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Abstract I present a formalization in Isabelle/HOL of the resolution calculus for first-order
logic with formal soundness and completeness proofs. To prove the calculus sound, I use the
substitution lemma, and to prove it complete, I use Herbrand interpretations and semantic
trees. The correspondence between unsatisfiable sets of clauses and finite semantic trees is
formalized inHerbrand’s theorem. I discuss the difficulties that I had formalizing proofs of the
lifting lemma found in the literature, and I formalize a correct proof. The completeness proof
is by induction on the size of a finite semantic tree. Throughout the paper I emphasize details
that are often glossed over in paper proofs. I give a thorough overview of formalizations of
first-order logic found in the literature. The formalization of resolution is part of the IsaFoL
project, which is an effort to formalize logics in Isabelle/HOL.

Keywords First-order logic · Resolution · Isabelle/HOL ·Herbrand’s theorem · Soundness ·
Completeness · Semantic trees

1 Introduction

The resolution calculus plays an important role in automatic theorem proving for first-order
logic as many of the most efficient automatic theorem provers, e.g. E [69], SPASS [74], and
Vampire [57], are based on superposition, an extension of resolution. Studying the resolution
calculus is furthermore an integral part of many university courses on logic in computer
science. The resolution calculus was introduced by Robinson in his ground-breaking paper
[60] which also introduced most general unifiers (MGUs).

The resolution calculus reasons about first-order literals, i.e. atoms and their negations.
Since the literals are first-order, they may contain full first-order terms. Literals are collected
in clauses, i.e. disjunctions of literals. The calculus is refutationally complete, which means
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that if a set of clauses is unsatisfiable, then the resolution calculus can derive a contradiction
(the empty clause) from it. One can also use the calculus to prove any valid sentence by first
negating it, then transforming it to an equisatisfiable set of clauses, and lastly refuting this
set with the resolution calculus. Resolution is a calculus for first-order logic, but it does not
have any machinery to handle equality or any other theories.

There are several techniques for proving the completeness of resolution calculi. In this
work I use the one of semantic trees, which was introduced by Robinson [61]. Semantic
trees are binary trees that represent interpretations. I mostly follow textbooks by Ben-Ari [4],
Chang and Lee [19], and Leitsch [43]. The idea of Chang and Lee’s completeness proof is
that a semantic tree is cut smaller and smaller, and for each cut, a derivation is done towards
the empty clause. I also formalize Herbrand’s theorem, which cuts the tree down to finite
size. I prove a stronger version of the usual refutational completeness theorem by weakening
its assumption to require unsatisfiability in only a single countably infinite universe instead
of in all universes. The usual theorem follows directly from this, which is proven, e.g. by
Chang and Lee as Theorem 4.2. I discuss why this usual theorem is not formalized.

The formalization is included in the IsaFoL project [33] and the Archive of Formal Proofs
[65] where it is available for download. The IsaFoL project formalizes several logics in
Isabelle/HOL [47]. IsaFoL is part of a larger effort of research in this area. This also includes
formalizations of ground resolution, which is propositional by nature. The formalization in
this paper stands out from these by formalizing resolution for first-order logic. The theory
needed to do this is very different from that of ground resolution since first-order logic
involves a richer syntax and semantics. To the best of my knowledge, I present the first
formalized completeness proof of the resolution calculus for first-order logic.

Harrison [28] formalized Herbrand’s theorem, also known as uniformity, in a model the-
oretic formulation. It says that if a purely existential formula is valid, then some disjunction
of instances of the body is propositionally valid. In automatic theorem proving, the theorem
is viewed in a different, equivalent way: A set of clauses is unsatisfiable only if some finite
set of ground, i.e. variable free, instances of its clauses is as well. This can be used to build
a first-order refutation prover from a propositional SAT solver. Such a prover enumerates
ground instances, which it tries to refute with the SAT solver. I formalize a third equivalent
view stating exactly what the completeness proof needs: If a set of clauses is unsatisfiable,
then there is a finite semantic tree whose branches falsify the set. This bridges first-order
unsatisfiability with decisions made in a semantic tree.

Understanding proofs of logical systems can be challenging since one must keep separate
the parts of the proofs that are about the syntactic level, and the parts that are about the
semantic level. It can be tempting to mix intuition about syntax and semantics. Fortunately,
a formalization makes the distinction very clear, and ideally this can aid in understanding the
proofs.

This paper extends my previous paper [64] which I presented at ITP 2016. It is extended
with more thorough explanations and now contains illustrative examples of structured Isar
proofs. Furthermore, the discussion of the tools used in the formalization has been expanded,
and the related-works section now contains a much more thorough overview of the for-
malizations of first-order logic found in the literature. Additionally, the formalization now
contains three new versions of the soundness theorem and two new illustrative versions of
the completeness theorem, which are explained.
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2 Overview

This section introduces the terminology of clausal first-order logic and the resolution rule. It
gives a brief explanation of semantic trees and gives the big picture of the proofs ofHerbrand’s
theorem, the lifting lemma, and completeness.

A literal l is either an atom or its negation. The sign of an atom is True, while that of its
negation is False. The complement pc of an atom p is ¬p, and the complement (¬p)c of its
negation is p. The complement LC of a set of literals L is {lc | l ∈ L}. The set of variables
in a set of literals L is varsls L. A clause is a set of literals representing the universal closure
of the disjunction of the literals in the clause. The empty clause represents a contradiction
since it is an empty disjunction. A clause with an empty set of variables is called ground. A
substitution σ is a function from variables to terms, and is applied to a clause C by applying
it to all variables in C . The result is written C ·ls σ and is called an instance of C . We can
likewise apply a substitution to a single literal l ·l σ or term t ·t σ . The composition σ1 · σ2
of two substitutions is the substitution that maps any variable x to (σ1 x) ·t σ2. A unifier σ

for a set of literals L is a substitution such that applying it to L makes all the literals therein
equal. A most general unifier (MGU) for a set of literals L is a unifier σ for L such that any
other unifier for L can be expressed as σ · τ for some substitution τ .

We will consider the following formulation of the resolution rule:

C1 C2

((C1 − L1) ∪ (C2 − L2)) ·ls σ

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is a substitution and an MGU of L1 ∪ L2
C

The conclusion of the rule is called a resolvent of C1 and C2. L1 and L2 are called
clashing sets of literals. Additionally, the calculus allows us to apply variable renaming to
clauses before we apply the resolution rule. Renaming variables in two clauses C1 and C2

such that varsls C1 ∩ varsls C2 = {} is called standardizing apart. Notice that L1 and L2 are
sets of literals. Some other resolution calculi instead let L1 and L2 be single literals. These
calculi then have an additional rule called factoring, which allows unification of subsets of
clauses. The completeness of the above rule implies the completeness of resolution on single
literals with factoring, as explained by e.g. Fitting [25], but I have not formalized this result.
The idea is that the above rule can be simulated by applications of resolution on single literals
and factoring.

I now give an overview of the completeness proof. The completeness proof is very much
inspired by that of Chang and Lee [19], while the proof of the lifting lemma is inspired by
that of Leitsch [43].

Semantic trees are defined from an enumeration of Herbrand, i.e. ground, atoms. A seman-
tic tree is essentially a binary decision tree in which the decision of going left in a node on
level i corresponds to mapping the i th atom of the enumeration to True, and in which going
right corresponds to mapping it to False. See Fig. 1. Therefore, a finite path in a semantic
tree can be seen as a partial interpretation. This differs from the usual interpretations in
first-order logic in two ways. Firstly, it does not consist of a function denotation and a pred-
icate denotation, but instead assigns True and False to ground atoms directly. Secondly, it is
finite, which means that some ground literals are assigned neither True nor False. A partial
interpretation is said to falsify a ground clause if it, to all literals in the clause, assigns the
opposite of their signs. A branch is a path from the root of a tree to one of its leaves. An
internal path is a path from the root of a tree to some node that is not a leaf. A closed path is a
path whose corresponding partial interpretation falsifies some ground instance of a clause in
the set of clauses. A closed semantic tree for a set of clauses is a tree that has two properties:
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Fig. 1 Semantic tree with partial interpretation [p �→ True, q �→ False]

Fig. 2 The lifting lemma. An
arrow from C to C ′ indicates that
C ′ is an instance of C . The bars
are derivations. Full bars or
arrows are relations we know, and
the dashed ones are established
by the lemma

C1

C

C2

C1 C2

C

ground

Firstly, each of its branches is closed. Secondly, the internal paths in the tree are not closed.
The second property expresses minimality of the first property, because it ensures that no
proper subtree of a closed semantic tree can have the first property.

Note that Chang and Lee’s notion of semantic trees is more general than mine since it
allows eachdecision to assign truth values to several atoms.This generality is not needed in the
completeness proof, and therefore I prefer a simpler definition in order to ease formalization.

Herbrand’s theorem is proven in the following formulation: If a set of clauses is unsatisfi-
able, then there is a finite and closed semantic tree for that set. I prove it in its contrapositive
formulation and therefore assume that all finite semantic trees of a set of clauses have an
open (non-closed) branch. By obtaining longer and longer branches of larger and larger finite
semantic trees, we can, using König’s lemma, obtain an infinite path, all of whose prefixes
are open branches of finite semantic trees. Thus these branches satisfy, that is, do not fal-
sify, the set of clauses. We can then prove that this infinite path, when seen as an Herbrand
interpretation, also satisfies the set of clauses, and this concludes the proof. Converting the
infinite path to a full interpretation can be seen as the step that goes from syntax to semantics.

The lifting lemma lifts resolution derivation steps done on the ground level up to the first-
order world. The lemma considers two instances, C ′

1 and C ′
2, of two first-order clauses, C1

and C2. It states that if C ′
1 and C ′

2 can be resolved to a clause C ′ then also C1 and C2 can
be resolved to a clause C . And not only that, it can even be done in such a way that C ′ is an
instance of this C . See Fig. 2. To prove the theorem, we look at the clashing sets of literals
L ′
1 ⊆ C ′

1 and L ′
2 ⊆ C ′

2. We partition C ′
1 in L ′

1 and the rest, R′
1 = C ′

1 − L ′
1. Then we lift

this up to C1 by partitioning it in L1, the part that instantiates to L ′
1, and the rest R1, which

instantiates to R′
1. We do the same for C2. Since L ′

1 and L ′
2
C can be unified, so can L1 and

L2
C, and therefore they have an MGU. Thus C1 and C2 can be resolved to a resolvent C .

With some bookkeeping of the substitutions and unifiers, we can also show that C has the
ground resolvent C ′ as an instance.

Lastly, completeness itself is proven. It states that the empty clause can be derived from
any unsatisfiable set of clauses. We start by obtaining a finite closed semantic tree for the set
of clauses. Then we cut off two sibling leaves. The branches ending in these leaves agree
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on all atoms except for the one, a, in their leaves. Additionally they falsify a ground clause
each, but, by minimality of closed trees, their prefixes do not. Therefore, setting a to True in
a sibling, must have falsified a clause, and thus the literal ¬a must be in a clause. Likewise,
setting a to False in a sibling, must have falsified a clause, and thus the literal a must be in
a clause. These clauses can be resolved. We lift this up to the first-order world by the lifting
lemma and resolve the first-order clauses. Repeating this procedure, we obtain a derivation
that ends when we have cut the tree down to the root. Only the empty clause can be falsified
here, so we have a derivation of the empty clause.

3 Isabelle

This section explains the logic of Isabelle/HOL and the Isar language [75] for writing struc-
tured proofs. Isar is illustrated with some simple examples.

Isabelle is a generic proof assistant that implements several logics, and Isabelle/HOL
is its implementation of a higher-order logic (HOL). HOL can be seen as a combination
of typed functional programming and logic. This gives, among other things, access to the
usual logical operators and quantifiers such as −→, ∧, ∨, ¬, ∀ and ∃. The long arrow (⇒)
is Isabelle’s meta-implication, which for the purpose of this paper can be thought of as a
normal implication (−→), and likewise the big wedge (

∧
) can be thought of as universal

quantification (∀).
In Isabelle’s Isar language one can write structured proofs that both humans can read and

Isabelle/HOL can check. I present a subset here, which is large enough for the reader to
understand this paper. Let us consider a template Isar proof:

theorem L:
assumes a1: A1
.
.
.

assumes an: An
shows B

proof R
C1
.
.
.

Cm
qed

Here L is the theorem’s name, A1, . . . , An are optional assumptions of the theorem,
a1, . . . , an are optional names of the assumption, and B is the theorem’s conclusion. If
there are no assumptions the keyword shows may be omitted. R instructs Isabelle on how
to start the proof. For instance, if nothing is written, it applies a well-suited rule, and if a
dash (−) is written, then no rule is applied. C1, . . . ,Cm is a list of statements, similar to
the sentences of a paper proof, which is to prove the theorem. Let us look at three kinds of
statements. First, we have the have goal:

from F1 have s: S using F2 by M

Here S is a proposition which is proven by proof method M . Proof method M could be
one of Isabelle/HOL’s proof methods that implement automatic theorem provers. s is an
optional name of S. F1 and F2 are lists of names of facts that M is allowed to use. They
could be names of previously proven theorems, assumptions or of a proposition of one of
the preceding statements. Both from F1 and using F2 can be omitted. Additionally from F1
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can be replaced with then, which refers to the fact that was most recently established, i.e.
the proposition in the previous statement.

Second, we have the obtain goal:

from F1 obtain t where s: S using F2 by M

Here t is a new constant that is introduced in the proof. S is a proposition that characterizes
t . It is named s. F1 and F2 are lists of facts that the proof method M is instructed to use to
prove the existence of t .

Third, we have the show goal:

from F1 show s: S using F2 by M

This is similar to the have goal except that it requires S to be one of the propositions that
R instructs us to prove. Sometimes S will be ?thesis, which refers to B. When we have shown
all statements required by R we can end the proof with qed.

Let us look at a variation of a simple proof of Cantor’s theorem from an introduction to
Isabelle/HOL by Nipkow and Klein [46] that illustrates the language. The theorem states that
a function from a set to its powerset cannot be surjective. Here the set is formalized as a type
′a and its powerset as the type ′a set .

theorem cantor: ¬ surj(f :: ′a ⇒ ′a set)
proof
assume surj f
then have ∀A. ∃ a. A = f a using surj-def by metis
then have ∃ a. {x. x /∈ f x} = f a by blast
then obtain a where {x. x /∈ f x} = f a by blast
then show False by blast

qed

A list of statements can also form a calculation. In the example below the horizontal
ellipses (. . .) are part of the concrete Isabelle syntax while the vertical ellipsis (

... ) indicates
that some intermediate steps were omitted.

have s1: S0 = S1 using F1 by M1
also have s2: . . . = S2 using F2 by M2
.
.
.

also have sn: . . . = Sn using Fn by Mn
finally have sn+1: S0 = Sn using Fn+1 by Mn+1

This list of statements proves S0 = Sn by proving S0 = S1 = S2 = · · · = Sn where the
first equality S0 = S1 is proven by the first have goal and each subsequent equality Si = Si+1

is proven by the also have goal with name si .
For example we can prove a simple lemma about the identity function:

lemma identities:
assumes ∀ y. identity y = y
shows identity (identity (identity x)) = x

proof −
have identity (identity (identity x)) = identity (identity x) using assms by auto
also have ... = identity x using assms by auto
also have ... = x using assms by auto
finally show identity (identity (identity x)) = x by −

qed

Isar allows many more kinds of constructions of proofs, for instance nesting proofs,
combining proof methods and more.
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4 Clausal First-Order Logic

This section explains the formalization of the syntax and semantics of first-order clausal
logic.

First, a signature is fixedwhere variable symbols, function symbols, and predicate symbols
are represented by the type string. The type string consists of strings over a finite alphabet,
and is thus a countably infinite type.

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

Similar to, e.g. Berghofer’s formalization of first-order logic [5], the predicate and function
symbols do not have fixed arities.

A first-order term is either a variable consisting of a variable symbol or it is a function
application consisting of a function symbol and a list of subterms:

datatype fterm = Var var-sym | Fun fun-sym (fterm list)

A literal is either positive or negative, and it contains a predicate symbol (a string) and a
list of terms. The datatype is parametrized with the type of terms ′t since it will both represent
first-order literals (fterm literal) and Herbrand literals. A clause is a set of literals.

datatype ′t literal = Pos pred-sym (′t list) | Neg pred-sym (′t list)

type-synonym ′t clause = ′t literal set

Ground fterm literals are formalized using a predicate groundl which holds for l if it con-
tains no variables. Ground fterm clauses are similarly formalized using a predicate groundls.

A semantics of terms and literals is also formalized. A variable denotation, var-denot,
maps variable symbols to values of the domain. The universe is represented by the type
variable ′u.

type-synonym ′u var-denot = var-sym ⇒ ′u

Interpretations consist of denotations of functions and predicates. A function denotation
maps function symbols and lists of values to values:

type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u

Likewise, a predicate denotation maps predicate symbols and lists of values to the two
boolean values:

type-synonym ′u pred-denot = pred-sym ⇒ ′u list ⇒ bool.

The semantics of a term is defined by the recursive function eval t :

fun evalt :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x) = E x
|evalt E F (Fun f ts) = F f (map (evalt E F) ts)

Here,map (eval t E F) [e1, . . . , en] = [eval t E F e1, . . . , eval t E F en], and fromnowon
map (eval t E F) ts is abbreviated as evalts E F ts.

If an expression evaluates to True in an interpretation, we say that it is satisfied by the
interpretation. If it evaluates to False, we say that it is falsified. The semantics of literals is a
function evall that evaluates literals:
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fun evall :: ′u var-denot ⇒ ′u fun-denot ⇒ ′u pred-denot ⇒ fterm literal ⇒ bool
where
evall E F G (Pos p ts) ←→ G p (evalts E F ts)
|evall E F G (Neg p ts) ←→ ¬G p (evalts E F ts)

The semantics is extended to clauses:

definition evalc :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause ⇒ bool where
evalc F G C ←→ (∀E. ∃l ∈ C. evall E F G l)

It is important that the ranges of all the environments that evalc quantifies over are actually
subsets of the considered universe. The type system of Isabelle/HOL ensures this, as we can
inspect that the type of E indeed is ′u var-denot. Had I instead chosen to represent the
universe as a set, I would have to pass it as an argument to evalc and have a predicate ensure
that all the environments considered did not go outside this universe. Likewise, I would also
have to make a decision of what to do if the range of F was not a subset of the universe.

A set of clauses Cs is satisfied, written evalcs F G Cs, if all its clauses are satisfied:

definition evalcs :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause set ⇒ bool where
evalcs F G Cs ←→ (∀C ∈ Cs. evalc F G C)

The semantics can be illustrated with the universe nat of natural numbers, a function
denotation that maps add, mul, one, and zero to their usual meanings, a predicate denotation
that maps less, greater, and equals to their usual meanings, as well as a variable denotation
that maps x to 26 and y to 5:

fun Fnat :: nat fun-denot where
Fnat f [n,m] =

(if f = ′′add ′′ then n + m else
if f = ′′mul ′′ then n ∗ m else 0)

| Fnat f [] =
(if f = ′′one ′′ then 1 else
if f = ′′zero ′′ then 0 else 0)

| Fnat f us = 0

fun Gnat :: nat pred-denot where
Gnat p [x,y] =

(if p = ′′less ′′ ∧ x < y then True else
if p = ′′greater ′′ ∧ x > y then True else
if p = ′′equals ′′ ∧ x = y then True else False)

| Gnat p us = False

fun Enat :: nat var-denot where
Enat x =

(if x = ′′x ′′ then 26 else
if x = ′′y ′′ then 5 else 0)

It is also illustrative to evaluate the literal equals(add(mul(y, y), one), x) with the above
denotations:

lemma evall Enat Fnat Gnat
(Pos ′′equals ′′
[Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′],Fun ′′one ′′ []]
,Var ′′x ′′]

) = True
by auto
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5 Substitutions and Unifiers

This section formalizes substitutions, unifiers, MGUs, and the unification theorem, which
states the existence of MGUs.

A substitution is a function from variable symbols into terms:

type-synonym substitution = var-sym ⇒ fterm

This is very different from Chang and Lee where they are represented by finite sets
[19]. The advantage of functions is that they make it much easier to apply and compose
substitutions. If C ′ is an instance of C we write instance-ofls C′ C. The composition of two
substitutions, σ1 and σ2, is also defined, andwritten σ1 ·σ2.We also define unifiers andMGUs
of literals (and similarly of terms):

definition unifierls σ L ←→ (∃l′. ∀l ∈ L. l ·l σ = l′)

definition mguls σ L ←→ unifierls σ L ∧ (∀u. unifierls u L −→ ∃i. u = σ ·i)

One important theorem is the unification theorem, which states that if a finite set of literals
has a unifier, then it also has an MGU. This is usually proven by defining a unification algo-
rithm and proving it correct. This has been formalized several times. An early formalization
is by Paulson [48] in LCF of an algorithm byManna andWaldinger [44]. Coen [21] used this
as basis for a formalization of the algorithm in Isabelle, and his formalization was improved
first by Slind [72] and later Krauss [38]. Their formalization [20] is now part of the Isabelle
distribution. There, terms are formalized as binary tree structures and substitutions as asso-
ciation lists. Sternagel and Thiemann [73] formalize in the IsaFoR project [34] an algorithm
presented by Baader and Nipkow [2]. They formalize terms, unifiers and MGUs in a similar
way to me. Therefore it is relatively easy to obtain the unification theorem by proving my
terms, unifiers, and MGUs equivalent to the ones in IsaFoR.

theorem unification:
assumes finite L
assumes unifierls σ L
shows ∃θ. mguls θ L

For the purpose of formalizing the resolution calculus the choice of unification algorithm is
irrelevant since we only need one to prove the existence ofMGUs. If one wants to formalize a
resolution prover the choice is important especiallywith respect to runtime. The twopresented
algorithms seem to be efficient in practice, but have an exponential worst-case runtime.
Ruiz-Reina, Martín-Mateos, and Hidalgo [62], however, formalize, in ACL2, an algorithm
by Corbin and Bidoit [22] as presented by Baader and Nipkow [2], which has a quadratic
worst-case runtime. Some automatic theorem provers, e.g. SPASS, use the technique of term
indexing to compute MGUs – see, e.g. Sekar, Ramakrishnan, and Voronkov’s chapter on the
topic [55]. I do not know of any formalization of this technique in a proof assistant.

6 The Resolution Calculus

This section formalizes the resolution calculus and its soundness proof. It also formalizes
steps and derivations in the resolution calculus.

First, resolvents are formalized, i.e. the conclusions of the resolution rule:

definition resolution C1 C2 L1 L2 σ = ((C1 − L1) ∪ (C2 − L2)) ·ls σ
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In Sect. 2 we saw that the resolution rule had three side-conditions. The rule is additionally
restricted to require that L1 and L2 are non-empty. When these side-conditions are fulfilled,
the rule is applicable.

definition applicable C1 C2 L1 L2 σ ←→
C1 �= {} ∧ C2 �= {} ∧ L1 �= {} ∧ L2 �= {}

∧ varsls C1 ∩ varsls C2 = {}
∧ L1 ⊆ C1 ∧ L2 ⊆ C2
∧ mguls σ (L1 ∪ L2

C)

A step in the resolution calculus either inserts a resolvent of two clauses in a set of clauses,
or it inserts a variable renaming of one of the clauses. Two clauses are variable renamings
of each other if they can be instantiated to each other. Alternatively, we could say that we
apply a substitution which is a bijection between the variables in the clause and another set
of variables.

definition var-renaming-of :: fterm clause ⇒ fterm clause ⇒ bool where
var-renaming-of C1 C2 ←→ instance-ofls C1 C2 ∧ instance-ofls C2 C1

A step in the resolution calculus is formalized as an inductive predicate named
resolution-step. In Isabelle/HOL this is done by specifying a number of rules character-
izing the predicate. Specifically there are two rules. One resolution-rule allows us to apply
the resolution rule, and the other standardize-apart allows us to rename clauses such that
we can standardize them apart.

inductive resolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-rule:
C1 ∈ Cs ⇒ C2 ∈ Cs ⇒ applicable C1 C2 L1 L2 σ ⇒
resolution-step Cs (Cs ∪ {resolution C1 C2 L1 L2 σ })

| standardize-apart:
C ∈ Cs ⇒ var-renaming-of C C′ ⇒ resolution-step Cs (Cs ∪ {C′})

Derivation steps are extended to derivations by taking the reflexive transitive closure of
resolution-step, which is given by rtranclp:

definition resolution-deriv = rtranclp resolution-step

The soundness proofs in the three bookswere not immediately ready to be formalized. The
proof by Ben-Ari uses Herbrand interpretations, but this machinery is actually not necessary
to prove soundness and does not seem to give a simpler proof. Chang andLee prove soundness
for first-order logic by referring to the soundness proof for the propositional case, but they
do not make it clear how variables should be handled. Leitsch’s soundness proof refers to the
substitution principle, but neither states nor proves it. It can be found elsewhere, e.g. in the
textbook by Ebbinghaus, Flum, and Thomas [24] in the form of the substitution lemma. The
formalized soundness proof also uses the substitution lemma.

I prove the resolution rule sound by combining three simpler rules:

1. A substitution rule that allows us to infer instances.
2. A special, simpler, resolution rule.
3. A superset rule that allows us to infer supersets.

Rule 1, the substitution rule, states that we can do substitution:

C
C ·ls σ
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Informally this seems obvious. C is satisfied and is a first-order clause, i.e. it represents a
universal quantification. C ·ls σ then instantiates its variables, which are bound and univer-
sally quantified, and must therefore also be satisfied. Formally, however, this is not precise
enough since C being satisfied is a statement about variable denotations, i.e. a semantic form
of instantiation, while a substitution is a syntactic form of instantiation. This problem is
overcome by the substitution principle. The needed insight is that given a function denota-
tion and a variable denotation, any substitution can be converted to a variable denotation by
evaluating the terms of its domain. In the formalization this is done using Isabelle/HOL’s
function composition operator which is written as ◦ in infix notation.

definition evalsub E F σ = (evalt E F) ◦ σ

The substitution lemma then states that applying a substitution to a literal is semantically
the same as instead turning the substitution into a variable denotation:

lemma substitution: evall E F G (l ·l σ) ←→ evall (evalsub E F σ) F G l

Let us now look at the soundness proof of substitution. The proof is written in Isar and
uses evalsub and the substitution lemma:

lemma subst-sound:
assumes asm: evalc F G C
shows evalc F G (C ·ls σ)

unfolding evalc-def proof
fix E
from asm have ∀E ′. ∃ l ∈ C. evall E

′ F G l using evalc-def by blast
then have ∃ l ∈ C. evall (evalsub E F σ) F G l by auto
then show ∃ l ∈ C ·ls σ . evall E F G l using substitution by blast

qed

Notice that I am unfolding the definition of evalc before the proof begins. The definition
says that evalc is a universal quantification over the variable denotations. Therefore Isabelle
now requires us to fix an arbitrary variable denotation and find a satisfied literal in C · σ .
By the assumption C has such a literal for any variable denotation E ′ and in particular for
σ transformed to a variable denotation evalsub E F σ . The substitution lemma allows the
substitution to be applied instead of transformed and this concludes the proof.

Rule 2, the special substitution rule, is a special, ground-like, version of the resolution
rule. The rule is special since it is only allowed to remove two literals l1 and l2 instead of
two sets of literals and because it requires l1 and lc2 to be equal instead of unifiable:

C1 C2

(C1 − {l1}) ∪ (C2 − {l2})
l1 ∈ C1

l2 ∈ C2

l1 = lc2

Rule 3, the superset rule, states that from a clause follows any superset of the clause:

C1

C1 ∪ C2

The proofs of all three rules are made as short structured Isar proofs.
These four sound rules are combined to give the resolution rule, which must consequently

be sound. We are of course allowed to use the assumptions of the resolution rule, so we know
that when σ is applied to L1 and L2, they turn into a complementary pair of literals, which we
denote l1 ·ls σ and l2 ·ls σ . This justifies the bookkeeping inference below. It also means that
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we can apply the special resolution rule. The bottom-most rule application uses the superset
rule.

C1

C1 ·ls σ

C2

C2 ·ls σ
substitution rule

(C1 ·ls σ − {l1 ·ls σ }) ∪ (C2 ·ls σ − {l2 ·ls σ }) special resolution

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)
book keeping

((C1 − L1) ∪ (C2 − L2)) ·ls σ
superset rule

All this reasoning is made as structured Isar proofs. The soundness theorem is stated as
follows:

theorem resolution-sound:
assumes evalc F G C1 ∧ evalc F G C2
assumes applicable C1 C2 L1 L2 σ

shows evalc F G (resolution C1 C2 L1 L2 σ)

From this it follows that resolution steps are sound:

theorem step-sound:
assumes resolution-step Cs Cs′
assumes evalcs F G Cs
shows evalcs F G Cs′

And then it follows that resolution derivations are sound:

theorem derivation-sound:
assumes resolution-deriv Cs Cs′
assumes evalcs F G Cs
shows evalcs F G Cs′

The soundness theorem is also formalized in the refutational style:

theorem derivation-sound-refute:
assumes resolution-deriv Cs Cs′ ∧ {} ∈ Cs′
shows ¬evalcs F G Cs

To summarize, I have defined a function resolution giving the conclusion of the resolution
rule, as well as a predicate applicable which formalizes its side conditions. I have combined
these to form the predicates resolution-step and resolution-derivation which formalize when
a set of clauses follows from another, respectively by a step or derivation of the resolution
calculus. The resolution rule and its steps and derivations were proven sound.

7 Herbrand Interpretations and Semantic Trees

Now that soundness is proven, it is time to take the first steps towards proving complete-
ness. Therefore this section formalizes Herbrand interpretations and semantic trees. It also
formalizes Herbrand’s theorem and emphasizes how an infinite path in a semantic tree is
transformed to an interpretation.

Herbrand interpretations are a special kind of interpretation characterized by two prop-
erties. The first is that their universe is the set of all Herbrand terms. I chose that universes
should be represented by types and this is of course also the case for the universe of Herbrand
terms. Therefore, a new type hterm is introduced which is similar to fterm, but does not have
a constructor for variables:

123



Formalization of the Resolution Calculus for First-Order Logic 467

datatype hterm = HFun fun-sym (hterm list)

This is the same datatype as in Berghofer’s formalization of natural deduction [5]. Had I
chosen to represent the universes by sets like Ridge and Margetson [59], then I could instead
have represented the Herbrand universe by the set of ground fterms.

Two functions called fterm-of -hterm and hterm-of -fterm are introduced that convert
between hterms and ground fterms. Note that some authors require the terms in the Her-
brand universe to be built from the function symbols in a considered set of clauses. I choose
to use all function symbols because it allows the Herbrand universe to be represented by the
above datatype.

The second characteristic property is that the function denotation of an Herbrand interpre-
tation is HFun, and thus, evaluating a ground term under such an interpretation corresponds
to replacing all applications of FunwithHFun, that is, the ground term is interpreted as itself.

As we saw in Sect. 2, an enumeration of Herbrand atoms is needed, such that we can
construct our semantic trees. Therefore, the type of atoms is defined:

type-synonym ′t atom = pred-sym ∗ ′t list

Again the symbols are not restricted to those occurring in a considered set of clauses.
Isabelle/HOL provides the proof method countable-datatype that can automatically prove
that a given datatype, in our case hterm, is countable. Since also the predicate symbols
are countable, then so must hterm atom be. Furthermore, it is easy to prove that there are
infinitely many hterm atoms. Using these facts and Hilbert’s choice operator, I specify a
bijection hatom-of -nat between the natural numbers and the hterm atoms. Its inverse is
called nat-of -hatom. Additionally, the functions nat-of -fatom and fatom-of -nat enumerate
the ground fterm atoms in the same order. A function get-atom returns the atom correspond-
ing to a literal. The enumeration will be used to define which levels of the semantic trees
correspond to which atoms.

7.1 Semantic Trees

In paper-proofs semantic trees are often labeled with the atoms that their nodes set to True
or False. In this formalization the trees are unlabeled, because for a given level, the corre-
sponding atom can always be calculated using the enumeration:

datatype tree = Leaf | Branching tree tree

The formalization contains a quite substantial, approximately 700-lines, theory on these
unlabeled binary trees, paths within them, and their branches. The details are not particularly
interesting, but a theory of binary trees is necessary.

In the formalization, bool lists represent both paths in trees and partial interpretations,
denoted by the type partial-pred-denot. E.g. if we consider the path [True,True,False], then
it is the path from the root of a semantic tree that goes first left, then left again, and lastly
right. On the other hand, it is also the partial interpretation that considers hatom-of -nat 0
to be True, hatom-of -nat 1 to be True and hatom-of -nat 2 to be False. Our formalization
illustrates the correspondence between partial interpretations and paths clearly by identifying
their types. Therefore, synonym dir is introduced for bool as well as the abbreviations Left
for True and Right for False.

The above datatype cannot represent infinite trees. Thus, infinite trees are modeled as sets
of paths with a wellformedness property:

abbreviation wf -tree :: dir list set ⇒ bool where
wf -tree T ≡ (∀ds d. (ds @ d) ∈ T −→ ds ∈ T)
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Alternatively I could have used Isabelle’s codatatype package [8,10], since codatatypes
can represent infinite-depth trees in a very natural way.

Infinite paths are modeled as functions from natural numbers into finite paths. Applying
the function to number i gives us the prefix of length i . From here on such functions are
called infinite paths, and their characteristic property is

abbreviation wf -infpath :: (nat ⇒ ′a list) ⇒ bool where
wf -infpath f ≡ (f 0 = []) ∧ (∀n. ∃a. f (Suc n) = (f n) @ [a])

It must be made formal, what it means for a partial interpretation, i.e. a path, to falsify
an expression. A partial interpretation G falsifies, written falsifiesl G l, a ground literal l, if
the opposite of its sign occurs on index nat-of -fatom (get-atom l) of the interpretation. The
exclamation mark (!) is Isabelle/HOL’s nth operator, i.e. G ! i gives the i th element of G.

definition falsifiesl :: partial-pred-denot ⇒ fterm literal ⇒ bool where
falsifiesl G l ←→ groundl l

∧ (let i = nat-of -fatom (get-atom l) in
i < length G ∧ G ! i = (¬sign l))

A ground clause C is falsified, written falsifiesg G C, if all its literals are falsified. A
first-order clause C is falsified, written falsifiesc G C, if it has a falsified ground instance. A
partial interpretation satisfies an expression if the partial interpretation does not falsify it. A
set Cs of first-order clauses is falsified by a partial interpretation if it falsifies some clause in
Cs. A set Cs of first-order clauses is falsified by a tree if each of the tree’s branches falsifies
some clause in Cs. Lastly, a semantic tree T is closed, written closed-tree T Cs, for a set of
clauses Cs if it is a tree that falsifies Cs, but whose internal paths do not. Notice that a closed
tree is minimal with respect to having falsifying branches, since any proper subtree has a
branch that does not falsify anything in the set.

7.2 Herbrand’s Theorem

The formalization of Herbrand’s theorem is mostly straightforward and is done as an Isar
proof that follows the sketch from Sect. 2. The challenging part is to take an infinite path,
all of whose prefixes satisfy a set of clauses Cs and then prove that its translation to an
interpretation also satisfiesCs. Chang and Lee [19] do not elaborate much on this, but it takes
up a large part of the formalization and illustrates the interplay of syntax and semantics.

The first step is to define how to transform the infinite path to an Herbrand interpretation.
The function denotation has to be HFun, and the infinite path needs to be converted to a
predicate denotation. This can be done as follows:

abbreviation extend :: (nat ⇒ partial-pred-denot) ⇒ hterm pred-denot where
extend f P ts ≡
let n = nat-of -hatom (P, ts) in
f (Suc n) ! n

Because of currying, P and ts can be thought of as the predicate symbol and list of values
that we wish to evaluate in our semantics. It is done by collecting them to an Herbrand atom,
and finding its index. Thereafter a prefix of our infinite path is found that is long enough to
have decided whether the atom is considered True or False.

I now prove that if the prefixes collected in the infinite path f satisfy a set of clauses Cs,
then so does its extension to a full predicate denotation extend f .

Since I want to prove that the clauses in Cs are satisfied, I fix one C and prove that it has
the same property:

123



Formalization of the Resolution Calculus for First-Order Logic 469

lemma extend-infpath:
assumes wf -infpath (f :: nat ⇒ partial-pred-denot)
assumes ∀n. ¬falsifiesc (f n) C
assumes finite C
shows evalc HFun (extend f ) C

There are four ways in which clauses can be satisfied:

1. A first-order clause can be satisfied by a partial interpretation.
2. A ground clause can be satisfied by a partial interpretation.
3. A ground clause can be satisfied by an Herbrand interpretation.
4. A first-order clause can be satisfied by an Herbrand interpretation.

The four ways are illustrated as the nodes in Fig. 3. The extend-infpath lemma relates
1 and 4 using lemmas that relate 1 to 2 to 3 to 4. The four ways seem similar, but they
are in fact very different. For instance, a ground clause being satisfied is very different
from a first-order clause being satisfied, since there are no ground instances or variables to
worry about. Likewise, a ground clause being satisfied by a partial interpretation is clearly
different from being satisfied by an Herbrand interpretation, since the two types are vastly
different: A partial interpretation is a bool list while an Herbrand interpretation consists of a
fun-sym ⇒ hterm list ⇒ hterm and a pred-sym ⇒ hterm list ⇒ bool.

1 and 2 are related: If a first-order clause is satisfied by all prefixes of an infinite path, then
so is any, in particular ground, instance. This follows from the definition of being satisfied
by a partial interpretation.

2 and 3 are related: If a ground clause is satisfied by all prefixes of an infinite path f , then
it is also satisfied by extend f . This follows almost directly from the definition of extend.

3 and 4 are related: Ideally one would prove that if a ground clause is satisfied by an
Herbrand interpretation, then so is a first-order clause of which it is an instance. That
is, however, too general. Fortunately, there is a similarity that ties first-order clauses and
ground clauses together. Consider a variable denotation in the Herbrand universe, i.e. of type
var-sym ⇒ hterm. There is a function that converts its domain to fterms, and thus turns it in
to a substitution:

fun sub-of -denot :: hterm var-denot ⇒ substitution
sub-of -denot E = fterm-of -hterm ◦ E

This is the machinery necessary to state the needed lemma: If the ground clause
C ·ls sub-of -denot E is satisfied by an Herbrand interpretation under E , then so is the first-
order clause C . The reason is simply that any variable in C is replaced by some ground term
in the domain of sub-of -denot E. This term evaluates to the same as the Herbrand term that
it is interpreted as in E .

The final step is to chain 1, 2, 3, and 4 together to relate 1 and 4. The steps are shown as
the arrows in Fig. 3.

1. Assume that C is satisfied by all prefixes of f .
2. Then the ground instance C ·ls sub-of -denot E is satisfied by all f ’s prefixes.
3. Then the ground instance C ·ls sub-of -denot E is satisfied by extend f under E in partic-

ular.
4. Then C is satisfied by extend f under E .

With this, Herbrand’s theorem is formalized:

theorem herbrand:
assumes ∀G. ¬evalcs HFun G Cs
assumes finite Cs ∧ (∀C ∈ Cs. finite C)

shows ∃T . closed-tree T Cs
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1 4

2 3

First-order

Partial Herbrand
interpretationinterpretation

Ground

Fig. 3 Illustration of how to go from satisfiability of first-order clauses in partial interpretations to their
satisfiability in Herbrand interpretations. As shown, it can be done by going down to the ground level and up
again

The proof, as said, follows the sketch from Sect. 2.

8 Completeness

The completeness proof combines Herbrand’s theorem, the lifting lemma, and reasoning
about semantic trees and derivations. The purpose of this section is to take a look at the most
challenging parts of the formalization of the proof. These are the lifting lemma, standard-
izing clauses apart, and some finer details of reasoning about branches in semantic trees.
Furthermore, the section illustrates the derivation of the empty clause and shows a number
of formal completeness theorems.

8.1 Lifting Lemma

Let us first take a look at the formalization of the lifting lemma. More precisely I will explain
a flaw in proofs from the literature and present the formalization of a correct proof.

Let us look at the flawed proofs. The formalization of the resolution rule removes literals
from clauses before it applies the MGU. This is similar to several presentations from the
literature including those of Robinson [60] and Leitsch [43]. Another approach, which the
formalization used in an earlier version, is to apply theMGU before the literals are removed:

C1 C2

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is an MGU of L1 ∪ L2
C

This is exactly the rule used by Ben-Ari [4]. Chang and Lee [19] use a similar approach
with more possibilities for factoring. However, I was not able to formalize their proofs of the
lifting lemma because they had some flaws. The flaws are described in my master’s thesis
[63]. The most critical flaw is that the proofs seem to use that B ⊆ A implies (A− B) ·ls σ =
A ·ls σ − B ·ls σ , which does not hold in general. Leitsch [42, Proposition 4.1] noticed flaws
in Chang and Lee’s proof already, and presented a counter-example to it.

Let us now look at a formalization of a correct proof. With the current approach the lifting
lemma is straightforward to formalize as an Isar proof following the proof by Leitsch [43].
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Fig. 4 The substitutions of the
lifting lemma. An arrow from L
to L ′ labeled with η indicates that
L ·ls η = L ′. Full arrows are
relations we know. The dashed
ones are established in the proof
of the lemma by noticing that
η · σ is a unifier of L1 and LC2 ,
which means we can obtain the
MGU τ and by the definition of
MGUs also ϕ

The Isar proof is presented below. It consists of four parts. First we obtain the subsets L1

and L2 of C1 and C2 that we want to resolve upon. Next we obtain substitutions τ and ϕ as
illustrated in Fig. 4. This is where we use the unification theorem to obtain τ . We can then
construct the desired resolvent, and show that resolution is applicable.

To illustrate the correspondence between informal proofs and Isar proofs I present the
whole Isar proof below, interleaved with an informal proof that expands on the sketch from
Sect. 2. The reader should notice the similarities between formal and informal proof, but is
not expected to understand all details of the formal proof. Notice also that we do not need to
assume groundness of C ′

1 and C
′
2.

Lemma Assume we have two finite clauses C1 and C2 that share no variables. Assume also
that C ′

1 is an instance of C1 and that C ′
2 is an instance of C2. Furthermore, assume that the

resolution rule is applicable to C ′
1 and C

′
2 on clashing sets of literals L ′

1 and L ′
2 with MGU

σ . Then there exist sets of literals L1 and L2 and substitution τ such that the resolution rule
is applicable to C1 and C2 on clashing sets of literals L1 and L2 with MGU τ and that their
conclusion has the conclusion from C ′

1 and C
′
2 as an instance.

lemma lifting:
assumes fin: finite C1 ∧ finite C2

assumes apart: varsls C1 ∩ varsls C2 = {}
assumes inst: instance-ofls C ′

1 C1 ∧ instance-ofls C ′
2 C2

assumes appl: applicable C ′
1 C

′
2 L ′

1 L ′
2 σ

shows ∃ L1 L2 τ . applicable C1 C2 L1 L2 τ ∧
instance-ofls (resolution C ′

1 C
′
2 L ′

1 L ′
2 σ) (resolution C1 C2 L1 L2 τ)

proof–
– First we obtain the subsets to resolve upon:
Look at the clashing sets of literals L ′

1 and L ′
2. We partition C ′

1 in L ′
1 and the rest,

R′
1 = C ′

1 − L ′
1. Likewise, we partition C

′
2 in L ′

2 and the rest, R
′
2 = C ′

2 − L ′
2. Since C

′
1 is an

instance of C1 there must be a substitution γ such that C1 ·ls γ = C ′
1. Likewise there must

be a μ such that C2 ·ls μ = C ′
2. Since the C1 and C2 share no variables, we can replace this

with a single substitution η. We now partition C1 in a part, L1, that η instantiates to L ′
1 and a

rest C1 − L1 that η instantiates to R′
1. We call the rest R1. Likewise we obtain an L2 which

η instantiates to L ′
2 and an R2 that η instantiates to R′

2.
define R′

1 where R′
1 = C ′

1 − L ′
1

define R′
2 where R′

2 = C ′
2 − L ′

2

from inst obtain γ μ where C1 ·ls γ = C ′
1 ∧ C2 ·ls μ = C ′

2
unfolding instance-ofls-def by auto
then obtain η where η-p: C1 ·ls η = C ′

1 ∧ C2 ·ls η = C ′
2
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using apart merge-sub by force

from η-p obtain L1 where L1-p: L1 ⊆ C1 ∧ L1 ·ls η = L ′
1 ∧ (C1 − L1) ·ls η = R′

1
using appl project-sub using applicable-def R′

1-def by metis
define R1 where R1 = C1 − L1

from η-p obtain L2 where L2-p: L2 ⊆ C2 ∧ L2 ·ls η = L ′
2 ∧ (C2 − L2) ·ls η = R′

2
using appl project-sub using applicable-def R′

2-def by metis
define R2 where R2 = C2 − L2

– Then we obtain their MGU:
We assumed that resolution is applicable on clashing sets of literals L ′

1 and L ′
2 with

MGU σ . Therefore σ is an MGU of L ′
1 ∪ L ′

2
C which is the same as it being an MGU of

(L1 ·ls η)∪ (L2 ·ls η)C which again is the same as it being an MGU of (L1 ∪ L2
C) ·ls η. Thus

σ is a unifier of (L1∪L2
C) ·ls η, and therefore η ·σ is a unifier of L1∪L2

C. By the unification
theorem there must also be an MGU τ of L1 ∪ L2

C, and by the definition of it being an MGU
there must also be a substitution ϕ such that τ · ϕ = η · σ .

from appl have mguls σ (L ′
1 ∪ L ′

2
C )

using applicable-def by auto
then have mguls σ ((L1 ·ls η) ∪ (L2 ·ls η)C )

using L1-p L2-p by auto
then have mguls σ ((L1 ∪ L2

C ) ·ls η)

using compls-subls subls-union by auto
then have unifier ls σ ((L1 ∪ L2

C ) ·ls η)

using mguls-def by auto
then have ησuni: unifier ls (η · σ) (L1 ∪ L2

C )

using unifier ls-def composition-conseq2l by auto
then obtain τ where τ -p: mguls τ (L1 ∪ L2

C )

using unification fin L1-p L2-p by (meson finite-UnI finite-imageI rev-finite-subset)
then obtain ϕ where ϕ-p: τ · ϕ = η · σ

using ησuni mguls-def by auto

– We show that we have the desired conclusion:
Define C as ((C1 − L1) ∪ (C2 − L2)) ·ls τ , i.e. the resolvent of C1 and C2 on clashing

sets of literals L1 and L2 with MGU τ . Let us see what ϕ instantiates it to:

C ·ls ϕ = (R1 ∪ R2) ·ls (τ · ϕ) – by the definitions of C , R1, and R2.
= (R1 ∪ R2) ·ls (η · σ) – since these two composed substitutions were equal.
= ((R1 ·ls η) ∪ (R2 ·ls η)) ·ls σ

= (R′
1 ∪ R′

2) ·ls σ – by the definitions of R′
1 and R′

2.

In conclusion C ·ls ϕ = ((C ′
1 − L ′

1) ∪ (C ′
2 − L ′

2)) ·ls σ , i.e. the conclusion from C1 and C2

has the one from C ′
1 and C

′
2 as an instance.

define C where C = ((C1 − L1) ∪ (C2 − L2)) ·ls τ

have C ·ls ϕ = (R1 ∪ R2 ) ·ls (τ · ϕ)

using subls-union composition-conseq2ls using C-def R1-def R2-def by auto
also have ... = (R1 ∪ R2 ) ·ls (η · σ)

using ϕ-p by auto
also have ... = ((R1 ·ls η) ∪ (R2 ·ls η)) ·ls σ

using subls-union composition-conseq2ls by auto
also have ... = (R′

1 ∪ R′
2) ·ls σ

using η-p L1-p L2-p using R1-def R2-def by auto
finally have C ·ls ϕ = ((C ′

1 − L ′
1) ∪ (C ′

2 − L ′
2)) ·ls σ
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unfolding R′
1-def R

′
2-def by auto

then have ins: instance-ofls (resolution C ′
1 C

′
2 L ′

1 L ′
2 σ) (resolution C1 C2 L1 L2 τ)

using resolution-def instance-ofls-def C-def by metis

– We show that the resolution rule is applicable:
We know that the resolution rule was applicable onC ′

1 andC
′
2 with clashing sets of literals

L ′
1 and L ′

2. Therefore these sets must be non-empty. Since they are instances of C ′
1, C

′
2, L

′
1,

and L ′
2, these must also be non-empty. We have already established all other conditions of

resolution being applicable.
This concludes the proof.

have C ′
1 �= {} ∧ C ′

2 �= {} ∧ L ′
1 �= {} ∧ L ′

2 �= {}
using appl applicable-def by auto
then have C1 �= {} ∧ C2 �= {} ∧ L1 �= {} ∧ L2 �= {}
using η-p L1-p L2-p by auto
then have appli: applicable C1 C2 L1 L2 τ

using apart L1-p L2-p τ -p applicable-def by auto
from ins appli show ?thesis
by auto

qed

8.2 The Formal Completeness Proof

Like Herbrand’s theorem, I formalize completeness as an Isar proof following Chang and
Lee [19]. This time, however, the proof is much longer than its informal counterpart. The
paper proof is about 30 lines, while the formal proof is approximately 150 lines. There are
several reasons for this:

1. Clauses have to be explicitly standardized apart.
2. The clauses falsified by branches ending in two sibling leaves must be resolved and the

sibling leaves must be cut off.
3. Even more of the tree must be cut off to minimize it.
4. The derivation-steps must be tied together.

We need to prove that the cut tree is closed. Furthermore, cutting the tree requires very precise
reasoning about the numbers of the ground atoms. In the following subsection I tackle 1, 2
and 4 which are particularly interesting.

Let us now look at the completeness proof from a high level to choose an appropriate
induction principle. The completeness proof consists of two steps. First Herbrand’s theorem
is applied to obtain a finite tree. Next the finite tree is cut smaller and a derivation step is
made. Then the process is repeated on the smaller tree. To prove that this works, I formalize
the process using induction on the size of the tree. The formalization uses the induction rule
measure_induct_rule instantiated with the size of a tree. This gives the following induction
principle:

lemma
assumes

∧
x. (

∧
y. treesize y < treesize x ⇒ P y) ⇒ P x

shows P a

Here, the induction hypothesis holds for any tree of a smaller size, and this is needed since
several nodes are cut off in each step.

In order for the completeness theorem to fit with the above induction principle, it is first
formulated in an appropriate way, assuming the existence of a closed semantic tree. I show
this formulation along with a sketch of the inductive Isar proof:
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theorem completeness ′:
assumes closed-tree T Cs
assumes ∀C∈Cs. finite C
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms proof (induction T arbitrary: Cs rule: measure-induct-rule[of treesize])
fix T :: tree
fix Cs :: fterm clause set
assume ih: ∧

T ′ Cs. treesize T ′ < treesize T ⇒ closed-tree T ′ Cs ⇒
∀C∈Cs. finite C ⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

assume clo: closed-tree T Cs
assume finite-Cs: ∀C∈Cs. finite C.
.
.

ultimately show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ by auto
qed

An alternative approach would have been to use an induction on the subtree relationship.

8.3 Standardizing Apart

In each step the resolved clauses must be standardized apart. Two functions can do this:

abbreviation std1 C ≡ C ·ls (λx. Var (′′1′′ @ x))

abbreviation std2 C ≡ C ·ls (λx. Var (′′2′′ @ x))

They take clausesC1 andC2 and create the clauses std1 C1 and std2 C2 which have added
respectively 1 and 2 to the beginning of all variables. The most important property is that
the clauses actually have distinct variables after the functions are applied. We need this such
that we can apply the resolution rule, and so we can use the lifting lemma.

lemma std-apart-apart: varsls (std1 C1) ∩ varsls (std2 C2) = {}

I prove that the functions actually rename the variables. This was a prerequisite for the
standardize apart rule of the calculus.

lemma std1-renames: var-renaming-of C1 (std1 C1)

In the completeness proof I need that C1 and std1 C1 are falsified by the same partial
interpretations:

lemma std1-falsifies: falsifiesc G C1 ←→ falsifiesc G (std1 C1)

8.4 Resolving Falsified Clauses

Let us now look at how to formalize the removal of two sibling leaves, and why the clauses
that their branches falsified can be resolved. In each step, the completeness proof removes
two sibling leaves. The branches, B1 = B @ [True] and B2 = B @ [False], ending in these
sibling leaves falsified a first-order clause each,C1 andC2. By the definition of falsification of
first-order clauses, B1 and B2 falsified ground instancesC ′

1 andC
′
2 ofC1 andC2 respectively.

These ground clauses are then resolved, and the resolvent is falsified by B. This is then lifted
to the first-order level using the lifting lemma. See the situation in Fig. 5.

Thus, on the ground level, two properties must be established:

1. The two ground clauses C ′
1 and C

′
2 falsified by B1 and B2 can be resolved.

2. Their ground resolvent C ′ is falsified by B. This ensures that the tree is closed when we
cut off B1 and B2 and minimize it.
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Fig. 5 B is a path from the root
of a semantic tree to a parent of
two sibling nodes. B1 extends B
by going left and B2 by going
right. B falsifies no clause in our
set of clauses, but B1 falsifies C1,
and B2 falsifies C2

a True          a False

B

Let us prove 1 first. This is done by proving thatC ′
1 contains the negative literal l = Neg a

of number length B in the enumeration, and that C ′
2 contains its complement. Here, the case

for C ′
1 is presented. C ′

1 is falsified by B1, but not B, because the closed semantic tree is
minimal. Thus, it must be the decision of going left that was necessary to falsify C ′

1. Going
left falsified the negative literal l with number length B in the enumeration, and hence it must
be in C ′

1.
Let us prove 2 next. To prove it we must show that the ground resolvent C ′ = (C ′

1 −
{l}) ∪ (C ′

2 − {lc}) is falsified by B. We do it by proving that the literals in both C ′
1 − {l}

and C ′
2 − {lc} are falsified. The case for C ′

1 − {l} is presented here. The overall idea is that l
is falsified by B1, but not by B. The decision of going left falsified l, and then all of C ′

1 was
falsified. Therefore, the other literals must have been falsified before we made the decision,
in other words, they must have been falsified already by B.

To formalize this we must prove that all the literals in C ′
1 − {l} are indeed falsified by

B. We do it by a lemma showing that any other literal lo ∈ C′
1 than l is falsified by B. Its

proof first shows that lo has another number than l has, i.e. other than length B. It seems
obvious since lo �= l, but we also need to ensure that lo �= lc. We do this by proving another
lemma, which says that a clause only can be falsified by a partial interpretation if it does
not contain two complementary literals. Then we show that lo has a number smaller than
length (B @ [True]), since lo is falsified by B @ [True]. This concludes the proof.

I abstract from True to d such that the lemma also will work for the path B @ [False] that
goes left:

lemma other-falsified:
assumes groundls C′

1 ∧ falsifiesg (B @ [d]) C′
1

assumes l ∈ C′
1 ∧ nat-of -fatom (get-atom l) = length B

assumes lo ∈ C′
1 ∧ lo �= l

shows falsifiesl B lo
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8.5 The Derivation

At the end of the proof the derivations are tied together:

C1

std1 C1

C2

std2 C2

resolution C1 C2 L1 L2 σ

...

{}
The dots represent the derivation we obtain from the induction hypothesis. It is done using
the definitions of resolution-step and resolution-deriv. From herbrand and completeness′
follows the completeness theorem:

theorem completeness:
assumes finite Cs ∧ (∀C ∈ Cs. finite C)

assumes ∀(F :: hterm fun-denot) (G :: hterm pred-denot). ¬evalcs F G Cs
shows ∃Cs′. resolution-deriv Cs Cs′ ∧ {} ∈ Cs′

8.6 Further Completeness Theorems

Let us now look at the strength of the above completeness proof and consider several other
variants.

Notice that the above completeness theorem is actually stronger than the usual one. Usu-
ally, the assumption would consider all interpretations of all universes. Here, however, the
assumption is weakened to consider only all interpretations of the Herbrand universe.

It could be illustrative to also formalize the usual formulation, but unfortunately, because
ofmy choice of representing universes by types this is not possible. The reason is that although
all statements in HOL are implicitly universally quantified over all types at the top, we are
not allowed to do type quantification explicitly inside HOL formulas.

I instead prove some other instructive formulations of the theorem. For the completeness
proof it was central that we considered theHerbrand universe, but for the theorem it is actually
not important. The Herbrand universe can be replaced by any countably infinite universe. To
prove this we fix an arbitrary uncountably infinite universe and obtain a bijection between it
and theHerbrand terms.Three functions are defined that can apply the bijection to respectively
variable denotations, function denotations, and predicate denotations:

definition E-conv :: ( ′a ⇒ ′b) ⇒ ′a var-denot ⇒ ′b var-denot where
E-conv b-of-a E ≡ λx. (b-of-a (E x))

definition F-conv :: ( ′a ⇒ ′b) ⇒ ′a fun-denot ⇒ ′b fun-denot where
F-conv b-of-a F ≡ λf bs. b-of-a (F f (map (inv b-of-a) bs))

definition G-conv :: ( ′a ⇒ ′b) ⇒ ′a pred-denot ⇒ ′b pred-denot where
G-conv b-of-a G ≡ λp bs. (G p (map (inv b-of-a) bs))

Proving some appropriate lemmas about these functions I arrive at the following com-
pleteness theorem:

theorem completeness-countable:
assumes infinite (UNIV :: (′u :: countable) set)
assumes finite Cs ∧ (∀C ∈ Cs. finite C)

assumes ∀(F :: ′u fun-denot) (G :: ′u pred-denot). ¬evalcs F G Cs
shows ∃Cs′. resolution-deriv Cs Cs′ ∧ {} ∈ Cs′
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In particular, I use it to replace the Herbrand universe with the universe of the natural
numbers:

theorem completeness-nat:
assumes finite Cs ∧ (∀C ∈ Cs. finite C)

assumes ∀(F :: nat fun-denot) (G :: nat pred-denot). ¬evalcs F G Cs
shows ∃Cs′. resolution-deriv Cs Cs′ ∧ {} ∈ Cs′

9 Discussion

Since this paper is a case study in formalizing mathematics, it is worthwhile considering
which tools were helpful in this regard. This section discusses each of these tools. The
section also gives an idea of howmuchwork went in to making the formalization. It discusses
the consequences of the choice of representing universes as types. Lastly, it discusses the
applicability of the formalization to implemented automated theorem provers.

Integrated Development Environments (IDEs) help their users do software development.
Isabelle includes the Isabelle/jEdit Prover IDE,which hasmanyuseful features for navigating,
reading, and writing proof documents. For instance it reveals type information of constants
when the user hovers the mouse cursor over them. The user can click on any constant or
type to jump to its definition and with another click she can jump back again. These features
were especially advantageous when the theory grew larger. This is not only useful when
writing proofs but also when reading them. In a formalization, every word is formally tied
to its definition, so if at some point I forget the meaning of some expression the definitions
are available by the click of a button. In my opinion this corroborates the claim that formal
companions to paper proofs are highly useful.

The structured proof language Isar was beneficial because it allows formal proofs to be
written as sequences of claims that follow from the previous claims. This clearly mirrors
mathematical paper proof, which is what I am formalizing. Furthermore, it makes the proofs
easy to read, and this is important when a formalization is to help in the understanding of a
theory.

Isabelle/HOL includes several generic proof methods or tactics that can discharge proof
goals. Writing a proof in Isabelle/HOL is a process of stating the formula you think holds and
showing this from the previous statements with the right proof method. The simp and auto
methods do rewriting and more while, e.g. blast and metis are first-order automatic theorem
provers. Knowing which one to use in a given situation is a matter of knowledge of how the
prover works, of experience, and of trial and error.

The Sledgehammer tool [6] finds proofs by picking important facts from the theory and
then employing top-of-the-line automatic theorem provers and satisfiability modulo theory
solvers. It often helps proving claims that we know are true, but where finding the necessary
facts from the theory and libraries as well as choosing and instructing a proof method would
be tedious.

It is also worthwhile considering how much work went into the formalization. The whole
development is about 3300 lines of code. A preliminary version of the theory was developed
during 5months as part ofmymaster’s thesis [63] including formalizations of clausal logic, its
semantics, unifiers, a resolution calculus, its soundness, Herbrand interpretations, semantic
trees and Herbrand’s theorem. I developed the rest of the theory during the first 5 months of
my PhD studies concurrently with my other duties. The completeness theorems in Sect. 8.6
were formalized with little work while writing this extended paper. The lifting lemma was
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the greatest challenge because of the flaws in Chang and Lee’s proof. As soon as I looked at
the proof by Leitsch, it was straightforward to finish.

In Sect. 4, I chose to represent universes as sets. The advantage of this was that I did not
need additional predicates to restrict the ranges of variable and function denotations to stay
within the fixed universe, since this was captured in the types. This is rather convenient, since
then the proofs are not cluttered with reasoning about these predicates. On the other hand, in
Sect. 7, I needed to introduce a type for the Herbrand universe, where it could otherwise have
been captured directly as the set of ground terms. In Sect. 8, we also saw that a consequence
was that we could not express completeness in its usual formulation, but had to go with a
stronger formulation. To sum up, by formalizing universes as types rather than sets, I gained
convenience, but lost some expressibility.

Finally, it is worthwhile considering the applicability of the formalization to implementa-
tions of automated theorem provers such as E, SPASS, and Vampire. Such automatic theorem
provers consist of a calculus and a function to construct proofs in the calculus. The present
formalization is purely of a calculus. Furthermore, the mentioned provers use the superposi-
tion calculus, which is an extension of resolution to first-order logic with equality. Resolution
and superposition coincide for first-order logic without equality. The rules of superposition
have several side conditions which only serve to rule out unnecessary inferences while the
resolution rule I formalize has no such side conditions.

10 Related Work

The literature describes several formalizations of logic. This section takes a look at formaliza-
tions of both intuitionistic and classical first-order logic. Furthermore, it looks at two results
that go beyond first-order logic. Lastly, it gives an overview of the IsaFoL project, which is
an effort to bring together researchers of formalizations of logic.

10.1 Formalizations of Proof Systems for First-Order Logic

The completeness of first-order logic is a landmark of logic and thus formalizing this theorem
is interesting in itself. Natural deduction calculi and sequent calculi are very suited for this
purpose because of their simplicity.

Persson [54] formalized, in ALF, intuitionistic first-order logic. He formalized an intu-
itionistic natural deduction system and an intuitionistic sequent calculus. The semantics are
defined using topology, which is a generalization of the semantics for classical first-order
logic. He formalized both natural deduction, sequent calculi, and an axiomatic system. He
proved the natural deduction systems and the sequent calculus sound, and proved the natural
deductionwith named variables complete. Ilik [31] also formalized, in Coq, natural deduction
for intuitionistic first-order logic. He proved it complete with respect to a Kripke semantics.
He also studied properties of intuitionistic logic extended with delimited control operators
known from programming languages.

Harrison [28] formalized, in HOL Light, model theoretic results about classical first-order
logic, including the compactness theorem, the Löwenheim-Skolem theorem, and Herbrand’s
theorem.

Moreover, there are several formalized completeness proofs for classical first-order natural
deduction. Berghofer [5] formalized natural deduction, in Isabelle/HOL, and proved it sound
and complete. He also proved the Löwenheim-Skolem theorem. Raffalli [56] proved, in Phox,
natural deduction complete for first-order logic. His semantics is that of minimal models.
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These are similar to the sets of formulas true in the usual semantics, but behave differently
with respect to negation. The completeness statement is equivalent to the one with respect
to the usual semantics, but this is not formalized. Ilik [31] formalized, essentially, the same
result in Coq, although less abstractly.

Other authors formalized completeness proofs for classical first-order sequent calculi.
Margetson and Ridge [45] formalized, in Isabelle/HOL, a sequent calculus. Their syntax
is that of formulas on negation normal form without first-order functions. They proved the
calculus sound and complete with respect to a semantics on this syntax. Braselmann and
Koepke [14,15] proved, inMizar, a sequent calculus for first-order logic sound and complete.
Schlöder and Koepke [68] proved it complete even for uncountable languages. Ilik [31] also
proved a sequent calculus complete with respect to a Kripke-style semantics that he, Lee,
and Herbelin [32] introduced for classical first-order logic.

Many completeness proofs follow similar recipes. Blanchette, Popescu, and Traytel [9,12]
formalized one such recipe, in Isabelle/HOL, as an abstract completeness proof for first-order
logic that is independent of syntax and proof system. An interesting aspect of the proof is
that it uses codatatypes to define and reason about infinite derivation trees. Their abstract
completeness theorem states that if a proof system has a number of fairness properties, then
it is complete in the following abstract sense: Any formula can either be proved or there
exists some infinite path in a fair derivation tree of the formula. This means that the user
of their formalization has three things to do in order to get a concrete completeness proof.
First she needs to define a syntax, second she needs to define a fair proof system and third,
she has to interpret the infinite paths as countermodels. The authors performed this step for
a sequent calculus for first-order logic with equality and sorts. My formalization does not
follow this recipe, opting instead for formalizing semantic trees. Blanchette, Popescu, and
Traytel [11,12] also formalized abstract soundness results and used them to prove a certain
kind of infinite proofs correct.

Breitner and Lohner [17] defined natural deduction in an abstract way that is independent
of syntax and the concrete rules of the system. They then used the abstract completeness
proof byBlanchette, Popescu, and Traytel to prove it complete in the abstract sense. They also
defined a novel graph representation of proofs, which is also independent of syntax and rules.
They proved that any natural deduction system and the corresponding graph representation
can prove the same theorems. Thus the graph representation is as sound and complete as the
corresponding natural deduction system. They concretely instantiated it with a propositional
logic with only conjunction and implication as well as a first-order logic with only universal
quantification and implication. Breitner [16] used their graph representation to implement a
tool for teaching logic.

For automatic theorem provers, it is not only important that the calculus is complete, but
also that it can be implemented as a program. Ridge and Margetson [58,59] verified a prover
based on their formalized sequent calculus. Since their calculus does not contain full first-
order terms, it means that they do not need any machinery such as MGUs to handle them.
They also implement the prover as an OCaml program.

In his master’s thesis, Gebhard [26] formalized several ground resolution calculi in the
	MEGA proof assistant. A version of this development is available online in The Theorem
Prover Museum [37]. Gebhard proved completeness using induction on the excess literal
number. The excess literal number is the number of occurrences of literals in a set of clauses
minus the number of clauses. The technique was introduced by Anderson and Bledsoe [1]
who used it to prove a linear format for resolution complete. Arguably, semantic trees are a
more pedagogical construction since they so naturally express interpretations, and therefore I
prefer them. Furthermore, Goubault-Larrecq and Jouannaud [27] showed that semantic trees
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can actually be used to provemanyof the refinements of resolution complete – including linear
resolution. Another difference from my formalization is that Gebhard uses proof planning.
Proof plans were introduced by Bundy [18] as formal specifications of LCF-style tactics,
which are functions that can replace a goal in a proof with zero or more new subgoals. I
instead made structured proofs in the declarative Isar language, which allowed me to write
humanly readable proofs that can be checked by the Isabelle/HOL proof assistant.

Concurrent with this Isabelle/HOL formalization of resolution, an important step in
formalizing automatic theorem provers for first-order logic was taken. Peltier proved propo-
sitional resolution [52] and a variant of the superposition calculus for first-order logic [53]
sound and complete. The superposition calculus can be seen as a highly efficient gener-
alization of resolution for first-order logic to first-order logic with equality. Therefore his
formalization is representative of the state of the art in formalizing the theory of automatic
theorem proving.

10.2 Beyond Completeness of First-Order Logic

There are also results that go beyond completeness of first-order logic. An early such result is
Shankar’s formalization [70,71], in Nqthm, of Gödel’s first incompleteness theorem. Raffalli
[56] proved, in Phox, parts of the second incompleteness theorem. His proof is very abstract
and thus relies on strong assumptions about codings of formulas. He does not provide an
explicit coding and thus does not prove these assumptions. Paulson [49–51] did not take any
shortcuts and managed to formalize the entirety of both Gödel’s incompleteness theorems
with a concrete coding of formulas based on hereditarily finite set theory.

Harrison [29] proved the soundness and consistency ofHOLLight.He did this in twoways.
First, he added an extra axiom toHOLLight that assumes the existence of a very large cardinal,
and with this he was able to prove the unaltered HOL Light sound and consistent. Secondly,
in unaltered HOL Light he proved the soundness and consistency of HOL Light altered by
removing its axiom of infinity. Kumar, Arthan, Myreen, and Owens [39] extended Harrison’s
result by proving, in HOL4, soundness and consistency of HOL Light with definitions. Their
approach is a bit different from Harrison’s. Instead of adding an axiom describing a large
cardinal to HOL4, their soundness proof assumes a specification of set theory. Additionally,
they synthesize a verified implementation of the inference rules of their definition of HOL
Light. A similar result is Davis and Myreen’s soundness proof [23], in HOL4, of the Milawa
theorem prover.

10.3 IsaFoL

This formalization is part of IsaFoL [33], the Isabelle Formalization of Logic, which is a
project that brings together researchers of logic frommany institutions. In the project we aim
to develop libraries of lemmas and methods for formalizing research on logic. In addition to
this formalization of logic, several other results have emerged from the project.

This paper is an example of IsaFoL catching up with classical unformalized results in
Isabelle/HOL. Likewise, Jensen, Villadsen, and I [35,36] formalized an axiomatic system
that forms the kernel of a proof assistant for first-order logic with equality by Harrison [30].
In addition to the advantages of having a formal companion to Harrison’s chapter on the
proof assistant, the formalization also enabled us to build a certified prover based on the
calculus. Other efforts in this direction are the work due to Blanchette, Traytel, Waldmann,
and me [66] on a formalization of a resolution prover for first-order logic, as well as the
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formalizations of many ground calculi including SAT solvers and propositional resolution
due to Blanchette, Fleury, and Weidenbach [7].

Additionally we develop new results in conjunction with formalizing them. Several term-
orders have been formalized by Becker, Blanchette, Waldmann, and Wand [3] as well as
Blanchette, Waldmann, and Wand [13]. These could serve as a basis for a higher-order
superposition calculus. Villadsen and I [67] formalized a propositional paraconsistent logic
with infinitely many truth values. Lammich wrote and verified a program that checks the
certificates of satisfiability and unsatisfiability that SAT solvers can generate [40,41].

11 Conclusion

This paper describes a formalization of the resolution calculus for first-order logic as well
as its soundness and completeness. This includes formalizations of the substitution lemma,
Herbrand’s theorem, and the lifting lemma. As far as I know, this is the first formalized
soundness and completeness proof of the resolution calculus for first-order logic.

The paper emphasizes how the formalization illustrates details glossed over in the paper
proofs. Such details are necessary in a formalization. For instance it shows the jump from
satisfiability by an infinite path in a semantic tree to satisfiability by an interpretation. It
likewise illustrates how and when to standardize clauses apart in the completeness proof, and
the lemmas necessary to allow this. Furthermore, the formalization combines theory from
different sources. The proofs of Herbrand’s theorem and completeness are based mainly on
those by Chang and Lee [19], while the proof of the lifting lemma is based on that by Leitsch
[43]. The existence proof of MGUs for unifiable clauses comes from IsaFoR [34].

The formalization is part of the IsaFoL project [33] on formalizing logics. When the
project was started in 2015, we hoped it would attract other researchers to join and formalize
their results by using and extending the library. It seems that we have had success with this
since the number of authors in the project has more than tripled since then.

Proof assistants take advantage of automatic theorem provers by using them to prove sub-
goals. This formalization is a step towards mutual benefit between the two areas of research.
Formalizations in proof assistants can help automatic theorem provers by contributing a
highly rigorous understanding of their meta-theory.
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