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Abstract Types in higher-order logic (HOL) are naturally interpreted as nonempty sets.
This intuition is reflected in the type definition rule for the HOL-based systems (including
Isabelle/HOL), where a new type can be defined whenever a nonempty set is exhibited.
However, in HOL this definition mechanism cannot be applied inside proof contexts. We
propose a more expressive type definition rule that addresses the limitation and we prove
its consistency. This higher expressive power opens the opportunity for a HOL tool that
relativizes type-based statements to more flexible set-based variants in a principled way. We
also address particularities of Isabelle/HOL and show how to perform the relativization in
the presence of type classes.

Keywords HOL · Isabelle · Local typedef · Type definition · Relativization · Type classes ·
Overloading · Dependent types · Model · Consistency · Transfer · Type-based theorems ·
Set-based theorems

1 Motivation

The proof assistant community is mainly divided in two successful camps. One camp, rep-
resented by provers such as Agda [2], Coq [3], Matita [4] and Nuprl [5], uses expressive
type theories as a foundation. The other camp, represented by the HOL family of provers
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(including HOL4 [6], HOL Light [7], HOL Zero [8] and Isabelle/HOL [9]), remains faithful
to a form of classic set theory typed using simple types with rank-1 polymorphism. (Other
successful provers, such as ACL2 [10] and Mizar [11], could be seen as being closer to the
HOL camp, although technically they are not based on HOL.)

According to the HOL school of thought, a main goal is to acquire a sweet spot: keep the
logic as simple as possible while obtaining sufficient expressiveness. The notion of sufficient
expressiveness is of course debatable, and has been debated. For example, PVS [12] includes
dependent types (but excludes polymorphism), HOL-Omega [13] adds first-class type con-
structors to HOL, and Isabelle/HOL adds ad hoc overloading of polymorphic constants. In
this paper, we want to propose a gentler extension of HOL. We do not want to promote new
“first-class citizens,” but merely to give better credit to an old and venerable HOL citizen:
the notion of types emerging from sets.

The problem that we address in this paper is best illustrated by an example. Let lists :
α set → α list set be the constant that takes a set A and returns the set of lists whose elements
are in A, and P : α list → bool be another constant (whose definition is not important
here). Consider the following two statements, which use either types or sets to represent
semantically the same mathematical fact (for clarity, we extend the usual HOL syntax by
explicitly quantifying over types at the outermost level as in HOL-Omega):

∀α. ∃xsα list. P xs (1)

∀α.∀Aα set. A �= ∅ −→ (∃xs ∈ lists A. P xs) (2)

The formula (2) is a relativized form of (1), quantifying not only over all types α, but also
over all their nonempty subsets A, and correspondingly relativizing the quantification over
all lists to quantification over the lists built from elements of A. We call theorems such as (1)
type based and theorems such as (2) set based.

Type-based theorems have obvious advantages compared to the set-based ones. First, they
are more concise. Moreover, automatic proof procedures work better for them, thanks to the
fact that they encode properties more rigidly and more implicitly, namely, in the HOL types
(such as membership to α list) and not via formulas (such as membership to the set lists A).
On the downside, type-based theorems are less flexible, and therefore unsuitable for some
developments. Indeed, when working with mathematical structures, it is often the case that
they have the desired property only on a proper subset of the whole type. For example, a
function f from τ to σ may be injective or continuous only on a subset of τ .

When wishing to apply type-based theorems from the library to deal with such situations,
users are forced to produce ad hoc workarounds: they can often define a new (global) type
isomorphic to the concrete set, which HOL allows only if the set can be represented by a
closed term.1 But quite often the set depends on some local variables or local definitions
(typically because it was constructed inside of a proof), in which case one needs the set-
based relativization of the type-based library theorem. In the most striking cases, such a
relativization is created manually. For example, in Isabelle/HOL there exists the constant
inj-on A f = (∀x y ∈ A. f x = f y −→ x = y) together with a small library about
functions being injective only on a subset of a type. In summary, while it is easier to reason
about type-based statements such as (1), the set-based statements such as (2) aremore general
and more widely applicable.

An additional nuance to this situation is specific to Isabelle/HOL, which allows users
to annotate types with Haskell-like [14] type-class constraints [15]. This provides a further
level of implicit reasoning. For example, instead of explicitly quantifying a statement over

1 Let us recall that HOL does not allow for dependent types.
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an associative operation ∗ on a type σ , one marks σ as having class semigroup (which carries
implicitly the assumptions). This would also need to be reversed when relativizing from types
to sets. If (1) made the assumption that α is a semigroup, as in ∀αsemigroup. ∃xsα list. P xs, then
(2) would need to quantify universally not only over A, but also over a binary operation on
A, and explicitly assume it to be associative.

Isabelle provides a large collection of arithmetic simplification procedures, which serve
as an example of an automation that works better for type-based goals than for the set-based
ones since they work smoothly only if the corresponding simplification rules apply to the
whole type. For example, the cancellation procedure can discharge the goal x− x = 0 only if
x’s type is restricted to an appropriate algebraic structure such asαgroup, in which case the goal
can be easily rewritten to True. In the set-based setting, in which x has an unrestricted type
α, the formula does not hold in general. The cancellation would work only if the simplifier
could prove that x ∈ G and groupG for some G, which would have to be synthesized or
obtained from the proof context. Moreover, since G itself could be an arbitrary term, the
simplifier could rewrite G in such a way that x ∈ G could not be proved anymore.

The aforementionedproblem, of themismatchbetween type-based theorems from libraries
and set-based versions needed by users, shows up regularly in requests posted on the
Isabelle community mailing lists. Here is an example [16]: Various lemmas [from the theory
Finite_Set] require me to show that f [commutes with ◦] for all x and y. This is a too strong
requirement. I can show that it holds for all x and y in A, but not for all x and y in general.

Often, users feel the need to convert entire libraries from type-based theorems to set-
based ones. For example, our colleague Fabian Immler writes about his large formalization
experience [17, §5.7]: The main reason why we had to introduce this new type [of finite
maps] is that almost all topological properties are formalized in terms of type classes, i.e., all
assumptions have to hold on the whole type universe. It feels like a cleaner approach [would
be] to relax all necessary topological definitions and results from types to sets because other
applications might profit from that, too.

A prophylactic alternative is of course to develop the libraries in a set-based fashion from
the beginning, agreeing to pay the price in terms of verbosity and lack of automation. And
numerous developments in different HOL-based provers do just that [18–22].

In this paper, we propose an alternative that gets the best of both worlds: Prove easily
and still be flexible. More precisely, develop the libraries type based, but export the results
set based. We start from the observation that, from a set-theoretic semantics standpoint, the
theorems (1) and (2) are equivalent: they both state that, for every nonempty collection of
elements, there exists a list of elements from that collection for which P holds. Unfortunately,
the HOL logic in its current form is blind to one direction of this equivalence: assuming that
(1) is a theorem, one cannot prove (2). Indeed, in a proof attempt of (2), one would fix a
nonempty set A and, to invoke (1), one would need to define a new type corresponding to
A—an action not currently allowed inside a HOL proof context.

In this paper, we propose a natural and sound extension to HOL (and to Isabelle/HOL) to
enable type definitions to be emulated inside HOL proof contexts, which allows us to prove
the above-mentioned equivalences. We will also show how this can be used to leverage user
experience as outlined above.

The paper is organized as follows. InSect. 2,we recall the logics ofHOLand Isabelle/HOL.
In Sect. 3,we describe the envisioned extension ofHOL: adding a new rule for simulating type
definitions in proof contexts. In Sect. 4, we prove that the new rule is a consistent addition
to HOL. In Sect. 5, we demonstrate how the new rule allows us to relativize type-based
theorems to set-based ones in HOL. Due to the presence of type classes, we need to extend
Isabelle/HOL’s logic further to achieve the relativization—this is the topic of Sect. 6. In
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Sect. 7, we outline the process of performing the relativization in a principled and automated
way. In Sect. 8, we describe an application of our results to a more general version of
relativization, namely from types to terms. Finally, in Sect. 9 we describe limitations of our
approach and outline our future work.

Starting from Isabelle2016-1, the implementation of the proposed logical extensions and
some examples discussed in this paper are part of the Isabelle distribution [23].

2 HOL and Isabelle/HOL Recalled

In this section, we briefly recall the logics of HOL and Isabelle/HOL.We distinguish between
the core logic, which is common to HOL and Isabelle/HOL, and the definitional mechanisms,
which differ between HOL and Isabelle/HOL.

2.1 Core Logic

The core logic of HOL and Isabelle/HOL is classical Higher-Order Logic with rank-1 poly-
morphism, Hilbert choice and the Infinity axioms.

We chose one of the equivalent formulations of the core logic of HOL in this paper. Other
authors [24–26] might start from different primitives or use slightly different set of primitive
inference rules (or add derived rules as primitives for performance reasons in a concrete
implementation). All these approaches are equivalent and do not affect our results.

We fix the following:

– an infinite set TVar, of type variables, ranged by α, β

– an infinite set VarN, of (term) variable names, ranged by x, y, z
– a set K of symbols, ranged by κ , called type constructors, containing three special

symbols: “bool”, “ind” and “→” (aimed at representing the type of booleans, an infinite
type and the function type constructor, respectively)

We fix a function arOf : K → N giving arities to type constructors, such that arOf(bool) =
arOf(ind) = 0 and arOf(→) = 2. If arOf(κ) = n, we say that κ is an n-ary type constructor.
Types, ranged by σ, τ , are defined as follows:

σ = α | (σ1, . . . , σarOf(κ)) κ

Thus, a type is either a type variable or an n-ary type constructor κ postfix-applied to a
number of types corresponding to its arity. If n = 1, instead of (σ ) κ we write σ κ .

Finally, we fix the following:

– a setConst, ranged over by c, of symbols called constants, containing five special symbols:
“−→”, “=”, “ε”, “zero” and “suc” (aimed at representing logical implication, equality,
Hilbert choice of some element from a type, zero and successor, respectively)

– a function tpOf : Const → Type associating a type to every constant, such that:

tpOf(−→) = bool → bool → bool

tpOf(=) = α → α → bool

tpOf(ε) = (α → bool) → α

tpOf(zero) = ind

tpOf(suc) = ind → ind

TV(σ ) is the set of variables of a type σ . Given a function ρ : TVar → Type, its support
is the set of type variables where ρ is not the identity: supp(ρ) = {α | ρ(α) �= α}. A type
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substitution is a function ρ : TVar → Type with finite support. We let TSubst denote the set
of type substitutions. Each ρ ∈ TSubst extends to a function ρ : Type → Type by defining
ρ(α) = ρ(α) and ρ((σ1, . . . , σn) κ) = (ρ(σ1), . . . , ρ(σn)) κ .

We say that σ is an instance of τ via a substitution of ρ ∈ TSubst, written σ ≤ρ τ , if
ρ(τ) = σ and supp(ρ) ⊆ TV(τ ). We say that σ is an instance of τ , written σ ≤ τ , if there
exists ρ ∈ TSubst such that σ ≤ρ τ . Notice that if σ ≤ τ , there is a unique ρ such that
σ ≤ρ τ . We say that σ is in τ if σ is syntactically contained in τ .

A (typed) variable is a pair of a variable name x and a type σ , written xσ . Let Var denote
the set of all variables. A constant instance is a pair of a constant and a type, written cσ , such
that σ ≤ tpOf(c). We let CInst denote the set of constant instances.

The tuple Σ = (K , arOf,Const, tpOf), which will be fixed in what follows, is called a
signature. This signature’s pre-terms, ranged over by s, t , are defined by the grammar:

t = xσ | cσ | t1 t2 | λxσ . t

Thus, a pre-term is either a typed variable, or a constant instance, or an application, or an
abstraction. As usual, we identify pre-terms modulo alpha-equivalence. Typing is defined
as a binary relation between pre-terms and types, written t : σ , structurally inductively as
follows:

x ∈ VarN

xσ : σ

c ∈ Const τ ≤ tpOf(c)
cτ : τ

t1 : σ → τ t2 : σ

t1 t2 : τ

t : τ

λxσ . t : σ → τ

A term is a well-typed pre-term if there exists a (necessarily unique) type τ such that t : τ .
We let Term be the set of well-typed terms. We can apply a type substitution ρ to a term t ,
written ρ(t), by applying ρ to the types of all variables and constant instances occurring in
t and potentially renaming some bound variables if they would get identified. We say that a
constant c (or a type σ ) is in a term t if t syntactically contains c (or σ respectively). The
set FV(t) is the set of t’s free variables. The term t is called closed if it has no free variables:
FV(t) = ∅. When writing terms, we sometimes omit the types of variables if they can be
inferred. We sometimes use brackets to indicate that certain types and/or terms are a part of
the term, e.g., t[α], t[σ, cτ ].

A formula is a term of type bool. The logical constants True and False, formula connectives
and quantifiers are defined in the standard way, starting from the implication and equality
primitives.

In HOL, types represent “rigid” collections of elements. More flexible collections can be
obtained using sets. Essentially, a set on a type σ , also called a subset of σ , is given by a
predicate S : σ → bool. Then membership of an element a to S, written a ∈ S, is defined
to mean S a (which is the same as S a = True). HOL systems differ in how abstractly they
represent this concept of “sets as predicates”. Our paper is agnostic on this in the following
sense: we write α set to be either a textual abbreviation for α → bool (corresponds to HOL
Light, which uses directly the predicate type) or syntactic sugar for predicates (as in HOL4)
or an actual type constructor defined to be isomorphic to the predicates (as in Isabelle/HOL).
All these approaches yield essentially the same notion and our results apply to all of them.

A proof context Γ and a HOL theory D are finite sets of formulas. We say that (Γ, ϕ) is
a sequent if Γ is a context and ϕ is a formula. The HOL deduction relation � is a ternary
relation between theories, contexts and formulas, D;Γ � ϕ, and is defined inductively
starting from the formulas in D and HOL axioms (containing axioms for equality, infinity,
choice, and excluded middle) and applying deduction rules (introduction and elimination
of −→, term and type instantiation, extensionality and β-reduction). Precise definitions of
(equivalent variations of) the HOL deduction system can be found elsewhere [25,27,28].
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The definitional mechanisms for constants and types extend the signature (by adding
the newly defined symbol) and the theory (by adding the definitional formula). We call a
theory D definitional if D was created by a sequence of theory extensions corresponding
either to a constant or a type definition. Since Isabelle/HOL allows for more flexible constant
definitions than HOL does, we will cover their definitional mechanisms separately in the next
two sections.

A theory D is consistent if it cannot derive False in the empty context, i.e., if D; ∅ � False

does not hold.

2.2 Definitional Mechanisms of HOL

Most of the systems implementing HOL follow the tradition to discourage their users from
using arbitrary underlying theories D and to promote merely definitional ones, containing
definitions of constants and types.

A HOL constant definition is a formula cσ = t , where:

– c is a fresh constant of type σ

– t is a term that is closed (i.e., has no free term variables) and whose type variables are
included in those of σ

HOL type definitions are more complex entities. They are based on the notion of a newly
defined type β being embedded in an existing type α, i.e., being isomorphic to a given
nonempty subset S of α via mappings Abs and Rep. Let α(β ≈ S)AbsRep denote the formula
expressing this:

(∀xβ . Rep x ∈ S) ∧ (∀xβ . Abs (Rep x) = x) ∧ (∀yα. y ∈ S −→ Rep (Abs y) = y)

When the user issues a command typedef τ = Sσ set, they are required to discharge the
goal S �= ∅, after which the system introduces a new type τ and two constants Absτ : σ → τ

and Repτ : τ → σ and adds the axiom σ (τ ≈ S)Abs
τ

Repτ to the theory.

2.3 Definitional Mechanisms of Isabelle/HOL

While a member of the HOL family, Isabelle/HOL is special w.r.t. constant definitions.
Namely, a constant is allowed to be declared with a given type σ and then “overloaded” on
various types τ less general than σ and mutually orthogonal. For example, we can have d

declared to have type α, and then dbool defined to be True and dα list defined to be [dα]. We shall
write Δc for the collection of all types where c has been overloaded. In the above example,
Δd = {bool, α list}.

The mechanism of overloaded definitions offers broad expressive power. But with power
also comes responsibility. The system has to make sure that the defining equations cannot
form a cycle. To guarantee that, a binary constant/type dependency relation � on types and
constants is maintained, where u � v holds true iff one of the following holds:

1. u is a constant c that was declared with type σ and v is a type in σ

2. u is a constant c defined as c = t and v is a type or constant in t
3. u is a type σ defined as σ = A and v is a type or constant in A

We write �↓ for (type-)substitutive closure of the constant/type dependency relation, i.e.,
if p � q , the type instances of p and q are in �↓. The system accepts only overloaded
definitions for which �↓ does not contain an infinite chain.

In addition, Isabelle supports user-defined axiomatic type classes, which are essentially
predicates on types. They effectively improve the type systemwith the ability to carry implicit
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assumptions. For example, we can define the type class finite(α) expressing that α has a finite
number of inhabitants. Then, we are allowed to annotate type variables by such predicates,
e.g., αfinite or αsemigroup from Sect. 1. Finally, we can substitute a type τ for αfinite only if τ has
been previously proved to fulfill finite(τ ).

The axiomatic type classes become truly useful when we use overloaded constants for
their definitions. This combination allows the use of Haskell-style type classes. E.g., we can
reason about arbitrary semigroups by declaring a global constant ∗ : α → α → α and
defining the HOL predicate semigroup(α) stating that ∗ is associative on α.

In this paper, we are largely concerned with results relevant for the entire HOL family of
provers, but also take special care with the Isabelle/HOL maverick. Namely, we show that
our local typedef proposal can be adapted to cope with Isabelle/HOL’s type classes.

3 Proposal of a Logic Extension: Local Typedef

To address the limitation described in Sect. 1, we propose extending the HOL logic with a
new rule for type definition with the following properties:

– It enables type definitions to be emulated inside proofs while avoiding the introduction
of dependent types by a simple syntactic check.2

– It is natural and sound w.r.t. the standard HOL semantics à la Pitts [28], as well as
consistent with the logic of Isabelle/HOL.

To motivate the formulation of the new rule and to understand the intuition behind it,
we will first look deeper into the idea behind type definitions in HOL. Let us take a purely
semantic perspective and ignore the rank-1 polymorphism for a minute. Then the principle
behind type definitions simply states that for all types α and nonempty subsets A of them,
there exists a type β isomorphic to A:

∀α.∀aα set. a �= ∅ −→ ∃β. ∃Absα→β Repβ→α. α(β ≈ a)AbsRep ()

The typedef mechanism can be regarded as the result of applying a sequence of standard
rules for connectives and quantifiers to () in a more expressive logic (notationally, we use
Gentzen’s sequent calculus):

1. Left ∀ rule, instantiating α and aσ set with type σ and closed term A (of type σ set) (both
provided by the user), and left implication rule:

Γ � A �= ∅ Γ, ∃β Abs Rep. σ (β ≈ A)AbsRep � ϕ
∀L , ∀L , −→L

Γ, () � ϕ
Cut of ()

Γ � ϕ

2. Left ∃ rule for β, Abs and Rep, introducing some new/fresh type τ , and functions Absτ

and Repτ :

Γ � A �= ∅
Γ, σ (τ ≈ A)Abs

τ

Repτ � ϕ ∃L , ∃L , ∃L
Γ, ∃β Abs Rep. σ (β ≈ A)AbsRep � ϕ

∀L , ∀L , −→L
Γ, () � ϕ

Cut of ()
Γ � ϕ

2 Dependent type theory has its own pluses and minuses. Even if we came to the conclusion that the pluses
prevail, we do not know how to combine dependent types with higher-order logic and the tools built around it.
Hence the avoidance of the dependent types. Note that HOL-Omega does not include dependent types either.
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244 O. Kunčar, A. Popescu

The user further discharges Γ � A �= ∅, and therefore the overall effect of this chain is
the sound addition of σ (τ ≈ A)Abs

τ

Repτ as an extra assumption when trying to prove an arbitrary
fact ϕ.

What we propose is to use a variant of the above with fewer instantiations, which takes
better advantage of the result of Step 1: It refrains from introducing the type τ from Step 2,
but keeps β as a fresh type variable. We obtain:

Γ � A �= ∅
Γ, ∃Abs Rep. σ (β ≈ A)AbsRep � ϕ

[β fresh] ∃L
Γ, ∃β Abs Rep. σ (β ≈ A)AbsRep � ϕ

∀L , ∀L , −→L
Γ, () � ϕ

Cut of ()
Γ � ϕ

To conclude, the overall rule, written (LT) as in “Local Typedef”, looks as follows:

Γ � A �= ∅ Γ � (∃Abs Rep. σ (β ≈ A)AbsRep) −→ ϕ
[β fresh for A, ϕ, Γ ] (LT)

Γ � ϕ

This rule allows us to locally assume that there is a typeβ isomorphic to an arbitrary nonempty
set A. The requirement that β be fresh for A prevents the introduction of a dependent type
(since A may contain term variables).

The above discussion shows that (LT) is morally correct and, more importantly, natural,
in the sense that it is an instance of a more general principle, namely the rule (). In the next
section, we give a rigorous proof of the rule’s consistency.

4 Consistency of Local Typedef

A typical development in HOL consists of issuing definitions and proving theorems from
them. Thus, the only “axioms” that are introduced are the definitions. The appeal of this
definitional approach to the many users of HOL is of course the guaranteed consistency. We
will show that our new rule does not break the consistency of definitional theories. To this
end, we first need to revisit the standard, model-theoretic argument for consistency.

4.1 Model Theory of HOL

We follow the model theory of HOL developed by Andrew Pitts [28]. Our presentation might
diverge in concrete details and notation but the overall approach is the same.

We fix a Grothendieck universe V , i.e., a transitive set that contains an infinite set and
is closed under all standard set operations such as power set and union. It follows from
transitivity and power-set closure that V is also closed under inclusion: if A ∈ V and B ⊆ A
then B ∈ V . From this and the fact that V contains an infinite set, we obtain that V contains
(copies of) N and B = {false, true}.

We define our universe U as U = V \ ∅ (since we will interpret types as nonempty
sets). Moreover, we fix a choice function, choice, that assigns to each set A ∈ U an element
choice(A) ∈ A.

We fix an interpretation function I of type constructors from the signature Σ , such that,
for an n-ary type constructor κ ∈ K , I (κ) is a function in Un → U . We assume the standard
(fixed) interpretation for the built-in type constructors: I (bool) = B, I (ind) = N and for the
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function type constructor →, we assume that I (→) sends any pair of sets (A, B) to A → B
(the set of functions from A to B).

The interpretation of a type τ is a function [τ ]I : (TVar → U) → U , which takes an
assignment to type variables θ : TVar → U as input. Instead of [τ ]I (θ), we will write [τ ]I,θ .
The function is defined as follows:

[α]I,θ = θ(α)

[(σ1, . . . , σn) κ]I,θ = I (κ)([σ1]I,θ , . . . , [σn]I,θ ) where arOf(κ) = n

We fix an interpretation function for constants, also denoted by I , which assigns to any
constant c ∈ C a function I (c) ∈ ∏

θ∈TVar→U [tpOf(c)]I,θ . We assume the standard (fixed)
interpretation for the built-in constants: I (−→)(θ) is the logical implication on B; I (=)(θ)

is the equality predicate in θ(α) → θ(α) → B; I (zero)(θ) and I (suc)(θ) are the zero and
successor on N; the Hilbert choice operator is interpreted as

I (ε)(θ)( f ) =
{
choice({a ∈ θ(α) | f (a) = true}) if the set is non-empty,

choice(θ(α)) otherwise.

We say that an assignment ξ : Var → U (of termvariables to elements ofU) is θ -compatible
if ξ ∈ ∏

xτ ∈Var[τ ]I,θ , i.e., ξ(xτ ) ∈ [τ ]I,θ for all term variables xτ . The interpretation of a
term t : σ is a function

[t]I ∈
∏

θ∈TVar→U

(
∏

xτ ∈Var

[τ ]I,θ
)

→ [σ ]I,θ .

Thus, the interpretation of terms takes an assignment to type variables θ and a (θ -compatible)
assignment to term variables ξ as input.Wewill write [t]I,θ,ξ instead of [t]I (θ)(ξ). We define
[t]I,θ,ξ as follows3:

[xσ ]I,θ,ξ = ξ(xσ )

[cσ ]I,θ,ξ = I (c)(θ ′) where we obtain ρ s.t. σ ≤ρ tpOf(c) and define θ ′(α) = [ρ(α)]I,θ
[t1 t2]I,θ,ξ = [t1]I,θ,ξ [t2]I,θ,ξ

[λxσ . t]I,θ,ξ = �
a∈[σ ]I,θ

[t]I,θ,ξ [xσ ←a]

Above, the interpretation of lambda abstraction is the function sending each a ∈ [σ ]I,θ to
[t]I,θ,ξ [xσ ←a], where ξ [xσ ← a] denotes ξ updated with a at xσ .

Thus, an interpretation I consists of two homonymous functions, one for type constructors
and one for constants. We say that I satisfies a sequent (Γ, ϕ), written Γ �I ϕ, if for all θ

and ξ it holds that [ϕ]I,θ,ξ = true whenever [ψ]I,θ,ξ = true for all ψ ∈ Γ . If Γ is empty, we
write �I ϕ. A deduction rule has the form (Γ1,ϕ1)...(Γn ,ϕn)

(Γ,ϕ)
; we say that such a deduction rule

is sound for I if Γ �I ϕ holds whenever Γ j �I ϕ j holds for all j ∈ {1, . . . , n}.
We say that a interpretation I is a model of a theory D if I satisfies all HOL axioms and all

formulas from D. Pitts proved that (i) the deduction rules of HOL are sound for all standard
interpretations, and (ii) every definitional theory has a standard model. The facts (i) and (ii)
give us that, for every definitional theory D, if D;Γ � ϕ, then there exists a standard model

3 There is always such ρ since we work with well-typed terms and moreover it is unique.
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I of D such that Γ �I ϕ. In particular, this implies the consistency of the HOL definitional
theories, since �I False.

4.2 Proof of Consistency

Now we have enough background material to carry out the proof of consistency of (LT) in
HOL.We shall employ the following folklore lemma, stating that interpretations only depend
on the free variables:

Lemma 1 Let I be an interpretation.
(1) If θ and θ ′ do not differ on TV(τ ), then [τ ]I,θ = [τ ]I,θ ′ .
(2) If θ and θ ′ donot differ onTV(t)and ξ and ξ ′ donot differ onFV(t), then [t]I,θ,ξ = [t]I,θ ′,ξ ′ .

Lemma 2 The rule (LT) is sound for any standard interpretation.

Proof Let us fix a standard interpretation I and assume that the hypotheses of the (LT) rule
are satisfied by I , i.e.,

Γ �I A �= ∅ (3)

Γ �I (∃Abs Rep. σ (β ≈ A)AbsRep) −→ ϕ (4)

Wewish to prove the rule’s conclusion,Γ �I ϕ. To this end, let us fix θ and a θ -compatible
ξ such that [ψ]I,θ,ξ = true for all ψ ∈ Γ . We wish to prove [ϕ]I,θ,ξ = true.

Let us temporarily fix B ∈ U , and let θB denote θ [β ← B] (θ with β updated to B). We
let ξB be a θB-compatible assignment to term variables such that ξB is the same as ξ on the
free variables of A, Γ and ϕ. Since β is fresh for Γ , by Lemma 1 we have [ψ]I,θB ,ξB = true

for all ψ ∈ Γ . Using (3) and (4) and under the standard interpretation of −→ in (4), we
obtain:

[A �= ∅]I,θB ,ξB = true

[∃Abs Rep. σ (β ≈ A)AbsRep]I,θB ,ξB = true implies [ϕ]I,θB ,ξB = true.

Since β is fresh for A and ϕ, with Lemma 1 we obtain:

[A �= ∅]I,θ,ξ = true, (5)

[∃Abs Rep. σ (β ≈ A)AbsRep]I,θB ,ξB = true implies [ϕ]I,θ,ξ = true. (6)

Since B above was arbitrary, if we were able to find some B ∈ U such that the antecedent
of (6), namely,

[∃Abs Rep. σ (β ≈ A)AbsRep]I,θB ,ξB = true (7)

holds, then the proof would be finished, since we would obtain [ϕ]I,θ,ξ = true, as desired.
From (5) we obtain

{a ∈ [σ ]I,θ | [A]I,θ,ξ a = true} �= ∅. (8)

Recall that V is closed under inclusions and thus U is closed under inclusions of nonempty
subsets. To prove (7), we take B to be {a ∈ [σ ]I,θ | [A]I,θ,ξ a = true} and since B ⊆ [σ ]I,θ ,
[σ ]I,θ ∈ U and (8), we obtain B ∈ U . Note that, again by Lemma 1, we have [A]I,θB ,ξB =
[A]I,θ,ξ and, since TV(σ ) ⊆ TV(A), we have [σ ]I,θB = [σ ]I,θ . We define Abs : [σ ]I,θ → B
as

Abs(x) =
{
x if x ∈ B

ε(B) otherwise
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and Rep : B → [σ ]I,θ as the inclusion map. It is a routine to verify

[σ (β ≈ A)AbsRep]I,θB ,ξB [Abs←Abs,Rep←Rep] = true,

which proves (7).

The bottom line of the above proof was to show a semantic analog of (), our intuitive
formulation of HOL’s typedef in a logic richer thanHOL:Assuming (8) holds, we find B such
that (7) holds. The important twist is that this was performed in an arbitrary proof context,
freed from the restrictions imposed by traditional HOL.

Proposition 1 Any HOL definitional theory is consistent w.r.t. HOL deduction extended with
the (LT) rule.

Proof Let D be a definitional theory. Assume, for a contradiction, that D; �′ False where �′
denotes HOL deduction enriched with (LT). We take I to be a model of the HOL axioms (of
whose existence we know from Pitts). Since the HOL rules are sound for I and, from the
above lemma, (LT) is also sound for I , we obtain �I False, which is impossible.

Consistency also holds for the case of Isabelle/HOL:

Proposition 2 Any Isabelle/HOL definitional theory is consistent w.r.t. HOL deduction
extended with the (LT) rule.

The proof of this proposition can be found in our recent paper on proving Isabelle/HOL’s
consistency [27]. There, we first propose a stronger logic of HOL with comprehension types
(HOLC) and show that HOLC is consistent. Then we soundly translate Isabelle/HOL’s logic
into HOLC and prove that the (LT) rule is admissible in HOLC, which makes it consistent
in Isabelle/HOL [27, §4].

5 From Types to Sets in HOL

Let us look again at the motivating example from Sect. 1 and see how the rule (LT) allows
us to achieve the relativization from a type-based theorem to a set-based theorem in HOL
or Isabelle/HOL without type classes. We assume (1) is a theorem, and wish to prove (2).
We fix α and Aα set and assume A �= ∅. Applying (LT), we obtain a type β (represented by
a fresh type variable) such that ∃Abs Rep. α(β ≈ A)AbsRep, from which we obtain Abs and Rep

such that α(β ≈ A)AbsRep. From this, (1) with α instantiated to β, and the definition of lists, we
obtain

∃xsβ list ∈ lists (UNIVβ set). Pβ list→bool xs.

Furthermore, using that Abs andRep are isomorphisms between Aα set andUNIVβ set, we obtain

∃xsα list ∈ lists Aα set. Pα list→bool xs,

as desired.4

4 In order for this to work, we have silently assumed a connection between Pβ list→bool and Pα list→bool,
namely that P is parametric w.r.t. injection. More precisely that for every binary relation Rα→β→bool defining
an injection of β into α and for every two lists xsα list and ysβ list whose elements are pairwise related by R, it
holds that P xs if and only if P ys—see Sect. 7 for more on parametricity.
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We will consider a general case now. Let us start with a type-based theorem

∀α. ϕ[α], (9)

where ϕ[α] is a formula containing α. We fix α and Aα set, assume A �= ∅ and “define” a
new type β isomorphic to A. Technically, we fix a fresh type variable β and assume

∃Abs Rep. α(β ≈ A)AbsRep. (10)

From the last formula, we can obtain the isomorphism Abs and Rep between β and A. Having
the isomorphisms, we can carry out the relativization along them and prove

ϕ[β] ←→ ϕon[α, Aα set], (11)

where ϕon[α, Aα set] is the relativization of ϕ[β]. In the motivational example:

ϕ[β] = ∃xsβ list. P xs

ϕon[α, Aα set] = ∃xsα list ∈ lists A. P xs

We postpone the discussion of how to derive ϕon from ϕ in a principled way and how to
automatically prove the equivalence between them until Sect. 7. Here, we only appeal to the
intuition: For example, if ϕ contains the universal quantification ∀xβ , we replace it by the
related bounded quantification ∀xα ∈ A in ϕon. Or, if ϕ contains the predicate inj fβ→γ , we
replace it by the related notion of injon Aα set fα→γ in ϕon.

Since the left-hand side of the equivalence (11) is an instance of (9), we discharge the
left-hand side and obtain ϕon[α, Aα set], which no longer contains the locally “defined” type
β. Thus we can discard β. Technically, we use the (LT) rule and remove the assumption (10).
Thus we obtain the final result:

∀α.∀Aα set. A �= ∅ −→ ϕon[α, A]
This theorem is the set-based version of ∀α. ϕ[α].

We will move to Isabelle/HOL in the next section and explore how the isomorphic journey
between types and sets proceeds in the environment where we are allowed to restrict type
variables by type-class annotations.

6 From Types to Sets in Isabelle/HOL

Isabelle/HOLgoes beyond traditionalHOL, extending it by ad hoc overloading and axiomatic
type classes. In this section, we explain how these features are in conflict with the algorithm
described in Sect. 5 and show how to circumvent the problem.

6.1 Local Axiomatic Type Classes

The first complication is the implicit assumptions on types given by the axiomatic type
classes. Recall that αfinite means that α can be instantiated only with a type that we proved to
fulfill the conditions of the type class finite, namely, that the type must contain finitely many
elements.

To explain the complication on an example, let us modify (9) to speak about types of class
finite:

∀αfinite. ϕ[αfinite] (12)
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As a modification of the algorithm from Sect. 5, we fix a set A and assume that it is nonempty
and finite. As before, we locally define a new type β isomorphic to A. Although β fulfills the
condition of the type class finite, we cannot add the type into the type class since this action
is allowed only at the global theory level in Isabelle and not locally in a proof context.

On the other hand, without adding β into finite we cannot continue since we need to
instantiateβ forαfinite to prove the analog of the equivalence (11). Our solution is to internalize
the type-class assumption in (12) and obtain

∀α. finite(α) −→ ϕ[α], (13)

where finite(α) is a term of type bool, which is true if and only if α is a finite type.5 Now we
can instantiate α by β and get finite(β) −→ ϕ[β]. Using the fact that the relativization of
finite(β) is finite A, we apply the isomorphic translation between β and A and obtain

finite A −→ ϕon[α, A].
Quantifying over the fixed variables and adding the assumptions yields the final result, the
set-based version of (12):

∀α.∀Aα set. A �= ∅ −→ finite A −→ ϕon[α, A]
The internalization of type classes (inferring (13) from (12)) is already supported by the

kernel of Isabelle—thus no further work is required from us. The rule for internalization of
type classes is a result of the work by Haftmann and Wenzel [29,30].

6.2 Local Overloading

In the previous section we addressed implicit assumptions on types given by axiomatic type
classes and showed how to reduce the relativization of such types to the original translation
algorithmby internalizing the type classes as predicates on types.Aswe explained inSect. 2.3,
the mechanism of Haskell-like type classes in Isabelle is more general than the notion of
axiomatic type classes since additionally we are allowed to associate operations with every
type class. In this respect, the type class finite is somewhat special since there are no operations
associated with it.

Therefore we use semigroups as the running example in this section since semigroups
require an associated operation—multiplication. A general specification of a semigroup
would contain a nonempty set Aα set, a binary operation fα→α→α such that A is closed
under f , and a proof of the specific property of semigroups that f is associative on A. We
capture the last property by the predicate

semigrouponwith A f = (∀x y z ∈ A. f ( f x y) z = f x ( f y z)),

which we read along the paradigm: a structure on the set A with operations f1, . . . , fn .
The realization of semigroups by type classes in Isabelle is an example that reflects the

problem’s full generality. The type σ can belong to the type class semigroup if semigroup(σ )

is provable, where

semigroup(α) iff ∀xα yα zα. (x ∗ y) ∗ z = x ∗ (y ∗ z). (14)

5 This is Wenzel’s approach [29] to represent axiomatic type classes by internalizing them as predicates on
types, i.e., constants of type ∀α. bool. As this particular type is not allowed in Isabelle, Wenzel uses instead
α itself → bool, where α itself is a singleton type.
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Notice that the associated multiplication operation is represented by the global overloaded
constant ∗α→α→α , which will cause the complication.

Let us now relativize ∀αsemigroup. ϕ[αsemigroup]. We fix a nonempty set A, a binary f such
that A is closed under f and assume semigrouponwith A f . As before, we locally define β to be
isomorphic to A and obtain the respective isomorphisms Abs and Rep.

Having defined β, we want to prove that β belongs into semigroup. Using the approach
from the previous section, this goal translates into proving semigroup(β), which requires
that the overloaded constant ∗β→β→β used in the definition of semigroup [see (14)] must be
isomorphic to f on A. In other words, we have to locally define ∗β→β→β to be a projection
of f onto β, i.e., xβ ∗ yβ must equal Abs( f (Rep x) (Rep y)). Although we can locally
“define” a new constant (fix a fresh term variable c and assume c = t), we cannot overload
the global symbol ∗ locally for β. This is not supported by Isabelle.

We will cope with the complication by compiling out the overloaded constant ∗ from

∀α. semigroup(α) −→ ϕ[α] (15)

as follows: Whenever c = . . . ∗ . . . (i.e., c was defined in terms of ∗ and thus depends
implicitly on the overloaded meaning of ∗), define cwith f = . . . f . . . and use it instead of
c. The parameter f abstracts over the meaning of ∗ here: whenever we want to use cwith, we
have to explicitly specify how to perform multiplication in cwith by instantiating f . That is to
say, the implicit meaning of ∗ in c was made explicit by f in cwith. Using this approach, we
obtain:

∀α.∀ fα→α→α. semigroupwith f −→ ϕwith[α, f ], (16)

where semigroupwith fα→α→α = (∀xα yα zα. f ( f xy) z = f x( f yz)) and similarly for ϕwith.
For now, let us assume that we can provably obtain (16) from (15) and let us look at how it
helps us to finish the relativization and later we will explain how to derive (16) as a theorem.

Given (16), we will instantiate α with β and obtain

∀ fβ→β→β. semigroupwith f −→ ϕwith[β, f ].
Recall that the quantification over all functions of type β → β → β is isomorphic to the
bounded quantification over all functions of type α → α → α under which Aα set is closed.6

The difference after compiling out the overloaded constant∗ is that nowweare isomorphically
relating two bounded (local) variables from the quantification and not a global constant ∗ to
a local variable.

Thus we reduced the relativization once again to the original algorithm and can obtain the
set-based version

∀α.∀Aα set. A �= ∅ −→
∀ fα→α→α. (∀xα yα ∈ A. f x y ∈ A) −→ semigrouponwith A f −→ ϕon

with[α, A, f ].
Let us discuss how to obtain (16) as a theorem. We derive it by performing the dictionary

construction, whose detailed description can be found, for example, in the paper by Krauss
and Schropp [31, §5.2]. We will outline the process only informally here. Our task is to
compile out an overloaded constant ∗ from a term s. As a first step, we transform s into
swith[∗/ f ] such that s = swith[∗/ f ] and such that unfolding the definitions of all constants in
swith does not yield ∗ as a subterm. We proceed for every constant c in s as follows: if c has no

6 Let us recall that ∀x . P x is a shorthand for All (λx . P x) and ∀x ∈ A. P x for Ball A (λx . P x), where
All and Ball are the HOL constants for quantification. Thus the statement about isomorphism between the two
quantifications means isomorphism between All and Ball A.
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definition, we do not do anything. If c was defined as c = t , we first apply the construction
recursively on t and obtain twith such that t = twith[∗/ f ]; thus c = twith[∗/ f ]. Now we define
a new constant cwith f = twith. As cwith ∗ = c, we replace c in s by cwith ∗. At the end, we
obtain s = swith[∗/ f ] as a theorem. Notice that this procedure produces swith that does not
semantically depend on ∗ only if there is no type in s that depends on ∗.

Thus the above-described step applied to (15) produces

∀α. semigroupwith ∗α→α→α −→ ϕwith[α, fα→α→α][∗α→α→α/ fα→α→α].
Tofinish the dictionary construction,we replace every occurrence of∗α→α→α by auniversally
quantified variable fα→α→α and obtain (16). This derivation step is not currently allowed
in Isabelle. The idea why this is a sound derivation is as follows: since ∗α→α→α is a type-
class operation, there exist overloaded definitions only for strict instances of ∗ (such as
∗nat→nat→nat) but never for ∗α→α→α ; thus the meaning of ∗α→α→α remains unrestricted.
That is to say, ∗α→α→α permits any interpretation and hence it must behave as a term
variable. We will formulate a rule (an extension of Isabelle’s logic) that allows us to perform
the above-described derivation.

First, let us recall that �↓ is the substitutive closure of the constant/type dependency
relation � from Sect. 2.3 and Δc is the set of all types for which c was overloaded. The
notation σ � S means that σ is not an instance of any type in S. We shall write R+ for the
transitive closure of R. Now we can formulate the Unoverloading Rule (UO):

ϕ[cσ /xσ ]
[¬(u �↓+ cσ ) for any type or constant u in ϕ; σ � Δc] (UO)∀xσ . ϕ

This means that we can replace occurrences of the constant cσ in ϕ by the universally
quantified variable xσ under the following two side conditions:

1. All types and constant instances in ϕ do not semantically depend on cσ through a chain of
constant and type definitions. The constraint is fulfilled in the first step of the dictionary
construction since for example ϕwith[α, ∗] does not contain any hidden ∗s due to the
construction of ϕwith.7

2. There is nomatching definition for cσ . In our use case, cσ is always a type-class operation
with its most general type (e.g., ∗α→α→α). As already mentioned, we overload a type-
class operation only for strictly more specific types (such as ∗nat→nat→nat) and never for
its most general type and thus the condition σ � Δc must be fulfilled.

Proposition 3 Any Isabelle/HOL definitional theory is consistent w.r.t. HOL deduction
extended with the (LT) and (UO) rules.

Again, the proof of this proposition is based on the translation from Isabelle/HOL to HOL
with comprehension types (HOLC) from [27]. It is presented in [27, §4].

Notice that the (UO) rule suggests that even in presence of ad hoc overloading, the poly-
morphic overloaded constants retain parametricity under some conditions. In the next section,
we will look at a concrete example of relativization of a formula with type classes.

6.3 Example: Relativization of Topological Spaces

Wewill show an example of relativization of a type-based theorem with type classes in a set-
based theorem from the field of topology (addressing Immler’s concern discussed in Sect. 1).

7 Unless there is a type depending on ∗.

123
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The type class in question will be a topological space, which has one associated operation
open : α set → bool, a predicate defining the open subsets of α. We require that the whole
space is open, finite intersections of open sets are open, finite or infinite unions of open sets
are open and that every two distinct points can be separated by two open sets that contain
them. Such a topological space is called a T2 space and therefore we call the respective type
class T2-space.

One of the basic properties of T2 spaces is the fact that every compact set is closed:

∀αT2-space.∀Sα set. compact S −→ closed S (17)

A set is compact if every open cover of it has a finite subcover. A set is closed if its complement
is open. i.e., closed S = open (−S). Recall that our main motivation is to solve the problem
when we have a T2 space on a proper subset of α. Let us show the translation of (17) into a
set-based variant, which solves the problem. We will observe what happens to the predicate
closed during the translation.

We will first internalize the type class T2-space and then abstract over its operation open

via the first step of the dictionary construction. As a result, we obtain

∀α. T2-spacewith open −→ ∀Sα set. compactwith open S −→ closedwith open S,

where closedwith open S = open (−S). Let us apply (UO) and generalize over open:

∀α.∀openα set→bool.

T2-spacewith open −→ ∀Sα set. compactwith open S −→ closedwith open S
(18)

The last formula is a variant of (17) after we internalized the type class T2-space and compiled
out its operation. Now we reduced the task to the original algorithm (using Local Typedef)
from Sect. 5. As always, we fix a nonempty set Aα set, locally define β to be isomorphic to A
and transfer the β-instance of (18) onto the Aα set-level:

∀α.∀Aα set. A �= ∅ −→ ∀openα set→bool. T2-space
on
with A open −→

∀Sα set ⊆ A. compactonwith A open S −→ closedonwith A open S

This is the set-based variant of the original theorem (17). Let us show what happened to
closedwith: its relativization is defined as closedonwith A open S = open (−S ∩ A). Notice that
we did not have to restrict open while moving between β and A (since the function does
not produce any values of type β), whereas S is restricted since subsets of β correspond to
subsets of A.

6.4 General Case

Having seen a concrete example, let us finally aim for the general case. Let us assume that Υ
is a type class depending on the overloaded constants ∗1, . . . , ∗n , written ∗. We write A ↓ f
to mean that A is closed under operations f1, . . . , fn .

The following derivation tree shows how we derive, from the type-based theorem
� ∀αΥ . ϕ[αΥ ] (the topmost formula in the tree), its set-based version (the bottommost for-
mula). Explanation of the derivation steps follows after the tree.
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� ∀αΥ . ϕ[αΥ ]
(1)� ∀α. Υ (α) −→ ϕ[α]

(2)� ∀α. Υwith ∗[α] −→ ϕwith[α, f ][∗/ f ]
(3)� ∀α.∀ f [α]. Υwith f −→ ϕwith[α, f ]

(4)
Aα set �= ∅, α(β ≈ A)AbsRep � ∀α.∀ f [α]. Υwith f −→ ϕwith[α, f ]

(5)
Aα set �= ∅, α(β ≈ A)AbsRep � ∀ f [β]. Υwith f −→ ϕwith[β, f ]

(6)
Aα set �= ∅, α(β ≈ A)AbsRep � ∀ f [α]. A ↓ f −→ Υ on

with A f −→ ϕon
with[α, A, f ]

(7)
Aα set �= ∅ � ∀ f [α]. A ↓ f −→ Υ on

with A f −→ ϕon
with[α, A, f ]

(8)� ∀α.∀Aα set. A �= ∅ −→ ∀ f [α]. A ↓ f −→ Υ on
with A f −→ ϕon

with[α, A, f ]
Derivation steps:

(1) The class internalization from Sect. 6.1.
(2) The first step of the dictionary construction from Sect. 6.2.
(3) The Unoverloading rule (UO) from Sect. 6.2.
(4) We fix fresh α, Aα set and assume that A is nonempty. We locally define a new type β to

be isomorphic to A; i.e., we fix fresh β, Absα→β and Repβ→α and assume α(β ≈ A)AbsRep.
(5) We instantiate α in the conclusion with β.
(6) Relativization along the isomorphism between β and A—see Sect. 7.
(7) Since Abs and Rep are present only in α(β ≈ A)AbsRep, we can existentially quantify over

them and replace the hypothesis with ∃Abs Rep. α(β ≈ A)AbsRep, which we discharge by
the Local Typedef rule from Sect. 3, as β is not present elsewhere either (the previous
step (6) removed all occurrences of β in the conclusion).

(8) We move all hypotheses into the conclusion and quantify over all fixed variables.

As previously discussed, step (2), the dictionary construction, cannot be performed for types
depending on overloaded constants unless we want to compile out such types too. In the next
section, we will explain the last missing piece: the relativization step (6).

Note that our approach addresses one of the long-standing user complaints: the impossi-
bility to provide two different orders for the same type when using the type class of orders.
With our approach, users can still enjoy the advantages of type classes while proving abstract
properties about orders, and then only export the final product as a set-based theorem (which
quantifies over all possible orders).

7 Transfer: Automated Relativization

In this section, we will describe a procedure that automatically achieves relativization of the
type-based theorems. Recall that we are facing the following problem: we have two types β

and α such that β is isomorphic to some (nonempty) set Aα set, a proper subset of α, via two
isomorphisms Absα→β and Repβ→α . In this setting, given a formula ϕ[β], we want to find
its isomorphic image ϕon[α, A] along Abs and Rep and prove ϕ[β] ⇐⇒ ϕon[α, A]. Thanks
to the previous work in which the first author of this paper participated [32], we can use
Isabelle’s Transfer tool, which automatically synthesizes the relativized formula ϕon[α, A]
and proves the equivalence with the original formula ϕ[β].

We will sketch the main principles of the tool on the following example, where (20) is a
relativization of (19):

∀ fβ→γ xsβ list ysβ list. inj f −→ (map f xs = map f ys) ⇐⇒ (xs = ys) (19)
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∀ fα→γ .∀xs ys ∈ lists Aα set.

injon A f −→ (map f xs = map f ys) ⇐⇒ (xs = ys) (20)

First of all, we reformulate the problem a little bit. We will not talk about isomorphisms
Abs and Rep but express the isomorphism between A and β by a binary relation Tα→β→bool

defined as T x y = (Rep y = x).We call T a transfer relation. Notice that T captures inversion
of injection of β into α and therefore the relation is right-total (∀y. ∃x . R x y), right-unique
(∀x y z. R x y −→ R x z −→ y = z) and left-unique (∀x y z. R x z −→ R y z −→ x =
y).

The Transfer tool requires two sorts of setup as input: (1) we need more structural infor-
mation about the type constructors in ϕ (more than that they are just sets of elements); (2)
we need to know how to transfer the constants in ϕ along the transfer relation T.

Concerning (1), we assume that there exists a relator for every nonnullary type constructor
inϕ. Relators lift relations over type constructors:Related data structures have the same shape,
with pointwise-related elements (e.g., the relator list_all2 for lists), and related functions map
related input to related output. Concrete definitions follow:

list_all2 : (α → β → bool) → α list → β list → bool

(list_all2 R) xs ys ≡ (length xs = length ys) ∧ (∀(x, y) ∈ set (zip xs ys). R x y)

�⇒ : (α → γ → bool) → (β → δ → bool) → (α → β) → (γ → δ) → bool

(R �⇒ S) f g ≡ ∀x y. R x y −→ S ( f x) (g y)

Concerning (2), we need a transfer rule for every constant present in ϕ. The transfer rules
express how constants on α relate to constants on β along T. Let us look at some examples:

((T �⇒ =) �⇒ =) (injon A) inj (21)

((T �⇒ =) �⇒ =) (∀_ ∈ A) (∀) (22)

((list_all2 T �⇒ =) �⇒ =) (∀_ ∈ lists A) (∀) (23)

((T �⇒ =) �⇒ list_all2 T �⇒ list_all2 =) map map (24)

(list_all2 T �⇒ list_all2 T �⇒ =) (=) (=) (25)

As already mentioned, the universal quantification on β corresponds to a bounded quantifi-
cation over A on α (∀_ ∈ A). The relation between the two constants is obtained purely
syntactically from the type of the constant on β (e.g., (β → γ ) → bool for inj): We replace
every type that does not change (γ and bool) by the identity relation=, every nonnullary type
constructor by its corresponding relator (→ by �⇒ and list by list_all2) and every type that
changes by the corresponding transfer relation (β by T).

Having the appropriate setup, the Transfer tool builds a derivation tree whose root is the
equivalence theorem between (19) and (20), whose leaves contain the above-stated transfer
rules (21)–(25) and whose other nodes are derived by the following three structural rules (for
a bound variable, application and lambda abstraction):

R x y ∈ Γ

Γ � R x y
Γ1 � (R �⇒ S) f g Γ2 � R x y

Γ1 ∪ Γ2 � S ( f x) (g y)

Γ, R x y � S ( f x) (g y)

Γ � (R �⇒ S) (λx . f x) (λy. g y)

Similarity of the rules to those for typing of the simply typed lambda calculus is not a
coincidence. A typing judgment here involves two terms instead of one, and a binary relation
takes the place of a type. The environment Γ collects the local assumptions for bound
variables. Thus since (19) and (20) are of type bool, the procedure produces (19) = (20) as
the corresponding relation for bool is =. Overall, if the Transfer tool has appropriate setup
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available (for type constructors and transfer rules), it can automatically derive the equivalence
theorem for any closed lambda term.

Finally, let us discuss for which class of formulas we can obtain the appropriate setup.
First, the setup for type constructors:8 Besides the manual setup for the function type (it is a
part of Isabelle’s library), the Transfer tool generates the setup automatically for every type
constructor that is a natural functor (sets, finite sets, all algebraic datatypes and codatatypes)
[34].

Second, transfer rules: Instead of providing a specific transfer rule for every particular
transfer relation (such as T) and for every type instance of the given constant [for ∀ we
needed two rules (22) and (23)], the Transfer tool needs only one general rule for a given
polymorphic constant—the specific ones are derived internally from the general one. These
general rules capture a certain notion of restricted parametricity9 and take a transfer relation
as a parameter. Since we transfer only over relations that are inversion of injections in our
Types-to-Sets project, we can additionally assume that the relation is right-total, right-unique
and left-unique. Such parametricity rules hold for ∀ and =:

right_total R −→ ((R �⇒ =) �⇒ =) (∀_ ∈ (Domain R)) (∀)

left_unique R −→ right_unique R −→ (R �⇒ R �⇒ =) (=) (=)

Such parametricity rules hold for a broad class of functions—in particular, transitively for
any function whose defining term is build from equality and logical quantifiers. The only
troublemaker here is the choice operator, which is in general not parametric.

To conclude, the Transfer tool can automatically produce relativization of any theorem
that contains only (1) types built from the function type and natural functors and (2) constants
that are parametric w.r.t. right-total, right-unique and left-unique relations.

8 Beyond Types to Sets: Types to Terms

So far we have observed that types are semantically equivalent to nonempty sets in HOL
and developed a technique that allows us to translate types into sets in a principled way. In
this section, we go beyond the connection types–sets and look at how types can represent
mathematical objects different from sets (for example, numbers) and thus simulate restricted
dependent types in HOL. We show how to use our Types-to-Sets mechanism to compile out
such pseudo-dependent types back into terms in case they become too restrictive.

8.1 Harrison’s Trick

HOL does not support dependent types. For example, one cannot define a type of vectors
of length n by a type definition that takes the term n as a parameter. However, making use
of polymorphism, the type definition could be parametrized by a type whose cardinality
would encode the length n. This technique is known under the appellationHarrison’s trick in

8 The setup requires more than just the name of a relator. Besides making sure that the relator satisfies many
natural properties such as monotonicity or compositionality, we use other concepts such as the knowledge
that “lists whose elements are in A” can be expressed by lists A. See the complete description of the required
structure in the first author’s thesis [33, §4.7].
9 These rules are related to Reynolds’s relational parametricity [35] and Wadler’s free theorems [36]. The
Transfer tool is a working implementation of Mitchell’s representation independence [37] and it demonstrates
that transferring of properties across related types can be organized and largely automated using relational
parametricity.
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256 O. Kunčar, A. Popescu

the HOL community—it was introduced in John Harrison’s work on Euclidean spaces [38],
where the spaces R

n are represented by a type constructor α rvec, with the cardinality of α

encoding the dimension n [39, §1–2].
This allows us to prove theorems about Euclidean spaces of any dimension and obtain

theorems about specific sizes by taking suitable type instances. For example, a theorem about
R
3 is obtained by instantiating α in α rvec to any type of cardinality 3. Harrison also used the

trick to encode compatibility of dimensions inmatrixmultiplication—making the dimensions
automatically inferable (most of the times) by HOL’s type inference. Naturally, this trick is
still far from the expressiveness of full-fledged dependent types; in particular, one cannot
perform arithmetic operations or induction on these type variables (at least not without a
complex automation setup).

In Isabelle/HOL, we can additionally use the type classes (recall they are essentially
predicates on types) to further improve the encoding: For example, we would use αfinite rvec

to avoid any special treatment for infinite types α, whereas these are artificially designated
to represent dimension 1 in Harrison’s definition.

8.2 Finite Fields as a Type

Divasòn et al. used Harrison’s trick in their recent work [40] to encode Galois fields of
prime order GF(p), which are finite fields of prime order (i.e., prime cardinality). These are
represented as the type αpc mod-ring, where:

– pc is the class of finite types of prime cardinality—note that pc is a subclass of finite
– mod-ring is a type constructor defined as αfinite mod-ring = {0, . . . , |α|−1}, i.e., consisting

of the first |α| numbers

We will abbreviate αpc mod-ring as αpc GF.
Besides the usual advantage of types making proofs easier, defining prime fields as a

(polymorphic) type enables the reuse of type-based results from Isabelle’s library (such as
Gauss-Jordan elimination working over any αfield).

While using the type αpc GF, Divasòn et al. faced a natural limitation of Harrison’s trick.
They work with an (executable) factorization algorithm factor : αpc GF poly → αpc GF ×
αpc GF poly, where β poly is the type of polynomials over β, with β assumed to be a ring
(as usual, via the type class mechanism). As long as the field’s order is static (e.g., when
one executes factor directly), one can manually obtain the appropriate instance of factor. But
a problem arises if factor is used as a black box in a bigger algorithm in which the order is
computed dynamically. The algorithm would have to dynamically create a type of the given
cardinality to obtain the right instance of factor—this is not possible in HOL.

Divasòn et al. solved the problem by using Local Typedef to compile out the implicit
type parameter into an explicit term parameter in two steps. First, they defined factor’s term-
based version, factor′ : nat → int poly → int × int poly, where the type int (of integers) is
the “universe” holding the carriers of all finite fields. The order p of the field is now an
explicit term parameter, as in factor′ p. They defined a relation between α GF and int and used
the Transfer tool to move between these two representations and to obtain the correctness
theorem for factor′ from the correctness theorem for factor. Concretely, given the theorem
ϕ[αpc GF, factor], Transfer produces a theorem

prime p −→ p = |αpc| −→ ϕ′[int, factor′ p]
where ϕ′ is the isomorphic image of ϕ along the relation between α GF and int.
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Second, since α is not present in ϕ′, the assumption about α really means “for any given
prime p there exists a type of cardinality p.” Local Typedef allowed them to remove this
assumption after proving “for any given prime p, there exists a nonempty subset of natural
numbers such that the subset has cardinality p” (which is trivial, with witness {0, . . . , p−1}).
Divasòn et al. have automated the second step for their specific use case.

8.3 Types to Terms: General Case

We now describe how to carry out the second step of Divasòn et al.’s approach in general.
Recall that our goal is to use types to implicitly encode some “term information” in order
to overcome the lack of dependent types. This can be achieved through a decoding function
f : ∀αΥ . σ , where the type σ does not contain α.10 Thus any type τ of class Υ represents
the term “ f applied to τ ,” of type σ .

When working with types becomes too restrictive (e.g., we want to make induction over
αΥ ), we need to switch back to terms (which allows us take advantage of existing induction
principles for σ ), and transfer affected type-based theorems to term-based ones. Say we have
proved ∀αΥ . ϕ[α], where ϕ[α] is a polymorphic formula that represents a property about
the encoded (term) entities. From this, applying the decoding function together with ad hoc
knowledge about the behavior of the encoding, we obtain a term-based version of the above
theorem, ∀αΥ . ϕ′[ f (α)].

However, this is not good enough, since the theorem still depends on α and requires f
to be applied explicitly to α. Let us imagine for a moment that f were an ordinary function
(from terms to terms), say, f : τ → σ . Then we could easily remove f from ∀xτ . ϕ

′[ f x],
obtaining ∀yσ ∈ range f. ϕ′[y] (where range f can be described independently of f in most
practical applications). The idea is to use Types-to-Sets to translate the “types-to-terms” f
into a related “terms-to-terms” function as imagined above.

We assume that there exists f ’s relativization f on : α set → σ together with the
corresponding transfer rule. Applying our Types-to-Sets tool from Sect. 6 to the formula
∀αΥ . ϕ′[ f (α)], we obtain its relativization to sets

∀α.∀Aα set. A �= ∅ −→ Υ on A −→ ϕ′[ f on A].
Finally,11 let us assume there exist12 representation type τ and g : σ → τ set that is a right
inverse for τ -instance of f on, namely f on : τ set → σ , on some Sσ set. Then we can compile
f on out by rewriting the last theorem into the desired form

∀yσ ∈ S. g y �= ∅ −→ Υ on (g y) −→ ϕ′[y].
For theGalois field example, we use the following instantiation: σ = nat, f (α) : nat = |α|,

f on : α set → nat = |.|, S = N, g : nat → nat set = λp. {0, . . . , p − 1} and Υ on : α set →
bool = λA. prime |A|. Since it holds that Υ on (g p) ⇐⇒ prime p and g p �= ∅ for every
prime number p, we obtain

∀pnat. prime p −→ ϕ′[int, factor′ p].
We showed how Types-to-Sets allows us to compile out Harrison’s trick when we reach its

limits. This matches our introduction discussion on chasing the sweet spot between expres-

10 The type ∀αΥ . σ is not directly expressible in HOL but we can use Wenzel’s trick and write αΥ itself → σ ;
see footnote 5 on page 13.
11 We assumed that the type class Υ does not have any associated operations. Lifting the description to the
most general version of Υ is analogous to the approach in Sect. 6.4 and we omit it here.
12 In the worst case, we can always set S to be the range of f on and define g by choice.
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siveness and complexity: We can bring some of the dependent type expressiveness into HOL
theorem provers and still offer an exit strategy once the approach turns out to be too restric-
tive. We plan to look more deeply into these unknown waters to see how far we can reliably
and flexibly bend HOL towards dependent types.

9 Limitations and Future Work

We already mentioned that the dictionary construction cannot be performed for a type con-
structor depending on overloaded constants. To workaround the problem, we could also
“unfold” the definition of such a type and relativize the formula to the type’s defining pred-
icate as we did in our work on conservativity of type definitions in HOL and Isabelle/HOL
[41]. Whether this approach would yield still practically usable theorems remains an open
problem.

As mentioned, we implemented the proposed extensions (the (LT) and (UO) rules), which
are part of the Isabelle distribution since Isabelle2016-1. Our future work is to implement an
infrastructure that would streamline the relativization process as follows: it would automati-
cally define the relativized constants (all the conwith constants), prove their transfer rules w.r.t.
their nonrelativized counterparts and call the Transfer tool. These steps must be performed
manually at the moment. We do not expect any principal problems; it is just an engineering
task that must be done.

With the infrastructure in place, we plan to perform a case study, in which we would
transform one of the set-based formalizations into a type-based one and obtain the set-based
formulation by our Types-to-Sets tool. A natural candidate for such a case study would be
Isabelle’s HOL-Algebra library [42], which does not use the type classes system and instead
represents various algebraic structures by locales, which are user space parametrized theory
modules with assumptions [43]. Every such a locale represents the algebra’s axioms by
assumptions and is parametrized by the algebra’s explicit carrier and its operations. This is
a truly set-based approach.

The HOL-Algebra example exposes another limitation of Isabelle’s type system: type
classes can have only one type parameter. Since we translate sets into type parameters, we
cannot express algebraic structures with multiple set parameters (carriers) as a type class.
Indeed, our case study would have to stop at modules, which are parametrized by two sets
(corresponding to a “scalar” ring and a “vector” abelian group). In short, not every locale can
be transformed into a corresponding type class.

Since all the derived type definitional commands in the various HOL systems are imple-
mented in terms of the foundational type definition principle and this paper shows how to
localize this principle, we could in principle localize all the derived definitional commands:
we could have local quotients, local datatypes or local records. Needless to say, the local vari-
ants would be restricted to only monomorphic definitions as the Local Typedef is. Whether
this localization proposal is worth the effort, only time will tell.

10 Conclusion

In this paper, we proposed extending Higher-Order Logic with a Local Typedef (LT) rule.
We showed that the rule is not an ad hoc, but a natural addition to HOL in that it incarnates a
semantic perspective characteristic to HOL: for every nonempty set A, there must be a type
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that is isomorphic to A. At the same time, (LT) is careful not to introduce dependent types
since it is an open question how to integrate them into HOL.

We demonstrated how the rule allows for more flexibility in the proof development: with
(LT) in place, the HOL users can enjoy succinctness and proof automation provided by types
during proving, while still having access to the more widely applicable, set-based theorems.

Being natural, semantically well justified and useful, we believe that the Local Type-
def rule is a good candidate for HOL citizenship. We have implemented this extension in
Isabelle/HOL, but its implementation should be straightforward and noninvasive in any HOL
prover. And in a more expressive prover, such as HOL-Omega [13], this rule could simply
be added as an axiom in the user space.

In addition, we showed that our method for relativizing theorems is applicable to types
restricted by type classes aswell, ifwe extend the logic by a rule for compiling out overloading
constants (UO).With (UO) in place, the Isabelle users can reason abstractly using type classes,
while at the same time having access to different instances of the relativized result.

All along according to the motto: Prove easily and still be flexible.
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