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Abstract This article introduces a relatively complete proof calculus for differential dynamic
logic (dL) that is entirely based on uniform substitution, a proof rule that substitutes a formula
for a predicate symbol everywhere. Uniform substitutions make it possible to use axioms
instead of axiom schemata, thereby substantially simplifying implementations. Instead of
subtle schema variables and soundness-critical side conditions on the occurrence patterns of
logical variables to restrict infinitely many axiom schema instances to sound ones, the result-
ing calculus adopts only a finite number of ordinary dL formulas as axioms, which uniform
substitutions instantiate soundly. The static semantics of differential dynamic logic and the
soundness-critical restrictions it imposes on proof steps is captured exclusively in uniform
substitutions and variable renamings as opposed to being spread in delicate ways across the
prover implementation. In addition to sound uniform substitutions, this article introduces dif-
ferential forms for differential dynamic logic that make it possible to internalize differential
invariants, differential substitutions, and derivatives as first-class axioms to reason about dif-
ferential equations axiomatically. The resulting axiomatization of differential dynamic logic
is proved to be sound and relatively complete.

Keywords Differential dynamic logic · Uniform substitution · Axioms · Differentials ·
Static semantics · Axiomatization

1 Introduction

Differential dynamic logic (dL) [12,14] is a logic for proving correctness properties of
hybrid systems. It has a sound and complete proof calculus relative to differential equa-
tions [12,14] and a sound and complete proof calculus relative to discrete systems [14].
Both sequent calculi [12] and Hilbert-type axiomatizations [14] have been presented for
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dL but only the former have been implemented. The implementation of dL’s sequent cal-
culus in KeYmaera [19] makes it straightforward for users to prove properties of hybrid
systems, because it provides proof rules that perform natural decompositions for each oper-
ator. The downside is that the implementation of the rule schemata and their different and
subtle side conditions on occurrence constraints and relations of reading and writing of vari-
ables as well as rule applications in a formula context is quite nontrivial and inflexible in
KeYmaera.

The goal of this article is to identify how to, instead, make it straightforward to implement
the proof calculus of differential dynamic logic in a parsimonious way by writing down a
finite list of axioms (concrete formulas, not axiom schemata that represent an infinite list
of axioms subject to sophisticated soundness-critical schema variable matching and side
condition checking implementations). The resulting calculus features more modular axioms
that can be combined with one another to regain the effect of a single dL sequent proof rule.
The axioms are implemented in the object language without meta constructs, which enables
a substantially simpler prover core.

As a mechanism for instantiating axioms, this article follows observations for differen-
tial game logic [16] highlighting the significance and elegance of uniform substitution, a
classical proof rule for first-order logic [2, §35, 40]. Uniform substitutions uniformly instan-
tiate predicate and function symbols with formulas and terms, respectively, as functions
of their arguments. In the presence of the nontrivial binding structure that nondetermin-
ism and differential equations of hybrid systems induce for the dynamic modalities of
differential dynamic logic, flexible but sound uniform substitutions become more com-
plex, but can still be read off directly from the static semantics. The static semantics
of dL directly determines uniform substitutions (and variable renamings), which, in turn,
are the only elements of the prover core that need to know anything about the lan-
guage and its static semantics. A proof may simply start from a dL formula that is an
axiom.

This approach is dual to other successful ways of solving the intricacies and subtleties of
substitutions [1,8] by imposing occurrence side conditions on axiom schemata and proof
rules, which is what uniform substitutions get rid of. The uniform substitution frame-
work shares many goals with other logical frameworks [11], including leading to smaller
soundness-critical cores, more flexibility when augmenting reasoning techniques, and reduc-
ing the gap between a logic and its theorem prover. Logical frameworks shine when renaming
and substitution of the object language are in line with those of the meta-language. Uniform
substitutions provide a simpler approach for languages with the intricate binding of impera-
tive and especially hybrid system dynamics in which, e.g., the same occurrence of a variable
can be both free and bound.

Side conditions for axiom schemata can be nontrivial. Classical dL calculi [12,14] have
an axiom schema expressing that a formula φ holds always after following a differential
equation x ′ = θ (as expressed by dL formula [x ′ = θ ]φ) iff φ holds for all times t ≥ 0 after
the discrete assignment x := y(t) assigning the solution y(t) to x :

([′]) [x ′ = θ ]φ ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

Soundness-critical side conditions need to ensure that t is a sufficiently fresh variable and
that y(t) indeed solves the differential equation and obeys the symbolic initial value condi-
tion y(0) = x . Uniform substitutions obviate the need for such side conditions. An axiom
is simply a single object-level formula as opposed to an algorithm accepting infinitely many
formulas under certain side conditions. A proof rule is simply a pair of object-level formulas
as opposed to an algorithm transforming formulas. Derived axioms, derived rules, rule appli-
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cation mechanisms, lemmas, definitions, and parametric invariant search are all definable
from uniform substitutions. Differential forms are added to dL in this article for the purpose
of internalizing differential invariants [13], differential cuts [13,15], differential ghosts [15],
differential substitutions, total differentials and Lie-derivatives [13,15] as separate first-class
axioms in dL.

This article presents a highly modular and straightforward approach. It introduces
differential-form dL and its dynamic semantics, and proves its static semantics sound for
the dynamic semantics (Sect. 2). It then defines uniform substitutions that are proved sound
from the static semantics (Sect. 3). Uniform substitutions enable a parsimoniously imple-
mentable axiomatization (Sect. 4) with concrete dL formulas (or pairs for rules), which are
proved sound individually from the dynamic semantics (Sect. 5) without having to worry how
theymight be instantiated. Differential forms are used to obtain axioms for proving properties
of differential equations (Sect. 5). This modular approach with separate soundness proofs
is to be contrasted with previous complex built-in algorithms that mix multiple axioms into
special-purpose rules [13,15]. Finally, the logic is proved to be sound and relatively com-
plete (Sect. 5). Proofs are provided inAppendixA.Overall, uniformsubstitutions significantly
simplify prover core implementations, because uniform substitutions are straightforward and
reduce implementing axioms and axiomatic rules to copy&paste.

2 Differential-Form Differential Dynamic Logic

This section presents differential-form differential dynamic logic, which adds differential
forms to differential dynamic logic [12,14] in order to axiomatically internalize reasoning
about differential equations and differentials as first-class citizens. Because the logic itself
did not otherwise change, the relationship to related work from previous presentations of
differential dynamic logic [12,14] continues to apply. The primary purpose of the uniform
substitution approach is to lead to a significantly simpler implementation, which could benefit
other approaches [3,4,10], too.

2.1 Syntax

This section defines the syntax of the language of (differential-form) differential dynamic
logic dL and its hybrid programs. The syntax first defines terms. The set of all variables is
V . Variables of the form x ′ for a variable x ∈ V are called differential symbols. Differential
symbol x ′ is just an independent variable associated to variable x . For any subset V ⊆ V

is V ′ def= {x ′ : x ∈ V } the set of differential symbols x ′ for the variables in V . The set of
all variables is assumed to already contain all its differential symbols V ′ ⊆ V . So x ∈ V
implies x ′, x ′′ ∈ V etc. even if x ′′ is not used here. Function symbols are written f, g, h,
predicate symbols p, q, r , and variables x, y, z ∈ V with corresponding differential symbols
x ′, y′, z′ ∈ V ′. Program constants are a, b, c.

Definition 1 (Terms) Terms are defined by this grammar (with θ, η, θ1, . . . , θk as terms,
x ∈ V as variable, and f as function symbol):

θ, η ::= x | f (θ1, . . . , θk) | θ + η | θ · η | (θ)′

Number literals such as 0,1 are allowed as function symbols without arguments that are
interpreted as the numbers they denote. Occasionally, constructions will be simplified by
considering θ + η and θ · η as special cases of function symbols f (θ, η), but+ and · always
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denote addition and multiplication. Differential-form dL allows differentials (θ)′ of terms θ

as terms for the purpose of axiomatically internalizing reasoning about differential equations.
The differential (θ)′ describes how the value of θ changes locally depending on how the values
of its variables x change, i.e. as a function of the values of the corresponding differential
symbols x ′.Differentialswillmake it possible to reduce reasoning aboutdifferential equations
to reasoning about equations of differentials, which, quite unlike differential equations, have
a local semantics in isolated states and are, thus, amenable to an axiomatic treatment.

Formulas and hybrid programs (HPs) ofdL are defined by simultaneous induction, because
formulas can occur in programs and programs can occur in formulas. Similar simultaneous
inductions are, thus, used throughout the proofs in this article.

Definition 2 (dLformula) The formulas of (differential-form) differential dynamic logic (dL)
are defined by the grammar (with dL formulas φ,ψ , terms θ, η, θ1, . . . , θk , predicate symbol
p, quantifier symbol C , variable x , HP α):

φ,ψ ::= θ ≥ η | p(θ1, . . . , θk) | C(φ) | ¬φ | φ ∧ ψ | ∀x φ | ∃x φ | [α]φ | 〈α〉φ
Operators >,≤,<,∨,→,↔ are definable, e.g., φ → ψ as ¬(φ ∧ ¬ψ). Also [α]φ is

equivalent to ¬〈α〉¬φ and ∀x φ equivalent to ¬∃x ¬φ. The modal formula [α]φ expresses
that φ holds after all runs of α, while the dual 〈α〉φ expresses that φ holds after some
run of α. Quantifier symbols C (with formula φ as argument), i.e. higher-order predicate
symbols that bind all variables of φ, are unnecessary but included for convenience since
they internalize contextual congruence reasoning efficiently with uniform substitutions. The
concrete quantifier chain in ∀x ∃y φ evaluates the formula φ at multiple x and y values to
determine whether the whole formula is true. Similarly, an abstract quantifier symbol C can
evaluate its formula argument φ for different variable values to determine whether C(φ) is
true. WhetherC(φ) is true, and where exactlyC evaluates its argument φ to find out, depends
on the interpretation of C .

Definition 3 (Hybrid program) Hybrid programs (HPs) are defined by the following gram-
mar (with α, β as HPs, program constant a, variable x , term θ possibly containing x , and
with dL formula1 ψ):

α, β ::= a | x := θ | ?ψ | x ′ = θ &ψ | α ∪ β | α;β | α∗

Assignments x := θ of θ to variable x , tests ?ψ of the formula ψ in the current state,
differential equations x ′ = θ &ψ restricted to the evolution domain ψ , nondeterministic
choices α∪β, sequential compositions α;β, and nondeterministic repetition α∗ are as usual
in dL [12,14]. The assignment x := θ instantaneously changes the value of x to that of θ .
The test ?ψ checks whether ψ is true in the current state and discards the program execution
otherwise. The continuous evolution x ′ = θ &ψ will follow the differential equation x ′ = θ

for any nondeterministic amount of time, but cannot leave the region where the evolution
domain constraint ψ holds. For example, x ′ = v, v′ = a& v ≥ 0 follows the differential
equation where position x changes with time-derivative v while the velocity v changes with
time-derivative a for any arbitrary amount of time, but without ever allowing a negative
velocity v (which would, otherwise, ultimately happen for negative accelerations a < 0).
Usually, the value of differential symbol x ′ is unrelated to the value of variable x . But along
a differential equation x ′ = θ , differential symbol x ′ has the value of the time-derivative of
the value of x (and is, furthermore, equal to θ ). Differential equations x ′ = θ &ψ have to be

1 Quantifier-free formulas of first-order logic of real arithmetic are enough for most purposes.
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in explicit form, so y′ and (η)′ cannot occur in θ and x /∈ V ′. The nondeterministic choice
α ∪ β either executes subprogram α or β, nondeterministically. The sequential composition
α;β first executes α and then, upon completion of α, runs β. The nondeterministic repetition
α∗ repeats α any number of times, nondeterministically.

The effect of an assignment x ′ := θ to differential symbol x ′ ∈ V , called differential
assignment, is like the effect of an assignment x := θ to variable x , except that it changes the
value of the differential symbol x ′ instead of the value of x . It is not to be confused with the
differential equation x ′ = θ , which will follow said differential equation continuously for an
arbitrary amount of time. The differential assignment x ′ := θ , instead, only assigns the value
of θ to the differential symbol x ′ discretely once at an instant of time. Program constants
a are uninterpreted, i.e. their behavior depends on the interpretation in the same way that
the values of function symbols f , predicate symbols p, and quantifier symbols C depend on
their interpretation.

Example 4 (Simple car) The dL formula

v ≥ 2 ∧ b > 0→ [((a := −b ∪ a := 5); x ′ = v, v′ = a& v ≥ 0)∗] v ≥ 0 (1)

expresses that a car starting with velocity v ≥ 2 and braking constant b > 0 will always have
nonnegative velocity v ≥ 0 when following a HP that repeatedly provides a nondeterministic
control choice betweenputting the accelerationa to braking (a := −b) or to a positive constant
(a := 5) before following the differential equation system x ′ = v, v′ = a restricted to the
evolution domain constraint v ≥ 0 for any amount of time. The formula in (1) is true,
because the car never moves backward in the HP. But similar questions quickly become
challenging, e.g., about safe distances to other cars or for models with more detailed physical
dynamics.

2.2 Dynamic Semantics

The (denotational) dynamic semantics of dL defines, depending on the values of the symbols,
what real value terms evaluate to, what truth-value formulas have, and from what initial
states which final states are reachable by running its HPs. Since the values of variables and
differential symbols can change over time, they receive their value by the state. A state is a
mapping ν : V → R from variables V including differential symbols V ′ ⊆ V to R. The set
of states is denotedS. The set X� = S \ X is the complement of a set X ⊆ S. Let νrx denote
the state that agrees with state ν except for the value of variable x , which is changed to r ∈ R.
The interpretation of a function symbol f of arity n (i.e. with n arguments) in interpretation
I is a (smooth, i.e. with derivatives of any order) function I ( f ) : R

n → R of n arguments
(continuously differentiable suffices). The set of interpretations is denotedI . The semantics
of a term θ is a mapping [[θ ]] : I → (S → R) from interpretations and states to a real
number.

Definition 5 (Semantics of terms) The semantics of a term θ in interpretation I and state
ν ∈ S is its value Iν[[θ ]] in R. It is defined inductively as follows
1. Iν[[x]] = ν(x) for variable x ∈ V
2. Iν[[ f (θ1, . . . , θk)]] = I ( f )

(
Iν[[θ1]], . . . , Iν[[θk]]

)
for function symbol f

3. Iν[[θ + η]] = Iν[[θ ]] + Iν[[η]]
4. Iν[[θ · η]] = Iν[[θ ]] · Iν[[η]]
5. Iν[[(θ)′]] =

∑

x∈V
ν(x ′) ∂ I [[θ ]]

∂x
(ν) =

∑

x∈V
ν(x ′) ∂ Iν[[θ ]]

∂x
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Time-derivatives are undefined in an isolated state ν. The clou is that differentials can, nev-
ertheless, be given a local semantics in a single state: Iν[[(θ)′]] is the sum of all (analytic)
spatial partial derivatives at ν of the value of θ by all variables x multiplied by the corre-
sponding direction described by the value ν(x ′) of differential symbol x ′. That sum over all
variables x ∈ V is finite, because θ only mentions finitely many variables x and the partial
derivative by variables x that do not occur in θ is 0. As usual, ∂g

∂x (ν) is the partial derivative

of function g at point ν by variable x , which is sometimes also just denoted ∂g(ν)
∂x . Hence,

the partial derivative ∂ I [[θ ]]
∂x (ν) = ∂ Iν[[θ ]]

∂x is the derivative of the one-dimensional function
IνX

x [[θ ]] of X at ν(x). The spatial partial derivatives exist since Iν[[θ ]] is a composition of
smooth functions, so is itself smooth. Thus, the semantics of Iν[[(θ)′]] is the differential2 of
(the value of) θ , hence a differential one-form giving a real value for each tangent vector
(i.e. point of a vector field) described by the values ν(x ′). The values ν(x ′) of the differential
symbols x ′ select the direction in which x changes, locally. The partial derivatives of Iν[[θ ]]
by x describe how the value of θ changes with a change of x . Along the solution of (the
vector field corresponding to) a differential equation, the value of differential (θ)′ coincides
with the analytic time-derivative of θ (Lemma35).

The semantics of a formula φ is a mapping [[φ]] : I → ℘(S) from interpretations to the
set of all states in which φ is true, where ℘(S) is the powerset of S. The semantics of an
HP α is a mapping [[α]] : I → ℘(S ×S) from interpretations to a reachability relation on
states. The set of states I [[φ]] ⊆ S in which formulaφ is true and the relation I [[α]] ⊆ S ×S
of HP α are defined by simultaneous induction as their syntax is simultaneously inductive.
The interpretation of predicate symbol p with arity n is an n-ary relation I (p) ⊆ R

n . The
interpretation of quantifier symbol C is a functional I (C) : ℘(S) → ℘(S) mapping sets
M ⊆ S of states where its argument is true to sets I (C)(M) ⊆ S of states where C applied
to that argument is then true.

Definition 6 (dL semantics) The semantics of a dL formula φ, for each interpretation I
with a corresponding set of states S, is the subset I [[φ]] ⊆ S of states in which φ is true. It
is defined inductively as follows
1. I [[θ ≥ η]] = {ν ∈ S : Iν[[θ ]] ≥ Iν[[η]]}
2. I [[p(θ1, . . . , θk)]] = {ν ∈ S : (Iν[[θ1]], . . . , Iν[[θk]]) ∈ I (p)}
3. I [[C(φ)]] = I (C)

(
I [[φ]]) for quantifier symbol C

4. I [[¬φ]] = (I [[φ]])� = S \ (I [[φ]])
5. I [[φ ∧ ψ]] = I [[φ]] ∩ I [[ψ]]
6. I [[∃x φ]] = {ν ∈ S : νrx ∈ I [[φ]] for some r ∈ R}
7. I [[∀x φ]] = {ν ∈ S : νrx ∈ I [[φ]] for all r ∈ R}
8. I [[〈α〉φ]] = I [[α]] ◦ I [[φ]] = {ν : ω ∈ I [[φ]] for some ω such that (ν, ω) ∈ I [[α]]}
9. I [[[α]φ]] = I [[¬〈α〉¬φ]] = {ν : ω ∈ I [[φ]] for all ω such that (ν, ω) ∈ I [[α]]}
A dL formula φ is true at state ν in I , also written I, ν |� φ iff ν ∈ I [[φ]]. A dL formula φ is
valid in I , written I |� φ, iff I [[φ]] = S, i.e. ν ∈ I [[φ]] for all states ν. Formula φ is valid,
written � φ, iff I |� φ for all interpretations I .

The relation composition operator ◦ in Case8 is also used for sets which are unary relations.
The interpretation of program constant a is a state-transition relation I (a) ⊆ S ×S, where
(ν, ω) ∈ I (a) iff HP a can run from initial state ν to final state ω.

2 The usual point-free abuse of notation aligns Definition 5 with its mathematical counterparts by rewriting
the differential as I [[(θ)′]] = d(I [[θ ]]) = ∑n

i=1
∂ I [[θ]]
∂xi

dxi when x1, . . . , xn are the variables in θ and their

differentials dxi form the basis of the cotangent space, which, when evaluated at a point ν whose values ν(x ′)
determine the actual tangent vector alias vector field.
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Definition 7 (Transition semantics of HPs) For each interpretation I , each HP α is
interpreted semantically as a binary transition relation I [[α]] ⊆ S ×S on states, defined
inductively by
1. I [[a]] = I (a) for program constants a
2. I [[x := θ ]] = {(ν, νrx ) : r = Iν[[θ ]]} = {(ν, ω) : ω = ν except ω(x) = Iν[[θ ]]}
3. I [[?ψ]] = {(ν, ν) : ν ∈ I [[ψ]]}
4. I [[x ′ = θ &ψ]] = {(ν, ω) : ν = ϕ(0) on {x ′}� and ω = ϕ(r) for some function

ϕ : [0, r ] → S of some duration r satisfying I, ϕ |� x ′ = θ ∧ ψ}
where I, ϕ |� x ′ = θ ∧ ψ iff ϕ(ζ ) ∈ I [[x ′ = θ ∧ ψ]] and ϕ(0) = ϕ(ζ ) on {x, x ′}� for
all 0 ≤ ζ ≤ r and if dϕ(t)(x)

dt (ζ ) exists and is equal to ϕ(ζ )(x ′) for all 0 ≤ ζ ≤ r .
5. I [[α ∪ β]] = I [[α]] ∪ I [[β]]
6. I [[α;β]] = I [[α]] ◦ I [[β]] = {(ν, ω) : (ν, μ) ∈ I [[α]], (μ, ω) ∈ I [[β]] for some μ}
7. I [[α∗]] = (

I [[α]])∗ =
⋃

n∈N
I [[αn]] with αn+1 ≡ αn;α and α0 ≡ ?true

where ρ∗ denotes the reflexive transitive closure of relation ρ.

The equality in I [[α∗]] follows from the Scott-continuity of HPs [16, Lemma3.7]. The case
I [[x ′ = θ &ψ]] expresses that ϕ solves the differential equation and satisfies ψ at all times.
In case r = 0, the only condition is that ν = ω on {x ′}� and ω(x ′) = Iω[[θ ]] and
ω ∈ I [[ψ]]. Since ν and ϕ(0) are only assumed to agree on the complement {x ′}� of the
set {x ′}, the initial values ν(x ′) of differential symbols x ′ do not influence the behavior of
(ν, ω) ∈ I [[x ′ = θ &ψ]], because they may not be compatible with the time-derivatives for
the differential equation, e.g. in x ′ := 1; x ′ = 2 with a discontinuity in x ′. The final values
ω(x ′) after x ′ = θ &ψ will coincide with the derivatives at the final state, though, even for
evolutions of duration zero.

2.3 Static Semantics

The dynamic semantics gives a precise meaning to dL formulas and HPs but is inaccessible
for effective reasoning purposes. By contrast, the static semantics of dL and HPs defines
only simple aspects of the dynamics concerning the variable usage that follows more directly
from the syntactic structure without running the programs or evaluating their dynamical
effects. The correctness of uniform substitutions depends only on the static semantics, which
identifies free variables (FV(θ),FV(φ),FV(α) of terms θ , formulas φ and programs α) and
bound variables (BV(α)). The static semantics first characterizes free and bound variables
semantically from the dynamic semantics and subsequently shows algorithms for computing
them conservatively.

Definition 8 (Static semantics) The static semantics defines the free variables, which are
all variables that the value of an expression depends on, as well as bound variables, which
can change their value during the evaluation of an expression, as follows:

FV(θ) =
⋃
{x ∈ V : there are I and ν = ν̃ on {x}� such that Iν[[θ ]] �= I ν̃[[θ ]]}

FV(φ) =
⋃
{x ∈ V : there are I and ν = ν̃ on {x}� such that ν ∈ I [[θ ]] �� ν̃}

FV(α) =
⋃
{x ∈ V : there are I, ν, ν̃, ω such that ν = ν̃ on {x}� and (ν, ω) ∈ I [[α]]

but there is no ω̃ with ω = ω̃ on {x}� such that (ν̃, ω̃) ∈ I [[α]]}
BV(α) =

⋃
{x ∈ V : there are I and (ν, ω) ∈ I [[α]] such that ν(x) �= ω(x)}
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The signature, i.e. set of function, predicate, quantifier symbols, and program constants in φ

is denoted Σ(φ); accordingly Σ(θ) for termθ and Σ(α) for programα.

For example, only {v, b, x} are free variables of the formula (1), yet {a, x, x ′, v, v′} are
the bound variables of its program. Acceleration a is not a free variable of (1), because a is
never actually read, as a must have been written on every execution path before being read
anywhere. No execution of the program in (1) depends on the initial value of a, so a is not
free since a is not free after the loop or in the postcondition.

The static semantics provides uniform substitutionswith all they need to know to determine
what changes during substitutions go unnoticed (only changes to free variables have an
impact on the value of an expression Lemma10–12) and what state-change an expression
may cause itself (only bound variables can change their value during the evaluation of an
expression Lemma9). Whether a uniform substitution preserves truth in a proof depends on
the interaction of the free and bound variables. If it introduces a free variable into a context
where that variable is bound, then the possible change in value of that bound variable may
affect the overall truth-value.

The first property that uniform substitutions depend on is that HPs have bounded effect:
only bound variables of HP α are modified during runs of α.

Lemma 9 (Bound effect) The set BV(α) is the smallest set with the bound effect property:
If (ν, ω) ∈ I [[α]], then ν = ω on BV(α)�.

With a small-step operational semantics, a corresponding notion of bound variables of a
formula could be defined as those that change their value during the evaluation of formulas,
but that is not needed here.

The value of a term only depends on the values of its free variables. When evaluating a
term θ in two different states ν, ν̃ that agree on its free variables FV(θ), the values of θ in
both states coincide. Accordingly, the value of a term will agree for different interpretations
I, J that agree on the symbols Σ(θ) that occur in θ .

Lemma 10 (Coincidence for terms) The set FV(θ) is the smallest set with the coincidence
property for θ : If ν = ν̃ on FV(θ) and I = J on Σ(θ), then Iν[[θ ]] = J ν̃[[θ ]].
In particular, the semantics of differentials is a sum over just the free variables:

Iν[[(θ)′]] =
∑

x∈FV(θ)

ν(x ′) ∂ I [[θ ]]
∂x

(ν) =
∑

x∈FV(θ)

ν(x ′) ∂ Iν[[θ ]]
∂x

When evaluating a dL formula φ in two different states ν, ν̃ that agree on its free variables
FV(φ) in I = J on Σ(φ), the truth-values of φ in both states coincide.

Lemma 11 (Coincidence for formulas) The setFV(φ) is the smallest set with the coincidence
property for φ: If ν = ν̃ on FV(φ) and I = J on Σ(φ), then ν ∈ I [[φ]] iff ν̃ ∈ J [[φ]].

The runs of an HP α only depend on the values of its free variables, because its behavior
cannot depend on the values of variables that it never reads. If ν = ν̃ on FV(α) and I = J on
Σ(φ) and (ν, ω) ∈ I [[α]], then there is an ω̃ such that (ν̃, ω̃) ∈ J [[α]] and ω and ω̃ agree on
FV(α). In fact, the final states ω, ω̃ continue to agree on any set V ⊇ FV(α) that the initial
states ν, ν̃ agreed on. The respective pairs of initial and final states of a run of HP α already
agree on the complement BV(α)� by Lemma9.
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Complete Uniform Substitution for Differential Dynamic Logic 227

Lemma 12 (Coincidence for programs) The set FV(α) is the smallest set with the coinci-
dence property for α: If ν = ν̃ on V ⊇ FV(α), I = J onΣ(α) and (ν, ω) ∈ I [[α]], then there
is a ω̃ such that (ν̃, ω̃) ∈ J [[α]] and ω = ω̃ on V .

ν ω

ν̃ ω̃

on V ⊇ FV(α)

α

α
on V

on BV(α)�

on BV(α)�

2.4 Correct Static Semantics Computations

Lemmas 9–12 hold for any superset of BV(α),FV(θ),FV(φ),FV(α), respectively. Supersets
of the static semantics can be computed easily from the syntactic structure and provide the
sole input that uniform substitutions depend on, which, in turn, are the only part of the
calculus where the static semantics is relevant. Only variables that are read in a formula or
program can be free variables. And only variables that have quantifiers or are written to or
have differential equations can be bound variables.

Bound variables x of a formula are those that are bound by ∀x or ∃x , but also those that are
bound by modalities such as [x := 5y] or 〈x ′ = 1〉 or [x := 1 ∪ x ′ = 1] or [x := 1 ∪ ?true]
because of the assignment to x or differential equation for x they contain. The scope of the
bound variable x is limited to the quantified formula or to the postcondition and remaining
program of a modality.

Definition 13 (Bound variable) The set BV(φ) ⊆ V of (syntactically) bound variables of
dL formula φ is defined inductively as:

BV(p(θ1, . . . , θk)) = ∅ where p can also be ≥
BV(C(φ)) = V

BV(¬φ) = BV(φ)

BV(φ ∧ ψ) = BV(φ) ∪ BV(ψ)

BV(∀x φ) = BV(∃x φ) = {x} ∪ BV(φ)

BV([α]φ) = BV(〈α〉φ) = BV(α) ∪ BV(φ)

The set BV(α) ⊆ V of (syntactically) bound variables of HP α, i.e. all those that may
potentially be written to, is defined inductively as:

BV(a) = V for program constant a

BV(x := θ) = {x}
BV(?ψ) = ∅

BV(x ′ = θ &ψ) = {x, x ′}
BV(α ∪ β) = BV(α;β) = BV(α) ∪ BV(β)

BV(α∗) = BV(α)

Both x and x ′ are bound by a differential equation x ′ = θ , as both may change their value.
All variables V is the only option for program constants and quantifier symbols C , since,
depending on their interpretation, both may change the value of any x ∈ V .
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The free variables of a quantified formula are defined by removing its bound variable
as FV(∀x φ) = FV(φ) \ {x}, since all occurrences of x in φ are bound by ∀x . The bound
variables of a program in a modality act in a similar way, except that the program itself may
read variables during the computation, so its free variables need to be taken into account.
By analogy to the quantifier case, it is often suspected that FV([α]φ) could be defined as
FV(α) ∪ (FV(φ) \ BV(α)). But that would be unsound, because [x := 1 ∪ y := 2] x ≥ 1
would have no free variables then, contradicting the fact that its truth-value depends on the
initial value of x . The reason is that x is a bound variable of that program, but only written
to on some but not on all paths. So the initial value of x may be needed to evaluate the truth
of the postcondition x ≥ 1 on some execution paths. If a variable is must-bound, so written
to on all paths of the program, however, it can safely be removed from the free variables of
the postcondition. The static semantics defines the subset of variables that are must-bound
(MBV(α)), so must be written to on all execution paths of α. This complication does not
happen for ordinary quantifiers or strictly nested languages like pure λ-calculi.

Definition 14 (Must-bound variable) The set MBV(α) ⊆ BV(α) ⊆ V of (syntactically)
must-bound variables of HP α, i.e. all those that must be written to on all paths of α, is
defined inductively as:

MBV(a) = ∅ for program constant a

MBV(α) = BV(α) for atomic HPs α except program constants

MBV(α ∪ β) = MBV(α) ∩MBV(β)

MBV(α;β) = MBV(α) ∪MBV(β)

MBV(α∗) = ∅

Finally, the static semantics also defines which variables are free so may be read. The
definition of free variables is simultaneously inductive for formulas (FV(φ)) and programs
(FV(α)) owing to their mutually recursive syntactic structure.

Definition 15 (Free variable) The set FV(θ) ⊆ V of (syntactically) free variables of term
θ , i.e. those that occur in θ directly or indirectly, is defined inductively as:

FV(x) = {x} hence FV(x ′) = {x ′}
FV( f (θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk) where f can also be + or ·

FV((θ)′) = FV(θ) ∪ FV(θ)′

The set FV(φ) of (syntactically) free variables of dL formula φ, i.e. all that occur in φ outside
the scope of quantifiers or modalities binding it, is defined inductively as:

FV(p(θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk) where p can also be ≥
FV(C(φ)) = V

FV(¬φ) = FV(φ)

FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

FV(∀x φ) = FV(∃x φ) = FV(φ) \ {x}
FV([α]φ) = FV(〈α〉φ) = FV(α) ∪ (FV(φ)\MBV(α))
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The set FV(α) ⊆ V of (syntactically) free variables ofHPα, i.e. all those thatmay potentially
be read, is defined inductively as:

FV(a) = V for program constant a

FV(x := θ) = FV(θ)

FV(?ψ) = FV(ψ)

FV(x ′ = θ &ψ) = {x} ∪ FV(θ) ∪ FV(ψ)

FV(α ∪ β) = FV(α) ∪ FV(β)

FV(α;β) = FV(α) ∪ (FV(β) \MBV(α))

FV(α∗) = FV(α)

The variables of dL formula φ, whether free or bound, are V(φ) = FV(φ) ∪ BV(φ). The
variables of HP α, whether free or bound, are V(α) = FV(α) ∪ BV(α).

Soundness requires FV((θ)′) to be the union of FV(θ) and its differential closure FV(θ)′
of all differential symbols corresponding to the variables in FV(θ), because the value of
(xy)′ depends on FV((xy)′) = {x, x ′, y, y′} so the current and differential symbol values.
Indeed, (xy)′ will turn out to equal x ′y + xy′ (Lemma37), which has the same set of free
variables {x, x ′, y, y′} for more obvious reasons. Both x and x ′ are bound in x ′ = θ &ψ

since both change their value, but only x is added to the free variables, because the behavior
can only depend on the initial value of x , not of that of x ′. All variables V are free and bound
variables for program constants a, because their effect depends on the interpretation I , so
they may read and write any variable in FV(a) = BV(a) = V but possibly not on all paths,
so MBV(a) = ∅.

For example, FV(φ) = FV(φ) = {v, b, x} are the free variables of the formula φ in
(1), while BV(α) = BV(α) = {a, x, x ′, v, v′} are the bound variables (and must-bound
variables) of its program α. This would have been different for the less precise definition
FV(α;β) = FV(α) ∪ FV(β). Of course [20], syntactic computations may give bigger sets,
e.g., FV(x2 − x2) = {x} �= FV(x2 − x2) = ∅ or BV(x := x) = {x} �= BV(x := x) = ∅, or
similarly when some differential equation can never be executed.

Since uniform substitutions depend on the static semantics, soundness of uniform sub-
stitutions requires the static semantics to be computed correctly. Correctness of the static
semantics is easy to prove by straightforward structural induction with some attention for
differential cases. There is a subtlety in the soundness proof for the free variables of pro-
grams and formulas, though. The states ω and ω̃ resulting from Lemma12 continue to agree
on FV(α) and the variables that are bound on the particular path that α ran for the transition
(ν, ω) ∈ I [[α]]. They may disagree on variables z that are neither free (so the initial states
ν and ν̃ have not been assumed to coincide) nor bound on the particular path that α took,
because z has not been written to.

Example 16 (Bound variablesmay not agree after anHP)Let (ν, ω) ∈ I [[α]]. It is not enough
to assume ν = ν̃ only on FV(α) in order to guarantee ω = ω̃ on V(α) for some ω̃ such that

(ν̃, ω̃) ∈ J [[α]], because α
def≡ x := 1 ∪ y := 2 will force the final states to agree only on

either x or on y, whichever one was assigned to during the respective run of α, not on both
BV(α) = {x, y}, even though any initial states ν, ν̃ agree on FV(α) = ∅. This can only
happen because ∅ = MBV(α) �= BV(α) = {x, y}.

Yet, the respective resulting states ω and ω̃ still agree on the must-bound variables that are
bound on all paths of α, rather than just somewhere in α. If initial states agree on (at least) all
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free variables FV(α) that HP α may read, then the final states continue to agree on those (even
if overwritten since) as well as on all variables that α must write on all paths, i.e. MBV(α).
This is crucial for the soundness proof of the syntactic static semantics, because, e.g., free
occurrences in φ of must-bound variables of α will not be free in [α]φ, so the initial states
will not have been assumed to agree initially. It is of similar significance that the resulting
states continue to agree on any superset V ⊇ FV(α) of the free variables that the initial states
agreed on.

Lemma 17 (Soundness of static semantics) The static semantics correctly computes super-
sets and, thus, Lemmas 9–12 hold for BV(α),FV(θ),FV(φ),FV(α):

BV(α) ⊇ BV(α) FV(θ) ⊇ FV(θ) FV(φ) ⊇ FV(φ) FV(α) ⊇ FV(α)

In particular, the final states ω and ω̃ agree on V(α) if the initial states ν and ν̃ agree on V(α)

and even if the initial states only agree on V(α) \MBV(α).
This concludes the static semantics of dL, which computes syntactically what kind of

state change formulas φ and HPs α may cause (captured in BV(φ),BV(α)) and what part
of the state their values and behavior depends on (FV(φ),FV(α)). Lemma17 will be used
implicitly in the sequel when referring to Lemmas 9–12.

3 Uniform Substitutions

The uniform substitution rule US1 from first-order logic [2, §35, 40] substitutes all occur-
rences of predicate p(·) by a formula ψ(·), i.e. it replaces all occurrences of p(θ), for any
(vectorial) argument term θ , by the corresponding ψ(θ) simultaneously:

(US1)
φ

φ
ψ(·)
p(·)

(US)
φ

σ(φ)

Soundness of rule US1 [16] requires all relevant substitutions of ψ(θ) for p(θ) to be admis-
sible, i.e. that no p(θ) occurs in the scope of a quantifier or modality binding a variable of
ψ(θ) other than the occurrences in θ ; see [2, §35, 40]. A precise definition of admissibility
is the key ingredient and will be developed from the static semantics.

This section develops rule US as a more general and constructive definition with a precise
substitution algorithm and precise admissibility conditions that allow symbols from more
syntactic categories to be substituted. The dL calculus uses uniform substitutions that affect
terms, formulas, and programs. A uniform substitution σ is a mapping from expressions of
the form f (·) to terms σ f (·), from p(·) to formulas σ p(·), from C(_) to formulas σC(_),
and from program constants a to HPs σa. Vectorial extensions are accordingly for uniform
substitutions of other arities k ≥ 0. Here · is a reserved function symbol of arity zero and
_ a reserved quantifier symbol of arity zero, which mark the positions where the respective
argument, e.g., argument θ to p(·) in the formula p(θ), will end up in the replacement σ p(·)
used for p(θ).

Example 18 (Uniform substitutions with or without clashes) The uniform substitution σ =
{ f �→ x + 1, p(·) �→ (· �= x)} substitutes all occurrences of function symbol f (of arity 0)
by x + 1 and simultaneously substitutes all occurrences of p(θ) with predicate symbol p of
any argument θ by the corresponding (θ �= x). Whether that uniform substitution is sound
depends on admissibility of σ for the formula φ in US as will be defined in Definition 19. It
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will turn out to be admissible (and thus sound) for

US
[y := f ]p(2y) ↔ [y := f ]p(2 f )

[y := x + 1] 2y �= x ↔ [y := x+1] 2(x+1) �= x
σ ={ f �→ x + 1, p(·) �→ (· �= x)}

but will turn out to be in-admissible (and, in fact, would be unsound) for:

clash�
[x := f ]p(x) ↔ p( f )

[x := x + 1] x �= x ↔ x + 1 �= x
σ = { f �→ x + 1, p(·) �→ (· �= x)}

Here, σ is not admissible, because σ has a free variable x in its replacement for p(·) that it
introduces into a context where x is bound by the modality [x := . . .], so the x in replacement
· �= x for p(·) would refer to different values in the occurrences of p.

Figure 1 defines the result σ(φ) of applying to a dL formula φ the uniform substitution
σ that uniformly replaces all occurrences of a function f by a term (instantiated with its
respective argument of f ) and all occurrences of a predicate p or a quantifier C symbol by
a formula (instantiated with its argument) as well as of a program constant a by a program.
A uniform substitution can replace any number of such function, predicate, and quantifier
symbols or program constants simultaneously. The notation σ f (·) denotes the replacement
for f (·) according to σ , i.e. the value σ f (·) of function σ at f (·). By contrast, σ(φ) denotes
the result of applying σ to φ according to Fig. 1 (likewise for σ(θ) and σ(α)). The notation
f ∈ σ signifies that σ replaces f , i.e. σ f (·) �= f (·). Finally, σ is a total function when
augmented with σg(·) = g(·) for all g /∈ σ , so that the case g /∈ σ in Fig. 1 is subsumed
by case f ∈ σ . Corresponding notation is used for predicate symbols, quantifier symbols,
and program constants. The cases g /∈ σ , p /∈ σ , C /∈ σ , b /∈ σ follow from the other cases
but are listed explicitly for clarity. Arguments are put in for the placeholder · recursively by
uniform substitution {· �→ σ(θ)} in Fig. 1, which is defined since it replaces the function
symbol · of arity 0 by σ(θ), or accordingly for quantifier symbol _ of arity 0.

Definition 19 (Admissible uniform substitution) A uniform substitution σ is U-admissible
for φ (or θ or α, respectively) with respect to the variables U ⊆ V iff FV(σ |Σ(φ)) ∩U = ∅,
where σ |Σ(φ) is the restriction of σ that only replaces symbols that occur in φ, and FV(σ ) =⋃

f ∈σ FV(σ f (·)) ∪ ⋃
p∈σ FV(σ p(·)) are the free variables that σ introduces. A uniform

substitution σ is admissible for φ (or θ or α, respectively) iff the bound variables U of
each operator of φ are not free in the substitution on its arguments, i.e. σ is U -admissible.
These admissibility conditions are listed explicitly in Fig. 1, which defines the result σ(φ) of
applying σ to φ.

The substitution σ is said to clash and its result σ(φ) (or σ(θ) or σ(α)) is not defined if σ

is not admissible, in which case rule US is not applicable either. All subsequent applications
of uniform substitutions are required to be defined (no clash). If a uniform substitution is
admissible using the syntactic FV(φ) and BV(α) from Sect. 2.4, then it is also admissible
using the static semantics FV(φ) andBV(α) from Sect. 2.3 by Lemma17, so that the syntactic
computations can be used soundly.

Example 20 (Admissibility) The first use of US in Example18 is admissible, because no
free variable of the substitution is introduced into a context in which that variable is bound.
The second, unsound attempt in Example18 clashes, because it is not admissible, since
x ∈ FV(σ ) but also x ∈ BV(x := x + 1). Occurrences of such bound variables that result
from the arguments of the predicates or functions are exempt:

US
[x := f ]p(x) ↔ p( f )

[x := x + 1]x �= y ↔ x + 1 �= y
σ = { f �→ x + 1, p(·) �→ (· �= y)}

123



232 A. Platzer

σ(x) = x for variable x ∈ V

σ( f (θ)) = (σ ( f ))(σ (θ))
def= {· �→ σ(θ)}(σ f (·)) for function symbol f ∈ σ

σ(g(θ)) = g(σ (θ)) for function symbol g /∈ σ

σ(θ + η) = σ(θ)+ σ(η)

σ (θ · η) = σ(θ) · σ(η)

σ ((θ)′) = (σ (θ))′ if σ is V -admissible for θ

σ (θ ≥ η) ≡ σ(θ) ≥ σ(η)

σ (p(θ)) ≡ (σ (p))(σ (θ))
def≡ {· �→ σ(θ)}(σ p(·)) for predicate symbol p ∈ σ

σ(q(θ)) ≡ q(σ (θ)) for predicate symbol q /∈ σ

σ(C(φ)) ≡ σ(C)(σ (φ))
def≡ {_ �→ σ(φ)}(σC(_)) if σ is V -admissible for φ, C ∈ σ

σ(C(φ)) ≡ C(σ (φ)) if σ is V -admissible for φ, C /∈ σ

σ(¬φ) ≡ ¬σ(φ)

σ (φ ∧ ψ) ≡ σ(φ) ∧ σ(ψ)

σ(∀x φ) = ∀x σ(φ) if σ is {x}-admissible for φ

σ(∃x φ) = ∃x σ(φ) if σ is {x}-admissible for φ

σ([α]φ) = [σ(α)]σ(φ) if σ is BV(σ (α))-admissible for φ

σ(〈α〉φ) = 〈σ(α)〉σ(φ) if σ is BV(σ (α))-admissible for φ

σ(a) ≡ σa for program constant a ∈ σ

σ(b) ≡ b for program constant b /∈ σ

σ(x := θ) ≡ x := σ(θ)

σ (x ′ = θ &ψ) ≡ x ′ = σ(θ)& σ(ψ) if σ is {x, x ′}-admissible for θ, ψ

σ(?ψ) ≡ ?σ(ψ)

σ(α ∪ β) ≡ σ(α) ∪ σ(β)

σ (α;β) ≡ σ(α); σ(β) if σ is BV(σ (α))-admissible for β

σ(α∗) ≡ (σ (α))∗ if σ is BV(σ (α))-admissible for α

Fig. 1 Recursive application of uniform substitution σ

3.1 Uniform Substitution Lemmas

Soundness of rule US requires proving that validity is preservedwhen replacing symbols with
their uniform substitutes. The key to its soundness proof is to relate this syntactic change to
a semantic change of the interpretations such that validity of its premise in all interpretations
implies validity of the premise in the semantically modified interpretation, which is then
equivalent to validity of its syntactical substitute in the conclusion. The semantic substitution
corresponding to (or adjoint to) σ modifies the interpretation of function, predicate and quan-
tifier symbols as well as program constants semantically in the sameway that σ replaces them
syntactically. When σ is admissible, the value of an expression in the adjoint interpretation
agrees with the value of its uniform substitute in the original interpretation. This link to the
static semantics proves the following correspondence of syntactic and semantic substitution.

Let I d· denote the interpretation that agrees with interpretation I except for the interpre-
tation of function symbol · which is changed to d ∈ R. Correspondingly I R_ denotes the
interpretation that agrees with I except that quantifier symbol _ is R ⊆ S.

Definition 21 (Substitution adjoints) The adjoint to substitution σ is the operation that
maps I, ν to the adjoint interpretation σ ∗ν I in which the interpretation of each function
symbol f ∈ σ , predicate symbol p ∈ σ , quantifier symbol C ∈ σ , and program constant
a ∈ σ is modified according to σ :

σ ∗ν I ( f ) : R → R; d �→ I d· ν[[σ f (·)]]
σ ∗ν I (p) = {d ∈ R : ν ∈ I d· [[σ p(·)]]}
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σ ∗ν I (C) : ℘(S) → ℘(S); R �→ I R_ [[σC(_)]]
σ ∗ν I (a) = I [[σa]]

Corollary 22 (Admissible adjoints) If ν = ω on FV(σ ), then σ ∗ν I = σ ∗ω I . If σ is U-
admissible for θ (or φ or α, respectively) and ν = ω on U�, then

σ ∗ν I [[θ ]] = σ ∗ω I [[θ ]] i.e. σ ∗ν Iμ[[θ ]] = σ ∗ω Iμ[[θ ]] for all states μ

σ ∗ν I [[φ]] = σ ∗ω I [[φ]]
σ ∗ν I [[α]] = σ ∗ω I [[α]]

Substituting equals for equals is sound by the compositional semantics of dL. The more
general uniform substitutions are still sound, because the semantics of uniform substitutes
of expressions agrees with the semantics of the expressions themselves in the adjoint inter-
pretations. The semantic modification of adjoint interpretations has the same effect as the
syntactic uniform substitution.

Lemma 23 (Uniform substitution for terms) The uniform substitution σ and its adjoint
interpretation σ ∗ν I, ν for I, ν have the same semantics for all terms θ :

Iν[[σ(θ)]] = σ ∗ν Iν[[θ ]]
The uniform substitute of a formula is true at ν in an interpretation iff the formula itself is true
at ν in its adjoint interpretation. Uniform substitution lemmas are proved by simultaneous
induction for formulas and programs, as they are mutually recursive.

Lemma 24 (Uniform substitution for formulas) The uniform substitution σ and its adjoint
interpretation σ ∗ν I, ν for I, ν have the same semantics for all formulas φ:

ν ∈ I [[σ(φ)]] iff ν ∈ σ ∗ν I [[φ]]
The uniform substitute of a program has a run from ν to ω in an interpretation iff the program
itself has a run from ν to ω in its adjoint interpretation.

Lemma 25 (Uniform substitution for programs) The uniform substitution σ and its adjoint
interpretation σ ∗ν I, ν for I, ν have the same semantics for all programs α:

(ν, ω) ∈ I [[σ(α)]] iff (ν, ω) ∈ σ ∗ν I [[α]]
3.2 Soundness

The uniform substitution lemmas are the key insights for the soundness of proof rule US,
which is only applicable if its uniform substitution is defined. A proof rule is sound iff validity
of all its premises implies validity of its conclusion.

Theorem 26 (Soundness of uniform substitution) The proof rule US is sound.

(US)
φ

σ(φ)

Proof Let the premise φ of US be valid, i.e. ν ∈ I [[φ]] for all interpretations and states
I, ν. To show that the conclusion is valid, consider any interpretation and state I, ν and
show ν ∈ I [[σ(φ)]]. By Lemma24, ν ∈ I [[σ(φ)]] iff ν ∈ σ ∗ν I [[φ]]. Now ν ∈ σ ∗ν I [[φ]] holds,
because ν ∈ I [[φ]] for all I, ν, including for σ ∗ν I, ν, by premise. The rule US1 is the special
case of US where σ only substitutes predicate symbol p.
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Uniform substitutions can also be used to soundly instantiate locally sound proof rules
or whole proofs just like proof rule US soundly instantiates axioms or other valid formulas
(Theorem26). An inference or proof rule is locally sound iff its conclusion is valid in any
interpretation I in which all its premises are valid. All locally sound proof rules are sound.
The use of Theorem27 in a proof is marked USR.

Theorem 27 (Soundness of uniform substitution of rules) All uniform substitution instances
(with FV(σ ) = ∅) of locally sound inferences are locally sound:

φ1 . . . φn

ψ
locally sound implies

σ(φ1) . . . σ (φn)

σ (ψ)
locally sound

Proof Let D be the inference on the left and let σ(D) be the substituted inference on the
right. Assume D to be locally sound. To show that σ(D) is locally sound, consider any I in
which all premises of σ(D) are valid, i.e. I |� σ(φ j ) for all j . That is, ν ∈ I [[σ(φ j )]] for all ν
and all j . By Lemma24, ν ∈ I [[σ(φ j )]] is equivalent to ν ∈ σ ∗ν I [[φ j ]], which, thus, also holds
for all ν and all j . By Corollary22, σ ∗ν I [[φ j ]] = σ ∗ω I [[φ j ]] for any ω, since FV(σ ) = ∅. Fix
an arbitrary state ω. Then ν ∈ σ ∗ω I [[σ(φ j )]] holds for all ν and all j for the same (arbitrary)
ω that determines σ ∗ω I .

Consequently, all premises of D are valid in the same σ ∗ω I , i.e. σ ∗ω I |� φ j for all j . Thus,
σ ∗ω I |� ψ by local soundness of D . That is, ν ∈ σ ∗ν I [[ψ]] = σ ∗ω I [[ψ]] by Corollary22 for all
ν. By Lemma24, ν ∈ σ ∗ν I [[ψ]] is equivalent to ν ∈ I [[σ(ψ)]], which continues to hold for all
ν. Thus, I |� σ(ψ), i.e. the conclusion of σ(D) is valid in I , hence σ(D) is locally sound.
Consequently, all uniform substitution instances σ(D) of locally sound inferences D with
FV(σ ) = ∅ are locally sound.

If ψ has a proof (i.e. n = 0), USR preserves local soundness even if FV(σ ) �= ∅, because
US proves σ(ψ) from the provable ψ , which makes this inference locally sound, since
local soundness is equivalent to soundness for n = 0 premises. If ψ has a proof, uniform
substitution of rules USR for n = 0 premises is identical to rule US.

Example 28 (Uniform substitutions are only globally sound)Rule US itself is only sound but
not locally sound, so it cannot have been used on any unproved premises at any point during
a proof that is to be instantiated by proof rule USR from Theorem27. The following sound
proof on the left with a modus ponens (marked MP) has an unproved premise on which US
has been used at some point during the proof:

∗
1 = 0→[x ′ = 2] x < 5

f (x) = 0
US 1 = 0

MP [x ′ = 2] x < 5
USR not applicable

clash�
0 = 0

[x ′ = 2] x < 5

This use of US, which substitutes 1 for f (·), makes the left proof sound but not locally sound.
That prevents rule USR of Theorem27 from (unsoundly) concluding the uniform substitution
instance on the right with σ = { f (·) �→ 0}. Rule US assumes that its premise is valid (in
all interpretations I ), but the (clashing) substitution instance on the right only proves one
choice for f to satisfy premise f (x) = 0. Rule US can still be used in the proof of a premise
that proves without endangering local soundness, because proved premises are valid in all
interpretations by soundness.
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〈·〉 〈a〉p(x̄) ↔ ¬[a]¬p(x̄)

[:=] [x := f ]p(x) ↔ p( f )

[?] [?q]p ↔ (q → p)

[∪] [a ∪ b]p(x̄) ↔ [a]p(x̄) ∧ [b]p(x̄)
[;] [a; b]p(x̄) ↔ [a][b]p(x̄)
[∗] [a∗]p(x̄) ↔ p(x̄) ∧ [a][a∗]p(x̄)
K [a](p(x̄) → q(x̄)) → ([a]p(x̄) → [a]q(x̄))

I [a∗](p(x̄) → [a]p(x̄)) → (p(x̄) → [a∗]p(x̄))
V p → [a]p

G
p(x̄)

[a]p(x̄)
∀ p(x)

∀x p(x)

MP
p → q p

q

CQ
f (x̄) = g(x̄)

p( f (x̄)) ↔ p(g(x̄))

CE
p(x̄) ↔ q(x̄)

C(p(x̄)) ↔ C(q(x̄))

Fig. 2 Differential dynamic logic axioms and proof rules

4 Differential Dynamic Logic Axioms

Proof rules and axioms for a Hilbert-type axiomatization of dL from prior work [14] are
shown in Fig. 2, except that, thanks to proof rule US, axioms and proof rules now reduce
to the finite list of concrete dL formulas in Fig. 2 as opposed to an infinite collection of
axioms from a finite list of axiom schemata along with schema variables, side conditions,
and implicit instantiation rules. Soundness of the axioms follows from soundness of cor-
responding axiom schemata [7,14], but is easier to prove standalone, because it is a finite
list of formulas without the need to prove soundness for all their instances. Soundness of
axioms, thus, reduces to validity of one formula as opposed to validity of all formulas that
can be generated by the instantiation mechanism complying with the respective side con-
ditions for that axiom schema. The proof rules in Fig. 2 are axiomatic rules, i.e. pairs of
concrete dL formulas to be instantiated by USR. Soundness of axiomatic rules reduces to
proving that their concrete conclusion formula is a consequence of their premise formula.
Further, x̄ is the vector of all relevant variables, which is finite-dimensional, or considered as
a built-in vectorial term. Proofs in the uniform substitution dL calculus use US (and variable
renaming such as ∀x p(x) to ∀y p(y)) to instantiate the axioms from Fig. 2 to the required
form.

Diamond axiom 〈·〉 expresses the duality of the [·] and 〈·〉 modalities. Assignment axiom
[:=] expresses that p(x) holds after the assignment x := f iff p( f ) holds initially. Test axiom
[?] expresses that p holds after the test ?q iff p is implied by q , because test ?q only runs
when q holds. Choice axiom [∪] expresses that p(x̄) holds after all runs of a ∪ b iff p(x̄)
holds after all runs of a and after all runs of b. Sequential composition axiom [;] expresses
that p(x̄) holds after all runs of a; b iff, after all runs of a, it is the case that p(x̄) holds
after all runs of b. Iteration axiom [∗] expresses that p(x̄) holds after all repetitions of a iff it
holds initially and, after all runs of a, it is the case that p(x̄) holds after all repetitions of a.
Axiom K is the modal modus ponens from modal logic [9]. Induction axiom I expresses that
if, no matter how often a repeats, p(x̄) holds after all runs of a if it was true before, then, if
p(x̄) holds initially, it holds after all repetitions of a. Vacuous axiom V expresses that arity
0 predicate symbol p continues to hold after all runs of a if it was true before.

Gödel’s generalization rule G expresses that p(x̄) holds after all runs of a if p(x̄) is valid.
Accordingly ∀ is the ∀-generalization rule. MP is modus ponens. Congruence rules CQ, CE
are not needed but included to efficiently use axioms in any context. Congruence rule CT

derives from CQ using p(·) def≡ (
c(·) = c(g(x̄))

)
and reflexivity:
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(CT)
f (x̄) = g(x̄)

c( f (x̄)) = c(g(x̄))

Remark 29 The use of variable vector x̄ is not essential but simplifies concepts. An equivalent
axiomatization is obtained when considering p(x̄) to be a quantifier symbol of arity 0 in the
axiomatization, or as C(true) with a quantifier symbol of arity 1. Neither replacements of
quantifier symbols nor (vectorial) placeholders · for the substitutions {p(·) �→ ψ} that are
used for p(x̄) cause any free variables in the substitution. The mnemonic notation σ =
{p(x̄) �→ φ} adopted for such uniform substitutions reminds that the variables x̄ are not free
in σ even if they occur in the replacement φ.

Sound axioms are just valid formulas, so true in all states. For example, in any state where
[a][b]p(x̄) is true, [a; b]p(x̄) is true, too, by equivalence axiom [;]. Using axiom [;] to replace
one by the other is a truth-preserving transformation, i.e. in any state in which one is true,
the other is true, too. Sound rules are validity-preserving, i.e. the conclusion is valid if the
premises are valid, which is weaker than truth-preserving transformation. For proof search,
the dL axioms are meant to be used to reduce the axiom key (marked blue) to the structurally
simpler remaining conditions (right-hand sides of equivalences and the conditions assumed
in implications).

Real Quantifiers. Besides (decidable) real arithmetic (whose use is denoted R), complete
axioms for first-order logic can be adopted to express universal instantiation ∀i (if p is
true of all x , it is also true of constant function symbol f ), distributivity ∀→, and vacuous
quantification V∀ (predicate p of arity zero does not depend on x).

(∀i) (∀x p(x)) → p( f )

(∀→) ∀x (p(x) → q(x)) → (∀x p(x) → ∀x q(x))

(V∀) p → ∀x p

The Significance of Clashes. This section illustrates how uniform substitutions tell sound
instantiations apart from unsound proof attempts. Rule US clashes exactly when the substi-
tution introduces a free variable into a bound context, which would be unsound. Example18
on p. 13 already showed that even an occurrence of p(x) in a context where x is bound
does not permit mentioning x in the replacement except in the · places. US can directly
handle even nontrivial binding structures, though, e.g. from [:=] with the substitution
σ = { f �→ x2, p(·) �→ [(z := ·+ z)∗; z := ·+ yz]y ≥ ·}:

US
[x := f ]p(x) ↔ p( f )

[x := x2][(z := x+z)∗; z := x+yz] y≥x ↔ [(z := x2+z)∗; z := x2+yz] y≥x2
It is soundness-critical that US clashes when trying to instantiate p in V∀ with a formula that
mentions the bound variable x :

clash�
p → ∀x p

x ≥ y → ∀x (x ≥ y)
{p �→ x ≥ y}

It is soundness-critical that US clashes when substituting p in vacuous program axiom V
with a formula with a free occurrence of a variable bound by the replacement of a:

clash�
p → [a]p

x ≥ y → [x ′ = −1] x ≥ y
{a �→ x ′ = −1, p �→ x ≥ y}
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Additional free variables are acceptable, though, e.g. in replacements for p as long as they
are not bound in the particular context into which they will be substituted:

US
p → [a]p

y ≥ 0→ [x ′ = −1] y ≥ 0
{a �→ x ′ = −1, p �→ y ≥ 0}

Complex formulas are acceptable as replacements for p if their free variables are not bound
in the context, e.g., using σ = {a �→ x ′ := 5x, p �→ [x ′ = x2 − 2x + 2]x ≥ 1}:

US
p → [a]p

[x ′ = x2 − 2x + 2] x ≥ 1→ [x ′ := 5x][x ′ = x2 − 2x + 2] x ≥ 1

But it is soundness-critical thatUSclasheswhen substituting a formulawith a free dependence
on x ′ for p into a context where x ′ will be bound after the substitution:

clash�
p → [a]p

(x − 1)′ ≥ 0→ [x ′ := 5x](x − 1)′ ≥ 0
{a �→ x ′ := 5x, p �→ (x − 1)′ ≥ 0}

Gödel’s generalization rule G uses p(x̄) instead of the p that V uses, so its USR instance
allows all variables x̄ to occur in the replacement without causing a clash:

G,USR
(−x)2 ≥ 0

[x ′ = −1](−x)2 ≥ 0
{a �→ x ′ = −1, p(x̄) �→ (−x)2 ≥ 0}

Intuitively, the argument x̄ in this uniform substitution instance of G was not introduced as
part of the substitution but merely put in for the placeholder · instead. Let x̄ = (x, y), US
{a �→ x := x + 1, b �→ x := 0; y′ = −2, p(x̄) �→ x ≥ y} derives from [∪]:

US
[a ∪ b]p(x̄) ↔ [a]p(x̄) ∧ [b]p(x̄)

[x := x+1 ∪ (x := 0; y′ =−2)] x ≥ y ↔ [x := x + 1] x ≥ y ∧ [x :=0; y′ =−2] x≥ y

With x̄ = (x, y) and {a �→ x := x + 1 ∪ y := 0, b �→ y′ = −1, p(x̄) �→ x ≥ y}, US
yields:

US
[a; b]p(x̄) ↔ [a][b]p(x̄)

[(x := x + 1 ∪ y := 0); y′ = −1] x ≥ y ↔ [x := x + 1 ∪ y := 0][y′ = −1] x ≥ y

Not all axioms fit to the uniform substitution framework, though. The Barcan schema was
used in a completeness proof for the Hilbert-type calculus for differential dynamic logic [14]
(but not in the completeness proof for its sequent calculus [12]):

(B) ∀x [α]p(x) → [α]∀x p(x) (x /∈ α)

Axiom schema B is unsound without the restriction x /∈ α, though, so that the following
formula, which cannot enforce x /∈ a, would be an unsound axiom

∀x [a]p(x) → [a]∀x p(x) (2)

Indeed, the effect of program constant a might depend on the value of x or it might write to
x . In (2), x cannot be written by a without violating soundness:

�
∀x [a]p(x) → [a]∀x p(x)

∀x [x := 0] x ≥ y → [x := 0]∀x (x ≥ y)
{a �→ x := 0, p(·) �→ · ≥ 0}

nor can x be read by a in (2) without violating soundness:

�
∀x [a]p(x) → [a]∀x p(x)

∀x [?(y = x2)] y = x2 → [?(y = x2)]∀x y = x2
{a �→?(y = x2), p(·) �→ y = ·2}
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DW [x ′ = f (x)& q(x)]q(x)

DC
([x ′ = f (x)& q(x)]p(x) ↔ [x ′ = f (x)& q(x) ∧ r(x)]p(x)) ← [x ′ = f (x)& q(x)]r(x)

DE [x ′ = f (x)& q(x)]p(x, x ′) ↔ [x ′ = f (x)& q(x)][x ′ := f (x)]p(x, x ′)
DI

([x ′ = f (x)& q(x)]p(x) ↔ [?q(x)]p(x)) ← (
q(x) → [x ′ = f (x)& q(x)](p(x))′)

DG [x ′ = f (x)& q(x)]p(x) ↔ ∃y [x ′ = f (x), y′ = a(x)y + b(x)& q(x)]p(x)
DS [x ′ = f & q(x)]p(x) ↔ ∀t≥0 (

(∀0≤s≤t q(x + f s)) → [x := x + f t]p(x))

c′ ( f )′ = 0

x ′ (x)′ = x ′

+′ ( f (x̄)+ g(x̄))′ = ( f (x̄))′ + (g(x̄))′

·′ ( f (x̄) · g(x̄))′ = ( f (x̄))′ · g(x̄)+ f (x̄) · (g(x̄))′
◦′ [y := g(x)][y′ := 1](( f (g(x)))′ = ( f (y))′ · (g(x))′

)

Fig. 3 Differential equation axioms and differential axioms

Thus, the completeness proof for differential dynamic logic from prior work [14] does
not carry over. A more general completeness result for differential game logic [16] implies,
however, that Barcan schema B is unnecessary for completeness.

5 Differential Equations and Differential Axioms

Section 4 leverages uniform substitutions to obtain a finite list of axioms without side-
conditions. They lack axioms for differential equations, though. Classical calculi for dL
have axiom schema [′] from p. 2 for replacing differential equations with time quantifiers
and discrete assignments for their solutions. In addition to being limited to simple solvable
differential equations, such axiom schemata have quite nontrivial soundness-critical side
conditions.

This section leverages US and the new differential forms in dL to obtain a logically inter-
nalized version of differential invariants and related proof rules for differential equations
[13,15] as axioms (without schema variables or side-conditions). These axioms can prove
properties of more general “unsolvable” differential equations. They can also prove all prop-
erties of differential equations that can be proved with solutions [15] while guaranteeing
correctness of the solution as part of the proof.

5.1 Differentials: Invariants, Cuts, Effects, and Ghosts

Figure 3 shows axioms for proving properties of differential equations (DW–DS), and dif-
ferential axioms for differentials (+′, ·′, ◦′) which are equations of differentials. Axiom x ′
identifying (x)′ = x ′ for variables x ∈ V and axiom c′ for functions f and number literals
of arity 0 are used implicitly to save space. Some axioms use reverse implication notation
φ ← ψ instead of the equivalent ψ → φ for emphasis.

Differential weakening axiom DW internalizes that differential equations never leave
their evolution domain q(x). The evolution domain q(x) holds after all evolutions of
x ′ = f (x)& q(x), because differential equations cannot leave their evolution domains. DW
derives3 [x ′ = f (x)& q(x)]p(x) ↔ [x ′ = f (x)& q(x)](q(x) → p(x)), which allows to

3 The implication [x ′ = f (x)& q(x)](q(x) → p(x)) → [x ′ = f (x)& q(x)]p(x) derives by K from DW.
The converse implication [x ′ = f (x)& q(x)]p(x) → [x ′ = f (x)& q(x)](q(x) → p(x)) derives by K since
G derives [x ′ = f (x)& q(x)](p(x) → (q(x) → p(x))

)
from the tautology p(x) → (q(x) → p(x)).
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export the evolution domain to the postcondition and is also called DW. Its (right) assump-
tion is best proved by G yielding premise q(x) → p(x). The differential cut axiom DC is a
cut for differential equations. It internalizes that differential equations always staying in r(x)
also always stay in p(x) iff p(x) always holds after the differential equation that is restricted
to the smaller evolution domain & q(x)∧ r(x). DC is a differential variant of modal modus
ponens axiom K.

Differential effect axiom DE internalizes that the effect on differential symbols along a
differential equation is a differential assignment assigning the right-hand side f (x) to the
left-hand side x ′. The differential assignment x ′ := f (x) in DE instantaneously mimics the
(continuous) effect that the differential equation x ′ = f (x)& q(x) has on x ′, thereby select-
ing the appropriate vector field for subsequent differentials. AxiomDI internalizes differential
invariants [13], i.e. that p(x) holds always after a differential equation x ′ = f (x)& q(x)
iff it holds after ?q(x), provided its differential (p(x))′ always holds after the differential
equation x ′ = f (x)& q(x). This axiom reduces future truth to present truth when the truth
of p(x) does not change along the differential equation because (p(x))′ holds all along.
The differential equation also vacuously stays in p(x) if it starts outside q(x), since it is
stuck then. The assumption of DI is best proved by DE to select the appropriate vector
field x ′ = f (x) for the differential (p(x))′ and a subsequent DW, G to make the evolution
domain constraint q(x) available as an assumption when showing (p(x))′. The condition
[?q(x)]p(x) in DI is equivalent to q(x) → p(x) by axiom [?]. While a general account of
(p(x))′ is possible [17], this article focuses on atomic postconditions with the equivalences
(θ ≥ η)′ ≡ (θ > η)′ ≡ (θ)′ ≥ (η)′ and (θ = η)′ ≡ (θ �= η)′ ≡ (θ)′ = (η)′, etc. for
DI axioms. Note (θ �= η)′ cannot be (θ)′ �= (η)′, because different rates of change from
different initial values do not imply the values would remain different. Conjunctions can be
handled separately by [α](p(x̄) ∧ q(x̄)) ↔ [α]p(x̄) ∧ [α]q(x̄) which derives from K. Dis-
junctions split into separate disjuncts, which is equivalent to classical differential invariants
[13] but easier. AxiomDG internalizes differential ghosts [15], i.e. that additional differential
equations can be added whose solutions exist long enough, which can enable new invariants
that are not otherwise provable [15]. Axiom DS solves constant differential equations, and,
as Sect. 5.2 will demonstrate, more complex solvable differential equations with the help of
DG, DC, DI. Vectorial generalizations to systems of differential equations are possible for
the axioms in Fig. 3.

The differential axioms for differentials (+′,·′,◦′,c′,x ′) axiomatize differentials of polyno-
mials. They are related to corresponding rules for time-derivatives, except that those would
be ill-defined in a local state, so it is crucial to work with differentials that have a local
semantics in individual states. Uniform substitutions correctly maintain that y does not occur
in replacements for a(x), b(x) for DG and that x does not occur in replacements for f in DS,
which are both soundness-critical. Occurrences of x in replacements for f are acceptable
when using axiom [:=] on [x ′ := f ]p(x ′) ↔ p( f ).

Most axioms in Figs. 2 and 3 are independent, because there is exactly one axiom per
operator. Exceptions in Fig. 2 are K, I, V, but there is a complete calculus without [∗], V [14]
and one without G, K, I, V that uses two extra rules instead [16]. The congruence rules CQ,
CE are redundant and can be proved on a per-instance basis as well. Axiom DW is the only
one that can use the evolution domain, axiom DC the only one that can change the evolution
domain, and axiom DG the only one that can change differential equations. Axiom DE is the
only one that can use the right-hand side of the differential equation. Axiom DI is the only
axiom that relates truth of a postcondition after a differential equation to truth at the initial
state. Finally, axiom DS is needed for proving diamond properties of differential equations,
because it is the only one (besides the limited DW) that does not reduce a property of a
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differential equation to another property of a differential equation and, thus, the only axiom
that ultimately proves them without the help of G, V, K, which are not sound for 〈α〉.
5.2 Example Proofs

This section illustrates how the uniform substitution calculus for dL can be used to realize
a number of different reasoning techniques from the same proof primitives. While the same
flexibility enables these different techniques also for proofs of hybrid systems, the follow-
ing examples focus on differential equations to additionally illustrate how the differential
equation axioms in Fig. 3 are meant to be combined.

Example 30 (Contextual equivalence proof) The following proof proves a property of a
differential equation using differential invariants without having to solve that differential
equation. One use of rule US is shown explicitly, other uses of US are similar to obtain and
use the other axiom instances. CE is used together with MP.

∗
R x3·x+x ·x3 ≥ 0
[:=] [x ′ := x3]x ′·x+x ·x ′ ≥ 0
G [x ′ = x3][x ′ := x3]x ′·x+x ·x ′ ≥ 0

∗
·′

( f (x̄)·g(x̄))′=( f (x̄))′·g(x̄)+ f (x̄)·(g(x̄))′
US

(x ·x)′ = (x)′·x + x ·(x)′
x ′

(x ·x)′ = x ′·x + x ·x ′
CQ

(x ·x)′ ≥ 0↔ x ′·x + x ·x ′ ≥ 0
c′

(x ·x ≥ 1)′ ↔ x ′·x + x ·x ′ ≥ 0
CE [x ′ = x3][x ′ := x3](x ·x ≥ 1)′
DE [x ′ = x3](x ·x ≥ 1)′
DI x ·x ≥ 1→[x ′ = x3]x ·x ≥ 1

Previous calculi [13,15] collapse this proof into a single proof step with complicated built-
in operator implementations that silently perform the same reasoning in a non-transparent
way. The approach presented here combines separate axioms to achieve the same effect
in a modular way, with axioms of individual responsibilities internalizing separate logical
reasoning principles in differential-form dL. Tactics combining the axioms as indicated make
the axiomatic way equally convenient. Clever proof structuring, cuts or MP uses enable
proofs in which the main argument remains as fast [13,15] while the additional premises
subsequently check soundness. Inferences in context such as those portrayed in CE, CQ are
impossible in sequent calculus [12].

Example 31 (Flat proof) Rules CQ, CE simplify the proof in Example30 substantially but
are not needed because a proof without contextual equivalence is possible:

MP

∗
. . . → ((x ·x)′≥0↔ x ′·x+x ·x ′≥0) x ′

US

·′
∗

( f (x̄) · g(x̄))′ =( f (x̄))′ · g(x̄)+ f (x̄) · (g(x̄))′
(x · x)′ =(x)′ · x+x · (x)′
(x · x)′ = x ′ · x + x · x ′

G
(x · x)′ ≥ 0↔ x ′ · x + x · x ′ ≥ 0

K,K
[x ′ := x3]((x · x)′ ≥ 0↔ x ′ · x + x · x ′ ≥ 0)

[x ′ := x3](x · x)′ ≥ 0↔ [x ′ := x3]x ′ · x + x · x ′ ≥ 0
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see above

∗
R x3 · x+x · x3≥0
[:=] [x ′ := x3]x ′ · x+x · x ′ ≥0

MP [x ′ := x3](x · x)′ ≥0
G [x ′ = x3][x ′ := x3](x · x)′ ≥ 0
DE [x ′ = x3](x · x)′ ≥ 0
DI x · x ≥ 1→[x ′ = x3]x · x ≥ 1

Example 32 (Parametric proof) The proofs in Examples30 and 31 use (implicit) cuts with
equivalences that predict the outcome of the right premise, which is conceptually simple but
inconvenient for proof search. More constructively, a direct proof can use a free function
symbol j (x, x ′) to obtain a straightforward parametric proof, instead:

j (x, x3) ≥ 0
[:=] [x ′ := x3] j (x, x ′) ≥ 0
G [x ′ = x3][x ′ := x3] j (x, x ′) ≥ 0

(x · x)′ = j (x, x ′)
CQ

(x · x)′ ≥ 0↔ j (x, x ′) ≥ 0
(x · x ≥ 1)′ ↔ j (x, x ′) ≥ 0

CE [x ′ = x3][x ′ := x3](x · x ≥ 1)′
DE [x ′ = x3](x · x ≥ 1)′
DI x · x ≥ 1→[x ′ = x3]x · x ≥ 1

After conducting this proof with two open premises, the free function symbol j (x, x ′) can be
instantiated as needed by a uniform substitution (USR from Theorem27). The above proof
justifies the locally sound inference on the left whose two open premises and conclusions are
instantiated by USR leading to the new sound proof on the right:

j (x, x3)≥0 (x · x)′ = j (x, x ′)
x · x≥1→[x ′ = x3]x · x≥1

implies USR
x3 · x+x · x3≥0 (x · x)′ = x ′ · x + x · x ′

x · x ≥ 1→[x ′ = x3]x · x ≥ 1

After the instantiation of j (x, x ′) by USR, the right proof completes as follows:

∗
R x3 · x + x · x3 ≥ 0

∗
·′

( f (x̄) · g(x̄))′ = ( f (x̄))′ · g(x̄)+ f (x̄) · (g(x̄))′
US

(x · x)′ = (x)′ · x + x · (x)′
x ′

(x · x)′ = x ′ · x + x · x ′
USR x · x ≥ 1→[x ′ = x3]x · x ≥ 1

This technique helps invariant search, where a free predicate symbol p(x̄) is instantiated
lazily by USR once all conditions become clear. This reduction saves considerable proof
effort compared to eager invariant instantiation in sequent calculi [12].

Example 33 (Forward computation proof) The proof in Examples32 involves less search
than the proofs of the same formula in Examples30 and 31. But it still ultimately requires
foresight to identify the appropriate instantiation of j (x, x ′) for which the proof closes. For
invariant search, such proof search is essentially unavoidable [14] even if the technique in
Example32 maximally postpones the search.

When used from left to right, the differential axioms c′, x ′ +′, ·′, ◦′ compute determinis-
tically and always simplify terms by pushing differential operators inside. For example, all
backwards proof search in the right branch of the last proof of Example32 can be replaced
by a deterministic forward computation proof starting from reflexivity (x · x)′ = (x · x)′ and
drawing on axiom instances (used in a term context via CT) as needed in a forward proof,
until the desired output shape is identified:
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⏐
⏐
⏐
⏐
⏐
⏐
⏐
	

∗
R
(x · x)′ = (x · x)′

·′
(x · x)′ = (x)′ · x + x · (x)′

x ′
(x · x)′ = x ′ · x + x · x ′

Efficient proof search combines this forward computation proof technique with the backward
proof search from Example32 with advantages similar to other combinations of computation
and axiomatic reasoning [5]. Even the remaining positions where axioms still match can be
precomputed as a simple function of the axiom that has been applied, e.g., from its fixed
pattern of occurrences of differential operators.

Example 34 (Axiomatic differential equation solver) Axiomatic equivalence proofs for solv-
ing differential equations involveDG for introducing a time variable t , DC to cut the solutions
in, DW to export the solution to the postcondition, inverseDC to remove the evolution domain
constraints again, inverse DG (or the universal strengthening of DG with ∀y instead of ∃y
from Theorem38) to remove the original differential equations, and finally DS to solve the
differential equation for time:

∗
R

φ →∀s≥0 (x0 + a
2 s

2 + v0s ≥ 0)
[:=]

φ →∀s≥0 [t := 0+ 1s]x0 + a
2 t

2 + v0t ≥ 0
DS

φ →[t ′ = 1]x0 + a
2 t

2 + v0t ≥ 0
DG

φ →[v′ = a, t ′ = 1]x0 + a
2 t

2 + v0t ≥ 0
DG

φ →[x ′ = v, v′ = a, t ′ = 1]x0 + a
2 t

2 + v0t ≥ 0 �
DC

φ →[x ′ = v, v′ = a, t ′ = 1& v = v0 + at]x0 + a
2 t

2 + v0t ≥ 0 �
DC

φ →[x ′ = v, v′ = a, t ′ = 1& v = v0 + at ∧ x = x0 + a
2 t

2 + v0t]x0 + a
2 t

2 + v0t ≥ 0
G,K

φ →[x ′ =v, v′ =a, t ′ =1& v=v0+at ∧ x= x0+ a
2 t

2+v0t](x=x0+ a
2 t

2+v0t → x≥y)
DW

φ →[x ′ = v, v′ = a, t ′ = 1& v = v0 + at ∧ x = x0 + a
2 t

2 + v0t]x ≥ y �
DC

φ →[x ′ = v, v′ = a, t ′ = 1& v = v0 + at]x ≥ y �
DC

φ →[x ′ = v, v′ = a, t ′ = 1]x ≥ y
φ →∃t [x ′ = v, v′ = a, t ′ = 1]x ≥ y

DG
φ →[x ′ = v, v′ = a]x ≥ y

where φ is a ≥ 0 ∧ v = v0 ≥ 0 ∧ x = x0 ≥ 0. The existential quantifier for t is instantiated
by 0 (suppressed in the proof for readability reasons). The 4 uses of DC lead to 2 additional
premises (marked by �) proving that v = v0 + at and then x = x0 + a

2 t
2 + v0t are

differential invariants (using DI, DE, DW). Shortcuts using only DW instead are possible.
But the elaborate proof above generalizes to 〈〉 because it is an equivalence proof. The
additional premises for DC with v = v0 + at prove as follows:

∗
R a = 0+ a · 1
[:=] [v′ := a][t ′ := 1]v′ = 0+ at ′

∗
+′

( f (x̄)+ g(x̄))′ = ( f (x̄))′ + (g(x̄))′
US

(v0 + at)′ = (v0)
′ + (at)′

·′
(v0 + at)′ = 0+ a(t ′)

CQ
v′ = (v0 + at)′ ↔ v′ = 0+ at ′
(v = v0 + at)′ ↔ v′ = 0+ at ′

CE [v′ := a][t ′ := 1](v = v0 + at)′
G [x ′ =v, v′ =a, t ′ =1][v′ := a][t ′ := 1](v = v0+at)′
DE [x ′ = v, v′ = a, t ′ = 1](v = v0 + at)′
DI

φ →[x ′ = v, v′ = a, t ′ = 1]v = v0 + at
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After that, the additional premises for DC with x = x0 + a
2 t

2 + v0t prove as follows:

∗
R

v = v0 + at → v = at · 1+ v0 · 1
[:=]

v = v0 + at → [x ′ := v][t ′ := 1]x ′ = att ′ + v0t ′

∗
R 2 a

2 t t
′ + v0t ′ = att ′ + v0t ′

+′ ,·′
(x0 + a

2 t
2 + v0t)′ = att ′ + v0t ′

CQ x ′ = (x0 + a
2 t

2 + v0t)′ ↔ x ′ = att ′ + v0t ′
(x = x0 + a

2 t
2 + v0t)′ ↔ x ′ = att ′ + v0t ′

CE
v=v0+at→[x ′ := v][t ′ := 1](x= x0+ a

2 t
2+v0t)′

G [x ′ = v, v′ = a, t ′ = 1& v = v0 + at](v = v0 + at → [x ′ := v][t ′ := 1](x = x0 + a
2 t

2 + v0t)′)
DW [x ′ = v, v′ = a, t ′ = 1& v = v0 + at][x ′ := v][t ′ := 1](x = x0 + a

2 t
2 + v0t)′

DE [x ′ = v, v′ = a, t ′ = 1& v = v0 + at](x = x0 + a
2 t

2 + v0t)′
DI

φ →[x ′ = v, v′ = a, t ′ = 1& v = v0 + at]x = x0 + a
2 t

2 + v0t

This axiomatic differential equation solving technique is not limited to differential equation
systems that can be solved in full, but also works when only part of the differential equations
have definable solutions. Contrast this constructive formal proof with the unverified use of a
differential equation solver in axiom schema [′] from p. 2.

5.3 Differential Substitution Lemmas

In similar ways how the uniform substitution lemmas are the key ingredients that relate
syntactic and semantic substitution for the soundness of proof rule US, this section proves
the key ingredients relating syntax and semantics of differentials that will be used for the
soundness proofs of the differential axioms. Differentials (η)′ have a local semantics in
isolated states, which is crucial for well-definedness. The DI axiom relates truth along a
differential equation to initial truth with truth of differentials along a differential equation.
The key insight for its soundness is that the analytic time-derivative of the value of a term
η along any differential equation x ′ = θ &ψ agrees with the values of its differential (η)′
along that differential equation. Recall from Definition 7 that I, ϕ |� x ′ = θ ∧ ψ indicates
that the function ϕ solves the differential equation x ′ = θ &ψ in interpretation I , of which
the only important part for the next lemma is that it gives x ′ the value of the time-derivative
of x along the solution ϕ.

Lemma 35 (Differential) If I, ϕ |� x ′ = θ ∧ ψ holds for some solution ϕ : [0, r ] → S of
any duration r > 0, then for all times 0 ≤ ζ ≤ r and all terms η with FV(η) ⊆ {x}:

Iϕ(ζ )[[(η)′]] = dIϕ(t)[[η]]
dt

(ζ )

The differential effect axiom DE axiomatizes the effect of differential equations on the
differential symbols. The key insight for its soundness is that differential symbol x ′ already
has the value θ along the differential equation x ′ = θ such that the subsequent differential
assignment x ′ := θ that assigns the value of θ to x ′ has no effect on the truth of the postcon-
dition. The differential substitution resulting from a subsequent use of axiom [:=] is crucial
to relay the values of the time-derivatives of the state variables x along a differential equation
by way of their corresponding differential symbol x ′, though. In combination, this makes it
possible to soundly substitute the right-hand side of a differential equation for its left-hand
side in a proof.

Lemma 36 (Differential assignment) If I, ϕ |� x ′ = θ ∧ ψ where ϕ : [0, r ] → S is a solu-
tion of any duration r ≥ 0, then

I, ϕ |� φ ↔ [x ′ := θ ]φ
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The final insights for differential invariant reasoning for differential equations are syntactic
ways of computing differentials, which can be internalized as axioms (c′, x ′ +′, ·′, ◦′), since
differentials are represented syntactically in differential-form dL. It is the local semantics as
differential forms that makes it possible to soundly capture the interaction of differentials
with arithmetic operators by local equations.

Lemma 37 (Derivations) The following equations of differentials are valid:

( f )′ = 0 for arity 0 functions or numbers f (3)

(x)′ = x ′ for variables x ∈ V (4)

(θ + η)′ = (θ)′ + (η)′ (5)

(θ · η)′ = (θ)′ · η + θ · (η)′ (6)

[y := θ ][y′ := 1](( f (θ))′ = ( f (y))′ · (θ)′
)

for y, y′ /∈ FV(θ) (7)

5.4 Soundness

The uniform substitution calculus for differential-form dL is sound, i.e. all formulas that
it proves from valid premises are valid. The soundness argument is entirely modular. The
concrete dL axioms in Figs. 2 and 3 are valid formulas and the axiomatic proof rules (i.e.
pairs of formulas) in Fig. 2 are locally sound, which implies soundness. The uniform sub-
stitution rule is sound so only concludes valid formulas from valid premises (Theorem26),
which implies that dL axioms (and other provable dL formulas) can only be instantiated
soundly by rule US. Uniform substitution instances of locally sound axiomatic proof rules
(and other locally sound inferences) are locally sound (Theorem27), which implies that dL
axiomatic proof rules in Fig. 2 can only be instantiated soundly by uniform substitutions
(USR).

The soundness proof follows a high-level strategy that is similar to earlier proofs [13–15],
but ends up in stronger results since all axioms for differential equations are equivalences
now. The availability of differentials and differential assignments as syntactic elements in
differential-form dL as well as the instantiation support from uniform substitutions makes
those soundness proofs significantlymoremodular, too. For example, what used to be a single
proof rule for differential invariants [13] can now be decomposed into separate modular
axioms.

Theorem 38 (Soundness) The uniform substitution calculus for dL is sound, that is, every
formula that is provable by the dL axioms and proof rules is valid, i.e. true in all states of
all interpretations. The axioms in Figs.2 and 3 are valid formulas and the axiomatic proof
rules in Fig.2 are locally sound.

Proof The axioms (and most proof rules) in Fig. 2 are special instances of corresponding
axiom schemata and proof rules for differential dynamic logic [14] and, thus, sound.4 All
proof rules in Fig. 2 (but not US itself) are even locally sound, which implies soundness, i.e.
that their conclusions are valid (in all I ) if their premises are. In preparation for a completeness
argument, note that rules ∀, MP can be augmented soundly to use p(x̄) instead of p(x) or p,
respectively, such that the FV(σ ) = ∅ requirement of Theorem27 will be met during USR
instances of all axiomatic proof rules. The axioms in Fig. 3 are new and need new soundness
arguments.

4 The uniform substitution proof calculus improves modularity and gives stronger equivalence formulations
of axioms, though.
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DW Soundness of DW uses that differential equations never leave their evolution domain
by Definition 7. To show ν ∈ I [[[x ′ = f (x)& q(x)]q(x)]], consider any ϕ : [0, r ] → S
of any duration r ≥ 0 solving I, ϕ |� x ′ = f (x) ∧ q(x). Then I, ϕ |� q(x) especially
ϕ(r) ∈ I [[q(x)]].

DC Soundness of DC is a stronger version of soundness for the differential cut rule [13].
DC is a differential version of the modal modus ponens K. Only the direction “←” of the
equivalence in DC needs the outer assumption [x ′ = f (x)& q(x)]r(x), but the proof of
the conditional equivalence in DC is simpler:

[x ′ = f (x)& q(x)]r(x) → ([x ′ = f (x)& q(x)]p(x) ↔ [x ′ = f (x)& q(x) ∧ r(x)]p(x))

The core is that if [x ′ = f (x)& q(x)]r(x), so r(x) holds after that differential equation,
and if p(x) holds after the differential equation x ′ = f (x)& q(x)∧r(x) that is addition-
ally restricted to r(x), then p(x) holds after the differential equation x ′ = f (x)& q(x)
with no additional restriction. Let ν ∈ I [[[x ′ = f (x)& q(x)]r(x)]]. Since all restric-
tions of solutions are solutions, this is equivalent to I, ϕ |� r(x) for all ϕ of any
duration solving I, ϕ |� x ′ = f (x) ∧ q(x) and starting in ϕ(0) = ν on {x ′}�. So,
for all ϕ starting in ϕ(0) = ν on {x ′}�: I, ϕ |� x ′ = f (x) ∧ q(x) is equivalent
to I, ϕ |� x ′ = f (x) ∧ q(x) ∧ r(x). Hence, ν ∈ I [[[x ′ = f (x)& q(x) ∧ r(x)]p(x)]] is
equivalent to ν ∈ I [[[x ′ = f (x)& q(x)]p(x)]].

DE Axiom DE is new to differential-form dL. Its soundness proof exploits Lemma36. Con-
sider any state ν. Then ν ∈ I [[[x ′ = f (x)& q(x)]p(x, x ′)]] iff ϕ(r) ∈ I [[p(x, x ′)]] for
all solutions ϕ : [0, r ] → S of I, ϕ |� x ′ = f (x) ∧ q(x) of any duration r starting in
ϕ(0) = ν on {x ′}�. That is equivalent to: for all ϕ, if I, ϕ |� x ′ = f (x) ∧ q(x) then
I, ϕ |� p(x, x ′). By Lemma36, I, ϕ |� p(x, x ′) iff I, ϕ |� [x ′ := f (x)]p(x, x ′), so that
is equivalent to ϕ(r) ∈ I [[[x ′ := f (x)]p(x, x ′)]] for all solutions ϕ : [0, r ] → S of
I, ϕ |� x ′ = f (x) ∧ q(x) of any duration r starting in ϕ(0) = ν on {x ′}�, which is,
consequently, equivalent to ν ∈ I [[[x ′ = f (x)& q(x)][x ′ := f (x)]p(x, x ′)]].

DI Soundness of DI has some relation to the soundness proof for differential invari-
ants [13], yet proves an equivalence and is generalized to leverage differentials.
If ν ∈ I [[[x ′ = f (x)& q(x)]p(x)]] then the solution ϕ of duration 0 implies that
ν ∈ I [[p(x)]] since x ′ /∈ FV(p(x)) by Lemma11, provided that ϕ(0) ∈ I [[q(x)]],
i.e. ν ∈ I [[q(x)]] since x ′ /∈ FV(q(x)), such that there is a solution at all. Thus,
[x ′ = f (x)& q(x)]p(x) → [?q(x)]p(x) is valid even without the assumption. Converse(
q(x) → [x ′ = f (x)& q(x)](p(x))′) → [?q(x)]p(x) → [x ′ = f (x)& q(x)]p(x) is

only shown for p(x)
def≡ g(x) ≥ 0, where (p(x))′ ≡ ((g(x))′ ≥ 0), because the

variations for other formulas are the same as the variations in previous work [13]. Con-
sider a state ν in which ν ∈ I [[q(x) → [x ′ = f (x)& q(x)](p(x))′]]. If ν /∈ I [[q(x)]],
there is nothing to show, because there is no solution of x ′ = f (x)& q(x) for any
duration since x ′ /∈ FV(q(x)), so ν ∈ I [[[x ′ = f (x)& q(x)]p(x)]] holds vacuously.
Otherwise, ν ∈ I [[q(x)]], which implies ν ∈ I [[[x ′ = f (x)& q(x)](p(x))′]] by assump-
tion. Assume ν ∈ I [[[?q(x)]p(x)]], so ν ∈ I [[p(x)]] since ν ∈ I [[q(x)]]. To show that
ν ∈ I [[[x ′ = f (x)& q(x)]p(x)]] consider any solution ϕ of any duration r ≥ 0. The
case r = 0 follows from ν ∈ I [[p(x)]] by Lemma11 since FV(p(x)) = {x} is disjoint
from {x ′}, which, unlike x , is changed by evolutions of any duration, including 0. That
leaves the case r > 0.
Let ϕ be a solution of x ′ = f (x)& q(x) according to Definition 7, so ν = ϕ(0) on
{x ′}� and I, ϕ |� x ′ = f (x)& q(x). Now ν ∈ I [[[x ′ = f (x)& q(x)](p(x))′]] implies
I, ϕ |� (p(x))′. As r > 0, Lemma35 implies 0 ≤ Iϕ(ζ )[[(g(x))′]] = dIϕ(t)[[g(x)]]

dt (ζ )
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for all ζ since FV(g(x)) = {x}. Together with ϕ(0) ∈ I [[p(x)]] (by Lemma11
and FV(p(x)) ∩ {x ′} = ∅ from ν ∈ I [[p(x)]]), which is ϕ(0) ∈ I [[g(x) ≥ 0]], this
implies ϕ(ζ ) ∈ I [[g(x) ≥ 0]] for all ζ , including r , by the mean-value theorem, since
Iϕ(r)[[g(x)]] − Iϕ(0)[[g(x)]] = (r − 0)dIϕ(t)[[g(x)]]

dt (ζ ) ≥ 0 for some ζ ∈ (0, r).
The mean-value theorem (Lemma41 in “Appendix”) is applicable since the value
Iϕ(t)[[g(x)]] of term g(x) along ϕ is continuous in t on [0, r ] and differentiable on (0, r)
as compositions of the, by Definition 5 smooth, evaluation function and the differentiable
solution ϕ(t) of a differential equation.

DG Soundness of DG is a constructive variation of the soundness proof for differen-
tial auxiliaries [15]. Let ν ∈ I [[∃y [x ′ = f (x), y′ = a(x)y + b(x)& q(x)]p(x)]], that
is, νdy ∈ I [[[x ′ = f (x), y′ = a(x)y + b(x)& q(x)]p(x)]] for some value d ∈ R. In
order to show that ν ∈ I [[[x ′ = f (x)& q(x)]p(x)]], consider any ϕ : [0, r ] → S
such that I, ϕ |� x ′ = f (x) ∧ q(x) and ϕ(0) = ν on {x ′}�. By modifying the values
of y, y′ along ϕ, this function can be augmented to a solution ϕ̃ : [0, r ] → S such
that I, ϕ̃ |� x ′ = f (x) ∧ y′ = a(x)y + b(x) ∧ q(x) and ϕ̃(0)(y) = d as shown below.
The assumption then implies ϕ̃(r) ∈ I [[p(x)]], which, by Lemma11, is equivalent to
ϕ(r) ∈ I [[p(x)]] since y, y′ /∈ FV(p(x)) and ϕ(r) = ϕ̃(r) on {y, y′}�, which implies
ν ∈ I [[[x ′ = f (x)& q(x)]p(x)]], since ϕ was arbitrary.
The construction of the modification ϕ̃ of ϕ on {y, y′} proceeds as follows. By Picard-
Lindelöf’s theorem (Theorem43 in the “Appendix”), there is a unique solution y :
[0, r ] → R of the initial-value problem

y(0) = d

y′(t) = F(t, y(t))
def= y(t)(Iϕ(t)[[a(x)]])+ Iϕ(t)[[b(x)]]

(8)

because F(t, y) is continuous on [0, r ] × R (since Iϕ(t)[[a(x)]] and Iϕ(t)[[b(x)]] are
continuous in t as compositions of the, by Definition 5 smooth, evaluation function and
the continuous solution ϕ(t) of a differential equation) and because F(t, y) satisfies the
Lipschitz condition

‖F(t, y)− F(t, z)‖ = ‖(y − z)(Iϕ(t)[[a(x)]])‖ ≤ ‖y − z‖ max
t∈[0,r ] Iϕ(t)[[a(x)]]

where the maximum exists, because it is a maximum of a continuous function on
the compact set [0, r ]. The modification ϕ̃ agrees with ϕ on {y, y′}�. On {y, y′},
the modification ϕ̃ is defined as ϕ̃(t)(y) = y(t) and ϕ̃(t)(y′) = F(t, y(t)), respec-
tively, for the solution y(t) of (8). In particular ϕ̃(t)(y′) agrees with the time-derivative
y′(t) of the value ϕ̃(t)(y) = y(t) of y along ϕ̃. By construction, ϕ̃(0)(y) = d and
I, ϕ̃ |� x ′ = f (x) ∧ y′ = a(x)y + b(x) ∧ q(x), because y′ = a(x)y+b(x) holds along
ϕ̃ by (8) and because ϕ(t) = ϕ̃(t) on {y, y′}� so that x ′ = f (x)∧ q(x) continues to hold
along ϕ̃ by Lemma10 because y, y′ /∈ FV(x ′ = f (x) ∧ q(x)).
Conversely, let ν ∈ I [[[x ′ = f (x)& q(x)]p(x)]]. This direction shows a stronger version
of ν ∈ I [[∃y [x ′ = f (x), y′ = a(x)y + b(x)& q(x)]p(x)]] by showing for all terms η

that ν ∈ I [[∀y [x ′ = f (x), y′ = η& q(x)]p(x)]]. Consider any d ∈ R and term η and
show νdy ∈ I [[[x ′ = f (x), y′ = η& q(x)]p(x)]]. Consider any ϕ : [0, r ] → S such

that I, ϕ |� x ′ = f (x) ∧ y′ = η ∧ q(x) with ϕ(0) = νdy on {x ′, y′}�. Then the restric-

tion ϕ|{y,y′}� of ϕ to {y, y′}� with ϕ|{y,y′}�(t) = νdy on {y, y′} for all t ∈ [0, r ] still
solves I, ϕ|{y,y′}� |� x ′ = f (x) ∧ q(x) by Lemma10 since ϕ|{y,y′}� = ϕ on {y, y′}�
and y, y′ /∈ FV(x ′ = f (x) ∧ q(x)). It also satisfies ϕ|{y,y′}�(0) = νdy on {x ′}�,
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because ϕ(0) = νdy on {x ′, y′}� yet ϕ|{y,y′}�(t)(y′) = νdy (y
′). Thus, by assump-

tion, ϕ|{y,y′}�(r) ∈ I [[p(x)]], which implies ϕ(r) ∈ I [[p(x)]] by Lemma11, because

ϕ = ϕ|{y,y′}� on {y, y′}� and y, y′ /∈ FV(p(x)).
In particular, axiom DG continues to be sound when replacing ∃y by ∀y.

DS Soundness of the solution axiom DS follows from existence and uniqueness of global
solutions of constant differential equations. Consider any state ν. By Theorem43, there

is a unique global solution ϕ : [0,∞) → S defined as ϕ(ζ )(x)
def= Iνζ

t [[x + f t]] and
ϕ(ζ )(x ′) def= dϕ(t)(x)

dt (ζ ) = I ( f ) and ϕ(ζ ) = ν on {x, x ′}�. This solution satisfies ϕ(0) =
ν(x) on {x ′}� and I, ϕ |� x ′ = f , i.e. ϕ(ζ ) ∈ I [[x ′ = f ]] for all 0 ≤ ζ ≤ r . All solutions
of x ′ = f from initial state ν are restrictions of ϕ to subintervals of [0,∞). The (unique)
stateω that satisfies (νζ

t , ω) ∈ I [[x := x + f t]] satisfies the agreementω = ϕ(ζ )on {x ′}�,
so that, by x ′ /∈ FV(p(x)), Lemma11 implies that ω ∈ I [[p(x)]] iff ϕ(ζ ) ∈ I [[p(x)]].
First consider axiom [x ′ = f ]p(x) ↔ ∀t≥0 [x := x + f t]p(x) for the special case
q(x) ≡ true. If ν ∈ I [[[x ′ = f ]p(x)]], then ϕ(ζ ) ∈ I [[p(x)]] for all ζ ≥ 0, because the
restriction of ϕ to [0, ζ ] solves x ′ = f from ν, thus ω ∈ I [[p(x)]] since ω = ϕ(ζ ) on
{x ′}� and x ′ /∈ FV(p(x)) by Lemma11, which implies ν

ζ
t ∈ I [[[x := x + f t]p(x)]], so

ν ∈ I [[∀t≥0 [x := x + f t]p(x)]] as ζ ≥ 0 was arbitrary.
Conversely, ν ∈ I [[∀t≥0 [x := x + f t]p(x)]] implies ν

ζ
t ∈ I [[[x := x + f t]p(x)]] for all

ζ ≥ 0, i.e. ω ∈ I [[p(x)]] when (ν
ζ
t , ω) ∈ I [[x := x + f t]]. Lemma11 again implies

ϕ(ζ ) ∈ I [[p(x)]] for all ζ ≥ 0 since x ′ /∈ FV(p(x)), so ν ∈ I [[[x ′ = f ]p(x)]], since
all solutions are restrictions of ϕ.
Soundness of DS follows using that all solutions ϕ : [0, r ] → S of x ′ = f (x)& q(x)
satisfy ϕ(ζ ) ∈ I [[q(x)]] for all 0 ≤ ζ ≤ r , which, using Lemma11 as above, is equivalent
to ν ∈ I [[∀0≤s≤t q(x + f s)]] when ν(t) = r .

+′, ·′, ◦′, x ′ Soundness of the derivation axioms +′, ·′, ◦′ as well as c′, x ′ follows from
Lemma37, since they are special instances of (5), (6) and (7) as well as (3) and (4),
respectively. For axiom ◦′ observe that y, y′ /∈ FV(g(x)).

G Let the premise p(x̄) be valid in some I , i.e. I |� p(x̄), i.e. ω ∈ I [[p(x̄)]] for all ω. Then,
the conclusion [a]p(x̄) is valid in the same I , i.e. ν ∈ I [[[a]p(x̄)]] for all ν, because
ω ∈ I [[p(x̄)]] for all ω, so also for all ω with (ν, ω) ∈ I [[a]]. Thus, G is locally sound.

∀ Let the premise p(x) be valid in some I , i.e. I |� p(x), i.e. ω ∈ I [[p(x)]] for all ω.
Then, the conclusion ∀x p(x) is valid in the same I , i.e. ν ∈ I [[∀x p(x)]] for all ν, i.e.
νdx ∈ I [[p(x)]] for all d ∈ R, because ω ∈ I [[p(x)]] for all ω, so in particular for all
ω = νdx for any real d ∈ R. Thus, ∀ is locally sound.

CQ Let the premise f (x̄) = g(x̄) be valid in some I , i.e. I |� f (x̄) = g(x̄), which is
ν ∈ I [[ f (x̄) = g(x̄)]] for all ν, i.e. Iν[[ f (x̄)]] = Iν[[g(x̄)]] for all ν.
Consequently, Iν[[ f (x̄)]] ∈ I (p) iff Iν[[g(x̄)]] ∈ I (p). So, I |� p( f (x̄)) ↔ p(g(x̄)).
Thus, CQ is locally sound.

CE Let the premise p(x̄) ↔ q(x̄) be valid in some I , i.e. I |� p(x̄) ↔ q(x̄), which is
ν ∈ I [[p(x̄) ↔ q(x̄)]] for all ν. Consequently, I [[p(x̄)]] = I [[q(x̄)]]. Thus, I [[C(p(x̄))]] =
I (C)

(
I [[p(x̄)]])= I (C)

(
I [[q(x̄)]])= I [[C(q(x̄))]]. This implies I |�C(p(x̄)) ↔ C(q(x̄)),

hence the conclusion is valid in I . Thus, CE is locally sound.
MP Modus ponens MP is locally sound with respect to interpretation I and state ν, which

implies local soundness. If ν ∈ I [[p → q]] and ν ∈ I [[p]] then ν ∈ I [[q]].
US RuleUSRpreserves local soundness byTheorem27 and ruleUS is sound byTheorem26,

just not locally sound.
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Observe that uniform substitutions are not limited to merely instantiating dL axioms
and axiomatic proof rules. Rule US can be used to instantiate any dL formula soundly
(Theorem26),which, in particular, gives a simplemechanism for derived axioms and lemmas,
which are just dL formulas that have a proof. Uniform substitutions can instantiate any locally
sound proof as well (Theorem27), which, in particular, gives a simple mechanism for derived
axiomatic rules, definitions, and invariant search with lazy instantiation of invariants. These
are just proofs from the dL rules and axioms in Figs. 2 and 3 whose premises and conclusions
are uniformly substituted to instantiate the requisite function or predicate symbols (recall
Example32).

5.5 Completeness

By Theorem38, the dL calculus is sound, so every dL formula that is provable using the
dL axioms and proof rules is valid, i.e. true in all states of all interpretations. The more
intriguing converse whether the dL calculus is complete, i.e. can prove all dL formulas that
are valid, has an answer, too. Previous calculi for dL were proved to be complete relative
to differential equations [12,14] and also proved complete relative to discrete dynamics
[14]. A generalization of the Hilbert calculus to hybrid games was even proved com-
plete schematically [16]. The uniform substitution calculus for differential-form dL is, to
a large extent, a specialization of previous calculi tailored to significantly simplify sound-
ness arguments. Yet, completeness does not transfer when restricting proof calculi. In
fact, one key question is whether the restrictions imposed upon proofs for soundness pur-
poses by the simple technique of uniform substitutions does also preserve completeness.
Indeed, completeness can be shown to carry over from a previous schematic completeness
proof for differential game logic [16] using expressiveness results from previous complete-
ness proofs [12,14] by augmenting the schematic completeness proof with instantiability
proofs.

The first challenge is to prove that uniform substitutions are flexible enough to prove
all required instances of the dL axioms and axiomatic proof rules. For simplicity, consider
p(x̄) to be a quantifier symbol of arity 0. A dL formula ϕ is called surjective iff rule US can
instantiate ϕ to any of its axiom schema instances, which are those formulas that are obtained
by uniformly replacing program constants a by any hybrid programs and quantifier symbols
C() by formulas. An axiomatic rule is called surjective iff USR can instantiate it to any of its
proof rule schema instances.

Lemma 39 (Surjective axioms) If ϕ is a dL formula that is built only from quantifier symbols
of arity 0 and program constants but no function or predicate symbols, then ϕ is surjective.
Axiomatic rules consisting of surjective dL formulas are surjective.

Lemma39generalizes to quantifier symbolswith arguments that have no function or predicate
symbols, since those are always V -admissible. Generalizations to function and predicate
symbol instances are possible with adequate care. The axiom [?] is surjective, because it
does not have any bound variables, so admissibility of its instances is obvious. Similarly rules
MP and, with the twist from the proof of Theorem38, rule ∀ become surjective. Axioms ∀i,
∀→, V∀ can be augmented for surjectivity in similar ways, where V∀ is surjective when p is
instantiated such that x does not occur free, which is a soundness-critical restriction, and ∀i
is instantiated respecting its shape.
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A previous schematic completeness result [16] shows completeness relative to any differ-
entially expressive5 logic. Lemma39 makes it easy to augment this proof to show that the
schema instantiations required for completeness are provable by US, USR from axioms or
axiomatic rules. Both the first-order logic of differential equations [12] and discrete dynamic
logic [14] are differentially expressive for dL.

Theorem 40 (Relative completeness) The dL calculus is a sound and complete axiomati-
zation of hybrid systems relative to any differentially expressive logic L, i.e. every valid dL
formula is provable in the dL calculus from L tautologies.

With the expected exceptions of loops and differential equations, the proof of Theorem40
confirms that successive unification with axiom keys gives a complete proof strategy. The
search for applicable positions is deterministic using recursive computations as in Exam-
ple33. Loops and differential equations need corresponding (differential) invariant search
using parametric predicates j (x, x ′) as in Example32.

This result proves that a very simple mechanism, essentially the single proof rule of
uniform substitution, makes it possible to prove differential dynamic logic formulas from a
parsimonious soundness-critical core with a few concrete formulas as axioms and without
losing the completeness that axiom schema calculi enjoy.

6 Conclusions

Uniform substitutions lead to a simple and modular proof calculus that is entirely based
on axioms and axiomatic rules, instead of soundness-critical schema variables with side-
conditions in axiom schemata and proof rules. The US calculus is straightforward to
implement, since axioms are just formulas and axiomatic rules are just pairs of formulas and
since the uniform substitutions themselves have a straightforward recursive definition. The
key ingredient enabling such modularity for differential equations are differential forms that
have a local semantics and make it possible to reduce reasoning about differential equations
to local reasoning about (inequalities or) equations of differentials. The increased modular-
ity also enables flexible reasoning by fast contextual equivalence that uniform substitutions
provide almost for free.

Overall, uniform substitutions lead to a simple and modular, sound and complete proof
calculus for differential dynamic logic that is entirely based on axioms and axiomatic rules.
Prover implementations merely reduce to uniform substitutions using the static semantics,
starting from one copy of each axiom and axiomatic rule. This leads to significantly simpler
and more parsimonious implementations. The soundness-critical core of the uniform substi-
tution prover KeYmaera X [6], for example, is 2.5% of the size of the core of the sequent
calculus prover KeYmaera [19], which, even if implemented in a different programming lan-
guage, has more complex implementations of proof rules and schema variable matching or
built-in operators.
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Appendix: Proofs

This section lists the proofs of the remaining results. The proofs use the following classical
results, where∇g denotes the gradient of the function g so the vector of all partial derivatives
(if it exists).

Lemma 41 (Mean-value theorem [22, §10.10]) If f : [a, b] → R is continuous and
differentiable in (a, b), then there is a ξ ∈ (a, b) such that

f (b)− f (a) = f ′(ξ)(b − a)

Lemma 42 (Chain rule [23, §3.10]) If f : U → R
m is differentiable at t ∈ U ⊆ R and

g : V → R, with f (U ) ⊆ V ⊆ R
m, is differentiable at f (t) ∈ V , then g ◦ f : U → R is

differentiable at t with derivative

(g ◦ f )′(t) = (∇g)
(
f (t)

) · f ′(t) =
m∑

j=1

∂g

∂y j

(
f (t)

)
f ′j (t)

Theorem 43 (Global uniqueness theorem of Picard–Lindelöf [24, §10.VII]) Let f : [0, a]×
R
n → R

n be a continuous function that is Lipschitz continuous with respect to y and let
y0 ∈ R

n. Then, there is a unique solution of the following initial value problem on [0, a]
y′(t) = f (t, y) y(0) = y0

Proof of Lemma 9. First prove that BV(α) has the bound effect property. Consider any
(ν, ω) ∈ I [[α]] and x /∈ BV(α) then ν(x) = ω(x) by Definition 8.

Suppose there was a set V � BV(α) satisfying the bound effect property for α. Then there
is a variable x ∈ BV(α) \ V , which implies that there are I and there are (ν, ω) ∈ I [[α]] such
that ν(x) �= ω(x). But, then V does not have the bound effect property, as (ν, ω) ∈ I [[α]] but
it is not the case that ν = ω on V �, since V � ⊇ {x} yet ν(x) �= ω(x).

Proof of Lemma 10. To prove that FV(θ) has the coincidence property, it is enough to show
by induction that, for any set of variables S ⊆ FV(θ)�, the state ν′ in between ν and ν̃ that is
defined as ν′ = ν on S and as ν′ = ν̃ on S� agrees with ν̃ in the value Iν′[[θ ]] = I ν̃[[θ ]].
0. For S = ∅, there is nothing to show as ν′ = ν̃.
1. For S ∪ {z} with a variable z /∈ FV(θ), abbreviate the modified state ν′ν(z)

z by ν′z , which
satisfies ν′z = ν′ on {z}�, so Iν′z[[θ ]] = Iν′[[θ ]] = I ν̃[[θ ]], because z /∈ FV(θ) and by
induction hypothesis.

When S is the set of all variables where ν and ν̃ differ, which is S ⊆ FV(θ)� by assumption,
this implies ν′ = ν so Iν[[θ ]] = I ν̃[[θ ]]. Finally, if I = J onΣ(θ) then also I ν̃[[θ ]] = J ν̃[[θ ]]
by an induction.

Suppose there was a set V � FV(θ) satisfying the coincidence property for θ . Then

there is a variable x ∈ FV(θ) \ V , which implies that there are I , ν = ν̃ on {x}� such
that Iν[[θ ]] �= I ν̃[[θ ]]. Then V does not have the coincidence property, as ν = ν̃ on V but
Iν[[θ ]] �= I ν̃[[θ ]].
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Proof of Lemma 11. To prove that FV(φ) has the coincidence property, it is enough to show
by induction that, for any set of variables S ⊆ FV(φ)�, the state ν′ in between ν and ν̃ that
is defined as ν′ = ν on S and as ν′ = ν̃ on S� agrees with ν̃ in the truth-value ν′ ∈ I [[φ]] iff
ν̃ ∈ I [[φ]].
0. For S = ∅, there is nothing to show as ν′ = ν̃.
1. For S ∪ {z} with a variable z /∈ FV(φ), abbreviate the modified state ν′ν(z)

z by ν′z , which
satisfies ν′z = ν′ on {z}�, so ν′z ∈ I [[φ]] iff ν′ ∈ I [[φ]], because z /∈ FV(φ), iff ν̃ ∈ I [[φ]]
by induction hypothesis.

When S is the set of all variables where ν and ν̃ differ, which is S ⊆ FV(φ)� by assumption,
this implies ν′ = ν so ν ∈ I [[φ]] iff ν̃ ∈ I [[φ]]. Finally, if I = J onΣ(φ) then also ν̃ ∈ I [[φ]]
iff ν̃ ∈ J [[φ]] by an induction.

Suppose there was a set V � FV(φ) satisfying the coincidence property for φ. Then

there is a variable x ∈ FV(φ) \ V , which implies that there are I , ν = ν̃ on {x}� such
that ν ∈ I [[φ]] �� ν̃. Then V does not have the coincidence property, as ν = ν̃ on V but
ν ∈ I [[φ]] �� ν̃.

Proof of Lemma 12. To prove that FV(α) has the coincidence property, it is enough to show
by induction for all S ⊆ FV(α)� that the state ν′ in between ν̃ and ν that is defined as ν′ = ν̃ on
S and as ν′ = ν on S� has a state ω′ that agrees with ω′ = ω on S� such that (ν′, ω′) ∈ I [[α]]
as well.

0. For S = ∅, there is nothing to show for ν′ = ν and ω′ = ω, because (ν, ω) ∈ I [[α]].
1. For S∪{z}with a variable z /∈ FV(α), let ν′z denote modified state ν′ν̃(z)

z . Then ν′z = ν′ on
{z}� and, by induction hypothesis, (ν′, ω′) ∈ I [[α]] for someω′ withω′ = ω on S�. Since
z /∈ FV(α), this implies there is a stateω′z such thatω′z = ω′ on {z}� and (ν′z, ω′z) ∈ I [[α]].
Thus, ω′z = ω′ = ω on (S ∪ {z})�.

Finally the state ν′ resulting for S = V � satisfies ν′ = ν̃ because ν′ = ν̃ on V � and
ν′ = ν = ν̃ on (V �)� = V already and the state ω̃ defined as ω′ satisfies ω′ = ω on V and
(ν̃, ω̃) ∈ I [[α]]. Finally, if I = J on Σ(α) then also (ν̃, ω̃) ∈ J [[α]].

Suppose there was a set V � FV(α) satisfying the coincidence property for α. Then there

is a variable x ∈ FV(α) \ V , which implies that there are I, ν, ν̃, ω such that ν = ν̃ on {x}�
and (ν, ω) ∈ I [[α]], but there is no ω̃ with ω = ω̃ on {x}� such that (ν̃, ω̃) ∈ I [[α]]. Then V
does not have the coincidence property, because ν = ν̃ on {x}� ⊇ V and (ν, ω) ∈ I [[α]], but
there is no ω̃ with ω = ω̃ on {x}� such that (ν̃, ω̃) ∈ I [[α]].

Proof of Lemma 17. First prove BV(α) ⊇ BV(α) by a straightforward structural induction
on α.
1. For program constant a, the statement is obvious, since BV(a) = V .
2. (ν, ω) ∈ I [[x := θ ]] iff ω = νrx with r = Iν[[θ ]] so ν = ω except for {x} = BV(x :=

θ) ⊇ BV(x := θ).
3. (ν, ω) ∈ I [[?ψ]] = {(ν, ν) : ν ∈ I [[ψ]]} implies ν = ω so BV(?ψ) = BV(?ψ) = ∅.
4. (ν, ω) ∈ I [[x ′ = θ &ψ]] implies ν = ϕ(0) on {x ′}� and ω = ϕ(r) for some ϕ with

I, ϕ |� x ′ = θ ∧ ψ , so ϕ(ζ ) = ν on {x, x ′}� for all ζ . Thus ν = ω on {x, x ′}� by
Definition 7. Hence, BV(x ′ = θ &ψ) ⊆ {x, x ′} = BV(x ′ = θ &ψ).

5. (ν, ω) ∈ I [[α ∪ β]] = I [[α]] ∪ I [[β]] implies (ν, ω) ∈ I [[α]] or (ν, ω) ∈ I [[β]], By induc-
tion hypothesis, BV(α) ⊆ BV(α) and BV(β) ⊆ BV(β). Either way, ν = ω on
(BV(α)∪BV(β))�. So, BV(α ∪ β) ⊆ BV(α)∪BV(β) ⊆ BV(α)∪BV(β) = BV(α ∪ β).
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6. (ν, ω) ∈ I [[α;β]] = I [[α]] ◦ I [[β]], i.e. there is a μ such that (ν, μ) ∈ I [[α]] as well as
(μ, ω) ∈ [[β]]. By induction hypothesis, BV(α) ⊆ BV(α) and BV(β) ⊆ BV(β). Thus,
ν = μ = ω on (BV(α)∪BV(β))�. So BV(α;β) ⊆ BV(α)∪BV(β) ⊆ BV(α)∪BV(β) =
BV(α;β).

7. The case (ν, ω) ∈ I [[α∗]] =
⋃

n∈N
I [[αn]] follows by induction on n.

The second part proves FV(θ) ⊇ FV(θ). Let y ∈ FV(θ), which implies that there are I
and ν = ν̃ on {x}� such that Iν[[θ ]] �= I ν̃[[θ ]]. The proof is a structural induction on θ . IH is
short for induction hypothesis.
1. For any variable including y, FV(y) = FV(y) since y is the only variable that its value

depends on.
2. Iν[[ f (θ1, . . . , θk)]] �= I ν̃[[ f (θ1, . . . , θk)]] implies for some i that Iν[[θi ]] �= I ν̃[[θi ]].

Hence, y ∈ FV(θi ) since y is the only variable that ν and ν̃ differ at. By IH, this implies
y ∈ FV(θi ) ⊆ FV( f (θ1, . . . , θk)). This includes the case where f is + or · as well.

3. Iν[[(θ)′]] =
∑

x
ν(x ′) ∂ Iν[[θ ]]

∂x
�=

∑

x
ν̃(x ′) ∂ I ν̃[[θ ]]

∂x
= I ν̃[[(θ)′]]. Since ν and ν̃ only

differ in y, it is the case that i) for some x , ∂ Iν[[θ ]]
∂x �= ∂ I ν̃[[θ ]]

∂x , or ii) y is some x ′ and
ν(x ′) �= ν̃(x ′) and ∂ Iν[[θ ]]

∂x �= 0 or ∂ I ν̃[[θ ]]
∂x �= 0. In Case3i, there are states ω = ω̃ that

agree on {y}� such that Iω[[θ ]] �= I ω̃[[θ ]] as otherwise their partial derivatives by x

would agree. Thus, y ∈ FV(θ)
IH⊆ FV(θ) ⊆ FV((θ)′) by IH. In Case3ii, x ∈ FV(θ) as,

otherwise, ∂ Iν[[θ ]]
∂x = 0 for all states ν since there would not be any stateω agreeingω = ν

on {x}� with a different value Iω[[θ ]] �= Iν[[θ ]] then, so that their partial derivatives by
x would both be 0. By IH, x ∈ FV(θ) implies x ∈ FV(θ), which implies x ′ ∈ FV((θ)′).

The proof of soundness of FV(φ) and FV(α) is indirect by a simultaneous inductive prove that
both satisfy their respective coincidence property and are, thus, sound FV(φ) ⊇ FV(φ) and
FV(α) ⊇ FV(α) by Lemmas11 and 12, sinceFV(φ) andFV(α) are the smallest sets satisfying
coincidence. In fact, the inductive proof for programs shows a stronger coincidence property
augmented with must-bound variables.

The proof that FV(φ) satisfies the coincidence property, and thus FV(α) ⊇ FV(α), is by
structural induction onφ, simultaneouslywith the coincidence property for programs. To sim-
plify the proof, doubly negated existential quantifiers are considered structurally smaller than
universal quantifiers and doubly negated diamond modalities smaller than box modalities.

1. ν ∈ I [[p(θ1, . . . , θk)]] iff (Iν[[θ1]], . . . , Iν[[θk]]) ∈ I (p) iff (J ν̃[[θ1]], . . . , J ν̃[[θk]]) ∈
J (p) iff ν̃ ∈ J [[p(θ1, . . . , θk)]] by Lemma10 and FV(θ) ⊇ FV(θ) since FV(θi ) ⊆
FV(p(θ1, . . . , θk)) and I and J were assumed to agree on the function symbol p that
occurs in the formula. This includes the case where p is ≥ so that I and J agree by
definition.

2. ν ∈ I [[C(φ)]] = I (C)
(
I [[φ]]) iff, by IH, ν̃ ∈ J [[C(φ)]] = J (C)

(
J [[φ]]) since ν = ν̃ on

FV(C(φ)) = V , so ν = ν̃, and I = J on Σ(C(φ)) = {C}∪Σ(φ), so I (C) = J (C) and,
by induction hypothesis, implies I [[φ]] = J [[φ]] using I = J on Σ(φ) ⊆ Σ(C(φ)).

3. ν ∈ I [[¬φ]] iff ν /∈ I [[φ]] iff, by IH, ν̃ /∈ J [[φ]] iff ν̃ ∈ J [[¬φ]] using FV(¬φ) = FV(φ).
4. ν ∈ I [[φ ∧ ψ]] iff ν ∈ I [[φ]] ∩ I [[ψ]] iff, by IH, ν̃ ∈ J [[φ]] ∩ J [[ψ]] iff ν̃ ∈ J [[φ ∧ ψ]]

using FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ).
5. ν ∈ I [[∃x φ]] iff νrx ∈ I [[φ]] for some r ∈ R iff ν̃rx ∈ I [[φ]] for some r ∈ R iff ν̃ ∈ J [[∃x φ]]

for the same r by induction hypothesis using that νrx = ν̃rx on FV(φ) ⊆ {x} ∪ FV(∃x φ).
6. The case ∀x φ follows from the equivalence ∀x φ ≡ ¬∃x ¬φ using FV(¬∃x ¬φ) =

FV(∀x φ).
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7. ν ∈ I [[〈α〉φ]] iff there is a ω such that (ν, ω) ∈ I [[α]] and ω ∈ I [[φ]]. Since ν = ν̃ on
FV(〈α〉φ) ⊇ FV(α) and (ν, ω) ∈ I [[α]], the simultaneous induction hypothesis implies
with I = J on Σ(α) ⊆ Σ(〈α〉φ) that there is an ω̃ such that (ν̃, ω̃) ∈ J [[α]] and ω = ω̃

on FV(〈α〉φ)∪MBV(α) = FV(α)∪(FV(φ)\MBV(α))∪MBV(α) = FV(α)∪FV(φ)∪
MBV(α) ⊇ FV(φ).

Since, ω = ω̃ on FV(φ) and I = J on Σ(φ) ⊆ Σ(〈α〉φ), the induction hypothesis
implies that ω̃ ∈ J [[φ]] sinceω ∈ I [[φ]]. Since (ν̃, ω̃) ∈ J [[α]], this implies ν̃ ∈ J [[〈α〉φ]].

8. ν ∈ I [[[α]φ]] = I [[¬〈α〉¬φ]] iff ν /∈ I [[〈α〉¬φ]], so by IH, iff ν̃ /∈ J [[〈α〉¬φ]] iff
ν̃ ∈ J [[[α]φ]] using that FV(〈α〉¬φ) = FV([α]φ).

The proof that FV(α) satisfies the coincidence property, and thus FV(φ) ⊇ FV(φ), shows a
stronger property. If ν = ν̃ on V ⊇ FV(α), I = J on Σ(α) and (ν, ω) ∈ I [[α]], then there
is a ω̃ such that (ν̃, ω̃) ∈ J [[α]] and ω = ω̃ on V ∪MBV(α). The proof is by (simultaneous)
induction on the structural complexity of α, where α∗ is considered to be structurally more
complex thanHPs of any length butwith less nested repetitions,which induces awell-founded
order on HPs. For atomic programs α for which BV(α) = MBV(α), it is enough to show
agreement onV(α) = FV(α)∪BV(α) = FV(α)∪MBV(α), because any variable in V \V(α)

is in BV(α)�, which remain unchanged by α according to Lemma9 and BV(α) ⊇ BV(α).

1. Since FV(a) = V so ν = ν̃, the statement is vacuously true for program constant a.
2. (ν, ω) ∈ I [[x := θ ]] = {(ν, ω) : ω = ν except that Iω[[x]] = Iν[[θ ]]} then there is

(ν̃, ω̃) ∈ J [[x := θ ]] and ω̃(x) = J ω̃[[x]] = J ν̃[[θ ]] = Iν[[θ ]] = Iω[[x]] = ν(x) by
Lemma10, since ν = ν̃ on FV(x := θ) = FV(θ) and I = J on Σ(θ). So, ω = ω̃

on BV(x := θ) = {x}. Also, ν = ω on BV(x := θ)� and ν̃ = ω̃ on BV(x := θ)� by
Lemma9. Since ν = ν̃ on FV(x := θ), these imply ω = ω̃ on FV(x := θ) \BV(x := θ).
Since ω = ω̃ on BV(x := θ) had been shown already, this implies ω = ω̃ on V(x := θ).

3. (ν, ω) ∈ I [[?ψ]] = {(ν, ν) : ν ∈ I [[ψ]]} then ω = ν by Definition 7. Since, ν ∈ I [[ψ]]
and ν = ν̃ on FV(?ψ) and I = J on Σ(ψ) = Σ(?ψ), Lemma11 and the simultaneous
induction for FV(ψ) ⊇ FV(ψ) implies that ν̃ ∈ J [[ψ]], so (ν̃, ν̃) ∈ J [[?ψ]]. So ν = ν̃ on
V(?ψ) = FV(?ψ) since BV(?ψ) = ∅.

4. (ν, ω) ∈ I [[x ′ = θ &ψ]] implies that there is an ω̃ reached from ν̃ by following the
differential equation for the same amount it took to reach ω from ν.
That is, ν = ϕ(0) on {x ′}� and ω = ϕ(r) for some function ϕ : [0, r ] → S satisfy-
ing I, ϕ |� x ′ = θ ∧ ψ , especially ϕ(ζ ) ∈ I [[x ′ = θ ∧ ψ]] for all 0 ≤ ζ ≤ r . Define
ϕ̃ : [0, r ] → S at ζ as ϕ̃(ζ ) = ϕ(ζ ) on {x, x ′} and as ϕ̃(ζ ) = ν̃ on {x, x ′}�. Fix
any 0 ≤ ζ ≤ r . Then it only remains to show that ϕ̃(ζ ) ∈ J [[x ′ = θ ∧ ψ]], i.e.
ϕ̃(ζ ) ∈ J [[x ′ = θ ]]∩ J [[ψ]], which follows from ϕ(ζ ) ∈ I [[x ′ = θ ]]∩ I [[ψ]] by Lemma11
and the simultaneous induction hypothesis, since I = J on Σ(x ′ = θ) ∪ Σ(ψ) =
Σ(x ′ = θ &ψ) and ϕ(ζ ) = ϕ̃(ζ ) on FV(x ′ = θ) ∪ FV(ψ) = FV(x ′ = θ &ψ) ∪ {x ′}.
Here, ϕ(ζ ) = ϕ̃(ζ ) agree on {x, x ′} by construction of ϕ̃. Agreement of ϕ(ζ ) and ϕ̃(ζ ) for
the other free variables follows from the assumption that ν = ν̃ on FV(x ′ = θ &ψ) since
ν = ϕ(ζ ) on {x, x ′}� by Definition 7 and since ν̃ = ϕ̃(ζ ) on {x, x ′}� by construction.

5. (ν, ω) ∈ I [[α ∪ β]] = I [[α]] ∪ I [[β]] implies (ν, ω) ∈ I [[α]] or (ν, ω) ∈ I [[β]], which
since V ⊇ FV(α ∪ β) ⊇ FV(α) and V ⊇ FV(α ∪ β) ⊇ FV(β) implies, by induc-
tion hypothesis, that there is an ω̃ such that (ν̃, ω̃) ∈ J [[α]] and ω = ω̃ on V ∪MBV(α)
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or that there is an ω̃ such that (ν̃, ω̃) ∈ J [[β]] and ω = ω̃ on V ∪MBV(β), respectively.
In either case, there is a ω̃ such that (ν̃, ω̃) ∈ J [[α ∪ β]] and ω = ω̃ on V ∪MBV(α∪β),
because J [[α]] ⊆ J [[α ∪ β]] and J [[β]] ⊆ J [[α ∪ β]] and MBV(α ∪ β) = MBV(α) ∩
MBV(β).

6. (ν, ω) ∈ I [[α;β]] = I [[α]] ◦ I [[β]], i.e. there is a state μ such that (ν, μ) ∈ I [[α]] and
(μ, ω) ∈ I [[β]]. Since V ⊇ FV(α;β) ⊇ FV(α), by induction hypothesis, there is a
μ̃ such that (ν̃, μ̃) ∈ J [[α]] and μ = μ̃ on V ∪ MBV(α). Since V ⊇ FV(α;β), so
V ∪MBV(α) ⊇ FV(α;β) ∪MBV(α) = FV(α) ∪ (FV(β) \MBV(α)) ∪MBV(α) =
FV(α) ∪ FV(β) ∪MBV(α) ⊇ FV(β) by Definition 15, and since (μ, ω) ∈ I [[β]], the
induction hypothesis implies that there is an ω̃ such that (μ̃, ω̃) ∈ J [[β]] and ω = ω̃ on
(V ∪MBV(α)) ∪MBV(β) = V ∪MBV(α;β).

7. (ν, ω) ∈ I [[α∗]] =
⋃

n∈N I [[αn]] iff there is an n ∈ N such that (ν, ω) ∈ I [[αn]]. The case
n = 0 follows from the assumption ν = ν̃ on V ⊇ FV(α), since ω = ν holds in that case
and MBV(α∗) = ∅. The case n > 0 proceeds as follows. Since FV(αn) = FV(α∗) =
FV(α), the induction hypothesis applied to the structurally simpler HP αn ≡ αn−1;α
with less loops (so using Case6) implies that there is an ω̃ such that (ν̃, ω̃) ∈ J [[αn]]
and ω = ω̃ on V ∪ MBV(αn) ⊇ V = V ∪ MBV(α∗), since MBV(α∗) = ∅. Since
J [[αn]] ⊆ J [[α∗]] by Definition 7, this concludes the proof.

Proof of Corollary 22. σ ∗ν I is well-defined, as σ ∗ν I ( f ) is a smooth function since its sub-
stitute term σ f (·) has smooth values. First, σ ∗ν I (a) = I [[σa]] = σ ∗ω I (a) holds because the
adjoint to σ for I, ν in the case of programs is independent of ν (programs have access to
their initial state at runtime). Likewise σ ∗ν I (C) = σ ∗ω I (C) for quantifier symbols, because the
adjoint is independent ofν for quantifier symbols.ByLemma10, I d· ν[[σ f (·)]] = I d·ω[[σ f (·)]]
when ν = ω on FV(σ f (·)) ⊆ FV(σ ). Also ν ∈ I d· [[σ p(·)]] iff ω ∈ I d· [[σ p(·)]] by Lemma11
when ν = ω on FV(σ p(·)) ⊆ FV(σ ). Thus, σ ∗ν I = σ ∗ω I when ν = ω on FV(σ ).

If σ isU -admissible for φ (or θ or α), then FV(σ f (·))∩U = ∅, i.e. FV(σ f (·)) ⊆ U� for
every function symbol f ∈ Σ(φ) (or θ or α) and likewise for predicate symbols p ∈ Σ(φ).
Since ν = ω on U� was assumed, σ ∗ω I = σ ∗ν I on the function and predicate symbols in
Σ(φ) (or θ or α). Finally σ ∗ω I = σ ∗ν I on Σ(φ) (or Σ(θ) or Σ(α), respectively) implies
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that σ ∗ω I [[φ]] = σ ∗ν I [[φ]] by Lemma11 (since μ ∈ σ ∗ω I [[φ]] iff μ ∈ σ ∗ν I [[φ]] holds for all
μ) and that σ ∗ν I [[θ ]] = σ ∗ω I [[θ ]] by Lemma10 and that σ ∗ω I [[α]] = σ ∗ν I [[α]] by Lemma12,
respectively.

Proof of Lemma 23. The proof is by structural induction on θ and the structure of σ .
1. Iν[[σ(x)]] = Iν[[x]] = ν(x) = σ ∗ν Iν[[x]] since x /∈ σ for variable x ∈ V
2. Let f ∈ σ . Then Iν[[σ( f (θ))]] = Iν[[(σ ( f ))

(
σ(θ)

)]] = Iν[[{· �→ σ(θ)}(σ f (·))]]
IH= I d· ν[[σ f (·)]] = (σ ∗ν I ( f ))(d) = (σ ∗ν I ( f ))(σ ∗ν Iν[[θ ]]) = σ ∗ν Iν[[ f (θ)]] with d

def=
Iν[[σ(θ)]] IH= σ ∗ν Iν[[θ ]] by using the induction hypothesis twice, once for σ(θ) on the
smaller θ and once for {· �→ σ(θ)}(σ f (·)) on the possibly bigger termσ f (·) but the struc-
turally simpler uniform substitution {· �→ σ(θ)}(. . . ) that is a substitution on the symbol
· of arity zero, not a substitution of functions with arguments. For well-foundedness of
the induction note that the · substitution only happens for function symbols f with at
least one argument θ so not for · itself.

3. Iν[[σ(g(θ))]]= Iν[[g(σ (θ))]]= I (g)(Iν[[σ(θ)]]) IH= I (g)
(
σ ∗ν Iν[[θ ]]

)=σ ∗ν I (g)
(
σ ∗ν Iν[[θ ]]

)

= σ ∗ν Iν[[g(θ)]] by induction hypothesis and since I (g) = σ ∗ν I (g) as the interpretation
of g does not change in σ ∗ν I when g /∈ σ .

4. Iν[[σ(θ + η)]] = Iν[[σ(θ)+ σ(η)]] = Iν[[σ(θ)]]+Iν[[σ(η)]] IH= σ ∗ν Iν[[θ ]]+σ ∗ν Iν[[η]] =
σ ∗ν Iν[[θ + η]] by induction hypothesis.

5. Iν[[σ(θ · η)]] = Iν[[σ(θ) · σ(η)]] = Iν[[σ(θ)]] · Iν[[σ(η)]] IH= σ ∗ν Iν[[θ ]] · σ ∗ν Iν[[η]] =
σ ∗ν Iν[[θ · η]] by induction hypothesis.

6. Iν[[σ((θ)′)]] = Iν[[(σ (θ))′]] = ∑
x ν(x ′) ∂ Iν[[σ(θ)]]

∂x
IH= ∑

x ν(x ′) ∂σ ∗ν Iν[[θ ]]
∂x = σ ∗ν Iν[[(θ)′]]

by induction hypothesis, provided σ is V -admissible for θ , i.e. does not introduce any
variables or differential symbols, so that Corollary22 implies σ ∗ν I = σ ∗ω I for all ν, ω

(that agree on V � = ∅, which imposes no condition on ν, ω). In particular, the adjoint
interpretation σ ∗ν I is the same for all ways of changing the value of variable x in state ν

when forming the partial derivative.

Proof of Lemma 24. The proof is by structural induction on φ and the structure on σ , simul-
taneously with Lemma25.
1. ν ∈ I [[σ(θ ≥ η)]] iff ν ∈ I [[σ(θ) ≥ σ(η)]] iff Iν[[σ(θ)]] ≥ Iν[[σ(η)]], by Lemma23, iff

σ ∗ν Iν[[θ ]] ≥ σ ∗ν Iν[[η]] iff σ ∗ν Iν[[θ ≥ η]].
2. Let p ∈ σ . Thenν ∈ I [[σ(p(θ))]] iffν ∈ I [[(σ (p))

(
σ(θ)

)]] iffν ∈ I [[{· �→σ(θ)}(σ p(·))]]
iff, by IH, ν ∈ I d· [[σ p(·)]] iff d ∈ σ ∗ν I (p) iff (σ ∗ν Iν[[θ ]]) ∈ σ ∗ν I (p) iff ν ∈ σ ∗ν I [[p(θ)]]
with d

def= Iν[[σ(θ)]] = σ ∗ν Iν[[θ ]] by using Lemma23 for σ(θ) and by using the induc-
tion hypothesis for {· �→ σ(θ)}(σ p(·)) on the possibly bigger formula σ p(·) but the
structurally simpler uniform substitution {· �→ σ(θ)}(. . . ) that is a mere substitution on
function symbol · of arity zero, not a substitution of predicates.

3. Let q /∈ σ . Then ν ∈ I [[σ(q(θ))]] iff ν ∈ I [[q(σ (θ))]] iff (
Iν[[σ(θ)]]) ∈ I (q) so, by

Lemma23, that holds iff
(
σ ∗ν Iν[[θ ]]

) ∈ I (q) iff
(
σ ∗ν Iν[[θ ]]

) ∈ σ ∗ν I (q) iff ν ∈ σ ∗ν I [[q(θ)]]
since I (q) = σ ∗ν I (q) as the interpretation of q does not change in σ ∗ν I when q /∈ σ .

4. For the case σ(C(φ)), first show I [[σ(φ)]] = σ ∗ν I [[φ]]. By induction hypothesis for
the smaller φ: ω ∈ I [[σ(φ)]] iff ω ∈ σ ∗ω I [[φ]], where σ ∗ω I [[φ]] = σ ∗ν I [[φ]] by Corol-
lary22 for all ν, ω (that agree on V � = ∅, which imposes no condition on ν, ω)
since σ is V -admissible for φ. The proof proceeds: ν ∈ I [[σ(C(φ))]] = I [[σ(C)(σ (φ))]]
= I [[{_ �→ σ(φ)}(σC(_))]], so, by induction hypothesis for the structurally simpler uni-
form substitution {_ �→ σ(φ)} that is a mere substitution on quantifier symbol _ of arity

123



256 A. Platzer

zero, iff ν ∈ I R_ [[σC(_)]] since the adjoint to {_ �→ σ(φ)} is I R_ with R
def= I [[σ(φ)]] by

definition.
Also ν ∈ σ ∗ν I [[C(φ)]] = σ ∗ν I (C)

(
σ ∗ν I [[φ]]

) = I R_ [[σC(_)]] for R = σ ∗ν I [[φ]] = I [[σ(φ)]]
by induction hypothesis. Both sides are, thus, equivalent.

5. The case σ(C(φ)) for C /∈ σ again first shows I [[σ(φ)]] = σ ∗ν I [[φ]] for all ν using
that σ is V -admissible for φ. Then ν ∈ I [[σ(C(φ))]] = I [[C(σ (φ))]] = I (C)

(
I [[σ(φ)]])

= I (C)
(
σ ∗ν I [[φ]]

) = σ ∗ν I (C)
(
σ ∗ν I [[φ]]

) = σ ∗ν I [[C(φ)]] iff ν ∈ σ ∗ν I [[C(φ)]]
6. ν ∈ I [[σ(¬φ)]] iff ν ∈ I [[¬σ(φ)]] iff ν /∈ I [[σ(φ)]], so by IH, iff ν /∈ σ ∗ν I [[φ]] iff

ν ∈ σ ∗ν I [[¬φ]]
7. ν ∈ I [[σ(φ ∧ ψ)]] iff ν ∈ I [[σ(φ) ∧ σ(ψ)]] iff ν ∈ I [[σ(φ)]] and ν ∈ I [[σ(ψ)]], by induc-

tion hypothesis, iff ν ∈ σ ∗ν I [[φ]] and ν ∈ σ ∗ν I [[ψ]] iff ν ∈ σ ∗ν I [[φ ∧ ψ]]
8. ν ∈ I [[σ(∃x φ)]] iff ν ∈ I [[∃x σ(φ)]] (provided that σ is {x}-admissible for φ) iff

νdx ∈ I [[σ(φ)]] for some d , so, by induction hypothesis, iff νdx ∈ σ ∗
νdx
I [[φ]] for some d ,

which is equivalent to νdx ∈ σ ∗ν I [[φ]] by Corollary22 as σ is {x}-admissible for φ and
ν = νdx on {x}�. Thus, this is equivalent to ν ∈ σ ∗ν I [[∃x φ]].

9. The case ν ∈ I [[σ(∀x φ)]] follows by duality ∀x φ ≡ ¬∃x ¬φ, which is respected in the
definition of uniform substitutions.

10. ν ∈ I [[σ(〈α〉φ)]] iff ν ∈ I [[〈σ(α)〉σ(φ)]] (provided σ is BV(σ (α))-admissible for φ) iff
there is a ω such that (ν, ω) ∈ I [[σ(α)]] and ω ∈ I [[σ(φ)]], which, by Lemma25 and
induction hypothesis, respectively, is equivalent to: there is aω such that (ν, ω) ∈ σ ∗ν I [[α]]
and ω ∈ σ ∗ω I [[φ]], which is equivalent to ν ∈ σ ∗ν I [[〈α〉φ]], because ω ∈ σ ∗ω I [[φ]] is equiv-
alent to ω ∈ σ ∗ν I [[φ]] by Corollary22 as σ is BV(σ (α))-admissible for φ and ν = ω on
BV(σ (α))� by Lemma9 since (ν, ω) ∈ I [[σ(α)]].

11. The case ν ∈ I [[σ([α]φ)]] follows by duality [α]φ ≡ ¬〈α〉¬φ, which is respected in the
definition of uniform substitutions.

Proof of Lemma 25. The proof is by structural induction on α, simultaneously with
Lemma24.
1. (ν, ω) ∈ I [[σ(a)]] = I [[σa]] = σ ∗ν I (a) = σ ∗ν I [[a]] for program constant a ∈ σ (the

proof is accordingly for a /∈ σ ).

2. (ν, ω) ∈ I [[σ(x := θ)]] = I [[x := σ(θ)]] iff ω = ν
Iν[[σ(θ)]]
x = ν

σ ∗ν Iν[[θ ]]
x by Lemma24,

which is, thus, equivalent to (ν, ω) ∈ σ ∗ν I [[x := θ ]].
3. (ν, ω) ∈ I [[σ(?ψ)]] = I [[?σ(ψ)]] iff ω = ν and ν ∈ I [[σ(ψ)]], iff, by Lemma24, ω = ν

and ν ∈ σ ∗ν I [[ψ]], which is equivalent to (ν, ω) ∈ σ ∗ν I [[?ψ]].
4. (ν, ω) ∈ I [[σ(x ′ = θ &ψ)]] = I [[x ′ = σ(θ)& σ(ψ)]] (provided that σ is {x, x ′}-admis-

sible for θ, ψ) iff ∃∃ϕ : [0, T ] → S with ϕ(0) = ν on {x ′}�, ϕ(T ) = ω and for all t ≥ 0:
ϕ′(t) = Iϕ(t)[[σ(θ)]] = σ ∗ϕ(t) Iϕ(t)[[θ ]] by Lemma23 and ϕ(t) ∈ I [[σ(ψ)]], which, by
Lemma24, holds iff ϕ(t) ∈ σ ∗ϕ(t) I [[ψ]].
Also (ν, ω) ∈ σ ∗ν I [[x ′ = θ &ψ]] iff ∃∃ϕ : [0, T ] → S with ϕ(0) = ν on {x ′}� and
ϕ(T ) = ω and for all t ≥ 0: ϕ′(t) = σ ∗ν Iϕ(t)[[θ ]] and ϕ(t) ∈ σ ∗ν I [[ψ]]. Finally,
σ ∗ν I [[θ ]] = σ ∗ϕ(t) I [[θ ]] and σ ∗ϕ(t) I [[ψ]] = σ ∗ν I [[ψ]] by Corollary22 since σ is {x, x ′}-
admissible for θ and ψ and ν = ϕ(t) on BV(x ′ = θ &ψ)� ⊇ {x, x ′}� by Lemma9.

5. (ν, ω) ∈ I [[σ(α ∪ β)]] = I [[σ(α) ∪ σ(β)]] = I [[σ(α)]] ∪ I [[σ(β)]], which, by induc-
tion hypothesis, is equivalent to (ν, ω) ∈ σ ∗ν I [[α]] or (ν, ω) ∈ σ ∗ν I [[β]], which is
(ν, ω) ∈ σ ∗ν I [[α]] ∪ σ ∗ν I [[β]] = σ ∗ν I [[α ∪ β]].

6. (ν, ω) ∈ I [[σ(α;β)]] = I [[σ(α); σ(β)]] = I [[σ(α)]] ◦ I [[σ(β)]] (provided σ is BV(σ (α))-
admissible for β) iff there is a μ such that (ν, μ) ∈ I [[σ(α)]] and (μ, ω) ∈ I [[σ(β)]],
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which, by induction hypothesis, is equivalent to (ν, μ) ∈ σ ∗ν I [[α]] and (μ, ω) ∈ σ ∗μ I [[β]].
Yet, σ ∗μ I [[β]] = σ ∗ν I [[β]] by Corollary22, because σ is BV(σ (α))-admissible for β and

ν = ω on BV(σ (α))� by Lemma9 since (ν, μ) ∈ I [[σ(α)]]. Finally, (ν, μ) ∈ σ ∗ν I [[α]]
and (μ, ω) ∈ σ ∗ν I [[β]] for some μ is equivalent to (ν, ω) ∈ σ ∗ν I [[α;β]].

7. (ν, ω) ∈ I [[σ(α∗)]] = I [[(σ (α))∗]] = (
I [[σ(α)]])∗ = ⋃

n∈N(I [[σ(α)]])n (provided that
σ is BV(σ (α))-admissible for α) iff there are n ∈ N and ν0 = ν, ν1, . . . , νn = ω

such that (νi , νi+1) ∈ I [[σ(α)]] for all i < n. By n uses of the induction hypothe-
sis, this is equivalent to (νi , νi+1) ∈ σ ∗νi I [[α]] for all i < n, which is equivalent to
(νi , νi+1) ∈ σ ∗ν I [[α]] byCorollary22 since σ isBV(σ (α))-admissible forα and νi+1 = νi

onBV(σ (α))� by Lemma9 as (νi , νi+1) ∈ I [[σ(α)]] for all i < n. Thus, this is equivalent
to (ν, ω) ∈ σ ∗ν I [[α∗]] =

(
σ ∗ν I [[α]]

)∗.

Proof of Lemma 35. By Definition 5 the left side is:

Iϕ(ζ )[[(η)′]] =
∑

x∈V
ϕ(ζ )(x ′) ∂ I [[η]]

∂x
(ϕ(ζ ))

By chain rule (Lemma42 in the beginning of the “Appendix”) the right side is:

dIϕ(t)[[η]]
dt

(ζ ) = (I [[η]] ◦ ϕ)′(ζ ) = (∇ I [[η]])(ϕ(ζ )
) · ϕ′(ζ ) =

∑

x∈V

∂ I [[η]]
∂x

(
ϕ(ζ )

)
ϕ′(ζ )(x)

where (∇ I [[η]])(ϕ(ζ )
)
, the gradient ∇ I [[η]] of I [[η]] at ϕ(ζ ), is the vector of ∂ I [[η]]

∂x

(
ϕ(ζ )

)
,

which has finite support by Lemma10 so is 0 for all but finitely many variables. Both sides,
thus, agree since ϕ(ζ )(x ′) = dϕ(t)(x)

dt (ζ ) = ϕ′(ζ )(x) by Definition 7 for all x ∈ FV(η).
The same proof works for vectorial differential equations as long as all free variables of
η have some differential equation so that their differential symbols agree with their time-
derivatives.

Proof of Lemma 36. I, ϕ |� x ′ = θ ∧ ψ implies ϕ(ζ ) ∈ I [[x ′ = θ ∧ ψ]], i.e. ϕ(ζ )(x ′) =
Iϕ(ζ )[[θ ]] and also ϕ(ζ ) ∈ I [[ψ]] for all 0 ≤ ζ ≤ r . Thus, since x ′ already has
the value Iϕ(ζ )[[θ ]] in state ϕ(ζ ), the differential assignment x ′ := θ has no effect,
thus, (ϕ(ζ ), ϕ(ζ )) ∈ I [[x ′ := θ ]] so that φ and [x ′ := θ ]φ are equivalent along ϕ. Hence,
I, ϕ |� (φ ↔ [x ′ := θ]φ).

Proof of Lemma 37. The proof shows each equation separately. The first part considers any
constant function (i.e. arity 0) or number literal f for (3) and then aligns the differential (x)′ of
a term that happens to be a variable x ∈ V with its corresponding differential symbol x ′ ∈ V ′
for (4). The other cases exploit linearity for (5) and Leibniz properties of partial derivatives
for (6). Case (7) exploits the chain rule and assignments and differential assignments for
the fresh y, y′ to mimic partial derivatives. Equation (7) generalizes to functions f of arity
n > 1, in which case · is the (definable) Euclidean scalar product.

Iν[[( f )′]] =
∑

x

ν(x ′) ∂ I [[ f ]]
∂x

(ν) =
∑

x

ν(x ′) ∂ I ( f )
∂x

(ν) = 0 (3)

Iν[[(x)′]] =
∑

y

ν(y′) ∂ I [[x]]
∂y

(ν) = ν(x ′) = Iν[[x ′]] (4)

Iν[[(θ + η)′]] =
∑

x

ν(x ′) ∂ I [[θ + η]]
∂x

(ν) =
∑

x

ν(x ′) ∂(I [[θ ]] + I [[η]])
∂x

(ν)
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=
∑

x

ν(x ′)
(

∂ I [[θ ]]
∂x

(ν)+ ∂ I [[η]]
∂x

(ν)

)

=
∑

x

ν(x ′) ∂ I [[θ ]]
∂x

(ν)+
∑

x

ν(x ′) ∂ I [[η]]
∂x

(ν)

= Iν[[(θ)′]] + Iν[[(η)′]] = Iν[[(θ)′ + (η)′]] (5)

Iν[[(θ · η)′]] =
∑

x

ν(x ′) ∂ I [[θ · η]]
∂x

(ν) =
∑

x

ν(x ′) ∂(I [[θ ]] · I [[η]])
∂x

(ν)

=
∑

x

ν(x ′)
(
Iν[[η]]∂ I [[θ ]]

∂x
(ν)+ Iν[[θ ]]∂ I [[η]]

∂x
(ν)

)

= Iν[[η]]
∑

x

ν(x ′) ∂ I [[θ ]]
∂x

(ν)+ Iν[[θ ]]
∑

x

ν(x ′) ∂ I [[η]]
∂x

(ν)

= Iν[[(θ)′]] · Iν[[η]] + Iν[[θ ]] · Iν[[(η)′]] = Iν[[(θ)′ · η + θ · (η)′]] (6)

Proving that ν ∈ I [[[y := θ ][y′ := 1](( f (θ))′ = ( f (y))′ · (θ)′
)]] requires ω ∈ I [[( f (θ))′ =

( f (y))′ · (θ)′]], i.e. that Iω[[( f (θ))′]] = Iω[[( f (y))′ · (θ)′]], where ω agrees with state ν

except thatω(y) = Iν[[θ ]] andω(y′) = 1.This is equivalent to Iν[[( f (θ))′]] = Iω[[( f (y))′]]·
Iν[[(θ)′]] by Lemma10 since ν = ω on {y, y′}� and y, y′ /∈ FV(θ) by assumption, so
y, y′ /∈ FV(( f (θ))′) and y, y′ /∈ FV((θ)′). The latter equation proves using the chain rule

(Lemma42) and a fresh variable z when denoting I [[ f ]] def= I ( f ) using Lemma10:

Iν[[( f (θ))′]] =
∑

x

ν(x ′) ∂ I [[ f (θ)]]
∂x

(ν) =
∑

x

ν(x ′) ∂(I [[ f ]] ◦ I [[θ ]])
∂x

(ν)

chain=
∑

x

ν(x ′) ∂ I [[ f ]]
∂y

(
Iν[[θ ]]) · ∂ I [[θ ]]

∂x
(ν)

= ∂ I [[ f ]]
∂y

(
Iν[[θ ]]) ·

∑

x

ν(x ′) ∂ I [[θ ]]
∂x

(ν) = ∂ I [[ f ]]
∂y

(
Iν[[θ ]]) · Iν[[(θ)′]]

= ∂ I ( f )

∂y

(
Iν[[θ ]]) · Iν[[(θ)′]] = ∂ I ( f )

∂z

(
Iω[[y]])∂ I [[y]]

∂y
(ω) · Iν[[(θ)′]]

chain= ∂(I ( f ) ◦ I [[y]])
∂y

(ω) · Iν[[(θ)′]] =
(

∂ I [[ f (y)]]
∂y

(ω)

)
· Iν[[(θ)′]]

=
(

ω(y′) ∂ I [[ f (y)]]
∂y

(ω)

)
· Iν[[(θ)′]]

=
⎛

⎝
∑

x∈{y}
ω(x ′) ∂ I [[ f (y)]]

∂x
(ω)

⎞

⎠ · Iν[[(θ)′]]

= Iω[[( f (y))′]] · Iν[[(θ)′]] (7)

Proof of Lemma 39. Let ϕ̃ be the desired instance of the axiom schema belonging to ϕ, that
is, let ϕ̃ be obtained from ϕ by uniformly replacing each quantifier symbol C() by some
formula, naïvely but consistently (same replacement for C() in all places) and accordingly
for program constants a. The proof follows a structural induction on ϕ to show that there is
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a uniform substitution σ with FV(σ ) = ∅ such that σ(ϕ) = ϕ̃. The proof for formulas is by
a mostly straightforward simultaneous induction with programs:

1. Consider quantifier symbol C() of arity 0 and let ϕ̃ be the desired instance. Define
σ = {C() �→ ϕ̃}, which has FV(σ ) = ∅, because it only substitutes quantifier symbols.
Then σ(C()) ≡ σC() ≡ ϕ̃. The substitution is admissible for all arguments, since there
are none.

2. Consider φ ∧ ψ and let φ̃ ∧ ψ̃ be the desired instance (which has to have this shape to
qualify as a schema instance). By induction hypothesis, there are uniform substitutions
σ, τ with FV(σ ) = FV(τ ) = ∅ such that σ(φ) = φ̃ and σ(ψ) = ψ̃ . Then the union σ ∪τ

of uniform substitutions σ and τ is defined, because for all symbols a of any syntactic
category: if a ∈ σ and a ∈ τ , then σa = τa since all replacements are uniform, so the
same replacement is used everywhere in φ ∧ ψ for the same symbol a. Consequently,
(σ ∪ τ)(φ) = σ(φ) = φ̃ and (σ ∪ τ)(ψ) = τ(ψ) = ψ̃ , because all symbols that are
replaced are replaced uniformly everywhere so either do not occur in φ or are already
handled by σ in the same way (and likewise either do not occur in ψ or are already
handled by τ ). Finally, FV(σ ∪ τ) = FV(σ ) ∪ FV(τ ) = ∅.

3. Case2 generalizes to a general uniform replacement argument: the induction hypothesis
and uniform replacement assumptions imply for each subexpression θ ◦ η of ϕ with any
operator ◦ that the corresponding desired instance has to have the same shape θ̃◦η̃ and that
there are uniform substitutions σ, τ with FV(σ ) = FV(τ ) = ∅ such that their union σ ∪τ

is defined and (σ∪τ)(θ ◦η) = σ(θ)◦τ(η) = θ̃ ◦η̃ and FV(σ∪τ) = FV(σ )∪FV(τ ) = ∅.
This shows the cases φ ∨ ψ , φ → ψ , φ ↔ ψ and, after a moment’s thought, also ¬φ.

4. Consider ∀x φ with desired instance ∀x φ̃, which has to have this shape. By induction
hypothesis, there is a uniform substitution σ with FV(σ ) = ∅ such that σ(φ) = φ̃. Thus,
σ(∀x φ) = ∀x σ(φ) = ∀x φ̃, which is {x}-admissible because FV(σ ) = ∅.

5. The case ∃x φ is accordingly.
6. Consider [α]φ with desired instance [α̃]φ̃. By induction hypothesis and the uniform

replacement argument, there are uniform substitutions σ, τ such that (σ ∪ τ)([α]φ) =
[σ(α)]τ(φ) = [α̃]φ̃ which is admissible, because σ ∪ τ is BV((σ ∪ τ)(α))-admissible
for [α]φ since FV(σ ∪ τ) = ∅.

7. The case 〈α〉φ is accordingly.

The proof for hybrid programs is by simultaneous induction with formulas, where most cases
are in analogy to the previous cases, except:

1. Consider program constant a with desired instance ã. Then σ = {a �→ ã} has FV(σ ) = ∅
and satisfies σ(a) = σa = ã.

2. Consider the case x ′ = θ &ψ with desired instance x ′ = θ̃ & ψ̃ , which has to have this
shape. By induction hypothesis and uniform replacement argument, there are uniform
substitutions σ, τ such that (σ ∪ τ)(x ′ = θ &ψ) ≡ x ′ = σ(θ)& τ(ψ) ≡ x ′ = θ̃ & ψ̃ .
Admissibility follows from FV(σ ∪ τ) = ∅.

3. Consider the case α∗ with desired instance (α̃)∗, which has to have this shape. By induc-
tion hypothesis, there is a uniform substitution σ such that σ(α) ≡ α̃ and FV(σ ) = ∅.
Then σ(α∗) ≡ (σ (α))∗ ≡ (α̃)∗, which is BV(σ (α))-admissible since FV(σ ) = ∅.

4. The case α;β is similar and case α ∪ β follows directly from the uniform replacement
argument.

The corresponding result for axiomatic rules built from surjective dL formulas follows since
surjective dL formulas can be instantiated by rule US to any instance, which, thus, continues
to hold for the premises and conclusions in rule USR.
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Proof of Theorem 40. This proof refines the completeness proof for the axiom schemata of
differential game logic [16] with explicit proofs of instantiability byUS andUSR.Write L φ

to indicate that dL formula φ can be derived in the dL proof calculus from valid L formulas.
Soundness follows from Theorem38, so it remains to prove completeness. For every valid
dL formula φ it has to be proved that φ can be derived from valid L tautologies within the
dL calculus: from � φ prove  L φ. The proof proceeds as follows: By propositional recom-
bination, inductively identify fragments of φ that correspond to φ1 → 〈α〉φ2 or φ1 → [α]φ2

logically. Find structurally simpler formulas from which these properties can be derived in
the dL calculus by uniform substitution instantiations, taking care that the resulting formulas
are simpler than the original one in a well-founded order. Finally, prove that the original
dL formula can be re-derived from the subproofs in the dL calculus by uniform substitution
instantiations.

The first insight is that, with the rules MP and ∀ and (by Lemma39, all) relevant instances
of ∀i, ∀→, V∀ and real arithmetic, the dL calculus contains a complete axiomatization of
first-order logic. Thus, all first-order logic tautologies can be used without further notice in
the remainder of the proof. Furthermore, by Lemma39, all instances of 〈·〉, [∪], [;], [∗], K, I
can be proved by rule US in the dL calculus.

By appropriate propositional derivations, assumeφ to be given in conjunctive normal form.
Assume that negations are pushed inside over modalities using the dualities¬[α]φ ≡ 〈α〉¬φ

and¬〈α〉φ ≡ [α]¬φ that are provable by axiom 〈·〉, and that negations are pushed inside over
quantifiers using definitorial first-order equivalences ¬∀x φ ≡ ∃x ¬φ and ¬∃x φ ≡ ∀x ¬φ.
The remainder of the proof follows an induction on a well-founded partial order ≺ from
previous work [16] induced on dL formulas by the lexicographic ordering of the overall
structural complexity of the hybrid programs in the formula and the structural complexity of
the formula itself, with the logic L placed at the bottom of the partial order≺. The base logic
L is considered of lowest complexity by relativity, because � F immediately implies  L F
for all formulas F of L. The monotonicity rules derive from G, K, 〈·〉 by Lemma39 with a
classical argument:

(M)
p(x̄) → q(x̄)

〈a〉p(x̄) → 〈a〉q(x̄)
(M[·])

p(x̄) → q(x̄)

[a]p(x̄) → [a]q(x̄)

The proof follows the syntactic structure of dL formulas.

0. Ifφ has no hybrid programs, thenφ is a first-order formula; hence provable by assumption
(even decidable if in first-order real arithmetic [21], i.e. no uninterpreted symbols occur).

1. φ is of the form ¬φ1; then φ1 is first-order and quantifier-free, as negations are assumed
to be pushed inside, so Case0 applies.

2. φ is of the form φ1 ∧ φ2, then � φ1 and � φ2, so individually deduce simpler proofs for
 L φ1 and  L φ2 by IH, which combine propositionally to a proof for  L φ1 ∧ φ2 using
MP twice with the propositional tautology φ1 → (φ2 → φ1 ∧ φ2).

3. The case where φ is of the form ∃x φ2, ∀x φ2, 〈α〉φ2 or [α]φ2 is included in Case4 with
φ1 ≡ false.

4. φ is a disjunction and—without loss of generality—has one of the following forms
(otherwise use provable associativity and commutativity to reorder):

φ1 ∨ 〈α〉φ2

φ1 ∨ [α]φ2

φ1 ∨ ∃x φ2

φ1 ∨ ∀x φ2.
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Let φ1 ∨ 〈[α]〉φ2 be a unified notation for those cases. Then, φ2 ≺ φ, since φ2 has less
modalities or quantifiers. Likewise, φ1 ≺ φ because 〈[α]〉φ2 contributes one modality or
quantifier to φ that is not part of φ1. When abbreviating the simpler formulas ¬φ1 by F
and φ2 by G, the validity � φ yields � ¬F ∨ 〈[α]〉G, so � F → 〈[α]〉G, from which the
remainder of the proof inductively derives

 L F → 〈[α]〉G. (9)

The proof of (9) is by structural induction on 〈[α]〉. This proof focuses on the quantifier
and [] cases, because most 〈〉 cases derive by axiom 〈·〉 with Lemma39 from the []
equivalences.

(a) If 〈[α]〉 is the operator ∀x then � F → ∀x G, where x can be assumed not to occur
in F by a bound variable renaming. Hence, � F → G. Since G ≺ ∀x G, because it
has less quantifiers, also (F → G) ≺ (F → ∀x G), hence  L F → G is derivable
by IH. Then,  L F → ∀x G derives with Lemma39 by generalization rule ∀, since
x does not occur in F :

F → G
∀ ∀x (F → G)
∀→ ∀x F → ∀x G
V∀ F → ∀x G

The instantiations succeed by the remark after Lemma39 using forV∀ that x /∈ V(F).
The formula F → ∀x G is even decidable if in first-order real arithmetic [21]. The
remainder of the proof concludes (F → ψ) ≺ (F → φ) fromψ ≺ φ without further
notice. The operator ∀y can be obtained correspondingly by uniform renaming.

(b) If 〈[α]〉 is the operator ∃x then � F → ∃x G. If F and G are L formulas, then, since
L is closed under first-order connectives, so is the valid formula F → ∃x G, which
is, then, provable by IH and even decidable if in first-order real arithmetic [21].
Otherwise, F,G correspond to L formulas by expressiveness of L, which implies the
existence of an L formula G� such that � G� ↔ G. Since L is closed under first-
order connectives [16], the valid formula F → ∃x (G�) is provable by IH, because
(F → ∃x (G�)) ≺ (F → ∃x G) since G� ∈ L while G /∈ L. Now, � G� ↔ G
implies � G� → G, which is derivable by IH, because (G� → G) ≺ φ since
G� is in L. From  L G� → G, the derivable dual of axiom ∀→, (∀x (p(x) →
q(x)) → (∃x p(x) → ∃x q(x))), derives  L ∃x (G�) → ∃x G, which combines
with  L F → ∃x (G�) essentially by rule MP to  L F → ∃x G.

F →∃x (G�)

G� → G
∀ ∀x (G� → G)
∀→ ∃x (G�) → ∃x G

MP F →∃x G
The instantiations succeed by Lemma39 and its subsequent remark.

(c) � F → 〈x ′ = θ〉G implies � F → (〈x ′ = θ〉G�)�, which is derivable by IH, as
(F → (〈x ′ = θ〉G�)�) ≺ φ since (〈x ′ = θ〉G�)� is in L. L is differentially expres-
sive, so  L 〈x ′ = θ〉G� ↔ (〈x ′ = θ〉G�)� is provable. Hence  L F → 〈x ′ = θ〉G�

derives by propositional congruence. Now G� → G is simpler (since G� is in L) so
derivable by IH, so 〈x ′ = θ〉G� → 〈x ′ = θ〉G derives by M. Together, both derive
 L F → 〈x ′ = θ〉G propositionally.
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(d) � F → [x ′ = θ ]G implies� F → ¬〈x ′ = θ〉¬G. Thus,� F → ¬(〈x ′ = θ〉¬G�)�,
which is derivable by IH, because (F → ¬(〈x ′ = θ〉¬G�)�) ≺ φ as (〈x ′ = θ〉¬G�)�

is in L. Since L is differentially expressive,  L 〈x ′ = θ〉¬G� ↔ (〈x ′ = θ〉¬G�)�

is provable, so  L F → ¬〈x ′ = θ〉¬G� derives from  L F → ¬(〈x ′ = θ〉¬G�)�

by propositional congruence. Axiom 〈·〉, thus, derives  L F → [x ′ = θ]G� with
Lemma39. Now G� → G is simpler (as G� is in L) so derivable by IH, so
[x ′ = θ ]G� → [x ′ = θ ]G derives by M. Together, both derive  L F → [x ′ = θ ]G
propositionally.

(e) � F → [x ′ = θ &ψ]G, then this formula has an equivalent [16, Lemma3.4] without
evolution domains which can be used as a definitorial abbreviation to conclude this
case. Similarly for � F → 〈x ′ = θ &ψ〉G.

(f) � F → [y := θ ]G then this formula can be proved, using a fresh variable x /∈ V(θ)∪
V(G), with the following derivation by bound variable renaming (rule BR), in which
G x

y is the result of uniformly renaming y to x in G

F →∀x (x = θ → G x
y )[:=]=F →[x := θ ]G x

y
BR F →[y := θ ]G

using the following equational form of the assignment axiom [:=]

([:=]=) [x := f ]p(x̄) ↔ ∀x (x = f → p(x̄))

The above proof only used equivalence transformations, so its premise is valid iff
its conclusion is, which it is by assumption. The assumption, thus, implies � F →
∀x (x = θ → G x

y ). Since (F → ∀x (x = θ → G x
y )) ≺ (F → [y := θ ]G), because

there are less hybrid programs, L F → ∀x (x = θ → G x
y ) by IH. The above proof,

thus, derives  L F → [y := θ ]G.
The equational assignment axiom [:=]= above can either be adopted as an axiom in
place of [:=]. Or it can be derived from axiom [:=] with the uniform substitution
σ = {q(·) �→ p(·, X)} when splitting the variables x̄ into the variable x and the
other variables X such that x /∈ X :

∗
FOL q( f ) ↔ ∀x (x = f → q(x))
[:=] [x := f ]q(x) ↔ ∀x (x = f → q(x))
US [x := f ]p(x, X) ↔ ∀x (x = f → p(x, X))

[x := f ]p(x̄) ↔ ∀x (x = f → p(x̄))

It only remains to be shown that [:=]= can be instantiated as indicated in the above
proof. This follows from Lemma39 with the additional observation that the required
uniform substitution { f �→ θ} of function symbol f of arity 0 without argument x̄
will not cause a clash during US, because the only bound variable x in [:=]= is not
free in the substitution since x /∈ V(θ).
Other proofs involving stuttering and renaming are possible. Direct proofs of
F → [y := θ ]G by axiom [:=] are possible if the substitution is admissible.

(g) � F → [?ψ]G implies � F → (ψ → G). Since (ψ → G) ≺ [?ψ]G, because
it has less modalities,  L F → (ψ → G) is derivable by IH. Hence, with the
remark after Lemma39, axiom [?] instantiates to [?ψ]G ↔ (ψ → G), so derives
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 L F → [?ψ]G by propositional congruence, which is used without further notice
subsequently.

(h) � F → [β ∪ γ ]G implies � F → [β]G ∧ [γ ]G. Since [β]G ∧ [γ ]G ≺ [β ∪ γ ]G,
because, even if the propositional and modal structure increased, the structural com-
plexity of both hybrid programs β and γ is smaller than that of β ∪ γ (formula G
did not change),  L F → [β]G ∧ [γ ]G is derivable by IH. Hence, with Lemma39,
axiom [∪] instantiates to [β ∪ γ ]G ↔ [β]G ∨ [γ ]G, so derives  L F → [β ∪ γ ]G
by propositional congruence.

(i) � F → [β; γ ]G, which implies � F → [β][γ ]G. Since [β][γ ]G ≺ [β; γ ]G,
because, even if the number of modalities increased, the overall structural complex-
ity of the hybrid programs decreased because there are less sequential compositions,
 L F → [β][γ ]G is derivable by IH. Hence, with Lemma39,  L F → [β; γ ]G
derives by axiom [;] by propositional congruence.

(j) � F → [β∗]G can be derived by induction as follows. Formula [β∗]G, which
expresses that all numbers of repetitions of β∗ satisfy G, is an inductive invariant of
β∗, because [β∗]G → [β][β∗]G is valid, even provable by [∗]. Thus, its equivalent
L encoding is also an inductive invariant:

ϕ ≡ ([β∗]G)�.

Then F → ϕ and ϕ → G are valid (zero repetitions are possible), so derivable by
IH, since (F → ϕ) ≺ φ and (ϕ → G) ≺ φ hold, because ϕ is in L. As above,
ϕ → [β]ϕ is valid, and thus derivable by IH, since β has less loops than β∗. By
M[·] as well as rule ind (from p(x̄) → [a]p(x̄) conclude p(x̄) → [a∗]p(x̄)), which
derives from I, G by Lemma39, the respective rules can be instantiated by Lemma39
and the resulting derivations combine by MP:

F →ϕ

ϕ →[β]ϕ
ind

ϕ →[β∗]ϕ
ϕ →G

M[·][β∗]ϕ →[β∗]G
MP

ϕ →[β∗]G
MP F →[β∗]G

(k) � F → 〈β∗〉G. Let x be the vector of free variables FV(〈β∗〉G). Since 〈β∗〉G is a
least pre-fixpoint [16], for all dL formulas ψ with FV(ψ) ⊆ FV(〈β∗〉G):

� ∀x (G ∨ 〈β〉ψ → ψ) → (〈β∗〉G → ψ)

In particular, this holds for a fresh predicate symbol p with arguments x :

� ∀x (G ∨ 〈β〉p(x) → p(x)) → (〈β∗〉G → p(x))

Using � F → 〈β∗〉G, this implies

� ∀x (G ∨ 〈β〉p(x) → p(x)) → (F → p(x))

As (∀x (G ∨ 〈β〉p(x) → p(x)) → (F → p(x))) ≺ φ, because, even if the formula
complexity increased, the structural complexity of the hybrid programs decreased,
since φ has one more loop, this fact is derivable by IH:

 L ∀x (G ∨ 〈β〉p(x) → p(x)) → (F → p(x))

The uniform substitution σ = {p(x) �→ 〈β∗〉G} is admissible since FV(σ ) = ∅ as
〈β∗〉G has free variables x . Since, furthermore, p /∈ Σ(F) ∪ Σ(G) ∪ Σ(β), US
derives:

123



264 A. Platzer

∀x (G ∨ 〈β〉p(x) → p(x)) → (F → p(x))
US ∀x (G ∨ 〈β〉〈β∗〉G → 〈β∗〉G) → (F → 〈β∗〉G)

The dual 〈a∗〉p(x̄) ↔ p(x̄) ∨ 〈a〉〈a∗〉p(x̄) resulting from axiom [∗] with axiom 〈·〉
by Lemma39 continues this derivation by Lemma39:

∀x (G ∨ 〈β〉〈β∗〉G → 〈β∗〉G) → (F → 〈β∗〉G)

∗
[∗],〈·〉 G ∨ 〈β〉〈β∗〉G → 〈β∗〉G
∀ ∀x (G ∨ 〈β〉〈β∗〉G → 〈β∗〉G)

MP F →〈β∗〉G
Observe that rule ∀ (and MP) instantiates as needed with USR by Lemma39.

This concludes the derivation of (9), because all operators 〈[α]〉 for the form (9) have
been considered. From (9), which is  L ¬φ1 → 〈[α]〉φ2, hence,  L φ1 ∨ 〈[α]〉φ2 derives
propositionally.

This completes the proof of completeness (Theorem40), because all syntactical forms of dL
formulas have been covered.
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