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Abstract Formal analysis of ordinary differential equations (ODEs) and dynamical systems
requires a solid formalization of the underlying theory. The formalization needs to be at the
correct level of abstraction, in order to avoid drowning in tedious reasoning about technical
details. The flow of an ODE, i.e., the solution depending on initial conditions, and a dedicated
type of bounded linear functions yield suitable abstractions. The dedicated type integrates
well with the type-class based analysis in Isabelle/HOL and we prove advanced properties
of the flow, most notably, differentiable dependence on initial conditions via the variational
equation. Moreover, we formalize the notion of first return or Poincaré map and prove its
differentiability. We provide rigorous numerical algorithm to solve the variational equation
and compute the Poincaré map.

Keywords Isabelle/HOL · Analysis · Ordinary differential equation · Dynamical system ·
Poincaré map

1 Introduction

Ordinary differential equations (ODEs) are ubiquitous for modeling continuous problems
in e.g., physics, biology, or economics. A formalization of the theory of ODEs allows us
to verify algorithms for the analysis of such systems. A popular example, where a verified
algorithm is highly relevant, is Tucker’s proof on the topic of a strange attractor for the Lorenz
equations [26]. This proof relies on the output of a computer program, that computes bounds
for analytical properties of the so-called Poincaré map of the flow of an ODE.
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The flow is the solution as a function depending on an initial condition. We formalize
the flow and prove conditions for analytical properties like continuity of differentiability
(the derivative is of particular importance in Tucker’s proof). Most of these properties seem
very “natural”, as Hirsch, Smale and Devaney call them in their textbook [11]. However,
despite being “natural” properties and fairly standard results, they are delicate to prove: In
the textbook, the authors present these properties rather early, but

“postpone all of the technicalities [. . .], primarily because understanding this material
demands a firm and extensive background in the principles of real analysis”.

In this article, we show that it is feasible to cope with these technicalities in a formal
setting and confirm that Isabelle/HOL supplies a sufficient background of real analysis.

We present our Isabelle/HOL library for reasoning about the flow of ODEs. The main
results are formalizations of continuous and differentiable dependence on initial conditions.
The differentiable dependence is characterized by a particular ODE, the variational equation.
The Poincaré map is a useful tool for reasoning about dynamical systems and is defined in
terms of the flow. Usually, textbooks give a rigorous treatment of the Poincaré map only in a
particular situation, namely in a local neighborhood of a periodic point. Tucker’s proof, for
example, requires a more general notion, for which we give a precise formalization here. We
show how to use existing rigorous numerical algorithms to solve the variational equation and
compute derivatives of the Poincaré map. The variational equation is posed on the space of
linear functions. We introduce a separate type for this space in order to profit from the type
class based formalization of mathematics in Isabelle/HOL.

We are not aware of any other formalization that covers this foundational part of the theory
of ODEs in similar detail.

The remainder of this article is structured as follows: We will first (in Sect. 2) present the
“interface” to our theory, i.e., the definitions and assumptions that are needed for formalizing
our main results. Any potential user of the library needs in principle only know about these
concepts. Section 3 follows with a high-level treatment of our formalization of the Poincaré
map. Because the general topic is very theoretical and foundational work, we present a
practical application with rigorous numerical computations right afterwards in Sect. 4.

Only then, we go into the details of the techniques that we used to make this formalization
possible. Mathematics and analysis are formalized in Isabelle mostly based on type classes
and filters, as has been presented earlier in earlier work [12]. We follow this path to formalize
the foundations of our work:

Several proofs needed the notion of a uniform limit. We cast this notion into the
“Isabelle/HOL approach to limits”: we define it using a filter. This gives a versatile for-
malization and one can profit from the existing infrastructure for filters in limits. This will
be presented in Sect. 5.

The derivative of the flow is a linear function. The space of linear functions forms a Banach
space. In order to profit from the structure and properties that hold in a Banach space (which
is a type class in Isabelle/HOL), we needed to introduce a type of bounded linear functions.
We will present this type and further applications of its formalization in Sect. 6.

In Sect. 7, we present the technical lemmas that are needed to prove continuity and
differentiability of the flow in order to give an impression of the kind of reasoning that is
required. Section 8 contains a similarly detailed discussion about the Poincaré map.

All of the theorems we present here are formalized in Isabelle/HOL [23], the source code
is available for Isabelle2017 in the Archive of Formal Proof [18].

This article is based on an earlier version that was presented at the conference ITP 2016 in
Nancy, France [19]. It extends the conference paper with a treatment of the notion of Poincaré
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map (Sects. 3, 8, and parts of Sect. 4) together with some necessary background on inverse
and implicit functions (Sects. 6.5 and 6.6).

2 The Flow of a Differential Equation

In this section, we introduce the concept of flow and existence interval (which guarantees
that the flow is well-defined) and present our main results (without proofs at first, we will
present some of the lemmas leadings to the proofs in Sect. 7).

The claim we want to make in this section is the flow as definition is a suitable abstraction
for initial value problems. But beware and do not get deceived by simplicity of statements: as
already mentioned in the introduction, these are all “natural” properties, but the proofs (also
in the textbook) require many technical lemmas.

First of all, let us introduce the concepts we are interested in. We consider open sets T , X
and an autonomous1 ODE with right hand side f

ẋ(t) = f (x(t)), where f : Rn → R
n is a function from X to X (1)

Under mild assumptions (which we will make more precise later in Definition 18), there
exists a solution φ(t), which is unique for an initial condition x(t0) = x0. To emphasize
the dependence on the initial condition, we write φ(x0, t) for the solution of Eq. (1). This
solution depending on initial conditions is called the flow of the differential equation.

Definition 1 (Flow) The flow φ(x0, t) is the (unique) solution of the ODE (1) with initial
condition x(0) = x0

The solution does not necessarily exist for every t ∈ T . For example, solutions can explode
in finite time s: if limt→s φ(z0, t) = ∞, then the flow is only defined for t < s as is illustrated
in Fig. 1 for φ(z0, _). We therefore need to define a notion of (maximal) existence interval.

Definition 2 (Maximal Existence Interval) The maximal existence interval of the ODE (1)
is the open interval

ex-ivl (x0) := ]α;β[

for α, β ∈ R ∪ {∞,−∞}, such that φ(x0, t) is a solution for t ∈ ex-ivl (x0). Moreover for
every other interval I and every solution ψ(x0, t) for t ∈ I , one has I ⊆ ex-ivl (x0) and
∀t ∈ I. ψ(x0, t) = φ(x0, t).

We claim that the flow φ (together with ex-ivl , which guarantees the flow to be well-
defined) is a convenient way to talk about solutions in a theorem prover. After guaranteeing
that they are well-defined, these constants have nicely algebraic properties, which can be
stated without further assumptions.

2.1 Composition of Solutions

The first nicely algebraic property is the abstract property of the generic notion of flow. This
notion makes it possible to easily state composition of solutions and to algebraically reason

1 This means that f does not depend on t . This restriction makes the presentation clearer. Many of our
results are also formalized for non-autonomous ODEs. Moreover, for a large class of ODEs, a reduction to the
autonomous case is possible.
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Fig. 1 Illustration of some flow φ for initial values x0, y0, z0 and times s, s + t

about them. As illustrated in Fig. 1, flowing from x0 for time s+t is equivalent to first flowing
for time s, and from there flowing for time t .

This only works if the flow is defined also for the intermediate times (the theorem can not
be true for φ(x0, t + (−t)) if t /∈ ex-ivl ).

Theorem 1 (Flow property)

s ∈ ex-ivl (x0) �⇒ t ∈ ex-ivl (φ(x0, s)) �⇒ φ(x0, s + t) = φ(φ(x0, s), t)

2.2 Continuity of the Flow

In the previous lemma, the assumption that the flow is defined (i.e., that the time is
contained in the existence interval) was important. Let us now study the domain Ω =
{(x, t) | t ∈ ex-ivl (x)} ⊆ X × T of the flow in more detail. Ω is called the state space.

For the first “natural” property, we consider an element in the state space. (x, t) ∈ Ω

means that we can follow a solution starting at x for time t . It is “natural” to expect that
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solutions starting close to x can be followed for times that are close to t . In topological
parlance, the state space is open.

Theorem 2 (Open State Space) openΩ

In the previous theorem, the state space allows us to reason about the fact that solutions
are defined for close times and initial values. For quantifying how deviations in the initial
values are propagated by the flow, Grönwall’s lemma is an important tool that is used in
several proofs. Because of its importance in the theory of dynamical systems, we list it
here as well, despite it being a rather technical result. Starting from an implicit inequality
g(t) ≤ C + K

∫ t
0 g(s) ds involving a continuous, nonnegative function g : R → R, it allows

one to deduce an explicit bound for g.

Lemma 1 (Grönwall)

0 < C �⇒ 0 < K �⇒ continuous-on [0; a] g �⇒
∀ t ∈ [0; a]. 0 ≤ g(t) ≤ C + K

∫ t

0
g(s) ds �⇒

∀ t ∈ [0; a]. g(t) ≤ CeKt

Grönwall’s lemma can be used to show that solutions deviate at most exponentially fast:
∃K . |φ(x, t)−φ(y, t)| < |x − y|eK |t | (see also Lemma 11). Therefore, by choosing x and y
close enough, one can make the distance of the solutions arbitrarily small. This implies that
the flow is continuous in its first argument and can be used to show that the flow is continuous
on the state space.

Theorem 3 (Continuity of Flow) continuous-on Ω φ

2.3 Differentiability of the Flow

Continuity states that small deviation in the initial values result in small deviations of the
flow. But one can be more precise on how initial deviations propagate. A nice property of
the flow is that it is differentiable: the way initial deviations propagate can be approximated
by a linear function. So instead of solving the ODE for perturbed initial values, one can
approximate the resulting perturbation with the linear function: We write φt := λx . φ(x, t)
and application of a linear function L to some argument x application as L · x . Then one has
Dφt |x · v ≈ φt (x + v) − φt (x). By using a basis vector for v, one gets the corresponding
partial derivative of the flow. Dφt |x is called the space derivative of the flow.

As an example, Fig. 2 depicts a two-dimensional flowφ starting at (x0, y0) and its evolution
(in black) up to time t = 2 in black. Along with the flow, it shows the evolution of the partial
derivatives ∂φ((x0,y0),t)

∂x = Dφt |(x0,y0) · (1, 0) and ∂φ((x0,y0),t)
∂y = Dφt |(x0,y0) · (0, 1).

The derivative of φ with respect to time is given by the ODE f , one can therefore write the
total derivative of the flow as Dφ|(x,t) · (dx , dt ) := Dφt |x ·dx +dt f (φ(x, t)). Our main result
is the formalization of the fact that the total derivative of the flow exists and is continuous.

Theorem 4 (Differentiability of the Flow) If f is continuously differentiable, then for every
(x, t) ∈ Ω there exists a linear function W (x, t), which is the derivative of the flow at (x, t).
Moreover W is continuous on the state space.

∃W. Dφ|(x,t) = W (x, t) ∧ continuous-on Ω W
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Fig. 2 Flow φ of the van der Pol system (ẋ, ẏ) = (y, (1− x2)y− x) and its partial derivatives ∂φ
∂x ,

∂φ
∂y (scaled

by the factor 1
2 ) for initial condition (x0, y0) = (1.4, 2.25)

3 The Poincaré Map

The Poincaré map (or first return map) is an important tool for studying dynamical systems.
The flow describes the evolution of a continuous system with respect to time. But often, one
is not interested in the evolution with respect to time, but rather to some space variables
and the Poincaré map allows to reason about this. To this end, one considers a continuous
system with flow φ(x, t) and a Poincaré section. A Poincaré section is a subset 	 of the state
space, which is usually given as an implicit surface 	 = {x | s(x) = c} with continuously
differentiable s.

The Poincaré map P(x) is defined as the point where the flow starting from x first hits the
Poincaré section 	. To be more precise, let us consider the notion of first return time τ(x).

Definition 3 (Return Time) τ(x) is the least t > 0 such that φ(x, t) ∈ 	.

Obviously, τ is only well-defined for values that actually return to 	, which we encode in
the predicate returns-to .

Definition 4

returns-to (	, x) := ∃t > 0. φ(x, t) ∈ 	
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The return time can then be used to define the Poincaré map as follows.

Definition 5 (Poincaré map)

P(x) := φ(x, τ (x))

It is interesting to note that our Definition of Poincaré map slightly differs from the
approach that many textbooks (e.g., [24, chapter 3.4], [25, chapter 5.8], [11, chapter 10.3])
take. The original application of Poincaré maps is the study of periodic orbits, and textbooks
usually define the return time implicitly for a periodic point as follows: For a periodic point x
with period τ(x) and a choice of	 transversal to the flow, these textbooks invoke the implicit
function theorem to obtain a continuous function, which is declared to be the return time.
This way, the definition implicitly depends on x and is valid only locally.

In contrast, our construction in Definition 5 (with the first return time τ according to
Definition 3) yields a notion of Poincaré map that is given globally (on the whole state space
and not just on 	) and a-priori (without any implicit constructions): P(x) is well-defined
for all values x with returns-to (	, x). In particular, x need not be element of 	 and also not
in some (implicitly defined) neighborhood of a periodic point. P is well-defined even when
there is no periodic point. Real applications like e.g., Tucker’s proof require such a more
flexible notion of Poincaré map.

In Sect. 8, we precise the assumptions under which τ (and therefore P) is continuous and
differentiable.

4 Rigorous Numerics

In this section, we show that the formalization is not just something abstract, but rather
something that we can use to specify the result of concrete computations: The space derivative
Dφt |x of the flow can be characterized as the solution of a linear, matrix-valued ODE, a
byproduct of the (constructive) proof of differentiability in Lemma 15: The space derivative
Dφt |x is the solution W to the following ODE

Ẇ (t) = D f |φ(x0,t) · W (t)

with the identity matrix I as initial condition W (0) = I .
We encode this matrix valued variational equation into a vector valued one, use an exist-

ing rigorous numerical algorithm for solving ODEs in Isabelle [14] to compute bounds on
the solutions. Re-interpreting the result as bounds on matrices, we obtain bounds on the
solution of the variational equation. As a concrete example, we use the van der Pol system:
ẋ = y; ẏ = (1 − x2)y − x for the initial condition x0 = 1.4 and y0 = 2.25.

The overall setup for the computation is as follows: We have an executable specification
of a second-order Runge–Kutta method (which is formally verified to produce rigorous
enclosures for the solution of an ODE) and use Isabelle’s code generator [8] to generate SML
code from this specification. We choose to compute the evolution until time t = 2 with an
adaptive stepsize controlling an absolute and relative error of about 2−12. The computation
takes about 15 s on an average laptop computer. Figure 2 was generated using the output of
the verified algorithm. The corresponding theorem for the final inclusion is as follows (the
theorem statement needs to be given by the user, it is proved by computing bounds using the
aforementioned Runge–Kutta method, trusting code generation in SML):
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Theorem 5

φ((1.4, 2.25), 2) ∈ ([0.1510; 0.1524], [− 1.0353;− 1.0334])
Dφ2|(1.4,2.25) ∈

( [0.2141; 0.2173] [0.4262; 0.4276]
[− 0.108;− 0.110] [0.2967; 0.2987]

)

In addition to the variational equation, we can also compute the Poincaré map P . In
Fig. 3, we start with an initial set [1.35; 1.45] × {2.25} and aim to compute its Poincaré map
returning to y = 2.25 and x ∈ [1; 2]. An intermediate Poincaré section at x = −1 helps
in performing the computations: When the initial set evolves until about x = −1, one can
see (in the magnified lower part of the figure) that the size of the reachable sets right of
x = −1 is relatively large in the x-direction. The Poincaré section reduces the size in this
direction to zero. Since the overapproximation error grows with the size of the reachable sets,
such an operation helps to maintain precision and performance of the reachability analysis
algorithm. The intersection is computed geometrically [15]. The framework that combines
continuous reachability with such intersections is described in an earlier paper [16]. We
use affine arithmetic to evaluate the expression for the derivative of the Poincaré map from
theorem 13, where the discretization step size gives an estimate for the return time τ .

As a result, Fig. 3 was created using the output of the verified algorithm and this algorithm
yields an enclosure for the Poincaré map P and its derivative DP:

Theorem 6

P([1.35; 1.45] × {2.25}) ⊆ ([1.404; 1.425], 2.25)
DP([1.35; 1.45] × {2.25}) ⊆

([−0.4; 0.4] [−0.08; 0.08]
0 0

)

One can conclude from the numerical figures for P that the van der Pol system maps
the initial set onto itself. The enclosures for DP tell us something about the stability of the
apparent limit cycle. In the first row of the result, we see that a deviation in the x direction
yields a smaller (at most a factor of 0.4) deviation in the x direction and a deviation in the y
direction yields a much smaller (at most a factor of 0.08) deviation in the x direction. Since
this Poincaré section is perpendicular to the y axis, there is no deviation in that direction
(zeros in the second row of the result).

5 Uniform Limit as Filter

A noteworthy difference to textbook presentations is the way we work with limits. For the
results in this article, we needed in particular the notion of uniform limit. In order to define
uniform convergence, we use filters. Filters have proved to be useful to describe all kinds of
limits and convergence in a coherent way [12]. For details about filters, please consider the
paper [12]. In the formalization, the uniform limit uniform-limit X f l F is parameterized by
a filter F , here we just present the explicit formulations for the sequentially and at filters.

A sequence of functions fn : α → β for n ∈ N is said to converge uniformly on X : P(α)

against the uniform limit l : α → β, if

Definition 6

uniform-limit X f l sequentially :=
∀ ε > 0. ∃N . ∀x ∈ X. ∀ n ≥ N . dist ( fn x) (l x) < ε
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Fig. 3 Computation of Poincaré map P([1.35; 1.45] × {2.25}) of the van der Pol system (ẋ, ẏ) = (y, (1 −
x2)y − x) with Poincaré section 	 = [1; 2] × {2.25} and reduction at {−1} × [1; 2] (detailed in lower part).
Dark blue and dark yellow lines enclose uncertainties in the numeric values
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Note the difference to point-wise convergence, where one would exchange the order of the
quantifiers ∃N and ∀x ∈ X .

With the (at z) filter, we can also handle uniform convergence of a family of functions
fy : α → β as y approaches z:

Definition 7

uniform-limit X f l (at z) :=
∀ ε > 0. ∃δ > 0. ∀ y. |y − z| < δ �⇒ (∀ x ∈ X. dist ( fy x) (l x) < ε)

The advantage of the filter approach is that many important lemmas can be expressed for
arbitrary filters, for example the uniform limit theorem, which states that the uniform limit l
of a (via filter F generalized) sequence fn of continuous functions is continuous.

Theorem 7 (Uniform Limit Theorem)

(∀ n ∈ F. continuous-on X fn) �⇒ uniform-limit X f l F �⇒
continuous-on X l

A frequently used criterion to show that an infinite series of functions converges uniformly
is the Weierstrass M-test. Assuming majorants Mn for the functions fn and assuming that
the series of majorants converges, it allows one to deduce uniform convergence of the partial
sums towards the series.

Lemma 2 (Weierstrass M-Test)

∀n. ∀ x ∈ X. | fn x | ≤ Mn �⇒
∑

n∈N
Mn < ∞ �⇒

uniform-limit X

⎛

⎝n �→ x �→
∑

i≤n

fi x

⎞

⎠

(

x �→
∑

i∈N
fi x

)

sequentially

6 Bounded Linear Functions

Function spaces, i.e., sets of functions equipped with a certain structure (e.g, topology or
norm) are often required for our formalizations. Textbooks readily introduce them with the
appropriate definitions, whereas Isabelle/HOL requires more infrastructure. This is due to
the fact that the hierarchy of topological spaces is formalized using type classes. In order to
profit from this formalization, one needs to introduce types for such spaces. In this section,
we introduce a type of (bounded) linear functions, its instantiation as a normed vector space,
and how it is used in our formalization.

6.1 Type Classes for Mathematics in Isabelle/HOL

In Isabelle/HOL, many of the mathematical concepts (in particular spaces with a certain
structure) are formalized using type classes. The advantage of type class based reasoning is
that most of the reasoning is generic: formalizations are carried out in the context of type
classes and can then be used for all types inhabiting that type class. For generic formalizations,
we use Greek letters α, β, γ and name their type class constraints in prose (i.e., if we write
that we “consider a topological space” α, then this result is formalized generically for every
type α that fulfills the properties of a topological space).
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The spaces we consider are topological spaces with open sets, (real) vector spaces with
addition + : α → α → α and scalar multiplication (_)(_) : R → α → α. Normed vector
spaces come with a norm |(_)| : α → R. A vector space with multiplication ∗ : α → α → α

that is compatible with addition (a + b) ∗ c = a ∗ c + b ∗ c is an algebra and can also be
endowed with a norm. Complete normed vector spaces are called Banach spaces.

6.2 A Type of Bounded Linear Functions

An important concept is that of a linear function. For vector spaces α and β, a linear function
is a function f : α → β that is compatible with addition and scalar multiplication.

Definition 8

linear f := ∀ x y c. f (cx + y) = c f (x) + f (y)

We need topological properties of linear functions, we therefore now assume normed
vector spaces α and β. One usually wants linear functions to be continuous, and if α and β

are vector spaces of finite dimension, any linear function α → β is continuous. In general,
this is not the case, and one usually assumes bounded linear functions. The norm of the result
of a bounded linear function is linearly bounded by the norm of the argument:

Definition 9

bounded-linear f := linear f ∧ ∃K . ∀x . | f (x)| ≤ K |x |
We now cast bounded linear functions α → β as a type α →bl β in order to make it an

instance of Banach space.

Definition 10

typedef α →bl β := { f : α → β | bounded-linear f }
6.3 Instantiations

For defining operations on typeα →bl β, the Lifting and Transfer package [13] is an essential
tool: operations on the plain function type α → β are automatically lifted to definitions on
the type α →bl β when supplied with a proof that functions in the result are bounded-linear

under the assumption that argument functions are bounded-linear . We write application of a
bounded linear function f : α →bl β with an element x : α as follows.

Definition 11 (Application of Bounded Linear Functions)

( f · x) : β

We present the definitions of operations involving the type α →bl β by presenting them in
an extensional form using ·. Bounded linear functions with pointwise addition and pointwise
scalar multiplication form a vector space.

Definition 12 (Vector Space Operations) For f, g : α →bl β and c : R,
( f + g) · x := f · x + g · x

(c f ) · x := c( f · x)
Theusual choice of a norm for bounded linear functions is the operator norm: themaximum

of the image of the bounded linear function on the unit ball. With this norm, α →bl β forms
a normed vector space and we prove that it is Banach if α and β are Banach.
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Definition 13 (Norm in Banach Space) For f : α →bl β,

| f | := max {| f · y| | |y| ≤ 1}
One can also compose bounded linear functions according to ( f ◦ g) · x = f · (g · x).

Bounded linear operators—that is bounded linear functions α →bl α from one type α into
itself—form a Banach algebra with composition as multiplication and the identity function
1bl as neutral element:

Definition 14 (Banach Algebra of Bounded Linear Operators) For f, g : α →bl α,

( f ∗ g) · x := ( f ◦ g) · x
1bl · x := x

With these instantiations, we can profit from many of the developments that are available
for Banach spaces or algebras. In particular, the type of bounded linear functions can be used
to describe derivatives in arbitrary vector spaces (Sect. 6.4) and allows one to naturally express
e.g., continuity of derivatives, topological properties of inverse linear functions (Sect. 6.5),
or the implicit function theorem (Sect. 6.6).

6.4 Total Derivatives

The total derivative (or Fréchet derivative) is a generalization of the ordinary derivative (of
functionsR → R) for arbitrary normed vector spaces. To illustrate this generalization, recall
that the ordinary derivative yields the slope of the function: if f ′(x) = m, then

lim
h→0

f (x + h) − f (x)

h
= m (2)

Moving the m under the limit, one sees that the (linear) function h �→ hm is a good approx-
imation for the difference of the function value at nearby points x and x + h:

lim
h→0

f (x + h) − f (x) − hm

h
= 0

This concept can be generalized by replacing h �→ hm with an arbitrary (bounded) linear
function A. In the following equation, A is a good linear approximation.

lim
h→0

f (x + h) − f (x) − A · h
|h| = 0 (3)

Note that in the previous equation, we can (just formally) drop many of the restrictions on
the type of f . We started with f : R → R in equation 2, but the last equation still makes
sense for f : α → β for normed vector spaces α, β. We call A : α →bl β the total derivative
D f of f at a point x :

Definition 15 (Total Derivative) For A : α →bl β in equation 3, we write

D f |x = A

The total derivative is important for our developments as it is for example the derivative
W of the flow in Theorem 4. It is only due to the fact that the resulting type α →bl α is
a normed vector space, that makes it possible to express continuity of the derivative or to
express higher derivatives.
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6.5 Inverse Functions

In the Banach space of bounded linear functions, the set of invertible functions is open:

Theorem 8

open
{
f :: α →bl β | ∃ f −1. f ◦ f −1 = 1 ∧ f −1 ◦ f = 1

}

The proof of this theorem is based on the fact that (in the Banach Algebra of Bounded
Operators), the inverse of the disturbed identity function 1+w with |w| < 1 is the convergent
series

∑
i (−1)iwi :

Lemma 3 For 1bl , w :: α →bl α with |w| < 1, (
∑

i .(−1)iwn) is convergent and the left
and right inverse of 1 + w:

(
∑

i

.(−1)iwn

)

∗ (1bl + w) = 1bl ∧
(

∑

i

.(−1)iwn

)

∗ (1bl + w) = 1bl

Moreover, one can bound the norm of the inverse,

Lemma 4 |(1 + w)−1 − (1 + w)| ≤ |w|2
1−|w|

which is used to prove the set of invertible linear functions open for Theorem 8.

6.6 Implicit Function Theorem

The implicit function theorem is a powerful tool to construct (differentiable) functions sat-
isfying a given (implicit) equation. Given an “equation” F :: Ra × R

b → R
c with a root

F(x, y) = 0, the theorem allows to “extend” the root (x, y) in an ε-neighborhood Uε(x) to
a solution function u. This means that the image of the graph of u under F remains constant,
namely F(x, u(x)) = 0.

For a precise formulation, F needs to be continuously differentiable with invertible deriva-
tive:

Theorem 9 (Implicit Function Theorem) Assume a zero F(x, y) = 0 of a continuously
differentiable function F. We use the following notation for the derivative of F w.r.t. the
1st argument f1 · d := DF |(x,y)(d, 0) and the derivative of F w.r.t. the 2nd argument f2 ·
d := DF |(x,y)(0, d). Assume that f2 is invertible, i.e., f −1

2 exists with f −1
2 ◦ f2 = 1bl and

f2 ◦ f −1
2 = 1bl .

Then there exist u and ε > 0 such that:

– u(x) = y
– F(x, u(x)) = 0
– ∀s ∈ Uε(x). F(s, u(s)) = 0
– continuous-on Uε(x) u
– Du|x = − f −1

2 ◦ f1
– u is unique: for every v, V where V ⊆ Uε(x) is open and connected, v with

continuous-on V v, v(x) = y, and (∀s ∈ V . F(s, v(s)) = 0), it holds that
∀s ∈ V . v(s) = u(s)

Existence of such a function u on a neighborhood Uε(x) can be reduced to the inverse
function theorem, which already exists in Isabelle’s library. We therefore perform this reduc-
tion, which yields the expression for the derivative Du|x = − f −1

2 ◦ f1. Openness of invertible
linear maps (Theorem 8) is required for this construction.
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6.7 Further Examples

Herewe illustrate in some (for this article only tangentially relevant) examples, that the type of
bounded linear functions is useful to conveniently formalize some basic results from analysis:
the Leibniz rule for differentiation under the integral sign and conditions for (total) differ-
entiability of multidimensional functions. Furthermore, the exponential function is defined
generically for banach-algebra and can therefore be used for bounded linear functions as well.

6.7.1 Exponential of Operators

The exponential function for bounded linear functions is a useful concept and important
for the analysis of linear ODEs. Here we present that the solution of linear autonomous
homogeneous differential equations can be expressed using the exponential function. For a
Banach algebra α, the exponential function is defined using the usual power series definition
(Bk is a k fold multiplication B ∗ · · · ∗ B):

Definition 16 (Exponential Function) For a Banach algebra α and B : α,

eB :=
∞∑

k=0

1

k! B
k

We prove the following rule for the derivative of the exponential function

Lemma 5 (Derivative of Exponential) d et A
dt = et A A

Proof After unfolding the definition of derivative d et A
dt = limh→0

e(t+h)A−et A
h , the crucial

step in the proof is to exchange the two limits (one is explicit in limh→0, and the other one
is hidden as the limit of the series Definition 16 of the exponential). Exchange of limits can
be done similar to Theorem 7, while uniform convergence is guaranteed according to the
Weierstrass M-Test from Lemma 2. ��
With this rule for the derivative and an obvious calculation for the initial value, one can show
the following

Lemma 6 (Solution of linear initial value problem) φx0,t0(t) := (
e(t−t0)A

)
(x0) is the unique

solution to the ODE φ̇ t = A (φ t) with initial condition φ(t0) = x0.

6.7.2 Total Derivative via Continuous Partial Derivatives

Another example, where interpreting the derivative as bounded linear function α →bl β

is helpful, is when deducing the total derivative of a function f by looking at its partial
derivatives f1 and f2 (that is, the derivatives w.r.t. one variable while fixing the other). One
needs the assumption that the partial derivatives are continuous.

Lemma 7 (Total Derivative via Continuous Partial Derivatives) For f : α → β → γ ,
f1 : α → β → (α →bl γ ), f2 : α → β → (β →bl γ )

∀x . ∀ y. D(x �→ f x y)|x = f1 x y �⇒
∀x . ∀ y. D(y �→ f x y)|y = f2 x y �⇒
continuous ((x, y) �→ f1 x y) �⇒
continuous ((x, y) �→ f2 x y) �⇒
D((x, y) �→ f x y)|(x,y) · (t1, t2) = ( f1 x y) · t1 + ( f2 x y) · t2
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6.7.3 Leibniz Rule

Another example is a general formulation of the Leibniz rule. The following rule is a gener-
alization of e.g., the rule formalized by Lelay and Melquiond [20] to general vector spaces.
Here [[a; b]] is a hyperrectangle in Euclidean space Rn . The rule allows one to differentiate
under the integral sign: the derivative of the parameterized integral

∫ b
a f x t dt with respect

to x can be expressed as the integral of the derivative of f . Note that the integral on the right
is in the Banach space of bounded linear functions.

Lemma 8 (Leibniz rule) For Banach spaces α, β and f : α → R
n → β, f1 : α → R

n →
(α →bl β),

∀t. D(x �→ f x t)|x = f1 x t �⇒
∀x . ( f x) integrable-on [[a; b]] �⇒
continuous-on (α × [[a; b]]) ((x, t) �→ f x t) �⇒

D

(

x �→
∫ b

a
f x t dt

)

|x =
∫ b

a
f1 x t dt

7 Details About the Flow

We will now go into the technical details of the proofs leading towards continuity and differ-
entiability of the flow (Theorems 3 and 4). We still do not present the proofs: their structure
is very similar to the textbook [11] proofs. Nevertheless, we want to present the detailed
statements of the propositions, as they give a good impression on the kind of reasoning that
was required.

7.1 Criteria for Unique Solution

First of all, we specify the common assumptions to guarantee existence of a unique solution
for an initial value problem and therefore a condition for the flow in Definition 1 to be
well-defined.

We assume that f is locally Lipschitz continuous in its second argument. That is, for every
(t, x) ∈ T × X there exist ε-neighborhoods Uε(t) and Uε(x) around t and x , in which f is
Lipschitz continuous w.r.t. the second argument (uniformly w.r.t. the first: the L is valid for
all t ′).

Definition 17

local-lipschitz T X f :=
∀ t ∈ T . ∀x ∈ X.

∃ε > 0. ∃L .

∀ t ′ ∈ Uε(t). ∀ x1, x2 ∈ Uε(x). | f t ′ x1 − f t ′ x2| ≤ L|x1 − x2|
Now the only assumptions that we need to prove continuity of the flow are open sets for time
and phase space and a locally Lipschitz continuous right-hand side f that is continuous in t .

Definition 18 (Conditions for unique solution)

1. T is an open set
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2. X is an open set
3. f is locally Lipschitz continuous on X : local-lipschitz T X f
4. for every x ∈ X , t �→ f (t, x) is continuous on T .

The detailed proofs that these assumptions guarantee the existence of a unique solution
for initial value problems have been presented in Theorem 3 of earlier work [17].

7.2 The Frontier of the State Space

It is important to study the behavior of the flow at the frontier of the state space (e.g., as time
or the solution tend to infinity). From this behavior, one can deduce conditions under which
solutions can be continued. This yields techniques to gain more precise information on the
existence interval ex-ivl .

If the solution only exists for finite time, it has to explode (i.e., leave every compact set):

Lemma 9 (Explosion for Finite Existence Interval)

ex-ivl (x0) = ]α, β[ �⇒ β < ∞ �⇒ compact K �⇒
∃t ≥ 0. t ∈ ex-ivl (x0) ∧ φ(x0, t) /∈ K

This lemma can be used to prove a condition on the right-hand side f of the ODE, to
certify that the solution exists for the whole time. Here the assumption guarantees that the
solution stays in a compact set.

Lemma 10 (Global Existence of Solution)

(∀s ∈ T . ∀ u ∈ T . ∃L . ∃M. ∀ t ∈ [s; u]. ∀ x ∈ X. | f t x | ≤ M + L|x |)
�⇒ ex-ivl (x0) = T

7.3 Continuity of the Flow

The following lemmas are all related to continuity of the flow. With the help of Grönwall’s
Lemma 1, one can show that when two solutions (starting from different initial conditions x0
and y0) both exist for a time t and are restricted to some set Y on which the right-hand side
f satisfies a (global) Lipschitz condition K , then the distance between the solutions grows
at most exponentially with increasing time:

Lemma 11 (Exponential Initial Condition for Two Solutions)

t ∈ ex-ivl (x0) �⇒ t ∈ ex-ivl (y0) �⇒
x0 ∈ Y �⇒ y0 ∈ Y �⇒ Y ⊆ X �⇒
∀s ∈ [0; t]. φ(x0, s) ∈ Y �⇒
∀s ∈ [0; t]. φ(y0, s) ∈ Y �⇒
∀s ∈ [0; t]. lipschitz Y ( f s) K �⇒
|φ(x0, t) − φ(y0, t)| ≤ |x0 − y0|eK |t |

Note that it can be hard to establish the assumptions of this lemma, in particular the
assumption that both solutions from x0 and y0 exist for the same time t . Consider Fig. 1:
not all solutions (e.g., from y0) do necessarily exist for the same time s (e.g., the solution
from z0). One can choose, however, a neighborhood of y0 (e.g., including x0), such that all
solutions starting from within this neighborhood exist for at least the same time, and with
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the help of the previous lemma, one can show that the distance of these solutions increases
at most exponentially:

Lemma 12 (Exponential Initial Condition of Close Solutions)

a ∈ ex-ivl (x0) �⇒ b ∈ ex-ivl (x0) �⇒ a ≤ b �⇒
∃δ > 0. ∃K > 0. Uδ(x0) ⊆ X ∧

(∀y ∈ Uδ(x0). ∀t ∈ [a; b].
t ∈ ex-ivl (y) ∧ |φ(x0, t) − φ(y, t)| ≤ |x0 − y|eK |t |)

Using this lemma is the key to showing continuity of the flow (Theorem 3).
A different kind of continuity is not with respect to the initial condition, but with respect

to the right-hand side of the ODE.

Lemma 13 (Continuity with respect to ODE) Assume two right-hand sides f, g defined on
X and uniformly close | f x − g x | < ε. Furthermore, assume a global Lipschitz constant K
for f on X. Then the deviation of the flows φ f and φg can be bounded:

|φ f (x0, t) − φg(x0, t)| ≤ ε

K
eK |t |

7.4 Differentiability of the Flow

The proof for the differentiability of the flow incorporates many of the tools that we have
presented up to now, we will therefore go a bit more into the details of this proof.

7.4.1 Assumptions

The assumptions in Definition 18 are not strong enough to prove differentiability of the flow.
However, a continuously differentiable right-hand side f : Rn → R

n suffices. To be more
precise:

Definition 19 (Criterion for Continuous Differentiability of the Flow)

∃ f ′ : Rn → (Rn →bl R
n). (∀x ∈ X. D f |x = f ′ x) ∧ continuous-on X f ′

From now on, we denote the derivative along the flow from x0 with Ax0 : R → R
n :

Definition 20 (Derivative along the Flow) Ax0(t) := D f |φ(x0,t)

The derivative of the flow is the solution to the so-called variational equation, a non-
autonomous linear ODE. The initial condition ξ is supposed to be a perturbation of the initial
value (like ∂φ

∂x and ∂φ
∂y in Fig. 2) and in what follows we will prove that the solution to this

ODE is a good (linear) approximation of the propagation of this perturbation.
{
u̇(t) = Ax0(t) · u(t)

u(0) = ξ
, (4)

We will write ux0(ξ, t) for the flow of this ODE and omit the parameter x0 and/or the
initial value ξ if they can be inferred from the context.

As a prerequisite for the next proof, we begin by proving that ux0(ξ, t) is linear in ξ , a
property that holds because u is the solution of a linear ODE (this is often also called the
“superposition principle”).
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Lemma 14 (Linearity of ux0(ξ, t) in ξ )

αux0,a(t) + βux0,b(t) = ux0,(αa+βb)(t).

Because ξ �→ ux0(ξ, t) : Rn → R
n is linear on Euclidean space, it is also bounded linear,

so we will identify this function with the corresponding element of type Rn →bl R
n . The

main efforts go into proving the following lemma, showing that the aforementioned function
is the derivative with respect to space of the flow for fixed time φt = (x0 �→ φ(x0, t)).

Lemma 15 (Space Derivative of the Flow) For t ∈ ex-ivl (x0),

(Dφt |x0) · ξ = ux0(ξ, t)

Proof The proof starts out with the integral identities of the flow, the perturbed flow, and the
linearized propagation of the perturbation:

φ(x0, t) = x0 +
∫ t

0
f (φ(x0, s)) ds

φ(x0 + ξ, t) = x0 + ξ +
∫ t

0
f (φ(x0 + ξ, s)) ds

ux0(ξ, t) = ξ +
∫ t

0
Ax0(s) · ux0(ξ, s) ds

= ξ +
∫ t

0
f ′(φ(x0, s)) · ux0(ξ, s) ds

Then, for any fixed ε, after a sequence of estimations (3 pages in the textbook proof,
about 500 lines of proof text) involving e.g., uniform convergence (Sect. 5) of the first-order
remainder term of the Taylor expansion of f , continuity of the flow (Theorem 3), and linearity
of u (Lemma 14) one can prove the following inequality.

‖φ(x0 + ξ, t) − φ(x0, t) − ux0(ξ, t)‖
‖ξ‖ ≤ ε

This shows that ux0(ξ, t) is indeed a good approximation for the propagation of the initial
perturbation ξ and exactly the definition for the space derivative of the flow. ��

Note that ux0(ξ, t) yields the space derivative in direction of the vector ξ . The total space
derivative of the flow is then the linear function ξ �→ ux0,ξ (t). But this derivative can also be
described as the solution of the following “matrix-valued” variational equation:

{
Ẇx0(t) = Ax0(t) ◦ Wx0(t)

Wx0(0) = Id
(5)

This initial value problem is defined for linear operators of type Rn →bl R
n . Thanks to

Lemma 10, one can show that it is defined on the same existence interval as the flow φ. The
solution Wx0 is related to solutions of the variational IVP as follows:

ux0(ξ, t) = Wx0(t) · ξ

The derivative of the flow φ at (x0, t) with respect to t is given directly by the ODE,
namely f (φ(x0, t)). Therefore and according to Lemma 7 the total derivative of the flow is
characterized as follows:

Theorem 10 (Derivative of the Flow)

Dφ|(x0,t) · (ξ, τ ) = Wx0(t) · ξ + τ f (φ(x0, t))
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7.5 Continuity of Derivative

Regarding the continuity of the derivativeDφ|(x0,t)·(ξ, τ )with respect to (x0, t): τ f (φ(x0, t))
is continuous because of Definition 18 and Theorem 3.

Wx0(t) is continuous with respect to t , so what remains to be shown is continuity of the
space derivative regarding x0. The proof of this statement relies on Theorem 13, because for
different values of x0, Wx0 is the solution to ODEs with slightly different right-hand sides.
A technical difficulty here is to establish the assumption of global Lipschitz continuity for
Theorem 13.

8 Details About the Poincaré Map

Here we sketch how to prove continuity and differentiability of the Poincaré map.We assume
a Poincaré section to be a subset (via S) of an implicit surface:

	 = {x ∈ S | s(x) = 0}
The idea is to apply the implicit function Theorem 9 to find a differentiable function u

that solves s(φ(x, u(x))) = 0 in a neighborhood Uε(x). The implicit function u is unique
(w.r.t. continuous functions). Since s(φ(x, τ (x))) = 0, all one has to do is prove that τ

is continuous, in order to get differentiability for τ , because τ is equal to u and therefore
Dτ |x = Du|x .

This is the most prominent difference to the construction in textbooks (e.g., [24, chapter
3], [25, chapter 5.8], [11, chapter 10.3]). Those textbooks simply declare the return time τ

to be the solution u from the implicit function theorem. We use the uniqueness condition of
the implicit function Theorem 9 and results about continuity (Theorems 11 and 12) to show
the equality of (our global notion of return time) τ and the solution of the implicit function
theorem u.

But first, one needs more assumptions on the Poincaré section 	 in order to carry out the
construction of the implicit function u: we assume S closed and s continuously differentiable,
moreover theflowneeds to be transversal at the returnmap (Ds|P(x)· f (P(x)) �= 0).Moreover,
the return P(x) needs to be in the relative (with respect to the implicit surface) interior of the
Poincaré section (∃δ. Uδ(P(x)) ∩ {x | s(x) = 0} ⊆ S). We summarize these assumptions in
the following definition.

Definition 21 (Assumptions for Poincaré Section)

Ds|φ(x,τ (x)) · f (P(x)) �= 0 ∧ (∃δ. Uδ(P(x)) ∩ {x | s(x) = 0} ⊆ S)

There are two cases for which we prove τ(x) continuous: First, if x /∈ 	, then τ is
continuous in any sufficiently small neighborhood around x . The limit can therefore be
approached from an arbitrary set X , i.e., at x within X . Second, if x ∈ 	, then τ is continuous
only the side of the surface	 towhich the vector field points to, i.e., at x within {x | s(x) ≤ 0}.
That is because if y is taken (arbitrarily) close to x , but on the other side of 	, then τ(y)
is (arbitrarily) close to zero, but τ(x) > 0. More formally, the two cases are given by
Theorems 11 and 12:

Theorem 11 (Continuity of τ outside 	 ) continuous τ (at x within X), if the assumptions
from Definition 21 and the following conditions hold:
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– returns-to (	, x)
– x /∈ 	

Theorem 12 (Continuity of τ on 	) continuous τ (at x within {x | s(x) ≤ 0}), if the
assumptions from Definition 21 and the following conditions hold:

– returns-to (	, x)
– x ∈ 	

– Ds|x · f (x) < 0

When τ is continuous (e.g., under the same same assumptions as those of Theorem 11),
τ is equal to the solution of the implicit function theorem. This yields an explicit expression
for the derivative of Dτ .

Theorem 13 (Derivative of τ ) Under the assumptions of Theorem 11:

Dτ |x · h = −Ds|P(x) · (Dφτ(x)|x · h)

Ds|P(x) · ( f (P(x)))
f (P(x))

From continuity and differentiability of the flow (Theorems 3 and 4) and τ (Theorems 11,
12, and 13), it follows that the Poincaré map is continuous and differentiable.

9 Related Work

We first concentrate on related work that has directly influenced the emergence of the mathe-
matics library in Isabelle on which we build our formalization before discussing related work
on ODEs in other proof assistants. An extensive survey on real analysis in proof assistants is
given by Boldo et al. [4].

Isabelle’s mathematics library has its origins in Fleuriot and Paulson’s [5] theory of real
analysis which was mostly specific to the type R. This material has since been generalized
to type classes. Much of the formalization of analysis has been ported to Isabelle/HOL
from Harrison’s multivariate analysis library for HOL Light [9,10]. Most of the theory about
derivatives and (Henstock–Kurzweil) integration originates fromHarrison’s library, e.g., also
the inverse function we refer to in the proof of the implicit function Theorem 9.

Spitters and Makarov [22] implement Picard iteration to compute solutions of ODEs in
the interactive theorem prover Coq. Their algorithm yields solutions only for relatively short
time intervals, but is a direct result of a constructive proof for existence/uniqueness.

Maggesi [21] used his theory of metric spaces (as a predicate instead of type classes) for
a formalization of a local version of the Picard–Lindelöf theorem in HOL Light.

Boldo et al. [2] approximate the solution of one particular partial differential equation
with a C-program and verify its correctness in Coq. Another important result, fundamental
for numerical approximations of partial differential equations is the formalization of the Lax-
Milgram theorem in Coq by Boldo et al. [1]. Their formalization is similar to ours in the sense
that it is also based on functional analysis and formalization of bounded linear functions.
They build on the Coquelicot library for real analysis [3].

More functional analysis is given byGouëzel’s formalization of Lp-spaces [7]. Gouëzel [6]
also formalized ergodic theory, i.e., dynamical systems with an invariant measure in
Isabelle/HOL, his formalization includes Kac’s Formula and Birkhoff and Kingman the-
orems.
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10 Conclusion

To conclude, our formalization of flow and the variational equation contains essentially all
lemmas and proofs of at least 22 pages (Chapter 17) of the textbook by Hirsch et al. [11]. This
corresponds to Sections 2.1–2.5 on “Nonlinear Systems: Local Theory” (about 30 pages) of
Perko’s textbook [24]. The formalization moreover comprises a notion of Poincaré map,
which is more flexible than what is usually presented in textbooks.

All of this required general-purpose background to be formalized, in particular uniform
limits and the Banach space of (bounded) linear functions. The separate type for bounded
linear functions is a minor complication that is necessary to profit from the type class based
library for analysis in Isabelle/HOL. We showed the concrete usability of our results by
verifying the connection of the abstract formalization with concrete rigorous numerical algo-
rithms.

Our formalization encompasses fundamental properties (continuity and differentiability)
of flow and Poincaré map. This is enough material for a specification of the numerical
part of Tucker’s proof, where rigorous enclosures of Poincaré maps and their derivatives
are computed. We lack a complete formalization of dependence on parameters (we only
formalized uniform continuity according to Lemma 13) and higher derivatives. We have not
formalized any deeper theory about dynamical systems. The next interesting steps would
be e.g., the Poincaré–Bendixson theorem, the stable manifold theorem, or the Hartmann-
Grobmann theorem.
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