
J Autom Reasoning (2019) 63:53–94
https://doi.org/10.1007/s10817-018-9461-9

Automatic Refinement to Efficient Data Structures: A
Comparison of Two Approaches

Peter Lammich1 · Andreas Lochbihler2

Received: 7 December 2016 / Accepted: 8 March 2018 / Published online: 22 March 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Weconsider the problemof formally verifying an algorithm in a proof assistant and
generating efficient code. Reasoning about correctness is best done at an abstract level, but
efficiency of the generated code often requires complicated data structures. Data refinement
has been successfully used to reconcile these conflicting requirements, but usability calls for
automatic tool support. In the context of Isabelle/HOL, two frameworks for automating data
refinement have been proposed (Lammich, in: Blazy, Paulin-Mohring, Pichardie (eds) ITP
2013, LNCS, vol 7998, Springer, Heidelberg, pp 84–99, 2013; Lochbihler, in: Blazy, Paulin-
Mohring, Pichardie (eds) ITP 2013, LNCS, vol 7998, Springer, Heidelberg, pp 116–132,
2013). In this paper, we present and compare the two frameworks and their underlying ideas
in depth. Thereby, we identify the challenges of automating data refinement, highlight the
similarities and differences of the two approaches, and show their strengths and limitations
both from the implementer’s and the user’s perspectives. A case study demonstrates how to
combine both frameworks, benefiting from the strengths of each.

Keywords Data refinement · Algorithm verification · Code generation

This article builds on the author’s individual presentations of the two approaches at Interactive Theorem
Proving 2013 [23,33].

B Peter Lammich
lammich@in.tum.de

Andreas Lochbihler
andreas.lochbihler@inf.ethz.ch

1 Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748 Garching,
Germany

2 Department of Informatics, Institute of Information Security, ETH Zurich, Universitätstrasse 6, 8092
Zurich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9461-9&domain=pdf
http://orcid.org/0000-0003-3576-0504

54 P. Lammich, A. Lochbihler

1 Introduction

Nowadays, many formalisations in proof assistants yield executable verified functional
implementations based on code generation. Examples range from language interpreters and
compilers [30,31,34] over an LTLmodel checker [7,12] and a termination certificate checker
[48] to a conference management system [20]. Early works [5,21,35] implemented contain-
ers (mostly sets and maps) inefficiently, in particular as lists and closures, or burdened the
formalisation with complex data structure details. Experience has shown that the latter makes
the proofs more complicated, and may even render proofs of medium-complex algorithms
unmanageable [22,39].Moreover, changing the implementation later means essentially redo-
ing the whole formalisation.

Awell known solution to this problem is stepwise refinement [49], where the specification
of an algorithm is refined towards an efficient implementation in several correctness preserv-
ing steps. This simplifies the verification by introducing a natural modularisation: Each step
focuses on a particular idea of the algorithm, and is independent of subsequent steps and
mostly independent on former steps.1

A particular case of a refinement step is data refinement [17], where abstract data types
are refined to implementations (e.g. sets to red-black trees), but the structure of the algorithm
is preserved. Conceptually, a data refinement step is simple: Replace the operations on the
abstract type by the corresponding operations of the implementation, and use the correctness
theorems of the implementation to prove that the resulting algorithm refines the original one.
Without dedicated support, however, this step requires a lot of effort [14,28,29,34]. To auto-
mate this task in the context of Isabelle/HOL, two frameworks have been proposed: Autoref
[23] and Containers [33]. The main difference is that Autoref performs the refinement in the
logic based on relational parametricity whereas Containers exploits the existing refinement
capabilities of Isabelle’s code generator with higher-order rewrite systems as formal basis.

Contributions In this article, we present and compare the two frameworks and their under-
lying ideas in depth. Our main contributions are the following:

– We identify the challenges of automating the refinement step (Sect. 3). As both frame-
works face the same challenges, these appear to be general challenges for data refinement
in practice.

– We discuss how each framework addresses these challenges (Sects. 4, 5). This improves
the clarity of presentation over the previously published papers [23,33], which left some
of the challenges and the limitations implicit.

– Our analysis highlights the similarities and differences of the two approaches and shows
the strengths and limitations of each framework. We assume a setting where the user has
verified an abstract algorithm and wants to refine it to use efficient data structures. In
summary, the two frameworks are complimentary (see Sect. 6 for a detailed comparison):
Autoref can handle a larger scope of specifications (in particular, it can resolve non-
determinism), but requires more machinery and work. Containers needs less effort, but
has a more limited scope.

– Our case study illustrates the usage of our frameworks in a larger formalisation con-
text, and exemplifies the combination of both frameworks to leverage their individual
advantages (Sect. 7).

1 For example, an implementation of an operation is independent of the overall correctness of the algorithm,
but may require a proof that the algorithm guarantees the preconditions of the operation.

123

Automatic Refinement to Efficient Data Structures… 55

Both frameworks are generic in the containers and their implementations. To be usable
in practice, both frameworks are connected to libraries of verified container data structures
[28,29,33] (we do not discuss the connection in detail). In that combination, both have been
used successfully in several large applications (cf. Sect. 9). The implementations of Autoref
and Containers are available in the Archive of Formal Proofs at http://www.isa-afp.org/
entries/Automatic_Refinement.shtml and http://www.isa-afp.org/entries/Containers.shtml.
Both frameworks also come with documentation and collections of examples, which include
those of this paper.2

We emphasise that neither framework requires any new axioms or any changes to the code
generator. The trusted code base is therefore not enlarged when Autoref or Containers are
used. In particular, it does not include the implementations of our tools, as Isabelle’s kernel
checks all definitions and proofs.

2 Running Example: 2SAT Via Depth-First Search

We illustrate the use of both frameworks on checking the satisfiability of a boolean formula
in conjunctive normal form with at most two literals per clause (2CNF) by analysing the
associated implication graph. Figure 1 shows a canonical formalisation of the 2CNF formu-
las and satisfiability in Isabelle/HOL: Propositional variables var are identified by natural
numbers. Literals lit are records with two fields pos and var where pos indicates whether the
variable var occurs non-negated in the literal. We write P x for the positive literal of variable
x and N x for the negative literal. A clause clause is an unordered pair of literals. Here, the
type ’a uprod from Isabelle/HOL’s standard library has one non-free constructor (|_, _|) of
type ’a ⇒ ’a ⇒ ’a uprod that ignores the order of its arguments: (|x, y|) = (|y, x|).3 By using
unordered pairs, we ensure that every clause consists of at most two literals whose order is
irrelevant. In other words, a clause is a set of literals with cardinality 1 or 2. A formula cnf is
a set of clauses. Formulas are interpreted over valuations σ of type valuation in the standard
way. We overload satisfaction � for literals, clauses, and formulas. A formula F is satisfiable
iff σ � F for some σ .

Satisfiability of 2CNF formulas (2SAT) can be decided by analysing the implication
graph of the formula. The implication graph has one vertex for each literal, and every clause
(|l, l’|) ∈ F induces two edges: one from negate l to l’ and one from negate l’ to l, where
negate negates a literal. We model the graph gr F as a set of edges, i.e., pairs of nodes. In
the following, we assume that all clauses contain exactly two literals (predicate is2cnf). This
can be ensured, e.g., by preprocessing the formula with unit propagation, which eliminates
all unit clauses of the form (|l, l|). A formula F is satisfiable iff there is no path in gr F from
a literal P x to N x and back to P x for any variable x in F (theorem 2SAT_graph, where R∗
denotes the transitive and reflexive closure of a binary relation R).

2 A Tutorial on Autoref can be found at http://www21.in.tum.de/~lammich/refine_tutorial.html, documented
examples are available in the Collections AFP entry in folder Examples/Autoref. A user guide with
examples for Containers is contained in the AFP entry.
3 Accordingly, pattern matching on (|_, _|) is only well-defined if the result of the pattern match does not
depend on the order of the components. Isabelle’s function package, e.g., therefore asks the user to prove
well-definedness.

123

http://www.isa-afp.org/entries/Automatic_Refinement.shtml
http://www.isa-afp.org/entries/Automatic_Refinement.shtml
http://www.isa-afp.org/entries/Containers.shtml
http://www21.in.tum.de/~lammich/refine_tutorial.html

56 P. Lammich, A. Lochbihler

Fig. 1 Formalisation of 2SAT and its implementation via graph reachability

(a) (b)

Fig. 2 The running example algorithm depth-first search and an example graph. aDepth-first search algorithm
in pseudo-code. b Snapshot of an example DFS execution started at node 1 taken during the visit to node 4

We now want to use this theorem to obtain an efficient satisfiability checker for 2CNF
formulas. To that end, we focus on the reachability problem on directed graphs.4 As before,
we model a graph as a set of edges E :: (’v × ’v) set, i.e., pairs of nodes. A node v can reach a
nodew (notation reachable v w) iff (v, w) ∈ E∗. Reachability can be implemented efficiently
by a depth-first search (DFS) on the graph (see Fig. 2a).

Figure 2b shows a snapshot of a DFS execution on an example graph. The search started
at node 1 and the target node is 6. The foreach loop in line 4 over 1’s successors visited node
2 before node 4. The snapshot has been taken during the visit to 4. From there, the search
continues with the successors {3, 5, 7} of 4, skipping already visited nodes (those in the grey
area).

The first task is to obtain a verified and efficient implementation of this algorithm. In the
verification part, we must prove that the DFS algorithm indeed implements the reachability
test. To ease the verification, we assume that the algorithm is formulated in a functional style
which uses mathematical sets. From there, we want to obtain an efficient implementation to

4 A more efficient algorithm can be obtained by looking at the strongly connected components (SCC) of
the implication graph instead of reachability [2]. We use reachability because it is simpler and illustrates the
challenges well. Both frameworks can be used in the same way with the SCC-based algorithm.

123

Automatic Refinement to Efficient Data Structures… 57

Fig. 3 Haskell implementation of the DFS algorithm in Fig. 2a

which the correctness theorem extends. Such an implementation could look like the one in
Fig. 3, which has been written manually in Haskell. It differs from the pseudo-code in that
it uses (unverified) efficient data structures (e.g., Set from the Haskell library), represents
graphs by the successor function rather than as a set of edges, and fixes an iteration order for
the foreach loop go. We will focus on the DFS algorithm in Sects. 3–5 when we identify
the challenges in automating the transition from formalisations of algorithms to executable
programs using (verified) efficient data structures and show how the two frameworks address
them.

The second task is to use the verified and efficient implementation in a larger formalisation
context. In Sect. 7, we demonstrate how to obtain an efficient 2SAT checker based on the
DFS algorithm by combining both frameworks and using the abstract theorem 2SAT_graph.

3 Challenges on the Road to Efficient Data Structures

In this section, we identify four key challenges in automatically transforming a pseudo-code-
like algorithm to an implementation which uses efficient data structures. The challenges
appear to be general, as both frameworks face them, although they address themwith different
approaches.We assume that the frameworks have access to a library of verified data structures,
e.g., from [28] or [37].

3.1 Identification of Types and Operations

The first challenge is to revert an important step of the formalisation process, namely the
encoding of (mathematical) concepts in the language of logic. As the concepts shall be
implemented with the available data structures from the library (see Sect. 3.2), we must
(re-)identify the concepts first. Looking only at the HOL types does not suffice. In the DFS
pseudo-code in Sect. 2, the concept graph has been encoded as (’v × ’v) set. But the same
HOL type is also used for other concepts such as orders. Clearly, we should implement the
former with efficient operations on graphs, but must not (and cannot) do so for the latter.

123

58 P. Lammich, A. Lochbihler

Similarly, finite maps are usually modelled as ’a ⇒ ’b option in Isabelle/HOL, but ordinary
functions that might fail and not return a result have the same type.

As we focus on implementing the concepts, it suffices to describe a concept with an
abstract interface, i.e., what operations are used or available. We call this abstract interface
the conceptual type. For example, a graph provides a function to retrieve the successors of a
node, its predecessors, or the sets of all vertices and edges.

We have already seen that the HOL type does not suffice to determine the intended concep-
tual type. Moreover, the operations of a conceptual type do not always correspond to single
constants in HOL. For example, the set of successors of a node v is conveniently written
as E ‘‘ {v} in HOL, where R ‘‘ A denotes the image of the set A under the binary relation
R and {x} is just syntactic sugar for insert x {}. So, the abstract successor operation succs is
expressed by the HOL term λE x. E ‘‘ insert x {}, but this term hardly ever appears literally
in abstract programs, because HOL terms are automatically β-reduced.

Identifying the conceptual types in an abstract program is the first challenge in translat-
ing the program to a version that uses efficient data structures. Due to the ambiguities of
encodings, full automation is not possible. Therefore, the Autoref and Containers framework
provide heuristics that support the user in this task.

3.2 Selection of Data Structures

Suppose that the conceptual types and operations have been identified. Next, adequate data
structures must be chosen. Ideally, the chosen data structures provide efficient implemen-
tations of all operations required by the program. For example, a conceptual graph can be
implemented using a successor function, or an adjacency matrix, or a successor and a prede-
cessor function. A successor function, which maps each vertex to the set of its successors,
works fine if we only need the operation succs, but it supports a predecessor operation only
inefficiently, if at all. The combination of successor and predecessor function supports both,
and so do adjacency matrices when a conversion between indices and nodes is available. The
DFS example needs only the successor operation, so all of the listed implementations can be
used. The manual Haskell implementation in Fig. 3 in fact represents graphs by the successor
operation.

To relieve the user from having to choose implementations manually, both frameworks
provide automation and heuristics. Automation selects the implementations that support all
required operations and the heuristics then pick one of the selected ones. If necessary, the
user can control the selection and override the heuristics.

Despite the different approaches to implementing the choice, the heuristics of the two
frameworks are similar. In the remainder of this section, we discuss the two most important
ones, namely (i) preferences for data structures and operations, and (ii) the homogeneity
principle.

Preferences determine which data structures and which operations (on the same data
structure) are preferred over others provided that both are applicable. For implementing a
set, e.g., red-black trees are preferred over lists, but they need a total order on the elements.
Accordingly, a set of integers becomes a red-black tree and a set of complex numbers a list,
unless we define a total order on complex numbers that is dedicated for red-black tree access.
For operations, the situation is similar; the specialised union operation on red-black trees
takes precedence over the generic implementation, which uses iteration and insertion.

The homogeneity principle says that the result of an operation should use the same data
structure as its inputs, if possible. This avoids unnecessary conversions between data struc-
tures and requires less user annotations. For example, inserting an element into a set should

123

Automatic Refinement to Efficient Data Structures… 59

not change the implementation of the set. Hence, if a set A of integers is implemented as a
list, then insert n A also returns a list (and in particular does not convert A into a red-black
tree first).

3.3 Non-Determinism

Algorithmic descriptions often use non-deterministic operations, e.g., when all possible inter-
pretations are correct because the choice does not matter. In the DFS example in Fig. 2a, the
foreach loop in line 4 does not determine the order of iteration over the successors. In the
situation of Fig. 2b, dfs can visit node 5 or node 7 next. However, the order of iteration does
affect the set of visited nodes. When dfs has terminated, depending on this choice, V will
contain either node 5 or node 7. This non-determinism clashes with HOL functions being
deterministic and total. Consequently, a functional implementation of DFS in HOL must
refine this non-determinism.

For efficiency reasons, the implementation should exploit the freedom of how to resolve
the choice. In Fig. 3, the set of successors is implemented as a list, and the foreach loop
go processes the elements in the order as they appear in the list. So there is no point in re-
arranging the list into a distinguished order first (e.g., sorted). But different lists (e.g., [5, 7]
and [7, 5]) can represent the same set (e.g., {5, 7}). Thus, there are different iteration orders
that cannot be distinguished in the logic on the abstract level of sets.

Hilbert’s choice operator (written SOME x. P x in Isabelle) seems to offer an easy imple-
mentation of the foreach loop in the logic: just have it choose the iteration order. Yet,
underspecified choice cannot be implemented at all in HOL, as discussed in [29,34]. The
reason is that the interpretation of the choice operator in a model of HOL is fixed (although
underspecified). However, any implementation would have to commit to a specific choice,
which cannot be proved to coincide with the one in the model due to the underspecification.

As we want to obtain an implementation in a deterministic functional language (the target
programming languages of Isabelle’s code generator in our case), any non-determinism has
to be resolved on the way down to executable code. There are two ways how this can be
achieved in HOL:

1. If the non-determinism does not affect the result of a function, it is sound to work with a
function in Isabelle/HOL, and let the code generator resolve the non-determinism later.
In the running example, we only care about reachability, not about the set of visited
nodes, i.e., the Boolean result of dfs is deterministic. Hence, dfs can be formalised as a
function. To that end, we build on the work by Nipkow and Paulson [38]. They showed
that in foreach loops, left-commutativity of the loop body ensures that the result does
not depend on the order of iteration.5

2. Non-determinism can be modelled by relations between inputs and outputs. Lammich
and Tuerk [29] have developed a language for formalising algorithms as relations and
reasoning about them. This approach works for all non-deterministic specifications. For
example, one could also return a path between the two nodes in case of reachability.
Since the path depends on how the non-determinism is resolved (1 → 4 → 5 → 6 vs.
1 → 4 → 7 → 6), this is not possible with the previous approach. Using a refinement
calculus [3], the relational specification can be refined until it becomes deterministic,
e.g., by replacing iteration over a set by iteration over a list representing the set. The
Autoref tool automates such refinements.

5 A function f is left-commutative iff f x (f y z) = f y (f x z) for all x, y, and z.

123

60 P. Lammich, A. Lochbihler

3.4 Scalability in the Number of Data Structures

As the library of verified data structures grows, a naive framework can easily run into scalabil-
ity problems. For example, sets can be implemented by characteristic functions, lists, distinct
lists, various search trees, hashing, etc. The scalability issue shows up most quickly with
binary operations such as −, ∩ and ∪. They must handle all combinations of different data
structures in the parameters, which grows quadratically with the number of available ones.
Therefore, we cannot have one dedicated implementation for every combination without
sacrificing scalability.

Generic programming [36] offers a solution: Many operations on data structures can be
implemented in terms of a few basic operations. For finite sets, e.g., the empty set {}, insertion
insert, deletion delete, membership test∈, and folding fold suffice. For instance, set difference
can be expressed as A − B = fold delete A B.

Clearly, A − B can be implemented more efficiently. For example, the following takes the
size of the sets (notation | |) into account—if B contains more elements than A, the resulting
set is built from the empty set by inserting the remaining elements rather than removing B’s
from A.

A − B = if |B| > |A| then fold (λx. if x ∈ B then id else insert x) {} A
else fold delete A B

Here, the then branch builds the result from the empty set by insertion. So, it is the generic
implementation that must select the implementation for the result in this case. Of course,
the same heuristics as in Sect. 3.2 apply. If both operands have the same implementation,
homogeneity dictates that the result also uses this implementation (if possible). Otherwise,
preferences guide the choice again.

Some combinations of data structures warrant a dedicated implementation for efficiency
reasons. For example, if both A and B are implemented with red-black trees and of approx-
imately equal size, one can implement A − B in linear time following [1]. For modularity
reasons, such special cases must not be coded into the generic implementation. Therefore,
we set the preferences for operation selection such that generic algorithms are used only
as a fall-back option when there is no specialisation. Each framework realizes generic pro-
gramming and specialisation differently due to their different approaches; see Sects. 4.5 and
5.7.

4 Autoref

The Autoref framework transfers an abstract program to its implementation by replacing
abstract data types by concrete ones using ideas from relational parametricity (see Sect. 4.2).
The result is (i) a concrete HOL program for which Isabelle/HOL can generate executable
code, and (ii) a theorem that the concrete program correctly refines the original abstract one.
Non-deterministic specifications are handled naturally thanks to parametricity.

4.1 Running DFS Example

The implementation of the DFS algorithm in Fig. 4 lives in a context which fixes the edge
relation E of the graph, the start node src, and the target node tgt. The algorithm dfs itself
is defined in the non-determinism monad of the Monadic Refinement Framework [29] and
follows the pseudo-code in Fig. 2a.

123

Automatic Refinement to Efficient Data Structures… 61

Fig. 4 DFS written in the Monadic Refinement Framework

First, dfs checks whether the current node v is the target, and if so, returns immediately
(line 5). Otherwise, it adds the current node v to the visited set V (line 7) and invokes itself
recursively for each of v’s successors which have not yet been visited (line 9). The recursion
is expressed with the recursion combinator rec (line 4) where the state consists of the set of
visited nodes V and the current node v. The state of the foreach loop over the successors
(line 8) consists of the set of visited nodes V and a break flag brk which interrupts the loop
once the target node has been found. Recall from Sect. 3.1 that E ‘‘ {v} denotes the set of v’s
successors.

Using the Monadic Refinement Framework, it is easy to show correctness:

lemma dfs_correct:
assumes ∀v. (src, v) ∈ E∗ −→ finite (E ‘‘ {v})
shows dfs � (spec r. r ←→ (src, tgt) ∈ E∗)

The assumption expresses that the reachable part of the graph is finitely branching, which
ensures that the foreach loop is well-defined. The conclusion states that dfs returns whether
tgt is reachable from src. This is a partial correctness statement, i.e., the algorithm may
not terminate. Note that the Isabelle code generator only ensures partial correctness for the
generated code anyway. Yet, it is possible to prove termination of recursive definitions in
the Monadic Refinement Framework. This guarantees that the code that stems from the
recursive calls expressed in the Monadic Refinement Framework will terminate, but there
are no guarantees that the overall generated code terminates, too.6

The next step synthesises an executable version of this algorithm by replacing the set
data types by efficient implementations. Figure 5 shows how the Autoref tool is used for
this task. We use a schematic goal statement to initiate the synthesis (line 1). The variables
prefixed with ? are instantiated during the proof. Thus, the proved theorem will have the
shape indicated by the term after the shows keyword in line 5, where ?f::?’c dres will have
been replaced by the synthesized program and ?R by the refinement relation. The fixes part in
line 2 restricts the nodes to have a linear order. The assumes part (line 3) fixes the refinement
for the edge relation: It is implemented by a successor function, which, for each node, returns

6 HOL has no notion of computation. It is therefore in principle impossible to formally prove termination of
an algorithm shallowly embedded in HOL. One can only prove termination for the part of the computation
that is (deeply) embedded into the monad.

123

62 P. Lammich, A. Lochbihler

Fig. 5 Refinement of DFS with Autoref

Fig. 6 The refinement theorem generated by the proof in Fig. 4

a distinct list of successor nodes. The relation 〈R〉succg_rel relates successor functions to
edge relations, given a relation R for the vertices of the graph. Here, we choose the identity
relation, such that nodes are implemented by themselves.7 (In detail, this part produces the
theorems (src, src) ∈ I d and (tgt, tgt) ∈ I d and declares them to Autoref.) The program
?f::?’c dres to be synthesised lives in a deterministic (executable) monad, and nres_of lifts
it to the nondeterminism monad of the refinement framework, which is not executable.

We unfold the definition of dfs and invoke the autoref_monadic proof method in line 6.
This instantiates ?f by the concrete program and ?R by the refinement relation and proves
the theorem. The command concrete_definition defines a new constant for the synthe-
sised program, where the argument order is specified in the for-clause, and the command
prepare_code_thms converts the recursion combinator to recursive equations as required by
the code generator. Finally, the command export_code generates code in several functional
languages.

Figure 6 shows the refinement theoremproved by autoref_monadic (we replaced generated
variable names by meaningful ones to make it more readable). The synthesised program uses
a deterministic monad with three possible outcomes: a result dRETURN x, non-termination

7 Autoref can also generate an implementation for an arbitrary polymorphic node type and refinement relation,
if one provides a comparison operator. This general case is illustrated in the example theories accompanying
this paper.

123

Automatic Refinement to Efficient Data Structures… 63

dSUCCEED, or assertion failure dFAIL. (Our program contains no run-time assertions.) The
structure of the synthesised program is exactly the same as of the original program.Only some
abstract operations have been replaced by concrete ones. For example, the membership query
v ∈ V in the original program gets implemented asmap2set_memb (λk t. rbt_lookup t k) v V .

Behind the scenes, the following has happened: First, the operation identification heuris-
tics has identified a set membership operation. Second, the implementation type selection
heuristics has decided to implement this set by a red-black tree. Third, the first synthesis
step yielded an algorithm that uses the implementation data structures, but is still defined
in the non-determinism monad. In Autoref, the set implementation by red-black trees is
done via a generic algorithm, which converts map implementations with value type unit to
set implementations. The generic algorithm for membership is called map2set_memb. As
first argument, it takes the lookup operation of the map, in this case rbt_lookup. Fourth, a
second synthesis step transfers the implementation from the non-determinism monad to the
deterministic monad. The separation into two steps is done because the second step can also
generate a plain HOL function (without any monad) provided that an unconditional termina-
tion proof is given for every non-tail recursion. These steps will be explained in more detail
in Sect. 4.3, and are also illustrated in the example theories accompanying this paper.

The concrete_definition command extracts the synthesised code from the theorem as a
new constant and generates the theorem dfs_impl.refine, which links the new constant to the
original theorem:

(succi, E) ∈ 〈succg_rel〉list_set_rel
−→ nres_of (dfs_impl succi src tgt) � ⇓ bool_rel (dfs E src tgt)

Combining this with the abstract correctness theorem dfs_correct from above, we get the
following theorem:

theorem dfs_code_correct:
assumes (succi, E) ∈ 〈Id〉succg_rel
shows case dfs_impl succi src tgt of

dSUCCEED ⇒ True
| dRETURN r ⇒ r ←→ (src, tgt) ∈ E∗
| dFAIL ⇒ False

That is, the implementation may not terminate (yield dSUCCEED), but must not fail; if it
returns a result r , this result indicates whether the target node is reachable.

4.2 Synthesis Based on Parametricity

In this section, we describe the theory behind the automatic refinement tool without going
into the details of its implementation.

4.2.1 Relators

Relators offer a systematic way to construct relations for data refinement. We start with
the simple case of trivial refinement and then consider increasingly complex relations. In
general, an implementation and the corresponding conceptual type are related by a relator
which takes relations as argument that describe the implementations for the type arguments
of the conceptual type (e.g., a set type has unary relators and a map type has binary relators).

Some of Isabelle/HOL’s data types should be implemented by themselves. For example
natural numbers, integer numbers, and Booleans are supported directly by the code generator,

123

64 P. Lammich, A. Lochbihler

and there is usually no need to refine them. Therefore, the refinement relations nat_rel,
int_rel, and bool_rel are the identity relation on the corresponding types. For example, we
write (ni, n) ∈ nat_rel to express that ni implements the natural number n (which is logically
equivalent to ni = n).

In the next paragraphs, we present the stepwise construction of a relator to implement
sets by lists of disjoint elements, i.e., distinct lists. First, suppose we want to implement the
elements of the set by themselves. We define a relation from lists to sets by

list_set_rel_aux = br set distinct

where br α I = {(c, a). I c ∧ a = α c} defines a refinement relation from an abstraction func-
tion and an invariant. Here, the abstraction function set converts lists to sets, and the invariant
distinct ensures a distinct list. Note that not every list implements a set, nor does every set
correspond to a list in this relation. The list [1,1], e.g., is not distinct and thus does not imple-
ment a set. And the set {i. i > 5} of natural numbers is infinite and thus cannot be represented
by a list.

Consider the operation of inserting an element into a set. We define the implementation
on lists by

insert_impl x l = (if x ∈ set l then l else x # l)

and state (and prove) that insert_impl correctly implements inserting an element into a set
represented by a distinct list by

∀l s. (l, s) ∈ list_set_rel_aux −→ (insert_impl x l, insert x s) ∈ list_set_rel_aux

This can be written more concisely as

(insert_impl, insert) ∈ Id → list_set_rel_aux → list_set_rel_aux

where Id is the identity relation and → denotes the function relator given by

R1 → R2 = {(f, g). ∀x y. (x, y) ∈ R1 −→ (f x, g y) ∈ R2},
which combines a refinement relation R1 for the argument and a refinement relation R2 for
the result into a refinement relation for the function. Note the syntactic similarity of the
statement to the type declaration insert :: ’a ⇒ ’a set ⇒ ’a set.

Next, suppose we want to refine the elements of a list, but keep the list structure. For this
purpose, we define list_rel to be the natural relator on lists. It lifts a relation for the elements
to a relation on lists of the same length in which the corresponding elements are related. It is
defined inductively by the following two rules:

([], []) ∈ 〈R〉list_rel
(x, y) ∈ R (xs, ys) ∈ 〈R〉list_rel

(x # xs, y # ys) ∈ 〈R〉list_rel

Now consider, e.g., the append operation. With respect to list_rel, it is implemented by itself,
regardless of how the elements of the list are implemented. This fact is stated as

(append, append) ∈ 〈R〉list_rel → 〈R〉list_rel → 〈R〉list_rel

where R is a variable that can be instantiated with any relation, e.g., list_set_rel_aux. Again,
note the similarity to the type append :: ’a list ⇒ ’a list ⇒ ’a list. Like for lists, a natural
relator can be defined for any algebraic data type (sumof products), and this is even automated
in Isabelle/HOL’s data type package [6].

Finally, suppose we want to implement sets by distinct lists with some refinement relation
R for the elements of the set. The appropriate refinement relation can be constructed as the

123

Automatic Refinement to Efficient Data Structures… 65

composition of the relations described above: First, we use the natural relator on lists to map
from a list of concrete elements to a list of abstract elements. Then, wemap the list of abstract
elements to a set. Formally, (l denotes relation composition)

〈R〉list_set_rel = 〈R〉list_rel l list_set_rel_aux

For the singleton set operation λx. {x}, e.g., (λx. [x], λx. {x}) ∈ R → 〈R〉list_set_rel holds.
The situation is more subtle for the refinement between insert_list and insert, as equal-
ity on abstract elements does not imply equality on concrete elements. For example, in
a set of sets implemented by a list of lists, the two lists [1,2] and [2,1] both repre-
sent the same inner set {1,2}. To this end, we specify a concrete equality operation eq
with (eq, op =) ∈ R → R → bool_rel and generalise insert_list to glist_insert :: (’a ⇒ ’a ⇒
bool) ⇒ ’a ⇒ ’a list ⇒ ’a list, which takes the equality operation as an argument. It inserts
the element only if it is not eq-equal to any element in the list. Then, we can prove the
conditional refinement theorem

(eq, op =) ∈ R → R → bool_rel

(glist_insert eq, insert) ∈ R → 〈R〉list_set_rel → 〈R〉list_set_rel
(insert)

where op turns infix operations into prefix operations, i.e., op = means λa b. a = b.
Similarly, most other set operations require an equality operation for the element type.

Note that an equality operation exists for a refinement relation R iff R is single-valued,
i.e., every concrete value refines at most one abstract value. This makes 〈R〉list_set_rel more
intuitive, as it excludes strange effects such as a non-distinct list of concrete elements refining
a distinct list of abstract elements.

4.2.2 Synthesis Based on Relators

Next, we consider synthesis for a HOL term t which consists of constants, variables, function
application, and lambda abstraction. To that end, we assume that for each constant or free
variable c in t , we are given a parametricity rule of the form (c′, c) ∈ R, where the imple-
mentation c′ is related to c by the refinement relation R. Using these parametricity rules and
the following rules for application and abstraction, we can derive a refinement theorem of
the form (t ′, t) ∈ R.

(f ′, f) ∈ R1 → R2 (x ′, x) ∈ R1

(f ′ x ′, f x) ∈ R
(app-refine)

∀x x ′. (x ′, x) ∈ R1 −→ (t ′, t) ∈ R2

(λx ′. t ′, λx . t) ∈ R1 → R2
(abs-refine)

If we select consistent refinement rules for the constants and free variables of t , we can even
synthesise the term t ′ and the relator R by applying these rules according to the syntactic
structure of t .

4.2.3 Side Conditions

Not all constants are parametric, though. For example, the function hd :: ’a list ⇒ ’a
returns the first element of a non-empty list. We would like to have the theorem
(hd, hd) ∈ 〈R〉list_rel → R. But we cannot prove (hd [], hd []) ∈ R, because the function hd
is specified solely by the equation hd (x # xs) = x, which does not say anything about hd [].

123

66 P. Lammich, A. Lochbihler

In fact, hd is only parametric for non-empty lists, i.e., we have the conditional parametricity
rule

l �= [] (l’, l) ∈ 〈R〉list_rel

(hd l’, hd l) ∈ R

In general, we can prove a function parametric only for those arguments for which their HOL
specification uniquely determines the result. When using such a rule during synthesis, the
side condition has to be discharged.

Moreover, there can bemultiple rules for the same operation and the same implementation
type, which only differ by the side condition. This makes it possible to base the choice of
operations on side conditions. Consider, e.g., the insertion operation on sets implemented
by distinct lists. If we can prove that the inserted element is not in the set, the insertion
can be implemented in constant time by consing. Otherwise, we have to use the linear-time
operation glist_insert, which checks whether the element is already in the list, as expressed
by the general rule (insert) above. The specialised rule with a side condition is

x /∈ s (x’, x) ∈ R (l, s) ∈ 〈R〉list_set_rel

(x’ # l, insert x s) ∈ 〈R〉list_set_rel

There are also synthesis rules that provide additional information to subsequent synthesis
steps. For example, when synthesising the then-branch of an if-then-else expression, we may
assume that the condition is true. Similarly, for the else-branch, we may assume that the
condition is false. Thus, for if-then-else, we use the following congruence synthesis rule:8

(b’, b) ∈ bool_rel b �⇒ (t’, t) ∈ R ¬b �⇒ (e’, e) ∈ R

(if b’ then t’ else e’, if b then t else e) ∈ R

This way we can handle terms like if l=[] then 0 else hd l, where the precondition needed
for the refinement of hd is provided by the refinement of the enclosing if-then-else term.

Choosing which rules are applied if there are multiple possibilities is subject to some
heuristics in the Autoref tool, which are described in Sect. 4.3.

4.2.4 Generic Algorithms

A precondition of a rule may also trigger the synthesis of a refinement for a constant which
does not occur in the original term. In the previous section, the rule for inserting an element
into a set implemented by a list triggers the synthesis of a refinement for the equality operator.
Along the same lines, arbitrary generic algorithms can be defined. For example, the subset-or-
equal operation can be implemented by bounded quantification and a membership operation,
as expressed by the following rule:

lemma generic_subset_by_ball_and_mem:
fixes R :: (’c × ’a) set
assumes (balli, Ball) ∈ 〈R〉Rs1 → (R→bool_rel) → bool_rel
assumes (memi, op ∈) ∈ R → 〈R〉Rs2 → bool_rel
shows (λs1 i s2 i. balli s1 i (λx. memi x s2 i), op ⊆)

∈ 〈R〉Rs1 → 〈R〉Rs2 → bool_rel

8 We call such rules congruence synthesis rules, because they generalise both the parametricity theorem
(if _ then _ else _, if _ then _ else _) ∈ bool_rel → R → R → R and the congruence rules known from con-
textual rewriting:

b = b’ b �⇒ t = t’ ¬b �⇒ e = e’

(if b then t else e) = (if b’ then t’ else e’)

123

Automatic Refinement to Efficient Data Structures… 67

Note that this rule works for all set implementations where bounded quantification can be
synthesized for the first set (implemented by relator Rs1), and a membership operation can
be synthesized for the second set (implemented by relator Rs2).

4.3 The Automatic Refinement Tool

In the last subsection,we have presented the basic principles of parametricity-based synthesis.
Here, we describe the implementation of these ideas in the Autoref tool.9 Given a term over
abstract data types as input, Autoref synthesises a corresponding term over implementation
data types and the refinement theorem relating the two terms. The synthesis is done in three
phases:

Operation Identification First, a heuristics tries to identify the conceptual types that occur in
the abstract term (cf. Sect. 3.1). The term is rewritten such that every abstract operation is
represented by a single constant. Every such constant can belong to only one conceptual
type.

Implementation Selection The second phase selects implementation types for the conceptual
types. The goal is to find a consistent selection of implementation types such that all
required operations are available for these types. The result of this phase is an annotation
of the abstract term that indicates over which concrete types to implement each operation.
The actual selection of implementation types is influenced by various heuristics (cf.
Sect. 3.2) and configuration options specified by the user. For example, the user may
specify declare ty_REL[where R=〈nat_rel〉dflt_rs_rel, autoref_tyrel] to instruct Autoref
to implement sets of natural numbers by red-black trees, which are related to sets by the
relator dflt_rs_rel. Note that such hints may be overridden by other heuristics, e.g., the
homogeneity principle.

Translation The third phase transfers the operations from the abstract data types to the
selected implementation types. In general, it has to select between multiple concrete
operations available for the indicated implementation types. For this, it takes into account
whether side-conditions can be proved, operations required by generic algorithms can be
synthesised, and it prefers specialised operations over generic ones.

Example 1 Consider the synthesis of a successor operation on graphs.We set up the following
synthesis goal:

schematic_goal
fixes succ :: nat ⇒ nat list and E :: (nat×nat) set and v :: nat
assumes [autoref_rules]: (succ, E) ∈ 〈nat_rel〉succg_rel
notes [autoref_rules] = IdI[of v]
shows (?f::?’c, E ‘‘ {v}) ∈ ?R

We consider a graph E over natural numbers which is implemented by the successor function
succ as indicated by the relator succg_rel. The node v is implemented by itself, which is
declared to Autoref by the theorem IdI[of v], which expands to (v, v) ∈ nat_rel. We want to
synthesise an implementation for the abstract term E ‘‘ {v}.

First, the operation identification phase rewrites the term to a successor operation and
inserts conceptual type annotations. The term E ‘‘ {v} in the goal is rewritten to:

9 The autoref_monadic method that we invoked in the example in Sect. 4.1 is a wrapper for the Autoref tool
to be used with the Monadic Refinement Framework [29]. After the actual synthesis, it performs some defor-
estation optimisations and transfers the resulting program from the non-determinismmonad of the Refinement
Framework to a deterministic program for which code can be generated. Here, we describe the actual Autoref
tool, which is independent from the Monadic Refinement Framework.

123

68 P. Lammich, A. Lochbihler

(OP op_succ :::i 〈i_nat〉i_graph → i_nat → 〈i_nat〉i_set) $
(OP E :::i 〈i_nat〉i_graph) $ (OP v :::i i_nat)

For technical reasons (to control Isabelle’s higher-order unification algorithm), function appli-
cation is rewritten to an explicit constant $, which is defined as f $ x ≡ f x, and operations
are tagged with the constant OP x ≡ x. Each operation is annotated by its conceptual type
(notation :::i). Here, the operation identification heuristics has identifiedE to be of conceptual
type 〈i_nat〉i_graph: this was inferred from the declaration (succ, E) ∈ 〈nat_rel〉succg_rel
and the fact that succg_rel is a relator for graphs.

Second, the implementation selection phase infers a consistent annotation of relations.
The term is further rewritten to:

(OP op_succ ::: 〈nat_rel〉succg_rel → nat_rel → 〈nat_rel〉list_set_rel) $
(OP E ::: 〈nat_rel〉succg_rel) $ (OP v ::: nat_rel)

moreover, the variable ?R is instantiated to 〈nat_rel〉list_set_rel. Here, the conceptual type
annotations have been replaced by compatible relator annotations (notation :::). None of the
heuristics had to be applied here: a successor function is the only known implementation for
E, so there is only one consistent annotation.

Finally, the translation phase instantiates ?f ::?’c. The proved theorem is:

(succ, E) ∈ 〈nat_rel〉succg_rel −→ (succ v, E ‘‘ {v}) ∈ 〈nat_rel〉list_set_rel

In the next subsections, we describe the three phases of Autoref in greater detail.

4.4 Identification of Operations

To identify the conceptual types and operations in a given term,Autoref uses type elaboration.
The idea is to rewrite non-atomic subterms that might represent an operation to a single
constant, and backtrack over rewriting until the term becomes typeable.

Formally, a conceptual type T is either a variable or a constructor applied to conceptual
type arguments:

T ::= V | 〈T,. . . ,T〉 C

The notation c :i T expresses that the constant c has the conceptual type T . For example, the
conceptual type constructor for graphs is i_graph and the successor operation has the type
op_succ :i 〈V 〉i_graph → V → 〈V 〉i_set, where V is the type variable for vertices and →
and i_set denote the conceptual function and set type, respectively. In general, conceptual type
constructors correspond to HOL type schemas, but not type constructors. Thus, conceptual
types are more abstract than HOL types. For example, 〈V 〉i_graph corresponds to the HOL
type (’v × ’v) set if V corresponds to ’v. Hence, the conceptual type constructor i_graph
itself corresponds to the HOL type schema (_ × _) set.

Identification of conceptual operations uses a set of rewrite rules of the form
pat ≡ c x1. . . xn , where c is a constant and the xi are variables that also occur in pat .
For the successor operation in the graph example, the rule E ‘‘ {x} ≡ op_succ E x replaces
the HOL encoding E ‘‘ {x} with the constant op_succ.

The actual operation identification is done by solving a type elaboration problemaccording
to the rules in Fig. 7. A type elaboration of the form Γ � t � t ′ : T means that in context Γ ,
the term t can be rewritten to t ′ such that t ′ has type T . The rules are standard except for the
rew rule, which, for a rewrite rule t≡t’, matches the current term against the left hand side

123

Automatic Refinement to Efficient Data Structures… 69

Fig. 7 Type elaboration rules for identifying operations and conceptual types

t , replaces it by the right hand side t ′, and then elaborates the new term.10 The elaboration
algorithm first tries to apply a rew rule. Only if the matching rew rules do not lead to a valid
typing, it backtracks to use the ctxt , const , app, or abs rules.

As Autoref’s algorithm tries rewriting before the standard rules for abstraction and appli-
cation, it will find an operation of a conceptual type for which a rewrite pattern is set up
before it decomposes the compound HOL term into functions and arguments. Thus, if only
operations compatible with a conceptual type are used, this type will be inferred, instead of
the more elementary function type.

Example 2 Consider the following conceptual typing facts and patterns, which are part of
Autoref’s default setup for maps. (We omit the tags OP and $ for readability.)

op_map_empty :i 〈K,V〉i_map
op_map_lookup :i K → 〈K,V〉i_map → 〈V〉i_option
λ_. None ≡ op_map_empty
m k ≡ op_map_lookup k m

Moreover, consider the following synthesis setup:

schematic_goal
fixes mi :: (nat × bool) list and m :: nat ⇒ bool option and k :: nat
assumes [autoref_rules]: (mi, m) ∈ 〈nat_rel,bool_rel〉list_map_rel
notes [autoref_rules] = IdI[of k]
shows (?f::?’c, m k) ∈ ?R

Here, list_map_rel is the relator to refine maps by association lists. From the declarations,
Autoref infers the additional typing facts m :i 〈i_nat, i_bool〉i_map and k :i i_nat. Therefore,
on operation identification, the term m k is first rewritten to op_map_lookup k m, and this
yields a consistent typing.

Now, consider the term t ≡ let m = λx. Some (x + 1) in m 3. The rewrite rule for
op_map_lookup matches in many positions, but none of these rewrites leads to a con-
sistent typing. For example, consider the subterm Some (x+1). It could be rewritten to
op_map_lookup (x+1) Some. However, this term is untypeable, as there is no rule to
type Some as i_map. Thus, the heuristics backtracks, and m gets the conceptual type
K → V i_option. Similarly, m 3 gets rewritten to op_map_lookup 3 m first, before backtrack-
ing and interpreting m 3 as function application.

In practice, this heuristics works quite well. In the rare cases when it fails, the
term can be rewritten manually or annotations can be added. For example, the term
λx. (None :::i 〈A〉i_option) gets typed as a function.

10 We assume that application of a rule involves unification, as is standard in Isabelle. Thus, we do not
explicitly indicate matching in the rules.

123

70 P. Lammich, A. Lochbihler

4.5 Selection of Implementations

After the conceptual types have been identified and the term has been rewritten such that each
operation is represented by a single constant, the Autoref tool tries to find implementations of
the conceptual types such that every operation can be realised. As described in Sect. 4.2, the
synthesis is done by decomposing the abstract term using the refinement rules for application
and abstraction as well as refinement rules for the constants and free variables. Typically,
there are several refinement rules for a constant (e.g., there are multiple set implementations,
and each of them comes with a refinement rule for the membership operation.). But only if
we choose the refinement rules consistently within the abstract term, synthesis will succeed.

The implementation selection phase annotates each constant in the abstract term with
a relation that restricts the applicable refinement rules to those that use the imple-
mentations indicated by the annotated relation. For example, if we annotate op ∈ by
nat_rel → 〈nat_rel〉list_set_rel → bool_rel, we fix the implementation of the set to distinct
lists and the implementation of the elements to natural numbers. The synthesis phase then
tries only refinement rules compatible with this annotation.

Even with annotations, there may still be several compatible rules, e.g., a generic and
a specialised algorithm for the same operation. The implementation selection phase only
ensures that the relations are consistent, and that there is at least one implementation for the
selected relations. While it considers operations introduced by generic algorithms, it ignores
semantic side conditions. Thus, the final synthesis phase may fail due to unsolvable semantic
side conditions. This incompleteness is a design decision. It helps to separate the phases
and reduces the search space when backtracking, which makes the Autoref tool faster on
large terms. We have not encountered practical problems with this incompleteness, as the
semantic side conditions are usually the same for all implementations. In order to force a
specific implementation, the user can add relator annotations to the term, which force the
annotated subterms to be implemented with the specified relators.

The operation selection heuristics is, again, modelled as a type inference problem. From
the given term, we first generate a set of initial typing constraints. For example, reconsider the
term m k from Example 2. The initial constraints are the following, where variables prefixed
with ? can be instantiated later:

m : 〈?R_nat1, ?R_bool1〉?R_map
k : ?R_nat2
op_map_lookup : ?R_nat2 → 〈?R_nat1, ?R_bool1〉?R_map → 〈?R_bool2〉?R_option

The structure of the relations is derived from the conceptual type annotations from the oper-
ation identification phase. Note that the same conceptual type may be refined differently.
For example, the Boolean in the map and the Boolean in the result of op_map_lookup get
assigned different relator variables initially (?R_bool1 vs. ?R_bool2). Similarly, the relator
variable for k differs from the variable for the keys in the map.

The initial constraints are now processed by different heuristics, with the goal of assigning
concrete relators to the variables. These quite complicated heuristics have evolved over many
iterations of implementing and improving the framework and have proven useful in practice.

4.5.1 Homogeneity Rules

The first heuristics processes the constraints and tries to unify each constraint with homo-
geneity rules. There is a list of homogeneity rules, and the heuristics picks the first one that

123

Automatic Refinement to Efficient Data Structures… 71

unifies, and instantiates the variables of the constraint accordingly. For example, there is the
homogeneity rule

op_map_lookup : ?Rk → 〈?Rk, ?Rv〉?Rm → 〈?Rv〉option_rel

This unifies with the third constraint and we get the instantiation

?R_nat2 �→ ?R_nat1 and ?R_bool2 �→ ?R_bool1 and ?R_option �→ option_rel

Note that this heuristics limits the possible solutions, and even may render a solvable set
of constraints unsolvable. However, in practice, we have not yet encountered problems with
this heuristics, as there are typically rules for the homogeneous case. If there should occur
problems in future extensions of the tool, the heuristics could easily be modified to be less
aggressive, for example to apply homogeneity rules only if there remain applicable rules for
the constraint.

4.5.2 Anti-Unification

The second heuristics instantiates the variables as far as no solutions are lost. Formally, this
is realised by anti-unification [41] of the constraint with all rules declared to Autoref, i.e.,
the RHS of the constraint is replaced by the most specific instance that unifies with all rules
it unified with before. This heuristics, obviously, does not limit the search space. However, it
usually instantiates the relations for the primitive types, as well as the relations for parameter
variables (like m and k). This is important for the next heuristics. In our running example, all
remaining relator variables get instantiated, as they occur in the constraints for m or k. Thus,
the constraint system now is:

m : 〈nat_rel, bool_rel〉list_map_rel
k : nat_rel
op_map_lookup : nat_rel → 〈nat_rel, bool_rel〉list_map_rel → 〈bool_rel〉option_rel

4.5.3 Type-Based Heuristics

The next heuristics tries to implement specific abstract types with specific relations. Its input
is a set of hint relations, specialised to a specific abstract type. For example, the hint relation
〈nat_rel, ?Rv〉dflt_rm_rel indicates that maps from natural numbers shall be implemented by
red-black trees with the default ordering (�).

The type-based heuristics tries to instantiate all relation variables in the constraint system
whose abstract typematches a hint relation. Thus, an abstract typewhose implementationwas
not fixed before (i.e., by explicit relation annotation, anti-unification, or homogeneity), may
get instantiated according to the hints. Clearly, this heuristics may lose solutions. Assume,
e.g., that anti-unification had not fixed ?R_map in our running example. Then, the above-
mentioned hint relation would instantiate it to dflt_rm_rel. This would render the constraint
system unsolvable.

Typically, however, this heuristics causes no problems, as the types that are not instantiated
by the previous heuristics do not depend on the parameters. However, hint relations need to be
carefully designed.11 Again, this heuristics could be made less aggressive by not performing
instantiations that lose all solutions to a constraint.

11 Actually, the default setup of the Collections Framework only hints at sets and maps of natural numbers to
be implemented by red-black-trees, and sets of Booleans to be implemented by lists. Further hints are usually
added locally for specific applications.

123

72 P. Lammich, A. Lochbihler

4.5.4 Solving

Finally, the constraints are solved based on the available rules: Each constraint c ::: R must
be instantiated by a relation R′ such that R′ is an instance of R, and such that there is a rule
of the form (c′, c) ∈ R′. Moreover, if the rule requires some new constants to be synthesised,
there must be rules for these constants, too.

We try to solve the constraints by applying all possible rules with backtracking until a con-
sistent solution is found. The rules are tried w.r.t. a priority ordering, which is a lexicographic
ordering of the following components:

1. The major priority set by the user. The major priority is an integer number and defaults
to 0.

2. The homogeneity of the rule, which is the number of different relators. Rules with fewer
relators are preferred.

3. The relator priority is the sum of the priorities of the relators occurring in the rule.
Relators can be arranged into an ordered list by the user, and the relator’s priority is the
position of the relator in the list. It defaults to zero for relators not in the list.

4. The minor priority set by the user. Again, the minor priority is an integer number and
defaults to 0.

The current version of the collection framework does not use the major priority. Adjust-
ments to the selected implementations are made via the relator priority. For example, the
relator for implementing sets by red-black trees has a higher priority than the one for distinct
lists. The distinction between generic algorithms, default implementation, and specialised
implementations of an operation is made via the minor priority.

For example, a generic algorithm for the union of two sets may iterate over one set, and
insert the elements into the other set. On distinct lists, we may want to implement the union
of two sets directly. Moreover, if we can prove that the two sets are disjoint, union can be
implemented by simply concatenating the lists. To implement these preferences, we set the
priorities as follows: The generic set-union algorithm has a minor priority of−10, the default
algorithm for union on distinct lists has a minor priority of 0, and the specialised algorithm
for the case that the sets can be proved to be disjoint has a minor priority of 10. Note that
the homogeneity and relator priority of the default and specialised algorithms are the same,
and the homogeneity and relator priority of the generic algorithm is not higher: The generic
algorithm supports different implementations for the two sets, so its homogeneity is smaller.
Moreover, the relators in the generic algorithm are variables, which have no priority. Thus,
its relator priority is lower.

In our running examples, there is only a unique solution with the available rules: There
is only a single rule for m and k, and there is only a single rule to implement lookup on
red-black trees.

4.6 Translation Phase

The previous phases produce an abstract term with consistent relation annotations for every
constant and free variable. The implementation selection has tried to ensure that there are
actually rules to do the desired translation. To that end, it has considered the available rules
and their prerequisite operations, but not the side conditions. Thus, translation may fail even
if the previous phases were successful.

The translation phase recursively resolves the term with the available refinement rules:
Abstraction is resolved by the default rule (abs-refine) from Sect. 4.2.2. An annotated con-

123

Automatic Refinement to Efficient Data Structures… 73

stant is resolved by the first matching rule according to priority ordering for which all side
conditions can be discharged and all prerequisite operations can be synthesised. Here, pri-
ority ordering ensures that specialised rules are tried before generic rules. As discussed in
Sect. 4.2.3, there are also refinement rules that match on a constant with its arguments. Those
rules are also applied in priority ordering. Only if no such rule can solve the subgoal, the
default rule (abs-refine) is applied.

Moreover, the order in which the side conditions are solved does matter. Most side condi-
tions are over the abstract term, e.g., we may require that the two sets be disjoint. Such side
conditions can be solved before the synthesis of the operands is started. However, some rules
impose side conditions on the synthesised term. For example, refinement for the recursion
combinator only works if both, the abstract and the synthesised concrete function bodies are
monotone. These side conditions must be discharged after the synthesis of the operands (the
concrete function body in our example). Therefore, we tag side conditions to denote when
they should be solved: The tags PREFER and DEFER on a side condition indicate that it is
to be solved before or after the synthesis of operands.

5 Containers

The Containers framework exploits existing refinement capabilities of Isabelle’s code gen-
erator [14,16] (Sect. 5.2 introduces the necessary background). Consequently, this approach
requires less manual work and dedicated automation than Autoref, as the refinement is done
outside of the logic. However, it is not as expressive, because the approach is restricted to
the limited refinement capabilities of the code generator.

Overall, the Containers framework is a usage pattern of Isabelle’s code generator. So
Containers does not need a large-scale package implementation like Autoref; a sequence of
Isabelle declarations and some small tactics suffice. In this section, we explain the usage
patterns and how they are used systematically.

5.1 Depth-First Search Declaratively

As before, we will refer to the DFS example to illustrate the concepts. First, we have to define
DFS from Fig. 2a as a function in Isabelle/HOL.12 This is not straightforward, as we want
to preserve the underspecification in the foreach loop. In detail, the pseudo-code in Fig. 2a
mutates state, namely the set of visited nodes. In HOL, we usually model the mutation as a
state transformer, i.e., a function dfs of type ’a ⇒ ’a set ⇒ bool × ’a set where the state of
type ’a set collects the visited nodes.With this approach, the function returns the set of visited
nodes, which is non-deterministic due to the underspecification (as discussed in Sect. 3.3). A
direct translation to an HOL function would therefore have to resolve this non-determinism.

Fortunately, a careful analysis reveals that the resulting state is only neededwhen the target
node has not yet been reached during the call. In that case, however, the set of visited nodes
is unique: dfs v V extends the visited nodes V with all the nodes that are reachable from the
current node v without taking any edge to a node in V . Thus, we can specify the depth-first
search declaratively – without loops and recursion (see Fig. 8). The idea is to return the set of
visited nodes only if the target node has not been found. The type ’a dfs_result formalises this
insight (line 1). Reachable abstracts from the (underspecified) state V in the result (True, V)

of the state transformer, and Visited V corresponds to (False, V).

12 A relational specification does not suffice, as the code generator can handle only functions.

123

74 P. Lammich, A. Lochbihler

Fig. 8 Declarative definition of reachability and DFS and derivation of the recursion equation

For the following, we fix a graph given by a set E of edges, i.e., pairs of nodes. We write
E � A for the subgraph of E whose edges all end in a node in the set A. Thus, if the target tgt
is reachable from v in the subgraph E � (−V), which avoids all nodes in V , then dfs v tgt V
returns Reachable (line 5). Otherwise, the depth-first search terminates after having visited
all nodes reachable from v without going through a node in V . Hence, dfs v tgt V adds these
nodes to V and returns them (line 6).

Clearly, this declarative definition is far from the algorithmic pseudo-code in Fig. 2a.
Fortunately, Isabelle can generate code from any equational theorem, not only the defining
equation. In lemma dfs_code, we show that our declarative definition satisfies the recursive
specification which formalizes the pseudo-code from Fig. 2a.

Two points are worth noting here. First, the loop construct fold is only well-defined if
the set S is finite. However, the type (’a × ’a) set also allows nodes with infinitely many
successors. Therefore, the equation includes an additional check for finiteness in line 15;
if it fails, the generated code will raise an error using the function abort.13 Note that the
finiteness check is just another operation on the conceptual type ’a set.14 In comparison to
Autoref (Sect. 4.1), the run-time check replaces the logical finiteness assumption in Autoref’s
correctness theorem.

Second, recall from Sect. 3.3 that the fold function over finite sets is only well-defined
for left-commutative functions. To that end, the Containers framework [32] introduces

13 In the logic, the function abort is defined as abort msg f = f (). This ensures that the error cases in code
equations can be proved by reflexivity. The code generator implements abort with an exception with the given
message.
14 We will later select an implementation for S which can only represent finite sets. Hence, the finiteness
check will take at most constant time or be eliminated completely by the target language compiler.

123

Automatic Refinement to Efficient Data Structures… 75

the type (’a, ’b) comp_fun_commute of left-commutative functions of type ’a ⇒ ’b ⇒ ’b,
and implements the fold operation for such functions following Nipkow and Paulson
[38]. Consequently, the body dfs_body of the loop must be expressed as a value of type
(’a, ’a dfs_result) comp_fun_commute (lines 7–9). This involves a proof that the body is in
fact left-commutative (line 10). Thanks to dfs’s declarative definition, the proof is automatic.

Finally, we show that reachability can be implemented in terms of dfs (line 19). This
follows directly from the declarative definition of dfs.

5.2 Background on Isabelle’s Code Generator

Isabelle’s code generator [14,16] turns a set of equational theorems into a functional pro-
gram with the same equational rewrite system. The translation guarantees partial correctness
by construction, as one could simulate every execution step in the functional language by
rewriting with the corresponding equational theorem in the logic. Thus, every theorem also
holds for any terminating execution of the code. Conversely, in case of non-termination or
termination with an exception, no guarantees are provided.

Since only equations matter (but not definitions or termination proofs), users can refine
programs and data without affecting their formalisation globally. Program refinement sepa-
rates code generation issues from the rest of the Isabelle formalisation. As any (executable)
equational theorem suffices for code generation, the user may derive new (code) equations
to use upon code generation (e.g., lemma dfs_code in Fig. 8). In particular, by using abort,
the equation may explicitly terminate the program with an error.

For data refinement, the user declares arbitrary constants to be the (pseudo-)constructors of
a type and then derives equations that pattern-match on these (pseudo-)constructors. Neither
need the (pseudo-)constructors be injective and pairwise disjoint, nor exhaust the type. Again,
this is local as it affects only code generation, but not the logical properties of the refined
type. Thus, one cannot exploit inside the logic the type’s new structure for code generation.
In Sect. 5.4, we use data refinement to link conceptual types and their implementations. For
example, the abstraction function RSet :: ’a rbt ⇒ ’a set from red-black trees to sets serves
as a pseudo-constructor.

5.3 Identification of Operations

Having formalised the algorithm, we can now start to add efficient data structures. The first
step is to identify the conceptual types and their operations.

In the Containers framework, every conceptual type must be represented by one type
constructor in the logic. This restriction comes from the code generator: the data structures
for the conceptual types will be connected via data refinement (see Sect. 5.4), which only
works for type constructors [14]. Hence, a new type must be introduced if this requirement is
notmet. In theDFSexample, there are twoconceptual types: sets andgraphs. Sets alreadyhave
their own type constructor set, but graphs are modelled as the composite type (’a × ’a) set.
Thus, we define the type ’a graph as a copy of (’a × ’a) set (Fig. 9, line 1).

Accordingly, operations of conceptual types must be constants and operate on the concep-
tual type. It is primarily the responsibility of the user to ensure that the program uses these
operations. The lifting and transfer package [18] can assist in this task as follows.

In the first step, we define new temporary constants for all operations that consist of
composite terms. In the DFS example, the code equation in Fig. 8 only uses a successor
operation on graphs. Since this is expressed as a composite term E ‘‘ {x}, we introduce a

123

76 P. Lammich, A. Lochbihler

Fig. 9 Definition of the conceptual type graph with successor operation and identification of operations

constant successors (Fig. 9, line 3). We also register the connection between E ‘‘ {x} and
successors with the operation identification procedure (line 4).

Next, the program must operate on the type ’a graph rather than (’a × ’a) set. For the
successor operation successors, we define a counterpart succs on ’a graph (line 5). As we
have registered the type copy with the lifting package in line 2, the command lift_definition
automatically inserts the necessary conversions. Similarly, all constants of our algorithm are
lifted to the conceptual types, too (lines 6–9).

After these preparations, the actual operator identification part has to produce the code
equations for the algorithm. In the example, we derive code equations for the constants
reachable_impl, dfs_impl, and dfs_body_impl from the ones for reachable, dfs, and dfs_body
such that the new operation succs on ’a graph is used. That is, we transfer the code equa-
tions dfs_code and reachable_dfs, and the defining equation for dfs_body from the type
(’a × ’a) set to ’a graph by replacing E with a graph G, the successor operation E ‘‘ {_}with
succs G, and the functions reachable, dfs and dfs_body by their counterparts defined in lines
6–9. The manual approach has been described in [14, §4.2]: (i) state the new code equations
using succs, (ii) let the transfer package convert the equation to the original type, and (iii)
prove the latter using the original equations.

Fortunately, a combination of rewriting and the transfer package can automate this process
inmany cases (line 10). The implementation containers_identify performs the following three
steps. First, it replaces the composite operations with the temporary constants by folding their
definitions (e.g., E ‘‘ {x} becomes successors E x), which are registered as containers_pre.
Second, it uses the transfer package to replace occurrences of the temporary constants with
their conceptual counterparts, e.g., successors gets replaced with succs. As the replacement
changes the type of the first argument from (’a × ’a) set to ’a graph, replacements must
be done consistently for the whole equation. In particular, the old functions of the algo-
rithm are also replaced with their counterparts from Fig. 9. To that end, the transfer package
sets up a constraint system and searches for a solution using so-called transfer rules with
backtracking—see [18] for details; intuitively, transfer rules combine Autoref’s type annota-
tions (Sect. 4.5) with its refinement rules (Sect. 4.2).When the composite term of an operation
occurs in the equation, but conceptually, this occurrence does not operate on the conceptual
type (e.g., subclass ‘‘ {C} has the same format as the successor operation E ‘‘ {x}, but in a
programming language context it computes the set of subclasses of C), the first step nev-
ertheless replaces the occurrence with the temporary constant. In such a case, the transfer
package leaves the temporary constant in the equation. Therefore, the third step eliminates

123

Automatic Refinement to Efficient Data Structures… 77

Fig. 10 Graph implementation by a successor function

the remaining temporary constants by unfolding the equations registered as containers_post,
i.e., their definitions.

Automation fails if the transfer package is not able to consistently replace the operations.
Then, the user must manually transfer the equations.

5.4 Linking Implementations to Their Conceptual Types

TheContainers framework uses data refinement in the code generator [14] to connect concep-
tual typeswith their data structures.Data refinement replaces the constructors of a data type by
other constants and derives equations that pattern-match on these new (pseudo-)constructors.
Neither need the new constructors be injective and pairwise disjoint, nor exhaust the type.

For every data structure that implements a conceptual type, there is such a pseudo-
constructor, i.e., a function from the data structure to the conceptual type that abstracts
from the representation details of the data structure. For example, Fig. 10 implements a
graph by a successor function. The constant graph_of_succs converts a successor function
of type ’a ⇒ ’a set into a graph represented as a set of edges (lines 1–2, line 3 registers
graph_of_succs with the operation identification procedure) and Succ is the counterpart
on the conceptual graph type (line 4). The declaration in line 5 turns Succ into a pseudo-
constructor for code generation. Consequently, the successor operation succs on ’a graph
is implemented for successor functions by pattern matching (line 6), expressed as a code
equation derived from the definitions of succs and Succ.

Since the ranges of pseudo-constructors may overlap, different implementations of the
same conceptual value are possible. For example, ’a set has four implementations, i.e., one
pseudo-constructor each for characteristic functions, lists with and without duplicates, and
red-black trees.

char. function ChF :: (’a ⇒ bool) ⇒ ’a set ChF P = {x. P x}
monad-style list MSet :: ’a list ⇒ ’a set MSet xs = {x. memb xs x}
distinct list DSet :: ’a dlist ⇒ ’a set DSet ds = {x. dmemb ds xs}
red-black tree RSet :: ’a rbt ⇒ ’a set RSet rs = {x. rmemb rs x}

At run time, each value of a conceptual type is tagged with one pseudo-constructor.
Accordingly, if an operation on the conceptual type is called, pattern matching dispatches to
the operation of the implementation type. We implement this with a set of dispatch equation
for each operation. For example, the membership operation ∈ is implemented as follows.

x ∈ ChF P = P x x ∈ DSet ds = dmemb ds x
x ∈ MSet xs = memb xs x x ∈ RSet rs = rmemb rs x

Thus, the algorithm can continue to use the conceptual operations identified in Sect. 5.3.
Pattern-matching selects the right implementation at run time.

123

78 P. Lammich, A. Lochbihler

5.5 Dealing with Sort Refinement

Most implementations of a data structure require additional operations on the elements such
as equality or an ordering. The conceptual operations used by the algorithm cannot provide
these, because the required operations depend on the implementation. So, this is up to the
implementations. For efficiency reasons, it is not sensible to store these operations inside a
data structure itself. Suppose we did. In the case of red-black trees, e.g., the implementa-
tion RSet rs comp of a set consists of a tree rs and a comparator comp :: ’a ⇒ ’a ⇒ order
according to which the tree is sorted. As comparators are functions, we cannot compare them
for equality. Thus, to decide set inclusion for two such trees, we cannot just iterate over the
two trees, because we cannot decide whether they have used the same comparator. Thus, we
have to use an inefficient generic algorithm for this.

To encode the invariant that all red-black trees of the same type use the same comparator,
we use type classes. The operations on red-black tree retrieve the comparator from the type
class instance of the element type. Thus, we statically know that the two red-black trees use
the same order, so subset comparisons can be performed more efficiently.

Unfortunately, sort refinement spoils the picture. To ensure that a suitable type class
instance can always be found, the code generator enforces that every invocation of⊆ operates
on sets whose element type provides a comparator. Similarly, if there is also a hash-based
implementation, then all element types also have to have a hash function. Clearly, we cannot
accept this, because some element type might not be able to provide all operations. For
example, it is hard to linearly order the set of all finite graphs.15

Therefore, if a data structure requires certain operations on the element types, we introduce
a new type class that wraps the operations in an option type. Hence, if a type cannot provide an
operation, it can default toNone. So,any type can bemade an instance of these type classes and
sort refinement is no longer a show-stopper. For example, the type class ccompare provides
the linear order for elements of red-black trees (to make the overloading explicit, we write the
type parameter as a superscript to type class parameters). Here, order consists of the values
Lt, Eq, and Gt, and comparator comp predicates that the comparator comp implements a
linear order on the elements of ’a.

class ccompare = fixes ccompare’a :: (’a ⇒ ’a ⇒ order) option
assumes ccompare’a = Some comp �⇒ comparator comp

Sternagel’s and Thiemann’s derive tool [45] automates the boiler-plate instantiations of these
classes. For example, the following Isabelle commands declare that natural numbers provide
a linear order and complex ones do not.

derive (compare) ccompare natural derive (no) ccompare complex

Finally, we would like to exploit the invariant that if a data structure is used, then the
parameter types do provide the operations, say ccompare’a �= None whenever we have a
RSet rs of type ’a set. Unfortunately, Isabelle/HOL’s type system can neither express nor
enforce this invariant. Consequently, pattern matching in the code equations cannot exploit
this invariant. Therefore, the dispatch equations must test whether all required operations are

15 In theory, every type can be ordered linearly by the axiom of choice, but we cannot implement this order,
so it is useless here. As the order is needed only for implementation purposes, one can design a specific linear
order for virtually every finitely representable data object (in [33], we have done so for ’a set). However, we
do not want to burden the user with verifying and implementing such orders, especially if they are not needed
at all for running the program.

123

Automatic Refinement to Efficient Data Structures… 79

available. For example, the finiteness check for red-black tree is implemented as follows:

lemma [code]:
finite (RSet rs) = (case ccompare’a of Some _ ⇒ True | _ ⇒ abort . . .)

The generated code raises an exception using abort, if no linear order is available. This is the
only option, because the function RSet is unspecified in that case, i.e., we cannot prove that
it returns a finite set.

Instead, we will make sure in the next section that a data structure will be chosen only if
all required operations on the parameter types are supported.

5.6 Automatic Selection of Data Structures

It suffices to choose the data structure when a conceptual value is created (or modified),
because the pseudo-constructors tag these values at run time. Thus, we now look at operations
that return a conceptual type (the previous two sections considered operations that only take
one). For example, consider the code equation reachable_dfs for reachable (Fig. 8, line 19).
It invokes the function dfs with {}, but it does not specify how the set of visited nodes should
be implemented.

As discussed in Sect. 3.2, the user should not have to specify the data structure everywhere.
This can be achieved statically or dynamically. In the static approach à la Autoref, the code
equations are transformed such that {} is replaced by, say, MSet [], before or at the time of
code generation. Yet, this selection scheme has two drawbacks. First, we must design and
implement an annotation language and a transformation mechanism similar to Sect. 4.3.
Second, conceptual operations cannot be used in code equations any more. For example,
the generic implementation of set difference in Sect. 3.4 uses {}. Hence, we would have
to commit to a specific implementation, say DSet. Yet, this violates the homogeneity rule,
because the set difference of two RSets becomes a DSet instead of an RSet. Thus, we need
one copy of set difference for every possible result implementation. As calls to set difference
must pick one of the copies, functions that use set differencemust come in several copies, too.
Ultimately, there are only specialised operations left, because the implementation selection
and transformation of code equations happens statically.

In contrast, the dynamic approach can choose the implementation at run time according
to heuristics specified at generation time. To that end, the Containers framework implements
the heuristics itself using code equations. In principle, the heuristics can even take dynamic
information such as the size of the input into account. Currently, we have only implemented
heuristics based on static information such as types and user annotations. In the remainder
of this section, we explain the basic idea using type information. In Sect. 5.8, we present a
more elaborate selection scheme that supports user annotations.

First, we consider an operation on the conceptual type such as insert on sets. The operation
dispatches to the different implementations by patternmatching. So, the code equations know
the implementation type and can correctly tag the result. This ensures homogeneity. For
example, the code equations for insert on MSet and RSet look as follows—the others for
DSet and ChF are similar. For RSet, it checks that the linear order is available; otherwise, . . .
raises an error.

insert x (MSet xs) = MSet (x # xs)
insert x (RSet rs) = (case ccompare’a of Some _ ⇒ RSet (rinsert x rs) | _ ⇒ . . .)

(1)

Next, we look at an operation that cannot extract the implementation choice from a param-
eter. The empty set {} is the prime example here, as it creates a set out of nothing.Our heuristics

123

80 P. Lammich, A. Lochbihler

does not yet take context information into account. So, preferences guide the choice. Sup-
pose that red-black trees are preferred over distinct lists and characteristic functions are to
be avoided. Recall that the available operations on the parameter types of a conceptual type
determine which implementations are possible, and type classes such as ccompare tell us
which operations are available. Thus, the following HOL term implements the preference.

case ccompare’a of Some _ ⇒ RSet rempty | None ⇒ DSet dempty (2)

This term selects a red-black tree if there is a linear order on the elements; otherwise, it
picks distinct lists. Thus, red-black trees are only used for element types that do provide a
comparator ccompare. Hence, the availability checks in the code equations for set operations
always succeeds and the error cannot occur at run time.

5.7 Generic Programming

Ageneric algorithm implements an operation in terms of other operations. Recall the example
of set difference from Sect. 3.4. As Containers works on the conceptual types, such an
implementation is directly executable. In particular, no instantiations are needed in general.
However, the homogeneity rule is violated in this case. The then branch creates an empty
set, and the data structure of {} determines the one of the resulting set by the homogeneity
rule for insert. Thus, if both A and B are implemented as, say, distinct lists, the heuristics for
selecting {}’s data structure may nevertheless pick red-black trees.

Clearly, we must make the data structure information available to pick the same. This can
be achieved in two ways. First, by pattern-matching on the pseudo-constructors—like in the
code equations for insert in Sect. 5.6. This is achieved by instantiating the equation for every
implementation. This is not ideal, as it currently must be done manually and it increases the
size of the generated program.

Instead, reifying the different implementations of a conceptual type as values in the code
leads to an automated solution. For sets, e.g., we introduce a type set_impl and a function
impl_of :: ’a set ⇒ set_impl that extracts the data structure from the parameters (as sketched
in [15]). Yet, as HOL cannot distinguish the implementations (e.g., MSet [] = RSet rempty),
the function impl_ofmust return logically the same value independent of the implementation.

Data refinement can resolve this conflict as follows. The type set_impl is inhabited by just
one value SET_IMPL, but implemented with a pseudo-constructor for each implementation:
CHF, DSET, RSET, MSET. As they are only pseudo-constructors, one can add more for new
implementations later. Then, set_impl is defined by impl_of _ = SET_IMPL in the logic and
implemented by the following code equations.

impl_of (ChF _) = CHF set_impl (RSet _) = RSET
impl_of (MSet _) = MSET set_impl (DSet _) = DSET

These equations are provable because all the pseudo-constructors denote the same value in
the logic. Thus, set_impl extracts the implementation choice inside conceptual operations.

Next, we define a function sempty that chooses the desired implementation for empty sets.
It is given logically by sempty SET_IMPL = {}, but the following code equations implement
it as desired. Here, we now exploit that all implementations are logically indistinguishable.

sempty CHF = ChF (λ_. False) sempty DSET = DSet dempty
sempty RSET = RSet rempty sempty MSET = MSet [] (3)

In summary, replacing {} with sempty (impl_of A) in the implementation of set difference in
Sect. 3.4 ensures homogeneity.

123

Automatic Refinement to Efficient Data Structures… 81

Of course, we also want to use optimised implementations for special combinations of
data structures. Suppose, e.g., that rbt_diff is a fast difference algorithm for red-black trees.
So, rbt_diff should be preferred over the generic implementation whenever possible. This
can be easily expressed using sequential pattern matching. The special cases are identified by
pattern-matching in their own equation, and the generic equation for the operation is the last
equation. Thus, the special cases take precedence. For example, the following two equations
express the preference for rbt_diff (where . . . raises an error as usual and rbt_filter P r retains
only those elements in r that satisfy the predicate P).

RSet rs − RSet rs’
= (case ccompare’a of Some _ ⇒ RSet (rbt_diff rs rs’) | _ ⇒ . . .)

RSet rs − B
= (case ccompare’a of Some _ ⇒ RSet (rbt_filter (λx. x ∈ B) rs) | _ ⇒ . . .)

5.8 Overriding the Selection Heuristics

In this section, we present a more sophisticated implementation selection heuristics based
on the reification of implementations in Sect. 5.7. Users can override the heuristics per type
(Sect. 5.8.1) or per instance in the generated code (Sect. 5.8.2). In case of overrides, however,
it is the user’s responsibility to ensure that the required operations are available (there are no
static checks to enforce availability); if not, the generated code may raise an error at run time.

5.8.1 Type-Based Overrides

Type-based overrides globally change the implementations for a specific element type. For
example, it is sometimes sensible to use distinct lists even if there is a linear order available
– for bool with just two elements, e.g., distinct lists are faster than red-black trees.

For every type, a separate preference can be specified by an overloaded operation set_impl.

class set_impl = fixes set_impl’a :: set_impl

For modularity, we add another pseudo-constructor AUTO for automatic selection like in (2).
This preference overwrites the general preference as follows. The conceptual operation

{} has the code equation
{} = sempty set_impl’a

and the function sempty from (3) picks the desired implementation. Following (2), we imple-
ment it for the new pseudo-constructor AUTO by

sempty AUTO = (case ccompare’a of Some _ ⇒ RSet empty | None ⇒ DSet empty)

Thus, setting set_implbool to DSET encodes the preference for DSet for bool set.

set_implbool = DSET set_impl’a set = AUTO set_impl’a option = set_impl’a

Element types with type variables can inherit the preference from the type parameter (e.g.,
’a option) or discard it (e.g., ’a set). Automation with derive is also available.

5.8.2 Instance-Based Overrides

Changing the choice of implementation at a specific point in the code does not require any
special mechanism. The user can use the pseudo-constructor of the desired data structure

123

82 P. Lammich, A. Lochbihler

Table 1 Comparison of features

Feature Autoref Containers

Identification of conceptual types + ©
Implementation selection Static Dynamic

Generic programming Static Dynamic

Underspecification © ©
Non-determinism + –

directly in the code equation for that operation. For example, in reachable’s code equation
(Fig. 8, line 19), replacing {} with MSet [] enforces that the set of visited states is always
implemented by a list with duplicates.

5.9 Non-Determinism

Containers hides all the implementation details from the logic, because the refinement hap-
pens in the code generator. Thus, truly non-deterministic specifications cannot be refined to
deterministic ones. For iterations over sets, e.g., only left-commutative operators can be used.
Fortunately, raising the level of abstraction and careful design oftenmake it possible to achieve
unique results, as the running example illustrates. Moreover, staying at conceptual types in
the logic avoids all the non-determinism induced by different representations. In the generic
algorithm for set difference in Sect. 3.4, e.g., the representations of the resulting set depends
on the iteration order (as already noted in [28]). For Containers, the result is deterministic in
the logic, because the pseudo-constructors abstract from the representation details.

6 Technical Comparison

After having presented the technical details of both frameworks, we now compare how well
they address the challenges identified in Sect. 3 and distill the differences and similarities of
the two frameworks. The features of each tool are summarised in Table 1, where + means
fully supported, © means partially supported, and − means not supported.

6.1 Identification of Conceptual Types

Autoref identifies conceptual types in its first phase using a powerful heuristics based on type
elaboration (cf. Sect. 4.4),which rarely fails in practice. In contrast, theContainers framework
requires conceptual types tomatchHOL type constructors. If this is not the case, somemanual
preprocessing has to be done. Inmany cases, this preprocessing is straightforward by utilizing
Isabelle/HOL’s transfer package (cf. Sect. 5.3).

6.2 Implementation Selection

Both tools implement a heuristics for automatically selecting the implementations which can
be controlled by the user if desired. The heuristics are based on the same principles, namely
the homogeneity principle and selection of implementations based on the abstract type. The
main difference is when the selection happens: Autoref performs the selection statically
while synthesizing the implementation, whereas the generated code from Containers selects
the implementations dynamically at run time. In principle, Containers supports selection

123

Automatic Refinement to Efficient Data Structures… 83

strategies that depend on dynamic run-time information (e.g., the size of the data structures),
but such strategies have not yet been implemented.

6.3 Generic Programming

Both tools support generic programming with specialization of algorithms. Like for the
implementation selection, Autoref instantiates the generic algorithms during the synthesis
whereas Containers generates dispatching code which executes at run time.

6.4 Underspecification

Both tools support underspecified functions with some limitations. The Autoref tool must
prove during the synthesis that every (underspecified) function is only applied to arguments
for which its specification uniquely determines the result. For example, recall fromSect. 4.2.3
that the function hd is not specified for empty lists. This underspecification shows up as the
side condition l �= [] in the generalized parametricity rule for hd l. The synthesis succeeds
only if Autoref can discharge these side conditions using the contextual information provided
by congruence synthesis rules. When Autoref is used together with the Monadic Refinement
Framework, assertions can be used to transport the required information from the correctness
proof to the refinement proof. An important exception is when no actual refinement happens,
i.e., the type of the list elements does not change, say a list of integers is implemented by a
list of integers. Then, the trivial synthesis rule (hd, hd) ∈ 〈int_rel〉list_rel → int_rel follows
from reflexivity.

Underspecification affects the Containers framework only during the identification of con-
ceptual types. If the type of an underspecified HOL constant changes when conceptual type
constructors are introduced—for example, hd : (’a × ’a) set list ⇒ (’a × ’a) set becomes
hd : ’a graph list ⇒ ’a graph—then the transfer to conceptual types must be done manually,
because the underlying transfer package cannot handle conditional parametricity rules. This
manual transfer typically involves a proof that the function is uniquely specified for the argu-
ment to which it is applied. Typically, this proof has already been done in the correctness
proofs, but Containers does not provide any automation to ease its reuse. Conversely, if the
HOL type remains the same, the trivial synthesis rule is used. In practice, this is the most
frequent case, as most refinements take place in the code generator, outside of the logic.
Thus, even when sets are implemented by red-black trees, the type ’a set remains ’a set and
no proof need be done for hd : ’a set list ⇒ ’a set. In contrast, Autoref replaces ’a set by
’a rbt inside the logic and therefore requires the proof.

6.5 Non-Determinism

In combinationwith theMonadicRefinement Framework,Autoref supports non-determinism
natively. In contrast, the Containers framework does not support non-determinism at all. If
the result of the overall algorithm is deterministic, but the algorithm itself contains non-
deterministic parts, careful engineering may be used to transform the algorithm to a fully
deterministic one (c.f. Sect. 5.1).

7 Using the Refinement in Context and Combining Both Frameworks

Recall Theorem 2SAT_graph presented in Fig. 1, which suggests a (naive) satisfiability
algorithm by iterating over the variables and performing reachability checks.

123

84 P. Lammich, A. Lochbihler

Fig. 11 Construction of the implication graph usingContainers and derivation of the executable 2SAT checker

In this section, we show how to obtain this algorithm in both frameworks, Containers
(Sect. 7.1) and Autoref (Sect. 7.2). Actually, the Autoref-based implementation also uses the
Containers-Framework, thus demonstrating how both frameworks complement each other
(Sect. 7.3). This allows us to compare both frameworks from a user perspective (Sect. 7.4)

7.1 2SAT with Containers

In Sect. 5, we have obtained an efficient implementation reachable_impl for a non-executable
function reachable. We now will use reachable_impl to obtain an efficient 2SAT checker. In
general, using a Containers implementation in a larger context requires two steps:

1. Adapt the formalization to the conceptual types of the implementation, and
2. Instantiate the type classes such as ccompare and set_impl for the types that are used as

elements of the data structures.

In the following, we will demonstrate these steps for the 2SAT example.
For the first step, recall that we have changed the type of graphs from a set of edges

(’a × ’a) set to the conceptual type ’a graph (Fig. 9) that is implemented by a successor
function (Fig. 10). Since the original 2SAT formalization in Fig. 1 constructs the implication
graph as a set of edges, we must provide an implementation via a successor function and use
it in the code equations. Figure 11 shows the necessary steps. The function sucs in lines 4–5
takes a formula F and a literal l and returns the set of l’s successor literals in the implication
graph. This set is computed by iterating over all clauses (|l1, l2|) of F and collecting all l2−i

for which l = negate li holds. The iteration is expressed as a fold over a set, which requires
the loop body to be left-commutative (lines 1–3, cf. Sect. 5.1). The lemma in line 6 shows
that this is a correct implementation of the implication graph for finite formulas. Similarly,
we can express 2CNF satisfiability using the reachability operation reachable (lines 7–11).
Note that we prove this characterization using the original theorem 2SAT_graph from Fig. 1.

To keep the proofs simple and well-automated, all these steps model the graph as a set of
edges. So we must lift them to the conceptual type lit graph. Like in Fig. 9, we define the
implementation constant gr_impl for the implication graph (line 12) and transform the two
code equations gr_code and satisfiable_code using Container’s operation identification. In
particular, the identification transforms gr_code into the following code equation for gr_impl

gr_impl F = if finite F then Succ (sucs F) else abort . . . (4)

123

Automatic Refinement to Efficient Data Structures… 85

and replaces in satisfiable_code the functions gr and reachable with their implementations
gr_impl and reachable_impl. Thus, we have obtained an implementation for satisfiable via
reachable, where the input formula in particular is still of the same type, i.e., a set of unordered
pairs of literals.

In the second step, we now must specify which data structures (red-black trees, lists, etc.)
to use by instantiating the relevant type classes (ccompare and set_impl) for the element
types. Our 2SAT formalization uses two types for which the Containers library does not
provide these instantiations: lit and uprod. As lit is defined as a datatype, we let the command
derive do the instantiations. It orders negative literals before positive ones and then by the
variable number and specify that sets of literals should use red-black trees:16

derive linorder lit derive ccompare lit derive (rbt) set_impl lit

For uprod, we instantiate the type classes manually as uprod is not a datatype and therefore
out of derive’s scope. For example, given a comparator comp on ’a, we obtain a comparator
comp_uprod on ’a uprod by

comp_uprod (|a, b|) (|c, d|) =
let (x, y) = case comp a b of Lt ⇒ (a, b) | _ ⇒ (b, a);

(x’, y’) = case comp c d of Lt ⇒ (c, d) | _ ⇒ (d, c)
in case comp x x’ of Lt ⇒ Lt | Gt ⇒ Gt | Eq ⇒ comp y y’

That is, we compare the smaller element x of (|a, b|)with the smaller element x’ of (|c, d|) and
compare the larger elements y and y’ only if x and x’ are equal. Note that the pattern matches
on (|a, b|) and (|c, d|) are well-defined because comp is a comparator, i.e., it induces a total
order.

Now, we already have an executable 2SAT checker. Before we generate the code, we
should include one further optimisation, though. The graph construction in the code equation
(4) does not supply all arguments to sucs (cf. line 5 in Fig. 11). Consequently, when the
graph E is computed in the let binding in line 9, the Succ constructor stores only a closure.
At runtime, the graph is therefore recomputed for every reachability check. We avoid this
by tabulating sucs F when the graph is constructed. We accomplish this by simply proving
an appropriate code equation for sucs. The tabulation is similar to the one we will present in
Sect. 7.3, when we combine Autoref and Containers.

In the end, we generate an executable 2SAT checker in any of the target languages of
Isabelle’s code generator. For example, in Standard ML by the command

export_code satisfiable in SML

7.2 2SAT with Autoref

The first step for using the Autoref framework is to set up the DFS algorithm as an implemen-
tation for the reachability operation. We also configure operation identification to identify
the pattern (u,v) ∈ E∗ as the reachability operation. This is accomplished in a few lines of
boilerplate code, which we omit here.

To implement the satisfiability check, we first choose an implementation data type for
formulas, and provide concrete operations for the set of variables and the successor function
of the implication graph. Autoref then derives an implementation for the right hand side of
Theorem 2SAT_graph.

16 Containers requires a few more type class instances for further operations such as set complement, which
we have not discussed in this paper. We therefore do not show their instantiations either.

123

86 P. Lammich, A. Lochbihler

We implement a formula as a list of distinct pairs of literals (type cnfi). The refinement
relation cnfi_rel is defined in terms of an abstraction function cnf_α and an invariant is2cnfi.
The invariant corresponds to the abstract invariant is2cnf.

type_synonym cnfi = (lit × lit) list
definition cnf_α :: cnfi ⇒ cnf where cnf_α Fi = {(|x, y|) | (x, y) ∈ set Fi }
definition is2cnfi :: cnfi ⇒ bool where is2cnfi Fi = (∀(l1, l2) ∈ set Fi. l1 �= l2)

definition cnfi_rel = br cnf_α is2cnfi
lemma is2cnfi_correct: is2cnfi Fi ←→ is2cnf (cnf_α Fi)

Recall that br α I constructs a refinement relation from an abstraction function and an invari-
ant. The next two lines register the conceptual type i_cnf of cnf formulas with Autoref.

consts i_cnf :: interface
lemmas [autoref_rel_intf] = REL_INTFI[of cnfi_rel i_cnf]
As required by our DFS algorithm, we implement the implication graph by its successor
function (gri). The set of variables of a formula is implemented as a distinct list (varsi). We
show the following refinement lemmas and declare them to Autoref:

lemma [autoref_rules]:
(gri, gr) ∈ cnfi_rel → 〈Id〉succg_rel
(varsi, vars) ∈ cnfi_rel → 〈Id〉list_set_rel

Our DFS algorithm requires the set of nodes reachable from the source node to be finite.
Moreover, the characterisation of satisfiable by implication graphs (Theorem 2SAT_graph)
requires the set of variables to be finite, and the clauses to be proper. Formulas repre-
sentable by our refinement relation fulfil these requirements.We derive our efficient algorithm
in a two-step refinement process: First, we introduce a let-binding to only compute the
implication graph once (sat_refine) and, second, we use Autoref to synthesise an imple-
mentation (sati_refine). Both refinement steps are performed in a context where we assume
(cnfi, cnf) ∈ cnfi_rel. In particular, this gives us finiteness and properness of the abstract
formula cnf, which is required in the first refinement step.

context
fixes cnfi cnf
assumes [autoref_rules]: (cnfi, cnf) ∈ cnfi_rel

begin

lemma sat_refine:
satisfiable cnf = (let gr = imp_graph cnf in

∀x ∈ vars_of_cnf cnf. ¬ ((Pos x, Neg x) ∈ gr∗ ∧ (Neg x, Pos x) ∈ gr∗))

schematic_goal sati_refine: (?f::?’c, satisfiable cnf) ∈ ?R
unfolding sat_refine by autoref

end

concrete_definition sati uses sati_refine

Again, we extract a correctness statement that is independent of the refinement framework
formalism, and also register our algorithm as implementation for the satisfiable operation, to
be used by Autoref for refining more complex algorithms based on satisfiability:

123

Automatic Refinement to Efficient Data Structures… 87

Fig. 12 Tabulation of the implication graph’s successor function using Containers

lemma sati_correct: is2cnfi Fi �⇒ sati Fi ←→ satisfiable (cnf_α Fi)
lemma sati_autoref_rl [autoref_rules]: (sati, satisfiable) ∈ cnfi_rel → bool_rel

7.3 Combining Autoref and Containers

In the previous section, we have intentionally not detailed the implementation of the implica-
tion graph (gri). Given the formula as list of pairs of literals, we have to create the successor
function of the implication graph. This is best done by iterating over the list once, creating a
map from literals to successor lists. This map is then used to efficiently look up the successors
of a literal.

In this section, we use the Containers framework to implement the tabulation for the
graphs, which the Autoref implementation for DFS will use (Fig. 12). We split the tabula-
tion into three functions: ins_edge u v m inserts an edge (u, v) into the graph represented by
the map m (lines 1–4), ins_edges (l1, l2) m inserts the edges induced by the clause (l1, l2)
(line 5), and tabulate cnfi folds over the formula to create the implication graph (line 6).
The map is represented as the abstract type (’k, ’v) mapping, which is the conceptual map
type of the Containers framework with operations Mapping.empty, Mapping.lookup, and
Mapping.update for the empty map, map lookup, and map update. We could have used the
isomorphic HOL type ’k ⇒ ’v option for maps, but this would require a few declarations for
performing the operation identification part. Directly using the conceptual type avoids this
boilerplate.We also define a function αsl to convert a map into a successor function and show
that the converted tabulated graph implements the abstract implication graph (lines 7–10).
This is a straightforward proving exercise, with the only challenge to find a good general-
isation for the induction over the fold-function. After having configured Containers to use
red-black trees for the tabulated successor map (line 11), we can generate the 2SAT checker
(line 12).

Note that we have formalised the tabulation algorithm directly on the implementation
type. In principle, we could have first defined an abstract version of this algorithm that works
on sets of unordered pairs (formulas) and sets of edges (graphs). Then, we could use stepwise
refinement to refine the graph representation to successor functions and further to maps, as
well as the formula representation to ordered pairs and further to lists. Conceptually, these
are three different abstraction levels for graphs, and another three for formulas. Autoref

123

88 P. Lammich, A. Lochbihler

and the Refinement Framework support such stepwise refinements, and such a fine-grained
abstraction may make sense for complex algorithms. Yet, it would be overkill for such a
simple algorithm like tabulation, which can easily be refined and proved correct in a few
lines of rather straightforward Isabelle source code.

7.4 Comparison from a User Perspective

Given the two 2SAT checkers, we can now compare the two frameworks from a user per-
spective.

Many algorithms can be elegantly expressed using non-deterministic operations on
abstract data types. In Isabelle, the Refinement Framework allows a natural formalisation
of those algorithms, and Autoref can be used to transfer them to efficient implementations.
However, usingAutoref comes at the cost of some boilerplate code for setting up user-defined
conceptual types and operations. The Collections Framework readily provides a variety of
verified data structures that implement standard conceptual types like sets, maps, and priority
queues.

For algorithms that expose the nondeterminism in their abstract result, like computing
a path between two nodes, the Containers approach cannot be used. However, if nondeter-
minism is only used implicitly, like in our running DFS example, careful engineering can
sometimes determinise the algorithm and make it available for refinement via Containers.

For deterministic abstract algorithms, like our tabulation example, the Containers frame-
work typically requires less effort than Autoref. In the best case, it suffices to import an
Isabelle theory for each conceptual type and instantiate its type classes as needed, which is
automated by the derive tool to a large extent. Containers currently provides such Isabelle
theories for sets and maps; others can be developed in a similar way, e.g., for graphs as in
Sect. 5. If the formalisation does not use the conceptual types (e.g., (’a × ’a) set instead
of ’a graph), the operation identification must be done first. If no underspecified operations
are affected, the transfer tool can automatically transfer the correctness statement from the
conceptual type constructors back to the original types. Otherwise, the transfer may be a
serious endeavor, as one has to show that underspecified functions are only applied to their
specified range. This often requires to replay large parts of the abstract correctness proof on
the concrete level. In those cases, using the Refinement Framework with Autoref may be
the better option, as assertions can be used to transport the required information from the
correctness proof to the refinement proof.

The effort difference extends to using the implementation in a formalisation context that
itself does not use the framework. For example, we might want to use the executable 2SAT
checker in some larger functional formalisation. Note that each 2SAT checkers has been
developed in the same framework as the DFS implementation. Accordingly, Autoref’s 2SAT
implementation sati lives in the samemonad as theDFS implementation,whereasContainers’
satisfiable is the same HOL constant that we have started with in Fig. 1. Consequently,
the Containers implementation can be used without any further effort in any formalisation
context.17 In contrast, if Autoref users want to use their implementations in a functional
context, they must manually escape the monad and transfer the correctness theorem, like in
Theorem dfs_code_correct in Sect. 4.1.

17 In general, Containers users must only switch to conceptual type constructors in algorithm’s input and
output types, which is usually painless. For example, no switching is needed for satisfiable (as set is a type
constructors and none of the other types are refined) and the switch from (’a×’a) set to ’a graph for using
DFS in the 2SAT checker is easy as shown in Fig. 11.

123

Automatic Refinement to Efficient Data Structures… 89

8 Related Work

The two Coq tools CoqEAL [9] and Fiat [11] are based on ideas similar to Autoref’s. In this
section, we first compare our frameworks with them in detail (Sects. 8.1, 8.2, respectively)
and then discuss further related work (Sect. 8.3).

8.1 The Coq Effective Algebra Library

Cohen et al. [9] developed a data refinement tool CoqEAL (The Coq Effective Algebra
Library) for algebraic structures in the Coq theorem prover. Using the same ideas from
relational parametricity asAutoref (Sect. 4.2), CoqEALsynthesises the implementationwhile
proving the refinement theorem. On the technical level, CoqEAL differs from Autoref in two
main aspects.

First, CoqEAL users must explicitly convert their algorithms into a form where the con-
ceptual types are abstract datatypes. That is, these types must all be type variables and the
algorithm uses these type variables only through operations which it takes as parameters. The
original formulation on the algebraic structure is merely an instance as witnessed by passing
the operations of the algebraic structure. In contrast, Autoref tries to infer the conceptual
datatypes itself and directly synthesises the algorithm implementation, without defining the
parameterised algorithm.

Second, CoqEAL uses Coq’s type class mechanism [44] to maintain the database of data
refinements and to synthesise the implementation. In case of multiple solutions to the type
class inference problem, the synthesis picks the first it finds unless the user has specified
a particular instance using annotations. This design nicely separates concerns and relieves
the user from spelling out all the arguments to the algorithms. Yet, experience indicates that
better search heuristics are needed when refinements are deeply nested [10]. Isabelle’s type
class mechanism is less powerful than Coq’s and does not support such synthesis. Therefore,
Autoref keeps its own collection of refinement theorems and implements its own synthesis
strategy with many heuristics, in particular preferences (Sect. 4.5).

As CoqEAL abstracts over operations using type classes, it is less modular than Autoref
and Containers in two respects. First, an operation on a data structure can only be specialised
if there is an operational type class for it. Thismeans in practice that users should parameterise
their functions over all other functions they use and introduce for each of the parameters a
type class and an appropriate notation. In the case of finite sets, e.g., a small set of basic
operations does not suffice, such as the empty set, insertion, deletion, membership test,
and folding. There should also be type classes for all other set operations like set union
∪, difference −, and symmetric difference A � B = (A − B) ∪ (B − A), even if all of them
could be implemented using the basic operations (as described in Sect. 3.4). CoqEAL users
thereforemust also declare instances for every implementation type, which scales poorlywith
the number of implementations and operations. If this principle is not followed, efficiency
and locality can suffer. For example, suppose that the algorithm for � abstracts only over
the basic set operations and calls the generic implementations of ∪ and − directly, implicitly
passing them the basic set operations. Then � will not use optimized algorithms for ∪ and
− for the selected data structure (cf. Sect. 3.4). Conversely, if � does abstract over ∪ and
−, but some algorithm f using � does not abstract over �, then changes to � also affect f.
For example, if �’s implementation changes to A � B = (A ∪ B) − (A ∩ B), i.e., it now also
takes an implicit ∩ operation, then f must also change, because it now must also depend on
the type class for ∩.

123

90 P. Lammich, A. Lochbihler

In Autoref, the refinement rules themselves trigger the synthesis of auxiliary operation
implementations (Sect. 4.2.4), so no type class declarations are needed. As implementations
are picked according to priorities, optimised algorithms are preferred over generic ones. So
users need not worry about ambiguities during type class resolution. In Containers, as the
dispatch to the implementation happens at run time, there is no difference between basic
and derived operations and users need not worry about their difference when they write their
programs. If there is an optimised algorithms for an operation, then this will also be used.

Second, CoqEAL cannot refine the same conceptual type to different implementations
in different places of the algorithm, e.g., sets cannot be implemented as lists in one part
and as red-black trees in others. This is only possible if the conceptual types are separated,
i.e., different type variables and parameters for the operations are used. When users write
their algorithms, they must immediately decide which occurrences of a conceptual type
should be refined to the same implementation. This regime enforces the homogeneity rule
and users must explicitly use conversions between different implementations, which must
also show up in the list of abstracted operations. Autoref and Containers permit violations
of the homogeneity rule if no other solution is possible. That is, Autoref and Containers try
to fix implementation choice mismatching whereas CoqEAL users get a type error in case
of a mismatch. Experience will show which approach causes less problems and surprises in
practice.

Moreover, Isabelle’s type classes and HOL’s type system cannot support CoqEAL’s
approach in the first place. Isabelle allows only one type variable in type class operations, but
ADT operations often need several: For example, set insertion insert :: ’a ⇒’x ⇒’x uses ’a
for the elements and ’x for the ADT of sets. Even without using type classes, it is impossible
to abstract over polymorphic operations of ADTs in HOL. For example, the folding operation
fold :: ∀’s. (’a ⇒ ’s ⇒ ’s) ⇒ ’s ⇒ ’x ⇒ ’s for sets should be polymorphic in the state type
’s such that algorithms can use fold with several different state types. This is not possible in
HOL where all parameters must be monomorphic. It is therefore not possible to use locales
[4] either, which are closer to Coq’s type classes than Isabelle’s type classes are.

In the remainder of this section, we analyse whether and how CoqEAL addresses the
four challenges we have identified in Sect. 3. First, CoqEAL does not offer any support
to identify the conceptual types and their operations. This is completely left to the user.
According to our experience with HOL-based provers, this can substantially increase the
effort to generate efficient implementations, because encoding types and operations using
existing ones is common in the HOL community. It may be less severe in type theories like
Coq’s where people seem to use ADTsmore often. Second, the selection of data structures, as
mentioned before, is delegated to Coq’s type class mechanism, which provides only limited
control over the search for instances, i.e., implementations. In detail, homogeneity is strictly
enforced by the ADT approach, and annotations and preferences can be specified via Coq’s
type classmechanism. Third, non-determinism is not discussed at all by the CoqEAL authors.
As CoqEAL’s refinement relations are partial quotients, a single conceptual value may have
several logically equivalent representations and the refined implementations may locally
exploit the particular representation, but this must lead to observable non-determinism at
the conceptual type. This is very similar to the non-determinism that Containers support.
Autoref also handles observable non-determinism thanks to its integration with the Monadic
Refinement Framework [29]. Fourth, it is not clear howwell CoqEAL scales with the number
of data structures and operations. In the examples distributed with CoqEAL, there seems to
be only one implementation available for each ADT. We conjecture that CoqEAL users will
face scalability challenges due to the lack of control over the implementation selection and
an abundance of operational type classes.

123

Automatic Refinement to Efficient Data Structures… 91

8.2 Fiat

Delaware et al. [11] present the Fiat tool, which supports refinement of nondeterministic
specifications to executable implementations in Coq. The basic idea is very similar to the
combination of theMonadicRefinement Framework andAutoref: Both use a nondeterminism
monad, a notion of program and data refinement, conceptual types that provide abstract
operations, and both strive for automation of the refinement process.

We first discuss the three most important differences between Fiat and our frameworks.
First, Fiat’s automation is focused on domain specific languages: Very powerful refinement
methods can be used for very narrow domains, e.g., database queries. In contrast, Autoref
and Containers support a single refinement strategy that is meant to be used for all domains,
and can be configured by the user to some extent.

Second, refinement in Fiat follows an object-orientedmodelling approach: Themethods of
an abstract class (conceptual type in our parlance) are refined by the corresponding methods
of an implementation class. Only the representation of the objects can be refined, but not the
arguments or results of the methods. Nested refinement is therefore impossible, as is needed,
e.g., for sets of sets.

Third, the interface of a Fiat type has to be defined once and cannot be extended later. This
prevents scalable specialisation of generic algorithms, for similar reasons as for CoqEAL:
While generic algorithms can be used to provide new operations, they will always be reduced
to the operations of the interface, and then to an implementation. This makes it impossible
to specialise operations that were not included in the initial interface. At the same time,
the interface should be kept small to ease new implementations. Autoref and Containers
resolve this tension by delaying the choice of algorithm beyond declaration time. Generic
algorithms are resolved in Autoref during synthesis and in Containers at run-time. Therefore,
an implementation needs provide only a minimal set of basic operations, relying on generic
algorithms for the other operations. Additionally, it can declare specialisations for some
operation, which will then be used instead of the generic algorithms.

Next, we evaluate Fiat according to the four challenges that we have identified in Sect. 3.
First, Fiat does not support identification of conceptual types, which may be less problematic
than it is in HOL (cf. Sect. 8.1). Second, the selection of data structures is done either
manually by the user, who directly invokes so-called honing tactics, or automatically by
domain specific refinement scripts. The paper [11]mentions no general applicable refinement
scripts, although this should be possible in their framework. Third, nondeterminism is built
into the Fiat framework, being based on a set monad. However, it seems to lack a notion
of recursion. Fourth, it is unclear how well Fiat scales with the number of data structures
and operations. As far as we know, only a handful of interfaces and data structures have
been implemented in Fiat. However, we expect less scalability problems than for CoqEAL,
as implementation selection in Fiat is under complete control of the specialised automatic
refinement tactics, each of which typically uses only a limited number of interfaces and
implementations.

8.3 Further Related Work

In the other sections of this paper we have already referenced existing work we build on, in
particular the Isabelle packages and tools [14,16,18,45].

Based on the lessons learned from the automatic refinement tool, the first author has
developed the Sepref tool [26,27], which supports automatic refinement to both functional
and imperative data structures. The operation identification heuristics of this tool is essentially

123

92 P. Lammich, A. Lochbihler

an advancement of the one used in Autoref. The implementation selection heuristics has
been strongly simplified: Only the homogeneity principle and user annotations determine the
implementation data structures. If several implementations satisfy the constraints, the Sepref
tool reports an error instead of automatically selecting an implementation it deems suitable
(asAutoref does).While users have towrite (slightly)more annotations, they keep full control
of the generated data structure, and no magic happens behind the scenes. Currently, Sepref
has only very limited support for generic algorithms, but this can be implemented along the
lines of Autoref.

The Containers framework relies on the transfer package by Huffman and Kunčar [18]
for the identification of conceptual operations. Similar to Autoref, transfer synthesises HOL
terms based on relational parametricity, but it is less powerful. For example, it cannot handle
side conditions as described in Sect. 4.2.3: neither the conditional parametricity rules like
the one for hd nor the stronger rules for control operators like if.

Peyton Jones [40] and Chen et al. [8] already had the idea of the heuristics selecting the
implementations based on the available type class operations. They showed that Haskell’s
single-parameter type classes do not suffice if one wants to achieve “bulk-type polymor-
phism”, i.e., users can add new container implementations and new element types without
changing any existing code. The Containers approach nevertheless succeeds, even though
Isabelle’s type classes are even less expressive than Haskell’s. The reason is that we do not
extend the generated code itself, but the formal definitions that get translated to the code.
Hence, after an addition, Isabelle re-generates all of the code and this is when the crucial sort
refinement happens.

9 Conclusion and Future Work

In this paper, we have described the Autoref tool and the Containers framework, which both
provide automatic data refinement for specifications written in Isabelle/ HOL. Both tools
have been successfully used in various verification projects.

The most notable project that uses Autoref as its back-end is the CAVA LTL model
checker [7,12], a fully featured, verified, and efficient LTL model checker with partial order
reduction. Here, Autoref has been used to assemble the overall model checker and many of
its components, including the CAVA Automata Library [24] the verified implementations
of nested depth first search, Gabow’s strongly connected components algorithm [25], and
the verified implementation of Gerth’s Algorithm [42,43] to convert LTL formula to Buchi
automata. Immler [19] uses Autoref for efficient verified numerical algorithms.

Containers has been used in a verified interpreter for Java bytecode in the JinjaThreads
project [31,34], the certifier CeTA for the termination analysis of rewrite systems [46], and
in the formalisation of executable field extensions [47]. Felgenhauer and Thiemann [13]
describe a successful combination of both, Autoref and Containers, in an application to tree
automata.

In summary, we conclude that both tools complement each other. The Containers frame-
work offers a very light-weight approachwith restrictions on non-deterministic specifications
and conceptual types. In contrast, the Autoref framework is more heavy-weight, but fully
supports non-deterministic specifications and arbitrary encodings of conceptual types into
HOL types. Both can be combined, where the Containers framework is typically used for
simple parts of an algorithm and the Autoref tool to assemble the overall algorithm.

123

Automatic Refinement to Efficient Data Structures… 93

Acknowledgements We thank René Thiemann for implementing derive for the Container type classes.
Andreas Lochbihler is supported by SNSF Grant 153217 “Formalising Computational Soundness for Protocol
Implementations”. The authors are listed in alphabetical order.

References

1. Appel, A.W.: Efficient verified red-black trees. http://www.cs.princeton.edu/~appel/papers/redblack.pdf
(2011)

2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified
boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

3. Back, R.J.J., Akademi, A., Wright, J.V.: Refinement Calculus: A Systematic Introduction, 1st edn.
Springer, New York (1998)

4. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52(2), 123–153
(2014). https://doi.org/10.1007/s10817-013-9284-7

5. Berghofer, S., Reiter, M.: Formalizing the logic-automaton connection. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009, LNCS, vol. 5674, pp. 147–163. Springer, Heidelberg (2009)

6. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu,A., Traytel, D.: Trulymodular (co)datatypes
for Isabelle/HOL. In: ITP 2014, pp. 93–110 (2014)

7. Brunner, J., Lammich, P.: Formal verification of an executable LTL model checker with partial order
reduction. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 307–321. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40648-0_23

8. Chen, K., Hudak, P., Odersky, M.: Parametric type classes. In: LFP 1992, pp. 170–181. ACM, New York
(1992)

9. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free!. In: Gonthier, G., Norrish, M. (eds.) CPP 2013,
LNCS, vol. 8307, pp. 147–162. Springer, Heidelberg (2013)

10. Cohen, C., Rouhling, D.: A refinement-based approach to large scale reflection for algebra. In: Journées
Francophones des Langages Applicatifs (JFLA 2017) (2017). Technical report HAL-01414881. https://
hal.inria.fr/hal-01414881

11. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of abstract data types in a
proof assistant. In: Proceedings of POPL, pp. 689–700. ACM, New York (2015). https://doi.org/10.1145/
2676726.2677006

12. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.: A fully verified executable
LTLmodel checker. In: Sharygina,N.,Veith,H. (eds.)CAV2013,LNCS, vol. 8044, pp. 463–478. Springer,
Heidelberg (2013)

13. Felgenhauer, B., Thiemann, R.: Reachability, confluence, and termination analysis with state-compatible
automata. Inf. Comput. 253, 467–483 (2017). https://doi.org/10.1016/j.ic.2016.06.011

14. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) ITP 2013, LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

15. Haftmann, F., Lochbihler, A., Schreiner, W.: Towards abstract and executable multivariate poly-
nomials in Isabelle. Isabelle workshop 2014. http://www.infsec.ethz.ch/people/andreloc/publications/
haftmann14iw.pdf (2014)

16. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi,
N., Vidal-Oriola, G. (eds.) FLOPS 2010, LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010)

17. Hoare, C.: Proof of correctness of data representations. Acta Inf. 1(4), 271–281 (1972)
18. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in Isabelle/HOL. In:

Gonthier, G., Norrish, M. (eds.) CPP 2013, LNCS, vol. 8307, pp. 131–146. Springer, Heidelberg (2013)
19. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C., Tinelli, C. (eds.) TACAS

2015, LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg (2015)
20. Kanav, S., Lammich, P., Popescu, A.: A conference management system with verified document confi-

dentiality. In: Biere, A., Bloem, R. (eds.) CAV 2014, LNCS, vol. 8559, pp. 167–183. Springer, Heidelberg
(2014)

21. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine and compiler.
ACM Trans. Progr. Lang. Syst. 28, 619–695 (2006)

22. Lammich, P.: Tree automata. Archive of Formal Proofs. http://www.isa-afp.org/entries/Tree-Automata.
shtml, Formal proof development (2009)

23. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013,
LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg (2013)

123

http://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/978-3-319-40648-0_23
https://hal.inria.fr/hal-01414881
https://hal.inria.fr/hal-01414881
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1016/j.ic.2016.06.011
http://www.infsec.ethz.ch/people/andreloc/publications/haftmann14iw.pdf
http://www.infsec.ethz.ch/people/andreloc/publications/haftmann14iw.pdf
http://www.isa-afp.org/entries/Tree-Automata.shtml
http://www.isa-afp.org/entries/Tree-Automata.shtml

94 P. Lammich, A. Lochbihler

24. Lammich, P.: The CAVA automata library. Archive of Formal Proofs. http://www.isa-afp.org/entries/
CAVA_Automata.shtml, Formal proof development (2014)

25. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected component algorithm. In:
Klein, G., Gamboa, R. (eds.) ITP 2014, LNCS, vol. 8558, pp. 325–340. Springer, Heidelberg (2014)

26. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP 2015, LNCS, vol. 9236,
pp. 253–269. Springer, Heidelberg (2015)

27. Lammich, P.: Refinement based verification of imperative data structures. In: Avigad, J., Chlipala, A.
(eds.) CPP 2016, pp. 27–36. ACM, New York (2016)

28. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010, LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg (2010)

29. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to Hopcroft’s algorithm. In:
Beringer, L., Felty, A. (eds.) ITP 2012, LNCS, vol. 7406, pp. 166–182. Springer, Heidelberg (2012)

30. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446 (2009)
31. Lochbihler, A.: A machine-checked, type-safe model of Java concurrency: language, virtual machine,

memory model, and verified compiler. Ph.D. thesis, Karlsruher Institut für Technologie, Fakultät für
Informatik (2012)

32. Lochbihler, A.: Light-weight containers. Archive of Formal Proofs. http://www.isa-afp.org/entries/
Containers.shtml, Formal proof development (2013)

33. Lochbihler, A.: Light-weight containers for Isabelle: efficient, extensible, nestable. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) ITP 2013, LNCS, vol. 7998, pp. 116–132. Springer, Heidelberg (2013)

34. Lochbihler, A., Bulwahn, L.: Animating the formalised semantics of a Java-like language. In: van Eekelen,
M., Geuvers, H., Schmalz, J., Wiedijk, F. (eds.) ITP 2011, LNCS, vol. 6898, pp. 216–232. Springer,
Heidelberg (2011)

35. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into Isabelle/HOL. Theor.
Comput. Sci. 411(50), 4333–4356 (2010)

36. Musser, D.R., Stepanov, A.A.: Generic programming. In: Gianni, P. (ed.) ISSAC 1988, LNCS, vol. 358,
pp. 13–25. Springer, Heidelberg (1989)

37. Nipkow, T.: Automatic functional correctness proofs for functional search trees. In: Blanchette, J.C.,
Merz, S. (eds.) ITP 2016, LNCS, vol. 9807, pp. 307–322. Springer, Heidelberg (2016)

38. Nipkow, T., Paulson, L.C.: Proof pearl: defining functions over finite sets. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005, LNCS, vol. 3603, pp. 385–396. Springer, Heidelberg (2005)

39. Nordhoff, B., Lammich, P.: Dijkstra’s shortest path algorithm. Archive of Formal Proofs. http://www.isa-
afp.org/entries/Dijkstra_Shortest_Path.shtml, Formal proof development (2012)

40. Peyton Jones, S.: Bulk types with class. In: Haskell Workshop 1997 (1997)
41. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5(1), 153–163 (1970)
42. Schimpf, A., Lammich, P.: Converting linear-time temporal logic to generalized Büchi automata. Archive

of Formal Proofs. http://www.isa-afp.org/entries/LTL_to_GBA.shtml, Formal proof development (2014)
43. Schimpf, A., Merz, S., Smaus, J.: Construction of Büchi automata for LTL model checking verified in

Isabelle/HOL. TPHOLs 2009, LNCS, vol. 5674, pp. 424–439. Springer, Heidelberg (2009)
44. Sozeau, M., Oury, N.: First-class type classes. In: Ait Mohamed, O., Muñoz, C., Tahar, S. (eds.) TPHOLs

2008, LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)
45. Sternagel, C., Thiemann, R.: Deriving comparators and show functions in Isabelle/HOL. In: Urban, C.,

Zhang, X. (eds.) ITP 2015, LNCS, vol. 9236, pp. 421–437. Springer, Heidelberg (2015)
46. Sternagel, C., Thiemann, R., Winkler, S., Zankl, H.: CeTA—a tool for certified termination analysis.

CoRR abs/1208.1591. http://arxiv.org/abs/1208.1591 (2012)
47. Thiemann, R.: Implementing field extensions of the form Q[sqrt(b)]. Archive of Formal Proofs. http://

www.isa-afp.org/entries/Real_Impl.shtml, Formal proof development (2014)
48. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Berghofer, S., Nipkow,

T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009, LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg
(2009)

49. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4), 221–227 (1971)

123

http://www.isa-afp.org/entries/CAVA_Automata.shtml
http://www.isa-afp.org/entries/CAVA_Automata.shtml
http://www.isa-afp.org/entries/Containers.shtml
http://www.isa-afp.org/entries/Containers.shtml
http://www.isa-afp.org/entries/Dijkstra_Shortest_Path.shtml
http://www.isa-afp.org/entries/Dijkstra_Shortest_Path.shtml
http://www.isa-afp.org/entries/LTL_to_GBA.shtml
http://arxiv.org/abs/1208.1591
http://www.isa-afp.org/entries/Real_Impl.shtml
http://www.isa-afp.org/entries/Real_Impl.shtml

	Automatic Refinement to Efficient Data Structures: A Comparison of Two Approaches
	Abstract
	1 Introduction
	2 Running Example: 2SAT Via Depth-First Search
	3 Challenges on the Road to Efficient Data Structures
	3.1 Identification of Types and Operations
	3.2 Selection of Data Structures
	3.3 Non-Determinism
	3.4 Scalability in the Number of Data Structures

	4 Autoref
	4.1 Running DFS Example
	4.2 Synthesis Based on Parametricity
	4.2.1 Relators
	4.2.2 Synthesis Based on Relators
	4.2.3 Side Conditions
	4.2.4 Generic Algorithms

	4.3 The Automatic Refinement Tool
	4.4 Identification of Operations
	4.5 Selection of Implementations
	4.5.1 Homogeneity Rules
	4.5.2 Anti-Unification
	4.5.3 Type-Based Heuristics
	4.5.4 Solving

	4.6 Translation Phase

	5 Containers
	5.1 Depth-First Search Declaratively
	5.2 Background on Isabelle's Code Generator
	5.3 Identification of Operations
	5.4 Linking Implementations to Their Conceptual Types
	5.5 Dealing with Sort Refinement
	5.6 Automatic Selection of Data Structures
	5.7 Generic Programming
	5.8 Overriding the Selection Heuristics
	5.8.1 Type-Based Overrides
	5.8.2 Instance-Based Overrides

	5.9 Non-Determinism

	6 Technical Comparison
	6.1 Identification of Conceptual Types
	6.2 Implementation Selection
	6.3 Generic Programming
	6.4 Underspecification
	6.5 Non-Determinism

	7 Using the Refinement in Context and Combining Both Frameworks
	7.1 2SAT with Containers
	7.2 2SAT with Autoref
	7.3 Combining Autoref and Containers
	7.4 Comparison from a User Perspective

	8 Related Work
	8.1 The Coq Effective Algebra Library
	8.2 Fiat
	8.3 Further Related Work

	9 Conclusion and Future Work
	Acknowledgements
	References

