific Partial Order Reduction Technique for an Efficient Analysis
	4.1 Correctness of Our Partial Reduction Technique
	4.2 A New TSO-Specific Backward Strategy to Build ghb

	5 Experimental Evaluation
	6 Conclusions and Perspectives
	Appendix: Axiomatic Memory Model (with ppo Instantiated for TSO)
	References

