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Abstract
Locales, the module system of the theorem prover Isabelle, were designed so that develop-
ments in abstract algebra could be represented faithfully and concisely. Whether these goals
were met is assessed through a case study. Parts of an algebra textbook, Jacobson’s Basic
Algebra, that are challenging structurally were formalised. Key parts of the formalisation are
presented in greater detail. An analysis of the work from both qualitative and quantitative
perspectives substantiates that the design goals weremet. In particular, the size ratio of formal
to “pen and paper” text does not increase when going further into the book. The analysis also
yields guidance on locales including patterns of use, which are identified and described.

Keywords Abstract algebra · Case study · Isabelle · Locales · Module system · Theorem
prover

1 Introduction

Locales are the module system of the theorem prover Isabelle. Since their conception in the
late nineties [18] locales have seen a considerable evolution from the initial design. Today,
locales are widely used. A count in January 2019 yielded that 219 of the 455 entries of the
Archive of Formal Proofs (www.isa-afp.org, development version) use locales.1 The propor-
tion of entries declaring locales is roughly 50% across the domains of Computer Science,
Logic andMathematics, which are distinguished in the archive. Only for Tools the proportion
is significantly lower with only three of the 13 entries containing locale declarations.

The services provided by locales go beyond those of module systems known from pro-
gramming languages. They are integratedwith Isabelle’s proof language Isar and are designed
to provide adequate support for reasoning about algebraic structures. The objective of the
study presented here is to gain confidence that this is the case. A fragment of a mathemat-
ics textbook is translated into a formal, machine-checkable document in a faithful manner.
That is, definitions in the formal document should reflect those of the mathematical text and
likewise the formal proofs follow their informal counterparts closely. The challenge sought

1 Counted were the entries containing locale declarations—more precisely, where at least one theory file
contained a line matching the regular expression ˆlocale⊔.
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1094 C. Ballarin

is finding an adequate module structure for the “pen-and-paper” text reflecting the concepts
found there—with the purpose of understanding the capabilities of locales. For the mod-
ule structure to be considered adequate, objects of discourse, algebraic structures and their
elements, should be similarly concise and no significant additional proof work should be
required in the formal text. On the other hand, we do not worry about the precise notation of
the objects of discourse and also take into consideration that proof scripts tend to be longer
than informal proofs.

What would be a suitable text for such a study? It should, of course, be from the domain of
abstract algebra. For practical reasons it should be self-contained and of moderate size. This
suggests fairly elementary material from an algebra textbook. The first volume of Jacobson’s
Basic Algebra [16] was chosen, mostly due to the author’s familiarity with the book. The text
is demanding from the outset (especially for a computer scientist) and is probably not the pre-
ferred choice of text for a regular formalisation effort, where a low-level style is of advantage.

The formalised fragment stretches over a bit more than the first one hundred pages of the
book. As a continuous body it would amount to 11.4 pages. It covers monoids, groups and
rings and arrives at the fundamental theorems of homomorphisms of each of these struc-
tures. The choice enables studying how constructions for algebraic structures build on top
of each other. For the purpose of this study, it does not matter that similar material has been
formalised before.

The report starts with an introduction to locales. A walk through the formalised material
follows. Space constraints do not permit going through the entire body. Key parts are pre-
sented, and the focus is on the role of locales. In the subsequent review the formalisation is
assessed based on the goals set out above. Changes to the locale implementation that were
triggered by thework are briefly explained, and usage patterns of locales identified in thework
are presented. A discussion of what can be learnt from the case study concludes the analysis.

The discussed formal proof documents are available in the Archive of Formal Proofs [7].

2 Locales

Locales are an extension of Isabelle’s Isar proof language [25] by means of manipulating
“knowledge containers” or modules, which were designed for representing algebraic struc-
tures. The central concept is the locale, a theory functor that maps parameter operations (or
simply parameters) and a specification to defined operations (involving the parameters) and
theorems (implied by the specification). A sketch of locales follows. My detailed account
on the semantics of locales is the exhaustive reference [6]. There, locales are also related to
ML-style module systems [15] and other means of reuse in both provers and programming
languages.

2.1 Declaring Locales

In its simplest form, a locale declaration consists of a fixes and an assumes clause:
locale n = fixes y + assumes a1 : A1 . . . a j : A j

The y are the parameters and A1 ∧ · · · ∧ A j is the specification of the locale. The Ai are
versions of the user input where free variables except parameters are universally closed. They
are also called axioms or assumptions of the locale. For example, a locale for monoids may
be declared like this:2

2 Readers wishing to reproduce the examples in Isabelle should use bold, not regular, “1” (input token
\<one>).
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Exploring the Structure of an Algebra Text with Locales 1095

locale monoid =
fixes M and composition (infixl "·" 70) and unit ("1")
assumes composition_closed: "[[ a ∈ M; b ∈ M ]] �⇒ a · b ∈ M"

and unit_closed: "1 ∈ M"
and associative: "[[ a ∈ M; b ∈ M; c ∈ M ]] �⇒ (a · b) · c = a · (b · c)"
and left_unit: "a ∈ M �⇒ 1 · a = a"
and right_unit: "a ∈ M �⇒ a · 1 = a"

Types, in particular types of the parameters, may be left implicit. They are inferred auto-
matically. The theory of a locale n is elaborated in context blocks:

context n begin . . . end

The locale n is the target of the block. These commands are available in context blocks:

definition c where c ≡ t

notation c

theorem b : B
The first command, definition, declares a new defined operation c with defining equation
c ≡ t and optional concrete syntax; notation enables changing the concrete syntax of an
existing operation; theorem introduces a theorem B named b. Declarations in a context
block are persistent—that is, they are present in subsequent context blocks of the same
target. Parameters and specification of a locale are the header, the collections of declarations
made in its context blocks form the body.

Locales are hierarchic and a graph of interdependent locales is maintained by the system.
Dependencies may be given when declaring a locale through a locale expression at the
beginning of the declaration,

locale n = expression + · · · ,

or between existing locales through a sublocale declaration:

sublocale n ⊆ expression 〈proof〉
Dependencies declared via the sublocale command are derived. The system creates a proof
obligation, which must be discharged by supplying a proof. A locale expression consists of
a sequence of locale instances followed by an optional for clause:

I1 + · · · + Ik for x

A locale instance is either positional:

q : n t rewrites eq
or by name:

q : n where y = t rewrites eq
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1096 C. Ballarin

Here, q is an optional qualifier, n the instantiated locale, y are its parameters, t terms from the
target and eq optional equations. Terms are substituted for the parameters of the instantiated
locale—in the positional case, in declaration order of the parameters. The qualifier q , if
present, is prepended to names of derived operations and of theorems. Qualifiers are used to
distinguish multiple instances of the same locale. The purpose of the equations is explained
below.

In a locale declaration, the for clause defines the parameters x of the locale expression and
the context of the locale instances.3 The expression denotes locale instances that are imported
to the declared locale. That is, the specifications of the imported instances contribute to the
specification of the declared locale, and their declarations (definitions and theorems) are
available in its body. The following declaration involves an expression consisting of a single
instance and a for clause:

locale submonoid = monoid M "(·)" 1
for N and M and composition (infixl "·" 70) and unit ("1") +
assumes subset: "N ⊆ M"

and sub_composition_closed: "[[ a ∈ N; b ∈ N ]] �⇒ a · b ∈ N"
and sub_unit_closed: "1 ∈ N"

The notation (·) refers to the composition operation. As a notational convenience unin-
stantiated parameters in locale instances are implicitly added to the for clause. This is useful
when constructing linear locale hierarchies—for example, the above declaration may be
abbreviated to

locale submonoid = monoid +
fixes N
assumes subset: "N ⊆ M"

and sub_composition_closed: "[[ a ∈ N; b ∈ N ]] �⇒ a · b ∈ N"
and sub_unit_closed: "1 ∈ N"

albeit yielding the different parameter order M composition unit N.
The sublocale command lets one change existing locale hierarchies: for a locale n,

sublocale n ⊆ expression modifies the graph of locales maintained by the system as if
the declaration of the target n imported expression. This makes the bodies of the instantiated
locales available in n (the target of the operation). For example,

sublocale submonoid ⊆ sub: monoid N "(·)" 1 〈proof 〉

asserts that the carrier set N of the submonoid and the monoid operations indeed form a
monoid. The notational variant sublocale expression 〈proof〉 is available in context blocks,
and the command applies to the target of the block. The specification of the target is required
to imply the specifications of the instantiated locales. Proof obligations are generated and
must be discharged.

The sublocale command is not restricted to instantiating locale parameters; rewrites
clauses in locale instances enable specifying rewrite rules for replacing defined operations
of a locale by terms from the target. In combination with instantiation they provide signature
morphisms [11] on locales. The rewrite rules yield additional proof obligations.

3 In locale expressions outside locale declarations, the for clause retains its usual semantics as a binder.
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Exploring the Structure of an Algebra Text with Locales 1097

2.2 Reasoning with Locales

Locales are extra-logical. The functors they represent are not encoded in Isabelle’s logic.
Instead, whenever a locale is visited—that is, a context block entered—the locale is activated:

– The locale graph is traversed and all reachable locale instances are activated recursively.
– The body of the locale is added to the context, making its declarations available.

The precise working of activation is described in my detailed account [6].
Activation of a locale initialises a context, so it can be worked in. It is also possible to

activate additional locale instances in the current context, which can be a theory, a context
block or a proof. We will only encounter the command applicable in context blocks:

interpretation expression 〈proof〉
It enriches the current block by the information on the instances identified by expression and
stored in the respective locales. The operation is also known as theory interpretation [10].
The difference to the sublocale command is that its effect is temporary and limited to that
block. The command does not change the locale hierarchy permanently.

We also need to briefly look at how the proof obligations created by sublocale and inter-
pretation are represented. Each locale n is accompanied by a locale predicate n, which
reflects the specification of n in the logic. The locale instance n t is represented by the propo-
sition n t . The unfold_localesmethod (which is integrated with Isabelle’s default method,
so it rarely occurs explicitly in proof scripts) provides backward reasoning on locale pred-
icates and is used for refining proof obligations. It reduces atomic propositions on locale
predicates to locale axioms, on which then further reasoning can take place. For a locale
that imports a hierarchy of locales, this includes corresponding instances of axioms of the
imported locales. The method is aware of the locale instances that are active in the current
context and discharges matching subgoals during the reduction process automatically. The
latter enables a technique called bootstrapping, which will be discussed in the course of the
paper.

3 The Formalisation

The formalisedmaterial is from the first three chapters of Jacobson’sBasic Algebra I [16] and
covers all that the author undertakes to arrive at the fundamental theorem of homomorphisms
of rings, also known as the universal property of ring homomorphisms. Cosets are introduced
as orbits of translations, and so we can afford a short detour to Cayley’s theorems for monoids
and groups.

3.1 Concepts from Set Theory

In Isabelle/HOL S →E T denotes the set of functionswith domain S and co-domain T. Exten-
sionality is achieved by mapping values outside S to an arbitrary but fixed value about which
nothing can be proved [12]. Elements of S →E T are obtained with bounded abstraction
λs∈S. t. Composition compose S β α is defined as λs∈S. β (α s) and α ‘ A is the image
of A under α. Since an element of S →E T does not encode its domain, occasionally it needs
to be made explict, such as in compose S β α. Rather than developing maps from scratch
the existing concepts are used. The declaration
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1098 C. Ballarin

Fig. 1 Locale hierarchy of maps and monoid homomorphisms. x y means that y imports x , x y
that the relationship is established through a sublocale declaration. Bijective maps are directly based on maps
rather than on surjective and injective maps. This is to make better use of knowledge on bijective functions
already available in Isabelle

locale map = fixes α and S and T assumes "α ∈ S →E T"

enablesworkingwithmaps at the level of locales. Locales for injective, surjective andbijective
maps are declared as well. Figure 1 shows the hierarchy of these locales, along with those of
monoid homomorphisms, which are introduced later.

Jacobson’s treatment of equivalence classes [16, p. 11] is interesting enough to warrant
its formalisation. He simultaneously develops the concepts of equivalence relation E on and
partition P of a set S and then shows that they are equivalent. Both are straightforwardly trans-
lated to locales, equivalence and partition, respectively. In the context of equivalence
the natural map is defined as

Class = (λa∈S. {b ∈ S. (b, a) ∈ E})

and the quotient set S/E is the associated partition into classes:

Partition = {Class a |a. a ∈ S}

That equivalence and partition are the same thing is asserted through suitable mutual
sublocale declarations.

The next topic is factoring a map through an equivalence relation. Every map α gives rise
to an equivalence relation Eα in S where aEαb if and only if α(a) = α(b). It is convenient
to analyse this situation in a dedicated context:

locale fiber_relation = map

Both locales have the sameparameters and specificationbut their bodies differ;fiber_relation
is a clone of map. While fiber_relation inherits the declarations of map the latter does not
inherit the declarations of the former. The context is declared a sublocale of an instance of
equivalence with Eα as the relation.

The map α gives rise to the induced map ᾱ on the quotient set such that ᾱ(ā) = α(a).
With the above sublocale declaration the definition of the induced map is

induced = (λA∈Partition. THE b. ∃a∈A. b = α a)
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Exploring the Structure of an Algebra Text with Locales 1099

where Partition now represents the quotient set S/Eα and THE is the definite selection oper-
ator. Reasoning about functions defined on equivalence classes can be technically challenging
[21]. The theorem

[[A ∈ Partition;
∧

a. a ∈ S �⇒ P (Class a)]] �⇒ P A

leads to concise proof scripts. Used as an elimination rule, a goal about an arbitrary element
A of the quotient set is reduced to a goal about an element a of the underlying set. Theorems
on the factorisation of α into natural and induced maps follow.

compose S induced Class = α

[[β ∈ Partition →E T; compose S β Class = α]] �⇒ β = induced

Sublocale declarations assert surjectivity and injectivity of the involved maps:

sublocale equivalence ⊆ natural: surjective_map Class S Partition 〈proof 〉
sublocale fiber_relation ⊆ induced: injective_map induced Partition T 〈proof 〉

This completes the statement of the universal property of the map α.

3.2 Abstract Monoids and Groups

Jacobson’s definitions of monoids and groups and the associated substructures can be
expressed with locales in a straightforward manner. For the corresponding monoid locales,
see the examples in Sect. 2.2. The notions of invertibility and inverse are defined in the context
of monoids:

context monoid begin
definition "u ∈ M �⇒ invertible u ←→ (∃v ∈ M. u · v = 1 ∧ v · u = 1)"
definition "inverse = (λu ∈ M. THE v. v ∈ M ∧ u · v = 1 ∧ v · u = 1)"

end

Then, following Jacobson, “a group G (or (G, p, 1)) is a monoid all of whose elements are
invertible” [16, Def. 1.2]:

locale group =
monoid G "(·)" 1 for G and composition (infixl "·" 70) and unit ("1") +
assumes invertible: "u ∈ G �⇒ invertible u"

Further “a submonoid of a monoid M [is] a subgroup if, regarded as a monoid, it is a group”
[16, p. 31]:

locale subgroup = submonoid where N = G + sub: group G "(·)" 1 for G

The inverse operations of the group and the subgroup are different, even though Jacobson
does not make this explicit. The lemma

u ∈ G �⇒ inverse u = sub.inverse u

helps simplify expressions in subgroups involving both group and subgroup operations.
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1100 C. Ballarin

Jacobson’s unusual decision to define the inverse operation rather thanmake it a parameter
of the structure poses no problems to locales. In a sublocale declaration or interpretation the
operation can be mapped to an operation from the target context via a rewrites clause.

3.3 Monoids and Groups of Transformations

For monoids and groups of transformations, which are monoids and groups whose elements
are maps (or transformations) on some set S, the translation into locales is less obvious.
For a set S the set M(S) of maps of S into itself forms a monoid. This is the monoid of all
transformations. Composition is the binary operation and the identity map the unit element.
A submonoid of M(S) is called a monoid of transformations [16, p. 29].

The formalisation starts with a locale that postulates the set S:4

locale transformations = fixes S :: "’a set"

The type constraint ensures that S is a set. The monoid of all transformations is identified in
the context:

sublocale transformations ⊆
monoid "S →E S" "compose S" "identity S" 〈proof 〉

The locale for a transformation monoid M of S follows:

locale transformation_monoid = transformations S +
submonoid M "S →E S" "compose S" "identity S" for M and S

Similarly, the invertible elements of the monoid of all transformations M(S) form a group,
the symmetric group Sym S:

sublocale transformations ⊆
symmetric: group "Sym" "compose S" "identity S" 〈proof 〉

Sym is defined in the context of transformations and denotes the invertible elements of S
→E S. In the formalisation, the parameter S of Sym is implicit. The locale for a transformation
group G of S follows:

locale transformation_group = transformations S +
symmetric: subgroup G Sym "compose S" "identity S" for G and S

3.4 Isomorphism. Cayley’s Theorem

“Two monoids (M, p, 1) and (M, p′, 1′) are said to be isomorphic if there exists a bijective
map η of M to M ′ such that η(1) = 1′, η(xy) = η(x)η(y), x, y ∈ M” [16, Def. 1.3]. The
definition straightforwardly translates into a locale declaration:5

4 Jacobson requires S to be non-vacuous, but this was not required in the formalisation.
5 Isabelle requires escaping the single quote character in syntax declarations; “’’” yields “’”.
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Exploring the Structure of an Algebra Text with Locales 1101

locale monoid_isomorphism = bijective_map η M M’ +
source: monoid M "(·)" 1 + target: monoid M’ "(·’)" "1’"
for η and M and composition (infixl "·" 70) and unit ("1")

and M’ and composition’ (infixl "·’’" 70) and unit’ ("1’’") +
assumes commutes_with_composition:

"[[ x ∈ M; y ∈ M ]] �⇒ η x ·’ η y = η (x · y)"
and commutes_with_unit: "η 1 = 1’"

Themonoid locales are distinguished by suitable qualifiers, and adequate notation is provided.
“Anymonoid is isomorphic to a monoid of transformations” and “any group is isomorphic

to a group of transformations” [16, Cayley’s theorem]. In the proof, an isomorphism from
the monoid (M, p, 1) (or group (G, p, 1)) to a monoid (or group) of transformations of the
set M (or G) is defined. The isomorphism takes an element a to the map aL : x → ax , called
the left translation of a.

The formalisation takes place in the contexts of dedicated clones of locales of monoids
and groups for left translations, in the monoid case,

locale left_translations_of_monoid = monoid begin

and the subsequent statements will be in this context. First,
translation = (λa∈M. λx∈M. a · x)

is defined, and (a)L will be used to denote translation a. The proof that this function is
the required isomorphism is prepared in a sequence of three sublocale declarations, where
each enriches the context to simplify the subsequent proofs.

sublocale transformation: transformations M 〈proof 〉
sublocale transformation: transformation_monoid "translation ‘ M" M 〈proof 〉

The line of reasoning follows that of Jacobson. First the context is extended by the monoid of
all transformations of M. The proof is trivial since transformations has no assumptions. It is
then shown that translation ‘ M " the image of M under translation, is a submonoid of the
monoid of all transformations and therefore a monoid of transformations. That translation
is an isomorphism comes next, and the third sublocale declaration asserts that a translation
is a map.

sublocale map translation M "translation ‘ M" 〈proof 〉
theorem translation_isomorphism:

"monoid_isomorphism translation M (·) 1
(translation ‘ M) (compose M) (identity M)"
〈proof 〉

end

This concludes reasoning in left_translations_of_monoid. Building up the context in
several steps, here through sublocale declarations, I call bootstrapping.
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1102 C. Ballarin

In the final step, the result is transferred to monoid bymeans of a temporary interpretation:

context monoid begin
interpretation left_translations_of_monoid 〈proof 〉
theorem cayley_monoid: "∃M’ composition’ unit’.

transformation_monoid M’ M ∧ (M, (·), 1) ∼=M (M’, composition’, unit’)"
〈proof 〉

end

With this technique, which I call loose coupling, left translations are kept separate from
monoids.

The corresponding work for groups takes place in left_translations_of_group and
builds on the monoids case:

locale left_translations_of_group = group begin
sublocale left_translations_of_monoid where M = G 〈proof 〉
sublocale transformation: transformation_group "translation ‘ G" G 〈proof 〉
end

In addition to the monoid case it needs to be shown that translation ‘ G is a transformation
group. Since (a)L has the inverse (inverse a)L for all a ∈ G the (a)L are bijective and
translation ‘ G is closed under inverses. No additionalwork on the isomorphismproperty is
required. Cayley’s theorem for groups follows, again by means of a temporary interpretation,
in the group locale.

3.5 Orbits. Cosets of a Subgroup

For any transformation group G of a set S the relation ∼G on S, where x ∼G y if y = α(x)
for some α ∈ G, is an equivalence relation. The equivalence classes are called the G-
orbits and constitute a partition of S [16, p. 51]. The correct context for the formalisation is
transformation_group:

context transformation_group begin
definition Orbit_Relation

where "Orbit_Relation = {(x, y). x ∈ S ∧ y ∈ S ∧ (∃α ∈ G. y = α x)}"
sublocale orbit: equivalence S Orbit_Relation 〈proof 〉

end

With these declarations orbit.Class x denotes the orbit of an x ∈ S.
Right cosets Hx = {hx | h ∈ H} are defined in the context of a subgroup H of a group

G and are the orbits of left translations [16, p. 52]:

locale subgroup_of_group = subgroup H G "(·)" 1 + group G "(·)" 1
for H and G and composition (infixl "·" 70) and unit ("1")

begin

In the formalisation right cosets are denoted by H |· x rather than, for example, Right_Coset
x. This is achieved by pulling the declaration up to an auxiliary localecoset_notationwhere
H is not a parameter.
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Exploring the Structure of an Algebra Text with Locales 1103

Now for the correspondence to orbits. Let GL be the left translations of G. The subset
HL(G) of left translations hL (in G) for h ∈ H is a subgroup of GL and hence a group of
transformations of G.

interpretation left: left_translations_of_group 〈proof 〉
interpretation transformation_group "left.translation ‘ H" G 〈proof 〉

Here left_translation ‘ H denotes HL(G). The HL(G)-orbit of x ∈ G is the right coset
Hx

x ∈ G �⇒ H |· x = orbit.Class x.

The number of distinct cosets [G : H ] is called the index of H in G. For finite groups
Lagrange’s theorem |G| = |H |[G : H ] follows:

finite G �⇒ card G = card H * index

end
This concludes the section on right cosets. The index is defined as the cardinality of the
partition index = card orbit.Partition. In the context of subgroup_of_group it has
no parameters.

3.6 Congruences. Quotient Monoids and Groups

For amonoid (M, ·, 1) a congruence E is an equivalence relation that respects composition—
if (a, a′) ∈ E and (b, b′) ∈ E then (a · b, a′ · b′) ∈ E [16, Def. 1.4]. Composition in M
can be lifted to a binary operation ·̄ of the quotient set M/E , yielding the quotient monoid
(M/E, ·̄, 1̄). If the monoid is a group the construction yields a group.

The formalisation takes place in two locales:

locale monoid_congruence = monoid + equivalence where S = M +
assumes "[[ (a, a’) ∈ E; (b, b’) ∈ E ]] �⇒ (a · b, a’ · b’) ∈ E"

locale group_congruence = group + monoid_congruence where M = G

The lifted binary operation is defined in monoid_congruence and denotedwith square brack-
ets:

([·]) = (λA∈Partition. λB∈Partition. THE C. ∃a∈A. ∃b∈B. C = Class (a · b))

Class denotes the natural map and Partition the quotient set M/E (see Sect. 3.1). The
operation maps into the quotient set and commutes with the natural map:

[[A ∈ Partition; B ∈ Partition]] �⇒ A [·] B ∈ Partition

[[a ∈ G; b ∈ G]] �⇒ Class a [·] Class b = Class (a · b)
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1104 C. Ballarin

That the quotient construction yields a monoid is expressed through a sublocale declaration:

sublocale monoid_congruence ⊆
quotient: monoid Partition "([·])" "Class 1" 〈proof 〉

In the group case additionally “every ā is invertible and its inverse is a−1” [16, p. 55]

a ∈ G �⇒ quotient.inverse (Class a) = Class (inverse a)

and the construction yields a group:

sublocale group_congruence ⊆
quotient: group Partition "([·])" "Class 1" 〈proof 〉

For groups, an alternative characterisation of congruences exists. “A subgroup K of G is said
to be normal […] if g−1kg ∈ K for every g ∈ G and k ∈ K ” [16, Def. 1.5],

locale normal_subgroup =
subgroup_of_group K G "(·)" 1
for K and G and composition (infixl "·" 70) and unit ("1") +
assumes normal: "[[ g ∈ G; k ∈ K ]] �⇒ inverse g · k · g ∈ K"

and there is a one-to-one correspondence between group congruences and normal subgroups:
“Let G be a group and ≡ a congruence on G. Then the congruence class K = 1̄ of the unit
is a normal subgroup of G and for any g ∈ G, ḡ = Kg = gK […]. Conversely let K be
any normal subgroup of G, then ≡ defined by a ≡ b if a−1b ∈ K is a congruence relation
in G whose associated congruence classes are the left (or right) cosets gK ” [16, Thm. 1.6].
As a consequence, results on normal subgroups are applicable to group congruences and
vice versa. In the formalisation, results are made available to both contexts through mutual
sublocale declarations.

Work for the direction from congruences to normal subgroups takes place
in group_congruence where Normal = Class 1 represents Jacobson’s K . First

interpretation subgroup_of_group Normal G "(·)" 1 〈proof 〉

provides coset notation. Then g ∈ G �⇒ Normal |· g = Class g and g ∈ G �⇒ g ·|
Normal = Class g are shown and

sublocale group_congruence ⊆ normal: normal_subgroup Normal G "(·)" 1
〈proof 〉

follows. The other direction takes place in normal_subgroup where Congruence is defined
as a ≡ b if a−1b ∈ K . The latter “is equivalent to saying that b ∈ aK , or that b is in the
orbit of a relative to the transformation group KR(G)” [16, p. 56].6

6 KR(G) denotes the group of right translations kR : G → G for k ∈ K . Jacobson leaves right translations as
an exercise, which had to be formalised as well. For the corresponding work on left translations, see Sect. 3.5
above.
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interpretation right_translations_of_group 〈proof 〉
interpretation transformation_group "translation ‘ K" G

rewrites "Orbit_Relation = Congruence" 〈proof 〉

The rewrites clause effectuates the replacement of the transformation group’s equivalence
relation by Congruence.

The orbit of a transformation group is an equivalence, and since K is a normal subgroup
it is also a congruence:

sublocale normal_subgroup ⊆ group_congruence where E = Congruence

rewrites "Normal = K" 〈proof〉

This concludes the formalisation. Intermediate results temporarily provided by the interpre-
tation commands are either no longer required (transformation groups) or are subsumed by
later sublocale declarations (Normal is a subgroup).

3.7 Homomorphisms

The fundamental theorems of monoid, group and ring homomorphisms are variants of the
factoring of a map α, through the equivalence relation Eα , into a surjective natural map and
an injective induced map (Sect. 3.1). The involved sets are algebraic structures and the maps
homomorphisms between them.

Homomorphism locales build on those of the respective maps. The locale for monoid
homomorphisms is analogous to that for isomorphisms (see Sect. 3.4) but is based on map

instead of bijective_map. Locales for monoid monomorphisms (injective) and epimor-
phisms (surjective) are declared as well. The hierarchy of the declared locales is shown in
Fig. 1. The fundamental theorem of homomorphisms of monoids [16, p. 61] states that a
homomorphism η of a monoid M into a monoid M ′ can be factored, in a unique manner, into
an epimorphism ν and a monomorphism η̄. The formalisation takes place in the dedicated
context

locale monoid_homomorphism_fundamental = monoid_homomorphism

and consists of a sequence of sublocale declarations. The factoring is through the equivalence
relation Eη and

sublocale fiber_relation η M M’ 〈proof 〉

extends the context with the associated declarations and results. Recall from Sect. 3.1 that
Class denotes the natural map ν, induced the induced map η̄ and Partition the quotient
set M/Eη. The equivalence, denoted by E(η), is a congruence

sublocale monoid_congruence where E = "E(η)" 〈proof 〉

and therefore M/Eη a monoid. That the natural and induced maps are homomorphisms is
now immediate:

sublocale natural:
monoid_epimorphism Class M "(·)" 1 Partition "([·])" "Class 1" 〈proof 〉

sublocale induced:
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monoid_monomorphism induced Partition "([·])" "Class 1"
"M’" "(·’)" "1’" 〈proof 〉

The same reasoning is applicable to group homomorphisms, and Jacobson also works out
the details for that. He then presents a second proof, without recourse to congruences, where
the factor group G/L , for some normal subgroup L of G contained in the kernel ker η of η,
replaces the quotient group. The formalisation for groups follows the second approach, and
the locale normal_subgroup_in_kernel reflects the described situation:

locale normal_subgroup_in_kernel =
group_homomorphism + contained: normal_subgroup L G "(·)" 1 for L +
assumes subset: "L ⊆ Ker"

The fundamental theorem follows for L = ker η:

sublocale group_homomorphism_fundamental ⊆
normal_subgroup_in_kernel where L = Ker 〈proof 〉

3.8 Rings

Jacobson’s definition of rings is: “A ring is a structure consisting of a non-vacuous set R
together with two binary compositions +, · in R and two distinguished elements 0, 1 ∈ R
such that 1. (R,+, 0) is an abelian group. 2. (R, ·, 1) is a monoid. 3. The distributive laws
D a(b + c) = ab + ac [and] (b + c)a = ba + bc hold for all a, b, c ∈ R” [16, Def. 2.1]. It
translates into the following locale:

locale ring =
additive: abelian_group R "(+)" 0 + multiplicative: monoid R "(·)" 1
for R and addition (infixl "+" 65) and multiplication (infixl "·" 70)

and zero ("0") and unit ("1") +
assumes "[[ a ∈ R; b ∈ R; c ∈ R ]] �⇒ a · (b + c) = a · b + a · c"

"[[ a ∈ R; b ∈ R; c ∈ R ]] �⇒ (b + c) · a = b · a + c · a"
begin

notation additive.inverse ("- _" [66] 65)
notation multiplicative.inverse ("inverse _" [100] 100)

end

The additive and multiplicative structures are identified by the qualifiers additive and
multiplicative, respectively. The declaration also shows how notation for unary minus
and inverse are obtained.

Ring congruences and homomorphisms are likewise composed from the respective
structures of additive group and multiplicative monoid. Jacobson repeats the construction
discussed at the end of the previous section for an ideal I contained in the kernel of the ring
homomorphism η. This situation is represented by the locale ideal_in_kernel. Finally,
ring_homomorphism_fundamental is the context in which the fundamental theorem of
ring homomorphisms is stated and shown. Figure 3 shows the hierarchy of the involved
locales.
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Fig. 2 Locale hierarchy of congruences, normal subgroups and ideals

4 Review

This study completes work the author had announced several years ago [5]. The formalisation
effort is probably in the order of three person months.

Finding a suitable module structure for Jacobson’s text has not been straightforward. The
interrelations are complex. Frequently, decisions had to be revised when it came to using
concepts in later sections. The main difficulty was that, of course, the mathematical text does
not make it explicit how knowledge needs to be structured so it can be re-used mechanically.
An example are translations, which are instances of monoids and groups of transformations.
They are instrumental in the proof of Cayley’s theorem and later in the characterisation of
cosets as orbits. While translations are defined in the context of monoids, it turned out left
and right translations better be declared in separate locales, so the knowledge specific to each
could be activated individually when needed. On the other hand, the equivalence relation
∼G of a group G of transformations was defined in the locale for transformation groups and
linked to the equivalence relation locale through a sublocale declaration, so this knowledge
is automatically available for left and right translations. At times, several attempts to finding
the right module structure were needed. To aid library design the concepts of clone and loose
coupling were identified. They are explained below in Sect. 4.4.

Insufficient means for configuring notation were another source of difficulty. This was a
design flaw, which was corrected (see also Sect. 4.3). In spite of these difficulties the outcome
of the case study is satisfactory. The formalisation is readable, concise, even polished and
appears natural.

Figures 1, 2 and 3 show parts of the sublocale graph. The entire graph consists of 51
locales and is too large to reproduce. Table 1 shows examples of Jacobson’s notation and their
correspondents in the formalisation. The latter is sufficiently concise, with one exception: the
notion of invertibility for group transformations is transformation.sub.invertible. It
occurs in the statement that left translations are invertible, which Jacobson spells out directly,
without reference to this predicate. Since it occurs in a few isolated places only, there was
no need for finding concise notation.

123



1108 C. Ballarin

Fig. 3 Locale hierarchy of the fundamental theorem of ring homomorphisms

Table 1 Symbols in Jacobson’s text and their representation in the formalisation code

Text Code Text Code

ā Class a ∼G Orbit_Relation

S/E Partition HL (G) left.translation ‘ H"

E(α) Fiber_Relation Hx H |· x

ᾱ induced āb̄ Class a [·] Class b

u−1 inverse u ≡ Congruence

aL (a)L G/K Partition

GL translation ‘ G" R/I additive.Partition

Not used transformation.sub.invertible a + I a +| I

4.1 Representing Algebraic Structures

In Isabelle simple algebraic structures can be represented as type classes [13]. But since a type
class can only have a single parameter, expressiveness is restricted—for example, univariate
polynomial rings can be represented but not vector spaces in general.

Other approaches to abstract algebra in higher-order logic are based on representing struc-
tures as terms rather than types. They are all variations of a technique first worked out by
Elsa Gunter in the domain of group theory.

4.1.1 Foundations

In Gunter’s formalisation [12] a group structure is a pair of carrier set and binary composition
operation and group a predicate whose definition is the group axioms: group (G, prod ) if
and only if (G, prod ) is a group. Defined operations—here, the identity element id and the
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operation inv mapping an element to its inverse—have the group structure as an additional
argument. The definition of inv illustrates this:

inv G x ≡ εy. y ∈ fst G ∧ (snd G y x = id G)

For making the definitions, Hilbert’s indefinite choice operator ε is employed.7

Gunter derives the fundamental theorem of group homomorphisms and thereby demon-
strates that the approach is workable in principle. Theorems in the theory of groups are of
the form group G �⇒ · · · , and the need for repeated explicit reference to the group struc-
ture makes statements unwieldy. For a limited scope of formalisation the problem can be
addressed with ad hoc syntax translations quite successfully as demonstrated, for example,
by work in the HOL4 system [9].

Locales are connected to Gunter’s approach through the concept of the locale predicate.
For a locale n with parameters x theorems are internally also of the form n x �⇒ · · · , but
the context information is suppressed. While tuples could be used with locales, records or
individual parameters are usually preferred.

4.1.2 Record Types

Replacing tuples by records is a straightforward variation, which allows for more suggestive
notation such as prod G instead of snd G. Syntax such as x ·G y for prod G x y becomes
possible in a systematic manner. The use of records for representing algebraic structures in
Isabelle was put forward by Kammüller [17]. Similar techniques for readable notation have
also been employed early in type-theoretic provers [2].

Isabelle’s records are extensible, and this is useful forworkingwith hierarchies of algebraic
structures. However, Isabelle’s records only support single inheritance [20]—that is, a record
declaration can only refer to one, not two or more, records for extension. Combining the
ring structure from its additive group andmultiplicative monoid substructures is not possible.
This is a fundamental limitation. In Isabelle’s algebra library HOL-Algebra [8] this is worked
around by extending themultiplicativemonoid record by additive operations yielding the ring
structure. A record for additive groups is not declared. Instead these have the ring structure
type. The unused multiplicative operation fields are left undefined. The declaration of rings
in the present study (Sect. 3.8) does not suffer from this limitation.

When using records, concrete syntax such as infix notation is declared outside of locales.
Locales merely provide support for concise syntax for records through a special parameter
annotation [3, Section 5]. The first annotated parameter is distinguished and can be omitted
in theorem statements; x ·G y can be written as x · y if G is the distinguished parameter. This is
similar to but less elaborate thanCoq’s canonical structures [19]. The notational improvement
is limited. It is only effective for parameters. If Quot maps a group G to its quotient group
relative to a congruence C the composition of two elements of the quotient group would be
denoted by x ·Quot GC y.

4.1.3 Local Theories

With the introduction of local theories [14] defined operations became available in locales
themselves. Previously, definitions had to be made outside of locales, and records offered

7 In reproducing Gunter’s definition I have changed (G, prod ) to G. Her original definition inv (G, prod ) x ≡
εy. y ∈ G ∧ (prod y x = id (G, prod )) does not involve the projections fst and snd , but many others of her
definitions do. Further, since defined operations are well-defined on the carrier set definite choice is sufficient
for making definitions. There is no need for the axiom of choice.
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a workable means of doing so. With local theories, a definition c ≡ t in a locale n with
parameters x yields the global definition

n x �⇒ n.c x ≡ t[x]
of the qualified constant n.c. This is close to what Gunter did. Here, the definition takes place
in the background. As in Gunter’s approach, it is lifted over the parameters. Additionally,
it is logically restricted to n x . Concise notation is achieved by presenting n.c x as c in the
locale context.

Local theories enable representing both signature and theory of an algebraic structure
solely with the facilities of locales. The present study demonstrates this approach and shows
how concise notation is achieved. In contrast to records, with local theories syntax can be
defined on a per-operation basis. This is more flexible than syntax declarations at the record
level, but it may also yield more verbose locale declarations. The additional investment pays
off easily with more concise notation in propositions and goal states. Analysing goal states
is the bread and butter of interactive proof. Any effort to keep notation concise will quickly
lead to increased productivity.

In the study, the need for tailored syntax has led to a significant amount of locale dec-
larations that do not represent algebraic structures as such but nevertheless correspond to
situations found in the formalised text. Examples are the locales fiber_relation and
left_translations_of_group, which are clones of map and group, respectively, and also
normal_subgroup_in_kernel and ideal_in_kernel. In total, 51 locales were declared in
2589 lines of formal text (1478 lines when empty lines and comments are excluded). This
is significantly more than for comparable work. For example, HOL-Algebra, which is more
than ten times larger, contained only 82 locales as of November 2018.

4.1.4 Interpretation

Interpretation is essential for transferring abstract results to situations of use, be they con-
crete or abstract themselves. The need was already recognised by Gunter, who presents
instances of her group theory development for the integers and modular arithmetic [12,
Appendices D and E]. How the interpreted theories were arrived at is not recorded. Presum-
ably appropriate code for creating them was provided in ML, the meta language of the HOL
system.

The interpretation facilities of locales proved flexible enough for representing Jacobson’s
lines of argument faithfully through the formalised sections of his book. Notable examples
of interpretation are encountered when the properties of quotient structures are established
and when transformation groups are used. The latter are key to Cayley’s theorem and, since
cosets are the orbits of group elements under translation, also to Lagrange’s theorem.

The initial design of locales [18] did not provide interpretation. Incidentally, Kammüller
and Paulson show that the quotient construction over a group yields a group but do not
make use of that result.8 Their proof of Lagrange’s theorem is elementary. It does not make
the notion of transformation group explicit. The lack of interpretation is also apparent in
their proof of Sylow’s first theorem. The formalised proof, due to Wielandt, is based on the
action of the group, by left translation, on a set of subsets of certain cardinality. Jacobson
outlines the technique [16, p. 83]. The required concepts are encoded in the locales sylow

and sylow_central, which describe the specific group action required in that proof. Only

8 Proofs are preserved in Isabelle’s source code repository: https://isabelle.in.tum.de/repos/isabelle/file/
7e6cdcd113a2/src/HOL/GroupTheory/.
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later, when locale interpretation was available, von Raumer [24] factored out the concept of
group action in his formalisation of further Sylow theorems and applied it, via interpretation,
in the various proofs.

4.2 Quantitive Analysis

Locales seek to aid formalisation of mathematics in two ways: through concise and readable
syntax for the objects of discourse, and by facilitating reuse throughout a mathematical
development. Both are expected to have an impact on the size of a formal development.

4.2.1 Notation

Locales succeed at hiding the complex nature of objects of discourse. For example, for a
normal subgroup K multiplication of cosets enjoys the property (gK )(hK ) = ghK . In the
presented formalisation, within normal_subgroup, this statement is

[[g ∈ G; h ∈ G]] �⇒ g ·| K [·] (h ·| K) = g · h ·| K

and consists of 49 characters including whitespace. In contrast, the fully expanded internal
version is quite large:

[[normal_subgroup K G composition unit; g ∈ G; h ∈ G]]
�⇒ monoid_congruence.quotient_composition G composition

(normal_subgroup.Congruence K G composition unit)
(coset_notation.Left_Coset composition g K)
(coset_notation.Left_Coset composition h K) =

coset_notation.Left_Coset composition (composition g h) K

This is partly due to the module system relying on qualified names for accommodating name
spaces and long parameter names. Gunter’s version of the same statement [12, p. 28, theo-
rem QUOT_PROD], while being considerably shorter, has the same structure:

|- NORMAL(G,prod)N ==> (!x y. G x /\ G y ==>
(quot-prod(G,prod)N (LEFT_COSET(G,prod)N x)
(LEFT_COSET(G,prod)N y) =
LEFT_COSET(G,prod)N(prod x y)))

By dropping qualifiers and using short parameter names a shortened statement can be arrived
at. It is of similar size than Gunter’s (150 vs. 146 characters):

[[normal_subgroup K G c u; g ∈ G; h ∈ G]]
�⇒ quotient_composition G c (Congruence K G c u) (Left_Coset c g K)

(Left_Coset c h K) =
Left_Coset c (c g h) K
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Table 2 Count of theorems and their reduction in size between non-locale and locale version

Section Count Ratio

(a) (b)

Min Max Min Max

Maps 3 1.14 1.87 1.14 1.87

Factoring a map 35 1.42 4.89 1.37 3.00

Abstract monoids 1 3.62 3.62 2.62 2.62

Monoids of transformations 2 1.84 2.12 1.84 2.12

Abstract groups 27 1.84 5.75 1.20 2.75

Groups of transformations 6 1.81 2.83 1.81 2.54

Isomorphism 1 2.30 2.30 1.41 1.41

Cayley’s theorem for monoids 9 1.41 6.67 1.14 3.67

Cayley’s theorem for groups 4 1.41 5.05 1.13 5.04

Right translations (exercise) 12 2.95 6.67 2.25 5.08

Commutativity 0 – – – –

Orbits. cosets of a subgroup 20 1.65 9.00 1.23 4.90

Quotient monoids 3 2.50 3.94 1.52 2.27

Normal subgroups, factor groups 17 2.57 10.64 1.61 5.45

Homomorphisms of monoids 3 3.71 4.08 2.00 2.23

Homomorphisms of groups 20 2.31 7.72 1.40 5.71

Rings—elementary properties 4 4.56 4.71 2.06 2.17

Ideals, quotient rings 5 3.53 6.63 1.49 3.08

Homomorphisms of rings 3 2.82 3.21 1.35 1.53

Overall 175 1.14 10.64 1.13 5.71

(a) refers to the theorems in the formalisation, (b) to variants of these with with unqualified identifiers and
single-character schematic variables; Min refers to the smallest reduction for a theorem in the section, Max to
the greatest. Counted are the characters, including whitespace, of printed theorems. Symbols such as “α” and
“�⇒” are considered single characters

An evaluation of the effect of locales on statement size by direct comparision of this study
with Gunter’s work is not possible—her work only covers group theory and further is based
on a different textbook, so most theorem statements differ fundamentally—yet it emerges
from the above consideration that for a direct formalisation of Jacobson’s text using Gunter’s
approach theorem sizes can be expected to be roughly like those of the shortened internal
versions of the present study. Table 2 gives an overview over the 175 theorems of the study.
Column (a) lists the size reduction with respect to the full, column (b) with respect to the
shortened internal versions. For a direct formalisation using Gunter’s approach statements
up to 5.7 times the size when using locales can be expected.

4.2.2 Structure

The ultimate benchmark is the mathematical text itself. For van Benthem Jutting’s formali-
sation [23] of Landau’s textbook Grundlagen der Analysis on complex arithmetic, the sizes
of the Automath code and the formalised source were compared. According to Wiedijk [26],
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de Bruijn calls what is lost in conciseness in the translation the loss factor and observes that
it is constant: “it does not increase if we go further in the book”. Wiedijk popularised de
Bruijn’s loss factor as de Bruijn factor.

For the present study, in the Isabelle theory files each declaration is annotated with the
corresponding source location (page and line numbers) in the textbook. Further, statements
found there explicitly are marked as theorems (unless they have been translated in locale
constructs) others as lemmas. This makes the correspondence very explicit, and has been
helpful in keeping organised. It also enables providing quantitative information. 400 lines of
Jacobson’s text, which corresponds to 11.4 pages of 35 lines each, were formalised, yielding
about 1500 lines of formal development. Empty lines, source code comments and other
passages of English text in the code are excluded from this count.

A precise breakdown is shown in Table 3. For the identified sections the ratio between code
and text size (measured in lines) ranges from1.0 to 6.5, except for right translations, which are
left as an exercise to the reader, and for which the ratio therefore is much higher—28. It can
be noted that the ratio is generally higher for sections on groups than on monoids. Certainly
the need for numerous technical lemmas to simplify computation in abstract groups and the
fact that the work on group homomorphisms is not based on that on monoid homomorphisms
play a role here. On the other hand, the ratio drops again for the sections on rings, and we can
conclude that as for van Benthem Jutting’s formalisation the ratio does not increase further
into the text and reuse of monoid and group parts for rings works well.9

4.3 Improvements to Locales

The case study triggered improvements to locales, and in comparison to my detailed account
on locales [6] these changes were made:

– The keyword for rewrite clauses was changed, from where to rewrites. This improves
the readability, in particular of named locale instances, which now usewhere exclusively.

– Handling of syntax was modified so that notation can be used for changing notation.
Previously abbreviation was used. Syntax in locales is now more flexible. Notation can
be more natural and conciser.

– It was necessary to make rewrite clauses part of locale instances. Previously, rewrite
rules were processed after instantiation. The new approach is conceptually cleaner and
provides means for avoiding syntax conflicts while locale expressions are parsed.

These changes had only a small impact on existing formalisations. The renamings required
for the first change in the Isabelle distribution and the Archive of Formal Proofs could be
handled in about one day. The other improvements are direct outcomes of the present study
and were required for its successful completion. They were published with Isabelle 2016
and 2018 respectively. While the second change had no impact on existing developments in
the Isabelle distribution and the Archive of Formal Proofs at all, it was important to ensure
that it introduced no changes in the rendering of proof states. The third change did require
surprisingly few isolated changes, which were not difficult to make.

9 Wiedijk [26] supposes that the mathematical text is available in computer-readable form and suggests the
factor be computed by comparing sizes of compressed files of the formalisation and its mathematical source. I
have chosen to simply compare numbers of lines as is common practice whenmeasuring code size in computer
science.
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Table 3 Line count of Isabelle
code compared to Jacobson’s
text. Excludes empty lines,
comments in source code etc

Section Code Text Ratio

Maps 38 24 1.58

Factoring a map 241 58 4.16

Abstract monoids 27 8 3.38

Monoids of transformations 13 5 2.60

Abstract groups 130 20 6.50

Groups of transformations 29 8 3.63

Isomorphism 31 15 2.07

Cayley’s theorem for monoids 48 15 3.20

Cayley’s theorem for groups 31 8 3.88

Right translations (exercise) 85 3 28.33

Commutativity 3 3 1.00

Orbits. cosets of a subgroup 146 32 4.56

Quotient monoids 16 14 1.14

Normal subgroups, factor groups 192 48 4.00

Homomorphisms of monoids 51 32 1.59

Homomorphisms of groups 181 30 6.03

Rings—elementary properties 44 20 2.20

Ideals, quotient rings 88 28 3.14

Homomorphisms of rings 84 28 3.00

Total 1478 399 3.70

4.4 Reasoning Patterns

Certain locale constructions were used repeatedly in the study. They are identified here to
provide guidance. In the diagrams, in addition to the arrows x y for import and x y
for sublocale declarations, x y denotes temporary interpretation.

4.4.1 Clone

x

y

A clone y of a locale x is obtained as follows:

locale y = x

Both locales have the same parameters and specification, but their bodies differ. While y
inherits all declarations of x , the latter does not inherit any of the former. Clones are useful
for knowledge separation. Knowledge that is implied by a specification but does not belong
to its main body, for example, might better be placed inside a clone. Clones may also be
necessary for avoiding infinite chains of interpretation [4, Section 7.1].

The study contains several instances of the clone pattern. For example, fiber_relation
(Sect. 3.1) is a clone of map, left_translations_of_monoid (Sect. 3.4) a clone of monoid,
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and the locales for the fundamental theorems of homomorphisms (Sects. 3.7 and 3.8) are
clones of the respective homomorphism locales.

4.4.2 Bootstrapping

x1

x2

x3 y

Let x1, . . . , xn be a locale hierarchy and the goal to interpret xn , via some morphism φ in
y. Let φxi denote the locale instance obtained by applying φ to the parameters (and defined
operators) of xi . Establishing the interpretations φx1, . . . , φxn one after the other may be
significantly simpler then showing φxn directly. Be it that notation is introduced that makes
the subsequent proof more concise, be it that suitable knowledge is introduced or, as happens
frequently, both. In analogy to the start up of a computer system, where simple software
enables the loading of more complex software from an input device, this process is called
bootstrapping. In the context of y

interpretation φxi 〈proof〉

is established subsequently for i = 1, . . . , n − 1 and

sublocale φxn 〈proof〉

follows eventually. All interpretations but the final one may be temporary.
In the study, bootstrapping occurs in several places. A prominent example is discussed in

Sect. 3.6 where in the context of left_translations_of_monoid three sublocale declara-
tions lead to the statement that left translations are monoid isomorphisms.

4.4.3 Functor

x1 y1

x2 y2

x3 y3

q

q

q

Let x1, . . . , xn and y1, . . . , yn be hierarchies of algebraic structures represented by locales,
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and let φ be a functor from (xi ) to (yi ). For example, let (xi ) and (yi ) be ring hierarchies
and φ denote the construction of univariate polynomials. The connection of the hierarchies
is achieved by a sequence of declarations

sublocale yi ⊆ φxi 〈proof〉.

All instances φxi will share the same qualifier, which is indicated by the letter q in the
diagram. In practice, declarations for the construction of φ lead to a hierarchy y′

1, . . . , y
′
n of

locales in which the sublocale declarations take place.
An instance of the functor pattern in the study is the quotient construction for monoids,

groups and rings. The locales monoid, group and ring form the source hierarchy (xi ), and
monoid_congruence, group_congruence and ring_congruence form the target hierarchy
(y′

i ); abelian_group, which is also part of the source hierarchy, has no corresponding target
and is not part of the functor (Fig. 2).

4.4.4 Loose Coupling

x y

Let x be a locale containing a construction leading to some result—for example, a theorem
th. Let y be a locale in which the result from x is to be used (in the general case, via some
morphism φ). If importing the entire context of φx into y permanently is not desirable, loose
coupling between x and y can be achieved through a temporary interpretation of φx in y.
After establishing the desired result th in y, based on φx , closing the context for y discards
φx but th remains.

Loose couplings are used in the study to transfer Cayley’s theorems back from
left_translations_of_monoid to monoid and from left_translations_of_group to
group. The monoid case is discussed in detail towards the end of Sect. 3.6

4.4.5 Mutual Sublocales

x y

It occasionally happens that the same concept is arrived at through different paths. In the case
of locales, the hierarchy can be consolidated through mutual sublocale declarations.

In the study this was made use of for the locale pairs partition and equivalence and
normal_subgroup and group_congruence. Typically, defined operations of one locale are
mapped to parameters of the other. Providing the correct mappings is essential for avoiding
nontermination of the sublocale relation.

When I first realised this possibility [6, Section 5.3.2], I assumed it to be of theoretical
interest only. Writers of mathematical libraries will conceivably be able to structure devel-
opments in a way that mutual sublocales are not required. Actually the feature has turned out
to be relevant for being able to adequately reflect the structure of a mathematical text.
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5 Discussion

What can be learnt from the study for the formalisation of algebra in Isabelle, and in simple
type theory in general?

5.1 Complex Structures

Without any module support, syntax can quickly become unreadable and automation poor—
for example, when groups themselves are denoted by large expressions.

Such situations were dealt with by dedicated locales, in which appropriate definitions
were made. Examples are monoid_congruence and group_congruence where Partition

is the quotient set, the structure’s carrier set, and [·] the binary operation (see Sect. 3.6).
Given that the definition of the binary operation

([·]) = (λA∈Partition. λB∈Partition. THE C. ∃a∈A. ∃b∈B. C = Class (a · b))

involves selection and bounded abstraction, working without a definition would have been
unwieldy. Not only is the syntax concise, also the configuration of reasoning tools (simplifier
and classical reasoner) inherited from the locales for monoids and groups is not interfered
with by conflicting setups of these tools for bounded abstraction.

The loss factors of the sections on quotient monoids and factor groups are not higher than
those of the sections on abstract monoids and groups, respectively (Table 3). This supports
that automationworkedwell, and that was alsomy experiencewhile working on those proofs.

Exceptions to the approachweremadewhere definitions outside the locale yielding concise
notation within the locale were already available. A prominent example are monoids and
groups of transformations,where binary operation and unit elementwere denoted by compose

S and identity S, respectively. Definitions in the locales would merely have hidden the set
parameter S.

The functor pattern describes the general situation. The locales y′
i on the right-hand side

should have appropriate definitions that the parameters of the xi on the left-hand side can be
mapped to. Additional definitions in y′

i for concepts corresponding to defined operations of
xi can be useful as well. These can be mapped via rewrites clauses.

The functor pattern also explains what is required for transferring the approach to other
provers based on simple types such as the HOL4 system. Definitions in a locale correspond
to global definitions (see Sect. 4.1.3) and are therefore not essential. Being able to lift knowl-
edge from one context xi to another y′

i is. The means for achieving this is, of course, theory
interpretation, which is provided by locales through the sublocale and interpretation com-
mands.

5.2 Conditional Definitions

Definitions in the study are conditional—that is, operations are only defined on the intended
domain and not outside. This is in contrast to common practice in the HOL community,
where often dummy values are chosen such that unnecessary proof obligations of the form
“all values are in the carrier” can be avoided. For example, in a formalisation of homological
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algebra I was involved with completions were chosen to represent group homomorphisms
[1]. These map values outside the domain to the unit element of the co-domain.

The motivation for choosing conditional definitions in the present study was, besides
being faithful to Jacobson’s text, understanding whether they would pose problems with
rewrites clauses, where conditional rewrite rules are not allowed. No such problems were
encountered.Conditional definitions did cause additionalwork, but a small number of lemmas
on undefinedness (three in set and four in group theory) helped resolve proof obligations
largely through automation. Proof scripts did not grow significantly in size.

Conditional definitions do not necessarily lead to conditional theorems, as illustrated by
the factorisation of a map or homomorphism α into induced and natural parts (Sect. 3.1):

compose S induced Class = α

This theorem holds for maps and homomorphisms, and Jacobson proves it at themost general
level—for maps. Had completion semantics been adopted, compose S would have had to
be replaced by an operator returning, outside S, the unit element of the co-domain. This
would only have worked for homomorphisms, not maps, since in the context of the latter
no distinguished element is available. Using dummy elements is appropriate for isolated
applications but in libraries they pose the risk of precluding generalisation.

5.3 Limitations of Locales

Locales provide means for structuring formal developments, but they do not change the
underlying logic, so they do not increase expressiveness. This is a fundamental limitation. On
the other hand, locales work on top of any logic provided there is substitution [6, Section 3.1],
so they could be provided for a wide range of provers.

Locales proved effective for reusing theorems, but there is room for improvement with
regard to configuring notation. While it is often desirable to use the original notation for
an operation from a dependency, sometimes it is not. For example, the notations for the
binary operations of a homomorphism’s domain and co-domain need to differ. Locales have
a simple heuristic to avoid conflicts: notation is retained as long as no parameter is renamed
or instantiated. This heuristic repeatedly necessitated redeclaring monoid syntax for groups
as the carrier set parameter is renamed from M to G. This could be improved, by separating
signature morphisms from locale expressions. A renaming or instantiation could then be
declared once, along with notation, and reused in multiple locale expressions. Since locale
declarations are infrequent (compared to theorems) this was considered a minor annoyance
that could be lived with.

Locales aim at being flexible, and they succeed inmanyways: a locale can be revisited and
extended—for example, by definitions and theorems—at any point in a formal development.
Even the locale hierarchy can be changed without modifying the locale declarations. What is
currently not possible is amending an existing locale interpretation with additional rewrites
clauses. This functionality would enable, when a definition in a locale is made, mapping
it to an existing concept in the interpretation target. The feature is currently only available
through internal APIs, for use by the class package [13], and only for what corresponds to
the interpretation command, not for sublocale. Making it available in Isar for interpretation
would be straightforward. For sublocale the matter is more involved: the sublocale graph
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is labelled with morphisms, and I was never able to convince myself that amending these
morphisms in the described manner would be robust enough. It is conceivable that such an
amendment could break the locale hierarchy in unexpected ways. For symmetry, the feature
is not provided for the interpretation command either.10

5.4 Abstract Algebra in Isabelle

Work on Isabelle’s library of abstract algebra HOL-Algebra [8] started before the design
of locales was complete. Definitions in locales only became available later [14]. Algebraic
structures were therefore represented by record types (as outlined in Sect. 4.1.2). Achieving
concise notation is awkward. To illustrate, let Quot GC again denote the quotient group of G
relative to the congruence C. The locale for the quotient group situtation would extend the
group locale by an additional parameterQ and an additional assumptionQ ≡ Quot GC, such
that x ·Q y could be written instead of x ·Quot GC y. The additional parameter and assumption
would complicate using that locale. The case study shows that this can be improved in two
ways:

1. Make the quotient group locale a clone of the group locale and define the quotient group
Q within that.

2. As their means for composing structures is limited, avoid Isabelle/HOL’s records.

A full assessment whether improving HOL-Algebra in this way is feasible (and worth the
effort) is beyond the scope of this discussion. I expect that the first change is fairly straightfor-
ward, but changes to the record package may be required for compatibility with definitions in
locales. The second change will have a significant impact on work that depends on the library.
This can possibly be mitigated by applying the functor pattern so that revised, record-free
locales aremapped to existing, record-based ones, and dependentmaterial could be converted
gradually.

Since record types are not needed, locales can support abstract algebra in Isabelle’s set
theory, Isabelle/ZF, equally well. Locales could, in principle, be provided for a wide range of
logics and provers. Whether provers based on dependent types, which are a powerful means
of representing algebraic structures themselves, could benefit from locales is less clear.

6 Conclusion

Gunter’s early work on algebra in simple type theory [12] is foundational and applied in
variations in many formalisations. Locales are based on her approach too, and it is lifted to
a module system with support for concise local notation, name space management, flexible
means of creating and maintaining module hierarchies, and integration with the proof lan-
guage. In my earlier, detailed account [6], locales are defined in terms of their operational
semantics. There, their capabilities are explored by comparison to other structuring mecha-
nisms including type classes,ML-style modules [15] and themodule system of Coq [22]. The
present case study complements this work by studying the particulars of formalising a math-
ematical text selected to be challenging from a structural, but not necessarily mathematical,
perspective.

10 This paragraph reproduces my response to a post in the Isabelle Users mailing list: https://lists.cam.ac.uk/
pipermail/cl-isabelle-users/2019-September/msg00074.html.
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The formalised corpus sets out with equivalence classes and the factoring of maps and
extends to the fundamental theorems of monoid, group and ring homomorphisms. Cosets are
identified to be the orbits of translations, transformations on the underlying group, and their
properties derived through this route. Quotient classes are shown to be the cosets of normal
subgroups. The results derived on homomorphisms pick up from there, and their fundamental
theorems build on the factoring of maps in a natural way.

An important result of the study is that locales alone are sufficient for representing algebraic
structures in a concise and modular manner. Record types are not required. When choosing
to group the parameters of an algebraic structure into a single record object it needs to be
kept in mind that this approach tends to yield longer statements due to operations having
additional record arguments that will be inferred only in simple situations. Also, Isabelle’s
record types only allow linear structure hierarchies. By avoiding records in this case study, a
natural declaration of the ring structure was straightforward.

Locales achieve concise statement notation by hiding parts of the internal representation
of objects of discourse in the logic calculus, and by applying context-specific concrete syntax.
Locales also achieve concise proofs by providing powerful means of reuse. The size ratio of
formal to “pen-and-paper” development, de Bruijn’s loss factor, did not increase throughout
the work and it was possible to lift the monoid and group results to rings in the formalisation
as effectively as in the formalised text.

Locales declared in the case study are not confined to algebraic structures proper such as
monoids, groups and rings. More complex and sometimes auxiliary situations—for example,
that of a subgroup contained in the kernel of a homomorphism—are captured with locales
as well. The module system makes transferring results from such intermediate constructs to
contexts of use easy.

Several lessons can be learnt for formalisations in Isabelle. Reasoning patterns of locale
use in the case study were identified and described. While these patterns occurred in the
context of abstract algebra, they appear rather more intrinsic to how locales work than to the
application domain, and so these patternswill also be useful in other domains.Dummyvalues,
a means for avoiding undefinedness in definitions, need to be used with care, especially in
libraries, since they can preclude desirable generalisation. In general, the case study provides
a better specimen of using locales than Isabelle’s library of abstract algebra, HOL-Algebra
[8], since it is based on more modern techniques. Guidance on how to proceed with the latter
was given, but a full assessment is beyond the scope of this work.
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