
J Autom Reasoning (2018) 60:421–463
https://doi.org/10.1007/s10817-017-9417-5

Sentence-Normalized Conditional Narrowing Modulo
in Rewriting Logic and Maude

Luis Aguirre1 · Narciso Martí-Oliet1 ·
Miguel Palomino1 · Isabel Pita1

Received: 5 July 2015 / Accepted: 23 May 2017 / Published online: 6 June 2017
© Springer Science+Business Media Dordrecht 2017

Abstract This work studies the relationship between verifiable and computable answers for
reachability problems in rewrite theories with an underlying membership equational logic.
A new definition for R, A-rewriting that allows us to solve a bigger class of reachability
problems, and a calculus that solves this class of problems always working with canonical
terms and normalized substitutions has been developed. Given a reachability problem in a
rewrite theory, this calculus can compute any normalized answer that can be checked by
rewriting, or a more general one that can be instantiated to that answer.

Keywords Maude · Narrowing · Reachability · Rewriting logic · Membership equational
logic · Unification

1 Introduction

Rewriting logic is a computational logic that has been around formore than twenty years [32].
The semantics of rewriting logic [4] has a precisemathematicalmeaning, allowingmathemat-
ical reasoning for proving properties, providing a flexible framework for the specification
of concurrent systems; moreover, it can express both concurrent computation and logical

Partially supported by MINECO Spanish project StrongSoft (TIN2012-39391-C04-04) and Comunidad de
Madrid program N-GREENS Software (S2013/ICE-2731).

B Miguel Palomino
miguelpt@ucm.es

Luis Aguirre
luisagui@ucm.es

Narciso Martí-Oliet
narciso@ucm.es

Isabel Pita
ipandreu@ucm.es

1 Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-017-9417-5&domain=pdf

422 L. Aguirre et al.

deduction, allowing its application in many areas such as automated deduction, software and
hardware specification and verification, security, etc. [34,37].

A deductive system is specified in rewriting logic as a rewrite theory R = (Σ, E, R),
with (Σ, E) an underlying equational theory (in this paper we will consider membership
equational logic), where terms are given an algebraic data type, allowing us to identify as
semantically equal two syntactically different terms, and R a set of rules that specify how the
deductive system can derive one term from another.Order-sorted,many-sorted, and unsorted
theories can be formulated as special cases of membership equational logic (Mel) theories.

Reachability problems in rewriting logic have the form

(∃x̄)t (x̄) →∗ t ′(x̄)

with t, t ′ terms with variables in x̄ , or a conjunction of several of these subgoals. Reachability
problems can be solved by model checking methods for finite state spaces. When the initial
term t has no variables, i.e., it is a ground term, and under certain admissibility conditions,
rewriting can be used in a breadth-first way to traverse the state space, trying to find a
suitable matching of t ′(x̄) in each traversed node. In the general case where t (x̄) is not a
ground term, a technique known as narrowing [21] that was first proposed as a method for
solving equational goals (unification), has been extended to cover also reachability goals [38],
leaving equational goals as a special case. The strength of narrowing can be found in that it
enables us to manage complex concurrent and deductive systems that cannot be handled by
faster, but more limited, specialized methods. Under the admissibility conditions for rewrite
theories, which allow for conditional rules and equationswith extra variables in the conditions
under some requirements, and the assumption of the existence of an E-unification algorithm,
we can use narrowing modulo E to perform symbolic analysis of the possibly infinite set
of initial states t (x̄) in the state space and determine the actual values of x̄ that allow us to
derive t ′(x̄) from t (x̄).

Such E-unification algorithm can itself make use of narrowing at another level for finding
the solution to its equational goals. Specific E-unification algorithms exist for a small number
of equational theories, but if the equational theory (Σ, E) can be decomposed as E ∪ A,
where A is a set of axioms having a unification algorithm, and the equations E can be turned

into a set of rules
−→
E , by orienting them, such that the rewrite theory

−→E = (Σ, A,
−→
E) is

admissible in the above sense, then narrowing can be used on
−→E to solve the E-unification

goals generated by performing narrowing onR. For these equational goals the idea of variants
of a term has been applied in recent years to narrowing. A strategy known as folding variant
narrowing [20],which computes a complete set of variants of any term, has been developed by
Escobar, Sasse, and Meseguer, allowing unification modulo a set of unconditional equations
and axioms. The strategy terminates on any input term on those systems enjoying the finite
variant property, and it is optimally terminating. It is being used for cryptographic protocol
analysis [38], with tools like Maude-NPA [18], termination algorithms modulo axioms [14],
algorithms for checking confluence and coherence of rewrite theories modulo axioms [16],
and infinite-state model checking [6]. Recent development in conditional narrowing have
been made for order-sorted equational theories [11] and also for narrowing with constraint
solvers [40].

Conditional narrowing without axioms for rewrite theories with an order-sorted type
structure has been thoroughly studied for increasingly complex categories of term rewrit-
ing systems. A wide survey can be found in [36]. The literature is scarce when we allow
for extra variables in conditions (e.g., [25,26]), conditional narrowing modulo axioms (e.g.,
[11]), or conditional narrowing modulo a set of equations(e.g., [7]). Conditional narrowing

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 423

modulo axioms for Mel theories has not been addressed, to the best of our knowledge, one
of the main reasons being the lack of fast and effective unification algorithms modulo axioms
for Mel theories. Nonetheless, there are plenty of algebraic data types, including all types
that imply some kind of order between subterms, that are better expressed inside a Mel the-
ory, so there is a need to give an answer to these cases. In this paper we focus on conditional
narrowing modulo axioms for rewrite theories with an underlying equational Mel theory.

The natural tool to work with when dealing with Mel theories is Maude, a high-level
language and high-performance system supporting both equational and rewriting com-
putation [8], whose underlying equational logic is membership equational logic. Maude
makes a systematic and efficient use of reflection through the META-LEVEL module.
The META-LEVEL module has several built-in functions (upModule, metaReduce,
metaUnify, glbSorts, leastSort, . . .) that are used in the implementation of
our calculi.

In previous work [2] we developed a narrowing calculus, implemented using Maude’s
reflection capabilities, that we felt could be enhanced if we could prove that it was sound and
complete to use the normal forms of the remaining goals in the computation before each nar-
rowing step with an oriented equation or a rule. From standard definitions forMel deduction
and rewriting modulo, we have developed in this work new concepts as intermediate tools
for our improved narrowing calculus, so we had to prove that these intermediate tools were
valid as replacement for the original ones. The concept of “sentence normalized rewriting”
is the link between rewriting and our new narrowing calculus with normalization, so we had
to prove that it was safe to use it. In fact this normalization can be considered as a “strategy”
for the narrowing calculi for unification and for reachability. This strategy is independent
of the chosen equations and positions were reduction is applied before each reduction step.
Moreover, as our implementations work using Maude’s metalevel, we get normalization for
free before each narrowing step just by invoking the built-in metaReduce function with
the metalevel versions of the theory (which is generated only once at the beginning of the
computation) and of the current unification or reachability goal (which is always available),
so we cut off the search space and speed up the computation at the same time. We already
had these Maude’s metalevel capabilities in mind when we decided to improve our previous
calculus. As an unexpected bonus, we could also prove that a narrowing step on any subterm
of a given term t with some substitution σ could be skipped if the whole instantiation tσ
was not a normal form, which again can be very easily checked using the metaReduce
function.

Our main contributions in this work are a new definition of→1
R,A and R∪E, A-rewriting,

a definition of a new concept of narrowable rewrite theory, and the development of two new
narrowing calculi for E-unification and reachability, with the following characteristics:

– a larger class of rewrite theories is accepted by the calculus with respect to previous
work, admitting extra variables with no restrictions in equational, membership or rewrite
conditions,

– also a larger class of reachability goals is admitted for solving, compared to previous
work,

– both calculi use a leftmost strategy,
– both calculi followa strategy, consisting in applying a calculus rule only if the composition

of all computed substitutions remains normalized with respect to all extra variables and
all the variables in the initial problem,

– both calculi follow a strategy consisting in normalizing all terms before each narrowing
step,

123

424 L. Aguirre et al.

– the calculus for reachability follows a strategy consisting in applying narrowing to a sub-
termwith some substitution only if the whole term remains normalized when instantiated
with the same substitution,

– the calculus for reachability follows a strategy consisting in keeping a list of reachability
problems. Initially the list holds the original problem. Each new reachability problem
generated by the calculus is checked against the current list. If the problem is a renaming
and/or reordering of any element in the list, it gets discarded,

– both calculi are sound and weakly complete, i.e., complete with respect to idempotent
normalized answers.

The work is structured as follows: in Sect. 2 basic definitions and properties for rewriting
are introduced. Section 3 presents definitions and properties that are specific to this work.
In Sect. 4 we present a version of rewriting that only generates normalized substitutions on
extra variables, and prove that the solutions for a unification or a reachability problem can
be checked using this restricted rewriting. Section 5 introduces the narrowing calculus for
unification. Section 6 introduces the narrowing calculus for reachability. Section 7 shows the
calculi at work. In Sect. 8, related work, conclusions, and future lines of investigation for this
work are presented.

As already metioned, this paper is a continuation of a previous one [2], where non-
normalized terms were allowed in both calculi, and extra variables in rules had the same
restrictions as in equations.

2 Preliminaries

We assume familiarity with term rewriting and rewriting logic [4]. Rewriting logic is always
parameterized by an underlying equational logic. This work is focused in membership equa-
tional logic [33], an equational logic that generalizes both many-sorted and order-sorted
equational theories and that can also handle partial functions [3]. There are several lan-
guage implementations of rewriting logic, one of them being Maude [9], a language whose
underlying logic is membership equational logic.

2.1 Running Example

Example 1 A concurrency specification will be used as running example to explain the
definitions in a less abstract way.We review the needed terms. There are Users (abbreviated
to u) u1,u2,u3, and Tools (t) t1,t2,t3. Several Users, separated by commas, are
a UserSet (us) if all the Users are different. emptyU is the empty UserSet. Several
Tools, separated by semicolons, are a ToolBox (tb). There will be two ToolBoxes,
the second one can be seen as a workbench. emptyT is the empty ToolBox. Each User
needs two different Tools to work which can only be grabbed from the workbench: u1
needs t2;t3,u2 needs t1;t3,u3 needs t1;t2. We also have natural numbers, called
Nat (n), with constant 0 and function successor s. We can count the number of elements
in a ToolBox, obtaining a Nat, and compare two Nats with the function < obtaining a
Boolean (b) value of ok when the comparison holds. A State (s) is composed of two
UserSets, and two ToolBoxes, separated by | symbols. The first UserSet holds the
Users that are not working; the second UserSet holds the Users that are working. The
first ToolBox is the main one, while the second ToolBox is the workbench. There are
two conditions that a State must verify: first, the union of both UserSets must be a

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 425

UserSet, i.e., each User appears only once in the State; second, due to the size of the
ToolBox, the total number of Tools, including those being used, cannot exceed four. The
initial State is called init.

The rules that a State must follow are:

1. In the initial State nobody is working, and there are no Tools in the workbench.
2. When the workbench is empty, any two Tools that may be in the first ToolBox can

be put in the workbench.
3. When there are two Tools in the workbench and a User who is not working needs

those tools, he can grab them and work.
4. When a User finishes working, he puts the two Tools that he was using in the first

ToolBox.

2.2 Membership Equational Logic

We present here a sugared version of membership equational logic, similar to the one that it is
used for defining Maude specifications. Let (S,≤) be a partially ordered set of sorts, whose
connected components are the equivalence classes corresponding to the least equivalence
relation ≡≤ containing ≤.

Definition 1 (Mel signature) Amembership equational logic (Mel) signature [4] is defined
by a kind-complete tuple Σ = (K ,Ω, S,≤) meaning that:

– K is a set of kinds, where K ∩ S = ∅.
– S is split into a K -kinded family of disjoint sets of sorts Sk , i.e., S = ⋃

k∈K Sk , such that
if si ≤ s j and si ∈ Sk then s j ∈ Sk . We write [si] = k and say that the kind of si is k,
i.e., each sort in a connected component of (S,≤) has the same kind. ≤ is extended so
that si ≤ k iff si ∈ Sk , i.e., k is the top sort of its connected component (we also define
[k] = k if k ∈ K for simplicity of notation).

– Ω = {Σκ̄,κ }(κ̄,κ)∈(K∪S)∗x(K∪S) is an algebraic signature of function symbols, where for
each symbol f ∈ Σκ1...κn ,κ if at least one of the subindices is not a kind, then there exists
another function symbol f ∈ Σ[κ1]...[κn],[κ].

When f ∈ Σε,κ (ε is the empty word), we say that f is a constant with type (meaning
sort or kind) κ . We write f ∈ Σκ instead of f ∈ Σε,κ .

If f ∈ Σκ1...κn ,κ , then we display f as f : κ1 . . . κn → κ , and say that f has arity n. We
call this a rank declaration for symbol f . Constant symbols have only one rank declaration
f : → κ (plus the mandatory f : → [κ] if κ is not a kind). We extend the order ≤ on
K ∪ S to (K ∪ S)∗, component-wise, where we use the letters w,w′ as a synonym for the
elements κ1 . . . κn, κ

′
1 . . . κ ′

n ∈ (K∪S)∗ respectively. ThenΩ must also satisfy amonotonicity
condition: f ∈ Σw,κ

⋂
Σw′,κ ′ and w ≤ w′ imply κ ≤ κ ′. If f ∈ Σw,κ and t1, …, tn have

type κ1, …, κn respectively, then the term f (t1, . . . , tn) has type κ . If κ ≤ κ ′ and the term t
has type κ , then t has also type κ ′. This means that a term may have several types. In fact, as
for every sort s we have that s ≤ [s], if a term has only one type then it must be a kind.

In membership equational logic the elements in a sort are well-defined, while the elements
in a kind that don’t belong to any sort are usuallymeant to refer to error or undefined elements.
Kinds also provide a generalway of dealingwith partial functions in equational specifications.
For instance, in the concurrency specification example a term with sort State must not
have more than four Tools. Otherwise we have an error term with kind [State]. The
constructor function for sort State is partial or total on State, we have mentioned one of
several limitations, but total on [State].

123

426 L. Aguirre et al.

We allow mix-fix notation in Ω , where the symbol _ is used to identify the position of
each κi ∈ κ̄ . If omitted, we assume the usual functional notation f (κ1, . . . , κn), which is
an alternative notation admitted for all functions. We assume a family X = {Xκ }κ∈(K∪S) of
infinite sets of variables, such that κ �= κ ′ impliesXκ ∩Xκ ′ = ∅. If κ is a sort then xiκ has sort
κ (and kind [κ]), otherwise xiκ has kind κ but no sort (we say that xiκ is an unsorted variable).
The set of variables is infinite, but any finite computation will only require a finite number of
variables. A term that has no variables in it is said to be ground. A term where each variable
occurs only once is said to be linear (ground terms are linear).

The sets TΣ,κ , TΣ(X)κ denote, respectively, the set of ground Σ-terms with sort or kind
κ and the set of Σ-terms with sort or kind κ over X . We use the notation TΣ as a shortcut for⋃

κ∈(K∪S) TΣ,κ .We use the notation TΣ(X) as a shortcut for
⋃

κ∈(K∪S) TΣ(X)κ .Var(t) ⊆ X
denotes the set of variables in t ∈ TΣ(X), and we extend this definition in the usual way for
other structures in this paper.Σ is assumed to be sensiblemeaning that if f ∈ Σκ1...κn ,κ , f ∈
Σκ ′

1...κ
′
n ,κ

′ and [κi] = [κ ′
i] for i = 1, . . . , n then [κ] = [κ ′]. We also assume that Σ has

non-empty sorts, i.e., TΣ,s �= ∅ for all s ∈ S.

Example 2 In the concurrency specification example we have, omitting the implied kinded
definition for each function in Ω , that Σ = (K ,Ω, S,≤) is:

K = {[us], [tb], [n], [b], [s]}, S = {u,us,t,tb,n,b,s},
S[us] = {u,us}, S[tb] = {t,tb}, S[n] = {n}, S[b] = {b}, S[s] = {s},
Ω = {{_ | _ | _ | _}us us tb tb,[s], {_, _}[us] [us],[us], {_;_}tb tb,tb,

{count}tb,n, {_<_}n n,b,

{s}n,n, {u1,u2,u3}u, {emptyU}us, {t1,t2,t3}t, {emptyT}tb, {0}n, {ok}b, {init}s}.
We explain the notation used in Ω: {_, _}[us] [us],[us] means that there is a mix-fix function
symbol _, _ such that if u1 and u2 are terms with kind [UserSet] then u1, u2 is a term
with kind [UserSet], but it doesn’t have to have any sort (for instance, a is a UserSet,
but a,a is not a UserSet). We will later define the terms that truly are UserSets. It is
possible to use functional notation for all function symbols, but this notation usually turns
term interpretation into a burden for the reader, so we prefer to use mix-fix notation for some
of our function symbols.

Positions in a term t : as previously said, a term t can be always expressed in functional
notation as f (t1, . . . , tn). Thenwe can picture t as a treewith root f and children t1 at position
1, …, tn at position n. We refer to the root position of t as ε and to the other positions of t as
lists of nonzero natural numbers separated by dots, i1.i2 . . . im , meaning the position i2 . . . im
of ti1 . The set of positions of a term is written Pos(t). The set of non-variable positions of a
term is written PosΣ(t). t |p is the subtree of t below position p. t[u]p is the replacement in
t of the subterm at position p with a term u. As an example, if t is f (g(a, b), c), then t |1 is
g(a, b), t |1.2 is b, and t[d]1.2 is f (g(a, d), c).

A Mel signature Σ is said to be preregular iff for each n, for every function symbol f
with arity n, and for every κ1 . . . κn ∈ (K ∪ S)n , if the set S f containing all the sorts s′
that appear in rank declarations in Σ of the form f : κ ′

1 . . . κ ′
n → κ ′ such that κi ≤ κ ′

i , for
1 ≤ i ≤ n, is not empty (so a term f (t1, . . . , tn) where ti has type κi for 1 ≤ i ≤ n would be
a Σ-term), then S f has a least sort. Preregularity guarantees that every Σ-term t has a least
sort, denoted ls(t), among all the sorts that t has because of the different rank declarations
that can be applied to t , which is the most accurate classification for t , i.e., for any rank
declaration f : κ1 . . . κn → κ that can be applied to t it is true that ls(t) ≤ κ .

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 427

A substitution σ : X → TΣ(X) is a function that matches the identity function in all X
except for a finite set of variables Y ⊆ X . A substitution is well-formed if for each variable
yκ ∈ Y we have that ls(yκσ) ≤ κ . In this text we assume that all substitutions are well-
formed unless stated otherwise. Substitutions are written as σ = {y1κ1 �→t1, . . ., ynκn �→tn}
where Dom(σ) = {y1κ1 , . . ., ynκn } and Ran(σ) = ⋃n

i=1 Var(ti). The identity substitution
is displayed as id. Substitutions are homomorphically extended to terms in TΣ(X) (and
also to the rest of syntactic structures introduced along this paper, such as equations, goals,
etc.). The restriction σ |V of σ to a set of variables V is defined as xσ |V = xσ if x ∈ V
and xσ |V = x otherwise. Composition of two substitutions σ and σ ′ is denoted by σσ ′,
with x(σσ ′) = (xσ)σ ′. For a substitution σ , if σσ = σ we say that σ is idempotent. For
substitutions σ and σ ′, where Dom(σ)∩Dom(σ ′) = ∅, we denote their union by σ ∪ σ ′.

A Σ-equation is an expression of the form t = t ′. A Σ-equation t = t ′ is said to be:

– Regular iff Var(t) = Var(t ′).
– Sort-preserving iff for each substitution σ , we have tσ ∈ TΣ(X)κ (κ ∈ K ∪ S) implies

t ′σ ∈ TΣ(X)κ and vice versa.
– Left (or right) linear iff t (resp., t ′) is linear.
– Linear iff it is both left and right linear.

A set of equations E is said to be regular, or sort-preserving, or (left or right) linear, if
each equation in it is so.

Definition 2 (Mel theory) A Mel theory [4] is a pair (Σ, E), where Σ is a Mel signature
and E is a finite set of (possibly labeled) Mel sentences, either conditional equations or
conditional memberships of the forms:

t = t ′ if A1 ∧ . . . ∧ An, t : s if A1 ∧ . . . ∧ An,

where t = t ′ is a Σ-equation, t : s, s ∈ S, is a unary membership predicate stating that
t is a term with sort s, provided that the condition holds, and each Ai can be of the form
t = t ′, t : s or t := t ′ (a matching equation).

Matching equations are treated as ordinary Σ-equations. They are a warning that new extra
variables appear in t , in a concreteway, imposing a limitation in the syntax of the equation.We
also admit unconditional sentences in E . xs1 : s2 is an unconditional membership expressing
s1 ≤ s2. For each variable xs ∈ Xs , where s ∈ S, we have that xs : s ∈ E . As an exception,
there are two types of unconditionalmemberships over kinds, instead of sorts, that are implied
by the Mel signature: if f ∈ Σκ1...κn ,k, k ∈ K then f (xκ1 , . . . , xκn) : k ∈ E ; also for each
variable xκ ∈ Xκ such that [κ] = k, xκ : k ∈ E . Throughout this paper we will assume that
all signatures are preregular and all their equations and memberships t = t ′, t := t ′ and t : s,
satisfy the conditions [ls(t)] = [ls(t ′)] and [ls(t)] = [s], that is, they are well-formed.

AMel signature Σ imposes an associated set of memberships to anyMel theory (Σ, E):
for each s1, s2 ∈ S such that s1 < s2, there is an associated unconditionalmembership xs1 : s2
in E ; each constant definition c ∈ Σκ has an associated unconditional membership c : κ in
E ; each non constant definition f ∈ Σκ1...κn ,s , so n ≥ 1, has an associated conditional
membership f (x[κ1], . . . , x[κn]) : s if x[κ1] : κ1 ∧ . . . ∧ x[κn] : κn in E ; each definition
f ∈ Σk1...kn ,k , with n ≥ 0, has an associated unconditional membership f (xk1 , . . . , xkn) : k
in E . A Mel theory whose only memberships are the associated ones is an order-sorted
theory, or a many-sorted theory if < is the empty relation, where we can use all known
results for these equational theories.

Given aMel sentence φ, we denote by E � φ the fact that φ can be deduced from E using
the rules in Fig. 1 [4,5]; for an equation t = t ′, E � t = t ′ is also written t =E t ′, for a

123

428 L. Aguirre et al.

Fig. 1 Deduction rules for membership equational logic

Table 1 Mel sentences for the concurrency specification example

xu : us xt : tb (subsorts)

(x[us], y[us]), z[us] =
x[us], (y[us], z[us])

(x[tb]; y[tb]); z[tb] = x[tb]; (y[tb]; z[tb]) (associativity)

x[us], y[us] = y[us], x[us] x[tb]; y[tb] = y[tb]; x[tb] (commutativity)

x[us], emptyU = x[us] x[tb]; emptyT = x[tb] (identity)

xus | emptyU | ztb | wtb : s if count(ztb; wtb) < s(s(s(s(s(0))))) = ok

xus | yu | ztb | wtb : s if yu, xus : us ∧ count(ztb; wtb) < s(s(s(0))) = ok

xus | yu, y′
u | emptyT | emptyT : s if yu, y′

u, xus : us
u1, u2 : us u1, u3 : us u2, u3 : us u1, u2, u3 : us
count(emptyT) = 0 count(xt; ytb) = s(count(ytb))

0 < s(xn) = ok s(xn) < s(yn) = xn < yn

membership t : s, E � t : s is also written t :E s. These rules, where the symbol = stands
for = or := indistinctly, specify a sound and complete calculus.

Example 3 TheMel theory for the concurrency specification example hasΣ =(K ,Ω, S,≤)

and E is the set of Mel sentences in Table 1, where the first row of Mel sentences represents
the subsort ordering in S. We omit the implicit subsorts for each kind, and the implicit
memberships for each variable and kinded function. For executability requirements of the
theory, that will be later defined, associativity, commutativity, and identity axioms are defined
over kinds.

The conditional membership sentences for State (s) take into account that when check-
ing the total number of Tools, anyworkingUser is holding twoTools.When twoUsers
are working, both ToolBoxesmust be empty. If necessary it is also checked that the union
of the working UserSet and the non working UserSet is also a UserSet.

2.3 Unification

Given aMel theory (Σ, E), theE-subsumption preorder�E on TΣ(X)k is defined by t �E t ′
if there is a substitution σ such that t =E t ′σ . For substitutions σ, ρ and a set of variables V
we define σ |V �E ρ|V if there is a substitution η such that σ |V =E (ρη)|V . Then we say
that ρ is more general than σ with respect to V . When V is not specified, we assume that
Dom(ρ) ⊆ Dom(σ) and say that ρ is more general than σ .

Given a Mel theory (Σ, E), a system of sentences F is a conjunction of the form u1 =
v1∧. . .∧un = vn∧t1 : s1∧. . .∧tm : sm (= standing for=or :=)where for 1 ≤ i ≤ n, ui = vi

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 429

is a well-formed Σ-equation, and for 1 ≤ j ≤ m, t j : s j is a well-formed membership.
We define Var(F) = ⋃n

i=1(Var(ui) ∪ Var(vi)) ∪ ⋃m
j=1 Var(t j). An E-solution for F is a

substitution σ such that uiσ =E viσ for 1 ≤ i ≤ n and t jσ :E s j for 1 ≤ j ≤ m. Note that the
condition in a conditionalMel sentence is a system of sentences. When F is a conjunction of
Σ-equations we say that F is a system of equations. An E-solution for a system of equations is
called an E-unifier. For F a system of equations and V = Var(F) ⊆ W , a set of substitutions
CSUW

E (F) is said to be a complete set of E-unifiers of F away from W iff:

– each substitution σ in CSUW
E (F) is an E-unifier of F ;

– for any E-unifier ρ of F there is a substitution σ in CSUW
E (F) such that ρ|W �E σ |W ;

– for each substitution σ in CSUW
E (F),Dom(σ) ⊆ V and Ran(σ) ∩ W = ∅.

We will usually write CSUE in the understanding thatW is the set of all the variables that
have already appeared in the current calculation.

This notion was introduced by Plotkin [39]. An E-unification algorithm is complete if for
any given system of equations it generates a complete set of E-unifiers, which may not be
finite. An E-unification algorithm is said to be finitary and complete if it terminates after
generating a finite and complete set of solutions.

2.4 Rewriting Logic

A rewrite theoryR = (Σ, E, R) consists of a Mel theory (Σ, E) together with a finite set R
of conditional rewrite rules each of which has the form

l → r if
∧

h

ph = qh ∧
∧

i

ui := vi ∧
∧

j

w j : s j ∧
∧

k

lk → rk,

where l, r , and also each pair lk, rk , are Σ-terms of the same kind, and the rest of conditions
fulfill the same requirements pointed out for Mel sentences. We will sometimes write l →
r if C as a shortcut. Rewrite rules can also be unconditional. Equational and membership
conditions are intended to be solved within the Mel theory (Σ, E), i.e., no rewriting with
rules from R is allowed on those conditions, whereas a reachability condition lk → rk means
that rk is reachable from lk as defined below. We define Var(l → r) = Var(l) ∪ Var(r).

Definition 3 (→1
R relation) Given a rewrite theory R = (Σ, E, R), a term t ∈ TΣ(X), a

position p ∈ Pos(t), and a substitution σ , a rewrite rule l → r if C specifies a one-step
transition t[lσ]p →1

R t[rσ]p iff t ≡ t[lσ]p (≡ standing for a syntactic equality), and the
instantiated condition Cσ holds. We sometimes write (t, t ′) ∈→1

R when t →1
R t ′. The

transitive (resp., transitive and reflexive) closure of any relation →1
R is denoted →+

R (resp.,
→∗

R). For any relation →1
R , if (t, t ′) ∈→∗

R we say that t ′ is reachable from t in →1
R .

Example 4 In the concurrency specification example, R has as elements the conditional
rewrite rules in Table 2.

Without losing generality, we will always assume that we use instances of the rules where
all the variables that appear on them are fresh.

The relation →1
R/E on TΣ(X) is defined as =E ;→1

R;=E . This relation →1
R/E on TΣ(X)

induces a relation→1
R/E on TΣ/E (X), the equivalence relationmodulo E , by [t]E →1

R/E [t ′]E
iff t →1

R/E t ′.
A rewrite rule l → r if C is sort-decreasing if for each substitution σ we have that

lσ ∈ TΣ(X)κ (κ ∈ K ∪ S) and Cσ is verified implies rσ ∈ TΣ(X)κ .

123

430 L. Aguirre et al.

Table 2 Rewrite rules for the concurrency specification example

init → xus | emptyU | ztb | emptyT if xus | emptyU | ztb | emptyT : s
xus | yus | ut; vt; ztb | emptyT → xus | yus | ztb | ut; vt if xus | yus | ztb | ut; vt : s
u1, xus | yus | ztb | t2;t3 → xus | u1, yus | ztb | emptyT if xus | u1, yus | ztb | emptyT : s
u2, xus | yus | ztb | t1;t3 → xus | u2, yus | ztb | emptyT if xus | u2, yus | ztb | emptyT : s
u3, xus | yus | ztb | t1;t2 → xus | u3, yus | ztb | emptyT if xus | u3, yus | ztb | emptyT : s
xus | u1, yus | ztb | wtb → u1, xus | yus | t2;t3; ztb | wtb if u1, xus | yus | t2;t3; ztb | wtb : s
xus | u2, yus | ztb | wtb → u2, xus | yus | t1;t3; ztb | wtb if u2, xus | yus | t1;t3; ztb | wtb : s
xus | u3, yus | ztb | wtb → u3, xus | yus | t1;t2; ztb | wtb if u3, xus | yus | t1;t2; ztb | wtb : s

For any relation→1
R we say that a term t is→R-irreducible (or just R-irreducible) if there

is no term t ′ such that t →1
R t ′ and we say that a substitution is R-normalized (or normalized

if R can be deduced from the context) if xσ is R-irreducible for all x ∈ Dom(σ). We also
say that a term t is strongly R-irreducible if for every R-normalized substitution σ the term
tσ is R-irreducible.

The relation →1
R is terminating if there are no infinite rewriting sequences in →1

R . The
relation →1

R is confluent if whenever t →∗
R t1 and t →∗

R t2, there exists a term t3 such that
t1 →∗

R t3 and t2 →∗
R t3. In a confluent, terminating, sort-decreasing, membership rewrite

theory, for each term t ∈ TΣ(X), there is a unique (up to E-equivalence) R/E-irreducible
term t ′ obtained by rewriting to canonical form, denoted by t →!

R/E t ′, or t ↓R/E when t ′ is
not relevant.

One problem that can arise when trying to decide t →1
R t ′ in a rewrite theory is that

although →1
R is terminating, an attempt to prove a condition in a rule, building a so-called

well-formed proof tree [30], may generate a recursive infinite check of conditions, and a
corresponding infinite well-formed proof tree. This leads us to the notion of operational
termination.

Definition 4 The relation→1
R is operationally terminating if there are no infinitewell-formed

proof trees.

This notion of operational termination was presented by Lucas et al. [31] in an attempt
to exclude those conditional term rewriting systems like the one consisting of the single
conditional rule:

a → b if f (a) → b

The absence of unconditional rules makes the relation→1 trivially empty, hence terminating.
Nevertheless, when trying to reduce the term a, most implementations will loop because of
the following infinite derivation tree:

. . .

a → b
f (a) → b

a → b

The condition of operational termination states that such derivation trees don’t exist.

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 431

3 Narrowing and Narrowable Rewrite Theories

3.1 Associated Rewrite Theory

For a rewrite theoryR = (Σ, E, R), whether a one step rewrite t →1
R/E t ′ holds is undecid-

able in general, because it involves searching a potentially infinite, and even non computable,
set [t]E and checking if for any of its elements u ∈ [t]E we have that u →1

R t ′′ and t ′′ =E t ′.
The approach taken to solve this problem is to decompose E into a disjoint union E ∪ A,
with A a set of equational axioms (such as associativity, and/or commutativity, and/or iden-
tity) which must be regular, linear, sort-preserving, and where any variable appearing in an
axiom must be a kinded variable. Then we define the relations →1

E,A and →1
R,A on TΣ(X)

which, under certain assumptions on R, will make t →1
R/E t ′ semi-decidable (or decidable

under more restricted assumptions). From now on we will use the notations E and E ∪ A as
synonyms, assuming this decomposition.

AnyMel theory (Σ, E) has a corresponding rewrite theoryRE = (Σ ′,A, RE) associated
to it [14], where A has the properties listed before, that under certain assumptions allows
us to check E-solutions for systems of sentences using rewriting. Under some additional
assumptions this will be a finite process. The associated rewrite theory is constructed in the
following way: we add a new connected component with sort Truth, a new constant tt of this
sort to Σ , for each sort s ∈ S a new function symbol _:s : [s] → Truth, and for each kind
k ∈ K a new function symbol eq : k k → Truth. There are rules eq(xk, xk) → tt in RE for
each kind k ∈ K . For each equation or membership in E

t = t ′ if A1 ∧ . . . ∧ An t : s if A1 ∧ . . . ∧ An,

RE has a conditional rule of the form

t → t ′ if A′
1 ∧ . . . ∧ A′

n t :s → tt if A′
1 ∧ . . . ∧ A′

n

where if Ai is ti : si then A′
i is ti :si → tt, if Ai is ti := t ′i then A′

i is t
′
i → ti , and if Ai is

ti = t ′i then A′
i is eq(ti , t

′
i) → tt.

3.2 E, A-Rewriting. R, A-Rewriting. Closure Under A-Extensions

Now we define a set of relations where rules are applied not by strict matching, like in →1
R ,

or by matching modulo the equational theory, like in →1
R/E , which may be intractable, but

in an intermediate way: by matching modulo axioms A, for which we have fast dedicated
algorithms.

The relation →E,A is defined as (→∗
E,A;=A),→1

R∪E,A as (→1
R,A ∪ →1

E,A),→R∪E,A

as (→∗
R∪E,A;=E), and →R/E as (→∗

R/E ;=E), where the relations →1
E,A and →1

R,A are
defined below.

Definition 5 (E,A-rewriting)Given a rewrite theoryRE = (Σ ′, A, RE), associated to aMel
theory (Σ, E), and terms t, t ′ ∈ TΣ(X), t →1

E,A t ′ if there is a rule l → r if
∧

i∈I A′
i in RE ,

a position p ∈ Pos(t), and a substitution σ such that t |p =A lσ (A-matching), t ′ = t[rσ]p ,
and for all i ∈ I tiσ →E,A t ′iσ .

It is important to point out that not only t →E,A t , for all t ∈ TΣ(X), without applying
any rewrite rule from RE , but we also have that if t =A t ′ then t →E,A t ′, again without
applying any rewrite rule from RE .

123

432 L. Aguirre et al.

Definition 6 (R,A-rewriting) Given a rewrite theory R = (Σ, E, R), and terms t, t ′ ∈
TΣ(X), t →1

R,A t ′ if there is a rule l → r if
∧

i∈I Ai in R, a position p ∈ Pos(t), and
a substitution σ such that t |p =A lσ, t ′ = t[rσ]p , and for all i ∈ I :

– If Ai is of the form ti → t ′i then tiσ →R∪E,A t ′iσ .
– If Ai is of the form u = v, u := v, or u : s, and we consider A′

i (as in RE), which is of
the form ti → t ′i , then tiσ →E,A t ′iσ .

Under certain assumptions on the rewrite theories, the task of finding the substitution σ

to apply in →1
E,A or →1

R,A becomes always decidable. We will then speak of an executable

rewrite theory. A more proper name for the relations would have been →1
RE ,A and →R(E),A,

but we will use →E,A and →R,A for simplicity of notation.
The standard definition for →R∪E,A is →∗

R∪E,A;=A, because it allows the instantiation
of the new variables that may appear in the right term of the reachability goal by matching
them against the left term of the goal if this left term meets the executability requirements.
Our setting for narrowing allows us to replace =A with =E and relax the requirements, that
transform from being executable to being narrowable, a new concept that we formalize later
in thework. Using this definitionwe can useMaude to solve narrowing problems butMaude’s
rewrite engine cannot be used to verify the solutions obtained for the theories belonging to
this wider class of narrowable rewrite theories except when they are also executable.

We plan to replace=E and :E with→E,A, and→R/E with→R∪E,A, but there is a problem
thatmust be solved tomake these replacements feasible.Consider a rewrite theoryRwith only
one sort s, andwhose only rule is f (a, b) → c, where f is associative and commutative (E =
∅). The term f (f (a, a), b) is a normal form in →1

R∪E,A, but f (f (a, a), b) →1
R/E f (a, c),

because f (f (a, a), b) =A f (a, f (a, b)), so the relations are different. This problem would
not happen if R had another rule f (xs, f (a, b)) → f (xs, c) that could be applied on top
of the term f (f (a, a), b) with matching xs �→ a, modulo associativity and commutativity,
leading to f (f (a, a), b) →1

R∪E,A f (a, c). Rewrite theories, including those associated to
a Mel theory, that have these rules, avoiding such problems, are called closed under A-
extensions [35].

Definition 7 (Closure under A-extensions) LetR = (Σ, E ∪ A, R) be a rewrite theory, and
let l → r if C be a rule in R. Without loss of generality we asume that Var(A) ∩ Var(l →
r if C) = ∅. If this is not the case, only the variables of A will be renamed; the variables of
l → r if C will never be renamed. We then define the set of A-extensions as the set:

ExtA(l → r if C) = {u[l]p → u[r]p if C |
u = v ∈ A ∪ A−1 ∧ p ∈ PosΣ(u) − {ε} ∧ CSUA(l = u|p) �= ∅}

where, by definition, A−1 = {v = u | u = v ∈ A}.
Given two rules l → r if C and l ′ → r ′ if C with the same condition C we say that

l → r if C A-subsumes l ′ → r ′ if C iff there is a substitution σ such that: (i) Dom(σ) ∩
Var(C) = ∅, (ii) l ′ =A lσ , and (iii) r ′ =A rσ .

We call R = (Σ, E ∪ A, R) closed under A-extensions iff for any rule l → r if C in R,
each rule l ′ → r ′ if C in ExtA(l → r if C) is subsumed by some rule in R.

Theorem 2 and Corollary 3 in [35] can be applied in a straightfordward way to →1
E,A and

→1
R,A, and we get the following Lemmas.

Lemma 1 Given a Mel theory (Σ, E ∪ A) and its associated rewrite theory RE , if RE is
closed under A-extensions then →1

E,A is strictly coherent, i.e., for all t1, t2, t3 if t1 →1
E,A t2

and t1 =A t3 then there exists t4 such that t3 →1
E,A t4 and t2 =A t4 (see Fig. 2).

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 433

Fig. 2 strict coherence of →1
E,A and →1

R,A

Lemma 2 Given a rewrite theory R = (Σ, E ∪ A, R), if R is closed under A-extensions
then →1

R,A is strictly coherent, i.e., for all t1, t2, t3 if t1 →1
R,A t2 and t1 =A t3 then there

exists t4 such that t3 →1
R,A t4 and t2 =A t4 (see Fig. 2).

Strict coherence of→1
E,A and→1

R,A will be used later in the paper to prove the equivalence
of →R/E and →R∪E,A for narrowable rewrite theories. Given aMel theory (Σ, E ∪ A) and
its associated rewrite theory RE = (Σ ′, A, RE), if RE is closed under A-extensions, and
→1

E,A is sort-decreasing, terminating, and confluent, then for each term t ∈ TΣ(X) there
exists a unique (up to A-equivalence and new variable renaming) term t↓E,A. When theMel
theory is also admissible (defined below) then t↓E,A is unique up to A-equivalence. When
E is understood from the context we use the simpler notation t↓.
3.3 Admissible Theories. Executable MEL Theory. Narrowable Rewrite Theory

In this subsection we will first define theMel theories that we can deal with by rewriting. As
our aim is to shrink the state space by computing canonical terms with Maude’s metalevel
metaReduce function, before each narrowing step, the most generalMel theories that we
are able to admit will be the admissibleMel theories, the ones thatMaude can deal with. Then
wewill define the concept of narrowable rewrite theory, which has the following assumptions
relaxed with respect to executable rewrite theories [9]: a narrowable rewrite theory doesn’t
need to be operationally terminating, it admits extra variables anywhere in the conditions,
and it has no restrictions on equational, membership or rewrite conditions. Only matching
equations have restrictions.

Definition 8 (Σ-pattern) Given a Mel theory (Σ, E ∪ A) we call a term t ∈ TΣ(X) a
Σ-pattern if t /∈ X , and for any E, A-normalized substitution σ withDom(σ) ⊆ Var(t) �= ∅
if x ∈ Dom(σ) then tσ is E, A-irreducible.

A sufficient condition for t to be aΣ-pattern is the absence of A-unifiers between nonvariable
subterms of t and lefthand sides of equations in E .

Definition 9 (Admissible Mel Theory) A Mel theory (Σ, E) is admissible [9] if:

– For each conditional equation t = t ′ if
∧n

i=1 Ai in E the following requirements are
satisfied:

1.
Var(t ′) ⊆ Var(t) ∪

n⋃

j=1

Var(A j).

123

434 L. Aguirre et al.

2. If Ai is an equation ui = vi or a membership ui : si , then

Var(Ai) ⊆ Var(t) ∪
i−1⋃

j=1

Var(A j).

3. If Ai is a matching equation ui := vi , then ui is a Σ-pattern and

Var(vi) ⊆ Var(t) ∪
i−1⋃

j=1

Var(A j).

– For each conditional membership t : s if ∧n
i=1 Ai in E conditions 2 and 3 above are

satisfied.

We want to apply narrowing only to canonical terms, reducing the state space of our
narrowing problems. Matching with canonical forms may not be safe in general. The use of
FPP theories will ensure the completeness of this procedure [11].

Definition 10 (FPPMel theory) AMel theory (Σ, E) has theFresh Pattern Property (FPP)
if for each sentence t = t ′ if

∧n
i=1 Ai or t : s if ∧n

i=1 Ai in E , if Ai has the form ui := vi

then (Var(t) ∪ ⋃i−1
j=1 Var(A j)) ∩ Var(ui) = ∅.

A matching equation in an FPP Mel theory is similar to a “let” expression in functional
programming, allowing us to define locally some value that is needed later in the condition,
or in the right part of a conditional equation. For narrowing purposes the restriction that
we put on matching equations will allow us to instantiate the extra variables in ui (we call
them matching variables) by A-unification of ui with the canonical form of some instance
of vi , instead of performing a needless unification by E-narrowing. The main difference with
respect to “let” expressions is that this matching is done modulo the axioms A, so we gain
expressiveness.

Example 5 Let (Σ, E ∪ A) be a Mel theory, with sorts item(i),multiset(m), and state(s);
subsorts i ≤ m; constants a :→ i, b :→ i , and empty :→ i ; functions _; _ : m m → m
(with axioms associative, commutative, and identity empty), and [_] : m → s.

If E = {[xm] = [ym] if a; ym := xm} then (Σ, E ∪ A) is FPP because the equation
applies to states, not to multisets, so a; ym is a Σ-pattern, xm appears in the left side of the
equation, and ym is a new variable.

What this equation does is to remove any occurrence of the constant a in the multiset
included within a state, just by matching the multiset with theΣ-pattern (modulo the axioms
of the constructor for multisets _; _), leaving a state holding a multiset whose elements are
the remaining b’s, or the empty multiset if there were none.

Example 6 Consider the Mel theory (Σ, E ∪ A):

K = {k}, S = {s}, Sk = {s},Ω = {{a, b, c, d}s, { f, [_, _]}ss,s},
with A = ∅ and equations:

E = {a = b, c = d, f (x, y) = z if [x, z] := [x, y]}
Its associated rewrite theory has rules:

RE = {a → b, c → d, f (x, y) → z if [x, y] → [x, z]}

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 435

E is admissible; →1
E,A is confluent, terminating, and sort-decreasing. We have omitted the

sort subindex in the variables. Rewriting the term f (a, c) in →1
E,A generates the condition

[a, c] → [a, z]. If we match [a, c] with [a, z] before rewriting [a, c] in →1
E,A we get the

match z �→ c, so f (a, c) → c. However, if we rewrite [a, c] to its canonical form [b, d] we
get the condition [b, d] → [a, z] that does not match, so f (a, c) cannot be rewritten.

Using FPP theories we can rewrite any term to normal form before matching. An easy
transformation allows us to turn any rewrite orMel theory into an FPP one. We demonstrate
it using the previous example.

Example 7 The transformed FPP Mel theory (Σ, E ∪ A) has equations:

E = {a = b, c = d, f (x, y) = z if [x ′, z] := [x, y] ∧ x = x ′}
wherewe have added a new variable x ′, and a new condition x = x ′ that forces both variables,
x and x ′, to be instantiated to E, A-equivalent terms. Now, the associated rewrite theory is:

RE = {a → b, c → d, f (x, y) → z if [x, y] → [x ′, z] ∧ eqk,k(x, x
′) → tt}

E is admissible; →1
E,A is confluent, terminating, and sort-decreasing. Rewriting the term

f (a, c) generates the condition [a, c] → [x ′, z]∧ eqk,k(a, x ′) → tt now. Using rules a → b
and c → d we get [b, d] → [x ′, z] ∧ eqk,k(a, x ′) → tt, where [b, d] is a normal form.
Substitution σ = {x ′ �→ b, z �→ d} solves the first part of the condition, and the second
part of the condition becomes eqk,k(a, b) → tt which, using the rule a → b, rewrites to
eqk,k(b, b) → tt and, using rule eqk,k(xk, xk) → tt with substitution xk �→ b, rewrites to
tt → tt, that holds by reflexivity. Then f (a, c) rewrites to d , which is the normal form of c,
so the rewritings in both examples are E, A-equivalent.

Definition 11 (Admissible rewrite theory) A rewrite theoryR = (Σ, E, R) is admissible if:

1. The Mel theory (Σ, E) is admissible.
2. For each rule l → r if

∧n
i=1 Ai in R:

– Var(r) ⊆ Var(l) ∪ ⋃n
i=1 Var(Ai).

– If Ai has the form ui := vi , then ui is a Σ-pattern.

Definition 12 (FPP rewrite theory) A rewrite theory R = (Σ, E, R) has the Fresh Pattern
Property if the Mel theory (Σ, E) is FPP, and for each rule l → r if

∧n
i=1 Ai in R, if Ai

has the form ui := vi then (Var(l) ∪ ⋃i−1
j=1 Var(A j)) ∩ Var(ui) = ∅.

Note that for the rules in an FPP rewrite theory we admit extra variables anywhere in their
conditions, even on the right side of matching equations, but not in the right term r , and again
we demand that for matching equations ui := vi the variables in ui haven’t appeared before
in the rule. We can relax these requirements because we only need the rewrite theories to be
narrowable, while we need the Mel theories to be executable, so we can get the canonical
form of any term by E, A-rewriting.

Definition 13 (Narrowable rewrite theory)An admissible rewrite theoryR = (Σ, E∪A, R)

is narrowable if Σ is preregular modulo A; E, A, and R are finite; no left term in E and R
is a variable; and R satisfies the following requirements:

1. R is FPP, and both R and the associated rewrite theory RE = (Σ ′, A, RE) are closed
under A-extensions.

123

436 L. Aguirre et al.

Fig. 3 E-coherence of →1
R,A with →1

E,A

2. The axioms in A are regular, linear, and sort-preserving. Any variable appearing in an
axiom must be a kinded variable. Furthermore, equality modulo A must be decidable
and there must exist a finitary matching algorithm modulo A producing a finite number
of A-matching substitutions, MatchA(t1, t2) = {σi }ni=1 meaning that t1 =A t2σi for
i = 1, . . . , n, or failing otherwise.

3. The relation →1
E,A is sort-decreasing, terminating, confluent, and operationally termi-

nating.
4. →1

R,A is E-coherent with →1
E,A (see Fig. 3), i.e., for all t1, t2, t3 we have t1 →1

R,A t2
and t1 →∗

E,A t3 implies that there exist t4, t5 such that t3 →∗
E,A t4, t4 →1

R,A t5, and
t2 =E t5. We represent this property by using a diagram with filled lines for universal
quantification and dotted lines for existential quantification:

Example 8 Consider a rewrite theory R = (Σ, E ∪ A, R), where S = {s},Ω =
{{a, b, c}s, { f }s,s}, with A = ∅, E = {a = b} and R = { f (a) → c}.

In this theory f (a) →1
R,A c, but f (a) →1

E,A f (b) and f (b) cannot be further rewritten in

→1
R∪E,A, so the theory is not E-coherent. If we add the rule f (b) → c to R then f (a) →1

E,A

f (b) →1
R,A c, and we have an E-coherent rewrite theory.

Regarding Maude specifications, operational termination of the rewrite theory associated to
a Mel theory can be checked using the Maude Termination Tool [15] and E-coherence of
→1

R,A with →1
E,A can be checked using the Maude Coherence Checker Tool [17]. These

tools together with the Church–Rosser Checker (which can be used to check the Church–
Rosser property of equational theories), the Maude Sufficient Completeness Checker (which
can be used to check that defined functions have been fully defined in terms of constructors),
and the Maude Inductive Theorem Prover (which can be used to verify inductive properties
of equational theories), conform the Maude Formal Environment [10].

Definition 14 The Mel theory associated to a narrowable rewrite theory is an executable
Mel theory [9].

For narrowable rewrite theories we can implement →R/E using →R∪E,A. This lemma links
→1

R/E with →1
E,A and →1

R,A.

Lemma 3 (Reduction of →1
R/E to →R∪E,A for Narrowable Rewrite Theories) Let R =

(Σ, E, R) be a narrowable rewrite theory. Then t1 →1
R/E t2 if and only if t1 →!

E,A t1↓ →1
R,A

t3 for some t3 =E t2. This can be verified by checking t3↓ =A t2↓.
Proof The if part is immediate just by noticing that t1 =E t1↓, so t1↓ →1

R,A t3 implies

that there is some t ′ such that t1↓ =A t ′ and t ′ →1
R t3. Then t1 =E t ′ →1

R t3 and, as a
consequence, for any t2 such that t2 =E t3 we get t1 →1

R/E t2.
The only if part follows from the diagram in Fig. 4: the upper line of the diagram rep-

resents our assumption on t1 →1
R/E t2; the upper left square follows from convergence and

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 437

Fig. 4 Reduction of →1
R/E to →R∪E,A

termination of E modulo A; the upper right square follows from E-coherence of →1
R,A,

since →1
R⊆→1

R,A; finally, the upper inverted triangle is a distorted version of the square that

represents the strict coherence of →1
R,A. The lower triangle and the right rectangle use the

same property applied in the upper left square. As a conclusion we see that t1↓ →1
R,A t3

for some t3 and t3↓ =A t2↓, which is decidable, since the number of rules in RE is finite,
A-matching is decidable and finite, and →1

E,A is operationally terminating. ��
Theorem 1 (Equivalence of →R/E and →R∪E,A for Narrowable Rewrite Theories) Let
R = (Σ, E, R) be a narrowable rewrite theory. Then t →R/E t ′ if and only if t →R∪E,A t ′.

Proof The if part is immediate because →R∪E,A⊆→R/E by definition.
We prove the only if part by induction on the number of →1

R/E steps.

– Base case: zero rewrite steps. Then t =E t ′, so t →R∪E,A t ′ also with zero rewrite steps.
– Induction case: t →1

R/E v →R/E t ′. By Lemma 3, t →∗
R∪E,A u =E v. Then also

u →R/E t ′, and by induction hypothesis u →R∪E,A t ′, so t →R∪E,A t ′. ��
Example 9 The rewrite theory for the concurrency specification example is narrowable if
we decompose E in the following way: the set A contains the associative, commutative, and
identity equations in E ; the set E contains the rest of equations and all memberships in E .

3.4 Unification Goal. Reachability Goal

Definition 15 (Unification Goal) A system of sentences F in (Σ, E) of the form

n∧

i=1

ui = u′
i ∧

m∧

j=1

v j := v′
j ∧

l∧

k=1

tk : sk,

has an associated unification goal G in RE of the form

n∧

i=1

eq(ui , u
′
i) → tt ∧

m∧

j=1

v′
j → v j ∧

l∧

k=1

tk :sk → tt,

where v j is a Σ-pattern, for 1 ≤ j ≤ m. A substitution σ is an E-solution for G if
eq(uiσ, u′

iσ) →E,A tt (1 ≤ i ≤ n), v′
jσ →E,A v jσ(1 ≤ j ≤ m), and tkσ :sk →E,A tt

(1 ≤ k ≤ l).

123

438 L. Aguirre et al.

Recall that a unification goal associated to a system of sentences has the same form and
restrictions as the conditions of the rules in RE .

Definition 16 (Reachability Goal) Given a rewrite theory R = (Σ, E, R), a reachability
goal G is a conjunction of the form u1 ⇒ v1 ∧ . . . ∧ un ⇒ vn ∧ G ′ where for 1 ≤ i ≤
n, ui , vi ∈ TΣ(X)κi for appropriate κi , and G ′ is a unification goal in RE associated to a
system of sentences F in the Mel theory (Σ, E). The subgoals ui ⇒ vi can be interleaved
with the subgoals in G ′.

We define Var(G) = ⋃n
i=1(Var(ui) ∪ Var(vi)) ∪ Var(G ′). A substitution σ is a solution

of G if σ is an E-solution for G ′, and uiσ →R/E viσ , for 1 ≤ i ≤ n. If the substitution
is idempotent we also say that the solution is idempotent. We define E(G) to be the system
of sentences u1 = v1 ∧ . . . ∧ un = vn ∧ F . We say σ is a trivial solution of G if it is an
E-solution for E(G). We say G is trivial if the identity substitution id is a trivial solution
of G.

Theorem 2 (Equivalence of E-solutions for systems of sentences and unification goals)
Given aMel theory (Σ, E ∪ A) and its associated rewrite theoryRE , ifRE is terminating,
convergent, sort-decreasing, and closed under A-extensions, then for any system of sentences
F, an idempotent E, A-normalized substitution σ is an E-solution for F iff σ is an E-solution
for its associated unification goal (G) in RE .

Proof First we prove that if σ is an E-solution of F then σ is an E-solution for G. We prove
it by induction on the number of deduction rules forMel theories applied. We consider each
possible type of sentence in F .

1. t = t ′, and tσ =E t ′σ , so (tσ)↓ =A (t ′σ)↓. In G we have the subgoal eq(t, t ′) → tt,
and eq(tσ, t ′σ) →∗

E,A eq((tσ)↓, (t ′σ)↓) →1
E,A tt =A tt, with rule eq(xk, xk) → tt,

and substitution {xk �→ (tσ)↓} so, by definition eq(tσ, t ′σ) →E,A tt. Then σ is an
E-solution for eq(t, t ′) → tt.

2. t := t ′, and tσ =E t ′σ , so (tσ)↓ =A (t ′σ)↓. As t is a Σ-pattern and σ is E, A-
normalized then (tσ)↓ ≡ tσ so tσ =A (t ′σ)↓. In G we have the subgoal t ′ → t , and
t ′σ →∗

E,A (t ′σ)↓ =A tσ . Then, by definition, t ′σ →E,A tσ so σ is an E-solution for
t ′ → t in RE .

3. t : s, and tσ :E s. We consider two subcases, depending on the deduction rule applied.

– Rule replacement. Then we infer tσ :E s because there is a sentence l : s if ∧n
i=1 Ai

in E , and a substitution ρ such that tσ ≡ lρ, and ρ is an E-solution for Ai , 1 ≤
i ≤ n. In G we have the subgoal t :s → tt, and in RE we have the rule l:s →
tt if

∧n
i=1 A

′
i where, by induction hypothesis, ρ is a solution for A′

i , 1 ≤ i ≤ n, in
RE , so lρ:s →1

E,A tt, that is, tσ :s →1
E,A tt =A tt so, by definition, tσ :s →E,A tt so

σ is an E-solution for t :s →E,A tt.
– Rule membership. Then we infer tσ :E s because tσ =E t ′ and t ′ :E s is deduced

with rule replacement. The case where several rules membership are applied before
applying rule replacement is easily reduced to this one using rule transitivity: if
tσ =E t1 =E . . . =E t ′, then tσ =E t ′, so (tσ)↓ =A t ′↓. There is a sentence
l : s if ∧n

i=1 Ai in E , and a substitution ρ such that t ′ ≡ lρ, and ρ is an E-solution
for Ai , 1 ≤ i ≤ n. In G we have the subgoal t :s → tt, and in RE we have the rule
l:s → tt if

∧n
i=1 A

′
i where, by induction hypothesis,ρ is a solution for A′

i , 1 ≤ i ≤ n,
in RE , so lρ:s →1

E,A tt, that is, t ′:s →1
E,A tt. As t ′ →∗

E,A t ′↓, we also can apply
the same rules to t ′ in the context t ′:s, so t ′:s →∗

E,A t ′↓:s. As tt is a canonical form

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 439

and t ′:s →1
E,A tt then, by confluence, t ′↓:s →∗

E,A tt. But, as (tσ)↓:s =A t ′↓:s
(because (tσ)↓ =A t ′↓) then, by strict coherence of →1

E,A, t ′↓:s →∗
E,A tt implies

(tσ)↓:s →∗
E,A tt. As tσ :s →∗

E,A (tσ)↓:s, we conclude that tσ :s →∗
E,A tt =A tt so,

by definition, tσ :s →E,A tt so σ is an E-solution for t :s →E,A tt.

Now we prove that if σ is an E-solution for G then σ is an E-solution of F . We prove it by
induction on the total number of rewrite steps applied. We consider each possible type of
subgoal in G.

1. eqk(t, t ′) → tt. Then eqk(tσ, t ′σ) →E,A tt.

– One rewrite step: then eqk(tσ, t ′σ) →E,A tt with rule eqk(xk, xk) → tt because
tσ =A t ′σ , so tσ =E t ′σ because A ⊆ E . The sentence in F is t = t ′, and
tσ =E t ′σ , so σ is an E-solution for t = t ′.

– n > 1 rewrite steps: without loss of generality we assume that the rewritten term
in the first rewrite step is t . Then eqk(tσ, t ′σ) →1

E,A eqk((tσ)[rρ]p, t ′σ) →E,A tt
with rule l → r if c′ in RE , because (tσ)|p =A lρ (so (tσ)|p =E lρ) and ρ is an
E-solution for all the conditions in c′. Then there must be a corresponding equation
l = r if c in E (the only rules that don’t have a counterpart are those related to the new
sort Truth, and no subterm of t and t ′ can have a sort Truth or kind [Truth]) where, by
induction hypothesis, ρ is an E-solution for all the conditions in c. By replacement
rule, we can deduce lρ =E rρ. Then, by repeated application of the congruence
rule, we can deduce (tσ)[lρ]p =E (tσ)[rρ]p . As (tσ)|p =E lρ we can also deduce
tσ =E (tσ)[lρ]p by repeated application of the congruence rule. Then, using the
transitivity rule, we can deduce tσ =E (tσ)[rρ]p . As σ is idempotent, r has fresh
variables, and Ran(ρ) is away from Var((tσ)[r]), then (tσ)[rρ]pσ = (tσ)[rρ]p ,
and eqk((tσ)[rρ]pσ, t ′σ) →E,A tt with less than n rewrite steps so, by induction
hypothesis, σ is an E-solution for the sentence (tσ)[rρ]p = t ′, and then tσ =E t ′σ .

2. t :s → tt. Then tσ :s →E,A tt.

– One rewrite step: then tσ :s →E,A tt with rule l:s → tt in RE because there is a
substitution ρ such that tσ =A lρ. The sentence in F is t : s, and there is a sentence
l : s in E and tσ =A lρ, so tσ :E s and σ is an E-solution for t : s.

– n > 1 rewrite steps: then tσ :s →1
E,A (tσ)[rρ]p:s →E,A tt with rule l → r if c′

in RE , because (tσ)|p =A lρ (so (tσ)|p =E lρ) and ρ is an E-solution for all the
conditions in c′. Then there must be a corresponding equation l = r if c in E where,
by induction hypothesis, ρ is an E-solution for all the conditions in c. By replacement
rule, we can deduce lρ =E rρ. Then, by repeated application of the congruence rule,
we can deduce (tσ)[lρ]p =E (tσ)[rρ]p . As (tσ)|p =E lρ we can also deduce
tσ =E (tσ)[lρ]p by repeated application of the congruence rule. Then, using the
transitivity rule, we can deduce tσ =E (tσ)[rρ]p . As σ is idempotent, r has fresh
variables, and Ran(ρ) is away from Var((tσ)[r]), then (tσ)[rρ]pσ = (tσ)[rρ]p , and
(tσ)[rρ]pσ :s →E,A tt with less than n rewrite steps so, by induction hypothesis, σ
is an E-solution for the sentence (tσ)[rρ]p : s, and then by rule membership tσ :E s.

3. t ′ → t , with t �= tt. Then t ′σ →E,A tσ .

– Zero rewrite steps: then tσ =A t ′σ , so tσ =E t ′σ because A ⊆ E . The sentence in
F is t := t ′, and tσ =E t ′σ , so σ is an E-solution for t := t ′.

– n > 0 rewrite steps: then tσ →1
E,A (tσ)[rρ]p →E,A t ′σ with rule l → r if c′

in RE , because (tσ)|p =A lρ (so (tσ)|p =E lρ) and ρ is an E-solution for all the

123

440 L. Aguirre et al.

conditions in c′. Then there must be a corresponding equation l = r if c in E where,
by induction hypothesis, ρ is an E-solution for all the conditions in c. By replacement
rule, we can deduce lρ =E rρ. Then, by repeated application of the congruence rule,
we can deduce (tσ)[lρ]p =E (tσ)[rρ]p . As (tσ)|p =E lρ we can also deduce
tσ =E (tσ)[lρ]p by repeated application of the congruence rule. Then, using the
transitivity rule, we can deduce tσ =E (tσ)[rρ]p . As σ is idempotent, r has fresh
variables, and Ran(ρ) is away from Var((tσ)[r]), then (tσ)[rρ]pσ = (tσ)[rρ]p , and
(tσ)[rρ]pσ →E,A t ′σ with less than n rewrite steps so, by induction hypothesis, σ
is an E-solution for the sentence (tσ)[rρ]p = t ′, and then tσ =E t ′σ , i.e., σ is an
E-solution for t := t ′. ��

As a conclusion, we can verify that σ is an E-solution for F by checking Gσ using the
relation →E,A. Conversely, if we find an E-solution σ for G, σ is an E-solution for F .

3.5 Narrowing

Definition 17 (R ∪ E, A-narrowing) Given a rewrite theory R = (Σ, E, R), its associated
rewrite theory RE , a term t in TΣ(X), and a rule c ≡ l → r if C in R ∪ RE , properly
renamed so Var(c) ∩ Var(t) = ∅, if there exists a non-variable position p in PosΣ(t), and a
substitution σ such that t |pσ =A lσ , and Cσ holds, then we write t �1

p,σ,R∪E,A t[r]pσ and
say that there is a R ∪ E, A-narrowing step from t to t[r]pσ .

E, A-narrowing in RE is defined similarly. In conditional narrowing we usually start with
a unifier σ ′ ∈ CSUA(t |p = l) and recursively solve the new goal Cσ ′ using narrow-
ing, obtaining some σ ′′ as solution. Then σ = σ ′σ ′′ is the desired substitution such that
t �1

p,σ,R∪E,A t[r]pσ .
Example 10 ConsiderR = (Σ, E, R), where S = {s},Ω = {{a, b, c}s , { f, g}ss,s}, a rewrite
theory with E = A = ∅, and R = {g(b, c) → c, f (a, zs) → b if g(b, zs) → c}.

Now, if we try to narrow the term f (xs, ys) with rule f (a, zs) → b if g(b, zs) → c and
unifier σ ′ = {xs �→ a, ys �→ ws, zs �→ ws} we have to prove the condition g(b, ws) →
c, which can be narrowed with rule g(b, c) → c and substitution σ ′′ = {ws �→ c}, so
g(b, zs) �σ ′′,R∪E,A c. Then, by composition of the substitutions σ ′ and σ ′′, we get σ =
{xs �→ a, ys �→ c, zs �→ c} and we have f (xs, ys) �σ,R∪E,A b. As a consequence, that will
be later proved, f (xs, ys)σ →R∪E,A b.

4 Sentence-Normalized Rewriting

Let (Σ, E) be an FPP executable Mel theory, and RE = (Σ ′,A, RE) its associated rewrite
theory. Executability allows us to incrementally construct the substitutions used on RE in
such a way that we will only generate E, A-normalized substitutions for matching variables.
Let t ∈ TΣ be a term, and c′ ≡ l → r if

∧n
i=1 A

′
i a conditional rule in RE (we don’t have

to prove anything for unconditional rules). If l matches t using σ0 (t =A lσ0) then for all
i, 1 ≤ i ≤ n, if A′

i has no matching variables we define σi = id; else if A′
i ≡ t ′i → ti

has matching variables (because the corresponding sentence c in E has the condition Ai ≡
ti := t ′i), then (Σ, E) being FPP implies that each substitution σ j , 1 ≤ j < i instantiates

different variables, so
⋃i−1

j=0 σ j is properly defined, andDom(
⋃i−1

j=0 σ j)∩Var(ti) = ∅. Then
(t ′i

⋃i−1
j=0 σ j → ti

⋃i−1
j=0 σ j) ≡ (t ′i

⋃i−1
j=0 σ j → ti). We define σi to be a matching of ti

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 441

with (t ′i
⋃i−1

j=0 σ j)↓, that is tiσi =A (t ′i
⋃i−1

j=0 σ j)↓. As we are matching against an E, A-
irreducible term, σi must be E, A-normalized. The only exception is the first substitution σ0,
which may be not E, A-normalized but doesn’t instantiate matching variables. The extended
substitution σ that we need to apply the rule is σ = ⋃n

i=0 σi , where the instantiation of all
matching variables,

⋃n
i=1 σi , is E, A-normalized.

Based on this fact, we develop in this section the concepts of sentence-normalized substi-
tution and sentence-normalized rewriting and show their connection to E, A-rewriting and
R ∪ E, A-rewriting for our unification and reachability goals. As we have already shown
the link between =E , :E , and E, A-rewriting, and also the link between R/E-rewriting and
R ∪ E, A-rewriting, all the properties for the narrowing calculi to be presented in the next
sections will only have to be related to sentence-normalized rewriting.

Definition 18 (Sentence-normalized Substitution) Given a narrowable rewrite theory R =
(Σ, E, R), its FPP executable Mel theory (Σ, E ∪ A), and the associated rewrite theory
RE = (Σ ′,A, RE), for any conditional rule, c ≡ l → r if C in RE or R and substitution
σ , the sentence-normalized substitution σc is defined as σc = σ |Var(l) ∪ σ↓|Extra(c), where
Extra(c) = Var(c)\Var(l) is the set of new extra variables in c. In the case of rules in
RE ,Extra(c) will only contain matching variables.

Proposition 1 Given an FPP executable Mel theory (Σ, E), its associated rewrite theory
RE = (Σ ′,A, RE), and a term t ∈ TΣ ′(X), if t →1

E,A t[rσ]p using a rule c ≡ l →
r if

∧n
i=1 A

′
i in RE and an idempotent substitution σ , then t →1

E,A t[rσc]p using the same
rule c and substitution σc.

Proof For unconditional rules there is nothing to prove, because σc ≡ σ , so we focus on
conditional rules. By definition of σc we have that as t =A lσ then t =A lσc. Now we prove
that for i = 1, . . . , n if the condition A′

iσ is verified then the condition A′
iσc is also verified.

We prove it for the three types of conditions:

1. case eq(tiσ, t ′iσ) →E,A tt. Then as eq(tiσ, t ′iσ) →∗
E,A eq(tiσc, t ′iσc), by confluence of

→1
E,A, as tt is a unique normal form, we get eq(tiσc, t ′iσc) →E,A tt.

2. case tiσ :s →E,A tt. We use the equivalence between →E,A and :E . Then tiσ :E s. As
tiσ →∗

E,A tiσc and →1
E,A is sort decreasing then tiσc has sort s, so tiσc :E s must be

derivable. By the equivalence between →E,A and :E , tiσc:s →E,A tt
3. case t ′iσ →E,A tiσ (from ti := t ′i). Then t ′iσ →∗

E,A u =A tiσ . As for all rules c ≡
l → r if C if lρ =A u we also have that lρ =A tiσ , then the rewrite steps in →1

E,A
are the same for u and tiσ . As tiσ →∗

E,A tiσc, we have t ′iσ →∗
E,A tiσc. We also have

t ′iσ →∗
E,A t ′iσc. But tiσc is a normal form because ti is a Σ-pattern, all the variables in

ti are matching variables in c and σc is E, A-normalized with respect to all matching
variables in c. Then, by confluence, it must be the case that t ′iσc →∗

E,A t ′ =A tiσc, so
t ′iσc →E,A tiσc. ��

Proposition 2 Given a narrowable rewrite theoryR = (Σ, E, R), its FPP executableMel
theory (Σ, E ∪ A), the associated rewrite theory RE = (Σ ′,A, RE), and two terms t, t ′ in
TΣ ′(X), if t →R∪E,A t ′ then t↓ →R∪E,A t ′.

Proof By induction on the number of →1
R∪E,A steps. Remember that =A⊆=E .

Base case. Zero →1
R∪E,A steps. Then t =E t ′, so [t]E = [t ′]E . As [t]E = [t↓]E then

[t↓]E = [t ′]E , so t↓ =E w.
Induction case. We consider two cases depending on the first rule used.

123

442 L. Aguirre et al.

– t →1
E,A u →R∪E,A t ′. By induction hypothesis u↓ →∗

R∪E,A w =E t ′, but u↓ =A t↓ by

confluence of→1
E,A. Then, by strict coherence of→1

E,A and→1
R,A, t↓ →∗

R∪E,A w′ =A

w, so t↓ →R∪E,A t ′.
– t →1

R,A u →R∪E,A t ′. By induction hypothesis u↓ →R∪E,A t ′. As t →!
E,A t↓, then by

E-coherence of→1
R,A with→1

E,A, t↓ →1
R,A u′ =E u. By confluence of→1

E,A, u′ →!
E,A

u′↓ =A u↓ so, by strict coherence of →1
E,A and →1

R,A, u′↓ →R∪E,A w =A t ′. Putting
all together, and by definition of →R∪E,A, t↓ →1

R,A u′ →!
E,A u′↓ →∗

R∪E,A w′ =E
w =A t ′, so t↓ →R∪E,A t ′. ��

Proposition 3 Given a narrowable rewrite theoryR = (Σ, E, R), its FPP executableMel
theory (Σ, E∪A), the associated rewrite theoryRE = (Σ ′,A, RE), and a term t ∈ TΣ ′(X),
if t →1

R,A t[rσ]p using a rule c ≡ l → r if
∧n

i=1 Ai in R and an idempotent substitution

σ , then t →1
R,A t[rσc]p using the same rule c and substitution σc.

Proof For unconditional rules again there is nothing to prove, becauseσc ≡ σ , sowe focus on
conditional rules. By definition of σc we have that as t =A lσ then t =A lσc. Now we prove
that for i = 1, . . . , n if the condition Aiσ is verified then the condition Aiσc is also verified.
We have already proved it for the three types of equational conditions in Proposition 1 using
the associated condition A′

i , so the only case left to prove is the one where Ai ≡ ti → t ′i and
tiσ →R∪E,A t ′iσ . We prove it by induction on the number of →1

R∪E,A steps, including those
due to all rewriting conditions in the rewriting path.

– Base case. Zero →1
R∪E,A steps. Then tiσ =E t ′iσ , and as tiσ →E,A tiσc, and t ′iσ →E,A

t ′iσc then tiσc =E t ′iσc.
– Induction case. We consider two cases depending on the first rule used.

• tiσ →1
E,A u →R∪E,A t ′iσ . As σ is idempotent then tiσ →1

E,A uσ →R∪E,A

t ′iσ . As in case 3 of Proposition 1, tiσc →E,A t ′σc, and by induction hypothesis
uσc →R∪E,A t ′iσc, so tiσc →R∪E,A t ′iσc.• tiσ →1

R,A u →R∪E,A t ′iσ . Asσ is idempotent then tiσ →1
R,A uσ →R∪E,A t ′iσ . As

tiσ →∗
E,A tiσc then, by E-coherence of →1

R,A with →1
E,A, tiσc →∗

E,A→1
R,A w =E

uσ . uσ →∗
E,A uσc →!

E,A (uσ)↓ and, by induction hypothesis, uσc →R∪E,A t ′iσc.
Then, by Proposition 2 (uσ)↓ →∗

R∪E,A w′ =E w. As w =E uσ then w →!
E,A

w↓ =A (uσ)↓. Then, by strict coherence of→1
E,A and→1

R,A, w↓ →∗
R∪E,A w′′ =A

w′. Putting all together, tiσc →∗
E,A→1

R,A w →!
E,A w↓ →∗

R∪E,A w′′ =A w′ =E
t ′iσc, so tiσc →R∪E,A t ′iσc. ��

We are interested in computing E, A-normalized solutions for unification and reachability
goals using only sentence-normalized substitutions, hence reducing the state space.

Definition 19 (Sentence-normalized Rewriting) We will use the term sentence-normalized
rewriting (SNR) and write t →1

N t ′ (or t →N t ′) instead of t →1
E,A t ′ (resp., t →E,A t ′),

and also write t ⇒1
N t ′ (or t ⇒N t ′) instead of t →1

R∪E,A t ′ (resp., t →R∪E,A t ′), to imply
that only sentence-normalized substitutions have been applied in all rewrite steps.

Note that⇒N is related to→R∪E,A,→1
N⊆⇒1

N , and→N⊆⇒N . Also note that→1
N⊆→1

E,A,

so →N is sound with respect to →E,A, and ⇒1
N⊆→1

R∪E,A, so ⇒N is sound with respect
to →R∪E,A. Now we prove that →N is complete with respect to →E,A when rewriting to
canonical form.

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 443

Lemma 4 (Completeness of Sentence-normalized Rewriting to Canonical Form) Given an
FPP executable Mel theory (Σ, E) and its associated rewrite theory RE = (Σ ′,A, RE), if
t →E,A t ′, with t, t ′ ∈ TΣ ′(X) and t ′ is E, A-irreducible, then t →N t ′.

Proof By induction on the total number of →1
E,A steps.

– Base case: t →E,A t ′ with zero →1
E,A steps. Then t ′ =A t , so t ′ →N t .

– Induction case: t →1
E,A t[rσ]p →E,A t ′ with a rule c ≡ l → r if

∧n
i=1 ui → vi

and a substitution σ . By Proposition 1 t →1
E,A t[rσc]p with rule c and substitution σc,

so uiσc →E,A viσc for 1 ≤ i ≤ n. For 1 ≤ i ≤ n the term vi in rule c must be a
Σ-pattern (maybe with form tt), and σc is E, A-normalized with respect to Var(vi), so
viσc is E, A-irreducible. Then, by induction hypothesis, uiσc →N viσc for 1 ≤ i ≤ n,
so t →1

N t[rσc]p by definition. We choose the derivation t →1
N t[rσc]p →E,A t ′ which

must exist by confluence of→1
E,A because t[rσ]p →∗

E,A t[rσc]p, t ′ is E, A-irreducible,

and →1
N⊆→1

E,A. By induction hypothesis t[rσc]p →N t ′, so t →N t ′. ��
As a consequence, it is always the case that t →!

N t↓ and also, as →1
N⊆⇒1

N , t ⇒∗
N t↓.

Proposition 4 Given a narrowable rewrite theoryR = (Σ, E, R), its FPP executableMel
theory (Σ, E ∪ A), the associated rewrite theory RE = (Σ ′,A, RE), and two terms t, t ′ in
TΣ ′(X), if t ⇒N t ′ then t↓ ⇒N t ′.

Proof By induction on the number of ⇒1
N steps. Remember that =A⊆=E .

Base case. Zero ⇒1
N steps. Then t =E t ′, so [t]E = [t ′]E . As [t]E = [t↓]E then [t↓]E =

[t ′]E , so t↓ =E t ′.
Induction case. t ⇒1

N u ⇒N t ′. By Lemma 4 u ⇒N u↓. By induction hypothesis
u↓ ⇒N t ′. Putting all together: t ⇒1

N u ⇒∗
N u↓ ⇒N t ′. ��

Lemma 5 (Completeness of Sentence-normalizedRewriting for→R/E)Given a narrowable
rewrite theory R = (Σ, E, R), its FPP executable Mel theory (Σ, E ∪ A), the associated
rewrite theory RE = (Σ ′,A, RE), and terms t, t ′ in TΣ ′(X), if t →R/E t ′ then t ⇒N t ′.

Proof By Theorem 1, as t →R/E t ′ then t →R∪E,A t ′. We prove the Lemma by induction
on the number of →1

R∪E,A steps.

Base case. Zero →1
R∪E,A steps. Trivial because t =E t ′.

Induction case. t →1
R∪E,A t[rσ]p →R∪E,A t ′, with some rule c ≡ l → r if C in RE or R

and substitution σ at position p. By Proposition 1 and Proposition 3, and as →1
N⊆⇒1

N , then
t ⇒1

N t[rσc]p . As t[rσ]p →∗
E,A t[rσc]p →!

E,A t[rσ]p↓ then, by Lemma 4, t[rσc]p ⇒∗
N

t[rσ]p↓. By induction hypothesis t[rσ]p ⇒N t ′ so, by Proposition 4 t[rσ]p↓ ⇒N t ′.
Putting all together: t ⇒1

N t[rσc]p ⇒∗
N t[rσ]p↓ ⇒N t ′. ��

As a direct consequence of Lemma 4we get the following theorem telling us that with respect
to associated unification goals the E, A-normalized E, A-solutions are the same using→E,A,
or→N (whichwe call N -solutions). Recall that σc ≡ σ for any E, A-normalized substitution
σ and rule c in RE .

Theorem 3 (Equivalence of SNR for Solutions of Associated Unification Goals) Given an
FPP executable Mel theory (Σ, E) and its associated rewrite theory RE = (Σ ′,A, RE),
an E, A-normalized substitution σ is an E-solution of a system of sentences F and an E, A-
solution of its associated unification goal G ≡ ∧n

i=1(ti → t ′i) (so tiσ →E,A t ′iσ , for
1 ≤ i ≤ n) iff tiσ →N t ′iσ, i = 1, . . . , n (i.e. σ is an N-solution for G).

123

444 L. Aguirre et al.

Proof We prove each part of the double implication separately.

– ⇒: for 1 ≤ i ≤ n the term t ′i is a Σ-pattern (maybe with form tt) by definition of system
of sentences and associated unification goal, so t ′iσ is E, A-irreducible. As tiσ →E,A t ′iσ
then, by Lemma 4, tiσ →N t ′iσ .

– ⇐: Immediate since →1
N⊆→1

E,A. ��
Now we prove that conditions and canonical conditions have the same E, A-normalized
solutions. This result is important because it will allow us to reduce the state space in our
narrowing problems by working only with canonical forms.

Proposition 5 Given anFPPexecutableMel theory (Σ, E) and its associated rewrite theory
RE = (Σ ′,A, RE), for any conditional Mel sentence c in E, and corresponding rule
c′ ≡ s′ if

∧n
i=1 ui → vi in RE , if there is an E, A-normalized substitution σ such that

uiσ →E,A viσ , for 1 ≤ i ≤ n, then ui↓σ →N viσ , for 1 ≤ i ≤ n.

Proof Immediate since FPP and executability imply that, for 1 ≤ i ≤ n, vi is a Σ-pattern
and σ is E, A-normalized, so viσ is E, A-irreducible, and uiσ →E,A viσ . ui →E,A ui↓
implies uiσ →E,A ui↓σ so, by confluence of →1

E,A, ui↓σ →E,A viσ . Then by Lemma 4,
as viσ is E, A-irreducible, ui↓σ →N viσ . ��
Now we have, as a direct consequence, the desired result.

Lemma 6 (Equivalence of Solutions for Canonical Unification Goals) Given an FPP
executableMel theory (Σ, E) and its associated rewrite theoryRE = (Σ ′,A, RE), an E, A-
normalized substitution σ is an E, A-solution of the unification goal G ≡ ∧n

i=1(ti → t ′i),
associated to a system of sentences F, iff ti↓σ →N t ′iσ , for 1 ≤ i ≤ n (i.e., σ is an N-solution
for G↓).
Proof We have written t ′iσ instead of t ′i↓σ because for unification goals associated to a
system of sentences it is always the case that t ′i↓ ≡ t ′i (t ′i must be tt or aΣ-pattern). We prove
each part of the double implication separately.

– ⇒: tiσ →E,A t ′iσ . Since a unification goal associated to a system of sentences has the
same form and restrictions as the conditions of the rules in RE , then, by Proposition 5,
ti↓σ →N t ′iσ .

– ⇐: ti↓σ →N t ′iσ . As→1
N⊆→1

E,A then ti↓σ →E,A t ′iσ . ti →∗
E,A ti↓ implies tiσ →∗

E,A
ti↓σ . As a consequence of the last two deductions tiσ →E,A t ′iσ . ��

We can also prove that with respect to reachability goals the E, A-normalized E, A-solutions
are the same using →R∪E,A, or ⇒N (which we again call N -solutions).

Lemma 7 (Equivalence of Solutions for Canonical Reachability Goals)Given a narrowable
rewrite theory R = (Σ, E, R), its FPP executable Mel theory (Σ, E ∪ A), the associated
rewrite theory RE = (Σ ′,A, RE), and a reachability goal G ≡ u1 ⇒ v1 ∧ . . . ∧ un ⇒
vn ∧ G ′, where G ′ is a unification goal associated to a system of sentences F, and an
idempotent E, A-normalized substitution σ , these three assertions are equivalent:

1. σ is a solution for G,
2. σ is an N-solution for G↓,
3. σ is a solution for G↓.

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 445

Proof We prove 1 ⇒ 2, 2 ⇒ 3, and 3 ⇒ 1.

– 1 ⇒ 2
By induction on the number of ⇒1

R/E steps.

Base case: zero ⇒1
R/E steps. Then, by Definition 16, σ is a trivial solution of G, so

uiσ =E viσ , for 1 ≤ i ≤ n, and σ is an E-solution for G ′. Then, by Lemma 6, σ is also
a solution for ui↓ =E vi↓, for 1 ≤ i ≤ n, and also for G ′↓, i.e., σ is a trivial solution
for G↓.
Induction case: without losing generality we assume that u1σ ⇒1

R/E t ⇒R/E v1σ . As

σ is idempotent, then u1σ ⇒1
R/E tσ ⇒R/E v1σ . By definition of =E we have that

u1 =E u1↓ and t =E t↓, so u1σ =E u1↓σ and tσ =E t↓σ . Then, by definition of
⇒1

R/E , u1↓σ ⇒1
R/E t↓σ and, by Lemma 5, u1↓σ ⇒1

N t↓σ . By induction hypothesis
(fromnowonwewrite I.H.) t↓σ ⇒N v1↓σ , so u1↓σ ⇒N v1↓σ . Also by I.H. ui↓σ ⇒N

vi↓σ , for 2 ≤ i ≤ n, and σ is an N -solution for G ′↓, so σ is an N -solution for G↓.
– 2 ⇒ 3

Trivial because ⇒1
N⊆⇒1

R∪E,A⊆⇒1
R/E and σ is an N -solution for G↓.

– 3 ⇒ 1
Again by induction on the number of ⇒1

R/E steps.

Base case: zero ⇒1
R/E steps. Then, by Definition 16, σ is a trivial solution of G↓, so

ui↓σ =E vi↓σ , for 1 ≤ i ≤ n, and σ is an E-solution for G ′↓. Then, by Lemma 6, σ is
also a solution for ui =E vi , for 1 ≤ i ≤ n, and also for G ′, i.e., σ is a trivial solution
for G.
Induction case: without losing generality we assume that u1↓σ ⇒1

R/E t ⇒R/E v1↓σ . As

t =E t↓ then u1↓σ ⇒1
R/E t↓ ⇒R/E v1↓σ by definition of ⇒1

R/E . As σ is idempotent,

then u1↓σ ⇒1
R/E t↓σ ⇒R/E v1↓σ . By definition of =E we have that u1 =E u1↓ and

t =E t↓, so u1σ =E u1↓σ and tσ =E t↓σ . Then, by definition of⇒1
R/E , u1σ ⇒1

R/E tσ .
By I.H. tσ ⇒R/E v1σ , so u1σ ⇒R/E v1σ . Also by I.H. uiσ ⇒R/E viσ , for 2 ≤ i ≤ n,
and σ is a solution for G ′, so σ is a solution for G. ��

5 Conditional Narrowing for E-Solutions

Narrowing allows us to compute solutions for reachability goals. We implement narrowing
using a calculus with the following properties:

1. The calculus is weakly complete, i.e., for any idempotent R ∪ E, A-normalized solution
of a reachability goal G, the calculus can compute a more general answer for G.

2. The calculus is sound, i.e., if the calculus computes an answer σ for a reachability goal
G, then σ is a solution of G.

We are going to split the calculus into two parts: the one that solves unification goals and
the one that solves reachability goals. We assume that we have an A-unification algorithm
that for any equation t = t ′ returns CSUA(t = t ′) away from all the variables in G, so all the
unifiers are idempotent.

5.1 Transformation for Unification with Memberships

As the current existing unification algorithms in Maude are only valid for order-sorted theo-
ries, we are going to develop a transformation that allows us to apply these algorithms to our

123

446 L. Aguirre et al.

Mel theories at the kind level, and later takes into account membership information provided
by the variables in the calculus. As this transformation can impose a lot of extra work to our
calculus, because it doesn’t make use of order-sorted information for computing A-unifiers,
it would be desirable to identify which terms or subterms are not suitable for order-sorted
unification and apply the transformation only on those terms or subterms. We show an algo-
rithm that identifies the sorts that cannot be involved in an order-sorted unification. We will
apply the transformation only to terms of those sorts.

From S, the set of sorts in our rewrite theory, we define the subset MB(S) of non order-
sorted unifiable sorts, see [30], as the smallest subset of S such that

1. if t : s(if c) in E is not a subsort declaration then s ∈ MB(S).
2. if s ∈ MB(S) and s ≤ s′, with s, s′ in S then s′ ∈ MB(S).
3. if f : s1 · · · sn → s is an operator declaration, with s in S and si ∈ MB(S) for some

i, 1 ≤ i ≤ n, then s ∈ MB(S).

Recall that for simplicity we only allow overloading of operators when their images belong
to the same kind. We define OS(S) = S −MB(S). OS(S) is the set of sorts whose terms can
be unified by order-sorted unification, no memberships can be involved directly or indirectly,
via operators, when checking whether a term has any of these sorts or not.

Example 11 In the concurrency specification example, as u1,u2 : us is in E , then us ∈
MB(S) using case 1. Also, as xus | yu, y′

u | emptyT | emptyT : s if yu, y′
u, xus : us is in

E , then s ∈ MB(S) using case 1. ThenMB(S) = {us,s} and OS(S) = {u,t,tb,n,b}.
Now, given t and t ′, if ls(t) ∈ OS(S) and ls(t′) ∈ OS(S), we unify them directly. Else we

compute a non-well-formed substitution ρ = {xisi �→ yi[si] | xisi ∈ Var(t)∪Var(t ′)∧ si ∈ S},
with each yi[si] a fresh unsorted variable, and unify sρ and tρ, terms that only have unsorted

variables. From ρ = {xisi �→ yi[si]}ni=1 we generate the system of sentences C = ∧n
i=1 y

i[si] :
si . C and ρ are computed by kinded(t, t ′) defined below, V is the auxiliary set of already
processed variables, function k processes lists of terms, function k1 processes individual
terms and function k0 discards V and returns the pair (C, ρ):

kinded(t, t ′) = (∅, id) if ls(t) ∈ OS(S) and ls(t′) ∈ OS(S)
kinded(t, t ′) = k0(k((t, t ′), (∅, id,∅))) otherwise

k((t1, . . . , tn), (C, ρ, V)) = k((t2, . . . , tn), k1(t1, (C, ρ, V)))

k((t), (C, ρ, V)) = k1(t, (C, ρ, V))

k1(f (t1, . . . , tn), (C, ρ, V)) = k((t1, . . . , tn), (C, ρ, V))

k1(c, (C, ρ, V)) = (C, ρ, V) where c constant.
k1(xiκi , (C, ρ, V)) = (C, ρ, V) if xiκi ∈ V or κ is a kind.
k1(xiκi , (C, ρ, V)) = (C ∧ yi[si] : si , ρ ∪ {xiκi �→ yi[si]}, V ∪ {xiκi }) otherwise, with yi[si]
a fresh variable.

k0(C, ρ, V)) = (C, ρ)

The computed substitution ρ replaces the variables that belong to sorts that cannot be unified
with order-sorted algorithms with variables of the corresponding kind. The computed con-
dition C ensures that the new kinded variables are instantiated to terms with the same sort as
the original variables.

Lemma 8 Given anFPP executableMel theory (Σ, E∪A) and its associated rewrite theory
RE = (Σ ′, A, RE), a substitution σ , with Dom(σ) = Var(t) ∪ Var(t ′) (i.e., all variables

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 447

are at least renamed), is an idempotent A-unifier of two terms t, t ′ in TΣ(X) if and only if
σ =A ργ γ ′, with kinded(t, t ′) = (C, ρ), γ an idempotent A-unifier of tρ and t ′ρ, and γ ′
an E-solution for the system of sentences Cγ , where all substitutions are always away from
all the variables that have previously appeared.

Proof We prove each implication separately.
⇒)
The proof for the case where ls(t) ∈ OS(S) and ls(t′) ∈ OS(S) is trivial because no

memberships are involved in the unification of t and t ′,C is empty, ρ = id, γ = σ and
γ ′ = id.

Otherwise, if σ is an idempotent A-unifier of t and t ′, with Dom(σ) = {x1s1 , . . . , xnsn , z1k1 ,
. . . , zmkm } such that si in S (1 ≤ i ≤ n) and k j in K (1 ≤ j ≤ m), then, by construction, for

each xisi , with 1 ≤ i ≤ n, there is a fresh variable yi[si] such that ρ = {xisi �→ yi[si]}ni=1 and

C = ∧n
i=1 y

i[si] : si .
We define σ ′ = {yi[si] �→ xisi σ }ni=1 ∪ {z jk j �→ z jk j σ }mj=1. By construction σ = ρσ ′. σ ′ is

idempotent because each yi[si], 1 ≤ i ≤ n, is a fresh variable that doesn’t appear anywhere
else and σ is idempotent. As tσ =A t ′σ then (tρ)σ ′ =A (t ′ρ)σ ′, so σ ′ is an A-unifier for
(tρ) and (t ′ρ). Then, there is a substitution γ ∈ CSUA(tρ = t ′ρ), so tργ =A t ′ργ , such
that σ ′ �A γ , and there exists a substitution γ ′ such that σ ′ =A γ γ ′, so σ =A ργ γ ′. For
each condition yi[si] : si in C, 1 ≤ i ≤ n, we have that xisi ρ = yi[si], and xisi ργ γ ′ =A xisi σ ,

so yi[si]γ γ ′ =A xisi σ . As x
i
si σ has sort si because σ is well-formed, then γ ′ is a solution for

yi[si]γ : si , so γ ′ is an E-solution for the system of sentences Cγ .
⇐)
If ρ = {xisi �→ yi[si]}ni=1,C = ∧n

i=1 y
i[si] : si , γ is an idempotent A-unifier of tρ and t ′ρ,

and γ ′ is an E-solution for Cγ , we call σ ′ = γ γ ′ and σ = ρσ ′, so tσ =A t ′σ . Now we
prove that σ is well-formed. The sorted variables in Var(t) ∪ Var(t ′) are {xisi }ni=1. We have
that xisi σ = yi[si]σ

′,1 ≤ i ≤ n, and γ ′ is an E-solution for yi[si]γ : si , so yi[si]γ γ ′ : si , i.e,
xisi σ : si . σ is idempotent because σ ′ is away from Vars(t) ∪ Vars(t ′) ∪ Vars(C). ��
Example 12 In the concurrency specification example, let t ≡ u2, xu and t ′ ≡ yus. Then
σ = {xu �→ u1, yus �→ u1,u2} is an A-unifier of t and t ′ (because u1,u2 =A u2,u1).
As ls(t) = [us] and ls(t ′) = us, neither of them belonging to OS(S), we don’t have direct
A-unification algorithms for t and t ′, so we compute kinded(t, t ′), with answer ρ = {xu �→
z[us], yus �→ v[us]}, and C = z[us] : us ∧ v[us] : us. Now tρ ≡ u2, z[us] and t ′ρ ≡ v[us].
There is a many-sorted A-unification algorithm at the kind level for tρ and t ′ρ that returns the
answer γ = {z[us] �→ w[us], v[us] �→ u2, w[us]}. As Cγ = w[us] : us ∧ u2, w[us] : us,
then γ ′ = {w[us] �→ u1} is an E-solution for the system of sentences Cγ , and {xu �→
u1, yus �→ u1,u2} = σ =A ργ γ ′ = {xu �→ u1, yus �→ u2,u1}.
5.2 Calculus for Unification Strategies and Rules

The calculus for unification uses the following strategies:

– Inference rules are applied with leftmost strategy.
– As we are computing E, A-normalized solutions and we have already shown the equiva-

lence of SNR-rewriting with respect to E, A-normalized solutions for unification goals,
we have built-in the following strategy in our calculus: we only apply a calculus rule if
the composition of all computed substitutions remains idempotent E, A-normalized with

123

448 L. Aguirre et al.

Fig. 5 Inference rules for E-solution by conditional narrowing

respect to all extra variables and all the variables in the initial unification problem. This
means that we must keep track of all extra variables that have not been instantiated to
ground terms in order to be able to discard any narrowing step that violates this principle.

– As we have also proved the equivalence of E, A-normalized solutions with respect to
canonical unification goals, we follow a second strategy in our calculus consisting in
canonizing the unification problem after each use of a rule in the calculus, except for
rules transitivity and congruencewhich are the only rules that don’t apply substitutions
to the unification problem.

We shall later prove that we don’t miss any answer with these reductions of the state space.
Our calculus for E-solutions is defined by the inference rules in Fig. 5. These rules transform
unification problems of the form t → t ′, or t |p →1 xk, t[xk]p → t ′ (xk fresh variable, with
k = [ls(t |p)]), both having the same meaning: find a substitution σ such that tσ →E,A t ′σ .
Note that in the second type of subproblem, t can be easily reconstructed as t ≡ t[xk]pρ,
with ρ = {xk �→ t |p}. The goal G ′ represents the rest of unification subproblems that have
not been processed yet, if they exist. We show G ′ in an inference rule only when it can be
affected by instantiation and further canonization.

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 449

Note that unification goals are a subset of unification problems. For any subproblem of the
form t → t ′ (or eq(t, t ′) → tt), if t =A t ′ then we always apply rule elimination (resp., rule
unification) with substitution id, which is more general than any other possible computed
answer. After applying rule transitivitywe get a unification problem t |p →1 xk, t[xk]p → t ′,
where we perform an actual narrowing step in t using rule reduction, or we perform an actual
narrowing step in some proper subterm of t , applying several times rule congruence to reach
the desired subterm, followed by an application of rule reduction. Such narrowing steps have
a kinded variable xk as target, because although t may have some sort s when it is sufficiently
instantiated with some substitution σ, t will have kind k = [s] for partial instantiations, but
it will usually have no sort. Rule membership is needed to lower the type of a variable so
it has a desired sort. It is the most general way of instantiating the variable.

Our transformation of the rules in RE and R generates additional membership subgoals.
Many of them are trivial and don’t need any further instantiation, or become trivial after
several calculus steps are applied to other subgoals. By canonization, these trivial member-
ship subgoals t :s → tt become tt → tt and they will be removed from the problem with
the elimination rule and substitution id. If subgoals were not canonized, there would be a
significant overhead in the calculus only in order to prove this trivial subgoals, not to mention
all the overhead generated by applying narrowing to all subgoals that may exist in a rewriting
path between a subgoal g and its canonized version g↓.
Proposition 6 Given an FPP executableMel theory (Σ, E ∪ A) and its associated rewrite
theory RE = (Σ ′, A, RE), after applying the transitivity rule followed by zero or more
applications of the congruence rule to a unification problem of the form t → t ′ we get
another unification problem of the form t |p →1 xk, t[xk]p → t ′ with k some kind in Σ ′.

Proof Immediate, by induction on the number of congruence rules applied.

– Base case: zero congruence rules. Then t → t ′ �[t] t →1 xk, xk → t ′, with k =
[ls(t)]. In this case p = ε and t[xk]ε ≡ xk .

– Induction case. We assume that after applying the congruence rule zero or more
times we have: t → t ′ �[t]�∗[c] (t |p →1 xk, t[xk]p → t ′). Then, if we apply
the congruence rule again, by definition of the rule we get the unification problem
t |p.i →1 yk′ , t[yk′]p.i → t ′. ��

This proposition means that after applying the transitivity rule [t] to a unification subgoal
and before applying the reduction rule [r], all generated unification subproblems that use the
→1 symbol will have the same shape: t |p →1 xk, t[xk]p → t ′, for some p ∈ Pos(t), with
k = [ls(t |p)], and xk is a fresh variable. As we always start our inferences from a unification
goal, we can assume that a unification subproblem has this shape when there is a→1 symbol
within the subproblem.

When we apply one of the calculus rules for unification to a unification problem Gi with
some inference rule [r] and substitution σi , yielding another unification problem Gi+1, we
display it as Gi �[r],σi Gi+1 and say that there exists a narrowing step from Gi to Gi+1

using the substitution σi and the inference rule [r]. As a special case, σi = id when we apply
the transitivity or congruence rules. [r] and σi may be omitted when their actual values are
irrelevant or can be inferred.

Definition 20 (Computed Answer) Given a unification goal G, if there is a narrowing path
from G to the empty problem �,G = G0 �σ1 G1 �σ2 . . . �σn �, then we write G �∗

σ �,
with σ = σ1σ2 . . . σn , and call σVar(G) a computed answer for G.

123

450 L. Aguirre et al.

The calculus for unification is sound and weakly complete, i.e., complete with respect
to idempotent R ∪ E, A-normalized solutions. We will prove completeness of the calculus
with respect to canonized goals and E , A-normalized idempotent solutions, more general
than R ∪ E, A-normalized solutions. In this way, we can independently apply this part of
the calculus to any FPP executable Mel theory, even if it is the case that the Mel theory
is not underlying some rewrite theory. For a condition in RE , or a unification goal, G ≡∧n

i=1 ti → t ′i we define G↓ ≡ ∧n
i=1 ti↓ → t ′i↓. Recall that for a unification goal associated

to a system of sentences, or a condition in RE ,G↓ ≡ ∧n
i=1 ti↓ → t ′i because t ′i is always tt

or a Σ-pattern.

Theorem 4 (Soundness of the Calculus for E-solution) Given a narrowable rewrite theory
R = (Σ, E, R), its FPP executable Mel theory (Σ, E ∪ A), the associated rewrite theory
RE = (Σ ′,A, RE), a system of sentences, and its associated unification goal G, if σ is a
computed answer for G↓ then σ is an idempotent E, A-normalized E-solution for G.

Proof By Lemma 6, we only have to prove that σ is an E-solution for G↓. By construction
of σ all computed answers are idempotent E, A-normalized. Now, we prove that σ is an E-
solution for each unification subproblem generated by narrowing from an initial unification
subproblem u↓ → v, by induction on the total number of narrowing steps. We prove that
if σ is a computed answer for t → t ′, or t |p →1 x p

kp
, t[x p

kp
]p → t ′ (where t and all of

its subterms are always canonical forms by definition of the calculus, so t |p↓ ≡ t |p), then
tσ →E,A t ′σ so σ is an E-solution for t → t ′.

Base case, one narrowing step:

– Elimination rule [e]. There are two subcases:

• tt → tt. Trivial with σ = id.
• t → t ′ and tσ =A t ′σ , so t → t ′ �[e],σ �. Then, by definition of→E,A, tσ →E,A

t ′σ .

– Unification rule [u]. eq(t, t ′) → tt and tσ =A t ′σ , so eq(t, t ′) → tt �[u],σ �. Then,
eq(tσ, t ′σ) →1

E,A tt using rule eq(xk, xk) → tt and substitution ρ = {xk �→ tσ }, so
eq(tσ, t ′σ) →E,A tt.

– Membership rule [m]. xκ : s → tt, σ = {xκ �→ ys′ }, s′ maximal such that s′ ≤ s and
s′ ≤ κ , and ys′ a fresh variable, so xκ : s → tt �[m],σ �, so xκσ : s → tt ≡ ys′ : s → tt.
As s′ ≤ s there is a membership zs′ : s in E , and a rule zs′ : s → tt in RE , so
ys′ : s →E,A tt.

Induction case:

– Transitivity rule [t]. t → t ′ �[t] t →1 xk, xk → t ′ �∗
σ �. By I.H. tσ →E,A t ′σ .

– Reduction rule [r]. The unification subproblem has form t |p →1 xk, t[xk]p → t ′, with
xk fresh variable. We apply rule [r] because there is a rule c ≡ l → r if

∧n
i=1 ti → t ′i

in RE and there is an idempotent substitution θ , with Dom(θ) ⊆ Var(t |p) ∪ Var(l) and
θVar(t) E, A-normalized, such that tθ =A lθ , and also Dom(θ) ∩ Var(t ′i) = ∅ because c
has fresh variables and t ′i is tt or an FPP Σ-pattern.
Then, the narrowing derivation is t |p →1 xk, t[xk]p → t ′ �[r],ρ,θ

∧n
i=1(tiθ)↓ →

t ′i ∧ (t[r]pθ)↓ → t ′ �∗
σ ′ �, (t ′θ)↓ ≡ t ′ becauseDom(θ)∩Var(t ′) = ∅, and t ′ is tt or an

FPP Σ-pattern, with σ ′ E, A-normalized with respect to all variables in
∧n

i=1(tiθ)↓ →
t ′i ∧ (t[r]pθ)↓ → t ′. Then σ = θσ ′.
For 1 ≤ i ≤ n, tiθ →E,A (tiθ)↓, so (tiθ)σ ′ →E,A (tiθ)↓σ ′. By I.H. (tiθ)↓σ ′ →E,A

t ′iσ ′, so tiσ →E,A t ′iσ ′, and also tiσ →E,A t ′iσ because Dom(θ) ∩ Var(t ′i) = ∅, so

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 451

t ′i θσ ′ ≡ t ′iσ ′. As t |pθ =A lθ then t |pσ =A lσ so t |pσ →1
E,A rσ . Then, by definition of

→1
E,A, t[t |pσ]p →1

E,A t[rσ]p , so t[t |pσ]pσ →1
E,A t[rσ]pσ which, as σ is idempotent

and t[t |p]p ≡ t , is equivalent to tσ →1
E,A t[r]pσ .

t[r]pθ →E,A (t[r]pθ)↓, so t[r]pθσ ′ →E,A (t[r]pθ)↓σ ′. As by I.H. (t[r]pθ)↓σ ′ →E,A

t ′σ ′, then t[r]pθσ ′ →E,A t ′σ ′, i.e., t[r]pσ →E,A t ′σ . As tσ →1
E,A t[r]pσ , then

tσ →E,A t ′σ .
– Congruence rule [c]. By I.H. tσ →E,A t ′σ .

As t |p.iσ →1
E,A yk′σ , then t[t |p.iσ]p.i →1

E,A t[yk′σ]p.i and t[t |p.iσ]p.iσ →1
E,A

t[yk′σ]p.iσ which, as σ is idempotent and t[t |p.i]p.i ≡ t , is equivalent to tσ →1
E,A

t[yk′]p.iσ . Again, as t[yk′]p.iσ →E,A t ′σ , then tσ →E,A t ′σ . ��
Theorem 5 (WeakCompleteness of theCalculus for E-solution)Given a narrowable rewrite
theory R = (Σ, E, R), its FPP executable Mel theory (Σ, E ∪ A), the associated rewrite
theory RE = (Σ ′,A, RE), a system of sentences F, and its associated unification goal
G, if σ is an idempotent E, A-normalized E-solution for G then there is an idempotent
E, A-normalized substitution γ , with σ �A γVar(G), such that G↓ �∗

γ �.

Proof Every computed answerγ is idempotent E, A-normalizedbydefinition of the calculus.
If σ is an E-solution for G then, by Lemma 6, for each unification subgoal t → t ′, t↓σ →N

t ′σ . We prove the theorem using induction on the number of unification subgoals plus the
number of →1

N rewrite steps, including the subgoals and rewrite steps due to conditions.
Base case. One subgoal, zero rewrite steps. There are several cases:

– F ≡ t = t ′, and eq(t, t ′)↓σ →N tt because t↓σ =A t ′↓σ . There are two subcases:

• t↓ =A t ′↓. Then G↓ ≡ tt → tt �[e],id �, and trivially σ �A id.
• t↓ �=A t ′↓. Then G↓ ≡ eq(t↓, t ′↓) →tt , and there exists γ ∈ CSUA(t↓ = t ′↓)

such that σ �A γ , so G↓ ≡ eq(t↓, t ′↓) →E,A t �[u],γ �.

– F ≡ t := t ′, and t ′↓σ →N tσ because t↓σ =A t↓σ (t ′↓ ≡ t because t is a Σ-pattern).
Then there exists γ ∈ CSUA(t ′↓ = t) such that σ �A γ , so G↓ ≡ t ′↓ → t �[e],γ �.

– F ≡ t : s, and t :s↓σ →N tt because t :s↓ ≡ tt (i.e., t and t↓ have sort s). Then, again,
G↓ ≡ tt → tt �[e],id �, and trivially σ �A id.

Induction case. We consider two subcases:

– Several subgoals in the initial problem (there may be zero →1
N rewrite steps): G ≡

t → t ′ ∧ G ′. As σ is an E-solution for t → t ′, which has at most the same number
of rewrite steps and one less subgoal than G, so I.H. applies and there exists an idem-
potent E, A-normalized substitution γ such that σ �A γVar(t→t ′), so σ = γVar(t→t ′)ρ
for some idempotent E, A-normalized substitution ρ, such that t → t ′ �∗

γ �. Then
t → t ′ ∧ G ′ �∗

γ (G ′γ)↓.
As σ = γVar(t→t ′)ρ and Var(G ′) ∩ Dom(γ) ⊆ Var(t → t ′) then G ′γ ≡ G ′γVar(t→t ′),
so ρ is an E-solution for G ′γ because σ = γVar(t→t ′)ρ. Then I.H applies to (G ′γ)↓,
which has at most the same number of rewrite steps and one less subgoal than G, and
there exists an idempotent E, A-normalized substitution θ such that ρ �A θVar((G ′γ))↓
and (G ′γ)↓ �∗

θ �.
Var((G ′γ)↓) ⊆ Var(Gγ) Dom(θ) ∩ Var(Gγ) ⊆ Var((G ′γ)↓), so θVar((G ′γ)↓) =
θVar(Gγ), and ρ �A θVar(Gγ). Let’s call v = Var(G). As v ∩ Dom(γ) ⊆ Var(t → t ′)
then γVar(t→t ′) = γv , and σ = γvρ. Recall that Dom(θVar(Gγ)) ⊆ Ran(γv) ∪ v. Then
σ = γvρ �A γvθVar(Gγ) = γv(θRan(γv) ∪ θv) = (γ θ)v .

123

452 L. Aguirre et al.

– One subgoal in the initial problem and at least one →1
N rewrite step: G ≡ t →

t ′, t↓σ →1
N t ′′ →N t ′σ, σ is an N -solution for G↓, and t ′σ is a canonical form.

We check each type of rule that can have been applied in t↓σ →1
N t ′′:

1. eq(xk, xk) → tt, so t ≡ eq(t1, t2), with t1↓ �=A t2↓ (else t↓ ≡ tt and there would
not be any →1

N step because tt is a canonical form), t1↓σ =A t2↓σ, t ′ ≡ tt, and
eq(t1↓, t2↓) →1

N tt →N tt. Then there exists γ ∈ CSUA(t1↓ = t2↓) such that
σ �A γ , so eq(t1↓, t2↓) → tt �[t] eq(t1↓, t2↓) →1 xk, xk → tt �[u],γ tt →
tt �[e] �.

2. c ≡ l:s → tt if C , so t ≡ t1:s, with ls(t1↓) � s (else t↓ ≡ tt), t1↓σ =A lσ ′
c, σ

′
c

is an idempotent E-solution for C (E, A-normalized with respect to Extra(C)),
t ′ ≡ tt, t ′′ ≡ tt, and t1↓σ :s →1

N tt →N tt. Dom(σ) ∩Dom(σ ′
c) = ∅, so σ ∪ σ ′

c is an
A-unifier for t1↓ = l. Let’s call v = Var(t) = Var(G), and w = Var(l). Then there
exists γ ≡ γv ∪ γw ∈ CSUA(t1↓ = l) such that t1γv =A lγw , and σ ∪ σ ′

c �A γ ,
so σ ∪ σ ′

c =A γρ for some idempotent substitution ρ. σ is E, A-normalized, σ ′
c

is E, A-normalized except maybe for some subset of Dom(γ), so ρ must be E, A-
normalized. Then t1:s → tt �[t] t1:s →1 xk, xk → tt �[r],γ (Cγ)↓. As C has
fresh variables then Dom(σ) ∩ Var(C) = ∅, so Cσ ′

c ≡ C(σ ∪ σ ′
c) ≡ C(γρ).

σ ′
c is an E-solution for C with less than n rewrite steps, so ρ is an idempotent E, A-

normalized E-solution for Cγ with less than n rewrite steps, with (Cγ)↓ ≡ (Cγw)↓
becauseDom(γv)∩Var(C) = ∅. By I.H. there exists θ , with ρ �A θVar(Cγ) such that
(Cγ)↓ �∗

θ �. The composition of the substitutions in the narrowing derivation is
γ θ . We have to prove that σ �A (γ θ)v . As Var(Cγ)∩v = ∅ thenDom(θ)∩v = ∅.
As σ ∪σ ′

c =A γρ,Dom(σ ′
c)∩v = ∅, andDom(σ) ⊆ v, then σ = (γvρRan(γv))∪ρv .

(Cγ)↓ �∗
θ � so Dom(θ) ⊆ Var(Cγ) ∪ v′, with v′ a set of fresh variables gener-

ated by the narrowing calculus, and Ran(γ) = Ran(γv) = Ran(γw) because γ ∈
CSUA(t1↓ = l) and A is regular. Then, Dom(θ) ∩ Ran(γ) = Dom(θ) ∩ Ran(γv) ⊆
Var(Cγ), and θVar(Cγ) �A θRan(γ). As ρ �A θVar(Cγ), then ρ �A θRan(γv), and
ρRan(γv) �A θRan(γv).
Now, γvρRan(γv) �A γvθRan(γv) = γvθRan(γv) ∪ θv because Dom(θ) ∩ v = ∅, so
θv = id. But γvθRan(γv) ∪ θv = (γ θ)v , so γvρRan(γv) �A (γ θ)v .
In conclusion: σ = γvρRan(γv) ∪ ρv �A (γ θ)v .

3. c ≡ l → r if C , not in cases 1 or 2. Then t ′ �= tt, t ′′ �= tt, and t↓σ →1
N

(t↓σ)[rσ ′
c]p →N t ′σ because (t↓σ)|p =A lσ ′

c and σ ′
c is an E-solution for C (E, A-

normalized with respect to Extra(C)). As σ is E, A normalized and l /∈ X , then
we cannot rewrite inside a position instantiated by σ or a variable position, so p
must be an already existing non-variable position in t↓ (i.e., p ∈ PosΣ(t↓)). Also
(t↓σ)[rσ ′

c]p ≡ t↓[rσ ′
c]pσ because Dom(σ) ∩ Var(rσ ′

c) = ∅, and t↓[rσ ′
c]pσ ≡

t↓[r]p(σ ∪ σ ′
c) because Dom(σ ′

c) ∩ Var(t↓) = ∅ and Dom(σ) ∩ Dom(σ ′
c)) = ∅.

As in the previous subcase, t↓σ →1
N t↓[r]p(σ ∪ σ ′

c) →N t ′σ , and there exists
γ = γv ∪ γw ∈ CSUA(t↓|p = l), with v = Var(G), and w = Var(c), such that
t↓|pγv =A lγw . Then there exists γ ≡ γv ∪ γw ∈ CSUA(t↓|p↓ = l) such that
t↓|pγv =A lγw, and σ ∪ σ ′

c �A γ , so σ ∪ σ ′
c =A γρ for some idempotent substitu-

tion ρ. σ is E, A-normalized, σ ′
c is E, A-normalized except maybe for some subset

of Dom(γ), so ρ must be E, A-normalized.
Although t ′ is an FPP Σ-pattern, we reason in this part of the proof as if t ′ could be
any term, for compatibility with the equivalent proof for the calculus for reachability,
obtaining then a more general result.
Then t↓ → t ′↓ �[t] t↓ →1 xk, xk → t ′↓ �∗[c] t↓|p →1 yk′ , t↓[yk′]p →

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 453

t ′↓ �[r],γ (Cγ)↓ ∧ (t↓[r]pγ)↓ → (t ′↓γ)↓ (recall that (t ′↓γ)↓ ≡ t ′). Let’s call
u = Var(Cγ ∧ t↓[r]pγ). ρ is an E-solution for Cγ ∧ t↓[r]pγ → (t ′↓γ)↓ with one
less subgoal and one less rewriting step than the E-solution σ for t → t ′, so I.H.
applies and there exists an E, A-normalized substitution θ such that ρ �A θu and
(Cγ)↓ ∧ (t↓[r]pγ)↓ → (t ′↓γ)↓ �∗

θ �.
As ρ �A θu then ρ �A θVar(Cγ), so ρVar(Cγ) �A θVar(Cγ). σ ∪ σ ′

c =A γρ,
so σ = (σ ∪ σ ′

c)v = (γρ)v . Then we have σ = γvρRan(γv) ∪ ρv . As Dom(γv) ∩
Dom(ρv) = ∅ then γvρRan(γv)∪ρv = γv(ρRan(γv)∪ρv), and σ = γv(ρRan(γv)∪ρv) =
γvρVar(Cγ) �A γvθVar(Cγ) = γv(θRan(γv)) ∪ θv). As Dom(γv) ∩ Dom(θv) = ∅, then
γv(ρRan(γv) ∪ ρv) = γvρRan(γv) ∪ ρv , so σ �A γvρRan(γv) ∪ ρv = (γρ)v . ��

6 Reachability by Conditional Narrowing

In this part of the calculus, given an FPP narrowable rewrite theoryR = (Σ, E ∪ A, R) and
a reachability goal G, we will solve the normalized reachability goal G↓ and prove that it
has the same E, A-normalized solutions. We will use a transformed set of rules R̃ where for
each rule l → r (if

∧n
i=1 Ai) in R, there is a rule l → r (if

∧n
i=1 A

′
i) in R̃ such that:

– if Ai has the form ti → t ′i then A′
i is ti ⇒ t ′i ,

– if Ai has the form ti : si then A′
i is ti :si → tt,

– if Ai has the form ti := t ′i then A′
i is t

′
i → ti , and

– if Ai has the form ti = t ′i then A′
i is eq(ti , t

′
i) → tt.

That is, we apply the same transformation that we used in the rewrite theory associated to
a Mel theory, and replace each → symbol in conditions with a new ⇒ symbol, so we can
distinguish reachability conditions from equational conditions.

6.1 Calculus for Reachability Strategies and Rules

Reachability by conditional narrowing is achieved using the previous calculus rules in Fig. 5,
extended with the calculus rules in Fig. 6. These new rules transform reachability problems
that have the form t ⇒ t ′, t |p →1 xk, t[xk]p ⇒ t ′, or t |p ⇒1 xk, t[xk]p ⇒ t ′ (xk being a
fresh variable, where k = [ls(t |p)]), all of them having the same meaning: find a substitution
σ such that tσ →R∪E,A t ′σ . As for unification goals, reachability goals are a subset of
reachability problems.We show the rest of the reachability goal,G ′, in an inference rule only
when it can be affected by instantiation and further canonization.

The calculus for reachability uses the following strategies:

– Inference rules are applied with leftmost strategy.
– As we are computing E, A-normalized solutions and we have already shown the equiva-

lence of SNR-rewriting with respect to E, A-normalized solutions for reachability goals,
we have built-in the following strategy in our calculus: we only apply a calculus rule if
the composition of all computed substitutions remains idempotent E, A-normalized with
respect to all extra variables and all the variables in the initial reachability problem, that
is, when we apply a rule l → r (if C) in R̃ the only variables that need not be instantiated
with an idempotent E, A-normalized substitution are those in Var(l).

– As we have also proved the equivalence of E, A-normalized solutions with respect to
canonical reachability goals, we follow a second strategy in our calculus consisting in
canonizing the reachability problem after each use of a conditional rule in the calculus.

123

454 L. Aguirre et al.

Fig. 6 Inference rules for reachability by conditional narrowing

– Rule rewrite is applied on t |p with substitution θ only if the whole term tθ is E,A-
normalized.

– A list of reachability problems is kept. Initially the list holds the original problem. Each
new reachability problem generated by the calculus is checked against the current list. If
the problem is a renaming and/or reordering of any element in the list, it gets discarded.

We explain the meaning of these rules and prove that the calculus is sound and weakly
complete. Recall that we have defined →R∪E,A as →∗

R∪E,A;=A.

– The reflexivity rule applies the =E part of the definition for →R∪E,A. It is the only rule
that having a ⇒ symbol as an antecedent doesn’t have a ⇒ symbol as a consequent, so
it has always to be applied in every derivation from a subproblem of the form ti ⇒ t ′i to
get rid of the ⇒ symbol. If a solution σ generates a derivation with zero rewrite steps in
→R∪E,A, this means that tiσ =E t ′iσ , so we can find this substitution or a more general
one by applying the reflexivity rule. The resulting subproblem eq(ti , t ′i) will be solved
using the calculus rules for unification.

– The transitivity rule has been expanded. Now it can also apply the →1
R,A part of the

definition for→R∪E,A, invoking the use of the congruence and rewrite rules to generate
one actual reachability step (⇒1) for reachability subgoals t ⇒ t ′.

– The congruence rule has been expanded to deal with →1 followed by ⇒, and ⇒1

followed by ⇒. It has the same meaning as in the calculus for E-Solution.
– The reduction rule has been expanded to deal with →1 followed by ⇒. It also has the

same meaning as in the calculus for E-Solution.
– The rewrite rule is the only one that may generate instantiations, by using some rule r̃

from R̃. It gets rid of the ⇒1 symbol generated by the transitivity rule, and propagated

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 455

by the congruence rule, transforming equational and membership conditions in rule r
from R into their equivalent unification conditions in RE . After the congruence rule
has selected a subterm t |p , we apply the rewrite rule, using rule r̃ with some A-unifier θ ,
only if the whole instantiated term tθ is E, A-normalized. This is an improvement over
previous reachability calculi for narrowing that only required the instantiated subterm
t |pθ to be E, A-normalized.

Theorem 6 (Soundness of the Calculus for Reachability)Given a narrowable rewrite theory
R = (Σ, E, R), its FPP executable Mel theory (Σ, E ∪ A), the associated rewrite theory
RE = (Σ ′,A, RE), and a reachability goal G, if σ is a computed answer for G↓, using the
transformed set of rules R̃, then σ is a solution for G.

Proof We prove that given a reachability problem G ≡ g(∧ G ′), if G↓ �∗
σ � then σ is a

solution for G in→R/E . In particular, we prove that if g ≡ t ���1 xk, xk ⇒ t ′ �∗
σ �, where

��� can be either → or ⇒, then σ is a solution for t ⇒ t ′ in →R/E . As R is narrowable,
and by Lemma 7, it is enough to prove that σ is an N -solution for G↓. Soundness of the
calculus for reachability is proved by induction on the total number of narrowing steps for each
unification subproblemgenerated by narrowing fromG↓. By our previous proof of soundness
in Theorem 4, we know that if we compute a solution σ for t → t ′ then tσ →N t ′σ .

Base case: one narrowing step. The calculus rules in Fig. 6 cannot compute a solution in
one narrowing step, so we are in one of the base cases already proved for Theorem 4, with
some unification goal G↓ ≡ t → t ′, so σ is an E-solution for G↓, hence a solution for G↓
in →R∪E,A.

Induction case: The cases where the first rule applied to g↓ is shown in Fig. 5 has already
been proved for unification goals in Theorem 4. The same proof is valid for reachability goals
mutatis mutandis, so we only check the cases where the first rule applied to g↓ is one of the
rules in Fig. 6.

– Reflexivity rule: any computed answer σ is a solution for t = t ′ and G ′↓. Then, as seen
in the base case, σ is a solution for g ≡ t ⇒ t ′ and, by I.H., σ is also a solution for G ′↓,
so σ is a solution for G↓ in →R∪E,A. We skip the part of the proof related to G ′ in the
rest of cases, as it is always the same.

– Transitivity rule: by I.H. σ is a solution for t ⇒ t ′ in →R∪E,A.
– Congruence rule: by I.H. σ is a solution for t ⇒ t ′ in →R∪E,A.
– Reduction rule: the reachability subproblem has form t |p →1 xk, t[xk]p ⇒ t ′, with xk

a fresh variable. We apply rule [r] because there is a rule c ≡ l → r if
∧n

i=1 ti → t ′i
in RE and there is an idempotent substitution θ , with Dom(θ) ⊆ Var(t |p) ∪ Var(l) and
θVar(t) E, A-normalized, such that tθ =A lθ , and also Dom(θ) ∩ Var(t ′i) = ∅ because c
has fresh variables and t ′i is tt or an FPP Σ-pattern.
Then, the narrowing derivation is t |p →1 xk, t[xk]p ⇒ t ′ �[n],c,θ

∧n
i=1(tiθ)↓ →

t ′i ∧ (t[r]pθ)↓ ⇒ (t ′θ)↓ �∗
σ ′ �, with σ ′ E, A-normalized with respect to all variables

in
∧n

i=1(tiθ)↓ → t ′i ∧ (t[r]pθ)↓ ⇒ (t ′θ)↓. Then σ = θσ ′.
For 1 ≤ i ≤ n, tiθ →E,A (tiθ)↓, so (tiθ)σ ′ →E,A (tiθ)↓σ ′. By I.H. (tiθ)↓σ ′ →E,A

t ′iσ ′, so tiσ →E,A t ′iσ ′, and also tiσ →E,A t ′iσ because Dom(θ) ∩ Var(t ′i) = ∅, so
t ′i θσ ′ ≡ t ′iσ ′. As t |pθ =A lθ then t |pσ =A lσ so t |pσ →1

E,A rσ . Then, by definition of

→1
E,A, t[t |pσ]p →1

E,A t[rσ]p , so t[t |pσ]pσ →1
E,A t[rσ]pσ which, as σ is idempotent

and t[t |p]p ≡ t , is equivalent to tσ →1
E,A t[r]pσ .

t[r]pθ →E,A (t[r]pθ)↓, so t[r]pθσ ′ →E,A (t[r]pθ)↓σ ′. By I.H. (t[r]pθ)↓σ ′ →R∪E,A

(t ′θ)↓σ ′. As has been shown in other cases, then t[r]pθσ ′ →R∪E,A t ′θσ ′, i.e.,
t[r]pσ →R∪E,A t ′σ . As tσ →1

E,A t[r]pσ , then tσ →R∪E,A t ′σ .

123

456 L. Aguirre et al.

– Rewrite rule: the reachability subproblem has form t |p ⇒1 xk, t[xk]p ⇒ t ′, with xk a
fresh variable. We apply rule [r] because there is a rule c ≡ l ⇒ r if

∧n
i=1 ti ��� t ′i

in R̃ (where ��� can be either → or ⇒) and there is an idempotent substitution θ , with
Dom(θ) ⊆ Var(t |p) ∪ Var(l) and θVar(t) E, A-normalized, such that tθ =A lθ .
Then, the narrowing derivation is t |p ⇒1 xk, t[xk]p ⇒ t ′ �[w],c,θ

∧n
i=1(tiθ)↓ ���

(t ′i θ)↓ ∧ (t[r]pθ)↓ ⇒ (t ′θ)↓ �∗
σ ′ �, with σ ′ E, A-normalized with respect to all vari-

ables in
∧n

i=1(tiθ)↓ ��� (t ′i θ)↓ ∧ (t[r]pθ)↓ ⇒ (t ′θ)↓. Then σ = θσ ′.
By I.H. σ ′ is a solution of (tiθ)↓ ��� (t ′i θ)↓, for 1 ≤ i ≤ n. Then, by Lemma 7, σ ′ is a
solution for tiθ ��� t ′i θ , so σ is a solution for ti ��� t ′i , and t |pσ →1

R∪E,A rσ .

Then, by definition of →1
R∪E,A, t[t |pσ]p →1

R∪E,A t[rσ]p , so t[t |pσ]pσ →1
R∪E,A

t[rσ]pσ which, as σ is idempotent and t[t |p]p ≡ t , is equivalent to tσ →1
R∪E,A t[r]pσ .

By I.H. σ ′ is a solution for (t[r]pθ)↓ ⇒ (t ′θ)↓. Then, by Lemma 7, σ ′ is a solution
for t[r]pθ ⇒ t ′θ , so σ is a solution for t[r]p ⇒ t ′, and t[r]pσ →R∪E,A t ′σ . As
tσ →1

E,A t[r]pσ , then tσ →R∪E,A t ′σ . ��
Theorem 7 (Weak Completeness of the Calculus for Reachability) Given a narrowable
rewrite theory R = (Σ, E, R), its FPP executable Mel theory (Σ, E ∪ A), the associated
rewrite theoryRE = (Σ ′,A, RE), and a reachability goal G, if σ is an idempotent R∪E, A-
normalized solution for G, using the transformed set of rules R̃, then there is an idempotent
E, A-normalized substitution γ , with σ �A γVar(G), such that G↓ �∗

γ �.

Proof Every computed answerγ is idempotent E, A-normalizedbydefinition of the calculus.
We prove the theoremusing induction on the number of reachability subgoals plus the number
of⇒1

N rewrite steps, including the subgoals and rewrite steps due to conditions. The proof is
exactly the same already shown in Theorem 5 (as we have ⇒1

N rewriting we also have →1
N

rewriting), where there are only two cases left to prove.

– The first case is the base case with one subgoal and zero ⇒1
N rewrite steps. Then tσ =E

t ′σ , so σ is a solution for the sentence t = t ′ and also for the unification goal eq(t, t ′) →
tt. There are two subcases.

• If t↓ =E t ′↓, then t↓ ⇒ t ′↓ �[x] tt → tt �[e] �, and γ = id, so σ �A γVar(G).
• If t↓ �=E t ′↓, then t↓ ⇒ t ′↓ �[x] eq(t↓, t ′↓) → tt, but we have already proved
in Theorem 5 that if σ is an E-solution for this unification problem then there exists
a substitution γ , with σ �A γVar(G), such that eq(t↓, t ′↓) → tt �∗

γ � and σ �A

γVar(G).

– The second case is the induction subcase for one subgoal and at least one ⇒1
N rewrite

step, where we apply a rule c ≡ l → r if C in R to tσ . As σ is a solution for G
then, by Lemma 7, σ is an N -solution for G↓. Then G↓ ≡ t↓ ⇒ t ′↓, and t↓σ ⇒1

N
(t↓σ)[rσ ′

c]p ⇒N t ′↓σ because (t↓σ)|p =A lσ ′
c and σ ′

c is a solution for C (E, A-
normalized with respect to Extra(c)). As σ is R ∪ E, A normalized and l /∈ X , then we
cannot rewrite inside a position instantiated by σ or a variable position, so p must be an
already existing non-variable position in t↓ (i.e., p ∈ PosΣ(t↓)). Also (t↓σ)[rσ ′

c]p ≡
t↓[rσ ′

c]pσ because Dom(σ) ∩Var(rσ ′
c) = ∅, and t↓[rσ ′

c]pσ ≡ t↓[r]p(σ ∪ σ ′
c) because

Dom(σ ′
c) ∩ Var(t↓) = ∅ and Dom(σ) ∩ Dom(σ ′

c)) = ∅.
Then, t↓σ ⇒1

N t↓[r]p(σ ∪σ ′
c) ⇒N t ′↓σ , and there exists γ = γv ∪γw ∈ CSUA(t↓|p =

l), with v = Var(G), and w = Var(c), such that t↓|pγv =A lγw . Then there exists
γ ≡ γv ∪ γw ∈ CSUA(t↓|p↓ = l) such that t↓|pγv =A lγw, and σ ∪ σ ′

c �A γ , so
σ ∪ σ ′

c =A γρ for some idempotent substitution ρ. σ is E, A-normalized, σ ′
c is E, A-

normalized except maybe for some subset of Dom(γ), so ρ must be E, A-normalized.

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 457

Then t↓ ⇒ t ′↓ �[t] t↓ ⇒1 xk, xk ⇒ t ′↓ �∗[c] t↓|p ⇒1 yk′ , t↓[yk′]p ⇒ t ′↓ �[r],γ
(Cγ)↓ ∧ (t↓[r]pγ)↓ ⇒ t ′↓. Let’s call u = Var(Cγ ∧ t↓[r]pγ). ρ is a solution for
Cγ ∧ t↓[r]pγ → (t ′↓γ)↓ (recall that (t ′↓γ)↓ ≡ (t ′γ)↓) with one less subgoal and one
less rewriting step than the solutionσ for t ⇒ t ′↓, so I.H. applies and there exists an E, A-
normalized substitution θ such thatρ �A θu and (Cγ)↓∧(t↓[r]pγ)↓ ⇒ (t ′γ)↓ �∗

θ �.
As ρ �A θu then ρ �A θVar(Cγ), so ρVar(Cγ) �A θVar(Cγ). σ ∪ σ ′

c =A γρ, so σ =
(σ ∪ σ ′

c)v = (γρ)v . Then we have σ = γvρRan(γv) ∪ ρv . As Dom(γv) ∩ Dom(ρv) = ∅
then γvρRan(γv) ∪ ρv = γv(ρRan(γv) ∪ ρv), and σ = γv(ρRan(γv) ∪ ρv) = γvρVar(Cγ) �A

γvθVar(Cγ) = γv(θRan(γv)) ∪ θv). As Dom(γv) ∩Dom(θv) = ∅, then γv(ρRan(γv) ∪ ρv) =
γvρRan(γv) ∪ ρv , so σ �A γvρRan(γv) ∪ ρv = (γρ)v . ��

7 Example

We show an application of our calculus using the concurrent specification example. This is
an excerpt of the Maude specification for the example:

mod CONCUR is
sorts User UserSet Tool ToolBox Nat Boolean State .
subsorts User < UserSet . subsorts Tool < ToolBox .

ops u1 u2 u3 : -> User . op emptyU : -> UserSet .
ops t1 t2 t3 : -> Tool . op emptyT : -> ToolBox .
op 0 : -> Nat . op s : Nat -> Nat .
op ok : -> Boolean . op init : -> State .
op _,_ : [UserSet] [UserSet] -> [UserSet] [comm assoc id:
emptyU] .
op _;_ : ToolBox ToolBox -> ToolBox [comm assoc id: emptyT] .
op _|_|_|_ : UserSet UserSet ToolBox ToolBox -> [State] .
op count : ToolBox -> Nat .
op _<_ : Nat Nat -> Boolean .

vars M N : Nat .
vars U U’ : User . vars US US’ : UserSet .
vars T T’ : Tool . vars TB TB’ : ToolBox .

mb u1, u2 : UserSet .
...
mb u1, u2, u3 : UserSet .
cmb US | emptyU | TB | TB’ : State

if count(TB ; TB’) < s(s(s(s(s(0))))) = ok [label M1] .
cmb US | U | TB | TB’ : State

if U, US : UserSet /\ count(TB ; TB’) < s(s(s(0))) = ok .
cmb US | U, U’ | emptyT | emptyT : State if U, U’, US :
UserSet .

eq count(emptyT) = 0 [label E1] .
eq count(T ; TB) = s(count(TB)) [label E2] .
eq 0 < s(N) = ok . eq s(M) < s(N) = M < N .

123

458 L. Aguirre et al.

crl init => US | emptyU | TB | emptyT
if US | emptyU | TB | emptyT : State [label R1 nonexec] .

crl US | US’ | T ; T’ ; TB | emptyT => US | US’ | TB | T ; T’
if US | US’ | TB | T ; T’ : State [label R2 nonexec] .

...
endm

We will abbreviate emptyT to εt and emptyU to εu , and consider the reachability goal
G ≡ init ⇒ xu | yus | z1t; z2t | z1t; z2t, where from the initial State init, we want to
reach a [State] with one waiting User, two Tools in the ToolBox, and the same two
Tools in the workbench. The reachability goal is already normalized. We also abbreviate
xu | yus | z1t; z2t | z1t; z2t to F . Recall that there is a sort Truth (T) with constant tt in
the associated rewrite theory. The label of the used sentences in each reduction or rewrite
calculus step can be found between square brackets at the end of each sentence.

1. init ⇒ F �[t]
Rule transitivity is always needed before an application of rule rewrite.

2. init ⇒1 x1[s], x1[s] ⇒ F �[w],R1
Rule rewrite is appliedwith the transformed rule forR1, where themembership condition
has now form x2us | εu | x3tb | εt : s → tt. We apply the transformation for unification
with memberships and compute ρ0 = id and C0 = ∅ because init has no variables.

3. x2us | εu | x3tb | εt : s → tt ∧ x2us | εu | x3tb | εt ⇒ F �[t]�[r],M1,σ1

We apply rule transitivity again, followed by rule reductionwith the fresh rule x4us | εu |
x5tb | x6tb : s → tt if eq(count(x5tb; x6tb) < s(s(s(s(s(0))))),ok) → tt associated
to the conditionalmembershipM1.We omit the result of the transitivity step.We compute
ρ1 = {x2us �→ x2[us], x3tb �→ x3[tb], x4us �→ x4[us], x5tb �→ x5[tb], x6tb �→ x6[tb]} and

C1 = {x2[us] : us∧ x3[tb] : tb∧ x4[us] : us∧ x5[tb] : tb∧ x6[tb] : tb}. Instead of solving
the unification problem and use the obtained unifier, we apply ρ1 to thewhole reachability
problem and add the condition associated toC1 inRE in front of the reachability problem,
which is an equivalent approach for leftmost narrowing, because in this way we must
solve the unification problem before we can continue with the reachability problem.
The obtained unifier is σ1 = {x2[us] �→ x7[us], x3[tb] �→ x8[tb], x4[us] �→ x7[us], x5[tb] �→
x8[tb], x6[tb] �→ εt }. The condition x6[tb] : tb → tt becomes εt : tb → tt which after

canonization is tt → tt. Also count(x5tb; x6tb) becomes count(x8[tb]; εt), and then it

becomes count(x8[tb]) after canonization.
4. x7[us] : us → tt ∧ x8[tb] : tb → tt ∧ x7[us] : us → tt ∧ x8[tb] : tb → tt ∧ tt → tt∧

eq(count(x8[tb]) < s(s(s(s(s(0))))),ok) → tt ∧ x7[us] | εu | x8[tb] | εt ⇒
F �[m],{x7[us] �→x7us}

5. x8[tb] : tb → tt ∧ tt → tt ∧ x8[tb] : tb → tt ∧ tt → tt∧
eq(count(x8[tb]) < s(s(s(s(s(0))))),ok) → tt ∧ x7us | εu | x8[tb] | εt ⇒
F �[m],{x8[tb] �→x8tb}

6. tt → tt ∧ tt → tt ∧ tt → tt ∧ eq(count(x8tb) < s(s(s(s(s(0))))),ok) → tt∧
x7us | εu | x8tb | εt ⇒ F �[e]�[e]�[e]
Rule elimination removes the trivial subgoals. We have finished solving the unification
problem, with unifier {x2us �→ x7us, x

3
tb �→ x8tb, x

4
us �→ x7us, x

5
tb �→ x8tb, x

6
tb �→ εt },

so we continue with the reachability problem. We apply rules transitivity, congruence,
and reduction several times using the rules associated to equations E1 and E2. As the

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 459

involved sorts are in OS(S) we can use the order-sorted unification algorithms without
any transformation.

7. eq(count(x8tb) < s(s(s(s(s(0))))),ok) → tt ∧ x7us | εu | x8tb | εt ⇒ F �[t]
8. eq(count(x8tb) < s(s(s(s(s(0))))),ok) →1 x9[T], x9[T] → tt ∧ x7us | εu | x8tb | εt ⇒

F �[c]
9. count(x8tb) < s(s(s(s(s(0))))) →1 x10[b], eq(x10[b],ok) → tt ∧ x7us | εu | x8tb | εt ⇒

F �[c]
10. count(x8tb) →1 x11[n], eq(x11[n] < s(s(s(s(s(0))))),ok) → tt ∧ x7us | εu | x8tb | εt ⇒

F �[r],E2,σ2

Rule reduction is applied with equation E2 and unifier σ2 = {x8tb �→ x12t ; x13tb}.
11. eq(s(count(x13tb)) < s(s(s(s(s(0))))),ok) → tt ∧ x7us | εu | x12t ; x13tb | εt ⇒

F �[t]
We omit some steps here ...

12. eq(s(s(s(s((count(x17tb)))))) < s(s(s(s(s(0))))),ok) → tt∧
x7us | εu | x12t ; x14t ; x15t ; x16t ; x17tb | εt ⇒ F �[t]
We also omit some steps here ...

13. count(x18tb) →1 x19[n], eq[b](s(s(s(s((x19[n])))) < s(s(s(s(s(0))))),ok) → tt∧
x7us | εu | x12t ; x14t ; x15t ; x16t ; x18tb | εt ⇒ F �[r],E1,σ3

Now σ3 = {x18tb �→ εt }, so x19[n] �→ 0. Observe the great simplification of the reachability
problem after canonization.

14. tt → tt ∧ x7us | εu | x12t ; x14t ; x15t ; x16t | εt ⇒ F �[e]
15. x7us | εu | x12t ; x14t ; x15t ; x16t | εt ⇒ F �[t]
16. x7us | εu | x12t ; x14t ; x15t ; x16t | εt ⇒1 x20[s], x20[s] ⇒ F �[w],R2

In order to apply rule rewrite with rule R2 we compute ρ2 and C2, as in step 3, and
use them to obtain an A-unifier. We skip these steps, and show the resulting reachabil-
ity problem, where x12t and x14t have been moved to the workbench. Observe that the
condition in R2 is trivial after substitution and canonization.

17. tt → tt ∧ x7us | εu | x15t ; x16t | x12t ; x14t ⇒ F �[e]
18. x7us | εu | x15t ; x16t | x12t ; x14t ⇒ xu | yus | z1t; z2t | z1t; z2t �[x]

Now we remove the ⇒ symbol, unifying both terms.
19. eq(x7us | εu | x15t ; x16t | x12t ; x14t , xu | yus | z1t; z2t | z1t; z2t) → tt �[u],σ4 �

Again, the A unifier σ4 is obtained by previously computing ρ3, where all sorted variables
are replaced with kinded variables and C3, which forces each kinded variable to have the
specific sort that it had before applying ρ3. As a final result, we get the computed answer
σ = σ4|Var(G) = {xu �→ x21u , yus �→ εu, z1t �→ x22t , z2t �→ x23t }

So we have found a very general computed answer for our reachability problem G ≡
init ⇒ xu | yus | z1t; z2t | z1t; z2t, where xu can be any user, yus must be emptyU, and
z1t and z2t can be any tool.

8 Related Work, Conclusions and Future Work

A classic reference in equational conditional narrowing modulo is the work of Bockmayr [7].
The topic is addressed here for Church–Rosser equational conditional term rewriting systems
with empty axioms, but non-terminating axioms (like ACU) are not allowed. The intimate
relationship between rewriting and reachability problems was shown by Hullot [27], where

123

460 L. Aguirre et al.

he proved that any normalized solution to a reachability problem could be lifted to a narrow-
ing derivation that computed a more general solution. The idea of a reduction phase between
narrowing steps was already shown by Fribourg in the language SLOG [23]. An inductive
proof method for properties of reduction relations has been presented by Gnaedig and Kirch-
ner [24], where proof trees are generated using narrowing and an abstraction mechanism,
and abstraction constraints are used to control narrowing. Non conditional narrowingmodulo
order-sorted equational logics is covered by Meseguer and Thati [38] and it is being used for
cryptographic protocol analysis. Feuillade and Genet [22] have also studied reachability in
term rewriting systems for cryptographic protocol verification. The idea of constraint solv-
ing by narrowing in combined algebraic domains was presented by Kirchner and Ringeissen
[29], where the supported theories had unconstrained equalities and the rewrite rules had con-
straints from an algebraic built-in structure. Equivalence of R/E and R∪ E, A rewriting was
proved by Viry [41] for unsorted rewrite theories. Membership equational logic was defined
by Meseguer [33]. Comon studied the completion of rewrite systems with membership con-
straints [12,13]. A rewrite system for Mel theories that allows unification by rewriting is
presented by Durán et al. [14]. Strategies, which also play a main role in narrowing, have
been studied by Antoy et al. [1]. Their needed narrowing strategy, for inductively sequential
rewrite systems, generates only narrowing steps leading to a computed answer. Recently
Escobar et al. [20] have developed the concepts of variant and folding variant, a narrow-
ing strategy for order-sorted unconditional rewrite theories that terminates on those theories
having the finite variant property. Kirchner et al. [28] have developed a narrowing-based
proof search method for inductive theorems in a deduction modulo framework. Foundations
for order-sorted conditional rewriting have been published by Meseguer [35]. Cholewa et al.
[11] have defined a new hierarchical method, called layered constraint narrowing, to solve
narrowing problems in order-sorted conditional equational theories and given new theoret-
ical results on that matter, including the definition of constrained variants for order-sorted
conditional rewrite theories. Order-sorted conditional narrowing with constraint solvers has
been addressed by Rocha et al. [40].

In this work we have presented a new definition of →1
R,A and R ∪ E, A-rewriting, a

definition of a new concept of narrowable rewrite theory, and developed two narrowing
calculi for unification in membership equational logic and reachability in narrowable rewrite
theories, with the following characteristics, to the best of our knowledge:

– a larger class of rewrite theories is accepted by the calculus with respect to previous
work, admitting extra variables with no restrictions in equational, membership or rewrite
conditions.

– also a larger class of reachability goals is admitted for solving, compared to previous
work,

– both calculi use a leftmost strategy,
– both calculi followa strategy, consisting in applying a calculus rule only if the composition

of all computed substitutions remains normalized with respect to all extra variables and
all the variables in the initial problem,

– both calculi follow a strategy consisting in normalizing all terms before each narrowing
step,

– the calculus for reachability follows a strategy consisting in applying narrowing to a sub-
termwith some substitution only if the whole term remains normalized when instantiated
with the same substitution,

– the calculus for reachability follows a strategy consisting in keeping a list of reachability
problems. Initially the list holds the original problem. Each new reachability problem

123

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 461

generated by the calculus is checked against the current list. If the problem is a renaming
and/or reordering of any element in the list, it gets discarded,

– both calculi are sound and weakly complete, i.e., complete with respect to idempotent
normalized answers.

Previous work for executable rewrite theories, which used non-normalized terms and
substitutions, and where a strategy for applying the calculi was shown, was implemented
using Maude. The implementation, together with some examples and instructions for its use,
is available at http://maude.sip.ucm.es/cnarrowing/. This new version of the calculi has not
been implemented yet, but we plan to make use of it in our current line of investigation, that
concerns the extension of the calculi to handle constraints and their connection with external
constraint solvers for domains such as finite domains, integers, Boolean values, etc., that
could greatly improve the performance of any implementation.

Our future work will focus on the use of constraint solvers on the parts of a condition that
have a suitable domain, which will exclude the use of any other type of narrowing or unifi-
cation algorithm on these parts of the condition. As we are performing symbolic analysis of
the state space, we only need to ensure feasibility of the condition, instead of solving it using
narrowing, to go on with our narrowing derivation. Finally, if we find a narrowing path from
t (x̄) to t ′(x̄), displayed as t (x̄) �∗

R,E t ′(x̄), where we instantiate part or all the variables in
x̄ , the accumulated condition must be feasible for this instantiation of variables. The answer
will consist then of a substitution and a set of constraints that can be, if needed, instantiated to
actual solutions (for instance, to serve as a counterexample). The use of constraint solvers on
conditions can greatly reduce the inherent risk of state explosion, always preexisting in con-
ditional rewriting and narrowing, even turning an infinite state space for a narrowing problem
without constraint solvers into a finite one. We plan to use the rewriting language Maude [9]
which is currently being extended to allow for the use of constraint solvers, so it will support
all the features needed in our work, as a framework where we shall develop our prototypes.

Acknowledgements We are very grateful to the referees for their comments to improve the paper, to Santiago
Escobar for all his advice, and to José Meseguer for inspiration.

References

1. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. In: Boehm, H.-J., Lang, B., Yellin,
D. M. (eds.) Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon, USA, January 17–21, 1994, pp. 268–279. ACM Press
(1994)

2. Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Conditional narrowing modulo in rewriting logic and
Maude. In: Escobar [19], pp. 80–96

3. Boolos, G., Jeffrey, R.C.: Computability and Logic, 2nd edn. Cambridge University Press, New York
(1987)

4. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theoret. Comput. Sci.
360(1–3), 386–414 (2006)

5. Bae, K., Meseguer, J.: Model checking LTLR formulas under localized fairness. In: Durán, F. (ed.)
Rewriting Logic and Its Applications—9th International Workshop, WRLA 2012, Held as a Satellite
Event of ETAPS, Tallinn, Estonia, March 24–25, 2012, Revised Selected Papers, volume 7571 of Lecture
Notes in Computer Science, pp. 99–117. Springer (2012)

6. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using narrowing. In: Escobar [19],
pp. 113–129

7. Bockmayr, A.: Conditional narrowing modulo a set of equations. Appl. Algebra Eng. Commun. Comput.
4, 147–168 (1993)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: specifi-
cation and programming in rewriting logic. Theoret. Comput. Sci. 285(2), 187–243 (2002)

123

http://maude.sip.ucm.es/cnarrowing/

462 L. Aguirre et al.

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—
A High-Performance Logical Framework: How to Specify, Program, and Verify Systems in Rewriting
Logic, vol. 4350 of Lecture Notes in Computer Science. Springer (2007)

10. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.C.: The maude formal tool envi-
ronment. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) Algebra and Coalgebra in Computer
Science, Second International Conference, CALCO 2007, Bergen, Norway, August 20–24, 2007, Pro-
ceedings, vol. 4624 of Lecture Notes in Computer Science, pp. 173–178. Springer (2007)

11. Cholewa, A., Escobar, S., Meseguer, J.: Constrained Narrowing for Conditional Equational Theories
Modulo Axioms. Technical report. C.S. Department, University of Illinois at Urbana-Champaign. http://
hdl.handle.net/2142/50289 (August 2014)

12. Comon, H.: Completion of rewrite systems with membership constraints. Part I: deduction rules. J. Symb.
Comput. 25(4), 397–419 (1998)

13. Comon, H.: Completion of rewrite systems with membership constraints. Part II: constraint solving. J.
Symb. Comput. 25(4), 421–453 (1998)

14. Durán, F., Lucas, S.,Marché, C.,Meseguer, J., Urbain, X.: Proving operational termination ofmembership
equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)

15. Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude termination tool (system description). In: Armando,
A., Baumgartner, P., Dowek, G.(eds.) Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, August 12–15, 2008, Proceedings, vol. 5195 of Lecture Notes in Computer
Science, pp. 313–319. Springer (2008)

16. Durán, F., Meseguer, J.: On the Church–Rosser and coherence properties of conditional order-sorted
rewrite theories. J. Logic Algebr. Program. 81(7–8), 816–850 (2012)

17. Durán, F., Meseguer, J.: On the Church–Rosser and coherence properties of conditional order-sorted
rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850 (2012)

18. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational
properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) Foundations of Security Analysis and Design V,
vol. 5705 of Lecture Notes in Computer Science, pp. 1–50. Springer (2009)

19. Escobar, S. (ed.): Rewriting Logic and Its Applications—10th International Workshop, WRLA 2014,
Held as a Satellite Event of ETAPS, Grenoble, France, April 5–6, 2014, Revised Selected Papers, vol.
8663 of Lecture Notes in Computer Science. Springer (2014)

20. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Log.
Algebr. Program. 81(7–8), 898–928 (2012)

21. Fay, M.: First-order unification in Equational Theory. In: Proceedings of 4th Workshop on Automated
Deduction. Academic Press, Austin, pp. 161–167 (1979)

22. Feuillade, G., Genet, T.: Reachability in conditional term rewriting systems. Electron. Notes Theoret.
Comput. Sci. 86(1), 133–146 (2003)

23. Fribourg, L.: SLOG: a logic programming language interpreter based on clausal superposition and rewrit-
ing. In: Proceedings of the 1985 Symposium on Logic Programming, Boston, Massachusetts, USA, July
15–18, 1985, pp. 172–184. IEEE-CS (1985)

24. Gnaedig, I., Kirchner, H.: Narrowing, abstraction and constraints for proving properties of reduction
relations. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Rewriting, Computation and Proof,
Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday, vol. 4600 of Lecture
Notes in Computer Science, pp. 44–67. Springer (2007)

25. Giovannetti, E., Moiso, C.: A completeness result for e-unification algorithms based on conditional nar-
rowing. In: Boscarol, M., Aiello, L.C., Levi, G. (eds.) Foundations of Logic and Functional Programming,
Workshop, Trento, Italy, December 15–19, 1986, Proceedings, vol. 306 of Lecture Notes in Computer
Science, pp. 157–167. Springer (1986)

26. Hamada, M.: Strong completeness of a narrowing calculus for conditional rewrite systems with extra
variables. Electron. Notes Theoret. Comput. Sci. 31, 89–103 (2000)

27. Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R.A. (eds.) 5th Conference on
Automated Deduction, Les Arcs, France, July 8–11, 1980, Proceedings, vol. 87 of Lecture Notes in
Computer Science, pp. 318–334. Springer (1980)

28. Kirchner, C., Kirchner, H., Nahon, F.: Narrowing based inductive proof search. In: Voronkov, A., Wei-
denbach, C. (eds.) Programming Logics—Essays in Memory of Harald Ganzinger, vol. 7797 of Lecture
Notes in Computer Science, pp. 216–238. Springer (2013)

29. Kirchner, H., Ringeissen, C.: Constraint solving by narrowing in combined algebraic domains. In: Van
Hentenryck, P. (ed) Logic Programming, Proceedings of the Eleventh International Conference on Logic
Programming, Santa Marherita Ligure, Italy, June 13–18, 1994, pp. 617–631. MIT Press (1994)

30. Lucas, S., Meseguer, J.: Operational termination of membership equational programs: the order-sorted
way. Electron. Notes Theoret. Comput. Sci. 238(3), 207–225 (2009)

123

http://hdl.handle.net/2142/50289
http://hdl.handle.net/2142/50289

Sentence-Normalized Conditional Narrowing Modulo in Rewriting. . . 463

31. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf.
Process. Lett. 95(4), 446–453 (2005)

32. Meseguer, J.: Rewriting as a unifiedmodel of concurrency. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR
’90 Theories of Concurrency: Unification and Extension, vol. 458 of Lecture Notes in Computer Science,
pp. 384–400. Springer (1990)

33. Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce,
F. (ed) Recent Trends in Algebraic Development Techniques, 12th International Workshop, WADT’97,
Tarquinia, Italy, June 1997, Selected Papers, vol. 1376 of Lecture Notes in Computer Science, pp. 18–61.
Springer (1997)

34. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8), 721–781 (2012)
35. Meseguer, J.: Strict Coherence of Conditional Rewriting Modulo Axioms. Technical report, C.S. Depart-

ment, University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/50288 (August 2014)
36. Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl. Algebra Eng. Commun.

Comput. 5, 213–253 (1994)
37. Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theoret. Comput. Sci. 285(2),

121–154 (2002)
38. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification

of cryptographic protocols. High. Order Symb. Comput. 20(1–2), 123–160 (2007)
39. Plotkin, G.: Building in equational theories. Mach. Intell. 7, 73–90 (1972)
40. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. In: Escobar [19],

pp. 247–262
41. Viry, P.: Rewriting: an effective model of concurrency. In: Halatsis, C., Maritsas, D. G., Philokyprou,

G., Theodoridis, S. (eds.) PARLE ’94: Parallel Architectures and Languages Europe, 6th International
PARLEConference, Athens, Greece, July 4–8, 1994, Proceedings, vol. 817 of Lecture Notes in Computer
Science, pp. 648–660. Springer (1994)

123

http://hdl.handle.net/2142/50288

	Sentence-Normalized Conditional Narrowing Modulo in Rewriting Logic and Maude
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Running Example
	2.2 Membership Equational Logic
	2.3 Unification
	2.4 Rewriting Logic

	3 Narrowing and Narrowable Rewrite Theories
	3.1 Associated Rewrite Theory
	3.2 E,A-Rewriting. R,A-Rewriting. Closure Under A-Extensions
	3.3 Admissible Theories. Executable Mel Theory. Narrowable Rewrite Theory
	3.4 Unification Goal. Reachability Goal
	3.5 Narrowing

	4 Sentence-Normalized Rewriting
	5 Conditional Narrowing for mathcalE-Solutions
	5.1 Transformation for Unification with Memberships
	5.2 Calculus for Unification Strategies and Rules

	6 Reachability by Conditional Narrowing
	6.1 Calculus for Reachability Strategies and Rules

	7 Example
	8 Related Work, Conclusions and Future Work
	Acknowledgements
	References

