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Abstract This paper improves the treatment of equality in guarded dependent type theory
(GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type
theory with guarded recursive types, which are useful for building models of program logics,
and for programming and reasoning with coinductive types. We wish to implement GDTT
with decidable type checking, while still supporting non-trivial equality proofs that reason
about the extensions of guarded recursive constructions. CTT is a variation of Martin–Löf
type theory in which the identity type is replaced by abstract paths between terms. CTT
provides a computational interpretation of functional extensionality, enjoys canonicity for
the natural numbers type, and is conjectured to support decidable type-checking. Our new
type theory, guarded cubical type theory (GCTT), provides a computational interpretation
of extensionality for guarded recursive types. This further expands the foundations of CTT
as a basis for formalisation in mathematics and computer science. We present examples
to demonstrate the expressivity of our type theory, all of which have been checked using
a prototype type-checker implementation. We show that CTT can be given semantics in
presheaves on C × D, where C is the cube category, and D is any small category with an
initial object. We then show that the category of presheaves on C×ω provides semantics for
GCTT.

Keywords Homotopy type theory · Cubical type theory · Guarded recursion

1 Introduction

Guarded recursion is a technique for defining and reasoning about infinite objects. Its appli-
cations include the definition of productive operations on data structures more commonly
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212 L. Birkedal et al.

defined via coinduction, such as streams, and the construction of models of program logics
for modern programming languages with features such as higher-order store and concur-
rency [5]. This is done via the type-former �, called ‘later’, which distinguishes data which is
available immediately from data only available after some computation, such as the unfolding
of a fixed-point. For example, guarded recursive streams are defined by the equation

StrA = A × �StrA
rather than the more standard StrA = A×StrA, to specify that the head is available now but
the tail only later. The type for guarded fixed-point combinators is then (�A → A) → A,
rather than the logically inconsistent (A → A) → A, disallowing unproductive definitions
such as taking the fixed-point of the identity function.

Clouston et al. [11] developed guarded recursive types in a simply-typed setting, following
earlier work [1,3,27], with semantics in the presheaf category ω̂ known as the topos of trees,
and also presented a logic for reasoning about programs with guarded recursion. For large
examples, such as models of program logics, we would like to be able to formalise such
reasoning. A major approach to formalisation is via dependent types, used for example in the
proof assistants Coq [24] and Agda [28]. Bizjak et al. [10], following earlier work [6,26],
introduced guarded dependent type theory (GDTT), integrating the � type-former into a
dependently typed calculus, and supporting the definition of guarded recursive types as
fixed-points of functions on universes, and guarded recursive operations on these types.

We wish to formalise non-trivial theorems about equality between guarded recursive
constructions, but such arguments often cannot be accommodatedwithin intensionalMartin–
Löf type theory. For example,wemayneed to be able to reason about the extensions of streams
in order to prove the equality of different stream functions. HenceGDTT includes an equality
reflection rule, which iswell known tomake type checking undecidable. This problem is close
to well-known problems with functional extensionality [16, Section 3.1.3], and indeed this
analogy can be developed. Just as functional extensionality involves mapping terms of type
(x : A) → Id B ( f x) (gx) to proofs of Id (A → B) f g, extensionality for guarded recursion
requires an extensionality principle for later types, namely the ability to map terms of type
�Id A t u to proofs of Id (�A) (next t) (next u), where next is the constructor for �. These
types are isomorphic in the topos of trees, and so in GDTT their equality was asserted as
an axiom. But in a calculus without equality reflection we cannot merely assert such axioms
without losing canonicity.

Cubical type theory (CTT) [12], for which we give a brief introduction in Sect. 2, is a
new type theory with a computational interpretation of functional extensionality but without
equality reflection, and hence is a candidate for extension with guarded recursion, so that
we may formalise our arguments without incurring the disadvantages of fully extensional
identity types. CTT was developed primarily to provide a computational interpretation of
Voevodsky’s univalence axiom in homotopy type theory [33]. The most important novelty
of CTT is the replacement of inductively defined identity types by paths, which can be seen
as maps from an abstract interval, and are introduced and eliminated much like functions.
CTT can be extended with identity types which model all rules of intensional equality in
Martin–Löf type theory [12, Sect. 9.1], but these are logically equivalent to path types, and
in our paper it suffices to work with path types only. CTT has sound denotational semantics
in (fibrations in) cubical sets, a presheaf category that is used to model homotopy types.
CTT enjoys canonicity for terms of natural number type [18] and is conjectured to have
decidability of type-checking. Moreover, a type-checker has been implemented.1

1 https://github.com/mortberg/cubicaltt.
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In Sect. 3 of this paper we propose guarded cubical type theory (GCTT), a combination
of the two type theories2 which supports non-trivial proofs about guarded recursive types via
path equality, while retaining the potential for good syntactic properties such as canonicity for
base types and decidable type-checking. In particular, just as a term can be defined inCTT to
witness functional extensionality, a term can be defined in GCTT to witness extensionality
for later types. Further, we use elements of the interval of CTT to annotate fixed-points,
and hence control their unfoldings. This ensures that fixed-points are path equal, but not
judgementally equal, to their unfoldings, and hence prevents infinite unfoldings, an obvious
source of non-termination in any calculus with infinite constructions. The resulting calculus
is shown via examples to be useful for reasoning about guarded recursive operations; we also
view it as potentially significant from the point of view ofCTT, extending its expressivity as
a basis for formalisation.

In Sect. 4 we give semantics to this type theory via the presheaf category over the product
of the categories used to define semantics forGDTT andCTT. Defining semantics in this new
category is non-trivial because we must check that all novel features of the two type theories
can still be soundly interpreted. To achieve this we first define, in Sect. 4.1, an extension of
dependent predicate logic in which the constructs ofCTTmay be interpreted, then show that
this logic may be interpreted in a certain class of presheaf categories, including our intended
category.We then show that this category also interprets the constructs ofGDTT. In particular
we must ensure that the ‘later’ functor �, which models the type-former of the same name,
preserves the (Kan) composition operations which are central to the cubical model. In the
conference version of this paper [7] the development of the semantics was presented only
very briefly for space reasons; the technical appendix of that paper is integrated into the text
of this paper, and forms the bulk of this paper’s contribution.

Moreover, we have implemented a prototype type-checker for this extended type theory,3

extending the implemented type-checker for CTT, which provides confidence in our type
theory’s syntactic properties. All constructions using the type theoryGCTT presented in this
paper, and many others, have been formalised in this type-checker.

2 Cubical Type Theory

This section gives a brief overview of cubical type theory (CTT)4; for full details we refer
to Cohen et al. [12].

We start with a standard dependent type theorywithΠ,Σ , natural numbers, and a Russell-
style universe, but without identity types:

Γ,Δ : := () | Γ, x : A Contexts
t, u, A, B : := x Variables

| λx : A.t | t u | (x : A) → B Π-types
| (t, u) | t.1 | t.2 | (x : A)× B Σ-types
| 0 | s t | natrec t u | N Natural numbers
| U Universe

2 with the exception of the clock quantification of GDTT, which we leave to future work.
3 http://github.com/hansbugge/cubicaltt/tree/gcubical.
4 http://www.cse.chalmers.se/~coquand/selfcontained.pdf provides a concise presentation of CTT.
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Fig. 1 Typing rules for path types

We adhere to the usual conventions of considering terms and types up to α-equality, and
writing A → B, respectively A× B, for non-dependentΠ- andΣ-types. We use the symbol
‘=’ for judgemental equality.

CTT extends this basic type theory with the constructs below:

r, s : := 0 | 1 | i | 1− r | r ∧ s | r ∨ s The interval, I
ϕ, ψ : := 0F | 1F | (i = 0) | (i = 1) | ϕ ∧ ψ | ϕ ∨ ψ The face lattice, F
Γ,Δ : := · · · | Γ, i : I | Γ, ϕ Contexts
t, u, A, B : := · · ·

| 〈i〉t | t r | Path A t u Path types
| [ϕ1 t1, . . . , ϕn tn] Systems
| compi A [ϕ �→ u] t Compositions
| glue [ϕ �→ t] u | unglue t | Glue [ϕ �→ (B, t)] A Glueing

We now briefly discuss these constructs.
The central novelty of CTT is its treatment of equality. Instead of the inductively defined

identity types of intensional Martin–Löf type theory [23],CTT has paths. The paths between
two terms t, u of type A form a sort of function space, intuitively that of continuousmaps from
some interval I to A, with endpoints t and u. Rather than defining the interval I concretely
as the unit interval [0, 1] ⊆ R, it is defined as the free De Morgan algebra on a discrete
infinite set of names {i, j, k, . . .} with endpoints 0 and 1. A De Morgan algebra is a bounded
distributive lattice with an involution 1− · satisfying the De Morgan laws

1− (i ∧ j) = (1− i) ∨ (1− j), 1− (i ∨ j) = (1− i) ∧ (1− j).

The interval [0, 1] ⊆ R, with min,max and 1− ·, is an example of a De Morgan algebra.
The judgement Γ 
 r : I means that r draws its names from Γ . Despite this notation, I

is not a first-class type.
Path types and their elements are defined by the rules in Fig. 1. Path abstraction, 〈i〉t , and

path application, t r , are analogous to λ-abstraction and function application, and support
the familiar β-equality (〈i〉t) r = t {r/ i} and η-equality 〈i〉t i = t . There are two additional
judgemental equalities for paths, regarding their endpoints: given p : Path A t u we have
p 0 = t and p 1 = u.

Paths provide a notion of identity which is more extensional than that of intensional
Martin–Löf identity types, as exemplified by the proof term for functional extensionality:

funext f g � λp.〈i〉λx . p x i : ((x : A) → Path B ( f x) (g x)) → Path (A → B) f g.

The rules above suffice to ensure that path equality is reflexive, symmetric, and a congru-
ence, but we also need it to be transitive and, where the underlying type is the universe, to
support a notion of transport. This is done via (Kan) composition operations.

To define these we need the face lattice, F, defined as the distributive lattice generated
by the symbols (i = 0) and (i = 1) for all names i , quotiented by the relation (i = 0) ∧
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Guarded Cubical Type Theory 215

(i = 1) = 0F. As with the interval, F is not a first-class type, but the judgement Γ 
 ϕ : F
asserts that ϕ draws its names from Γ . We also have the judgement Γ 
 ϕ = ψ : F which
asserts the equality of ϕ and ψ in the face lattice. Contexts can be restricted by elements of
F. Such a restriction affects equality judgements so that, for example, Γ, ϕ 
 ψ1 = ψ2 : F
is equivalent to Γ 
 ϕ ∧ ψ1 = ϕ ∧ ψ2 : F

We write Γ 
 t : A[ϕ �→ u] as an abbreviation for the two judgements Γ 
 t : A
and Γ, ϕ 
 t = u : A, noting the restriction with ϕ in the equality judgement. Now the
composition operator is defined by the typing and equality rule

Γ 
 ϕ : F Γ, i : I 
 A Γ, ϕ, i : I 
 u : A Γ 
 a0 : A {0/ i} [ϕ �→ u {0/ i}]
Γ 
 compi A [ϕ �→ u] a0 : A {1/ i} [ϕ �→ u {1/ i}] .

There are further equations for composition that depend on the type A they are applied to;
we omit these from this short overview.

A simple use of composition is to implement the transport operation for Path types

transpi A a � compi A [0F �→ []] a : A {1/ i} ,
where a has type A {0/ i}. The notation [] stands for the empty system. In general a system is
a list of pairs of faces and terms, and it defines an element of a type by giving the individual
components at each face. Belowwe present two of the rules for systems; in particular the first
rule ensures that for a system to be well-typed, all cases must be covered, and the components
must agree where the faces overlap:

Γ 
 A

Γ 
 ϕ1 ∨ . . . ∨ ϕn = 1F : F Γ, ϕi 
 ti : A Γ, ϕi ∧ ϕ j 
 ti = t j : A i, j = 1 . . . n

Γ 
 [ϕ1 t1, . . . , ϕn tn] : A

Γ 
 [ϕ1 t1, . . . , ϕn tn] : A Γ 
 ϕi = 1F : F
Γ 
 [ϕ1 t1, . . . , ϕn tn] = ti : A

We will write [ϕ1 �→ t1, . . . , ϕn �→ tn] as an abbreviation for [ϕ1 ∨ . . . ∨ ϕn �→
[ϕ1 t1, . . . , ϕn tn]].

A non-trivial example of the use of systems is the proof that Path is transitive; given
p : Path A a b and q : Path A b c we can define

transitivity p q � 〈i〉 comp j A [(i = 0) �→ a, (i = 1) �→ q j] (p i) : Path A a c.

This builds a path between the appropriate endpoints because we have the equalities
comp j A [1F �→ a] (p 0) = a and comp j A [1F �→ q j] (p 1) = q 1 = c.

The glueing construction [12, Sec. 6] is necessary to define the interaction of the universe
with compositions, and hence to provide a computational interpretation of univalence. It has
the following type-formation and typing rules:

Γ 
 A Γ, ϕ 
 T Γ, ϕ 
 f : Equiv T A

Γ 
 Glue [ϕ �→ (T, f )] A

Γ 
 b : Glue [ϕ �→ (T, f )] A

Γ 
 unglue b : A[ϕ �→ f b]
Γ, ϕ 
 f : Equiv T A Γ, ϕ 
 t : T Γ 
 a : A[ϕ �→ f t]

Γ 
 glue [ϕ �→ t] a : Glue [ϕ �→ (T, f )] A
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216 L. Birkedal et al.

where Equiv T A is the type of equivalence between types T and A, whose formal definition
we omit. We also have the following equations:

Glue [1F �→ (T, f )] A = T,

glue [1F �→ t] a = t,

glue [ϕ �→ b] (unglue b) = b,

unglue(glue [ϕ �→ t] a) = a.

3 Guarded Cubical Type Theory

The section introduces constructs from guarded dependent type theory (GDTT) to CTT, to
define guarded cubical type theory (GCTT):

ξ : := · | ξ [x ← t] Delayed substitutions
t, u, A, B : := · · ·

| next ξ. t | dfixr x .t | �ξ.A Later types

recalling that r is an element of the interval. This section will also present examples that
show how GCTT can be used to prove properties of guarded recursive constructions.

3.1 Later Types

In Fig. 2 we present the ‘later’ types of guarded dependent type theory (GDTT) [10], with
judgemental equalities in Figs. 3 and 4. Note that we do not add any new equation for the
interaction of compositions with �: while compi �ξ.A [ϕ �→ u] t is a valid termwhich allows
us to transport at � types, any extra equation for it would be necessary only if we were to add
the ‘previous’ eliminator prev for �, but this extension (which involves clock quantifiers) is
left to further work. We delay the presentation of the fixed-point construction until the next
subsection.

The typing rules use the delayed substitutions ofGDTT, as defined in Fig. 5. The notation
Γ � Γ ′ for the delayed substitution is suggestive for its intended semantics as Γ →
�(Γ, Γ ′). Delayed substitutions resemble Haskell-style do-notation, or a delayed form of
let-binding. If we have a term t : �A, we cannot access its contents ‘now’, but if we are
defining a type or term that itself has some part that is available ‘later’, then this part should

Fig. 2 Typing rules for later types

Fig. 3 Type equality rules for later types (congruence and equivalence rules are omitted)
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Guarded Cubical Type Theory 217

Fig. 4 Term equality rules for later types. We omit congruence and equivalence rules, and the rules for terms
of type U, which reflect the type equality rules of Fig. 3

Fig. 5 Formation rules for delayed substitutions

be able to use the contents of t . Therefore delayed substitutions allow terms of type �A to be
unwrapped by � and next . As observed by Bizjak et al. [10], these constructions generalise
the applicative functor [25] structure of ‘later’ types, by the definitions pure t � next t ,
and f � t � next

[

f ′ ← f, t ′ ← t
]

. f ′ t ′, and also generalise the � operation from simple
functions to Π-types. We here make the new observation that delayed substitutions can
express the function �̂ : �U → U, introduced by Birkedal and Møgelberg [4] to express
guarded recursive types as fixed-points on universes, as λu.�[u′ ← u].u′; see for example
the definition of streams in Sect. 3.3.

Example 3.1 InGDTT it is essential that we can convert terms of type �ξ.IdA t u into terms
of type Id�ξ.A (next ξ. t) (next ξ. u), so that we may perform Löb induction, the technique
of proof by guarded recursion where we assume �p, deduce p, and hence may conclude p
with no assumptions. This is achieved in GDTT by postulating as an axiom the following
judgemental equality:

Id�ξ.A (next ξ. t) (next ξ. u) = �ξ.IdA t u (1)

A term from left-to-right of (1) can be defined using the J-eliminator for identity types,
but the more useful direction is right-to-left, as proofs of equality by Löb induction involve
assuming that we later have an equality, then converting this into an equality on later types.
In fact with the paths of GCTT we can define a term with the desired type:

λp.〈i〉next ξ [p′ ← p]. p′ i : (�ξ.Path A t u) → Path (�ξ.A) (next ξ. t) (next ξ. u). (2)

Note the similarity of this term and type with that of funext, for functional extensional-
ity, presented on p. 4. Indeed we claim that (2) provides a computational interpretation of
extensionality for later types.

3.2 Fixed Points

In this section we complete the presentation of GCTT by addressing fixed points. In
GDTT there are fixed-point constructions fix x .t with the judgemental equality fix x .t =
t {next fix x .t/x}. In GCTT we want decidable type checking, including decidable judge-
mental equality, and so we cannot admit such an unrestricted unfolding rule. Our solution
is that fixed points should not be judgementally equal to their unfoldings, but merely path
equal. We achieve this by decorating the fixed-point combinator with an interval element
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218 L. Birkedal et al.

Fig. 6 Typing and equality rules for the delayed fixed-point

which specifies the position on this path. The 0-endpoint of the path is the stuck fixed-point
term, while the 1-endpoint is the same term unfolded once. However this threatens canonicity
for base types: if we allow stuck fixed-points in our calculus, we could have stuck closed
terms fixi x .t inhabiting N. To avoid this, we introduce the delayed fixed-point combinator
dfix, inspired by Sacchini’s guarded unfolding operator [31], which produces a term ‘later’
instead of a term ‘now’. Its typing rule, and notion of equality, is given in Fig. 6. We will
write fixr x .t for t

{

dfixr x .t/x
}

, fix x .t for fix0x .t , and dfix x .t for dfix0 x .t .

Lemma 3.2 (Canonical unfold lemma) For any term Γ, x : �A 
 t : A there is a path
between fix x .t and t {next fix x .t/x}, given by the term 〈i〉fixi x .t .

Transitivity of paths (via compositions) ensures that fix x .t is path equal to any number of
fixed-point unfoldings of itself.

A term a of type A is said to be a guarded fixed point of a function f : �A → A if there
is a path from a to f (next a).

Proposition 3.3 (Unique guarded fixed points) Any guarded fixed-point a of a term f :
�A → A is path equal to fix x . f x.

Proof Given p : Path A a ( f (next a)), we proceed by Löb induction, i.e., by assuming

ih : �(Path A a (fix x . f x)).

We define a path

s � 〈i〉 f (next [q ← ih
]

. q i) : Path A ( f (next a)) ( f (next fix x . f x)),

which is well-typed because the type of the variable q ensures that q 0 is judgementally equal
to a, resp. q 1 and fix x . f x . Note that we here implicitly use the extensionality principle for
later (2). We compose s with p, and then with the inverse of the canonical unfold lemma
of Lemma 3.2, to obtain our path from a to fix x . f x . We can write out our full proof term,
where p−1 is the inverse path of p, as

fix ih.〈i〉 comp j A [(i = 0) �→ p−1, (i = 1) �→ f (dfix1− j x . f x)] ( f (next [q ← ih
]

. q i)).


�
3.3 Programming and Proving with Guarded Recursive Types

In this section we show some simple examples of programming with guarded recursion, and
prove properties of our programs using Löb induction and univalence.

Streams The type of guarded recursive streams inGCTT, as withGDTT, are defined as fixed
points on the universe:

StrA � fix x .A × �[y ← x].y
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Guarded Cubical Type Theory 219

Note the use of a delayed substitution to transform a term of type �U to one of type U, as
discussed at the start of Sect. 3.1. Desugaring to restate this in terms of dfix, we have

StrA = A × �[y ← dfix0 x .A × �[y ← x].y].y
The head function hd : StrA → A is the first projection. The tail function, however, cannot
be the second projection, since this yields a term of type

�
[

y ← dfix0 x .A × � [y ← x] .y
]

.y (3)

rather than the desired �StrA. However we are not far off; �StrA is judgementally equal to

�
[

y ← dfix1 x .A × � [y ← x] .y
]

.y,

which is the same term as (3), apart from endpoint 1 replacing 0. The canonical unfold lemma
(Lemma 3.2) tells us that we can build a path in U from StrA to A × �StrA; call this path
〈i〉StriA. Then we can transport between these types:

unfold s � transpi StriA s fold s � transpi Str1−iA s

Note that the compositions of these two operations are path equal to identity functions, but
not judgementally equal. We can now obtain the desired tail function tl : StrA → �StrA by
composing the second projection with unfold, so tl s � (unfold s).2. Similarly we can define
the stream constructor cons (usually written infix as : :) by using fold:

cons � λa, s.fold (a, s) : A → �StrA → StrA.

We now turn to higher order functions on streams. We define zipWith : (A → B →
C) → StrA → StrB → StrC , the stream function which maps a binary function on two
input streams to produce an output stream, as

zipWith f � fix z.λs1, s2. f (hd s1) (hd s2) :: next
⎡

⎣

z′ ← z
t1 ← tl s1
t2 ← tl s2

⎤

⎦ . z′ t1 t2.

Of course zipWith is definable even with simple types and �, but inGCTT we can go further
and prove properties about the function:

Proposition 3.4 (zipWith preserves commutativity) If f : A → A → B is commutative,
then zipWith f : StrA → StrA → StrB is commutative.

Proof Let c : (a1 : A) → (a2 : A) → Path B ( f a1 a2) ( f a2 a1) witness commutativity of
f . We proceed by Löb induction, i.e., by assuming

ih : � ((s1 : StrA) → (s2 : StrA) → Path B (zipWith f s1 s2) (zipWith f s2 s1)) .

Let i : I be a fresh name, and s1, s2 : StrA. Our aim is to construct a stream which is
zipWith f s1 s2 when substituting 0 for i , and zipWith f s2 s1 when substituting 1 for i . An
initial attempt at this proof is the term

v � c (hd s1) (hd s2) i :: next

⎡

⎣

q ← ih
t1 ← tl s1
t2 ← tl s2

⎤

⎦ . q t1 t2 i : StrB ,
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220 L. Birkedal et al.

which is equal to

f (hd s1) (hd s2) :: next
[

t1 ← tl s1
t2 ← tl s2

]

. zipWith f t1 t2

when substituting 0 for i , which is zipWith f s1 s2, but unfolded once. Similarly, v {1/ i} is
zipWith f s2 s1 unfolded once. Let 〈 j〉zipWith j be the canonical unfold lemma associated
with zipWith (see Lemma 3.2).We can now finish the proof by composing v with (the inverse
of) the canonical unfold lemma. Diagrammatically, with i along the horizontal axis and j
along the vertical:

zipWith f s1 s2 zipWith f s2 s1

f (hd s1) (hd s2) ::
next

[

t1 ← tl s1
t2 ← tl s2

]

. zipWith f t1 t2

f (hd s2) (hd s1) ::
next

[

t2 ← tl s2
t1 ← tl s1

]

. zipWith f t2 t1

zipWith1− j f s1 s2

v

zipWith1− j f s2 s1

The complete proof term, in the language of the implemented type-checker, can be found in
“Appendix A”. 
�
Bisimularity equals equality Two (guarded) streams are bisimilar when both their heads and
tails are equal. In GCTT we can prove that bisimilar streams are equal, and moreover that
the type of bisimilar streams is equal to the type of equal streams.

Proposition 3.5 For all s, t : StrA, there is a term of type Path U(bisim As t)(Path StrA s t).

Proof We may strengthen extensionality for later (refeq:laterspsext), to get that

Path �Aa b ∼= �[(a′ ← a, b′ ← b].Path Aa
′ b′.

This strengthening may be compared to the strong version of functional extensionality which
states an equivalence of the equality type on function types and the type of pointwise equality
[33, 2.9].

For s, t : StrA, we have the following chain of equivalences:

bisim s t � Path (hd s)(hd t)× �[s′ ← tl s, t ′ ← tl t].bisim s′t ′
by ind.∼= Path (hd s)(hd t)× �[s′ ← tl s, t ′ ← tl t].Path s′t ′

(4)∼= Path (hd s)(hd t)× Path (tl s)(tl t)
∼= Path s t

The last equivalence is constructed from the fold and unfold functions for streams. The
statement then follows from univalence. 
�
Guarded recursive types with negative variance A key feature of guarded recursive types
are that they support negative occurrences of recursion variables. This is important for appli-
cations to models of program logics [5]. Here we consider a simple example of a negative
variance recursive type, namely RecA � fix x .(�[x ′ ← x].x ′) → A, which is path equal
to �RecA → A. As a simple demonstration of the expressiveness we gain from negative
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guarded recursive types, we define a guarded variant of Curry’s Y combinator:

Δ � λx . f (next [x ′ ← x]. ((unfold x ′)x)) : �RecA → A
Y � λ f.Δ(next foldΔ) : (�A → A) → A,

where fold and unfold are the transports along the path between RecA and �RecA → A.
As with zipWith,Y can be defined with simple types and � [1]; what is new toGCTT is that
we can also prove properties about it:

Proposition 3.6 (Y is a guarded fixed-point combinator)Y f is path equal to f (next (Y f )),
for any f : �A → A. Therefore, by Proposition 3.3, Y is path equal to fix.

Proof Y f simplifies to f (next (unfold (foldΔ) (next foldΔ))), and unfold (foldΔ) is path
equal to Δ. A congruence over this path yields our path between Y f and f (next (Y f )). 
�

4 Semantics

In this section we provide sound semantics of GCTT, and hence prove the consistency of
GCTT. The semantics is based on the category Ĉ × ω of presheaves on the category C × ω,
where C is the category of cubes [12] and ω is the poset of natural numbers.

Given a countably infinite set of names i, j, k, . . ., the category C has as objects finite sets
of names I, J , and as morphisms I → J , functions J → DM (I ), where DM (I ) is the free
De Morgan algebra with generators I . Equivalently, the category of cubes is the opposite of
the Kleisli category of the free De Morgan algebra monad on finite sets. Hence in particular
it has products, which are given by disjoint union, a fact used extensively below.

As is standard, contexts of GCTT are interpreted as objects of Ĉ × ω. Following the
approach of Cohen et al. [12] types in context Γ are interpreted as pairs (A, cA) of a presheaf
A on the category of elements of Γ and a chosen composition structure cA. We call such a
pair a fibrant type.

Semantics of type theory in presheaf categories is well-known. When interpreting type
constructions, such as dependent products, the type part of the pair (A, cA) is interpreted as
usual in presheaf models. What is new is the addition of composition structure, and much of
theworkwe do in this section is to show that composition structure is preserved by the various
type constructors. It is complex both to define composition structure, and to show that all types
can be equipped with this structure. To aid with this we describe the composition structure
in the internal language of the presheaf topos. More precisely, in Sect. 4.1 we use dependent
predicate logic extended with four assumptions, of which the most important asserts the
existence of an interval type, as the internal language. A formulation of compositions in this
manner, along with similarly internal descriptions of fillings and faces, appeared (in slightly
different form) in an unpublished note by Coquand [13]. We recall the precise definitions of
these in the following sections, and provide details of some constructions which were omitted
in op. cit. The advantage of this approach is that we can show entirely in the internal language
that constructions such as dependent products and sums have compositions satisfying the
necessary properties, provided their constituent types do.

Working at this level, the notion of a model ofCTT can be generalised from the category ̂C
of cubical sets to any topos whose internal logic satisfies the four assumptions. In particular,
these assumptions hold in the presheaf category Ĉ × D for any small category D with an
initial object. The category Ĉ × ω is obviously such a category; we will show that it is one
that also allows the constructions of guarded recursion introduced in Sect. 3 to be modelled.

123



222 L. Birkedal et al.

Fig. 7 Judgements of the dependent predicate logic L

The notion of a model ofGCTT is then formulated as follows: a type ofGCTT in context
Γ is interpreted as a pair of a typeΓ 
 A in the internal language of Ĉ × ω, and a composition
structure cA, where cA is a term in the internal language of a specific typeΦ(Γ ; A)which we
define below after introducing the necessary constructs. A term ofGCTT is then interpreted
simply as a term of the internal language. We use categories with families [15] as our notion
of a model.

This section is organised as follows: Sect. 4.1 presents the general intermediate language
L which we use to interpret GCTT in. Section 4.2 models CTT in L. Section 4.3 models L
in the category of cubical sets. Section 4.4 considers more general models of L. Section 4.5
models GCTT in an extension of L. Section 4.6 gives a summary of the semantics.

4.1 The Dependent Predicate Logic L

Instead of formulating our model directly using regular mathematics, we will specify a type-
theoretic language L, tailor-made for the purpose of our model, and inspired by the internal
logic of the presheaf topos of cubical sets, ̂C.

L is Phoa’s dependent predicate logic [30, Appendix I] (see also Johnstone [19, D4.3,4.4])
extended with four assumptions, detailed in this section. Figure 7 contains an overview of
the types of judgements. We write Ω for the type of propositions,� for true and⊥ for false.

In addition to the equality proposition t = u : A, we also have the extensional identity
type IdA(t, u) with equality reflection:

Γ 
 A Γ 
 t, u : A
Γ 
 IdA(t, y)

Γ 
 t = u : A
Γ 
 refl : IdA(t, u)

Γ 
 p : IdA(t, u)

Γ 
 t = u : A
Id (the type) and · = · (the proposition) are equally expressive, but for presentation purposes
it is practical to have both: Using Id we can easily express the type of partial elements
(elements of a type B which are defined only when t = u in A) as IdA(t, u) → B. Terms
of this type, however, are unwieldy to work with since one needs to carry around an explicit
equality proof (which will be equal to refl anyway by the extensionality of the identity type).
Therefore we will implicitly convert back and forth between the type theoretic and the logical
representation, and will often elide proofs, for example writing the context Γ, p : IdΩ(ϕ,�)

as Γ, ϕ.
Following Cohen et al. [12], our syntax in Sect. 2 was à la Russell, i.e. it did not contain

explicit codes. The interpretation in op. cit. however contains a special form of Tarski-style
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universes with an explicit coding function which commutes with the decoding function El.
These universes can be interpreted in presheaf models. To facilitate the interpretation of the
fibrant universe (in Sect. 4.4.3) we assume that our intermediate language L contains an
explicit “elements-of” operation El for a universe U of small types.

We now turn to the first of our four assumptions necessary for modelling CTT.

Assumption 1 (Interval type) In L we have a type I with

0, 1 : I ∧,∨ : I→ I→ I 1− · : I→ I

which is a De Morgan algebra which enjoys the (finitary) disjunction property:

0 �= 1 �
i ∨ j = 1 �⇒ i = 1 ∨ j = 1.

4.1.1 Constructions Definable from the Interval Type

This section will show that the interval type assumption above is sufficient for modelling
all of CTT except for glueing and the universe, as we can use the interval type to define
the face lattice, and hence systems, compositions, fillings, and paths. While some of the
constructions of this section are complex to state, they are mostly fairly obvious translations
of the type-theoretic constructions sketched in Sect. 2 to the language L.

We will see three further assumptions, for modelling glueing and the universe, in
Sect. 4.1.2.

Faces Using the interval we define the type F as the image of the function · = 1 : I → Ω .
More precisely, F is the subset type

F � {p : Ω | ∃(i : I), p = (i = 1)}
We will implicitly use the inclusion F → Ω . The following lemma in particular states that
the inclusion is compatible with all the lattice operations, hence omitting it is unambiguous.

Lemma 4.1 – F is a lattice for operations inherited from Ω .
– The corestriction · = 1 : I→ F is a lattice homomorphism.
– F inherits the disjunction property from I.

To define partial elements we first define, given a proposition Γ 
 ϕ : F, the subsingleton
[ϕ] as

[ϕ] � IdF(ϕ,�).

For this type we have the logical equivalence (∃!p : [ϕ],�) ⇔ ϕ which we use below
when passing between type-theoretic and logical views in constructions of compositions.

Partial elements Given Γ 
 A and Γ 
 ϕ : F we say that a term t is a partial element of A
of extent ϕ, if Γ 
 t : Π(p : [ϕ]).A. If we are in a context with p : [ϕ], then we treat such
a partial element t as a term of type A, leaving implicit the application to the proof p, i.e.,
we write t for t p. We similarly will often write Γ, [ϕ] for Γ, p : [ϕ], and [ϕ] → B for the
dependent function space Π(p : [ϕ]).B, leaving the proof variable p implicit.

If we have a term Γ, p : [ϕ] 
 u : A (a partial element), then we define

A[ϕ �→ u] � Σ(a : A). [ϕ]→ (IdA(a, u)) (4)
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as the type of elements of a which equal the partial element u on extent ϕ. Note that the
second component of the pair is uniquely determined (up to judgemental equality) by equality
reflection. Thus often to construct terms of this type we construct a term of type A and show,
in the logic, that it is equal to the partial element u on extent ϕ. We do not construct the
second component explicitly.

Systems Given Γ 
 A, assume we have the following:

Γ 
 ϕ1, . . . , ϕn : F
Γ 
 ϕ1 ∨ · · · ∨ ϕn = �

Γ, [ϕ1] 
 t1 : A
...

Γ, [ϕn] 
 tn : A
Γ,
[

ϕi ∧ ϕ j
] 
 ti = t j : A, for all i, j.

In otherwords:Wehaven partial elements of Awhich agreewith eachother on the intersection
of their extents. We can use the axiom of definite description to define the term

[ϕ1t1, . . . , ϕntn] � the x Asuch that χ(x)

where

χ(x) � (ϕ1 ∧ (x = t1)) ∨ · · · ∨ (ϕn ∧ (x = tn)).

We call this term a system. The condition for using definite description is a proof (in the
logic) of the unique existence of such a term. Given the assumptions above, unique existence
of the term follows easily.

Using systems, we generalise the earlier definition (4): We define

A[ϕ1 �→ t1, . . . , ϕn �→ tn] � A[ϕ1 ∨ · · · ∨ ϕn �→ [ϕ1t1, . . . , ϕntn]],
where the type on the right hand side is using the definition (4). Note that A[ϕ �→ t] is
unambiguous, as we have Γ, [ϕ] 
 [ϕt] = t : A.

Compositions Given Γ 
 A, we can define the type of compositions:

Φ(Γ ; A) �Π(γ : I→ Γ )

(ϕ : F)

(u : Π(i : I). [ϕ]→ A(γ (i))).

A(γ (0))[ϕ �→ u(0)] → A(γ (1))[ϕ �→ u(1)].
Here we treat the context Γ as a closed type. This is justified because there is a canonical
bijection between contexts and closed types of the internal language. The notation A(γ (i))
means substitution along the (uncurried) γ , by which we mean the following. Given some
term γ of type I→ Γ in some context Γ ′, there is the “uncurried” term Γ ′, i : I 
 γ (i) : Γ
which arises by application of γ to i . Finally, we assume the variable i appearing in the type
of u is fresh for ϕ, γ and A.

Note that there is an important difference between the type of compositions inL as defined
above and the form of the rule for compositions in CTT. In the latter the type A depends on
I, whereas it seemingly does not in the type of compositions. This difference however is only
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superficial since the first argument in the type of compositions is a path in Γ , which gives a
dependence of A on I.

Recall that we call a pair of a type Γ 
 A in L together with a term 
 c : Φ(Γ ; A) a
fibrant type.

Fillings Given Γ 
 A, we can define the type of (Kan) fillings:

Ψ (Γ, A) � Π(γ : I→ Γ )

(ϕ : F)

(u : Π(i : I). [ϕ]→ A(γ (i)))

(a0 : A(γ (0))[ϕ �→ u(0)])
(i : I).
A(γ (i))[ϕ �→ u(i), (1− i) �→ π1a0].

If we have a filling operation f : Ψ (Γ, A) then we can get a path lifting operation which
states that given a path γ and an element a0 in A over γ (0) we get a path in A which starts
at a0. Concretely, path lifting is the term � of the following type

� : Π(γ : I→ Γ )

(a0 : A(γ (0)))

(i : I).
A(γ (i))[(1− i) �→ a0].

It is defined as a degenerate case of f where ϕ is ⊥, and u therefore is uniquely determined
(since it is a partial function defined where ⊥ holds). Path lifting is used when constructing
compositions for dependent products and sums.

Lemma 4.2 (Fillings from compositions) If we have a fibrant type Γ 
 A with cA :
Φ(Γ ; A), then we have a filling operation 
 f : Ψ (Γ, A).

Proof We introduce the variables of appropriate types:

γ : I→ Γ,

ϕ : F,

u : Π(i : I).[ϕ] → A(γ (i)),

a0 : A(γ (0))[ϕ �→ u(0)],
i : I.

We need to find a term of type

A(γ (i))[ϕ �→ u(i), (i = 0) �→ π1ao].
We check that the following system is well-defined (in a context with ϕ ∨ (i = 0)):

[ϕu(i ∧ j), (i = 0)π1a0].
– If ϕ, then u(i ∧ j) : A(γ (i ∧ j)).
– If i = 0, then π1a0 : A(γ (0)) = A(γ (i ∧ j)).
– If ϕ and i = 0, then π1a0 = u(0) = u(i ∧ j).
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Note also that this means that

A(γ (0))[ϕ �→ u(0)] = A(γ (0))[ϕ �→ u(0), (i = 0) �→ π1a0],
and therefore we can write the following term:

cA (λ j.γ (i ∧ j)) (ϕ ∨ (i = 0)) (λ j.[ϕu(i ∧ j), (i = 0)π1a0]) a0
which has the type

A(γ (i))[ϕ �→ u(i), (i = 0) �→ π1ao],
as was needed. 
�

Path types Given Γ 
 A and terms Γ 
 t, u : A, we can define the Path type

PathA t u � Π(i : I).A[(1− i) �→ t, i �→ u]
as the type of paths in A, i.e., terms of type I→ A, which start at t and end at u.

4.1.2 Assumptions for Glueing and the Universe

Assumption 2 (Glueing) There is a type for glueing with the following type formation and
typing rules

Γ 
 A Γ, [ϕ] 
 T Γ, [ϕ] 
 f : T → A

Γ 
 Glue [ϕ �→ (T, f )] A

Γ 
 b : Glue [ϕ �→ (T, f )] A

Γ 
 unglue b : A[ϕ �→ f b]
Γ, [ϕ] 
 f : T → A Γ, [ϕ] 
 t : T Γ 
 a : A[ϕ �→ f t]

Γ 
 glue [ϕ �→ t] a : Glue [ϕ �→ (T, f )] A

Satisfying the following judgemental equalities:

Glue [1F �→ (T, f )] A = T,

glue [1 �→ t] a = t,

glue [ϕ �→ b] (unglue b) = b,

unglue(glue [ϕ �→ t] a) = a. �

The assumption above is essentially the same as the rules for the glueing type in CTT.
One difference is that in the formation rule for Glue we do not require f to be an equivalence.
We need only additionally assume that f is an equivalence, which is stated in terms of the
Path type, when proving that glueing is fibrant in Lemma 4.6.

Assumption 3 (Fibrant universe) There is a fibrant universe U f which contains pairs of a
code in U with an associated composition operator:

Γ 
 a : U 
 c : Φ(Γ ;El(a))

Γ 
 �a, c� : U f

Γ 
 a : U f

Γ 
 El(a)

Γ 
 a : U f


 Comp(a) : Φ(Γ ;El(a))
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satisfying

El(�a, c�) = El(a)

Comp(Γ )�a, c� = c

�El(p),Comp(Γ )p� = p. �

Assumption 4 (∀) We assume that the map ϕ �→ λ_.ϕ : F→ (I→ F) between posets has
an internal right adjoint ∀. Concretely this means that for any ϕ : F and any f : I → F we
assume

(∀(i : I), ϕ ⇒ f (i)) ⇔ (ϕ ⇒ ∀( f )) . �

Moreover we assume that this right adjoint preserves joins in the following sense. Let ϕ

and ψ be elements of I→ F. We assume

∀i : I, ϕ(i) ∨ ψ(i) = � 
 ∀(ϕ) ∨ ∀(ψ) = �.

4.2 A Model of CTT in Fibrant Types in L

In this section we show how to use the assumptions from the preceding section to interpret
CTT. In the following sections we show how to extend the interpretation to GCTT. We fix
a presheaf category which models L and define a category with families [15] by specifying
the type and term functors Ty and Tm. The base category of the category with families, the
category of contexts, is the chosen presheaf category. We use the language L as the internal
language of the presheaf category to describe the objects and morphisms. Thus to construct
the model ofCTTwe reuse the types and terms of the languageL, but we only take the fibrant
types, i.e., the ones with associated composition operators. The type and term functors are
as defined as

Ty(Γ ) �
{

([A], [cA])
∣

∣

∣

∣

Γ 
 A

 cA : Φ(Γ ; A)

}

Tm(Γ, ([A], [cA])) � {[t] | Γ 
 t : A} .
where we use [A] and [t] respectively for the equivalence classes of A and t modulo judge-
mental equality of L. Note that if A and B are equivalent types then Φ(Γ ; A) and Φ(Γ ; B)

are also equivalent, hence the type functor is well-defined. In constructions and proofs we
will omit the mention of equivalence classes and work with representatives. This is justified
since all operations in L respect judgemental equality.

Note that the context Γ need not correspond to a type, i.e. it need not be fibrant. Context
extension andprojections canbe takendirectly from the internal language:Γ.A � ΣΓ A,p �
π1, and q � π2.

The main challenge addressed in this section is showing that the category with families
supports dependent sums, dependent products and universes. This involves showing that these
types of the internal language can be equippedwith compositions. Additionally compositions
need to satisfy certain judgemental equalities [12, Section 4.5]. Checking these equalities
is routine from construction of compositions at different types. Thus we only construct
compositions and leave showing judgemental equalities to the reader.
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4.2.1 Interpreting Composition

The following composition term is interpreted in terms of the composition in L.

Γ 
 ϕ : F Γ, i : I 
 A Γ, ϕ, i : I 
 u : A Γ 
 a0 : A {0/ i} [ϕ �→ u {0/ i}]
Γ 
 compi A [ϕ �→ u] a0 : A {1/ i} [ϕ �→ u {1/ i}] .

By assumption we have cA of type Φ(Γ, i : I; A) and u and a0 are interpreted as terms in
the internal language of the corresponding types. The interpretation of composition is then
the term

γ : Γ 
 cA (λ(i : I).(γ, i)) ϕ (λ(i : I)(p : [ϕ]).u) a0 : A(γ (1))[ϕ �→ u(1)]
where we have omitted writing the proof u(0) = a0 on [ϕ]. This proof is constructed from
the third premise of the rule.

4.2.2 Interpreting Dependent Function Types

Assume that �Γ 
 A′� = (A, cA) and �Γ, x : A′ 
 B ′� = (B, cB). We define

�Γ 
 (x : A′) → B ′� � (Π(x : A).B, cΠ(x :A).B)

where cΠ(x :A).B : Φ(Γ ;Π(x : A).B) comes from the following lemma.

Lemma 4.3 (cf. [13, Proposition 0.3]) Π-types preserve compositions: if we have compo-
sition terms cA : Φ(Γ ; A) and cB : Φ(Γ.A; B), then we can form a new composition
cΠ(x :A).B : Φ(Γ,Π(x : A).B).

Proof Recall that Π-types commutes with substitution:

(Π(x : A).B)(γ ) = Π(x : A(γ )).B(γ ),

where B(γ ) is a type in the context with A. We introduce the variables:

γ : I→ Γ,

ϕ : F,

u : Π(i : I).[ϕ] → Π(a : A(γ (i))).B(γ (i)),

c0 : (Π(a : A(γ (0))).B(γ (0)))[ϕ �→ u(0)].
We need to find an element in

Π(a : A(γ (1))).B(γ (1)),

along with a proof that it is u(1) when ϕ = 1.
Let a1 : A(γ (1)) be given. We define a(i) : A(γ (i))[i �→ a1] by using path lifting on a1,

i.e.,

a(i) � � (λi.γ (1− i)) a1 (1− i);
where � is the filling operation defined earlier. Then

b1 � cB (λi.〈γ (i), a(i)〉) ϕ (λi.u(i)(a(i)))

will have the type B(γ (1))[ϕ �→ u(1)a1]. So λa1.π1b1 has the type we are looking for. Now
assume ϕ = �; then λa1.b1 = λa1.u(i)a1 = u(i), which is what we needed. 
�
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4.2.3 Interpreting Dependent Sum Types

Dependent sum types (x : A) × B are interpreted by Σ-types from L, along with the
composition operation that comes from the following lemma:

Lemma 4.4 Σ-types preserve compositions: if we have composition terms cA : Φ(Γ ; A)

and cB : Φ(Γ.A; B), then we can form a new composition cΣ(x :A).B : Φ(Γ,Σ(x : A).B).

The proof proceeds similarly to the previous proof that dependent products have compo-
sitions.

4.2.4 Interpreting Systems

We interpret the systems ofCTT by using the systems ofL, and by using the fact that systems
preserve compositions. Indeed, assume we have a system Γ 
 [ϕ1A1, . . . , ϕn An], together
with compositions cAk : Φ(Γ, [ϕk] ; Ak) such that

∀ (γ : (I→ (Γ,
[

ϕk ∧ ϕ j
]

)
))

,

∀ (ψ : F) ,

∀
(

u : Π(i : I). [ψ]→ Ak(γ
k(i))

)

,

∀
(

a0 : A(γ k(0))[ψ �→ u(0)]
)

,

cAkγ
k ψ u a0 = cA j γ

j ψ u a0 : Ak(γ
k(1))[ψ �→ u(1)].

where γ k and γ j are γ composed with inclusions from Γ,
[

ϕk ∧ ϕ j
]

to Γ, [ϕk] and Γ, [ϕk],
respectively. Note that this judgement is well-formed because we assume

Γ,
[

ϕk ∧ ϕ j
] 
 Ak = A j

and thus

Ak(γ
k(i)) = A j (γ

j (i))

for all i . Composition structures satisfying these equalities come from the assumptions of
the systems formation rule in guarded cubical type theory.

Under these assumptions we can define a new composition using a system consisting of
the compositions of all the components, and combining them using the ∀ operation on the
lattice of faces.

c � λγ,ψ, u, a0.[(∀ (ϕ1 ◦ γ )) (cA1 γ1 ψ u a0), . . . ,

(∀ (ϕn ◦ γ )) (cAn γn ψ u a0)] : Φ(Γ ; [ϕ1A1, . . . , ϕn An]).
Here γm : I→ Γ, [ϕm] is the context map γ extended with the witness of [ϕm], i.e., it is the
map λi.(γ (i), �) which is well-typed in context

[∀ (ϕk ◦ γ )
]

. Indeed, if ∀ (ϕk ◦ γ ) = � then
(ϕk ◦ γ )(i) = � for all i , giving the witness �.

This system is well-defined. The fact that ∀ (ϕ1 ◦ γ ) ∨ · · · ∨ ∀ (ϕn ◦ γ ) = � follows
directly from the fact that ∀(i : I)ϕ1(γ (i)) ∨ · · · ∨ ϕn(γ (i)) = � and the second property
of ∀. Next, the terms cAk γk ψ u a0 are well-typed in the relevant context. Indeed, in context
with

[∀ (ϕk ◦ γ )
]

we also have ϕk(γ (0)) = � and thus a0 has type Akγ (0). For the same
reason the whole term cAk γk ψ u a0 has the correct type Akγ (1).

Finally, the assumption on the composition structures ensures that the terms cAk γk ψ u a0
agree where they overlap (on extents

[

ϕk ∧ ϕ j
]

), which makes the system well-defined.
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4.2.5 Interpreting Path Types

We interpret the path types:

�Γ 
 Path A t s� � (PathA′ �t� �s�, c),

where �A� = (A′, cA) and c : Φ(Γ ;PathA′ �t� �s�) comes from Lemma 4.5.

Lemma 4.5 Path-types preserve composition: if Γ 
 A is fibrant, then for any Γ 
 t, s : A,
we have a composition operator c : Φ(Γ ;PathA t s).

Proof First note that if we have Γ 
 PathA t s : and 
 γ : Γ , then

(PathA t s)(γ ) = PathA(γ ) t (γ ) s(γ ) = Π(i : I).A(γ )

[

i = 0 �→ t (γ )

i = 1 �→ s(γ )

]

.

Now let

γ : I→ Γ

ϕ : F
u : Π( j : I).[ϕ] → PathA(γ j) t (γ j) s(γ j)

p0 : (PathA(γ 0) t (γ 0) s(γ 0))[ϕ �→ u0]
be given. Our goal is to find a term p1 such that

p1 : (PathA(γ 1) t (γ 1) s(γ 1))[ϕ �→ u1].
We will do this by finding a term q : Π(i : I).A(γ 1)[ϕ �→ u 1 i], for which we verify that
q 0 = t (γ 1) and q1 = s(γ 1), in other words,

q : Π(i : I).A(γ 1)[ϕ �→ u 1 i, (1− i) �→ t (γ 1), i �→ s(γ 1)]
as this will be equivalent to having such a p1.

Let i : I. By leaving some equality proofs implicit we can define the system

r( j) � [ϕu j i, (1− i)t (γ j), is(γ j)] : Π( j : I).[ϕ ∨ (1− i) ∨ i] → A(γ j),

which is well-defined because u j 0 = t (γ j) and u j 1 = s(γ j). We also have that p0 i :
A(γ 0)[ϕ �→ u 0 i], and since p0 0 = t (γ 0) and p01 = s(γ 0), we can say that

p0 i : A(γ 0)[ϕ �→ u 0 i, (1− i) �→ t (γ 0), i �→ s(γ 0)]
so we can use the fibrancy of A to define the term

q(i) � cAγ (ϕ ∨ (1− i) ∨ i) r (p0 i) : Π(i : I).A(γ 1)[ϕ �→ u 1 i, (1− i) �→ t (γ 1), i �→ s(γ 1)],

which is what we wanted. 
�

4.2.6 Interpreting Glue Types

We interpret Glue from CTT using Glue from L along with a composition operator, which
we have by the following lemma:
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Lemma 4.6 Glueing is fibrant, i.e., if we have

Γ 
 A

Γ 
 ϕ : F
Γ, [ϕ] 
 T

Γ 
 w : [ϕ] → T → A

Γ 
 p : isEquivw

then there is a term c : Φ(Γ ;Glue [ϕ �→ (T, w)] A).

The construction of c in the proof of the above lemma is analogous to the construction of
the composition operation for glueing in CTT [12], but formulated in L. A crucial part of
the construction is the face δ � ∀(ϕ ◦ γ ), where γ : I→ Γ , which satisfies that [δ] implies
[ϕ(γ i)] for all i : I.

4.2.7 Interpreting the Universe

The universe of CTT is interpreted using the universe of fibrant types U f . To define the
composition for the universe we follow the construction of Cohen et al. [12] in the language
L.

4.3 A Model of L in Cubical Sets

In this section we construct a model of L in the category of cubical sets. Recall that the
category of cubes C has as objects finite sets of names i, j, k, . . . and as morphism the
functions J → DM (I ) where DM (I ) is the free De Morgan algebra on I . Alternatively, C
can be described as the opposite of the Kleisli category of the free DeMorgan algebra monad
on Fin. The category of cubical sets is then the category ̂C of presheaves on C.

In the previous section we showed how to construct a model ofCTT usingL. Constructing
a model of L in cubical sets then shows we can give a model ofCTT in cubical sets. This was
shown already by Cohen et al. [12], however we will use results in this section to construct
additional models of CTT in the subsequent section. In particular, we shall use presheaves
over C × ω to model the full GCTT type theory.

The references in Sect. 4.1 show how to model dependent predicate logic in any presheaf
topos [30], so we omit the verification of this part. We do however note how the judgements
are interpreted since this will be used later in concrete calculations where working in the
internal language no longer suffices, e.g., in the definition of the fibrant universe.

– A context Γ 
 is interpreted as a presheaf.
– The judgement Γ 
 A gives a pair of a presheaf Γ on C and a presheaf A on the category

of elements of Γ .
– The judgement Γ 
 t : A in addition gives a global element of the presheaf A. Thus for

each I ∈ C and γ ∈ Γ (I ) we have tI,γ ∈ A(I, γ ) satisfying naturality conditions.

Moreover, there is a canonical bijective correspondence between presheaves Γ on C and
interpretations of types · 
 Γ . This justifies treating contexts as types in L when it is
convenient to do so.
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4.3.1 The Interval Type Assumption is Satisfied

Take I to be the functor y1 mapping I �→ HomC (I, 1) = DM (I ), where 1 is the (globally)
chosen singleton set. Since the theory of De Morgan algebras is geometric and for each I we
have a De Morgan algebra, together with the fact that the morphisms are De Morgan algebra
morphisms, we have that I is an internal De Morgan algebra, as needed.

Moreover the finitary disjunction property axiom is also geometric, and since it is satisfied
by each free De Morgan algebra DM (I ), it also holds internally.

4.3.2 The Glueing Assumption is Satisfied

Wewill define glueing internally, apart from a “strictness” fix, for which we use the following
lemma, which we will also require in Sect. 4.5:

Lemma 4.7 (Strictification) Let C be a small category and� a global element5 of an object
K in ̂C. Denote by [ϕ] the identity type ϕ = �.

Let Γ 
 ϕ : K. Suppose Γ 
 T, Γ, [ϕ] 
 A and Γ, [ϕ] 
 T ∼= A as witnessed by the
terms α, β satisfying

Γ, [ϕ], x : A 
 α : T
Γ, [ϕ], x : T 
 β : A

plus the equations stating that they are inverses.
Then there exists a type Γ 
 T (A, T, ϕ) such that

1. Γ, [ϕ] 
 T (A, T, ϕ) = A
2. Γ 
 T ∼= T (A, T, ϕ) by an isomorphism α′, β ′ extending α and β. This means that the

following two judgements hold.

Γ, [ϕ], x : A 
 α = α′ : T
Γ, [ϕ], x : T 
 β = β ′ : A.

The judgements are well-formed because in context Γ, [ϕ] the types T (A, T, ϕ) and A
are equal by the first item of this lemma.

3. Let ρ : Δ → Γ be a context morphism. Consider its extension Δ, [ϕρ] → Γ, [ϕ]. Then
T (A, T, ϕ)ρ = T (Aρ, Tρ, ϕρ).

Proof We write T ′ for T (A, T, ϕ) and define it as follows.

T ′(c, γ ) =
{

A(c, (γ, �)) if ϕc,γ = �c

T (c, γ ) otherwise

Here � is the unique proof of [ϕ]. The restrictions are important. Given f : (c, Γ ( f )(γ )) →
(d, γ ) define T ′( f ) by cases

T ′( f )(x) =

⎧

⎪

⎨

⎪

⎩

A( f )(x) if ϕd(γ ) = �d(�)

βc,Γ ( f )(γ ),�,T ( f )(x) if ϕc,Γ ( f )(γ ) = �c

T ( f )(x) otherwise

5 For a constructive meta-theory we add that, for each c, equality with �c is decidable.
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We need to check that this definition is functorial. The fact that T ′(id) = id is trivial. Given
f : (d, Γ ( f )(γ )) → (c, γ ) and g : (e, Γ ( f ◦ g)(γ )) → (d, Γ ( f )(γ )) we have

T ′( f ◦ g)(x) =

⎧

⎪

⎨

⎪

⎩

A( f ◦ g)(x) if ϕc,γ = �c

βe,Γ ( f ◦g)(γ ),�,T ( f ◦g)(x) if ϕe,Γ ( f ◦g)(γ ) = �e

T ( f ◦ g)(x) otherwise

In the first and third cases this is easily seen to be the same as T ′(g)(T ′( f )(x)), since if
ϕe,Γ ( f ◦g)(γ ) �= �e then also ϕd,Γ ( f )(γ ) �= �d by naturality of ϕ and the fact that � is a
global element and the terminal object is a constant presheaf.

So assume the remaining option is the case, that is, ϕe,Γ ( f ◦g)(γ ) = �e but ϕc,γ �= �c.
We split into two further cases.

– Case ϕd,Γ ( f )(γ ) = �d . Then T ′( f )(x) = βd,Γ ( f )(γ ),�,T ( f )(x) and so

T ′(g)(T ′( f )(x)) = T ′(g)
(

βd,(Γ ( f )(γ ),�,T ( f )(x))
)

By naturality of β the right-hand side is the same as

βe,Γ ( f ◦g)(γ ),�,T ( f ◦g)(x)

which is what is needed.
– Case ϕd,Γ ( f )(γ ) �= �d . In this case we have

T ′( f )(x) = T ( f )(x)

and

T ′(g)(T ′( f )(x)) = βe,Γ ( f ◦g)(γ ),�,T (g)(T ( f )(x))

which is again, as needed by functoriality of T .

Now, directly from the definition we have the equality Γ, [ϕ] 
 T ′ = A.
It is similarly easy to check the last required property, the naturality of the construction.

T (A, T, ϕ)ρ = T (Aρ, Tρ, ϕρ).

Finally, we extend the isomorphisms α and β to α′ and β ′.
Define β ′ satisfying Γ, x : T 
 β ′ : T ′ as

β ′c,γ,x =
{

βc,γ,�,x if ϕc(γ ) = �c(�)

x otherwise

And α′ analogously. One needs to check that this is a natural transformation, i.e., a global
element. Finally, β ′ is the inverse to α′ by construction. 
�

Definition of glueing Given the following types and terms

Γ 
 ϕ : F
Γ, [ϕ] 
 T

Γ 
 A

Γ, [ϕ] 
 w : T → A

we define a new type Γ 
 Glue [ϕ �→ (T, w)] A in two steps.
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First we define the type6 Glue′Γ (ϕ, T, A, w) in context Γ as

Glue′Γ (ϕ, T, A, w) =
∑

a:A

∑

t :[ϕ]→T

∏

p:[ϕ]
w(tp) = a.

For this type we have the following property (we write G ′ for Glue′(· · · ))
Γ, [ϕ] 
 T ∼= G ′

with the isomorphism consisting of the second projection from right to left and from left to
right we use w to construct the pair.

Finally, we define Glue [ϕ �→ (T, w)] A using Lemma 4.7 applied to the type Glue′. Let

β : Glue [ϕ �→ (T, w)] A → Glue′(ϕ, T, A, w)

be the extension of pairing and

α : Glue′(ϕ, T, A, w) → Glue [ϕ �→ (T, w)] A

the extension of the projection as per Lemma 4.7.
Define unglue : Glue [ϕ �→ (T, w)] A → A be the composition of β and the first pro-

jection G ′ → A. Now if ϕ = � then β is just pairing and in this case we also have
Glue [ϕ �→ (T, w)] A = T . So by definition of G ′ we have unglue(t) = wt , validating one
of the equalities.

Given Γ, [ϕ] 
 t : T and Γ 
 a : A satisfying a = wt on [ϕ] define Γ 

glue [ϕ �→ t] a : Glue [ϕ �→ (T, w)] A to be pairing followed by α. If ϕ = � we have,
because α is just the projection in this case, that glue [1 �→ t] a = t .

To appreciate the technicalities in this section, we remark that Glue′ is a pullback. The
difference between Glue′ and Glue is that the latter is strict when pulling back along the
identity morphism. Such coherence issues have discussed at length for the simplicial model;
see e.g. Kapulkin and Lumsdaine [20].

4.3.3 The Fibrant Universe Assumption is Satisfied

This will be proved in greater generality in Sect. 4.4.3.

4.3.4 The ∀ Assumption is Satisfied

Theorem 4.8 ̂C models an operation ∀ : FI → Fwhich is right-adjoint to the constant map
of posets F→ FI.

Proof We will first give a concrete description of I and F. We know that I(I ) = DM (I ).
We use Birkhoff duality [8] between finite distributive lattices and finite posets. This duality
is given by a functor J = HomfDL (−,2) from finite distributive lattices to the opposite of
the category of finite posets. This functor sends a distributive lattice to its join-irreducible
elements. It’s inverse is the functorHomposet (−,2)which sends a poset to its the distributive
lattice of lower sets. This restricts to a duality between free distributive lattices and powers
of 2. A free De Morgan algebra on I is a free distributive lattice on 2I (= I + I ). We
obtain a duality with the category of even powers of 2 and maps preserving the De Morgan
involution [14]. Moreover, this duality is poset enriched: If ψ ≤ ϕ : DM (I ) → DM (J ),

6 This type is already present in Kapulkin and Lumsdaine [20, Theorem 3.4.1].
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then the corresponding maps on even powers of 2, which are defined by pre-composition,
are in the same order relation.

The dual of the inclusion map is the projection p : 22(I+1) → 22I . This has a right
adjoint: concatenation with 11: pα ≤ β iff α ≤ β · 11. Concatenation with 11 is natural:

22I 22J

22(I+1) 22(J+1)
11

f

11

( f,id)

By duality we obtain a natural right adjoint to the poset-inclusion of DM-algebras. Finally,
we recall that in ̂C we have II(I ) = I(I + 1) and hence we have an internal map ∀ : II → I

which is right-adjoint to the constant map I→ II.
The lattice F is the quotient of I by the relation generated by x ∧ (1 − x) = 0 for all x ;

see [12, p. 7, p. 17]. Duality turns the quotients into inclusions. So, we have the inclusion
{01, 10, 11}I ⊂ 22I as the set of join irreducible elements. Here 00 presents x ∧ −x which
is now identified with⊥ and hence no longer join-irreducible. This presentation allows us to
define∀ : FI → F. SinceFI(I ) = F(I+1), the right adjoint is again given by concatenation
by 11. We just replace 22 by {01, 10, 11} in the diagram above. 
�

4.3.5 Interpreting Base Types

In Sect. 4.1 we did not provide any means of interpreting base types such asN. In this section
we show that the concrete models we are interested in do support that, but we show this
(mostly) externally.

A cubical set A is discrete if A ∼= Δ(a) for some a ∈ Set, where Δ : Set → ̂C is the
constant presheaf functor. Equivalently we can characterise discrete types internally, as in
Proposition 4.12 below. This characterisation is useful to define composition for discrete
types internally.

Lemma 4.9 For any cubical set A and any I ∈ C and i /∈ I the function β i
I : AI(I ) →

A(I, i) defined as

β i
I ( f ) = fι(i),

where ι : I → I, i is the inclusion, is an isomorphism. Moreover the family β is natural in
I and i in the following sense. For any J ∈ C and j /∈ J and any g : I → J we have

A(g + (i �→ j)) ◦ β i
I = β

j
J ◦ AI(g).

Corollary 4.10 If the constant map a �→ λ_.a of type A → AI is an isomorphism, then A
is isomorphic to an object of the form Δ(a) for some a ∈ Set.

Proof Using Lemma 4.9 we have that for each I and i /∈ I, A(ι) : A(I ) → A(I, i) is an
isomorphism, where, again, ι is the inclusion. From this we have that for all I , the inclusion
A(ιI ) : A(∅) → A(I ) is an isomorphism.

Define a = A(∅) and α : Δ(a) → A as

αI = A(ιI ).

We then have for any f : I → J the following

A( f ) ◦ αI = A( f ◦ ιI ) = A(ιJ ).
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The latter because f ◦ ιI and ιJ are both maps from the empty set, hence they are equal.
By the previous lemma each αI is an isomorphism and by the preceding calculation α is

a natural transformation. Hence α is a natural isomorphism. 
�
Lemma 4.11 If A is isomorphic to Δ(a) for some a ∈ Set then the obvious morphism
A → AI is an isomorphism.

Proof The inverse to the isomorphism β in Lemma 4.9 is the morphism αi
I

αi
I (a) f ( j) = A([ f, (i �→ j)])(a).

By assumption A(ι) for any inclusion ι : I → I, i is an isomorphism. It is easy to compute
that the canonical morphism A → AI arises as the composition of A(ι) and αi

I . 
�
Proposition 4.12 Let A be a cubical set. The formula

i : I, j : I, f : (I→ A) | · 
 f (i) = f ( j)

holds in the internal language if and only if A is isomorphic to Δ(a) for some a ∈ Set.

Proof Suppose the formula holds. Then it is easy to see that the constant map from A to
AI is an isomorphism (the inverse is given, for instance, by evaluation at 0). Corollary 4.10
implies the result.

Conversely assume A ∼= Δ(a) for some a ∈ Set. Then by Lemma 4.11 the canonical map
const : A → AI is an isomorphism. Hence it is internally surjective. Thus for any f : I→ A
there is an a in A, such that const a = f . From this we immediately have f (i) = f ( j) for
any i and j in I. 
�
Lemma 4.13 Every discrete type 
 A is fibrant, i.e., it has a composition operator cA :
Φ(·; A).

Proof Since A is discrete, we have that u(0) = u(1) for any u : Π(i : I).[ϕ] → A. Therefore
A[ϕ �→ u(0)] = A[ϕ �→ u(1)], so we can choose the constant function λγ, ϕ, u, a.a to be
cA, since this will be of type Φ(·, A). 
�

If we have a composition operator cA : Φ(·; A) then we can always construct a weakened
version c′A : Φ(Γ ; A) for any Γ , since A does not depend on Γ .

Therefore we can interpret the natural number type:

�Γ 
 N� � (N, cN),

where cN is the composition that we get from Lemma 4.13.

4.4 More General Models of L

The type theory GCTT is an extension of CTT, and we intend to model it in the category of
presheaves over C × ω. We first need to establish that we can model CTT in this category.
This section shows how to do this by demonstrating that we can lift all constructions ofCTT
from the category of cubical sets to C × D, for any small category D with an initial object.

We first prove some general lemmas.

Lemma 4.14 LetC, D be small categories and let π : C×D → C be the projection functor.
Then the geometric morphism π∗ � π∗ is open. If D is inhabited then it is also surjective.
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Proof By Theorem C.3.1.7 of Johnstone [19] it suffices to show that π∗ is sub-logical. To
show this we use Lemma C.3.1.2 of op. cit (we use notation introduced in that lemma).

Let b : π(I, n) → J be a morphism in C. Let U ′ = (J, n), a = (b, idn) : (I, n) →
(J, n), r = idJ : πU ′ → J and i = idJ : J → πU ′. Then we have r ◦ i = idJ and
i ◦ b = πa as required by Lemma C.3.1.2.

If D is inhabited the projection π is surjective on objects, so the corresponding geometric
morphism is surjective; see Johnstone [19, A4.2.7b] 
�

The above lemma may be read as stating that Ĉ× D is a conservative extension of Ĉ,
provided that D is inhabited.

Lemma 4.15 If D has an initial object 0, then π∗ is full, faithful, and cartesian closed.

Proof The functor π has a left adjoint, which is the functor

ι : C → C× D

ι(I ) = (I, 0)

Triviallywe haveπ◦ι = idC. Thuswe have that ι∗ is left adjoint toπ∗ and becauseπ◦ι = idC

we also have ι∗ ◦π∗ = id and moreover the counit of the adjunction is the identity. Hence the
functor π∗ is full and faithful [21, Theorem IV.3.1] and by Johnstone [19, Corollary A.1.5.9],
since ι∗ preserves all limits, we have that π∗ cartesian closed. 
�

Let ΩD be the subobject classifier of Ĉ× D and Ω be the subobject classifier of ̂C.

Lemma 4.16 There is a monomorphism υ : π∗ (Ω) → ΩD which fits into the pullback

π∗(1) 1

π∗ (Ω) ΩD

�
∼=

π∗(�) �
υ

Proof As an inverse image, π∗ preserves monos. So, π∗(�) is a mono. Its characteristic map
is:

υI,c(S) = {( f, g) | f ∈ S} .
This is clearly a mono. 
�
Corollary 4.17 If X = π∗(Y ) then the equality predicate χδ : X × X → ΩD factors
uniquely through υ and the inclusion of the equality predicate of Y .

Proof The equality predicate is by definition the characteristic map of the diagonal δ : X →
X× X . Let δ′ : Y → Y ×Y be the diagonal. Because π∗ preserves finite limits the following
square is a pullback.
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And by uniqueness of characteristic maps we have υ ◦ π∗ (χδ′) = χδ . Uniqueness of the
factorisation follows from the fact that υ is a mono. 
�
Let D be a small category with an initial object. We show that Ĉ × D models L.

4.4.1 The Interval Type Assumption is Satisfied

Let ID = π∗(I). Sinceπ∗ preserves productswe can lift all theDeMorgan algebra operations
of I to operations on ID. The theory of a De Morgan algebra with the finitary disjunction
property is geometric [22, Section X.3]. Thus the geometric morphism π∗ � π∗ preserves
validity of all the axioms, which means that ID is an internal De Morgan algebra with the
finitary disjunction property.

Faces

Lemma 4.18 Let FD ∈ Ĉ × D and F ∈ ̂C be defined as in Sect. 4.1.1 from ID and I. Then
FD ∼= π∗(F).

Proof Let e : ID → ΩD be the compositionχδ◦〈id, 1〉where δ is the diagonal ID → ID×ID.
By definitionFD is the image of e. By Corollary 4.17 and the way we have defined ID, and all
the operations on it, we have that e = υ ◦π∗(e′) where e′ : I→ Ω is defined analogously to
e above. By definition F is the image of e′. Because inverse images of geometric morphisms
preserve image factorisations [34, Remark 1.34], π∗(F) is the image of π∗(e′). So,

π∗I � π∗F � π∗Ω
υ
� ΩD

is the unique factorization of the map [· = 1] : ID → ΩD. 
�

4.4.2 The Glueing Assumption is Satisfied

This proceeds exactly as in Sect. 4.3.2.

4.4.3 The Fibrant Universe Assumption is Satisfied

To define the fibrant universe it appears necessary to describe compositions externally. The
following two lemmas aid in this description because they allowus to simplify the exponential
Γ I, i.e., the denotation of paths.

Lemma 4.19 Let C and D be small categories and assume C has products. Let k1 : C → ̂C

and k2 : D×C → D̂× C be the Yoneda embeddings. Let π∗ : ̂C → D̂× C be the constant
presheaf functor.

For any d, e ∈ C and any c ∈ D there is an isomorphism

k2(c, d)× π∗(k1e) ∼= k2(c, d × e)

in D̂× C which is natural in c, d and e.

Proof For any (c′, d ′) ∈ D× C

(k2(c, d)× π∗(k1e))(c′, d ′) = HomD×C

(

(c′, d ′), (c, d)
)×HomC

(

d ′, e
)

∼= HomC

(

d ′, d
)×HomD

(

c′, c
)×HomC

(

d ′, e
)
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and because the hom functor preserves products we have

∼= HomC

(

d ′, d × e
)×HomD

(

c′, c
)

∼= HomD×C

(

(c′, d ′), (c, d × e)
)

= k2(c, d × e)(c′, d ′)

as required. 
�

Lemma 4.20 Let D be a small category. Let ID ∈ D̂× C be the inclusion π∗(I) of I ∈ ̂C.
Let X ∈ Ĉ × D. Then for any c ∈ D, any I ∈ C and any i /∈ I we have

XID(I, c) ∼= X (I ∪ {i}, c)
naturally in c, I and i .

Proof Using the Yoneda lemma and the defining property of exponents we have

XID(I, c) ∼= HomĈ×D

(

y(I, c), XID
)

∼= HomĈ×D

(

y(I, c)× π∗(I), X
)

which by Lemma 4.19, together with the fact that I is isomorphic to y{i}, is isomorphic to

∼= HomĈ×D
(y(I ∪ {i}, c), X)

∼= X (I ∪ {i}, c).
recalling that disjoint union is the coproduct in the Kleisli category of the free De Morgan
algebra monad, and so disjoint union defines the product in C.

Concretely, the isomorphismαc
I,i maps ξ ∈ XID(I, c) to ξ(ιI,i ,idc,)(i), where ιI,i : I → I, i

(in Cop) is the inclusion. Its inverse βc
I,i maps x ∈ X (I ∪ {i}, c) to the family of functions

ξ( f,g) : I(J ) → X (J, d) indexed by morphisms ( f, g) : (J, d) → (I, c) (in (C × D)). This
family is defined as

ξ( f,g)(ϕ) = X ([g, i �→ ϕ], g)(x)
where [g, i �→ ϕ] is the map I, i → J (in Cop) which maps i to ϕ and otherwise acts as g.
This map is well-defined because disjoint union is the coproduct in Cop. 
�

Definition of the universe We can now define the universe UD

f . For this we assume a
Grothendieck universe U in our ambient set theory. First, recall that the Hofmann–Streicher
universe UD in Ĉ × D maps (I, c) to the set of functors valued in U on the category of ele-
ments of y(I, c). It acts on morphisms (I, c) → (J, d) by composition (in the same way as
substitution in types is modelled).

The elements operation

Γ 
 a : UD

Γ 
 El(a)

is interpreted as

El(a)((I, c), γ ) = a(I,c),γ (�)
(

idI,c
)

,

recalling that terms are interpreted as global elements, and � is the unique inhabitant of the
chosen singleton set.
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We define UD

f analogously to the way it is defined in Sect. 4.3, that is

UD

f (I, c) = Ty(y(I, c)).

We first look at the following rule.

Γ 
 a : UD 
 c : Φ(Γ ;El(a))

Γ 
 �a, c� : UD

f

Let us write b = �a, c�. We need to give for each I ∈ C, c ∈ D and γ ∈ Γ (I, c) a pair
(b0, b1) where

y(I, c) 
 b0 : UD

· 
 b1 : Φ(y(I, c);El(b0))
Now b0 is easy. It is simply a(I,c),γ . Composition is also conceptually simple, but somewhat
difficult to write down precisely. Elements γ ∈ Γ (I, c) are in bijective correspondence (by
Yoneda and exponential transpose) to terms γ

· 
 γ : y(I, c) → Γ.

Thus we define

b1 = λρ.c (γ ◦ ρ) .

One checks that this is well-defined and natural by a tedious computation, which we omit
here.

We now look at the converse rule in L

Γ 
 a : U f

Γ 
 El(a)

Γ 
 a : U f


 Comp(a) : Φ(Γ ;El(a))
.

To interpret this rule with UD

f , we interpret for any a and c,El(�a, c�) by El(a), where the
latter is El map of the Hofmann–Streicher universe.

We need to define Comp(a) which we abbreviate to c. We need to give for each I ∈ C and
c ∈ D an element cI,c ∈ Φ(Γ ;El(a))(I, c), and this family needs to be natural in I and c.

Given γ ∈ (Γ ID)(I, c) and a fresh i /∈ I we get by Lemma 4.20 an element γ ′ ∈ Γ ((I, i), c).
Let γ ′ : y((I, i), c) → Γ be the morphism corresponding to γ ′ by the Yoneda lemma. Thus
we get from a the term c′I,i,c,γ

· 
 c′I,i,c,γ : Φ(y((I, i), c);El(a)γ ′)

and hence by weakening a term

y(I, c) 
 c′I,i,c,γ : Φ(y((I, i), c);El(a)γ ′)

By Lemma 4.19 and the way ID is defined we have a canonical isomorphism y((I, i), c) ∼=
y(I, c)× ID. We now apply c′I,i,c,γ to the path δ = λ(i : ID).(ρ, i) to get the element

ρ : y(I, c) 
 c′I,i,c,γ δ : Π(ϕ : F)(u : Π(i : I). [ϕ]→ B(δ(i))).B(δ(0))[ϕ �→ u(0)]
→ B(δ(1))[ϕ �→ u(1)]

Where B = El(a)γ ′.
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From this element we can define cI,c by using the Yoneda lemma again to get the element
c′I,i,c,γ of type

Π(ϕ : F)(u : Π(i : I). [ϕ]→ B(δ(i))).B(δ(0))[ϕ �→ u(0)] → B(δ(1))[ϕ �→ u(1)],
which is a type in context y(I, c), at (I, c), idI,c. To recap, the composition c will map

γ ∈ (Γ ID)(I, c) to the element c′I,i,c,γ .

Lemma 4.21 For any a and c of correct types we have

Comp(�a, c�) = c

El(�a, c�) = El(a)

�El(a),Comp(a)� = a

4.4.4 The ∀ Assumption is Satisfied

Using Lemmas 4.15 and 4.18 we can define ∀ in Ĉ × D as the inclusion of the ∀ from ̂C.
Lemma 4.14 can then be used to show that the new ∀ is the right adjoint to themap ϕ �→ λ_.ϕ,
and that it preserves joins in the relevant way 4.

4.5 A Model of GCTT

Our construction of a model for GCTT again proceeds via a dependent predicate logic,
extending the language L used above with counterparts of the later, delayed substitutions,
and fixed-point constructs introduced in Sects. 3.1 and 3.2. We call this new language L′.
One difference between GCTT and L′ is that in the latter our fixed-point combinator fix x .t
has a judgemental equality

Γ 
 fix x .t = t {next fix x .t/x} .
The GCTT term dfixr x .t is interpreted as next(fix x .t), forgetting r . This is consistent with
the motivation for annotating dfixr x .t with an interval element r : it is needed to ensure
termination of fixed-point unfolding, but it is semantically irrelevant.

SinceL′ is an extension ofLwe can use it to construct a model ofCTT. The interpretation
of delayed fixed point combinator and delayed substitutions of GCTT is straightforward in
terms of corresponding constructs of L′. The most difficult part is showing that the � type-
former, with delayed substitutions, has compositions, which we do in Sect. 4.5.3. The rest of
the section is devoted to providing a model of L′ in the presheaf category Ĉ × ω. Because of
the results of the previous subsection this is immediately amodel ofL; we need only show that
the category Ĉ × ω also models the constructs of guarded recursive types. The constructions
are straightforward modifications of constructions used to model guarded recursive types in
the topos of trees [6,10], which is the category ω̂.

4.5.1 The Functor �
In this sectionwe sketch how tomodel the later type, delayed substitutions, and the fixed-point
operator of L′. Since the constructions are straightforward modifications of constructions
explained in previous work we omit most proofs. They are, mutatis mutandis, as in previous
work.
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The � functor on the topos of trees ω̂was defined byBirkedal et al. [6]. It is straightforward
to extend this to the category Ĉ × ω, simply ignoring the cube component: given X ∈ Ĉ × ω

define

�X (I, n) =
{

{�} if n = 0

X (I,m) if n = m + 1

with restrictions inherited from X ; i.e. if ( f, n ≤ m) : (I, n) → (J,m) then

�X ( f, n ≤ m) : X (J,m) → X (I, n)

�X ( f, n ≤ m) =
{

! if n = 1

X ( f, k ≤ m − 1) if n = k + 1

where n ≤ m is the unique morphism n → m (and similarly k ≤ m − 1), and ! is the unique
morphism into {�}, the chosen singleton set.

Less concretely, the � functor on ω̂ arises via a geometric morphism induced by the
successor functor on ω [6, Section 2.2]; the functor above arises similarly from the successor
functor on C × ω which is the identity on the cube component.

There is a natural transformation

next : idĈ×ω
→ �

(nextX )I,0 = !
(nextX )I,n+1 = X (idI , (n ≤ n + 1))

and a natural family of morphisms � : �(Y X ) × �X → �Y making the triple (�, next,�)

an applicative functor [25].

Lemma 4.22 For any X and any morphism α : �X → X there exists a unique global
element β : 1→ X such that

α ◦ next ◦β = β.

Hence the triple (Ĉ × ω, �, next) is a model of guarded recursive terms [6, Definition 6.1].
Proof Any global element β satisfying the fixed-point equation must satisfy the following
two equations

βI,0(�) = αI,0(�)

βI,n+1(�) = αI,n+1
(

βI,n(�)
)

.

Hence define β recursively on n. It is then easy to see that β is a global element and that it
satisfies the fixed-point equation and that it is unique such. 
�

By Lemma 4.22 and Birkedal et al. [6, Theorem 6.3], � extends to all slices of Ĉ × ω, and
contractive morphisms on slices have unique fixed-points.

The above translations from ω̂ to Ĉ × ω are straightforward, but are not sufficient. First,
we need to consider coherence issues, which are ignored by Birkedal et al. [6]. Second, we
need to consider delayed substitutions, which we do below, following the development for
GDTT [10]. Third, we need to show that the later types are fibrant, i.e. support the notion of
composition, which we do in Sect. 4.5.3.
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Delayed substitutions Semantically a delayed substitution of L′


 ξ : Γ � Γ ′

will be interpreted [10] as a morphism �ξ� : �Γ � → � �Γ, Γ ′
�making the following diagram

commute
� �Γ, Γ ′

�

�Γ � � �Γ � .

�π

next

�ξ�

Here π : �Γ, Γ ′
� → �Γ � is the composition of projections of the form �Γ, Γ ′′, x : A� →

�Γ, Γ ′′
�.

In particular, if Γ ′ is the empty context then π = id�Γ � and so �·� = next, where · is the
empty delayed substitution.

Thus given a delayed substitution 
 ξ : Γ � Γ ′ and a type

Γ, Γ ′ 
 A

define

Γ 
 �ξ.A

to be

(�ξ.A) (I, n, γ ) =
{

1 if n = 0

A
(

I,m, �ξ�I,n (γ )
)

if n = m + 1

Note that this is exactly like substitution Aξ , except in the case where n = 0.
In turn, we interpret the rules

Γ 


 · : Γ � ·

 ξ : Γ � Γ ′ Γ 
 t : �ξ.A


 ξ [x ← t] : Γ � Γ ′, x : A
as follows. First, the empty delayed substitution is interpreted as next, aswe already remarked
above. Given 
 ξ : Γ � Γ ′ and Γ 
 t : �ξ.A define

�
 ξ [x ← t] : Γ � Γ ′, x : A�

I,n (γ ) =
{

� if n = 0
(

ξI,n(γ ), tI,n,γ (�)
)

otherwise

Next The term-level counterpart is interpreted similarly. To interpret the rule

Γ, Γ ′ 
 t : A 
 ξ : Γ � Γ ′

Γ 
 next ξ. t : �ξ.A

weproceed as follows.Given a term t and a delayed substitution ξ wedefine the interpretation
of

�next ξ. t�I,n,γ (�) =
{

� if n = 0

tI,m,�ξ�I,n(γ )(�) if n = m + 1

The type and term equalities for delayed substitutions then follow as in previous work.
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4.5.2 Dependent Products, Later, and “Constant” Types

To define composition for the � type we will need type isomorphisms commuting � and
dependent products in certain cases. We start with a definition.

Definition 4.23 A type Γ 
 A is constant with respect to ω if for all I ∈ C, n ∈ ω, γ ∈
Γ (I, n) and for all m ≤ n the restriction

A(I, n, γ ) → A (I,m, Γ (idI ,m ≤ n)(γ ))

is the identity function7 (in particular, the two sets are equal).

Note that this is a direct generalisation of “being constant” (being in the image of π∗) for
presheaves (i.e., closed types). Below we will use the shorter notation γ�m for Γ (idI ,m ≤
n)(γ ). We have the following easy, but important, lemma.

Lemma 4.24 Being constant with respect to ω is closed under substitution. If Γ 
 A is
constant and ρ : Γ ′ → Γ is a context morphism then Γ ′ 
 Aρ is constant.

Lemma 4.25 Let X be a presheaf in the essential image of π∗. The identity type x : X, y :
X 
 IdX (x, y) is constant with respect to ω.

Proof Recall that we have for γ, γ ′ ∈ X (I, n).

(IdX (x, y))(I, n, γ, γ ′) =
{

{�} if γ = γ ′

∅ otherwise

Thus for any m ≤ n

(IdX (x, y))(I,m, γ�m , γ ′�m ) =
{

{�} if γ�m = γ ′�m
∅ otherwise

But since ·�m is an isomorphism we have γ�m = γ ′�m if and only if γ = γ ′, which concludes
the proof. Since all the sets are chosen singletons or the empty set the relevant restrictions
are then trivially identity functions. 
�

Using the assumptions stated above we have the following proposition.

Proposition 4.26 Assume

Γ 
 A

Γ, Γ ′, x : A 
 B


 ξ : Γ � Γ ′

and further that A is constant with respect to ω.
The canonical morphism from left to right in

Γ 
 �ξ.Π(x : A).B ∼= Π(x : A).�ξ.B (5)

is an isomorphism. The canonical morphism is derived from the term
λ f.λx .next

[

ξ, f ′ ← f
]

. ( f ′ x).

7 A perhaps more natural definition would require this function to be a bijection. However since this is a
technical definition used only in this section we state it only in the generality we need.
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Proof We need to establish an isomorphism of two presheaves on the category of elements
of Γ . Since we already have one of the directions we will first define the other direction
explicitly. We define

F : Π(x : A).�ξ.B → �ξ.Π(x : A).B.

Let I ∈ C, n ∈ ω and γ ∈ Γ (I, n). Take α ∈ (Π(x : A).�ξ.B) (I, n, γ ). If n = 0 then we
have only one choice.

FI,0,γ (α) = �

So assume that n = m + 1. Then we need to provide an element of

FI,n,γ (α) ∈ (Π(x : A).B)
(

I,m, ξI,n(γ )
)

.

Which means that for each f : J → I and each k ≤ m we need to give a dependent function

β f,k : (a ∈ A
(

J, k, (Γ, Γ ′)( f, k ≤ m)
(

ξI,n(γ )
))

)

→ B
(

J, k, (Γ, Γ ′)( f, k ≤ m)
(

ξI,n(γ )
)

, a
)

Because Γ 
 A we have

A
(

J, k, (Γ, Γ ′)( f, k ≤ m)
(

ξI,n(γ )
)) = A

(

J, k, πJ,k
(

(Γ, Γ ′)( f, k ≤ m)
(

ξI,n(γ )
)))

where π : Γ, Γ ′ → Γ is the composition of projections. By naturality we have

πJ,k
(

(Γ, Γ ′)( f, k ≤ m)
(

ξI,n(γ )
)) = Γ ( f, k ≤ m)

(

πI,m
(

ξI,n(γ )
))

.

Now πI,m = �(π)I,n and so we have (because ξ is a delayed substitution)

πI,m
(

ξI,n(γ )
) = next(γ )I,n = Γ (idI ,m ≤ n)(γ ).

Hence we have

A
(

J, k, (Γ, Γ ′)( f, k ≤ m)
(

ξI,n(γ )
)) = A (J, k, Γ ( f, k ≤ n)(γ )) .

And because A is constant we further have

A (J, k, Γ ( f, k ≤ n)(γ )) = A(J, k + 1, Γ ( f, k + 1 ≤ n)(γ ))

(by assumption k ≤ m and n = m + 1.
Now α f,k+1 is a dependent function

(a ∈ A(J, k + 1, Γ ( f, k + 1 ≤ n)(γ ))) → (�ξ.B)(J, k + 1, Γ ( f, k + 1 ≤ n)(γ ), a)

And we have

(�ξ.B) (J, k + 1, Γ ( f, k + 1 ≤ n)(γ ), a) = B
(

J, k, ξJ,k+1(Γ ( f, k + 1 ≤ n)(γ )), a
)

(because the relevant restriction of A is the identity). Now

ξJ,k+1(Γ ( f, k + 1 ≤ n)) = (�(Γ, Γ ′))( f, k + 1 ≤ n)(ξI,n(γ ))

= (Γ, Γ ′)( f, k ≤ m)(ξI,n(γ )).

Thus, we can define

β f,k = α f,k+1.

The fact that β is a natural family follows from the fact that α is a natural family. Naturality
of F follows easily by the fact that restrictions for Π types are defined by precomposition.
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The fact that it is the inverse to the canonical morphism follows by a tedious computation.

�

Corollary 4.27 If Γ 
 ϕ : F then we have an isomorphism of types

Γ 
 �ξ.Π(p : [ϕ]).B ∼= Π(x : [ϕ]).�ξ.B. (6)

Proof Using Proposition 4.26 it suffices to show that Γ 
 [ϕ] is constant with respect to ω.
Using Lemmas 4.24 and 4.25 it further suffices to show that the presheafF is in the essential
image of π∗, which is exactly what Lemma 4.18 states. 
�

Finally we need the following technical construction, allowing us to view delayed substi-
tutions as terms in a certain way. This is needed in showing that later types have compositions
in the following section.

Delayed substitutions and later As we mentioned above a delayed substitution ξ is a mor-
phism

Γ → �(Γ, Γ ′).

Hence we can treat it as a term of type �(Γ, Γ ′) in context Γ . Further given a morphism
γ : Iω → Γ we can form the morphism

ξ ◦ γ : Iω → �(Γ, Γ ′).

Finally by using Proposition 4.26 we can transport ξ ◦ γ : Iω → �(Γ, Γ ′) to a term

ξ ◦ γ : �(Iω → Γ, Γ ′)

in the empty context. For this term we have the following equality.

Lemma 4.28 Given γ and ξ as above then for any type Γ, Γ ′ 
 A we have the equality of
types

i : Iω 
 � [γ ′ ← ξ ◦ γ
]

.A
(

γ ′(i)
) = �ξγ (i).A (γ (i)) .

Here ξγ (i) is the delayed substitution 
: Iω
� Γ, Γ ′ obtained by substitution in terms of ξ .

Proof Proof by computation; we require the unfolding of the definition of the isomorphism
in Proposition 4.26. 
�

4.5.3 Interpreting Later Types

The type part of the delayed substitution type is interpreted using delayed substitutions in
the language L′. In this section we show that we can also construct a composition term for
this type.

Lemma 4.29 Formation of �ξ -types preserves compositions. More precisely, if �ξ.A is a
well-formed type in context Γ and we have a composition term cA : Φ(Γ, Γ ′; A), then there
is a composition term c : Φ(Γ ; �ξ.A).

Proof We introduce the following variables:

γ : I→ Γ

ϕ : F
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u : Π(i : I). ((�ξ.A)(γ i))ϕ

a0 : (�ξ.A)(γ 0)[ϕ �→ u 0].
Using Lemma 4.28 we can rewrite the types of u and a0:

u : Π(i : I). (� [γ ′ ← ξ ◦ γ
]

.A(γ ′ i)
)ϕ

a0 : �
[

γ ′ ← ξ ◦ γ
]

.A(γ ′ 0).

Furthermore, we have the following type isomorphisms:

Π(i : I). (� [γ ′ ← ξ ◦ γ
]

.A(γ ′ i)
)ϕ ∼= Π(i : I).� [γ ′ ← ξ ◦ γ

]

.
(

A(γ ′ i)
)ϕ

(Corollary 4.27)

∼= � [γ ′ ← ξ ◦ γ
]

.Π(i : I). (A(γ ′ i)
)ϕ

, (Proposition 4.26)

which means that we have a term

ũ : � [γ ′ ← ξ ◦ γ
]

.Π(i : I). (A(γ ′ i)
)ϕ

.

We can now—almost—form the term

next

⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ . cA γ ′ ϕ u′ a′0 : � [γ ′ ← ξ ◦ γ
]

.A(γ ′ 1). (∗)

In order for the composition sub-term to be well-typed, we need that a′0 = u 0 under the
assumption ϕ. This is equivalent to saying that the type

�
⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ .(Id(a′0, u′ 0))ϕ

is inhabited. We transform the type as follows:

�
⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ .(Id(a′0, u′ 0))ϕ

∼=
⎛

⎝�
⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ . Id(a′0, u′ 0)

⎞

⎠

ϕ

(Corollary 4.27)

=
⎛

⎝Id(next

⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ . a′0,next

⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ . u′ 0)

⎞

⎠

ϕ

= (Id(a0, u 0))
ϕ ,

where the last equality uses that ũ is defined using the inverse ofλ f λx .next ξ
[

f ′ ← f
]

. f ′ x
(Proposition 4.26). By assumption it is the case that (Id(a0, u 0))ϕ is inhabited, and therefore
(∗) is well-defined. This concludes the existence part of the proof, as

� [γ ′ ← ξ ◦ γ
]

.A(γ ′ 1) = (�ξ.A)(γ 1),

by Lemma 4.28.
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We now have to show that the term (∗) is equal to u 1 under the assumption of ϕ. Assuming
ϕ, we get by the properties of cA that

next

⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ . cA γ ′ ϕ u′ a′0 = next

⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ . u′ 1,

and by the definition of ũ (Proposition 4.26) we have that

next

⎡

⎣

γ ′ ← ξ ◦ γ

u′ ← ũ
a′0 ← a0

⎤

⎦ . u′ 1 = u 1

as desired. 
�
Note that in the lemma above we do not require that the types in Γ ′ are fibrant.

4.6 Summary of the Semantics of GCTT

The interpretation of the syntax of GCTT follows the pattern for interpreting cubical type
theory outlined in Cohen et al. [12, Sects. 8.2–8.3], following standard techniques for inter-
preting dependent type theory in a presheaf category. In summary, the following judgements
need to be interpreted.

– �Γ 
�

– �Γ 
 A�

– �Γ 
 t : A�

– �
 ξ : Γ � Γ ′
�

– �ρ : Γ → Γ ′
�

where the last one is a context morphism. These judgements are interpreted via a partial map
from raw (not necessarily well-formed) syntax to objects and arrows of the category. This
function merely consists of mapping syntactic constructions to their semantical analogues
developed in the previous sections, and so we omit the details. A proof that well-formed
syntax has a well-defined intepretation follows from a series of lemmas (c.f. Cohen et al. [12,
Lemmas 19–22]) establishing that basic properties such as weakening hold.

Because of the way we developed the results of this section, the interpretations of the
judgements in presheaf categories may be separated into three stages.

1. Every presheaf topos with a non-trivial internal De Morgan algebra I satisfying the
disjunction property can be used to give semantics to the subset of the cubical type
theory CTT without glueing and the universe. Further, for any category D, the category
of presheaves onC×D has an interval I, which is the inclusion of the interval in presheaves
over the category of cubes C. This was done in Sects. 4.4.1 and 4.4.2.

2. The topos of presheaves C × D for any small category D with an initial object gives a
semantics of the entire CTT. This was done in Sects. 4.4.3 and 4.4.4.

3. In Sect. 4.5, we showed that the category of presheaves on C × ω gives semantics for
GCTT.

For all these three cases we have:

Theorem 4.30 (Soundness and consistency) The interpretation in particular satisfies the
following properties. If

Γ 
 A = B
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is derivable then the types �Γ 
 A� and �Γ 
 B� are interpreted as the same object.
If

Γ 
 t = s : A
is derivable then the terms �Γ 
 t : A� and �Γ 
 s : A� are interpreted as equal.

As a consequence, the judgement 
 t : Path N 0 1 is not derivable for any closed term t.

This completes the construction of a model ofGCTT, as outlined in the beginning of Sect. 4.

5 Conclusion

In this paper we have made the following contributions:

– We introduce guarded cubical type theory (GCTT), which combines features of cubical
type theory (CTT) and guarded dependent type theory (GDTT). The path equality of
CTT is shown to support reasoning about extensional properties of guarded recursive
operations, and we use the interval of CTT to constrain the unfolding of fixed-points.

– We show that CTT can be modelled in any presheaf topos with an internal non-trivial
De Morgan algebra with the disjunction property, glueing, a universe of fibrant types,
and an operator ∀. Most of these constructions are done via the internal logic. We then
show that a class of presheaf models of the form Ĉ × D, for any small category D with
an initial object, satisfy the above axioms and hence gives rise to a model of CTT.

– We give semantics to GCTT in the topos of presheaves over C × ω.

Further work We wish to establish key syntactic properties of GCTT, namely decidable
type-checking and canonicity for base types. Our prototype implementation establishes some
confidence in these properties.

Wewish to further extendGCTTwith clock quantification [3], such as is present inGDTT.
Clock quantification allows for the controlled elimination of the later type-former, and hence
the encoding of first-class coinductive types via guarded recursive types. The generality of
our approach to semantics in this paper should allow us to build amodel by combining cubical
sets with the presheaf model of GDTT with multiple clocks [9]. The main challenges lie in
ensuring decidable type checking (GDTT relies on certain rules involving clock quantifiers
which seem difficult to implement), and solving the coherence problem for clock substitution.

The cubical model is constructive, as indicated, for example, by the forthcoming formal-
ization in NuPrl,8 so it is tempting to consider our construction as the interpretation of this
model in the internal logic of the topos of trees. One technical obstacle to this is the absence
of a constructive development of universes in presheaf toposes. Hofmann and Streicher [17]
started from a Grothendieck universe in a classical set theory, instead of working in the inter-
nal logic of an ambient topos. Moreover, if D is an internal category in Ĉ, then Ĉ

D ≡ Ĉ× D;
c.f. Johnstone [19, Lem. 2.5.3]. However, this is not an isomorphism of categories, so we
need to deal with the usual coherence issues when interpreting type theory. Such obstacles
are part of active research. For example, see work by Voevodsky on building a new theory
of models of type theory [35]. Our present theory centers around the geometric morphism
π̂1 : Ĉ × ω → Ĉ. This suggests interpreting the topos of trees in the topos of cubical sets.
However, this would not complete the construction of the model, as we would still need to
add the compositions operations.

8 http://www.nuprl.org/wip/Mathematics/cubical!type!theory/.
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A related question is how GCTT relates to the model of simplicial presheaves over ω in
Birkedal et al. [4]. However to answer this, one would probably first need to understand the
precise relation between the (non-guarded) cubical model and the simplicial model.

Finally, some higher inductive types, like the truncation, can be added to CTT. We would
like to understand how these interact with �.

Related work Another type theory with a computational interpretation of functional exten-
sionality, but without equality reflection, is observational type theory (OTT) [2]. We found
CTT’s prototype implementation, its presheaf semantics, and its interval as a tool for control-
ling unfoldings, most convenient for developing our combination withGDTT, but extending
OTT similarly would provide an interesting comparison.

Spitters [32] used the interval of the internal logic of cubical sets to model identity types.
Coquand [13] defined the composition operation internally to obtain a model of type theory.
We have extended both these ideas to a full model of CTT. Recent independent work by
Orton and Pitts [29] axiomatises a model for CTT without a universe, again building on
Coquand [13]. With the exception of the absence of the universe, their development is more
general than ours. Our semantic developments are sufficiently general to support the sound
addition of guarded recursive types to CTT.
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A zipWith Preserves Commutativity

We provide a formalisation of Sect. 3.3 which can be verified by our type-checker. This
file, among other examples, is available in the gctt-examples folder in the type-checker
repository.

module zipWith_preserves_comm where

Id (A : U) (a0 a1 : A) : U = IdP ( 〈 i 〉 A) a0 a1
data nat = Z | S (n : nat)

-- Streams of natural numbers
StrF (S : � U) : U = (n : nat) * � [S’ ← S] S’

Str : U = fix (StrF Str)

-- The canonical unfold lemma for Str
StrUnfoldPath : Id U Str (StrF (next Str))
= 〈 i 〉 StrF (dfix U StrF [(i=1)])

unfoldStr (s : Str) : (n : nat) * � Str
= transport StrUnfoldPath s

foldStr (s : (n : nat) * � Str) : Str
= transport ( 〈 i 〉 StrUnfoldPath @ -i) s

cons (n : nat) (s : � Str) : Str = foldStr (n, s)
head (s : Str) : nat = s.1
tail (s : Str) : � Str = (unfoldStr s).2

-- Defining zipWith
zipWithF (f : nat → nat → nat) (rec : � (Str → Str → Str))
: Str → Str → Str
= (λ (s1 s2 : Str) →

(cons (f (head s1) (head s2))
(next [zipWith ’ ← rec , s1’ ← tail s1 , s2 ’ ← tail s2]

zipWith ’ s1 ’ s2 ’)))

zipWith (f : nat → nat → nat) : Str → Str → Str
= fix (zipWithF f zipWith)

zipWithUnfoldPath (f : nat → nat → nat)
: Id (Str → Str → Str)

(zipWith f)
(zipWithF f (next (zipWith f)))

= 〈 i 〉 zipWithF f (dfix (Str → Str → Str) (zipWithF f) [(i=1)])

-- Commutativity property
comm (f : nat → nat → nat) : U = (m n : nat) → Id nat (f m n) (f n m)

-- zipWith preserves commutativity.
zipWith_preserves_comm (f : nat → nat → nat) (c : comm f)
: (s1 s2 : Str) → Id Str (zipWith f s1 s2) (zipWith f s2 s1)
= fix

(λ (s1 s2 : Str) →
〈 i 〉 comp ( 〈 _ 〉 Str)

(cons (c (head s1) (head s2) @ i)
(next [q ← zipWith_preserves_comm

,t1 ← tail s1
,t2 ← tail s2]
q t1 t2 @ i))

[(i=0) → 〈 j 〉 zipWithUnfoldPath f @ -j s1 s2
,(i=1) → 〈 j 〉 zipWithUnfoldPath f @ -j s2 s1])
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