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Abstract Relational program reasoning is concerned with formally comparing pairs of exe-
cutions of programs. Prominent examples of relational reasoning are program equivalence
checking (which considers executions from different programs) and detecting illicit infor-
mation flow (which considers two executions of the same program). The abstract logical
foundations of relational reasoning are, by now, sufficientlywell understood. In this paper, we
address someof the challenges that remain tomake the reasoningpracticable. Twomajor ones
are dealingwith the feature richness of programming languages such asC andwith theweakly
structured control flow that many real-world programs exhibit. A popular approach to control
this complexity is to define the analyses on the level of an intermediate program representa-
tion (IR) such as one generated by modern compilers. In this paper we describe the ideas and
insights behind IR-based relational verification. We present a program equivalence checker
for C programs that operates on LLVM IR. To extend the reach of the approach and to make
it more efficient, we show how dynamic analyses can be employed to support and strengthen
the static verification. The effectiveness of the approach is demonstrated by automatically
verifying equivalence of functions from different implementations of the standard C library.

1 Introduction

1.1 Relational Program Reasoning

Over the last years, there has been a growing interest in relational verification of pro-
grams, which reasons about the relation between the behavior of two programs or program
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executions—instead of comparing a single program or program execution to a more abstract
specification. The main advantage of relational verification over standard functional verifi-
cation is that there is no need to write and maintain complex specifications. Furthermore,
one can exploit the fact that changes are often local and only affect a small portion of a
program. The effort for relational verification often only depends on the difference between
the programs respectively program executions and not on the overall size and complexity of
the program(s).

Relational verification can be used for various purposes. An example is regression verifi-
cation resp. equivalence checking, where the behavior of two different versions of a program
is compared under identical input. Another example is checking for absence of illicit infor-
mation flow, a security property, in which executions of the same program are compared for
different inputs. For concreteness’ sake, we focus in this paper on regression verification/
equivalence checking of C programs, though the presented techniques readily apply to other
instances of relational reasoning.

1.2 Regression Verification

Regression verification is a formal verification approach intended to complement regression
testing. The goal is to establish a formal proof of equivalence of two program versions (e.g.,
consecutive revisions during program evolution, or a program and a re-implementation).
In its basic form, we are trying to prove that the two versions produce the same output
for all inputs. In more sophisticated scenarios, we want to verify that the two versions are
equivalent only on some inputs (conditional equivalence) or differ in a formally specified
way (relational equivalence). Regression verification is not intended to replace testing, but
when it is successful, it offers guaranteed coverage without requiring additional expenses to
develop and maintain a test suite.

1.3 Challenges in Making Regression Verification Practicable

The abstract logical foundations of relational reasoning are, by now, sufficiently well under-
stood. For instance, in [13], we presented a method for regression verification that reduces
the equivalence of two related C programs to Horn constraints over uninterpreted predicates.
The reduction is automatic, just as the solvers (e.g., Z3 [20,24] or Eldarica[32]) used to
solve the constraints. Our current work follows the same principles.

Yet, the calculus in [13] only defined rules for the basic, well-structured programming
language constructs: assignment, if statement, while loop and function call. The Rêve tool
implemented the calculus together with a simple self-developed program parser.

While the tool could automatically prove equivalence of many intricate arithmetic-
intensive programs, its limited programming language coverage hampered its practical
application. The underlying calculus could not deal with break, continue, or return
statements in a loop body, loop conditions with side effects, for or do-while loops, let
alone arbitrary goto statements.

1.4 Incorporating Dynamic Analyses

Horn constraint solvers are a powerful technique to infer the predicates required in our
approach. However, there are limits to their capabilities:

(1) If the programs are not related enough, i.e., if there control-flow structures are too dif-
ferent, the required predicates are more involved and more difficult to infer.

123



Relational Program Reasoning Using Compiler IR 339

(2) They are limited to certain shapes of coupling predicates (essentially first order formulas
over linear arithmetic)

To support Horn constraint solvers in their task, we have devised two techniques that make
the resulting sets of Horn constraints easier to verify. The techniques exploit that we still have
the original programs which can be evaluated/executed. They analyze dynamic data gathered
during repeated execution of the programs. We thus combine dynamic and static analyses as
the latter incorporates insight gained in the first.

1.5 Contributions

The main contribution of this paper is a method for automated relational program reasoning
that is significantly more practical than [13] or other state-of-the-art approaches. In partic-
ular, the method supports programs with arbitrary unstructured control flow without losing
automation. The gained versatility is due to a completely redesigned reduction calculus
together with the use of the LLVM compiler framework [22] and its intermediate program
representation (IR).

Furthermore, the calculus we present in this paper is fine-tuned for the inference of rela-
tional predicates and deviates from plain straightforward encodings in crucial points: (a)
Loops are not always reduced to tail recursion (see Sect. 4.6), (b) mutual function summaries
are separated into two predicates for pre- and postcondition (see Sect. 4.5), (c) and con-
trol flow synchronization points can be placed by the user manually to enable more flexible
synchronization schemes.

In addition to the logical encoding, we present techniques that exploit dynamic data gath-
ered from traces of recorded program executions. The information is used (a) to find program
transformations which harmonize the loop structure between the compared programs, and
(b) to efficiently infer loop invariant candidates.

We developed a tool implementing the approach, which can be tested online at http://
formal.iti.kit.edu/improve/reve/. We have evaluated the tool by automatically proving equiv-
alence of a number of string-manipulating functions from different implementations of the
C standard library.

1.6 Main Idea of our Method

First, we employ the LLVM compiler framework to compile the C source code to LLVM IR.
This step reduces all control flow in a program to branches (jumps) and function calls. Next,
we divide the (potentially cyclic) control flow graph of the program into linear segments.
For the points at which these segments are connected, we introduce relational abstractions
represented by uninterpreted predicate symbols (instead of concrete formulas). The same
applies for pairs of corresponding function calls. Finally, we generate constraints over these
predicate symbols linking the linear segments with the corresponding state abstractions. The
produced constraints are in Horn normal form.

The generation of constraints is automatic; the user does not have to supply coupling
predicates, loop invariants, or function summaries. The constraints are passed to a constraint
solver for Horn clauses (such as Z3 [20,24] or Eldarica[32]). The solver tries to find an
instantiation of the uninterpreted abstraction predicates that would make the constraints true.
If the solver succeeds in finding a solution, the programs are equivalent. Alternatively, the
solver may show that no solution exists (i.e., disprove equivalence) or time out.
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Listing 1 memchr(), dietlibc

1 #include <stddef.h>
2

3 void* memchr(const void *s,
4 int c,
5 size_t n) {
6 const unsigned char *pc =
7 (unsigned char *) s;
8 for (;n--;pc++) {
9 __mark(42);

10 if (*pc == c)
11 return ((void *) pc);
12 }
13 return 0;
14 }

Listing 2 memchr(), OpenBSD libc

1 #include <stddef.h>
2

3 void * memchr(const void *s,
4 int c,
5 size_t n) {
6 if (n != 0) {
7 const unsigned char *p = s;
8 do {
9 __mark(42);
10 if (*p++ == (unsigned char)c)
11 return ((void *)(p - 1));
12 } while (--n != 0);
13 }
14 return (NULL);
15 }

1.7 Advantages of Using LLVM IR

There are several advantages to working on LLVM IR instead of on the source code level. The
translation to LLVM IR takes care of preprocessing (resolving typedefs, expanding macros,
etc.) and also eliminates many ambiguities in the C language such as the size of types
(which is important when reasoning about pointers). Building an analysis for IR programs
is much simpler as the IR language has fewer instruction types and only two control flow
constructs, namely branches (jumps) and function calls. Furthermore, LLVM provides a
constantly growing number of simplifying and canonicalizing transformations (passes) on
the IR level. If the differences in the two programs are merely of a syntactical nature, these
simplifications can often eliminate them completely. Also, it was easy to incorporate our own
passes specifically geared towards our use case.

1.8 Challenges Still Remaining

Of course, using a compiler IR does not solve all challenges. Some of them, such as han-
dling integers overflows correctly, more efficient heap data structure encodings, or dealing
with general bit operations or floating-point arithmetic remain due to the limitations of the
underlying solvers.

2 Illustration

We tested our approach on examples from the C standard library (or libc). The interfaces and
semantics of the library functions are defined in the language standard, while several imple-
mentations exist. GNU libc [15] and OpenBSD libc [29] are two mature implementations of
the library. The diet libc (or dietlibc) [23] is an implementation that is optimized for small
size of the resulting binaries.

Consider the two implementations of the memchr() function shown in Listings 1 and 2.
The function scans the initial n bytes of the memory area pointed to by s for the first instance
of c. Both c and the bytes of the memory area pointed to by s are interpreted as unsigned
char. The function returns a pointer to the matching byte or NULL if the character does not
occur in the given memory area.

In contrast to full functional verification, we are not asking whether each implementation
conforms with this (yet to be formalized) specification. Instead, we are interested to find out
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whether the two implementations behave the same. Whether or not this is the case, is not
immediately obvious due to the terse programming style, subtle pointer manipulation, and
the different control flow constructs used.

While the dietlibc implementation on the left is relatively straightforward, the OpenBSD
one on the right is more involved. The for loop on the left is replaced by a do-while loop
wrapped in an if conditional on the right. This transformation known as loop inversion reduces
the overall number of jumps by two (both in the branch where the loop is executed). The
reduction increases performance by eliminating CPU pipeline stalls associated with jumps.
The price of the transformation is the duplicate condition check increasing the size of the code.
On the other hand, loop inversion makes further optimizations possible, such as eliminating
the if statement if the value of the guard is known at compile time.

The code shown here is the original source code and can indeed be fed like that into our
implementation LLRêve, which without further user interaction establishes the equivalence
of the two implementations. For demonstration purposes, we have added invocations of
the synthetic function __mark() into the loop bodies. These calls identify synchronization
points in the execution of the two programswhere their states are most similar. The numerical
arguments to __mark serve to identify matching pairs of points. Synchronization points
must be added such that all cycles in the control flow are broken, otherwise the tool will
abort with an error message. In cases where the control flow structure between the two
compared programs is similar enough (like in the example), the engine is able to infer the
marks automatically. If the loop synchronization is not obvious, the user is able to manually
annotate coupling synchronization like done in the example.

Suppose that we are running the two implementations to look for the same character c in
the same 100 byte chunk of memory. If we examine the values of variables at points in time
when control flow reaches the __mark(42) calls for the first time, we obtain: for dietlibc
n=99, pc=s, and for OpenBSD n=100, p=s. The second time: for dietlibc n=98, pc=s+1,
and for OpenBSD n=99, p=s+1. The values of c, s, and the whole heap remain the same. At
this point, one could suspect that the following formula is an invariant relating the executions
of the two implementations at the above-mentioned points:1

(n2 = n1 + 1) ∧ (p2 = pc1) ∧ (c2 = c1) ∧ ∀i. heap1[i] = heap2[i] . (∗)

That our suspicion is correct can be established by a simple inductive argument. Once we
have done that, we can immediately derive that both programs produce the same return value
upon termination.

We call an invariant like (*) for two loops a coupling (loop) invariant. A similar construct
relating two function calls is called a mutual (function) summary (e.g., by Hawblitzel et
al. [18,19]). Together, they fall into the class of coupling predicates, inductive assertions
allowing us to deduce the desired relation upon program termination. In [13], we have shown
that coupling predicates witnessing equivalence of programs with while loops can be often
automatically inferred by methods such as counterexample-guided abstraction refinement or
property-directed reachability. In this paper, we present a method for doing this for programs
with unstructured control flow.

1 To distinguish identifiers from the two programs, we add subscripts indicating the program to which they
belong. We may also concurrently use the original identifiers without a subscript as long as the relation is clear
from the context.
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3 Related Work

Our own previous work on relational verification of C programs [13] has already been dis-
cussed in the introduction.

Many code analysis and formal verification tools operate on LLVM IR, though none of
them, to our knowledge, perform relational reasoning. Examples of non-relational verification
tools building onLLVMIR are LLBMC [25] and SeaHorn [17]. The SeaHorn tool is related to
our efforts in particular, since it processes safety properties of LLVM IR programs into Horn
clauses over integers. An interesting recent development is the SMACK [31] framework for
rapid prototyping of verifiers, a translator from the LLVM IR into the Boogie intermediate
verification language (IVL) [3].

The term regression verification for equivalence checking of similar programs was coined
by Godlin and Strichman [16]. In their approach, matching recursive calls are abstracted
by the same uninterpreted function. The equivalence of functions (that no longer contain
recursion) is then checked by the CBMC model checker. The technique is implemented in
the RVT tool and supports a subset of ANSI C.

Parallel to us, De Angelis et al. [9] developed another relational verification process based
on Horn constraints. This work assumes that the two programs have been translated into
constrained Horn clauses separately. The two Horn constraints—rather than control flow
graphs as in LLRêve—are combined into a single Horn constraint that encodes the desired
relational property.

Verdoolaege et al. [39,40] have developed an automatic approach to prove equivalence
of static affine programs. The approach focuses on programs with array-manipulating for
loops and can automatically dealwith complex loop transformations such as loop interchange,
reversal, skewing, tiling, and others. It is implemented in the isa tool for the static affine subset
of ANSI C.

Mutual function summaries have been prominently put forth by Hawblitzel et al. in [18]
and later developed in [19]. The concept is implemented in the equivalence checker SymDiff
[21], where the user supplies the mutual summary. Loops are encoded as recursion. The tool
uses Boogie as the intermediate language, and the verification conditions are discharged by
the Boogie tool. A frontend for C programs is available.

The BCVerifier tool for proving backwards compatibility of Java class libraries by
Welsch and Poetzsch-Heffter [41] has a similar pragmatics as SymDiff. The tool prominently
features a language for defining synchronization points.

Balliu et al. [1] present a relational calculus and reasoning toolchain targeting information
flow properties of unstructured machine code. Coupling loop invariants are supplied by the
user.

Barthe et al. [4] present a calculus for reasoning about relations between programs that is
based on pure program transformation. The calculus offers rules to merge two programs into
a single product program. The merging process is guided by the user and facilitates proving
relational properties with the help of any existing safety verification tool. In a later extension
[5], they present a framework for asymmetric relational problems (in which traces may be
universally or existentially quantified). Their implementation on top of Frama-C can also
deal with more complex unwinding schemes like loop tiling.

Beringer [6] defines a technique for deriving soundness arguments for relational program
calculi from arguments for non-relational ones. In particular, one of the presented relational
calculi contains a loop rule similar to ours. The rule targets so-called dissonant loops, i.e.,
loops not proceeding in lockstep. Banerjee and Naumann [2] present a theoretical logical
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foundation for modeling relational problems with framing based on region logic. They liber-
alize coupling conditions even more than presented here by allowing user-specified semantic
predicates (called alignment guards) which control the synchronization between the pro-
grams. It is not clear how alignment guards could be inferred automatically in our approach.

Ulbrich [38] introduces a framework and implementation for relational verification on
an unstructured intermediate verification language (similar to Boogie). It also supports
asymmetric relational verification and is mainly targeted at conducting refinement proofs.
Synchronization points are defined and used similar to this work. However, the approach is
limited to fully synchronized programs and requires user-provided coupling predicates.

Dynamic analyses have already been used for loop invariant discovery. The Daikon tool
[11] uses user-specified patterns to identify invariant candidates for Java programs. The
dynamic invariant generator DIG[28] infers from dynamically gathered data, amongst other
kinds of invariants, algebraic equations as loop invariants. These approaches are similar to
our techniques outlined in Sect. 5. However, these approaches have used dynamic analyses
for the inference of functional rather than for relational loop invariant candidates. Since for
relational verification (and for regression verification in particular) invariants can be expected
to follow typical (application-independent) patterns, we are confident that pattern-driven
invariant inference is as least as promising for relational as for functional cases.

Extending dynamic analyses by creating a counterexample driven refinement loops has
been explored previously both for polynomial invariants [34] and as a general framework
independent of the dynamic analyses and combined with a random search [33].

The use of program transformations to reduce differences between programs has been
explored previously bySmith andDill [35].However, these transformations focus on bounded
control flow and rewrite a small sequence of instructions while we focus on transforming
unbounded loops. Barthe et al. [4] and Banerjee et al. [2] provide rule-based schemes for
user-guided program weaving. Our approach strives to avoid user interaction such that we
did not adapt these interactive strategies.

While we assume fixed coupling points and then harmonize differences by applying pro-
gram transformations discovered using dynamic analyses, Partush and Yahav [30] explores
a dynamic inference of coupling points by the use of abstract interpretation. Specifically the
approach tries to find points at which the difference between the programs is minimal.

Translation validation verifies that programs produced by an optimizing compiler are
semantically equivalent to the input programs. While this problem also requires proving
programs equivalent, existing approaches for translation validation typically try to exploit
the fact that program differences were produced by compiler optimizations and thus have a
specific form. In particular, most approaches target intra-procedural optimizations [27,36,
42,43]. Some approaches also require that branch instructions in the input and the optimized
program correspond to each other [27,42,43] and can thus only verify equivalence if there
are no significant structural differences. The work by Zaks and Pnueli [42,43] and the work
by Necula [27] both use relational invariants to deal with unbounded control flow but their
invariants are limited to equalities. Equality saturation is a different technique used by Stepp
et al. [36] for translation validation of LLVM programs. Equality saturation iteratively infers
equalities based on built-in axioms until it can prove that both programs are in the same
equivalence class. However, some of these axioms are specific to the optimizations found in
LLVM so it is unclear if a set of axioms can be found that are suitable for verifying program
equivalence in general. Tristan et al. [37] also target LLVM but their approach proceeds by
creating a combined value graph of both programs based on their gated SSA representations.
This value graph is then successively normalized based on a set of built-in rules until either no
further normalization is possible.While this approach works well for some optimizations, the
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authors have not implemented it for other optimizations such as instcombine due to the large
number of rules required. This suggests that finding a general set of rules that are suitable
for verifying the equivalence of two programs is challenging.

4 The Method

4.1 From Source Code to LLVM IR

LLVM’s intermediate representation is an abstract, RISC-like assembler language for a reg-
ister machine with an unbounded number of registers. A program in LLVM-IR consists of
type definitions, global variable declarations, and the program itself, which is represented as
a set of functions, each consisting of a graph of basic blocks. Each basic block in turn is a
list of instructions with acyclic control flow and a single exit point.

The branch instructions between basic blocks induce a graph on the basic blocks, called
the control flow graph (CFG), in which edges are annotated with the condition under which
the transition between the two basic blocks is taken. Programs in LLVM IR are in static
single assignment (SSA) form, i.e., each (scalar) variable is assigned exactly once in the
static program. Assignments to scalar variables can thus be treated as logical equivalences.

To obtain LLVM IR programs from C source code, we first compile the two programs
separately using the Clang compiler. Next, we apply a number of standard and custom-built
transformation passes that:

– eliminate load and store instructions (generated byLLVM) for stack-allocated variables in
favor of register operations. While we do support the general load and store instructions,
they increase deduction complexity.

– propagate constants and eliminate unreachable code.
– eliminate conditional branching between blocks in favor of conditional assignments (i.e.,

LLVM’s select instructions which are similar to the ternary operator ? in C). This step
reduces the number of distinct paths through the program. The transformation is no
guarantee against an exponential blowup of the number of paths of a program, but we
have experienced that it kept the number of distinct paths manageable.

– inline function calls where desired by the user.

While further LLVM optimization passes might have positive effects on verification effi-
ciency, they tend tomodify the control flowgraphs considerably, thus disturbing the annotated
synchronization similarities between the programs. Since this may lead LLRêve astray, they
have not been included in the implementation.

4.2 Synchronization Points and Breaking Control Flow Cycles

If the compiled program contained loops or iteration formulated using goto statements, the
resulting CFG is cyclic. Cycles are a challenge for deductive verification because the number
of required iterations is, in general, not known beforehand.

We break up cycles in the control flow by defining synchronization points, at whichwewill
abstract from the program state by means of predicates. The paths between synchronization
points are then cycle-free and can be handled easily. Synchronization points are defined by
labeling basic blocks of the CFGwith unique numbers n ∈ N. Additionally, the entry and the
exit of a function are considered special synchronization points labeledwith B and E . If every
cycle in theCFGcontains at least one synchronization point, theCFGcan be considered as the
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B n1 n2 . . . E

B n1 n2 . . . E

CB Cn1 Cn2 CE

Fig. 1 Illustration of coupled control flow of two fully synchronized programs

set of all linear paths leading from one synchronization point directly to another. A linear path
is a sequence of basic blocks together with the transition conditions between them. Formally,
it is a triple 〈n, π,m〉 in which n and m denote the beginning and end synchronization point
of the segment and π(x, x ′) is the two-state transition predicate between the synchronization
points in which x are the variables before and x ′ after the transition. Since basic blocks are
in SSA form, the transition predicate defined by a path is the conjunction of all traversed
assignments (as equalities) and transition conditions. The treatment of function invocation is
explained in Sect. 4.5.

4.3 Coupling and Coupling Predicates

Let in the following the two compared functions be called P and Q, and let xp (resp. xq )
denote the local variables of P (resp. Q). Primed variables refer to post-states.

We assume that P and Q are related to each other, in particular that the control and data
flow through the functions is similar. This means that we expect that there exist practicable
coupling predicates describing the relation between corresponding states of P and Q. The
synchronization points mark where the states are expected to be coupled. If a function were
compared against itself, for instance, the coupling between two executions would be equality
ranging over all variables and all heap locations. For the analysis of two different programs,
more involved coupling predicates are, of course, necessary.

Formally, we introduce a coupling predicate Cn(xp, xq) for every synchronization point
index n. Note that these predicates have the variables of both programs as free variables. Two
functions are considered coupled, if they yield coupled traces when fed with the same input
values; coupled in the sense that the executions pass the same sequence of synchronization
points in theCFGand that at each synchronizationpoint, the corresponding couplingpredicate
is satisfied. See Fig. 1 for an illustration.

The coupling predicates CB and CE for the function entry and exit are special in that they
form the relational specification for the equivalence between P and Q. For pure equivalence,
CB encodes equality of the input values and state, andCE of the result value and output state.
Variations like conditional or relational equivalence can be realized by choosing different
formulas for CB and CE .

4.4 Coupling Predicates for Cyclic Control Flow

In the following, we outline the set of constraints that we generate for programs with loops.
If this set possesses a model, i.e., if there are formulas making the constraint true when
substituted for the coupling predicate placeholdersCi , then the programs fulfill their relational
specification.

The first constraint encodes that every path leading from a synchronization point to the
next satisfies the coupling predicate at the target point. Let 〈n, π,m〉 be a linear path in the
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CFG of P and 〈n, ρ,m〉 one for the same synchronization points for Q. For each such pair
of paths, we emit the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq , x

′
q) → Cm(x ′

p, x
′
q) . (1)

The above constraint only covers the case of strictly synchronized loops which are iterated
equally often. Yet, often the number of loop iterations differs between revisions, e.g., if one
loop iteration has been peeled in one of the programs. To accommodate that, we allow one
program, say P , to loop at a synchronization point n more often than the other program.2

Thus, P proceeds iterating the loop, while Q stutters in its present state. For each looping
path 〈n, π, n〉 in P , we emit the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧

(∧
〈n,ρ,n〉 inQ

∀x ′
q .¬ρ(xq , x

′
q)

)
→ Cn(x

′
p, xq) . (2)

The second conjunct in the premiss of the implication encodes that P iterates from n to n,
while the third captures that no linear path leads from n to n in Q from initial value xq . The
coupling predicate in the conclusion employs the initial values xq , since we assume that the
state of Q stutters.

Emitting (2) to accommodate loops that are not strictly synchronized adds to the complex-
ity of the overall constraint and may in practice prevent the solver from finding a solution.
We thus provide the user with the option to disable emitting (2), if they are confident that
strict synchronization is sufficient.

Finally, we have to encode that the control flow of P and Q remains synchronized in the
sense that it must not be possible that P and Q reach different synchronization points m and
k when started from a coupled state at n.3 For each path 〈n, π,m〉 in P and 〈n, ρ, k〉 in Q
with m 
= k, n 
= m, n 
= k, we emit the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq , x

′
q) → false . (3)

4.5 Coupling Predicates for Function Calls

Besides at synchronization points that abstract loops or iteration in general, coupling predi-
cates are also employed to describe the effects of corresponding function invocations in the
two programs. To this end, matching pairs of function calls in the two CFGs are abstracted
using mutual function summaries. A heuristic used to match calls will be described later.

4.5.1 Mutual Function Summaries

Let f p be a function called from the function P , xp denote the formal parameters of f p ,
and rp stand for the (optional) result returned when calling f p . Assume that there is an
equally named function fq defined in the program of Q. A mutual summary for f p and fq
is a predicate Sum f (xp, xq , rp, rq) that relationally couples the result values to the function
arguments. If the function accesses the heap, the heap appears as an additional argument and
return value of the function.

In our experiments, we found that it is beneficiary to additionally model an explicit rela-
tional precondition Pre f (xp, xq) of f . Although it does not increase expressiveness, the

2 The situation is symmetric with the case for Q omitted here.
3 This restriction releases us from the need to create coupling predicates for arbitrary combinations of syn-
chronization points. It has been of minor practical importance on the considered examples where a one-to-one
mapping of synchronization points could easily be specified.
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solvers found more solutions with precondition predicates present. We conjecture that the
positive effect is related to the fact that mutual summary solutions are usually of the shape
φ(xp, xq) → ψ(rp, rq), and that making the precondition explicit allows the solver to infer
φ and ψ separately without the need to infer the implication.

For every pair of paths 〈n, π,m〉 ∈ P and 〈n, ρ,m〉 ∈ Q that contain a single call to f ,
we emit the following additional constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq , x

′
q) → Pre f (x

∗
p, x

∗
q ) . (4)

in which x∗
p and x

∗
q denote the SSA variables used as the argument for the function calls to f .

The constraint demands that the relational precondition Pre f must be met when the callsites
of f are reached in P and Q.

For every such pair of paths, we can now make use of the mutual summary by assuming
Sum f (x∗

p, x
∗
q , rp, rq). Thismeans that for constraints emitted by (1)–(3), themutual summary

of the callsite can be added to the premiss. The augmented version of constraint (1) reads,
for instance,

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq , x

′
q) ∧ Sum f (x

∗
p, x

∗
q , rp, rq) → Cm(x ′

p, x
′
q), (5)

with rp and rq the SSA variables that receive the result values of the calls.
Themutual summary also needs to be justified. For that purpose, constraints are recursively

generated for f , with the entry coupling predicateCB = Pre f and exit predicateCE = Sum f .
The generalization to more than one function invocation is canonical.

4.5.2 Example

Tomake the above clearer, let us look at the encoding of the program inListing 3when verified
against itself. Let Cf

B(n1, n2) and Cf
E (r1, r2) be the given coupling predicates that have to

hold at the entry and exit of f . When encoding the function f , we are allowed to use Sumg

at the callsite but have to show that Preg holds. Thus we get the following constraints:

Cf
B(n1, n2) ∧ n∗

1 = n1−1 ∧ n∗
2 = n2−1 → Preg(n

∗
1, n

∗
2)

Cf
B(n1, n2) ∧ n∗

1 = n1−1 ∧ n∗
2 = n2−1 ∧ Sum(n∗

1, n
∗
2, r1, r2) → Cf

E (r1, r2) .

To make sure that Preg and Sumg are a faithful abstraction for g, we have a new constraint
for g, which boils down to

Preg(n1, n2) → Sumg(n1, n2, n1 + 1, n2 + 1) .

Listing 3 f() calling g()

1 int f(int n) {
2 return g(n-1);
3 }
4 int g (int n) {
5 return n+1;
6 }

At this point, the set of constraints is complete, and we can state the main result:
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Proposition 1 (Soundness) Let S be the set of constraints emitted by (1)–(5). If the universal
closure of S is satisfiable, then P and Q terminate in states with x ′

p and x ′
q satisfying

CE (x ′
p, x

′
q) when they are executed in states with xp and xq satisfying CB(xp, xq) and both

terminate.

4.5.3 Matching Function Calls

For treatment using mutual summaries, the function calls need to be combined into pairs
of calls from both programs. Our goal is to match as many function calls between the two
programs as possible. To this end, we look at any pair of possible paths from the two programs
that start and end at the same synchronization points. For each path, we consider the sequence
of invoked functions. To determine the optimal matching of function calls (i.e., covering as
many calls as possible), an algorithm [26] for computing the longest common (not necessarily
continuous) subsequence among the sequences is applied.

As an example, consider the functions in Fig. 2. There are no cycles in the control flow,
so the only two synchronization points are the function entry and exit. In Program 1, there
are two paths corresponding to x > 0 and x ≤ 0 respectively. In Program 2, there is only
a single path. That gives us two possible path pairs that we need to consider. The resulting
longest matchings for the pairs are also shown in the figure. Matched calls are abstracted
using mutual summaries, while unmatched calls have to be abstracted using conventional
functional summaries.

An additional feature is that the user can request to inline a specific call or all calls to a
function with an inline pragma. The feature is especially important if the callee function
contains a loop that should be synchronized with a loop in the caller function of the other
program. The pragma can also be used to inline some steps of a recursive call.

4.5.4 If a Function’s Implementation is not Available

A special case arises when there is a call from both programs to a function for which we
do not have access to the sources. If such calls can be matched, there are two possibilities:
We support user-specified mutual summary annotations such that relational (and functional)
properties about libraries can be used as assumptions during verification. Alternatively, if
no relational contract is at hand, the two calls are abstracted using the canonical mutual
summary Sum f : xp = xq → rp = rq stating that equal inputs induce equal results. If a call
cannot be matched, however, we have to use an uninterpreted functional summary, losing

int f(int x) {
if (x > 0) {

x = g(x);
x = g(x);

}
x = h(x);
x = h(x);
x = g(x);
return x;

}

int f(int x) {
x = g(x);
x = g(x);
x = g(x);
x = h(x);
x = h(x);
return x;

}

g(int)
g(int)
h(int)
h(int)
g(int)

g(int)
g(int)

g(int)
h(int)
h(int)

h(int)
h(int)
g(int)

g(int)
g(int)
g(int)
h(int)
h(int)

Program 1 Program 2 Matching for x > 0 Matching for x ≤ 0

Fig. 2 Illustration of function call matching

123



Relational Program Reasoning Using Compiler IR 349

∀n.rel in (n) → inv(0, n)

∀i, n.(i < n ∧ inv(i, n)) → inv(i + 1, n)

∀i, n.(¬(i < n) ∧ inv(i, n)) → relout (i)

Fig. 3 Iterative encoding of f

∀n.rel in (n) → invpre(0, n) ∧
(∀r.inv(0, n, r) → invf (n, r))

∀i, n, r.(i < n ∧ invpre(i, n) ∧ inv(i+ 1, n, r)) → inv(i, n, r)

∀i, n.(¬(i < n) ∧ invpre(i, n) → inv(i, n, i)

∀n, r.(rel in (n) ∧ invf (n, r)) → relout(r)

Fig. 4 Recursive encoding of f

Listing 4 Function f

1 int f(int n) {
2 int i = 0;
3 while (i < n) {
4 i++;
5 }
6 int r = i;
7 return r;
8 }

all information about the return value and the resulting heap. In most cases, this means that
nothing can be proved.4

4.6 Alternative Loop Treatment as Tail Recursion

When developing our method, we explored two different approaches to deal with iterative
unstructured control flow.

The first onemodels a program as a collection ofmutually recursive functions such that the
function themselves do not have cyclic control flow. Loopsmust be translated to tail recursion.
This aligns with the approach presented by Hawblitzel et al. in [18]. It is attractive since it
is conceptually simple allowing a unified handling of cyclic branching and function calls.
However, our experiments have shown that for our purposes the encoding did not work as
well as the one presented in Sect. 4.4 which handles loops using coupling predicates directly
instead of by translation into tail recursion. A possible explanation for this observation could
be that the number of arguments to the coupling predicates is smaller if (coupling) invariants
are used. For these predicates, it suffices to use those variables as arguments which may
be changed by the following code. The mutual summaries for tail recursion require more
variables and the return values as arguments.

To illustrate the two styles of encoding, we explain how the program in Listing 4 is
encoded. For simplicity of presentation, we encode a safety property of a single program.

4 Alternatively, it would also be possible to trade soundness for completeness and, e.g., assume that such a
call does not change the heap.
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The point where the invariant inv has to hold is the loop header on Line 3. relin is a predicate
that has to hold at the beginning of f and relout is the predicate that has to hold when f
returns. In the recursive encoding (Fig. 4), inv has three arguments, the local variables i and
n and the return value r . In the iterative case (Fig. 3), the return value is not an argument, so
inv only has two arguments. The entry predicate invpre over the local variables i and n has
to hold at every “call” to inv. The reasoning for having such a separate predicate has already
been explained in Sect. 4.5.

In the end, a combination of the two encodings proved the most promising: We apply
the iterative encoding to the function whose exit and entry predicates have been given as
relational specification explained in 4.3. All other functions are modeled using the recursive
encoding. Mutual summaries depend, by design, on the input parameters as well as the
output parameters whereas the relational postcondition CE usually only depends on the
output parameters. Using an iterative encoding for the other functions would require passing
the input parameters through every predicate to be able to refer to them when establishing
the mutual summary at the exit point. The advantage of an iterative encoding of having fewer
parameters in predicates is thereby less significant, and we employ the recursive encoding.
A special case arises when the toplevel function itself recurses. In this case, we encode it
twice: first using the iterative encoding, which then relies on the recursive encoding for the
recursive calls.

4.7 Modeling the Heap

The heap is modeled directly as an SMT array and the LLVM load and store instructions are
translated into the select and store functions in the SMT theory of arrays. We assume that
all load and store operations are properly aligned; we do not support bit operations or, e.g.,
accessing the second byte of a 32 bit integer. Struct accesses are resolved into loads and stores
at corresponding offsets. The logical handling of constraints with arrays requires quantifier
reasoning and introduces additional complexity. We handle such constraints following the
lines suggested by Bjørner et al. in [8].

4.8 Assumptions

The presented regression verification approach strives to be as automatic as possible. To
achieve this goal, we make simplifying assumptions about the programs.

Integer data types are not modeled as fixed-width bitvectors but as mathematical,
unbounded integers. Our analyses are correct as long as no integer operation causes an
overflow (or underflow). Likewise, for the analyses to be correct, programs must not show
undefined behavior due to illegal memory accesses, division by 0, etc. Furthermore, our
approach does not prove program termination, but silently assumes it.

While LLRêve focuses on regression verification, the above assumptions can be checked
by other static analyses. For example, program termination can be checked by analyses such
as by Falke et al. [12] or Giesl et al. [14].

Since LLRêve operates on compilation results produced by Clang, its verification results
also apply to the intermediate code representation. Thus architecture-specific decisions made
by the compiler play into the verification process (in particular fixing the bit-widths of
integral types). Since we use the IR input rather on an abstract level (e.g., treating integers as
mathematical integers), these decisions are less relevant. The verification results are faithful
if one uses the same compilation framework to produce the executable code; then they are
even closer to the actually executed code (as they make less assumptions about the compiler).
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5 Exploiting Dynamic Analysis Data

The success of our relational verification approach relies on the capabilities of theHorn solvers
to infer coupling predicates. Since this inference is expensive in practice, we developed two
heuristic dynamic analysis techniques that improve the overall process in regard to both its
efficacy and efficiency. Both techniques support static verification by exploiting data gathered
during analysis of concrete program executions.

The first technique aims at harmonizing the iteration structure of loops between the two
programs. It refactors two programswhose control flows are less correlated into two programs
with more similar control flows. The second technique extracts interesting predicates based
on the observed pairs of program traces and uses them as coupling predicate candidates for
the general case. These candidates are produced from patterns and as algebraic equations.

5.1 Trace Collection

For the success of the dynamic approaches, it is crucial to collect suitable dynamic data from
which the appropriate invariants can be extrapolated: In particular, the input values for trace
collection must be well-chosen. The tool supports choosing the initial states either randomly
or following a user-defined strategy. A fruitful strategy is taking the initial states from a
test suite accompanying the program. The number of traces collected by LLRêve- dynamic
is controlled by both global and per-trace resource limits. For instance, in the experiments
presented below, efficiently detecting the best way to harmonize control flow was possible
with ten trace pairs, while synthesizing coupling invariants took from two to 50 trace pairs.

To obtain trace data, we implemented a flexible special-purpose interpreter for the
LLVM IR language. The alternative would have been to instrument the code and run it.
However, this would have not have been flexible enough, as (1) the semantics of integers
used in the instrumented code (bounded integers with fixed bit-width) would have been
different from the one used by the constraint solvers (unbounded mathematical integers)
resulting in inconsistencies, and (2) all traces would have needed to begin at the beginning
of a program. The interpreter allows us also to start execution mid-program, which is needed
to investigate counterexamples produced by a solver. The path that such a counterexample
refers to starts at some synchronization point, which might not be located at the beginning
of a program.

5.2 Harmonizing the Loop Iteration Structure

The rationale for harmonizing the loop iteration structure of two programs under comparison
is the following: Relational verification based on coupling predicates works best if coupled
states are similar. This similarity tends to increase if the number of iterations of a pair of
corresponding loops in the two compared programs is equal (or almost equal).

We show how the differences in the iteration structure can be automatically reduced by
applying code transformations to the two programs, namely loop peeling and loop unrolling.
Specifically,we try to transform the programs in such away that for each pair of corresponding
loops the number of loop iterations is equal in both programs. If this goal is achieved, the
constraint clauses for loosely synchronized loops can be removed, making the verification
task easier for the Horn constraint solver.
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1 int dig10(int n) {
2 int result = 1;
3 n = n / 10;
4

5 while (n > 0) {
6 result++;
7 n /= 10;
8 }
9 return result;

10 }

(a)

1 int dig10(int n) {
2 int result = 1;
3

4 while (n > 0) {
5 if (n < 10) return result;
6 if (n < 100) return result+1;
7 if (n < 1000) return result+2;
8 if (n < 10000) return result+3;
9 n /= 10000;

10 result += 4;
11 }
12 return result;
13 }

(b)

Fig. 5 Computing the number of digits in a decimal expansion of a non-negative number a original version
b optimized version

5.2.1 Loop Unrolling

The first harmonizing transformation that we support is automatic loop unrolling: Consider
the two C functions given in Fig. 5. They both compute the number of digits in the decimal
expansion of a non-negative integer n. Program (a) repeatedly divides by 10, while the
optimized version (b) divides by 10,000 thus essentially reducing the number of expensive
division operations by a factor of 4.

Yet, the equivalence of (a) and (b) is not immediately obvious. Regression verification
as outlined earlier in this paper is theoretically possible but difficult due to the programs’
different loop iteration structure. A coupling invariant would have to relate states where the
loop in the second program has terminated, while the loop in the first one is still running.
Such an invariant is more difficult or even impossible to infer automatically as it must encode
significantly more of the functional aspects of the individual programs. In this case such an
invariant would require using non-linear arithmetic.

If it were possible to compare four iterations of (a) against one of (b), a coupling predicate
between the two programs would be easier to formulate and easier to automatically infer,
as we have shown in [13] for a manually unrolled version. Requiring the user to specify the
relationship of the loop iterations between the two compared programs would not tie in with
our general idea of performing regression verification as automatically as possible. Hence,
we compute this relationship heuristically by analyzing several execution traces of the two
programs. We will come back to how to compute the number of times to unroll in Sect. 5.2.3.

In LLRêve, the loop unrolling transformation is carried out on the intermediate represen-
tation by duplicating basic blocks. On the level of C source code, the k-fold loop unrolling
for a loop with a side-effect-free condition cond can be represented as follows:

while(cond) {body}
unroll(k)�⇒

while(cond) {
if(cond) {body} else break;
...

if(cond) {body} else break;}

⎫⎪⎬
⎪⎭
k times
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5.2.2 Loop Peeling

The second harmonizing transformation that we support is loop peeling, a technique often
found in compiler optimization. It removes (i.e., peels) a constant number of iterations from
a loop and places them before or after the loop. Since peeling iterations from the end of the
loop generally requires non-trivialmodifications of the loop condition, we only peel iterations
from the beginning of a loop.

We demonstrate the effect of loop peeling by looking at the program in Listing 5, which
computes the n-th triangular number

∑n
k=1 k. The first iteration of the loop actually has

no effect, and the program is equivalent to its version where line 2 is replaced by int
i = 1. But then, these two versions beginning with i = 0 resp. i = 1 are not strictly
synchronized. The less efficient analysis for loosely coupled loops has to be used. Yet, if the
first iteration of the loop in case of i = 0 is peeled, then the loops do have the same number
of iterations again.

Listing 5 An inefficient implementation for triangular numbers

1 int tria(int n) {
2 int i = 0;
3 int x = 0;
4 while (i < n) {
5 x += i;
6 ++i;
7 }
8 return x;
9 }

Like loop unrolling, loop peeling in LLRêve is performed on LLVM basic blocks. On
C source code level, the k-fold peeling operation can be represented as follows:

while(cond) {body}
peel(k)�⇒

bool exit=false;
if(!exit && cond) { body } else exit=true;
...

if(!exit && cond) { body } else exit=true;

⎫
⎪⎬
⎪⎭
k times

while(!exit && cond) { body }

Note that instead of nesting k if-statements, we introduce an additional variable exit. By
means of this variable, it is possible to make every path through the transformed code reach
the loop. This is important, since only then can the peeled program be coupled against the
unpeeled version in which the loop is also always reached.

5.2.3 Deciding When to Unroll and When to Peel

It remains to be explained how it is heuristically decided whether a loop should be left
untouched, unrolled or peeled, and by how many iterations this should be done. The data
used in this decision is gathered from traces obtained by interpreting both programs on the
same list of s test input values. The number of traversals through synchronization points is

123



354 M. Kiefer et al.

Algorithm 1 Deciding when to unroll and when to peel
Input List of count pairs Sn = (a1, b1), . . . , (as , bs ) for synchronization point n

ratio ← 1
s

∑s
i=1

ai
bi

// avg. ratio of the number of iterations

factor ← round(ratio + β) // rounding with bias β

if factor 
= 1 then
unroll(factor)

else
diff ← max{ai − bi : 1 ≤ i ≤ s} // maximum difference in the number of iterations
peel(diff )

end if

recorded and stored in a list Sn = (a1, b1), . . . , (as, bs) for each synchronization point n.
Here, ai is the number of traversals through __mark(n) in the first program and bi in the
second.

If the numbers of iterations is small, then it is difficult to decide whether the numbers
differ by an additive offset (which would call for peeling) or whether there is a multiplicative
factor between the numbers (in which case unrolling would be appropriate). To remove the
false impression gained from such instances, we ignore data points where the number of
iterations is below some threshold.

Algorithm 1 shows the procedure that decides if a program is unrolled or peeled. For
simplicity of presentation, we assume w.l.o.g. that ai ≥ bi , i.e., that the first program iterates
through the synchronization point at least as often as the second program.

First the average proportion ratio between the number of iterations for the two programs
is computed. In order to find an appropriate unrolling factor, this mean value needs to be
rounded. Since the ratio of loop iterations cannot be expected to be a constant, the value will
be below the desired unrolling factor. Therefore, we add a bias 0 < β < 1 before rounding.
Our experiments have shown that β = 0.4 (which means, e.g., that values between 2.1 and
3.1 are rounded to 3) is a good value.

Table 1 shows the ratios and differences for test inputs for the programs in Fig. 5 and
Listing 5. In case of the optimization of computing digits in (a), the ratios are between
3 and 3.75, their average is 3.375. Rounding up is the appropriate thing to do here. In case (b)
the quotient is very close to 1, so rounding up to 2 (resulting in loop unrolling) is not wise.
Instead (since the factor is 1), the one loop iteration is peeled from the beginning of the loop.

5.3 Finding Coupling Invariant Candidates

The key to regression verification is that the coupling predicates need not formally capture
what result the two programs compute but encode what the relationship between the inter-
mediate results is. If the programs are similar enough (e.g., after a local bug fix), it can be
expected that the coupling between the programs’ states can be expressed in a fragment of
the logic.

This allows us to follow the promising approach of limiting the search for possible cou-
pling invariants to specific and simple forms which can be explored more efficiently. Our
experiments show that this can improve the performance of regression verification, both on
the benchmarks from theC standard library (shown in Table 2), and evenmore so on examples
with loops (shown in Table 3). Being based on the analysis of a finite set of execution traces,
these methods only produce possible invariant candidates; their verification is delegated to
an SMT solver.
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Table 1 Relationship of the number of iterations for test inputs. a iteration table for Fig. 5, b iteration table
for Listing 5

i n ai bi
ai
bi

(a)

1 1012 12 4 3

2 1013 13 4 3.25

3 1014 14 4 3.5

4 1015 15 4 3.75

i n ai bi
ai
bi

ai − bi

(b)

1 10 10 9 1.11 1

2 100 100 99 1.01 1

3 1000 1000 999 1.001 1

4 10000 10000 9999 1.0001 1

We explored two complementary types of invariant candidate generation:

(1) Polynomial invariants. Polynomial invariants are algebraic equations over local integer
variables. They do not include statements over heaps and cannot express inequalities.
However, they require no additional input from the user (except for the maximal degree
of the polynomials) and their computation is more efficient than that for equivalent
patterns.

(2) User-provided patterns. The user can provide a collection of formula templates whose
instantiations are conditions over local variables and heaps. The patterns can express
a subset of first order logic over integers (including equalities, inequalities, quantifiers,
…). But they must be specified manually, and a large number of patterns can slow down
the invariant inference process significantly.

Invariant candidates of the two techniques can canonically be combined into a single, stronger
invariant candidate by composing them conjunctively.

The candidates identified by the proposed techniques are afterwards submitted to an SMT
solver for verification. To this end, the coupling predicate symbol Cn in the Horn constraints
is replaced by the concrete candidate ϕn obtained for synchronization point n. If the resulting
formula (without uninterpreted predicates) is not satisfied, a counterexample witnessing this
effect may be returned. The data from this counterexample can be used as an additional input
value in another round of dynamic analysis. This refines the candidates from verification
attempt to verification attempt. If the candidate cannot be made more precise within the
considered fragment, but is still not yet sufficient, we can incorporate the information from
dynamic analysis into the process ofHorn constraint solving by adding constraints of the form
Cn → ϕn to the set of generated Horn clauses. Thus, the dynamically gathered candidate
can contribute as a nucleus for the solution of the coupling predicate in the static analysis.

As the counterexample may provide values for arbitrary synchronization points within
the program (not necessarily the entry point), our LLVM interpreter is able to perform pro-
gram simulation from any point within a program, using the memory state encoded in the
counterexample.

123



356 M. Kiefer et al.

Table 2 Performance with different solvers for the libc benchmarks

Function Source Run time with solver, seconds

Eldarica Z3/duality LLRêve- dynamic

memccpy d/o 0.736 0.123 0.099

memchr d/o 0.338 0.080 0.073

memmem d/o 1.03 n/a n/a

memmove d/o 14.96 0.223 0.189

memrchr g/o 0.531 0.095 0.075

memset d/o 0.387 0.103 0.080

sbrk d/g 0.321 0.939 n/a

stpcpy d/o 0.311 0.053 0.051

strchr d/g t/o 0.545 t/o

strcmp d/g 0.901 0.093 0.108

strncmp g/o 1.64 0.133 t/o

strncmp d/g 1.869 0.196 0.076

strncmp d/o 0.917 0.138 0.108

strpbrk d/o t/o 0.184 0.100

strpbrk d/g 3.07 0.147 0.098

strpbrk g/o 4.93 0.176 0.097

swab d/o 10.33 n/a n/a

d dietlibc, g glibc, o OpenBSD libc, t/o timeout after 300s, n/a unsupported because of external functions or
custom preconditions
2GHz i7-4750HQ CPU, 16 GB RAM

Table 3 Performance with different solvers for artificial loop benchmarks

Function Run time with solver, seconds

Eldarica Z3/duality LLRêve- dynamic

barthe 0.092 0.154 0.087

barthe2 0.099 0.140 0.095

barthe2-big 0.179 2.000 0.159

barthe2-big2 4.300 2.900 0.158

barthe2-big3 4.200 t/o 0.299

break 0.097 5.700 0.083

break-single 0.101 0.088 0.064

bug15 0.068 0.059 0.036

loop2 0.079 0.075 0.067

loop3 0.108 0.320 0.054

simple-loop 0.088 0.265 0.038

t/o timeout after 10 s. 2GHz i7-4750HQ CPU, 16 GB RAM

5.3.1 Disjunctive Invariant Candidates

Both invariant inference methods find a set of conditions whose conjunction holds on all
analyzed execution traces. However, we have found that in many cases, coupling predicates
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need to distinguish between different cases within the invariant which corresponds to disjunc-
tive combinations of invariants. We use the following heuristic approach to find disjunctive
invariant candidates. The set of program states collected from execution traces is partitioned
according to the path the programs have taken. Each partition is then analyzed separately to
infer an invariant. Finally, the derived invariant candidates for the disjoint cases are combined
disjunctively into a single invariant candidate for all cases.

Our implementation creates three separate invariants by distinguishing three cases: The
execution of both programs is synchronized or one program has reached the end of a loosely
synchronized loop while the other program continues looping. The latter is separated in two
separate cases depending on which program is still looping.

5.3.2 Polynomial Invariants

A polynomial (or algebraic) constraint in n integer variables x1, . . . , xn is an atomic formula
of the form

∑
e1,...,en ae1,...,en x

e1
1 · · · · · xenn = 0 for natural-number exponents ei . For the

sake of comprehensibility, we limit the presentation here to polynomials of degree 1, i.e.,
to equations of the form a0 + ∑

1≤i≤n ai xi = 0. Our implementation does not have this
restriction.

In search of one algebraic invariant (or several invariants) for a set of states obtained from
the analyzed execution traces, we can put up linear equations constraining the coefficients of
the desired polynomial. Given the pair of program states at a synchronization point in which
the local variables (of both programs) (x1, . . . , xn) have the values (c1, . . . , cn) ∈ Z

n the
equation a0 + ∑

1≤i≤n ai ci = 0 is added to the system of constraints on the coefficients.
Letting ci, j denote the value of variable j in equation i , one obtains a set of linear equations
on the coefficients: ⎛

⎜⎜⎜⎝

1 c1,1 c1,2 · · · c1,n
1 c2,1 c2,2 · · · c2,n
...

...
...

. . .
...

1 cm,1 c2,m · · · cm,n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a0
a1
a2
...

an

⎞
⎟⎟⎟⎟⎟⎠

= 0, (6)

in which the matrix is the multivariate Vandermonde matrix5 of order 1 for the data points
given by the considered program states. The solution space, i.e., the coefficient such that the
linear polynomial is an invariant, is the kernel of this matrix. The dimension of the kernel
can be larger than one, if the variables are linearly dependent (which is often the case in
relational verification).

If one chooses any basis of the solution space, for each basis vector (c0c1 . . . cn) we
create an algebraic constraint in the form of the equation c0 + c1 ∗ x1 + · · · + cn ∗ xn = 0.
This equation holds on the examined execution traces. These constraints are then combined
conjunctively to form the invariant candidate for the general case.

For performance reasons, the implementation can optionally limit the search space to
polynomials of univariate summands (for each summand at most one ei differs from 0). In
practice, linear summands are sufficient in most cases.

5 Multiplication with a Vandermonde matrix evaluates a polynomial at a set of points and can be used to find
interpolating polynomials. For a vector (α1, . . . , αm ) of values, the k-th row of the univariate matrix of degree
n reads

(
1 αk α2k . . . αnk

)
such that multiplication with the coefficient vector (a0 a1 . . . am )t evaluates the

polynomial
∑m

i=0 ai x
i for all αi . We use multivariate Vandermonde matrices of degree 1 here.
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1 void *memmove(void *dst,
2 const void *src,
3 size_t count) {
4 char *a = dst;
5 const char *b = src;
6

7

8

9 if (src != dst) {
10

11

12 if (src > dst) {
13 while (count--) {
14 __mark(0);
15 *a++ = *b++;
16 }
17 } else {
18 a += count - 1;
19 b += count - 1;
20 while (count--) {
21 __mark(1);
22 *a-- = *b--;
23 }
24 }
25 }
26

27

28 return dst;
29 }

(a)

1 void *memmove(void *dst0,
2 const void *src0,
3 size_t length) {
4 char *dst = dst0;
5 const char *src = src0;
6 size_t t;
7 if (length == 0 || dst == src)
8 goto done;
9 if ((unsigned long)dst <

10 (unsigned long)src) {
11 t = length;
12 if (t) {
13 do {
14 __mark(0);
15 *dst++ = *src++;
16 } while (--t);
17 }
18 } else {
19 src += length;
20 dst += length;
21 t = length;
22 if (t) {
23 do {
24 __mark(1);
25 *--dst = *--src;
26 } while (--t);
27 }
28 }
29 done:
30 return (dst0);
31 }

(b)

Fig. 6 memmove() a dietlibc. b OpenBSD libc

5.3.3 User-Provided Patterns

While polynomial invariants are the most important kind of invariants for equivalence check-
ing and similar tasks, they have two shortcomings: (1) they are limited to equalities, and (2)
they are limited to local integer variables and do not support array and heap accesses. Inequal-
ities are nonetheless, in our experience, required in many practical instances of relational
reasoning, even when the verification task is equivalence checking (let alone monotonicity
checking). The importance of heap support is obvious, though its lack can, to some degree, be
mitigated, if the relevant heap locations are known a priori. In this case, they can be treated
as local variables and thereby made fit into the framework of polynomial invariants. This
reduction does now work in the general case, though.

Hence, we deploy a second, more flexible source for invariant candidates alongside the
polynomial engine. The main idea here is that candidates are built by instantiating a set of
predefined patterns (formulas with free variables). The set of all possible instantiations in
which the free variables are substituted by local program variables is the initial set of can-
didates. These instances are checked in the program states belonging to their corresponding
synchronization points in the execution traces.

The only limitation for the formulation of patterns is that any instantiationmust be evaluat-
able given variable and heap assignments. Our current implementation supports comparisons
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1 void send(short *to,
2 short *from,
3 int count) {
4 if (count <= 0) {
5 return;
6 }
7 do {
8 *to = *from++;
9 } while (__mark(0) &

10 (--count > 0));
11 }

(a)

1 void send(short *to,
2 short *from,
3 int count) {
4 if (count <= 0) {
5 return;
6 }
7 unsigned n = (count + 7) / 8;
8 switch (count %
9 case 0:

10 do {
11 *to = *from++;
12 case 7: *to = *from++;
13 case 6: *to = *from++;
14 case 5: *to = *from++;
15 case 4: *to = *from++;
16 case 3: *to = *from++;
17 case 2: *to = *from++;
18 case 1: *to = *from++;
19 } while (__mark(0) & (--n > 0));
20 }
21 }

(b)

Fig. 7 Optimizing a loop with Duff’s device a before b after

on integers, array access and equality, quantification over bounded integer ranges and arbi-
trary Boolean combinations of these.

The surprisingly good performance of the “brute force” pattern method in practice can be
explained by two factors. First, we have found that a small number of patterns is sufficient to
verify large classes of examples, since the polynomial invariants already cover all equalities.6

Second, the search space defined by trying all possible pattern instantiations is limited by the
number of live program variables at a synchronization point (i.e., variables that are used in
code reachable from this point), which is usually reasonably small.

6 Experiments

Our implementation of LLRêve and the dynamic extensions consists of ca. 17.3 KLOC
of C++, building on LLVM version 3.9.0. It can be found online at https://github.com/
mattulbrich/llreve.

In our experiments, we have proven equivalence across a sample of functions from three
different libc implementations: dietlibc [23], glibc [15], and the OpenBSD libc [29]. Apart
from the not yet automated placing of the synchronization marks, the proofs happen without
user interaction. The average runtimes of the proofs are summarized in Table 2. One of the
more complex examples, the function memmove(), is shown in Fig. 6. It demonstrates the
use of nested ifs, multiple loops with different loop structures (while/do-while) and
goto statements. While equally named functions are implemented similarly in the different
libraries, the control flow differs from implementation to implementation, which can be
observed in fact that non-trivial coupling invariants need to be inferred by LLRêve for the
proofs.

6 For the libc benchmarks presented below, the patterns heap1 = heap2, heap1[·] = · and heap2[·] = · were
sufficient. For the loop benchmarks, we used the patterns · � ·, · > · and · < 0.
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Listing 6 Bug in memchr()

1 void* memchr(const void *s,
2 int c,
3 size_t n) {
4 const char* t=s;
5 int i;
6 for (i=n; i; --i)
7 if (*t++==c)
8 return (char*)t;
9 return 0;

10 }

Revisiting the memchr() example discussed in Sect. 2, the early implementation of
memchr() in dietlibc is known to have contained a bug (Listing 6). In case of a found
character, the return value is one greater than expected. Unsurprisingly, this implementation
cannot be proven equivalent to any of the other two, and LLRêve produces a counterexample.
While counterexamples in the presence of heap operations in the program can be spurious
(in the absence of heap operations, counterexamples are always genuine), in this case, the
counterexample does demonstrate the problem.

An interesting observation we made was that existentially quantified preconditions might
potentially be necessary, such as requiring the existence of a null byte terminating a string.
While techniques for solving existentially quantified Horn clauses exist, e.g., by Beyene et
al. [7], most solver implementations currently only support universally quantified clauses.
The libc implementations, however, were sufficiently similar so that such preconditions were
not necessary.

By discovering unroll factors using dynamic analysis we have been able to prove that
applying a specific form of loop unrolling called Duff’s device [10] does not change the
result of the program. The original and the transformed program are shown in Fig. 7. To
generate the execution traces random inputs have been used. For the invariant inference we
have used Z3. Discovering and applying the unroll factor of 8 and proving the programs
equivalent takes about 1.2 s.

7 Conclusion

We have shown how the automated relational reasoning approach presented in [13] can be
taken in its applicability from a basic fragment to the full C language standardw.r.t. the control
flow. In this work, LLVM played a crucial rule in reducing the complexity of a real-world
language. We have successfully evaluated our approach on code actually used in production
and were able to prove automatically that many string-manipulation functions from different
implementations of libc are equivalent.

Moreover, we demonstrated how dynamic data gathered from recorded program traces
can be used to make the static verification more efficient and effective.

Acknowledgements This work was partially supported by the German National Science Foundation (DFG)
under the IMPROVE APS project within the priority program SPP 1593 “Design For Future—Managed
Software Evolution”.
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