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Abstract Many algorithms can be implemented most efficiently with imperative data struc-
tures. This paper presents SEPREF, a stepwise refinement based tool chain for the verification
of imperative algorithms in Isabelle/HOL. As a back end we use imperative HOL, which
allows to generate verified imperative code. On top of imperative HOL, we develop a sep-
aration logic framework with powerful proof tactics. We use this framework to verify basic
imperative data structures and to define a refinement calculus between imperative and func-
tional programs. We provide a tool to automatically synthesize a concrete imperative program
and a refinement proof from an abstract functional program, selecting implementations of
abstract data types according to a user-provided configuration. As a front end to describe the
abstract programs, we use the Isabelle Refinement Framework, for which many algorithms
have already been formalized. Our tool chain is complemented by a large selection of verified
imperative data structures. We have used SEPREF for several verification projects, resulting in
efficient verified implementations that are competitive with unverified ones in Java or C++.

Keywords Isabelle/HOL - Stepwise refinement - Refinement calculus - Separation logic -
Imperative HOL

1 Introduction

Using the Isabelle Refinement Framework (IRF) [19,26], we have verified several graph and
automata algorithms [10,20,24,26], including a fully verified LTL model checker [12]. The
IRF features a stepwise refinement approach [39], where an abstract algorithm is refined,
in possibly many steps, to a concrete implementation. Organizing the proof into multiple
steps reduces its complexity and makes larger developments manageable in the first place.
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However, the IRF only allows refinement to purely functional code, while the most efficient
implementations of many algorithms require imperative features.

In this paper, we extend the IRF to imperative programs. We build on imperative HOL [4],
which introduces a heap monad in Isabelle/HOL and supports code generation for several
target platforms (currently OCaml, SML, Haskell, and Scala). Unfortunately, imperative
HOL has rarely been used for verification projects so far, mainly due to its limited proof
support. We improve on that by developing a separation logic framework with powerful
proof tools that greatly simplify reasoning about programs in imperative HOL (Sect. 2).
We use this framework to verify basic algorithms and data structures (Sect. 3), and as a
basis of a refinement calculus [2] from IRF programs to imperative HOL. Moreover, we
implement the SEPREF tool, which automatically generates an imperative HOL program
and a refinement proof from an IRF program, selecting appropriate implementations for
the abstract data structures based on a configuration provided by the user (Sect. 4). On top
of SEPREF, we implement the Imperative Collections Framework, which provides a library
of reusable imperative data structures and convenience tools for data structure development
(Sect. 5). We have successfully used SEPREF for numerous verification projects. The resulting
implementations are considerably faster than previous functional versions, and, in some cases,
competitive to unverified imperative implementations in Java and C++ (Sect. 6).

The SEPREF tool and the Imperative Collections Framework are available as an entry in
the Archive of Formal Proofs [21]. This entry also contains a user guide that describes the
development cycle featured by SEPREF, a reference manual, and several larger examples.

2 A Separation Logic for Imperative HOL

Imperative HOL provides a heap monad formalized in Isabelle/HOL, as well as a code
generator extension to generate imperative code in several target languages (currently OCaml,
SML, Haskell, and Scala). However, imperative HOL itself only comes with minimalistic
support for reasoning about programs. In this section, we report on our development of a
separation logic framework for imperative HOL. A preliminary version, which did not support
frame inference nor other automation, was formalized by Meis [28]. The current version is
available in the Archive of Formal Proofs [23].

2.1 Basics

We formalize separation logic [34] along the lines of Calcagno et al. [5]. A partial heap
(type pheap) describes the content of a heap at a specific set of addresses. An assertion
(type assn C (pheap = bool)) is a predicate on partial heaps that satisfies a well-formedness
condition.! We write 4 = P if the partial heap / satisfies the assertion P.

The assertion frue is satisfied by any heap, false is satisfied by no heap, and emp by
the empty heap. A heap consisting of a single cell at address p::« ref with value v:: o
is described by p +—, v. Analogously, an array at address p :: @ array holding the values
[z list is described by p +—>, [. Moreover, the pure assertion 1 @ describes the empty heap
if @ :: bool holds, and no heap otherwise. It is used to embed propositions from HOL into
assertions. We lift the standard Boolean connectives to assertions and show that they form a
Boolean algebra. We also provide lifted versions of the universal and existential quantifiers.

! For technical reasons, we formalize a partial heap as a full heap with an address range. Assertions must not
depend on heap content outside this address range.
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The separation conjunction P Q is satisfied by heaps that can be split into two disjoint parts,
such that one part satisfies P and the other part satisfies Q. Finally, we define the entailment
P—4QasVh.h =P = h = Q.

Example 1 Singly linked lists are a standard benchmark for separation logic tools. We first
define a node, which contains a value and a next pointer:

datatype o node = Node val: o next: a node ref option

As imperative HOL does not support null pointers, we use an option type for the next pointer,
where None models the null pointer.

The assertion Iseg [ p s describes a linked list starting at the node pointed to by p, ending
at the node pointed to by s (exclusive), and holding the data described by the HOL list /:

fun Iseg :: « list = « node ref option = a node ref option = assn where
lseg [1p s =1(p=s)

| Iseg (x#l) (Some p) s = (3g. p —, Node x q x Iseg | q 5)

| Iseg (_#_) None _ = false

Then, the assertion os_list [ p = Iseg | p None describes an open singly linked list, i.e. one
where the last element’s next pointer is null.

2.2 Automation

One of the most important proof tools in Isabelle/HOL is the simplifier, which normalizes a
term according to a configurable set of rewrite rules. It also supports simplifier procedures,
which dynamically generate rewrite rules based on the current (sub)term to be rewritten. We
configure the simplifier for handling assertions: Instantiating the type classes for Boolean
algebras and commutative monoids with assertions already yields a basic simplifier setup.
Additionally, we implemented a simplifier procedure for lists of assertions separated by *:
Existential quantifiers are pulled to the front, pure assertions are summarized, and assertions
that would force the same pointer to point to separate locations are rewritten to false.

Example 2 The simplifier rewrites the assertion P x4 @ x (Ap. p >, vx 1t ¥) todp. P *
p =, vx 1 (@ AY), and the assertion P x 1 @ x (Ap. p >, vt ¥ x p >, w) is
rewritten to False (as p cannot point to two separate locations at the same time).

2.3 Hoare Triples

Having defined assertions, we are ready to define a separation logic for programs.
Imperative HOL provides a shallow embedding of heap-manipulating programs into
Isabelle/HOL. A program is encoded in a heap-exception monad, i.e. it has type
o Heap = heap = («a x heap) option. Intuitively, a program takes a heap and either pro-
duces a result of type o and a new heap, or fails.

We define the Hoare triple (P) ¢ (Q) to hold iff for all heaps that satisfy P, the pro-
gram ¢ returns a result x such that the new heap satisfies O x.> When reasoning about
garbage collected languages, one has to frequently specify that an operation may allocate
some heap space for internal use. For this purpose, we define (P) ¢ (Q); as a shortcut for
(P) ¢ (Ax. Q x * true).

2 Again, for technical reasons, we additionally check that the program does not modify addresses outside the
heap’s address range, and that it does not deallocate memory.
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For Hoare triples, we prove rules for the basic heap operations and monad com-
binators, as well as a consequence and a frame rule. Note that the frame rule,
(P) ¢ (Q) = (P x F) ¢ (Ax. Q x x F), is crucial for modular reasoning in separation logic.
Intuitively, it states that a program does not depend on the content of the heap that it does
not access.

Example 3 We display the Hoare rules for return, bind, and array lookup:
- (P)ym (R) Vx.(Rx) fx{(Q)

(P) return x (Ar. P x 1(r = x)) (P)x < m; fx(Q)
I < |xs|

(ar>q xs)ali (Ar.a >4 xs % 1M = xsli))

Note that these rules work in a forward manner, i.e. given a precondition and a command,
they generate a (the strongest) postcondition. After a return, the heap is not changed, and,
additionally, the result is the returned value. For a bind, we first generate a postcondition
R for the first statement, and then a postcondition for the second statement, given that the
argument satisfies R. Finally, for array lookup, we require the index to be in bounds.

2.3.1 Recursion

We do not provide explicit rules for recursion combinators, but rely on the standard Isabelle
infrastructure, in particular on the partial function package [16]. However, in Sect. 4, we
will provide rules to refine the recursion combinators of the IRF to corresponding recursion
combinators of the heap monad.

Example 4 The following function implements in-place list reversal for open singly linked
lists (cf. Example 1):

partial_function (heap) os_reverse_aux
o os_list = o os_list = « os_list Heap
where
os_reverse_aux g p = (case p of
None => return g
| Some r = do {
v < Ir;
r:= Node (val v) q;
os_reverse_aux p (nextv) })
definition os_reverse p = os_reverse_aux None p

2.4 Verification Condition Generator

Given a Hoare triple (P) ¢ (Q), we can use the Hoare rules to compute a postcondition Q'
with (P) ¢ (Q’), and then try to prove Q' ==, Q.

While the rules for the combinators are set up to work with preconditions of any form, the
rules for operations require the heap to contain the operands. Assume we have an operation
¢ with the rule (P’) ¢ (Q). In order to compute the postcondition for a precondition P, we
have to find a frame assertion F such that P =>4 P’ % F. With the consequence and frame
rules, we then get (P) ¢ (Ax. Q x x F).
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The problem of finding an assertion F is called frame inference, and is undecidable in
general. However, there are heuristics that work well in practice. For a detailed discussion
on automating frame inference in HOL theorem provers we refer the reader to [38]. We
implement a quite simple but effective heuristics: After some initial simplifications to handle
quantifiers and pure predicates, we split P and P’ into P = Py...% P, and P’ = P{%.. %P,
Then, for every P;, we find the first PJ’. that can be unified with P;. If we succeed to match
up all P;s, without using a ij twice, we have found a valid frame (F consists of exactly the
unused P J’ s), otherwise the heuristic fails and frame inference has to be performed manually.

2.5 All-in-One Method

We combine the verification condition generator, a heuristics to simplify goals of the form
Q" =>4 0, and Isabelle/HOL’s auto tactic into a single proof tactic named sep_auto.
This tactic is able to solve many goals involving separation logic completely automatically.
Moreover, if it cannot solve a goal, it returns the proof state at which it got stuck. This is a
valuable tool for proof exploration, as the stuck state usually hints to missing lemmas. The
sep_auto tactic allows for very straightforward and convenient proofs, which are considerably
smaller and simpler than the corresponding proofs carried out with the default rudimentary
proof methods of imperative HOL.

Example 5 The original imperative HOL formalization [4] also contains an example of in-
place list reversal (cf. Example 4). The correctness proof there requires about 100 lines of
quite involved proof text. Using separation logic and the sep_auto tactic, the proof reduces
to a few lines of straightforward proof text:

lemma aux: (os_list xs p * os_list ys q) os_reverse_aux q p (os_list (rev xs @ ys))
proof (induct xs arbitrary: p q ys)
case Nil thus ?case by sep_auto
next
case (Cons x xs) show ?case
by (cases p; sep_auto heap: cons_pre_rule[OF _ Cons.hyps])
qed

corollary (os_list xs p) os_reverse p (os_list (rev xs))
unfolding os_reverse_def using aux[where ys=[]]
by auto

3 Simple Refinement to Imperative HOL

In the last section, we have reported on our separation logic framework for imperative HOL
and its powerful tools for proof automation. It can be used to verify simple algorithms
(e.g. in-place list reversal). Also algorithms of medium complexity can be handled, using
a lightweight but somewhat limited stepwise refinement approach. In this section, we first
report on our formalization of a union-find data structure using this approach, and then discuss
its limitations.
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3.1 Refinement Based Development of a Union-Find Data Structure

Recall that a union-find data structure is used to model equivalence relations, in our case on
an initial segment {0 . . . <N} of the natural numbers. The union-find data structure is a forest
over the nodes {0... <N}. Each tree in the forest represents an equivalence class, the root
node being the unique representative. The compare operation checks whether two elements
are equivalent by comparing the root nodes of the elements’ trees. The union operation joins
the equivalence classes of two elements by attaching one tree to the root node of the other
tree.

We also implemented path compression and the size-based union heuristics, which guar-
antee a quasi-constant amortized complexity of the compare operation. These are omitted
here to keep the presentation simple.

A convenient implementation of the union-find data structure is by an array [ag . . .ay—1]
of natural numbers, such that a; is the parent node of i. Root nodes simply point to themselves.

In a first step, we model the array as a functional list. Isabelle/HOL’s list library provides
the function || to obtain the length of a list /, the function /!i to obtain the i th element, and
the function /[i := x] to obtain a list equal to /, except that the i th element is replaced by x.
We define:

findy li = (if I!i = i then i else find; [ (Ii))

invary L = Yi < |l|. find_dom (Li) A1li < |l|
arl={(xy). x<|l| Ay <|l| Afindy | x = findy |y}
uniony I xy = l[find l x := find; 1 y]

Here, the partial® function find; follows the parent pointers until a root node is reached. The
predicate find|_dom defines the arguments for which find; is defined (i.e. terminates). The
invariant predicate states that the find; function must be defined on all elements, and that
all parent pointers must point to valid elements. The abstraction function «; maps a list to
the corresponding equivalence relation. Finally, the union; operation joins two equivalence
classes as described above.

Using standard Isabelle reasoning, we show correctness of the union operation:

[ invar; I; x < |l]; y < |I] 1
= 1 (uniony l xy) = union (a1 ) x y A invary (uniony [ x y)

where union is the union operation on equivalence relations, and [Py;...;P,]] = Q is
syntactic sugar to summarize multiple premises of an implication.

In a second step, we implement the list by an array and define corresponding find and
union functions in the imperative HOL monad:

partial_function (heap) find, :: nat array = nat = nat Heap where
find> pi=do{

n < Array.nth p i;

if n=i then return i else find, p n }

definition union; a i j = do {

i < findy ai; j < findy aj;

Array.updija}
The following theorems state the correspondence of these functions to their list-based coun-
terparts:

3 The Isabelle/HOL function package [15] allows for convenient definition of such functions.
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[invari i< ||| = (p+>q ) findy pi (Ar. pr—>g4 L A (r = find; i)
[invar; ;i< |l|; j < |l| | = {(a+>q4 1) uniony aij (Ar. r 4 uniony lij)

Using the sep_auto tactic, they are easily proved with a few lines of proof text.
Finally, we combine the two refinement steps. We define an assertion is_uf R a that states
that an array a represents an equivalence relation R:

is_.ufRa=13l a4l % (invari IAR =1 1)

Combining the correctness theorems for union| and union; yields a correctness theorem for
the union operation on arrays wrt. equivalence relations:

[ i € Domain R; j € Domain R ]|
= (is_uf R a) uniony a i j (is_uf (union R i j))

Again, this theorem is easily shown with the sep_auto-tactic.

3.2 Limitations of the Simple Approach

Above, we have presented a refinement technique where an algorithm is first defined as a
plain HOL function on standard HOL data types, and then refined to a monadic function on
heap-based data types. This technique works well for simple algorithms and data structures.
It even allows modularity: a data structure that has already been proved may be used as
building block for more complex algorithms and data structures. However, in practice, one
quickly encounters various problems for more complex algorithms:

— An implementation often requires some knowledge of the algorithm, in particular that it
implies certain restrictions on the types to be implemented. These restrictions are usually
obvious when proving the abstract algorithm correct. However, there is no simple way to
transport them to the refinement proof where they are required. Instances of this problem
already occur in the union-find data structure: In order to prove union; correct, one has to
show that the index of the array update is within bounds. However, this index is the result
of a call to find,. In this particular case, the problem is easily discharged by showing that
find; only returns valid elements, and using this fact after the result of find, has been
related to the result of find;. However, in more complex algorithms, substantial parts
of the correctness proof may have to be repeated to get the properties required for the
refinement. This blurs the separation between abstract and concrete levels, annihilating
the positive effects of the stepwise refinement approach.

— The abstract formulation of an algorithm is often inherently nondeterministic. For exam-
ple, when picking some element from a set, the element which is actually picked depends
on the set’s implementation, and cannot be determined on the abstract level. This is a com-
mon problem when developing algorithms in HOL, and there exists several workarounds,
e.g. imposing a total ordering on the elements and returning the smallest one. However,
it’s not hard to run into cases where these simple tricks fail, e. g. when computing a path
between two nodes in a graph.

— Many algorithms are naturally presented in an “imperative” style, using loops instead
of recursive functions. An encoding of loops into recursive functions is possible, but
tends to obfuscate the algorithms, and also the proofs, which have to be converted from
invariant proofs to induction proofs.
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4 Using the Isabelle Refinement Framework

The Isabelle Refinement Framework (IRF) provides a possible solution to the limitations
sketched in the last section. Programs are described in a nondeterminism monad, shallowly
embedded into Isabelle/HOL. This is a flexible but still lightweight way to describe nonde-
terministic algorithms in Isabelle/HOL. Moreover, assertions can be used to easily transport
facts from the correctness proof to the refinement proof. Finally, the monad comes with loop
combinators, which allow a more natural presentation of some algorithms.

In this section, we describe our approach to refinement from IRF programs to imperative
HOL programs. We start with a brief review of the IRF. For a more detailed description, we
refer the reader to [18,26]. Programs are described via a nondeterminism monad over the
type « nres, which is defined as follows:

datatype o nres = res (« set) | fail
fun < :: o nres = o nres = bool
where _ < fail [ fail Zres_IresX <resYifXCY
fun return :: @ = « nres where return x = res {x}
fun bind :: @ nres = (o = B nres) = B nres
where bind fail f = fail | bind (res X) f= SUPx € X. fx

The type « nres describes nondeterministic results, where res X describes the nondetermin-
istic choice of an element from X, and fail describes a failed assertion. On nondeterministic
results, we define the refinement ordering < by lifting the subset ordering, setting fail as top
element. The intuitive meaning of a < b is that a refines b, i.e. results of a are also results of
b. Note that the refinement ordering is a complete lattice with top element fail and bottom
element res {}.

Intuitively, return x denotes the unique result x, and bind m f denotes sequential compo-
sition: Select a result from m, and apply fto it.

Non-recursive programs can be expressed by these monad operations and Isabelle/HOL s if
and case-combinators. Recursion is encoded by a fixed point combinator
rec :: ((« = B nres) = a = P nres) = o = f nres, such that rec F is the greatest fixed
point of the monotonic functor F, wrt. the flat ordering of result sets with fail as the top
element. For non-monotonic F, rec F is set to fail:

rec F x = if (mono’ F) then (flatf_gfp F x) else fail

Here, mono’ denotes monotonicity wrt. both the flat ordering and the refinement ordering.
The reason is that for functors that are monotonic wrt. both orderings, the respective greatest
fixed points coincide, which is useful to show proof rules for refinement. Note that functors
which only use the monad combinators described above are monotonic by construction [16].

Building on the basic combinators, the IRF also defines while and foreach loops to
conveniently express tail recursion and folding over the elements of a finite set. Moreover,
we define assertions by:

assert @ = if @ then return () else fail
For assertions, we have the following rules:

[®;m<m ] =>do{assert ®; m}<m
[®=m<m] = m<do{assert®; m'}

Here, we use a Haskell-like do notation as convenient syntax for bind operations. The first
rule is used to show that a program m with assertion @ refines the program m’. It requires
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definition dfs :: (¢ x ) set = o = o = bool nres where
dfsEst=do{
(_,r) < rec (Adfs (V,v).
if v € V then return (V, False)
else do {
let V = insertv V;
if v = ¢ then return (V,True)
else foreach ({v'. (v,V') € E}) (A(_ brk). —brk)
WV (V.. dfs (VV)) (V,False)
1
) ({Ls);
return r

}

Listing 1 Simple DFS algorithm formalized in the IRF

to prove @, in addition to the refinement m < m’. The second rule is used to show that a
program m refines a program m’ with an assertion. It allows one to assume @ when proving
the refinement m < m’. This way, facts that are proved on the abstract level are made available
for proving refinement.

Example 6 Listing 1 displays the IRF formalization of a simple depth-first search algorithm
that checks whether a directed graph, described by a (finite) set of edges E, has a path from
source node s to target node 7. With the tool support provided by the IRF, it is straightforward
to prove this algorithm correct and refine it to efficient functional code (cf. [19,26]).

4.1 Connection to Imperative HOL

With the Isabelle Refinement Framework we have developed various algorithms and refined
them to efficient purely functional. In this section, we describe how to refine a program
specified in the nondeterminism monad of the IRF to a program specified in the heap monad
of imperative HOL. The main challenge is to refine abstract data to concrete data that may
be stored on the heap and updated destructively.

At this point, we have a design choice: One option is to refine the abstract functional
program first to an abstract imperative program, and then to a concrete program. The second
option is to skip the intermediate step, and directly refine abstract functional programs to
concrete imperative ones.

Due to limitations of the logic underlying Isabelle/HOL, we need a single HOL type that
can encode all types we want to store on the heap. In imperative HOL, this type is chosen to be
N, and thus only countable types can be stored on the heap. As long as we store concrete data
structures, this is no real problem. However, abstract data types are in general not countable,
nor does there exist a type in Isabelle/HOL that could encode all other types. Thus, storing
abstract types on the heap would lead to unnatural and clumsy restrictions, contradicting the
goal of focusing the abstract proofs on algorithmic ideas rather than implementation details.
Thus, we opted for not formalizing abstract imperative programs, and directly refine the
abstract functional program to a concrete imperative one.

In our approach, the heap will always be described by assertions of the form
Ry ajcy x... %R, a, c,, where the R; are refinement assertions, relating an abstract value
a; to its implementation c;. Examples for refinement assertions are the primitive —, that
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relates lists to arrays (cf. Sect. 2.1), the os_list assertion for singly linked lists (cf. Example 1),
and the is_uf assertion for union-find data structures. (cf. Sect. 3.1)

Note that a refinement assertion needs not necessarily relate heap content to an abstract
value. It can also relate a concrete non-heap value to an abstract value. For a relation
R :: (y X «) set we define:

pure R = (Aa c. 1((c,a) € R))

This allows us to mix imperative data structures with functional ones. For example, the refine-
ment assertion pure nat_rel describes the implementation of natural numbers by themselves,
where nat_rel = Id::(natxnat) set.

To relate imperative HOL programs to IRF programs, we define the predicate hnr (short
for heap-nres refinement) as follows:

hnrI'c I’ Rm=
m # fail — (") ¢ (Ar. I’ % (3x. R x r * 1 (return x < m))),

Intuitively, hnr I ¢ I’ R m states that on a heap described by assertion I', the imperative
HOL program c returns a value that refines the nondeterministic result m wrt. the refinement
assertion R. Additionally, the new heap contains I,

Example 7 The following refinement assertion refines lists of abstract elements to lists of
concrete elements:

fun list_assn :: (a = 'c = assn) = 'a list = 'c list = assn where
list_assn P[] [] = emp

| list_assn P (a#as) (c#cs) = P a c * list_assn P as cs

| list_assn _ _ _ = false

Note that lists are implemented by (functional) lists, but the elements of the concrete list may
be stored on the heap. The refinement theorem for the Cons operation (written as infix # in
Isabelle) is:

hnr (list_assn A 1 li % A a ai)
(return (ai#li))
(inv (list_assn A) L li x inv A a ai)
(list_assn A)
(return (a#l))

The precondition states that the abstract list / and the abstract element a to be prepended
are refined by the concrete list /i and the concrete element ai, respectively. The concrete
operation ai#li prepends the concrete element to the concrete list, the abstract operation a#l
prepends the abstract element to the abstract list. Afterwards, both the original list and the
element are invalid (ownership has been transferred to the result list), and the result of the
abstract operation is refined by the result of the concrete operation.

The inv assertion is defined as inwvRac=1 (3h. hi=Rxy) = true. We have
pure R=>inv R a c =>4 R a c, such that data not stored on the heap can be recovered.
For example, a list of natural numbers is not stored on the heap. Thus, the origi-
nal list remains valid even after prepending a new element to it. (Formally, we have
list_assn (pure nat_rel) = pure Id)

In order to prove refinements, we derive a set of proof rules for the hnr predicate, including
a frame rule, consequence rule, and rules relating the combinators of the heap monad with
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the combinators of the nondeterminism monad. For example, the consequence rule allows
us to strengthen the precondition, weaken the postcondition, and refine the nondeterministic
result:

[l =al{;hmrI{chRm I =5 Iy;m<m']|= hnr ' c Ty Rm’
1 1 2 2
For recursion, we get the following rule:

assumes A fo fo xq xc. [
/\xa Xe. hnr (Ry xq Xe % ') (fe xc) (F/ Xq Xc) Ry (fa xa)]
= hnr (Ry xq xc % I') (F¢ fe x0) (I' x4 X¢) Ry (Fa fa Xa)
assumes /\x. mono_Heap (Af. F. fx)
shows hnr (Ry x4 x¢ * I') (heap.fixp_fun F. xc) (I'' x4 x¢) Ry (rec Fy x,)

The rule is specified in Isabelle’s long goal format, which is more readable for large propo-
sitions. Moreover, Axj...x, is an Isabelle specific syntax for universal quantification.
Intuitively, we have to show that the concrete functor F, refines the abstract functor F,,
assuming that the concrete recursive function invocation f, refines the abstract one f;,. The
argument of the call is refined wrt. the refinement assertion R, and the result is refined wrt.
Ry. The additional heap before the call is described by I", and the additional heap after the
call is described by I’ x, x.. Here, the x, and x, that are attached to I"” denote that the new
heap may also depend on the argument to the recursive function. The second assumption
requires the concrete function to be monotonic. This is always the case for functions using
only monad combinators, and is discharged automatically by our tool.

4.2 Automation

Using the rules for hnr, it would be possible to manually prove refinement between an
imperative HOL program and a program in the Isabelle Refinement Framework, provided
they are structurally similar enough.* However, this would be a tedious and quite canonical
task, consisting of manually rewriting the program from one monad to the other, thereby
unfolding expressions into monad operations if they depend on the heap. For this reason,
we focused our work on automating this process: Given some hints which imperative data
structures to use, we automatically synthesize an imperative HOL program and its refinement
proof. The AUTOREF tool [19] solves the analogous problem for purely functional programs,
and we could reuse its ideas and even parts of its design for the imperative case.

In the rest of this section we describe our SEPREF tool, which automatically synthesizes
imperative programs from programs phrased in the Isabelle Refinement Framework. The
synthesis consists of several consecutive phases: Identification of operations, monadifying,
translation, and cleanup. Note that the implementation of the SEPREF tool is not critical to
the correctness of the generated theorems. As common for LCF style provers, all theorems
are generated by the logical inference kernel. Thus, an error in a tool may lead to useless
theorems, or theorems not being generated at all, but never to invalid theorems, provided the
kernel is correct.

4.2.1 Identification of Operations

Given an abstract program in Isabelle/HOL, it is not always clear which abstract data types it
uses. For example, maps are encoded as functions @ = S option, and so are priority queues

4 The control structures must be the same, and the abstract operations must match the corresponding concrete
operations.
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or actual functions. However, maps and priority queues are, also abstractly, quite differ-
ent concepts. The purpose of this phase is to identify the abstract data types (e.g. maps
and priority queues), and the operations on them. Technically, the identification is done by
rewriting the operations to constants that are specific to the abstract data type. For example,
(f :: nat = nat option) x may be rewritten to op_map_lookup f x, provided that a heuristics
identifies f as a map. If f is identified as a priority queue, the same expression would be
rewritten to op_get_prio f x. The operation identification heuristic is already contained in the
AUTOREF tool, and we slightly adapted it for our needs.

4.2.2 Monadifying

Once we have identified the operations, we flatten all expressions, such that each operation
gets visible as a top-level computation in the monad. This transformation essentially fixes
an evaluation order (which we choose to be left to right), and later allows us to translate the
operations to heap-modifying operations in Imperative HOL’s heap monad.

Example 8 Considerthe programdo { let x = /; return {x,x+/} }. Note that {x,y} is syntactic
sugar for (insert x (inserty {})). A corresponding imperative HOL program might be:

do {letx = 1,5 < bv_new; s < bv_ins x s; bv_ins (x+1) s }

Note that the bv_new and bv_ins operations modify the heap. Thus, they have to be applied
as monad operations and cannot be nested into other expressions. For this reason, the monad-
ify phase flattens all expressions, and thus exposes all operations as monad operations. It
transforms the original program to:

do { x < return /; y < return /; 7 < return x+y;
s < return {},; s < return (insert x s), return (insert z7 s) }

Note that operations that are not translated to heap-modifying operations will be folded again
in the cleanup phase.

4.2.3 Translation

Let a be the monadified program. We now synthesize a corresponding imperative HOL
program. Assume the program a depends on the abstract parameters aj . . .a,, which are
refined to concrete parameters cj .. .c, by refinement assertions Rj ... R,,. We start with a
proof obligation of the form:

hnr (Riaycy *... * R, a,¢,) 2c?I" ?Ra

Note that ? indicates schematic variables, which may be instantiated during resolution. We
will maintain the invariant that the precondition contains an assertion R; a; ¢; for every
variable a; that is in scope. If the corresponding concrete value ¢; has been destroyed, we set
R; = inv R}, where R! is the original assertion for the variable.

We now repeatedly resolve with a set of syntax directed rules for the Anr predicate (cf.
Sect. 4.1). Apart from hnr-predicates, which trigger recursive resolution, the premises of
a rule may contain other side conditions: Frame inference, merge goals, constraints on the
refinement assertions, monotonicity goals, and semantic side conditions.

Frame Inference A goal of the form

5 We applied a-conversion to give the newly created variables convenient names.
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I' = ?F+«Riajci*... xR,a,cy

triggers frame inference: SEPREF tries to instantiate ?F such that the implication holds.
Moreover, it will try to recover invalidated assertions as necessary. While frame inferences
have to be explicit premises of combinator rules, SEPREF generates them automatically for
operator rules.

Merge Goals After translating an if or case combinator, we have to merge the descriptions
of the heaps after the different branches. We use a goal of the form:

Riajci*...%Ryapcy VR ajcrx... xR ay ¢y =>4 7T
The merging is done element-wise by the following rules:

RacvRac—4s Rac
imnvRacVRac=—4sinvRac
RacvinwRac=—4invRac

Note that the first rule also covers the case inv Rac VvV invR a c.
Example 9 The rule for the if combinator is:

assumes P: I' == 4 I'| * pure bool_rel a a’

assumes RT: a == hnr (I} * pure bool_rela a’) b’ I, Rb
assumes RE: —a = hnr (I'| * pure bool_rel a a’) ¢’ I'»¢ R ¢
assumes MERGE: Iy Vg The =>4 I’

shows hnr I (if o’ then b’ else ¢’) I'’ R (if a then b else ¢)

Intuitively, it works as follows: We start with a heap described by the assertion I". First,
the refinement for the condition a is extracted from I" using frame inference. (Premise P)
Then, the then and else branches are translated, (Premises R7T and R E) producing new heaps
described by the assertions I, and I'>., respectively. Finally, these assertions are merged to
form the assertion I"” for the resulting heap after the if statement. (Premise MERGE)

Constraints Another type of side conditions are constraints on the refinement assertions.
For example, some data structures require the refinement relation for their elements to be
pure. Also, recovery of an invalidated operand is only possible for a pure refinement asser-
tion. However, when the corresponding rules are applied, the refinement assertion may not
be completely known, but (parts of) it may be schematic and only instantiated later. We
defer constraints over schematic assertions and solve them after the assertions have been
instantiated.

Monotonicity Goals Monotonicity goals occur when synthesizing recursion combinators (cf.
Sect. 4.1). They are solved by an automatic procedure which is provided by the Partial
Function Package [16].

Semantic Side Conditions Rules may have semantic side conditions, e. g. that an array index
is in bounds. The resulting goals are solved by applying Isabelle’s auto tactic. If solving a
side condition fails, the synthesis procedure backtracks over the application of the rule that
produced the side condition.

Choosing between Implementations The resolution is directed by the syntax of the abstract

program: For each combinator, i.e. a function with arguments that describe a monadic com-
putation, there is exactly one rule. However, there may be multiple rules for operators, i.e.
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functions without monadic arguments. They correspond to the implementations of the oper-
ator for different data structures. If an operator does not construct a new data structure, the
corresponding rule can be uniquely determined by the refinement assertions for the operands.
However, if an operator constructs a data structure, multiple rules may apply. In this case,
we rely on disambiguation by the user: We define specific constants for each possible imple-
mentation as synonyms for the abstract operator, and force the user to rewrite the operator to
the constant corresponding to the desired implementation.

Example 10 Lists can be implemented by open singly linked lists (cf. Example 1) or by HOL
lists (cf. Example 7). Consider the prepend operation. The inr rules for HOL lists and open
singly linked lists are:

hnr (list_assn A Lli % A a ai) hnr (osll.assn A 1 li x A a ai)
(return (ai#li)) (os_prepend ai Ii)
(inv (list_assn A) Lli * inv A a ai) (inv (osll.assn A) L li x inv A a ai)
(list_assn A) (osll.assn A)
(return (a#l)) (return (a#l))

For a proof obligation of the form
hnr I 2¢ ?I"" ?R (a#])

only one of the rules will match, depending on the refinement assertion for / in I,
Now consider the empty list operation. The rules are:

hnr emp (return []) emp (list_assn A) (return [])
hnr emp os_empty emp (osll.assn A) (return [])

For a proof obligation of the form
hnr I ?2¢ 2T 7R []

both rules do match, and there is no obvious way to choose a rule. To resolve this ambiguity,
we define

op_HOL_list_empty =[] op_os_empty = []
and use the rules

hnr emp (return []) emp (list_assn A) (return op_HOL_list_empty)
hnr emp os_empty emp (osll.assn A) (return op_os_empty)

To choose the implementation, the user has to rewrite the [] to op_HOL_list_empty or
op_os_empty in the hnr goal, right before invoking the repeated resolution.

4.2.4 Cleanup

After we have generated the imperative version of the program, we apply some rewriting
rules to make it more readable. They undo the flattening of expressions performed in the
monadify phase at those places where it was unnecessary, i.e. the heap was not accessed.
Technically, this is achieved by using Isabelle/HOL’s simplifier with an adequate setup.

Example 11 Recall the DFS algorithm from Example 6. With less than ten lines of straight-
forward Isabelle text, SEPREF generates® the imperative algorithm displayed in Listing 2.

6 Again, we applied «-conversion, to make the generated variable names more readable.
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dfs_impl Ei si ti = do {
V <« bv_newy
(_,r) < heap_rec (Adfs (V,v). do {
visited <— bv_memb v V;
if visited then return (V,False)
else do {
V<« bv_insvV;
if v = ti then return (V,True)
else do {
succ_list < succi Ei v;
imp_nfoldli succ_list (A(_, brk). retarn (— brk))
v (V.. dfs (V,v)) (V,False)
}
}
D (Visi);
return r

}

Listing 2 Imperative DFS algorithm generated by SEPREF.

From this, Imperative HOL generates verified code in its target languages (currently OCaml,
SML, Haskell, and Scala). Moreover, SEPREF proves the following refinement theorem:

hnr (is_graph nat_rel E Ei % pure nat_rel s si x pure nat_rel t ti)
(dfs_impl Ei si ti)
(is_graph nat_rel E Ei % pure nat_rel s si * pure nat_rel t ti)
(pure bool_rel)
(dfsEst)

If we combine this with the correctness theorem of the abstract DFS algorithm dfs, we
immediately get the following theorem, stating total correctness of our imperative algorithm:

corollary dfs_impl_correct:
finite (reachable E s) —>
(is_graph nat_rel E Ei)
dfs_impl Ei s t
(Ar. is_graph nat_rel E Ei x 1(r <— (s,1) € E*)),

4.3 Limitations of the Automation

The AUTOREF [19] tool uses elaborate heuristics to choose implementation data structures that
support all the required operations. However, these heuristics are difficult to debug and may
silently yield undesired (inefficient) results. Thus, for SEPREF, the user has to unambiguously
fix all the implementations (cf. Example 10), and is responsible for choosing implementations
that support all the required operations. In practice, choosing the implementations is easily
done using the rewrite tool [37], and debugging of errors due to missing operations is simple.

A previous version of the SEPREF tool contained a linearity analysis to automatically
synthesize a copy operation when invalidating an operand that is still required. For data not
stored on the heap, the copy operation is simply the identity function. For data stored on the
heap, the user has to define a custom copy operation. However, setup of the linearity analysis
was quite complicated, and the analysis itself was incomplete. Moreover, our experiments
indicated that copy operations for impure operands are rarely necessary in practice. Thus, we
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decided to drop the linearity analysis, and replaced it by automatic recovery of invalidated
pure operands. In the rare cases where an impure operand needs to be copied, the user has to
manually insert the copy operation.

The most severe limitations of SEPREF are due to its simplistic handling of structured
data. For example, the operation hd :: « list = « returns the first element of a non-empty
list. However, the assertion for the resulting element describes a part of the heap that is also
described by the assertion for the list itself. Thus, we cannot combine these assertions with a
separation conjunction. The only simple solution is to invalidate the original list, preventing
further access to all its elements.” For this reason, most of our collection data structures
require their elements to be refined by pure assertions. A somewhat related problem occurs
for binary decision diagrams (BDDs), which store functions from vectors of Booleans to
Booleans. The representations of the different functions use shared data, such that we cannot
define refinement assertions for the single functions stored in the BDD, as would be required
for automatic refinement.

We conclude that, despite these limitations, the SEPREF tool is powerful enough to verify
efficient implementations of substantial algorithms. (cf. Sect. 6)

5 Imperative Collections Framework

In the last section, we have reported on the translation from programs phrased in the Isabelle
Refinement Framework to Imperative HOL programs. We have described the SEPREF tool,
which performs this translation automatically, refining abstract data types (e. g. sets) to effi-
cient imperative implementations (e.g. hash tables). In order to use this tool in practice, a
library of efficient imperative data structures is required. In this section, we briefly report
on this library, which we call the Imperative Collections Framework. For further reference,
including recipes for modular design of more complex data structures, we refer the reader
to [22].

5.1 Notation for Refinement

For two n ary functions f and g, we write (f, g) € Ry X ... X R, — R, if f refines g for
argument relations R; and result relation R, i.e.

Yajcy ... ay cy.
(ci,a1) e RiAn...AN(cp,ap) €E Ry = (fc1...cn,gar...ay) €R

For an imperative HOL function f and an IRF function g, we write (f, g) € A’f‘ X. . XA —
A. Here, the A; are the refinement assertions for the arguments, and A is the refinement
assertion for the result. The x; indicate whether f destroys the argument (x; = d) or not
(x; = k), i.e. the above notation is defined as:

Yajci ... ay cy.
hnr (Ajcray *...xApcpan) (fer...cpn)
(Ajcrar*...x A, chnan) A(gar...ay)

such that A} = A; if x; =k and A} = inv A; if x; = d.

7" A workaround for this particular example is to simultaneously return the head and tail of the list. However,
for more complex operations, e. g. returning the first element that satisfies a predicate P, this technique gets
unwieldy.
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Example 12 Correctness of the append operation on singly linked lists (cf. Example 1) is
specified as follows:

(os_append,append) € os_list?! x os_list* — os_list

where append :: « list = « list = « list is the append operation on HOL lists. That is, the
append operation destroys the first list, but the second list remains valid.

5.2 Formalizing Imperative Data Structures

We use two complementary approaches to design data structures for imperative HOL. The
first, direct approach is described in Sect. 3.1: The operations are manually implemented in
imperative HOL, and proved correct using our separation logic tools. Stepwise refinement
is possible up to a limited degree, as neither nondeterminism nor assertions are supported.
This approach is well-suited to develop simple data structures, and necessary to reason about
pointer manipulations, which have no convenient abstract functional model.

The second approach uses the Isabelle Refinement Framework: The data structure and its
operations are first described in the nondeterminism monad of the IRF, and then refined to
imperative HOL using the SEPREF tool. This approach is well suited to develop complex data
structures, which can be described in terms of simpler data structures.

Example 13 For the implementation of priority queues by heapmaps [22] we require a data
structure for distinct lists, which supports efficient index query, i.e. to return the position of
an element in the list. We may assume that the elements to be stored in the list are natural
numbers less than N. Such a data structure can be implemented by a list [ of elements, and
alist p =[po... pn—1], such that p; is the position of element i in /, or a special value if
isnotin /.

In a first step, we phrase the operations in a purely functional fashion, using standard HOL
lists for both lists. We define an invariant that asserts well-formedness of the data structure:

locale invar = fixes
N :: nat
and [ :: nat list
and p :: nat list
assumes [_set: set [ C {0..<N}
assumes [_distinct: distinct |
assumes p_len: Ipl = N
assumes p_map: Yx < N. p/x = (if x € set | then List_Index.index [ x else N)

The assumptions /_set and [_distinct state that [ contains only elements less than N, and no
duplicates. The assumptions p_len and p_map state that p is a list of fixed size N that actually
maps elements of / to their indexes. Elements not in / are mapped to the value N (which
cannot be a valid index in /, as the invariant implies |/| < N). Using the invariant, we define
the relation R, which relates our abstract data structure to lists:

RN={((Lp)l).I' =lANinvarNlp}

Then, we define the operations on the abstract data structure, using the Isabelle Refinement
Framework. We let each operation assert its precondition, such that the preconditions are
available for later refinement.

For example, the operation to retrieve the index of an element which is contained in the
list is defined as follows:

@ Springer



498 P. Lammich

index = L(Lp) x. do {
assert (x € setl);
i < Ist_op_getp x;
return i }

We first assert the precondition xeset [, and then return the x th element of p, which stores
the index of x. Note that Ist_op_get L i returns the i th element of a list /, asserting that the
index i is in bounds:

Ist_op_get li = do { assert (i < length [); return (//i) }

With the verification condition generator of the Isabelle Refinement Framework, it is straight-
forward to show correctness of the above operation:

(index, Ist_op_index) € R N x nat_rel — nat_rel
where Ist_op_index is defined as:
Ist_op_index | x = do { assert (x € set[); speci.i < || ANlli=x}

In a next step, we use the SEPREF tool to refine the operations to imperative HOL. The list
[ of elements is implemented by an array list of maximum capacity N, i.e. an array of size N
and a counter to indicate the actual length of the list. The list p is implemented by an array
of length N. The SEPREF tool generates a new constant index_impl, and the theorem:

(index_impl,index) € (is_arl N x (|—>a))k X (pure nat_rel)k — pure nat_rel

Here, the assertion is_arl N denotes implementation of lists by array lists of maximum capac-
ity N, and >, relates an array to the list of its elements.
Finally, combination of the refinement theorems for index_impl and index yields:

(index_impl, Ist_op_index) € (is_ial N)k X (pure nat_rel)k — pure nat_rel
where is_ial is the refinement assertion for our indexed array list data structure:
is_ial N(Lp) I =3l p.is_arl NIl % pr>q px1(((, p),I") € R N)

Note that the SEPREF tool provides some automation for the steps sketched above, in
particular for combination of refinement theorems. A more detailed description can be found
in [22], and in the SEPREF user guide [21].

We conclude with an overview of the current data structures in the Imperative Collections
Framework, which are listed in Table 1. Note that the amount of supported operations varies
from implementation to implementation, and some implementations have been done in an
ad hoc manner to exactly fit the needs of a particular algorithm.

6 Case Studies

In this section, we present two case studies: We apply SEPREF to a nested depth-first search
algorithm and Dijkstra’s shortest paths algorithm. Both algorithms have already been for-
malized within the Isabelle Refinement Framework [12,31,32], and we were able to reuse
the existing abstract algorithms and correctness proofs. The resulting imperative HOL algo-
rithms are considerably faster than the original functional versions. We also briefly report on
current projects that use SEPREF.
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Table 1 Data structures formalized with our approach

Data structure Abstract type Remark

Circular linked list o list

Open linked list alist cf. Example 1
Array list alist Dynamic resize
Maximum capacity array list alist

Fixed size array alist

Indexed array list nat list cf. Example 13
Array map nat — o option Dynamic resize
Hash map o — B option With rehashing
Array set nat set Dynamic resize
Hash set o set With rehashing
Union-find (nat x nat) set cf. Section 3.1
Heap o multiset cf. [22]

Heap map o — B option cf. [22]

Square matrix nat x nat — o By array, row major
Graphs (nat x nat) set By adjacency list
Edge weighted graph o set X (@ X B X «) set By adjacency list
Binary decision diagram bool list — bool Limited automation

6.1 Nested Depth-First Search

For the CAVA model checker [12], we have verified various nested depth-first search algo-
rithms [35]. Here, we pick a version from the examples that come with the Isabelle Collections
Framework [17]. It contains an improvement by Holzmann et al. [13], where the search
already stops if the inner DFS finds a path back to a node on the stack of the outer DFS.

From the existing abstract formalization, it takes about 160 lines of mostly straightforward
Isabelle text to arrive at the generated SML code and the corresponding correctness theorem,
relating the imperative algorithm to its specification.

We compile the generated code with MLton [29] and benchmark it against the original
functional refinement and an unverified implementation of the same algorithm in C4+-, taken
from material accompanying [35]. The algorithm is run on state spaces extracted from the
BEEM benchmark suite [33]: dining philosophers and Peterson’s mutual exclusion algorithm.
We have checked for valid properties only, such that the search has to explore the whole state
space. The results are displayed in the table below:

Model Property #States Fun Fun* Imp Imp* Co3 Coo
phils.4 1 353,668 975 75 70 63 48 66
phils.5 517,789 1606 120 113 108 83 112
phils.4 G(true) 287,578 740 59 53 46 40 54
phils.5 394,010 1156 83 77 71 64 85
peterson.3 1033 58,960 119 9 7 5 5 7
peterson.4 1,120,253 2476 184 142 110 111 158
peterson.3 G(true) 29,289 55 4 3 2 3 4
peterson.4 576,156 1314 88 70 55 54 78

where ¢1 = G(oneg = oneg W eaty) and ¢pp = G(waity = F(waitg) vV G(—ncsp))
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Table 2 Dijkstra benchmark

Test Fun Imp Java
11300 240 127 23
cl1500 325 171 29
medium 1 <1 2
large 38,746 4068 1218

The first column displays the name of the model, the second column the checked property,
and the third column displays the number of states. The remaining columns show the time in
ms required by the different implementations, on a 2.2 GHz i7 quadcore processor with 8GiB
of RAM. Fun denotes a purely functional implementation with red-black trees. Fun* denotes
a purely functional implementation, relying on an unverified array implementation similar to
Haskell’s Array.Diff. Imp denotes the verified implementation generated by SEPREF, which
uses array lists. Imp* denotes a verified implementation generated after hinting SEPREF to
preinitialize the array lists to the correct size, such that no array reallocation occurs during the
search. Finally, the C columns denote the unverified C++- implementation, which uses arrays
of fixed size. It was compiled using gcc 4.8.2 with (Cp3) and without (Cpg) optimizations.

The results are quite encouraging: Our SEPREF tool generates code that is more than one
order of magnitude faster than the purely functional code. We are also faster than the Fun*-
implementation, which depends on an unverified component, and faster than the unoptimized
C++ implementation. For the philosopher models, we come close to the optimized C++
implementation, and for the Peterson models, we even catch up.

6.2 Dijkstra’s Shortest Paths Algorithm

We have performed a second case study, based on an existing formalization of Dijkstra’s
shortest paths algorithm [32]. The crucial data types in the existing formalization are a
priority queue, a map from nodes to current paths and weights, and the adjacency map of the
graph. It took us about 130 lines of straightforward Isabelle text to set up SEPREF to produce
an imperative version of Dijkstra’s algorithm, using arrays for the maps and heap maps for
the priority queue.

We benchmark our implementation (Imp) against the original functional version (Fun),
and a reference implementation in Java (Java), taken from Sedgewick et al. [36]. The inputs
are complete graphs with random weights and 1300 and 1500 nodes (c11300, cl1500), as
well as two examples from [36] (medium, large). The required times in ms are displayed in
Table 2. The results show a significant speedup wrt. the purely functional version, and our
implementation is only a factor 4 to 6 slower than the Java reference implementation.

6.3 Other Applications

More recently, we have used the IRF and SEPREF to develop a verified implementation [25]
of the Edmonds-Karp algorithm for finding maximum flows in networks [11], which is com-
petitive with a Java reference implementation by Sedgewick et al. [36]. We also extended this
formalization to push-relabel algorithms.® In another project, we have developed a verified

8 Paper under review at the time of writing, the formalization is available at https://www21.in.tum.de/
~lammich/max_flow/.

@ Springer


https://www21.in.tum.de/~lammich/max_flow/
https://www21.in.tum.de/~lammich/max_flow/

Refinement to Imperative HOL 501

SAT solver certification tool, which is as efficient as the current (unverified) state of the art
tool.?

7 Conclusion

We have presented an Isabelle/HOL based approach to automatically refine functional pro-
grams specified over abstract data types to imperative ones using heap-based data structures.
Not only the program, but also the refinement proof is generated, such that we get imperative
programs verified in Isabelle/HOL.

The main components of our approach are:

— A separation logic based verification framework for imperative HOL.

— Arefinement calculus from the Isabelle Refinement Framework (IRF) to imperative HOL,
along with the SEPREF tool to automatically synthesize imperative HOL programs from
IRF programs.

— The Imperative Collections Framework, which provides a large and extensible library of
efficient imperative data structures.

In several case studies we could obtain verified algorithms that were competitive with unver-
ified reference implementations.

7.1 Current and Future Work

Currently we are using SEPREF to verify a model checker for timed automata [1]. Another
current project is to retarget the SEPREF tool to a fragment of the C programming language.
Apart from being able to create more efficient implementations and excluding Isabelle’s code
generator from the trusted code base, we hope to be able to formally reason about the time
complexity and resource usage of the generated programs.

An interesting topic for future research is to allow more general imperative container data
structures. Currently, the element types of most container data structures must be refined to
purely functional data types. (cf. Sect. 4.3) Charguéraud [7] presents a technique to elegantly
encode refinement assertions where the elements are also represented on the heap, owned by
their container. His technique could probably be adapted to our formalization. We also hope
to be able to support references to elements of data structures at some point, which is required
for automatic refinement of Boolean functions using BDDs. (cf. Sect. 4.3) One step further
would be to allow more elaborate ownership models, e. g. elements shared between containers,
which are required to model (limited forms of) concurrency. Fractional permissions [3] might
be the right tool to achieve this.

7.2 Related Work

We are not aware of interactive theorem prover based tools to automatically refine functional
to imperative programs.

Separation logic has been implemented for various interactive theorem provers, e.g. [14,
27,30,38]. The work closest to ours is probably the Ynot project [30], which provides a heap
monad, a separation logic, and imperative data structures in Coq. Their code generator targets
Haskell. However, we are not aware of any performance benchmarks. For Isabelle/HOL,

9 Paper under review at the time of writing, the tool and further information is available at https://www21.in.
tum.de/~lammich/grat/.
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another separation logic framework [14] has been developed independently. In contrast to our
framework, it can be instantiated to various heap models. However, it provides less powerful
automation. The HOLFoot tool [38] implements a separation logic framework in HOL4.
While it provides more powerful automation than our framework, its simplistic imperative
language is less convenient for formalizing complex algorithms. In Coq, various imperative
OCaml programs and data structures, including Dijkstra’s shortest paths algorithm and a
union find data structure, have been verified with characteristic formulas [6,8]. Apart from
the genuine characteristic formula technique, the main difference to our work is that we use
a top-down approach, refining an abstract algorithm down to executable code, while they
use a bottom-up approach, starting with a translation of the OCaml code to characteristic
formulas. Moreover, they support reasoning about time complexity.

Delaware et al. [9] present the FIAT tool for Coq, which supports synthesis of executable
code from abstract specifications. Currently, their approach is limited to specialized abstract
specifications (SQL like queries) and purely functional code, but they are planning to extend
it to support imperative code.
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