
J Autom Reasoning (2017) 58:363–390
DOI 10.1007/s10817-016-9382-4

Abstract Interpretation as Automated Deduction

Vijay D’Silva1 · Caterina Urban2

Received: 1 July 2016 / Accepted: 7 July 2016 / Published online: 27 July 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Automata theory, algorithmic deduction and abstract interpretation provide the
foundation behind three approaches to implementing program verifiers. This article is a first
step towards a mathematical translation between these approaches. By extending Büchi’s
theorem, we show that reachability in a control flow graph can be encoded as satisfiability in
an extension of the weak, monadic, second-order logic of one successor. Abstract interpreters
are, in a precise sense, sound but incomplete solvers for such formulae. The three components
of an abstract interpreter: the lattice, transformers and iteration algorithm, respectively repre-
sent a fragment of a first-order theory, deduction in that theory, and second-order constraint
propagation. By inverting the Lindenbaum–Tarski construction, we show that lattices used
in practice are subclassical first-order theories.

Keywords Abstract interpretation · Deduction · Lindenbaum–Tarski construction

1 Introduction

Verification with satisfiability solvers, the automata-theoretic approach and abstract interpre-
tation provide three approaches for checking if an assertion in an imperative program may
be violated. At a high level, each technique can be viewed as proving a statement of the form
below.

� Exec(P) �⇒ ¬Err L (AP × AErr) = ∅ �P�A � �Err�A � ⊥

B Vijay D’Silva
vijay.dsilva@gmail.com

Caterina Urban
caterina.urban@inf.ethz.ch

1 Google Inc., San Francisco, CA, USA

2 ETH Zürich, Zürich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-016-9382-4&domain=pdf

364 V. D’Silva, C. Urban

In solver-based approaches, bounded executions of a program P are encoded as a formula
Exec(P). An assertion is not violated if the formula Exec(P) �⇒ ¬Err is true, which
is determined by checking if Exec(P) ∧ Err is satisfiable [3]. In the automata-theoretic
approach, executions of a program and erroneous executions are represented using automata.
The assertion is not violated if the language of the product automaton L (Ap × AErr) is
empty [42]. In abstract interpretation, an assertion is verified by computing an invariant and
checking if the invariant contains an error state. The invariant and error states are represented
as elements of a lattice A. The assertion is not violated if the meet �P�A��Err�A is the bottom
element of the lattice A [9].

These approaches have complementary strengths, which we now review. The strengths of
smt solvers include efficient Boolean reasoning, complete reasoning in certain theories, the-
ory combination, proof generation and interpolation. The strengths of the automata-theoretic
approach are the use of automata to represent infinitary behaviour and the use of graph algo-
rithms to reason about temporal properties. The strengths of abstract interpreters are the use
of approximation to overcome the theoretical undecidability and practical scalability issues
in program verification and the use of widening to generalize from partial information about
a program to invariants.

The complementary strengths of these approaches has led to multiple theoretical and
practical effort to combine them. [13] and [24] describe two different efforts that combine
automata and smt solvers. The notes of the Dagstuhl seminar by [28], provide an overview
of research combining abstract interpretation and satisfiability, while the work of [12] gener-
alizes automata to operate on abstract domains. Despite these advances, a major impediment
to combining these approaches is that they are formulated in terms of different mathematical
objects. These mathematical differences translate into practical differences in the interfaces
implemented by tools using each approach, which leads to further impediments to combining
approaches. Conceptually, solver algorithms are formulated in terms of models and proofs,
automata-theoretic algorithms in terms of graphs, and abstract interpretation is presented in
terms of lattices and fixed points.

Content and Contribution This paper applies classical results in logic to relate abstract inter-
preters for reachability analysis with the automata-theoretic approach and the satisfiability-
based approach. One conceptual consequence of our work is to show that abstract interpreters
are, in a precise sense, solvers for satisfiability of a special family of formulae in monadic,
second-order logic. A second, conceptual consequence of our work is in showing that certain
lattices used in abstract interpreters are subclassical fragments of first-order theories.

Fig. 1 summarises the technical concepts in the paper.[7] showed that the sets definable
by the weak, monadic, second-order logic of one successor (ws1s) are regular languages.
The modern proof of this statement involves an encoding of an automaton in ws1s, and a
compilation of a ws1s formula into an automaton. Intuitively, the language of an automaton
A is an elementL (A) of the lattice of languages and the setmod(ϕ) of models of a formula
ϕ is an element of lattice of subsets of structures over which formulae are interpreted. In § 2
we adapt the translation of automata tows1s to encode erroneous executions in a control-flow
graphs (cfgs) as a satisfiability problem.

Our second contribution, in § 3, is to show how a simple abstract interpreter is, in a
precise sense, a solver for satisfiability of ws1s(t) formulae. The main components of an
abstract interpreter are a lattice, monotone functions called transformers, and an invariant
map that associates lattice elements with control locations. We show that these components
are, respectively, approximations of first-order structures, of relations between first-order
structures, and sequences of first-order structures. An abstract interpreter performs constraint

123

Abstract Interpretation as Automated Deduction 365

Fig. 1 To check if an error location Err is reachable in a program P , one can check if the language of an
automatonL (A) is empty, if a formula has no models mod(ϕ), or if an element of a lattice is bottom. Büchi
showed how to translate directly between automata and ws1s and by applying his construction, we obtain a
logic for describing erroneous executions in a control-flow graph. Abstract interpreters solve such formulae
using approximations of the lattice of sets of executions. The Lindenbaum–Tarski construction allows for
generating a lattice from a logic and by inverting it, we identify logics and proof systems corresponding to
lattices in abstract interpretation

Table 1 A logical view of a
lattice in abstract interpretation

Abstract Interpretation Logic

Lattice element a [ϕ]≡ Equivalence class

Partial order � � / ≡ Proof system

Lattice A L /≡ Set of equivalence classes

Concretization γ |�−1 Satisfaction

propagation using assignments to second-order variables, similar to propagation techniques
in sat solvers.

Our third contribution, summarized in Table 1 with details in § 4 and § 5 is to give a logical
account of certain lattices used in abstract interpretation. A lattice can be viewed as a logic in
which the concretization function defines the model-theoretic semantics and the partial order
defines the proof-theoretic semantics. We use the Lindenbaum-Tarski construction [34] to
show that the proof systems we identify characterize existing lattices up to isomorphism. In
particular, we give logical characterizations of the lattices of signs, constants and intervals,
all of which are commonly used and studied in abstract interpretation.

Note. This article extends preliminary results announced in [14] with new formalization,
results and complete proofs. The characterization of an analyzer as a solver in § 3 adds
a formalization and proof of the soundness of propagation and clarifies the connection to

123

366 V. D’Silva, C. Urban

propagation in sat solvers. § 4 and § 5 provide complete proofs of the proof-theoretic
material and add a model-theoretic justification for the logics we choose.

2 Reachability as Second-Order Satisfiability

In this section, we introduce a new logic in which one can encode reachability of a control
location as a satisfiability problem without an apriori bound on the length of an execution.
We show how the logical encoding of reachability follows from a straightforward extension
of Büchi’s theorem.

2.1 Weak Monadic Second Order Theories of One Successor

Notation. We use =̂ for definition. Let P(S) denote the set of all subsets of S, called the
powerset of S, and F(S) denote the finite subsets of S. Given a function f : A → B,
f [a �→ b] denotes the function that maps a to b and maps c distinct from a to f (c).
Our syntax contains first-order variables Vars, functions Fun and predicates Pred. The

symbols x, y, z range over Vars, f, g, h range over Fun and P, Q, R range over Pred. We
also use a set Pos of first-order position variableswhose elements are i, j, k and a set SVar of
monadic second-order variables denoted X, Y, Z . Second-order variables are uninterpreted,
unary predicates.We also use a unary successor function suc and a binary, successor predicate
Suc.

Our logic consists of three families of formulae called state, transition and trace formulae,
which are interpreted over first-order structures, pairs of first-order structures and finite
sequences of first-order structures, respectively. The formulae are named as such because
when modelling programs, first-order structures model states, pairs of first-order structures
model transitions, and sequences of first-order structures model program executions.

t :: = x | f (t0, . . . , tn) Term

ϕ:: = P(t0, . . . , tn) | ϕ ∧ ϕ | ¬ϕ State Formula

ψ :: = suc(x) = t | ψ ∧ ψ | ¬ψ Transition Formula

Φ:: = X (i) | Suc(i, j) | ϕ(i) | ψ(i)

| Φ ∧ Φ | ¬Φ | ∃i : Pos.Φ Trace formula

The formula suc(x) = t expresses that the value of the first-order variable x after a transition
equals the value of the term t before the transition. The formula Suc(i, j) expresses that
the position j on the trace occurs immediately after position i . The formulae ϕ(i) and ψ(i)
express that the state formula ϕ and the transition formula ψ hold at position i on a trace.
Though similar, ws1s(t) and ws1s are incomparable, because ws1s(t) contains first-order
variables and terms, which ws1s does not, but ws1s allows for second-order quantification,
which ws1s(t) does not.

State formulae are interpreted with respect to a theory T given by a first-order interpreta-
tion (Val, I), which defines functions I (f), relations I (P), and equality =T over values in
Val. A state maps variables to values and State =̂Vars → Val is the set of states. The value
�t�s of a term t in a state s is defined as usual.

�x�s =̂ s(x) � f (t1, . . . , tk)�s =̂ I (f)(�t0�s, . . . , �tn�s)

123

Abstract Interpretation as Automated Deduction 367

As is standard, s |�T ϕ denotes that s is a model of ϕ in the theory T .

s |�T P(t0, . . . , tn) if (�t0�s, . . . , �tn�s) ∈ I (P)

s |�T ϕ1 ∧ ϕ2 if s |�T ϕ1 and s |�T ϕ2 s |�T ¬ϕ if s �|�T ϕ

A transition is a pair of states (r, s) and a transition formula is interpreted at a transition. The
semantics of Boolean operators is defined analogously for transition and trace formulae, so
we omit them in what follows.

(r, s) |� suc(x) = t if �x�s =T �t�r

A trace is a finite sequence of states and a position assignment associates position variables
and second order variables with positions on a trace. Formally, a trace of length k is a
sequence τ : [0, k − 1] → State. We call τ(m) the state at position m, with the implicit
qualifier m < k. A k-assignment σ : (Pos → N) ·∪ (SVar → F(N)) maps position variables
to [0, k−1] and second-order variables to finite subsets of [0, k−1]. A k-assignment satisfies
that {σ(X) | X ∈ SVar} partitions the interval [0, k − 1]. We explain the partition condition
shortly. A ws1s(t) structure (τ, σ) consists of a trace τ of length k and a k-assignment σ . A
trace formula is interpreted with respect to a ws1s(t) structure, as defined below.

(τ, σ) |� X (i) if σ(i) is in σ(X)

(τ, σ) |� ϕ(i) if τ(σ (i)) |�T ϕ

(τ, σ) |� ψ(i) if σ(i) < k − 1 and (τ (σ (i)), τ (σ (i) + 1)) |� ψ

(τ, σ) |� Suc(i, j) if σ(i) + 1 = σ(j)

(τ, σ) |� ∃i : Pos.Φ if (τ, σ [i �→ n]) |� Φ for some n in N

A structure (τ, σ) satisfies X (i) if the position i is in the set of positions associated with X .
Note that the semantics of a transition formula ψ(i) is only defined if σ(i) is not the last
position on τ . A trace formula Φ is satisfiable if there exists a trace τ and assignment σ such
that (τ, σ) |� Φ. We assume standard shorthands for ∨, ⇒ and ∀, and write Φ |� � for
|� Φ ⇒ �.

Example 1 We give examples of ws1s(t) formulae, which are alsows1s formulae and which
we will use later in the paper. The ws1s formula First(i) =̂ ∀ j.¬Suc(j, i) is true at the first
position on a trace and Last(i) =̂ ∀ j.¬Suc(i, j) is true at the last position. See [18,41] for
more examples.

The standard encoding of transitive closure of the successor relation in ws1s involves
second-order quantification, so this encoding does not carry over. There may be other ways
to encode transitive closure, depending on the underlying theory, but we do not explore this
direction here because second-order quantification is not required for the specific class of
formulae that we consider.

2.2 Encoding Reachability in WS1S(T)

Büchi showed that a language is regular if and only if it arises as the set of models of a ws1s
formula. The modern proof that a regular language is definable in ws1s [18,41] encodes
the structure and acceptance condition of a finite automaton using second-order variables.
We now extend this construction to encode the set of executions that reach a location in a
control-flow graph (cfg) as the models of a ws1s(t) formula. In the next section, we will
show how an abstract interpreter is, in a precise sense, a solver for this formula.

123

368 V. D’Silva, C. Urban

A command is an assignment x : = t of a term t to a first-order variable x , or is a condition
[ϕ], where ϕ is a state formula. A cfg G = (Loc, E,in,Ex, stmt) consists of a finite set of
locationsLoc including an initial locationin, a set of exit locationsEx, edges E ⊆ Loc×Loc,
and a labelling stmt : E → Cmd of edges with commands. To simplify the presentation, we
require that every location is reachable from in, and that exit locations have no successors.

We define an execution semantics for cfgs. We assume that terms in commands are
interpreted over the same first-order structure as state formulae. The formula SameV below
expresses that variables in the set V are notmodified in a transition andTransc is the transition
formula for a command c.

SameV =̂
∧

x∈V
suc(x) = x Transc =̂

{
b �⇒ SameVars if c = [b]
suc(x) = t ∧ SameVars\{x} if c = x : = t

The transition relation of a command c, is the set of models Relc of Transc. We write Transe
and Rele for the transition formula and relation of the command stmt(e). An execution of
length k is a sequence ρ = (m0, s0), . . . , (mk−1, sk−1) of location and state pairs in which
each e = (mi ,mi+1) is an edge in E and the pair of states (si , si+1) is in the transition
relation Rele. A location m is reachable if there is an execution ρ of some length k such that
ρ(k − 1) = (m, s) for some state s.

The safety properties checked by abstract interpreters are usually encoded as reachability
of locations in a cfg. The formula ReachG,L below encodes reachability of a set of locations
L in a cfg G as satisfiability in ws1s(t). The first line below is an initial constraint, the
second is a set of transition constraints indexed by locations, and the third line encodes final
constraints.

ReachG,L =̂ ∀i.First(i) �⇒ Xin(i)

∧
⎛

⎝
∧

v∈Loc
∀i.∀ j.Xv(j) ∧ Suc(i, j) �⇒

∨

(u,v)∈E
Trans(u,v)(i) ∧ Xu(i)

⎞

⎠

∧
(

∀ j.Last(j) �⇒
∨

u∈L
Xu(j)

)

In intuitive terms, in a model (τ, σ) of the formula above, σ describes control-flow and τ

describes data-flow. The trace τ contains states but not locations. A second-order variable Xv

represents the location v and σ(Xv) represents the points in τ when control is at v. The initial
constraint ensures that the first location of an execution is in. The final constraint ensures
that execution ends a location in L . In a transition constraint, Xv(j) ∧ Suc(i, j) expresses
that the state τ(j) is visited at location v and its consequent expresses that the state τ(i)must
have been visited at a location u that precedes v in the cfg and that (τ (i), τ (j)) must be in
the transition relation (u, v).

Theorem 1 Some location in a set L in a cfg G is reachable if and only if the formula
ReachG,L is satisfiable.

Proof [⇒] If a location w ∈ L in the cfg G is reachable, there is an execution
ρ =̂ (u0, s0), . . . , (uk−1, sk−1) with u0 = in and uk−1 = w. Define the structure (τ, σ)

with τ =̂ s0, . . . , sk−1 and σ =̂ {Xu �→ {i | ρ(i) = (u, s), s ∈ State} | u ∈ Loc}. There are
no first-order position variables in the domain of σ because all such variables are bound in
ReachG,L . We show that (τ, σ) is a model of ReachG,L . Since u0 = in and uk−1 = w, the
initial and final constraints are satisfied. In the transition constraint, if Xv(j) holds and j is

123

Abstract Interpretation as Automated Deduction 369

Fig. 2 A cfg for a programwith non-terminating executions and aws1s(t) formula over the theory of integer
arithmetic encoding the reachability of ex

the successor of i , it must be that j = i + 1 and there is some (ui , si), (ui+1, si+1) in ρ with
ui+1 = v. Thus, the transition (si , si+1) satisfies the transition formula Trans(ui ,v).
[⇐]Assume (τ, σ) is a model of ReachG,L , where τ is a trace of length k. Define a sequence
ρ with ρ(i) =̂ (u, τ (i)) where i ∈ σ(Xu). As σ induces a partition of [0, k − 1], there is a
unique u with i in σ(Xu). We show that ρ is an execution reaching L . The initial constraint
guarantees thatρ(0) is atin and the final constraints guarantee thatρ ends in L . The transition
constraints ensure that every step in the execution traverses an edge in G and respects the
transition relation of the edge. ��

We believe this is a simple yet novel encoding of reachability, a property widely checked
by abstract interpreters, in a minor variation of a known logic. By viewing the problem
of reachability in a cfg in terms of satisfiability of ReachG,L , we can connect the abstract
interpretation approach with the automata-theoretic approach and with satisfiability-based
approaches. Abstract interpreters operate on cfgs, which can be viewed as generalizations
of automata. In addition, as we show in subsequent sections, abstract interpreters can be
viewed as solving ReachG,L using deductive techniques. Thus, at a conceptual level, abstract
interpreters use a hybrid of the automata-theoretic and logical approaches.

Example 2 A cfg G and the formula ReachG,Ex for a program with an integer variable
x are shown in Fig. 2. Executions that start with a strictly negative value of x nei-
ther terminate nor reach ex. The execution (in, 1), (a, 1), (in, 0), (ex, 0) reaches ex.
It is encoded by the model (τ, σ), with σ =̂ {

Xin �→ {0, 2} , Xa �→ {1} , Xex =̂ {3}} and
τ = (x :1), (x :1), (x :0), (x :0). Note that σ partitions SVar because each position on the trace
corresponds to a unique location. No structure (τ, σ) in which x is strictly negative in τ(0)
satisfies ReachG,Ex .

This example highlights important differences between ws1s(t) and encodings of program
correctness in terms of set constraints [2] or second-order Horn clauses [19]. Invariants,
which are solutions to constraints generated in these approaches, are formulae whose models
include all reachable states. In contrast, a model of ReachG,L only involves states that occur
on a single execution. Note that other formalisms allow for encoding a broader range of
problems. Our intent withws1s(t) though is to give a logical account of abstract interpreters,
and not to solve arbitrary formulae.

3 Abstract Interpreters as Second-Order Solvers

Three crucial components of an abstract interpreter are a lattice, transformers, which are
monotone functions on the lattice, and an invariant map, which maps locations in a cfg to

123

370 V. D’Silva, C. Urban

lattice elements. An abstract interpreter updates the invariantmap by applying transformers to
lattice elements. We now show how an abstract interpreter performs second-order constraint
propagation.

Lattice Theory We recall elements of lattice theory. A lattice (A,�,�,�) is a set A equipped
with a partial order �, a binary greatest lower bound �, called the meet, and a binary least
upper bound �, called the join. A poset with only a meet is called a meet-semi-lattice. A
lattice is bounded if it has a greatest element �, called top, and a least element ⊥ called
bottom.

Pointwise lifting is an operation that lifts the order and operations of a lattice to functions
on the lattice. Consider the functions f, g : S → A, where S is a set and A a lattice as above.
The pointwise order f � g holds if f (x) � g(x) for all x , while the pointwise meet f � g
is a function that maps x in S to f (x) � g(x).

Let (P(S),⊆) be the lattice of all subsets of S ordered by inclusion. A bounded lattice
(A,�) is an abstraction of (P(S),⊆) if there exists a monotone concretization function
γ : A → P(S) satisfying that γ (⊥) = ∅ and γ (�) = S. A transformer is a monotone
function on a lattice. A transformer g : A → A is a sound abstraction of f : P(S) → P(S)

if for all a in A, f (γ (a)) ⊆ γ (g(a)).

Propagation Rules Propagation rules in a solver describe updates to data-structure that rep-
resents potential solutions using constraints that were present in or deduced from an input
formula. We present a formalization of propagation based on the formalization of satisfia-
bility algorithms by [30]. We only consider propagation, which is the main operation of an
abstract interpreter. We first recall the unit rule used in sat solvers.

Example 3 Recall that a literal is a Boolean variable or its negation and a clause is a dis-
junction of literals. An assignment σ : Vars → {tt, ff} maps each variable to a Boolean
value, while in a partial assignment π : Vars → {tt, ff,�}, a variable may also be unknown,
denoted �. A partial assignment π ′ extends π if for all p with π(p) �= �, it holds that
π(p) = π ′(p). The definition of an assignment extending a partial assignment is similar.

A partial assignment π satisfies a variable p if π(p) = tt, satisfies the literal ¬p if
π(p) = ff, and satisfies a clause if it satisfies at least one literal in the clause. The partial
assignment is in conflict with a clause if it makes every literal in the clause ff.

The unit rule asserts that if π is a partial assignment andC ∨� is a clause, and the variable
p in � has the unknown value in π , and π is in conflict with C , then π must be extended to
π ′ that satisfies �. The unit rule has the property that every assignment σ that extends π and
satisfies C ∨ � also extends π ′. During Boolean Constraint Propagation in a sat solver, a
partial assignment π is repeatedly extended by the unit rule. If some extension of π derived
by unit rule applications is in conflict with a clause in the formula, no extension of π satisfies
the formula.

Let Form be the set of formulae in a logic and Struct be the set of structures over which
formulae are interpreted. The function mod : Form → P(Struct) maps a formula to its set
of models. Let (A,�) be an abstraction of (P(Struct),⊆) with concretization γ . We view
the lattice A as a data-structure representing potential solutions of a formula. A propagation
rule is a set of rules of the form (ϕ, a) � a′ that describe how an element a is modified
given a formula ϕ. A propagation rule is sound if every model of ϕ in a is also in a′:
mod(ϕ) ∩ γ (a) ⊆ γ (a′).
Example 4 Consider the set PAsg consisting of partial assignments over variables Vars and
an element ⊥. Define a relation π � π ′ to hold if π is ⊥ or if π extends π ′. [16] showed that

123

Abstract Interpretation as Automated Deduction 371

(PAsg,�) is an abstraction of (P(Struct),⊆) in which the concretization γ maps π to the
set of assignments that extend it. Let Form be a set of cnf formulae. The unit rule contains
elements (ϕ, π) � π ′ where π ′ extends π to satisfy some clause in ϕ.

We introduce abstract assignments to model abstractions of ws1s(t) structures. Consider
the lattice (P(State),⊆,∩), where State isVars → Val. Let (A,�,�) be an abstraction of this
lattice with concretization γ . Recall that SVar is the set of second-order variables. An abstract
assignment is an element of AsgA =̂ SVar → A, which forms a lattice (AsgA,�,�), in which
the order andmeet are defined pointwise.When convenient, use lambda expressions to define
abstract assignments. An abstract assignment abstractsws1s(t) structures by retaining set of
states at each program location but forgetting the order in which states are visited.

Lemma 1 Let (A,�) be an abstraction of the lattice P(State,⊆) with concretization γ ,
and Struct be the set of ws1s(t) structures for interpreting formulae over a set SVar of
second-order variables. The lattice of abstract assignments (AsgA,�,�) is an abstraction
of (P(Struct),⊆).

Proof Let Struct be the set of pairs (τ, σ) of ws1s(t) structures. We show that the function
conc : AsgA → P(Struct) below is a concretization function.

conc(asg) =̂ {(τ, σ) | for all X ∈ SVar. {τ(i) | i ∈ σ(X)} ⊆ γ (asg(X))}
There are three properties to show. The least element of AsgA is λX.⊥ and the greatest is
λX.�. Sinceγ (⊥) = ∅ andγ (�) = State, we have that conc(λX.⊥) = ∅ and conc(λX.�) =
Struct. The monotonicity of conc follows from that of γ . ��

InLemma1, the lattice A abstracts states andAsgA abstractsws1s(t) structures. Transitions
are abstracted by transformers. A relation R ⊆ S × S generates a successor transformer
postR : P(S) → P(S) that maps every X ⊆ S to its image R(X). We write postc for the
successor transformer of the transition relation of a command c, and similarly write poste for
the transformer of the command labelling a cfg edge e. We write apostc and aposte for the
corresponding abstract transformers.

An abstract interpreter can be viewed as a solver for the formula ReachG,L . The abstract
interpreter begins with the abstract assignment λY.� indicating that every structure may be
a model of ReachG,L . Abstract assignments are updated using the propagation rule below. If
a location in L is not reachable, the formula is unsatisfiable, as deduced by the conflict rule.

asg � asg[Xv �→ d], where d =
⊔

(u,v)∈E

{
apost(u,v)(asg(Xu))

}
Propagate

asg � unsat if asg(Xv) = ⊥, for some v ∈ L Conflict

We highlight two differences between Boolean constraint propagation (bcp) and propagation
in an abstract interpreter. First, abstract assignments are updated with lattice elements, not
extended with values. Second, bcp extends a partial assignment from π to π ′ � π . However,
if an abstract interpreter generates asg′ from asg, then asg′(Xv) � asg(Xv) for locations
v outside loops, but the converse may hold for locations inside a loop. The theorem below
expresses the soundness of propagation.

Lemma 2 If AsgA is an abstraction of (P(Struct),⊆) and the abstract transformers are
sound, the propagation rule is sound.

123

372 V. D’Silva, C. Urban

Proof Consider a formula ReachG,L , an abstract assignment asg and a structure (τ, σ) in
mod(ReachG,L) ∩ conc(asg). By definition of conc, the set Sw =̂ {τ(i) | i ∈ σ(Xw)} is con-
tained in γ (asg(Xw)) for every location w. Consider also a location v such that σ(Xv) �= ∅
and asg′ = asg[Xv �→ d] as in the propagation rule, By the semantics of ws1s(t), there
exists i + 1 in σ(Xv) and some location u such that (u, v) is an edge, i is in σ(Xu), and
(τ (i), τ (i + 1)) is a model of the transition formula Trans(u,v). From the definition of the
successor transformer it follows that τ(i +1) is in post(u,v)(Su), and by monotonicity, it also
follows that τ(i + i) is in

⋃
(u,v) post(u,v)(Su). Since the abstract transformers are sound, we

have that τ(i + 1) is in
⊔

(u,v) apost(u,v)(Xu). It follows that (τ, σ) is also in conc(asg′). ��
Theorem 2 captures the use of an abstract interpreter as a solver for satisfiability of

ReachG,L . Since the abstract interpreter begins with λX.�, and propagation is sound, and
unsat is only reached if conc(asg) is the empty set we can soundly conclude that ReachG,L

has no models.

Theorem 2 If the repeated application of the propagation and conflict rules leads to unsat,
the formula ReachG,L is unsatisfiable.

4 Fragments of First-Order Theories

The description of an abstract interpreter as a solver in the previous section was agnostic of
the domain and transformers used. We now identify logical theories corresponding to lattices
used in practice and in § 5 we show how these theories characterize the lattices of constants,
signs and intervals up to isomorphism.

4.1 First-Order Theories

All the theories we consider in this section are fragments of integer arithmetic. We assume
a set of first-order variables Vars, the integer constants, functions for binary addition and
multiplication, denoted x + y and x · y respectively, and the relational symbols <,≤,> and
≥. All these symbols have their standard interpretation over the integers,Z. For the remaining
sections, a structure σ in Struct =̂Vars → Z is a map from variables to integers. We assume
the standard model theoretic semantics for formulae and write σ |� ϕ if the structure σ

satisfies the formula ϕ.

4.1.1 Logical Languages

A logical language (L ,�L , |�L) consists of a set of formulae, a proof system, and an
interpretation |�L ⊆(Struct×L) of those formulae over structures. The logics we consider
are interpreted over the same structures, so we usually omit |�L . We use logical languages
to give proof-theoretic characterizations of the lattices in an abstract domain. We present the
set of formulae with a grammar and present the proof system as a sequent-style calculus.

The three logical languages we introduce are sign logic, constant logic and interval logic.
The names for these languages derive from the names of the abstract domains they model.
Each grammar below defines a set of formulae in terms of atomic formulae, logical constants
and connectives. All the languages contain unary predicates and are closed under conjunction
but not under disjunction or negation. The languages also contain the symbol tt for the logical
constant true.

123

Abstract Interpretation as Automated Deduction 373

ϕS :: = ffx | x < 0 | x = 0 | x > 0 | ϕS ∧ ϕS | tt S

ϕC :: = ffx | x = k | ϕC ∧ ϕC | tt C

ϕI :: = ffx | x ≤ k | x ≥ k | ϕI ∧ ϕI | tt I

The language S models the domain of signs. The three atomic formulae in S express that
a variable is negative (x < 0), equal to zero (x = 0), or positive (x > 0). The language
C models the domain of constants. This language contains a countable number of atomic
formulae of the form x = k expressing that a variable has a constant value. The language I
models the domain of intervals. Its atomic formulae express upper bounds (x ≤ k) and lower
bounds (x ≥ k) on the values of a variable.

All languages we introduce contain the logical constant tt. These languages model non-
relational domains, meaning that they cannot express constraints that explicitly relate the
values of two or more variables. For example, the language C contains the formula x =
5∧y = 5which implicitly expresses that x and y have the same value. However, the language
cannot explicitly codify this information with the formula x = y. The non-relational nature
of the domains we consider leads to a non-standard treatment of false. These languages do
not contain the constant ff but instead have a family of logical constants ffx parameterized by
variables. We discuss the lattice theoretic basis for this non-standard treatment shortly.

4.1.2 The Core Calculus

Reasoning within the logical languages we consider is encoded by proof rules in a sequent
calculus. Our sequents are of the form �L ϕ, where the premise is a comma-separated
sequence of formulae, and the consequent ϕ is a single, first-order formula. A proof system
is a set of sequents. We use the standard notion of derivability of a sequent in a proof system.
Two formulae are inter-derivable if the sequents ϕ �L ψ and ψ �L ϕ are both derivable.

We write
∧

 for the conjunction of formulae in the sequence . We use this syntax
for convenience in this discussion and it is external to the logical languages we consider.
A proof system �L is sound if every derivable sequent �L ψ satisfies the classical
implication

∧
 ⇒ ψ with respect to the semantics defined by |�. The only formulae for

which the semantics |� is not standard are those involving ffx . Every constant ffx has the
same semantics: there is no structure σ for which σ |� ffx holds. A proof system is complete
if whenever the classical implication

∧
 ⇒ ψ holds, the sequent �L ψ is derivable.

Sequent calculi usually contain structural, logical and cut rules, and in the case of theories,
also contain theory rules. Table 2 shows a core calculus �core which contains the rules
common to all theories we introduce. Our introduction rule (i) is standard. The structural
rules for weakening on the left (wl), contraction on the left (cl), and permutation on the left
(pl) are also standard. Due to the asymmetry in our definition of sequents, we only use rules
for structural manipulation on the left. The cut rule (cut) is also standard.

The core calculus has four logical rules. The false-left rule (ffl) allows for the derivation
of a formula ϕ(x) with exactly one free variable x from the premise ffx . For example, in the
interval proof system that we introduce shortly, the formula x ≥ 5 ∧ x ≤ 10 is derivable
from ffx , but x ≥ 5 ∧ y ≥ 3, is not derivable from ffx because the second formula includes
the variable y. Thus, arbitrary formulae are not derivable even from a premise that contains
false. Our non-standard treatment of false is influenced by the way abstract domains reason
about contradictions. We believe this is one counterintuitive way in which the logic of an
abstract domain deviates from classical logics and proof systems.

The treatment of tt is the same as that of classical sequent calculi: tt is derivable from
every premise. The syntactic asymmetry between true and false in our languages lifts to a

123

374 V. D’Silva, C. Urban

Table 2 Proof rules for the core calculus �core and its extensions. The core calculus contains rules for
introduction (i), weakening (wl), contraction (cl) and permutation (pl) on the left, logical rules for false (ffl),
in which ϕ(x) has only one free variable x , true (ttr), and conjunction (∧l, ∧r), and the cut rule

Fig. 3 The lattice of signs and the proof calculus �S for the sign logic

Fig. 4 A derivation in the sign calculus �S

corresponding asymmetry in the proof systems. We have a single rule for conjunction on the
left (∧l) instead of the two standard rules. The rule for conjunction on the right is standard.

4.1.3 Theory Specific Rules

We introduce rules for reasoning within each theory. The reader should be warned that these
logics have a restricted syntax and weak proof calculi, so the theorems derivable within the
logic are rather uninteresting.

The sign calculus �S , in Fig. 3, extends the core calculus with rules for deriving ffx from
conjunctions of atomic formulae. Every conjunction of atomic formulae inS is unsatisfiable
in standard arithmetic. The theory rules allow us to derive ffx from formulae such as x <

0∧ x = 0 or x = 0∧ x > 0. This logic supports no other form of theory-specific reasoning.
We show later that this logic contains exactly three formulae that are not the logical constants
and that are not inter-derivable.

Example 5 Fig. 4 shows a derivation of x < 0 �S x < 0 ∧ tt and a derivation of x <

0 ∧ tt �S x < 0, thus showing that x < 0 and x < 0 ∧ tt are inter-derivable.

123

Abstract Interpretation as Automated Deduction 375

Fig. 5 The lattice of constants and the proof calculus �C for the constant logic

Fig. 6 The lattice of intervals and the proof calculus �I for the interval logic

We now consider proof calculi for the constant and interval languages. Like the sign
language, these languages only have atomic predicates over one variable. Unlike the sign
languages these languages have a countably infinite number of atomic predicates.

The constant calculus �C in Fig. 5 is similar to the sign calculus because both logics
can only derive ffx for each variable. The interval calculus �I in Fig. 6 contains rules for
modifying upper and lower bounds on a variable. Specifically, the order on the integers
dictates that one can weaken an upper bound x ≤ m to x ≤ n if m is smaller than n and a
dual rule applies to lower bounds. It also contains a rule for deriving ffx from inconsistent
lower and upper bounds.

Example 6 An abstract interpreter computing intervals on variable values will manipulate
formulae over multiple variables. Suppose the abstract interpreter has derived the bounds
x ∈ [7, 5], y ∈ [−∞, 0] for some location in a program. We have deliberately written [7, 5],
which would correspond to an empty interval, meaning that there is no feasible value for x
and consequently, that the program location for which this bound was derived is unreachable.
The conversion of [7, 5] to the empty interval is a calculation an abstract interpreter performs.

Logically, the bounds on x and y can be written as the sequence of predicates
y ≤ 0, x ≤ 5 ∧ x ≥ 7. The interval proof calculus allows us to derive the sequent
y ≤ 0, x ≤ 5 ∧ x ≥ 7 �I ffx ∧ y ≤ 0 showing that the bound is infeasible and the incon-
sistency arises from x .

4.2 Soundness of the Proof Systems

Theorem 3 summarizes the soundness results we present, though, we prove the soundness of
each calculus separately in Lemmas 3 to 6.

Theorem 3 The proof calculi �S , �C , and �I are sound.

We begin with the soundness of �core, which underlies all our calculi.

123

376 V. D’Silva, C. Urban

Lemma 3 The core proof calculus �core is sound.

Proof We have to show that for every derivable sequent � ϕ, a structure σ that satisfies
every formula in , the structure also satisfies ϕ. The proof is by induction on the structure
of a derivation.
(Base Case) The base cases are rules with no premise. The introduction (i) and truth (ttr)
rules are trivially sound. The false rule is sound because ffx has no models.
(Induction Step) The induction hypothesis is that a sequent derived using the core calculus is
sound. For the induction step, we have to show that a sequent obtained by applying rules in the
core calculus to a soundly derived sequent is also sound. Theweakening rule is sound because
if

∧
 impliesψ , then

∧
∧ϕ also impliesψ for the standard semantics of conjunction. The

left and right conjunction rules are sound for the same reason. The contraction rule is sound
because conjunction is idempotent and the permutation rule is sound because conjunction is
commutative. ��

The soundness proofs for the other proof calculi are extensions of this lemma.

Lemma 4 The sign proof calculus �S is sound.

Proof The proof extends the induction argument used for the soundness of the core calculus.
Additional conditions for the base case are the rules ffr1, ffr2 and ffr3, which are sound
because their premises are unsatisfiable. The induction hypothesis and inductive step are
unmodified so the sign calculus is sound. ��
Lemma 5 The constant proof calculus �C is sound.

Proof The proof extends the induction arguments used for the core calculus. An additional
condition for the base case is the rule ffr4, which is sound because its premise is unsatisfiable.
The induction hypothesis and inductive step are unmodified so the constant calculus is sound.

��
Lemma 6 The interval proof calculus �I is sound.

Proof The proof requires extensions to the base case and induction step of the induction
arguments used for proving the soundness of the core calculus. An additional condition for
the base case is the rule ffr5, which is sound because the premise is unsatisfiable. The rules
ub- l, lb- l for strengthening bounds on the left, and the rules ub- r, lb- r for weakening
bounds on the right are sound due to the order on the integers so the interval calculus is
sound. ��

5 Characterizing Lattices with First-Order Theories

We now apply the Lindenbaum–Tarski construction to generate a lattice from each logical
language and then prove that the generated lattice is isomorphic to a lattice studied in program
analysis.

5.1 The Lindenbaum-Tarski Construction and Logical Characterization

Tarski generalized a construction due to Lindenbaum to generate Boolean algebras from
propositional calculus [34]. This construction has since be generalized to construct what

123

Abstract Interpretation as Automated Deduction 377

is called the Lindenbaum–Tarski algebra of a logic. The essence of the construction is to
quotient formulae in a logical language with respect to interderivability in that language.
These equivalence classes form the carrier set of an algebra whose meet and join operations
are defined by lifting conjunction and disjunction to equivalence classes.Derivability between
formulae in equivalence classes defines a partial order on equivalence classes. The original
construction has been extended to non-classical and first-order logics.We use a generalization
of this construction to formulaewith free variables due to [32], sometimes called theRasiowa-
Sirkoski construction of a Lindenbaum–Tarski algebra. In the definition below,wewrite [ϕ]L
for the equivalence class of ϕ with respect to ≡L .

Definition 1 Let (L ,�L) be a logical language and ≡L be an equivalence relation on
formulae. A logic (L ,�L) that is closed under conjunction generates the Lindenbaum–
Tarski algebra Alg(L ,�L) = (L /≡L , �L , �L) in which the relation �L and operator
�L are defined on equivalence classes as shown below.

ϕ ≡L ψ if ϕ �L ψ and ψ �L ϕ.

[ϕ]L �L [ψ]L if θ1 �L θ2 for some θ1 ∈ [ϕ]L , and θ2 ∈ [ψ]L .

[ϕ]L �L [ψ]L =̂ [θ1 ∧ θ2]L where θ1 ∈ [ϕ]L , and θ2 ∈ [ψ]L .

The literature contains characterizations of Lindenbaum–Tarski algebras for various propo-
sitional and first-order logics. The classical propositional calculus provides an instructive
example of the difference between what we study and what exists. The set of Boolean for-
mulae over n propositional variables is countably infinite. The Lindenbaum–Tarski algebra
over these formulae will contain 22

n
elements, and is isomorphic to the free Boolean algebra

over n generators. A Boolean algebras with 2n elements for odd values of n will not be
generated by this construction if one only uses the standard complete deductive systems for
propositional calculus. The non-free Boolean algebras are Lindenbaum–Tarski algebras of
propositional theories, meaning that they require additional axioms.

Example 7 The Lindenbaum–Tarski algebra of a propositional logic with one vari-
able has the elements {ff, p,¬p, tt}. A propositional logic with two variables gen-
erates a lattice with 16 elements. The four, least, non-bottom elements (atoms) are
{p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q} and the other elements are equivalent to disjunctions
of these elements. The lattice P({a, b, c}) has eight elements and is not isomorphic to the
Lindenbaum–Tarski algebra of either of these two logics. One way to generate the eight ele-
ment Boolean algebra using the Lindenbaum–Tarski construction, is to add the axiom p∧q .
Alternative axioms are p ∧ ¬q , ¬p ∧ q and ¬p ∧ ¬q .

We show how lattices in abstract interpretation are Lindenbaum–Tarski algebras of first-order
theories. Ex. 7 illustrates that different theories generate isomorphic algebras. A character-
ization of a lattice-based abstraction, defined below, consists of a structural condition and
a semantic condition. The structural condition uses a proof system to generate the lattice,
and the semantic condition uses the concretization function to express that the logic and the
abstraction have the same semantics. There may be multiple isomorphisms h between the
Lindenbaum–Tarski algebra and a lattice, intuitively corresponding to different axiomatiza-
tions. Only some isomorphisms will satisfy the second condition and capture the semantics
of the abstraction.

123

378 V. D’Silva, C. Urban

Definition 2 Let (A,�) be an abstraction of (P(Struct),⊆) with concretization function
γ : A → P(Struct).A logical language (L ,�L , |�L) characterizes (A,�), if the following
conditions hold.

1. There exists an isomorphism h : Alg(L ,�L , |�L) → A between the Lindenbaum–
Tarski algebra of L and A.

2. An element a in A concretizes to the same set of structures as the formula it represents:
mod(ϕ) = γ (h([ϕ]L)).

We now study the Lindenbaum–Tarski algebras of logical languages corresponding to
the sign, constants and interval languages. To avoid cumbersome distinctions between an
equivalence class and its representatives, we use the following lemma that allows us to work
directly with the syntactic representation of an equivalence class.

Lemma 7 Let ϕ and ψ be two formulae. Then, [ϕ]and[ψ] are the same equivalence class
if and only if ϕ � ψ and ψ � ϕ.

Proof (⇒) Since [ϕ] and [ψ] are the same equivalence class there is a formula θ in [ϕ] such
that θ � ϕ, ϕ � θ , θ � ψ and ψ � θ . We can now prove ϕ � ψ and ψ � ϕ:

ϕ � θ θ � ψ
cut

ϕ � ψ

ψ � θ θ � ϕ
cut

ψ � ϕ

(⇐) Since ϕ � ψ ∧ ψ � ϕ, we have ϕ ≡L ψ and so [ϕ] and [ψ] are the same. ��
5.2 Characterization of the Sign Proof Calculus

The lattice of signs (Sign,�) is depicted in Fig. 3. It consists of five elements Sign =
{⊥,Neg,Zero,Pos,�} with ⊥ and � as the least and greatest elements in the order �,
and with the elements in {Neg,Zero,Pos} being pairwise incomparable. The concretiza-
tion function γSign : Sign → P(Z) is defined below. For all the lattices we consider, the
concretization of ⊥ is ∅ and of � is Z, so we skip these elements.

γSign(Neg) = {n | n < 0} γSign(Zero) = {n | n = 0} γSign(Pos) = {n | n > 0}
The lattice of sign environments (Vars → Sign,�) is the pointwise lift of Sign to a set of
functions. We use the same notation for the order and operations and their pointwise lifts. We
first prove the special case of isomorphism between the sign logic S with a single variable
and the lattice {x} → Sign. Since the lattice {x} → Sign is isomorphic to Sign, we do not
distinguish between the two. The concretization of a sign environment is defined below.

γSign(Vars → Sign) → P(Struct) γSign(ε) = {
σ | σ(x) ∈ γSign(ε(x))

}

An environment ε concretizes to the set of structures that respect the signs of the variables
in ε.

Lemma 8 The Lindenbaum–Tarski algebra of the sign logic S with a single variable has
exactly five equivalence classes {[ffx]S , [x < 0]S , [x = 0]S , [x > 0]S , [tt]S }.
Proof We proceed by induction on formula structure and abbreviate [ϕ]S to [ϕ].
(Base Case) The constants ffx and tt, and the atomic formulae x < 0, x = 0 and x > 0 are
each in one of these equivalence classes by the introduction rule.
(Induction Step) The induction hypothesis is that every formula ofS belongs to one of these
equivalence classes. For the induction step, consider a formula ϕ ∧ ψ , where [ϕ] and [ψ]
are among the equivalence classes above. We consider four cases for these two equivalence
classes.

123

Abstract Interpretation as Automated Deduction 379

1. The two formulae are in the same equivalence class. By Lemma 7, we have the two
sequents ϕ �S ψ and ψ �S ϕ. The derivations below show that ϕ ∧ ψ �S ψ and
ψ �S ϕ ∧ ψ , so that [ϕ ∧ ψ] is the same equivalence class as [ϕ].

i
ψ �S ψ

wl
ψ, ϕ �S ψ

∧l,pl
ϕ ∧ ψ �S ψ

ψ �S ϕ
i

ψ �S ψ
cl,∧r

ψ �S ϕ ∧ ψ

2. The two formulae are in distinct equivalence classes and [ϕ] is [ffx]. In this case, [ϕ ∧ψ]
is also [ffx]. We prove ϕ ∧ ψ �S ffx and ffx �S ϕ ∧ ψ knowing that ϕ �S ffx and
ffx �S ϕ. The case for [ψ] being [ffx] is identical.

ϕ �S ffx
wl

ϕ,ψ �S ffx ∧l
ϕ ∧ ψ �S ffx

ffl
ffx � ϕ ∧ ψ

3. The two equivalence classes are distinct and [ϕ] is [tt]. In this case, [ϕ ∧ ψ] is [ψ]. It
suffices to derive ϕ ∧ ψ �S ψ and ψ �S ϕ ∧ ψ given ϕ �S tt and tt �S ϕ.

i
ψ �S ψ

wl
ψ, ϕ �S ψ

∧l,pl
ϕ ∧ ψ �S ψ

ttr�S tt tt �S ϕ
cut�S ϕ

i
ψ �S ψ ∧r

ψ �S ϕ ∧ ψ

The case for [ψ] being [tt] is identical.
4. The final case is when [ϕ] and [ψ] are distinct and neither of them is the equivalence

class of ffx or of tt. In this case, we show that [ϕ ∧ψ] is [ffx] We show that ϕ ∧ψ �S ffx
and ffx �S ϕ ∧ ψ are derivable for all distinct, non-constant, atomic formulae ϕ and ψ .
By Lemma 7, the induction hypothesis and the assumption that the equivalence classes
are not those for logical constants, there are only three cases to consider.

∧l,ffr1
x < 0 ∧ x = 0 �S ffx

ffl
ffx �S x < 0 ∧ x = 0

∧l,ffr2
x = 0 ∧ x > 0 �S ffx

ffl
ffx �S x = 0 ∧ x > 0

∧l,ffr3
x < 0 ∧ x > 0 �S ffx

ffl
ffx �S x < 0 ∧ x > 0

The proof so far shows that there are at most five equivalence classes. It does not show
that these equivalence classes are distinct, e.g., that there is no way to derive x > 0 from
x = 0 in �S . The formulae {x < 0, x = 0, x > 0} do not semantically entail each other, do
not entail ffx and are not entailed by tt. By the soundness of the sign calculus, it follows that
distinct formulae in Sign are pairwise not inter-derivable. ��
Lemma 9 The sign logic with a single variable characterizes the abstraction Sign.

Proof Define the function h : S /≡S → Sign as the witness for the isomorphism.

h([tt]) =̂ �
h([x < 0]) =̂ Neg h([x = 0]) =̂ Zero h([x > 0]) =̂ Pos

h([ffx]) =̂ ⊥
From Lemma 8, h is a bijection. We show that h is an order isomorphism: [ϕ] �S [ψ] if and
only if h([ϕ]) � h([ψ]). We should consider different cases. In the following, for brevity,
we write � for �S .

123

380 V. D’Silva, C. Urban

– [ϕ] � [tt] ⇔ h([ϕ]) � h([tt]). The implication holds because h([tt]) is � in the lattice.
For the converse we apply the rule for true.

ttr
ϕ �S tt

– [ffx] � [ϕ] ⇔ h([ffx]) � h([ϕ]). The implication holds because h([ffx]) is ⊥. The
converse holds because of the rule for false.

ffl
ffx �S ϕ

– For all other cases, observe that if [ϕ] and [ψ] are incomparable, then so are h([ϕ]) and
h([ψ]). Conversely if a is not comparable to b in Sign, then, the inverse maps h−1(a)

and h−1(b) map to elements that do not entail each other and by soundness of �S , these
elements cannot be in the same equivalence class.

It remains to show that h distributes over meets. In the following, for brevity, we write � for
�S . We should consider all possible cases. For example:

– h([x < 0] � [x = 0]) = h([x < 0]) � h([x = 0]). We have h([x < 0] � [x = 0]) =
h([x < 0 ∧ x = 0]) = h([ffx]) = ⊥ = Neg � Zero = h([x < 0]) � h([x = 0]).

The proof is similar for all cases where the meet is bottom. Otherwise, the meet is either of
the form a � b with either a and b being the same, or one of them being the top element.
Verification of these cases is routine.

To complete the proof, we have to show that S and Sign have the same semantics. By
Lemma 4, �S is sound, so if [ϕ] and [ψ] are the same equivalence class, then mod(ϕ) =
mod(ψ). By Lemma 8, we only have to consider one formula in each of the five equivalence
classes. Consider x > 0.

– We have that γSign(h(x > 0)) = γSign(Pos) = {x} → {n | n > 0}. Note that we
distinguish between {x} → Sign and Sign here because we need to concretize structures.
Since mod(x > 0) = {(x :n) | n > 0}, the semantic condition follows.

The condition can similarly be verified for the other equivalence classes. ��
The chosen isomorphism h is crucial for the semantic condition to hold. Consider the function
g that maps [x < 0] to Pos and [x > 0] to Neg and otherwise agrees with h. Note that g is
an isomorphism but will not satisfy the semantic condition. We show that the sign logic with
multiple variables characterizes sign environments.

Lemma 10 In the sign logic S over a finite set of variables Vars, every formula ϕ is inter-
derivable with a formula of the form

∧
x∈V ψ(x), for some V ⊆ Vars.

Proof The proof is by induction on the number of variables and the structure ofS -formulae.
The base case is a logic with one variable, which follows from Lemma 8. The induction
hypothesis is that the lemma holds for n ≥ 1 variables. For the induction step, we need
to show that the lemma holds for a formula ϕ with n + 1 variables. First note that ϕ must
be of the form ϕ1 ∧ ϕ2, where at most n variables occur in ϕ1 and ϕ2. This is because the
only way to introduce variables is by conjunction with an atomic predicate, the only way
to compose formulae is by conjunction and because formulae are finite in length. By the
induction hypothesis, ϕ1 and ϕ2 are inter-derivable with formulae of the form

∧
x∈V1 ψ1(x)

and
∧

x∈V2 ψ2(x), respectively. Thus, ϕ1 ∧ ϕ2 is inter-derivable with a formula of the form
⎛

⎝
∧

x∈V1\V2
ψ1(x)

⎞

⎠ ∧
⎛

⎝
∧

x∈V1∩V2
ψ1(x) ∧ ψ2(x)

⎞

⎠ ∧
⎛

⎝
∧

x∈V2\V1
ψ2(x)

⎞

⎠

which is of the form in the lemma. ��

123

Abstract Interpretation as Automated Deduction 381

Lemma 11 The logic S over a finite set of variables Vars characterizes the lattice of sign
environments (Vars → Sign,�).

Proof Let h be the isomorphism from S to Sign for the one variable case from Lemma 9.
In the following, we write var(ϕ) for the set of variables in a formula. Define the candidate
isomorphism g : S /≡S → (Vars → Sign) as follows:

g([ϕ])(x) =̂
{
h([ψ(x)]) x ∈ var(ϕ)

� x /∈ var(ϕ)

Note that Vars → Sign is isomorphic to the product lattice Sign|Vars|. We have to show that
there are as many equivalence classes as elements in the product lattice. It follows from
Lemma 10 that every equivalence class can be written as the conjunction

∧
x∈var(ϕ) ψ(x),

where every formula ψ(x) belongs to one equivalence class of S over one variable. Thus,
by Lemma 8 and the rule ∧r, we can combine a derivation of each individual formula
to obtain a derivation of the entire conjunction. It follows that there are at least as many
equivalence classes as elements in the product. To show that there are at most as many
equivalence classes, we observe that every formula of the form

∧
x∈V ψ(x), for some V ⊆

Vars, is inter-derivable with a formula of the form
∧

x∈V ψ(x) ∧ ∧
x∈Vars\V tt. Thus, every

formula ϕ derivable from a formula of the form
∧

x∈V ψ(x), for some V ⊆ Vars, is of the
form

∧
x∈V ψ(x) ∧ ∧

x∈Vars\V tt. By lifting the proof of Lemma 9 component-wise, we can
conclude that g is an isomorphism.

To verify the semantic condition. consider ε in mod(ϕ). By Lemma 10, ϕ is equivalent
to some

∧
x∈var(ϕ) ψ(x), so ε(x) is a value satsifying ψ(x). By Lemma 9, ε(x) is also in

γSign(h([ψ(x)])). It follows from the definition of g that ε(x) is in γSign(g([ϕ])(x)) for
each x . From the definition of concretization for sign environments, it follows that ε is in
γSign(g([ϕ])). ��
Example 8 This example shows that the proof system of the sign calculus is incomplete and
this incompleteness is fundamental to characterizing sign environments. Consider the lattice
Sign and the sign environments {x, y} → Sign. Three distinct sign environments and their
logical representations are shown below.

ε1 = {x �→ Pos, y �→ ⊥} ε2 = {x �→⊥, y �→ Neg} ε3 = {x �→ ⊥, y �→ ⊥}
h−1(ε1) = [x > 0 ∧ ffy] h−1(ε2) = [ffx ∧ y < 0] h−1(ε3) = [ffx ∧ ffy]
Observe that none of the formulae are satisfiable. In order for the the Lindenbaum–Tarski
algebra to be isomorphic to the lattice of sign environments, we need that the formulae are
not inter-derivable. That is, the proof system must be incomplete.

5.3 Characterization of the Constant Proof Calculus

The lattice of integer constants (Const,�) is depicted in Fig. 5. It consists of the elements
Const = Z ∪ {⊥,�}, with ⊥ and � as the least and greatest elements, and with all other
elements being incomparable. The concretization γConst : Const → P(Z)maps n to {n}. The
concretization for constant environments Vars → Const is defined in a similar manner to
the concretization for sign environments. We prove the characterization for the one-variable
case and then generalize to more variables.

Lemma 12 The set of equivalence classes of the Lindenbaum–Tarski algebra of the constant
logic C with a single variable is {[ffx]C } ∪ {[x = k]C | k ∈ Z} ∪ {[tt]C }.

123

382 V. D’Silva, C. Urban

Proof The proof is similar to the proof of Lemma 8. We reason by induction on the structure
of the formulae of C . We abbreviate [ϕ]C to [ϕ].
(Base Case) The constants ffx and tt, and the atomic formulae x = k are, by the introduction
rule of the core calculus, in one of these equivalence classes.
(Induction Step) The induction hypothesis is that every formula of C belongs to one of these
equivalence classes. For the induction step, consider a formula ϕ ∧ ψ . When ϕ and ψ are
in the same equivalence class, as in Lemma 8 we have ϕ ∧ ψ �C ψ and ψ �C ϕ ∧ ψ , so
that [ϕ ∧ ψ] is the same class as [ϕ]. If the two equivalence classes are distinct, we have to
consider if they are comparable or incomparable. Comparisons are only possible if one of
the equivalence classes is [ffx] or is [tt]. If either [ϕ] or [ψ] is [ffx], as in Lemma 8 we have
ϕ ∧ψ �C ffx and ffx �C ϕ ∧ψ , so [ϕ ∧ψ] is also [ffx]. If [ϕ] is [tt], as in Lemma 8 we have
ϕ ∧ ψ �C ψ and ψ �C ϕ ∧ ψ , so [ϕ ∧ ψ] is [ψ]. The case for [ψ] being [tt] is identical.
If [ϕ] and [ψ] are distinct and are not the equivalence classes of ffx and tt, we show that
[ϕ ∧ ψ] is [ffx]. We show that ϕ ∧ ψ �C ffx and ffx �C ϕ ∧ ψ are derivable for all distinct,
non-constant, atomic formulae x = m and x = n.

[m �=Z n] ∧l,ffr4
x = m ∧ x = n �C ffx

ffl
ffx �C x = m ∧ x = n

The equivalence classes are distinct because the constant calculus is sound. ��
Lemma 13 Constant logic with one variable characterizes the lattice of constants.

Proof Define the function h : C /≡C → Const as the witness for the isomorphism.

h([tt]) =̂ � h([x = k]) =̂ k h([ffx]) =̂ ⊥
From Lemma 12, h is a bijection. The proof that h is an order isomorphism and distributes
over meets is identical to the proof of Lemma 9 and verification of the semantic condition is
straightforward. ��

The following result now shows that the Lindenbaum–Tarski algebra of the constant logic
C is isomorphic to the pointwise lift Vars → C of C .

Lemma 14 Constant logic over a finite set of variables Vars characterizes the constant
environments (Vars → Const,�).

Proof The proof is identical to the proof of Lemma 11 using the candidate isomorphism
g : C /≡C → (Vars → Const):

g([ϕ])(x) =̂
{
h([ψ(x)]) x ∈ var(ϕ)

� x /∈ var(ϕ)

where h is the isomorphism from the Lindenbaum–Tarski algebra of C to the lattice Const
of constants for the one variable case from Lemma 13. The concretization for constant
environments is defined in a similar manner to the concretization for sign environments,
hence the verification of the semantic condition is also similar. ��
5.4 Characterization of the Interval Proof Calculus

The lattice of integer intervals (Itv,�) is depicted in Fig. 6. It consists of the set
{[a, b] | a ≤ b, a ∈ Z ∪ {−∞} , b ∈ Z ∪ {∞}} and a special element ⊥ denoting the empty
interval. The partial order is standard and [−∞,∞] is the top element. The concretization is

123

Abstract Interpretation as Automated Deduction 383

γItv([a, b]) = {n ∈ Z | a ≤ n ≤ b} for non-⊥ elements. The lattice of interval environments
is (Vars → Itv,�)with the pointwise order. The concretization of an interval environment is
defined similarly to concretization for sign environments: γItv(ε) = {σ | σ(x) ∈ γItv(ε(x))}.
We characterize Itv by the interval logic I over one variable.

Lemma 15 The set of equivalence classes of the Lindenbaum–Tarski algebra of the
interval logic I with a single variable is {[x ≤ k]I | k ∈ Z} ∪ {[x ≥ k]I | k ∈ Z} ∪
{[x ≤ n ∧ x ≥ m]I | m, n ∈ Z,m ≤ n} ∪ {[ffx]I , [tt]I }.
Proof The proof is by induction on formula structure. We write [ϕ]I for [ϕ].
(Base Case) The constants ffx and tt, and the atomic formulae x ≥ k and x ≤ k are, by the
introduction rule of the core calculus, in one of these equivalence classes.
(Induction Step) The induction hypothesis is that every formula ofI belongs to one of these
equivalence classes. For the induction step, consider a formula ϕ ∧ ψ . When ϕ and ψ are in
the same equivalence class, as in Lemma 8 we have ϕ ∧ ψ �I ψ and ψ �I ϕ ∧ ψ , so that
[ϕ ∧ ψ] is the same class as [ϕ]. If the equivalence classes are distinct, we have to consider
the cases where there is either an order between the classes or they are incomparable. If either
[ϕ] or [ψ] is [ffx], as in Lemma 8 we have ϕ ∧ ψ �I ffx and ffx �I ϕ ∧ ψ , so [ϕ ∧ ψ] is
also [ffx]. If [ϕ] is [tt], as in Lemma 8 we have ϕ ∧ ψ �I ψ and ψ �I ϕ ∧ ψ , so [ϕ ∧ ψ]
is [ψ]. The case for [ψ] being [tt] is identical. If [ϕ] and [ψ] are distinct and are not the
equivalence classes of ffx and tt, without loss of generality have the following cases:

1. If [ϕ] is [x ≤ m] and [ψ] is [x ≤ n], then, if m < n, we have that [ϕ ∧ ψ] is [ϕ]. We
show that ϕ ∧ ψ �I ϕ and ϕ �I ϕ ∧ ψ are derivable.

i
x ≤ m �I x ≤ m

wl
x ≤ m, x ≤ n �I x ≤ m

∧l
x ≤ m ∧ x≤n �I x≤m

i
x ≤ m �I x ≤ m

i
x ≤ n �I x ≤ n

ub- l
x ≤ m �I x ≤ n

cl,∧r
x ≤ m �I x ≤ m ∧ x ≤ n

Otherwise, if n < m, we have that [ϕ ∧ ψ] is [ψ]. The proof is similar, requiring an
application of the pl rule before the wl rule.

2. If [ϕ] is [x ≥ m] and [ψ] is [x ≥ n], then [ϕ ∧ ψ] is [ψ] if m < n and is [ϕ] if n < m.
The proof is similar to the previous case but uses the lb- r rule instead of ub- l. The
following derivations shows that, if m < n, [ϕ ∧ ψ] is [ψ].

i
x ≥ n �I x ≥ n

wl
x ≥ n, x ≥ m �I x ≥ n ∧l,pl
x≥m ∧ x≥n �I x ≥ n

i
x ≥ n �I x ≥ n

lb- r
x≥n �I x ≥ m

i
x≥n �I x≥n

cl,∧r
x ≥ n �I x ≥ m ∧ x ≥ n

The derivations showing that, if n < m, [ϕ ∧ ψ] is [ϕ] are almost identical except that
the pl rule need not be applied before wl.

3. If [ϕ] is [x ≤ n] and [ψ] is [x ≥ m], then, if m ≤ n, by the introduction rule, we have
that [ϕ ∧ ψ] is [x ≤ n ∧ x ≥ m]. Otherwise, if n < m, we have that [ϕ ∧ ψ] if [ffx]. We
show that ϕ ∧ ψ �S ffx and ffx �S ϕ ∧ ψ are derivable.

ffr5
x ≤ n, x ≥ m �I ffx ∧l
x ≤ n ∧ x ≥ m �I ffx

ffl
ffx �I x ≤ n ∧ x ≥ m

4. If [ϕ] is [x ≤ k] and [ψ] is [x ≤ n ∧ x ≥ m], then we have three cases.
(case A) If m ≤ n < k we have that [ϕ ∧ ψ] is [ψ]. We show that ϕ ∧ ψ �S ψ and
ψ �S ϕ ∧ ψ are derivable.

123

384 V. D’Silva, C. Urban

i
x ≤ n ∧ x ≥ m �I x ≤ n ∧ x ≥ m

wl
x ≤ n ∧ x ≥ m, x ≤ k �I x ≤ n ∧ x ≥ m ∧l,pl

x ≤ k ∧ (x ≤ n ∧ x ≥ m) �I x ≤ n ∧ x ≥ m

i
x ≤ k �I x ≤ k

ub- l
x ≤ n �I x ≤ k

i
x ≤ n ∧ x ≥ m �I x ≤ n ∧ x ≥ m ∧r

x ≤ n, x ≤ n ∧ x ≥ m �I x ≤ k ∧ x ≤ n ∧ x ≥ m
wl,pl

x ≤ n ∧ x ≥ m, x ≤ n, x ≥ m �I x ≤ k ∧ (x ≤ n ∧ x ≥ m)
cl,∧l

x ≤ n ∧ x ≥ m �I x ≤ k ∧ (x ≤ n ∧ x ≥ m)

(case B) If m ≤ k ≤ n we have that [ϕ ∧ ψ] is [x ≤ k ∧ x ≥ m]. We show that
ϕ ∧ ψ �S x ≤ k ∧ x ≥ m is derivable.

i
x ≤ k �I x ≤ k

i
x ≥ m �I x ≥ m ∧r

x ≤ k, x ≥ m �I x ≤ k ∧ x ≥ m
wl

x ≤ k, x ≥ m, x ≤ n �I x ≤ k ∧ x ≥ m ∧l,∧l,pl
x ≤ k ∧ (x ≤ n ∧ x ≥ m) �I x ≤ k ∧ x ≥ m

The following derivation shows that x ≤ k ∧ x ≥ m �S ϕ ∧ ψ .

i
x ≤ k �I x ≤ k

i
x ≤ n �I x ≤ n

ub- l
x ≤ k �I x ≤ n

i
x ≥ m �I x ≥ m ∧l,∧r

x ≤ k ∧ x ≥ m �I x ≤ n ∧ x ≥ m
x ≤ k, x ≤ k ∧ x ≥ m �I x ≤ k ∧ (x ≤ n ∧ x ≥ m)

wl,pl
x ≤ k ∧ x ≥ m, x ≤ k, x ≥ m �I x ≤ k ∧ (x ≤ n ∧ x ≥ m)

cl,∧l
x ≤ k ∧ x ≥ m �I x ≤ k ∧ (x ≤ n ∧ x ≥ m)

(case C) If k < m ≤ n we have that [ϕ ∧ ψ] is [ffx]. We show that ϕ ∧ ψ �S ffx and
ffx �S ϕ ∧ ψ are derivable.

ffr5
x ≤ k, x ≥ m �I ffx

wl
x ≤ k, x ≥ m, x ≤ n �I ffx ∧l,∧l,pl

x ≤ k ∧ (x ≤ n ∧ x ≥ m) �I ffx

ffl
ffx �I x≤k ∧ (x ≤ n ∧ x ≥ m)

5. If [ϕ] is [x ≥ k] and [ψ] is [x ≤ n ∧ x ≥ m], then, we also have three cases.
(case A) If k < m ≤ n, we have that [ϕ ∧ ψ] is [ψ]. The proof of the derivation
ϕ ∧ ψ �I ψ is identical to case 4A. The derivation showing that ψ �I ϕ ∧ ψ requires
an application of the pl rule also before the wl rule.
(caseB) fm ≤ k ≤ nwe have that [ϕ∧ψ] is [x ≤ n∧x ≥ k]. The derivation showing that
ϕ∧ψ �I x ≤ n∧x ≥ k is almost identical to case 4B except for requiring an application
of the pl rule after the wl rule. The derivation showing that x ≤ n ∧ x ≥ k �I ϕ ∧ ψ

requires an an application of the pl rule also before thewl rule and an application of the
lb- l instead of the ub- l rule.
(case C) If m ≤ n < k we have that [ϕ ∧ ψ] is [ffx]. The derivations are identical to
case 4C except for requiring an application of the pl rule after the wl rule.

6. If [ϕ] is [x ≤ q ∧ x ≥ p] and [ψ] is [x ≤ n ∧ x ≥ m], then we have five cases.
(case A) If p ≤ m ≤ n ≤ q , we have that [ϕ ∧ ψ] is [ψ]. The derivation ϕ ∧ ψ �I ψ

is identical to case 4A. The proof that ψ �I ϕ ∧ ψ is derivable is given below.

∗ i
x ≤ n ∧ x ≥ m �I x ≤ n ∧ x ≥ m

cl,∧r
x ≤ n ∧ x ≥ m �I (x ≤ q ∧ x ≥ p) ∧ (x ≤ n ∧ x ≥ m)

123

Abstract Interpretation as Automated Deduction 385

i
x ≤ q �I x ≤ q

ub- l
x ≤ n �I x ≤ q

i
x ≥ p �I x ≥ p

lb- l
x ≥ m �I x ≥ p

∧l,∧r
x ≤ n ∧ x ≥ m �I x ≤ q ∧ x ≥ p

∗
(case B) Ifm ≤ p ≤ q ≤ n, we have that [ϕ∧ψ] is [ϕ]. The derivation ϕ∧ψ �I ϕ only
requires an application of ∧l,wl, and the introduction rule. The derivation ϕ �I ϕ ∧ψ

is identical to case 6A.
(case C) If p ≤ m ≤ q ≤ n, we have that [ϕ ∧ ψ] is [x ≤ q ∧ x ≥ m]. The derivation
showing that ϕ ∧ ψ �I x ≤ q ∧ x ≥ m is almost identical to case 5B except for
requiring an application of ∧l, wl, and pl before ∧r. The derivation showing that
x ≤ q ∧ x ≥ m �I ϕ ∧ ψ is given below.

∗

i
x ≤ n �I x ≤ n

ub- l
x ≤ q �I x ≤ n

i
x ≥ m �I x ≥ m

∧l,∧r
x ≤ q ∧ x ≥ m �I x ≤ n ∧ x ≥ m

cl,∧r
x ≤ q ∧ x ≥ m �I (x ≤ q ∧ x ≥ p) ∧ (x ≤ n ∧ x ≥ m)

i
x ≤ q �I x ≤ q

i
x ≥ p �I x ≥ p

lb- l
x ≥ m �I x ≥ p

∧l,∧r
x ≤ q ∧ x ≥ m �I x ≤ q ∧ x ≥ p

∗
(case D) If m ≤ p ≤ n ≤ q , we have that [ϕ ∧ ψ] is [x ≤ n ∧ x ≥ p]. The derivation
showing that ϕ ∧ ψ �I x ≤ q ∧ x ≥ m is almost identical to case 6C except for
requiring the application of pl after (and not before) the first application of the wl rule
and the last application of ∧l. The derivation x ≤ n ∧ x ≥ p �I ϕ ∧ ψ is identical to
case 6C.
(case E) If q < m or n < p we have that [ϕ ∧ψ] is [ffx]. If q < m, the proof is similar to
case 4C except for requiring the applications of pl,∧l,wl, and again pl before applying
ffr5. If n < p, the proof is similar case 5C except for requiring the applications of ∧l,
pl and wl before applying ffr5.

The equivalence classes are distinct because the interval calculus is sound. ��
Lemma 16 The interval logic over one variable characterizes Itv.

Proof Define the function h : I /≡I → Itv as the witness for the isomorphism.

h([tt]) =̂ �
h([x ≤ k]) =̂ [−∞, k] h([x ≤ n ∧ x ≥ m]) =̂ [m, n] h([x ≥ k]) =̂ [k,+∞]

h([ffx]) =̂ ⊥
From Lemma 15, h is a bijection. We show that h is an order isomorphism: [ϕ] �I [ψ] if
and only if h([ϕ]) � h([ψ]). We have different other cases to consider. In the following, for
brevity, we write � for �I .

– [ϕ] � [tt] ⇔ h([ϕ]) � h([tt]). The implication holds because h([tt]) =̂ �. For the
converse we apply the rule for true as in Lemma 9.

– [ffx] � [ϕ] ⇔ h([ffx]) � h([ϕ]). The implication holds because h([ffx]) =̂ ⊥. The
converse holds because of the rule for false as in Lemma 9.

123

386 V. D’Silva, C. Urban

– [x ≤ m] � [x ≤ n] ⇔ h([x ≤ m]) � h([x ≤ n]), for any givenm, n ∈ Z such thatm ≤
n. The implication holds because h([x ≤ m]) =̂ [−∞,m] and h([x ≤ n]) =̂ [−∞, n].
The converse holds because of the ub- l rule and the introduction rule.

i
x ≤ n �I x ≤ n[m ≤ n] ub- l
x ≤ m �I x ≤ n

– [x ≥ n] � [x ≥ m] ⇔ h([x ≥ n]) � h([x ≥ m]), for any givenm, n ∈ Z such thatm ≤
n. The implication holds because h([x ≥ n]) =̂ [n,+∞] and h([x ≥ m]) =̂ [m,+∞].
The converse holds because of the lb- l rule and the introduction rule.

– [x ≤ n ∧ x ≥ m] � [x ≤ k] ⇔ h([x ≤ n ∧ x ≥ m]) � h([x ≤ k]), for any given
k,m, n ∈ Z such that m ≤ n ≤ k. The implication holds because h([x ≤ n ∧ x ≥
m]) =̂ [m, n] and h([x ≤ k]) =̂ [−∞, k]. The converse is show below.

i
x ≤ k �I x ≤ k[n ≤ k] ub- l
x ≤ n �I x ≤ k ∧l,wl

x ≤ n ∧ x ≥ m �I x ≤ k

– [x ≤ n ∧ x ≥ m] � [x ≥ k] ⇔ h([x ≤ n ∧ x ≥ m]) � h([x ≥ k]), for any given
k,m, n ∈ Z such that k ≤ m ≤ n. The implication holds because h([x ≤ n ∧ x ≥
m]) =̂ [m, n] and h([x ≥ k]) =̂ [k,+∞]. The converse is similar to the previous case
except for also requiring pl before wl and for requiring the lb- l rule instead of ub- l.

– [x ≤ n ∧ x ≥ m] � [x ≤ q ∧ x ≥ p] ⇔ h([x ≤ n ∧ x ≥ m]) � h([x ≤ q ∧ x ≥ p]),
for any given m, n, p, q ∈ Z such that p ≤ m ≤ n ≤ q . The implication holds because
h([x ≤ n ∧ x ≥ m]) =̂ [m, n] and h([x ≤ q ∧ x ≥ p]) =̂ [p, q]. The converse is below.

i
x ≤ q �I x ≤ q[n ≤ q] ub- l
x ≤ n �I x ≤ q

∧l,wl
x ≤ n ∧ x ≥ m �I x ≤ q

i
x ≥ p �I x ≥ p[p ≤ m] lb- l
x ≥ m �I x ≥ p

∧l,pl,wl
x ≤ n ∧ x ≥ m �I x ≥ p

cl,∧r
x ≤ n ∧ x ≥ m �I x ≤ q ∧ x ≥ p

– For all other cases, if [ϕ] and [ψ] are incomparable, then so are h([ϕ]) and h([ψ]).
Conversely if a is not comparable to b in Sign, then, the inverse maps h−1(a) and h−1(b)
map to elements that do not entail each other and by soundness of the interval calculus,
these elements cannot be in the same equivalence class.

It remains to show that h distributes over meets. In the following, for brevity, we write � for
�I . We should consider all possible cases. For example:

– h([x ≤ n ∧ x ≥ m] � [x ≤ q ∧ x ≥ p]) = h([x ≤ n ∧ x ≥ m]) � h([x ≤ q ∧ x ≥ p])
where p ≤ m ≤ q ≤ n. We have h([x ≤ n ∧ x ≥ m] � [x ≤ q ∧ x ≥ p]) = h([(x ≤
n ∧ x ≥ m) ∧ (x ≤ q ∧ x ≥ p)]) = h([x ≤ q ∧ x ≥ m]) = [m, q] = [m, n] � [p, q] =
h([x ≤ n ∧ x ≥ m]) � h([x ≤ q ∧ x ≥ p]).

The reasoning is analogous for all other cases.
The argument for the semantic condition is similar to that for sign logic. ��

It is worth noting the difference in the proofs of the condition and the semantic condition
in Lemmas 9, 13 and 16. Reasoning about Lindenbaum–Tarski algebras is specific to and
proportional in complexity to the axioms of the theory. The concretization functions for
all abstractions are defined similarly, so verifying the semantic condition requires the same
reasoning in each case.

Lemma 17 The logic I over a finite set of variables Vars characterizes the interval envi-
ronments (Vars → Itv,�).

123

Abstract Interpretation as Automated Deduction 387

Proof The proof is identical to the proof of Lemma 11 using the candidate isomorphism
g : I /≡I → (Vars → Itv):

g([ϕ])(x) =̂
{
h([ψ(x)]) x ∈ var(ϕ)

� x /∈ var(ϕ)

where h is the isomorphism from the Lindenbaum–Tarski algebra of I to the lattice Itv of
intervals for the one variable case from Lemma 16. Verifying the semantic condition is as in
Lemma 11.

6 Related Work and Discussion

We discuss our work from a conceptual perspective and from the viewpoint of current theo-
retical and practical research.

6.1 Related Work

Automata, Logic and Languages. A classic family of results shows that regular expressions,
finite automata over finite words, and ws1s all define regular languages. We refer to the
survey by [38] for equally classic extensions of those results to infinite words and trees. Our
work has applied this perspective to programs by using Büchi’s construction to define the
set of executions in a control-flow graph by a formula in ws1s(t). The standard, algorithmic
approach to reasoning about regular expressions andws1s is to compile them to automata.We
have shown that abstract interpreters can be viewed as solvers for ws1s(t) formulae, which
use a graph structure to represent second-order constraints, but use deductive techniques
to reason about first-order constraints. Our encoding differs from the use of set constraints
by [2] and second-order Horn clauses by [19] in that models of our formulae are erroneous
executions, not invariants.

Algebraic Logic and Stone Duality. The framework of Stone duality relate categories
of lattices with operators, posets with relations, and topological spaces [26]. Since the
Lindenbaum–Tarski construction generates lattices with operators, Stone duality can be
viewed as a way to move between different representations of a theory. [1] extended Stone
duality to lambda calculi by characterizing domains in semantics. We believe that logical
characterization of strictness analysis by [25] was the first application of Stone duality to
abstract interpretation. Both Abramsky and Jensen characterized the structures they studied
as Lindenbaum–Tarski algebras of propositional, modal, intuitionistic logics. The lattices we
studied are non-distributive and arise as algebras of first-order theories. Moreover, the lattices
we studied are complete, so the topological machinery of Stone duality is not required to
obtain a representation of the theories involved.

The approachweused is influencedby [33],whofirst articulated the ideas inTable 1 that the
partial order in a lattice can be viewed as the proof theory of a logic, and that the concretization
function defines themodel-theoretic semantics of the logic. Schmidt formalized this view and
studied the relationship between soundness and completeness in a logic and the corresponding
notions in abstract interpretation. In our work, we have identified proof calculi for specific
lattices and have identified a new connection between the Lindenbaum–Tarski construction
and abstract interpretation.

123

388 V. D’Silva, C. Urban

Abstract Interpretation and Satisfiability. A driving force behind much current research is
the discovery of novel combinations of automated deduction and abstract interpretation. The
dissertations of [22] and [35] and Dagstuhl seminar notes of [28] provide a summary of this
research. This paper contributes to this programme by providing a logical characterizations
of an instance of abstract interpretation.

The general theme of work lifting the internals of sat and smt solvers to abstract domains
has been to provide a property-guided, on-demand refinement of abstract interpretation-based
analysis. dpll(t) and cdcl have been lifted to implement property-guided, path-sensitive
analyses [16,23]. Stålmarck’s method has been used to refine abstract transformers [36],
interpolants have been used to refine widening operators [20] and unification has been used
to obtain complete reasoning about restricted families of programs [39]. The Nelson-Oppen
procedure, though less general than reduced product [10,11], works as an algorithmic domain
combinator [21].

Conversely, abstract interpretation has been incorporated in smt and constraint solvers to
improve theory propagation [31,40], to use joins for space-efficient representation [4], and to
use widening for generalization [29]. Algorithms based on abstract interpretation have been
used to implement alternatives to dpll(t) [5,37] and to improve sat encodings [6].

Theoretical work combining automated deduction and abstract interpretation has
attempted to give abstract interpretation formulations of smt solvers [11,17,36]. While it is
natural to model the algebraic content of a solver in an order-theoretic way, it is cumbersome
to model combinatorial aspects such as decision heuristics and precise details of conflict
analysis. We also believe that the work discussed above uses a mathematical framework that
is atypical for formalizing solver algorithms. For these reasons, we have attempted a logical
description of abstract interpretation.

6.2 Applications and Extensions

We briefly discuss potential applications of this work. The practical motivation for this work
was to lift the clause learning capabilities of sat and smt solvers to abstract interpreters. We
have used the theoretical framework of § 2 and § 3 to develop an abstract interpretation for
termination analysis that combines propagation and learning [15].

Another application is to determine the correctness of an analyzer, which is crucial since
abstract interpreters are often used to reason about safety-critical software. We refer to [8]
for a survey of work on constructing analyzers with proof assistants and [27] for a recent
highlight of this research programme. Developing an analyzer in a proof assistant incurs
performance penalties, requires significant development time anddoes not provide confidence
in the correctness of existing, deployed analyzers.An alternative, inspired by proof-producing
sat and smt solvers, is to have the analyzer generate a proof certificate. Since most abstract
interpreters have a modular architecture and rely on an abstract domain library, it would be
sufficient to equip such a library with the ability to generate proof certificates. Our work is a
step towards this goal; we have shown how to obtain proofs for reasoning performed within
a lattice. In order to apply to analyzers used in practice, our proof-theoretic characterization
has to extend to transformers and we need such characterizations for analyzers used in
practice.

A third motivation is to bring tools and techniques from logic and automated deduc-
tion to abstract interpreters. Given the logical characterizations in this paper, one can study
cut elimination, proof size, interpolation, and other properties of an abstract interpreter.
Without this work, it would not even be clear that these notions apply to an abstract
domain.

123

Abstract Interpretation as Automated Deduction 389

7 Conclusion

This work advances the logical understanding of the internals of abstract interpreters. Our
results make precise widespread folk intuition that abstract domains correspond to monadic
logics that are closed under conjunction. In undertaking an explicit study, we have also
highlighted the non-standard treatment of false, the limited structure of the sequents involved
and the absence of terms. Though our results are unsurprising, we believe such a study
contributes in novel ways to the broader research programme of studying logic and abstract
interpretation.

The next steps are a characterization of transformers asmodalities.Webelieve this stepwill
bring new challenges and insights as first-order modal theories have received little attention
in the literature. We are also not aware of a logical account of widening and narrowing
operators and believe that an advance there would need to connect with approaches for
inductive generalization.

In summary, we believe that our work leads to several theoretical and practical questions
that can be studied from the viewpoint of automated deduction or abstract interpretation.
We have begun these investigations and hope that this exposition enables the automated
deduction community to participate in the same.

References

1. Abramsky, S.: Domain theory and the logic of observable properties. PhD thesis, University of London
(1987)

2. Aiken, A.: Introduction to set constraint-based program analysis. Sci. Comput. Program. 35, 79–111
(1999)

3. Bjørner, N., deMoura, L.: Applications of SMT solvers to program verification. In: Notes for the Summer
School on Formal Techniques (2014)

4. Bjørner, N., Duterte, B., de Moura, L.: Accelerating lemma learning using joins – DPLL(�). In: Proceed-
ings of Logic for Programming, Artificial Intelligence and Reasoning (2008)

5. Brain, M., D’silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-point logic with abstract
conflict driven clause learning. Form. Methods Syst. Des. 45(2), 213–245 (2014)

6. Brain, M., Hadarean, L., Kroening, D., Martins, R., Automatic generation of propagation complete SAT
encodings. In: Proceedings of Verification, Model Checking and Abstract Interpretation, Springer, pp.
536–556. (2016)

7. Büchi, J. R.: On a decision method in restricted second order arithmetic. In: Logic, Methodology and
Philosophy of Science, Stanford Univ. Press, pp 1–11 (1960)

8. Cachera, D., Pichardie, D., Comparing techniques for certified static analysis. In: The NASA Formal
Methods Symposium (NFM), NASA Ames Research Center, pp. 111–115. (2009)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In: Proceedings of Principles of Programming Languages,
ACM Press, pp. 238–252. (1977)

10. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings of Principles
of Programming Languages, ACM Press, pp. 269–282. (1979)

11. Cousot, P., Cousot, R., Mauborgne, L.: Theories, solvers and static analysis by abstract interpretation. J.
ACM 59(6), 31:1–31:56 (2013)

12. Dalla Preda, M., Giacobazzi, R., Lakhotia, A., Mastroeni, I.: Abstract symbolic automata: Mixed syntac-
tic/semantic similarity analysis of executables. In: Proceedings of Principles of Programming Languages,
ACM Press, pp. 329–341. (2015)

13. D’antoni, L.: Extended symbolic finite automata and transducers. Form.Methods Syst. Des. 47(1), 93–119
(2015)

14. D’Silva, V., Urban, C.: Abstract interpretation as automated deduction. In: Proceedings of Automated
Deduction, pp. 450–464. (2015a)

15. D’Silva, V., Urban, C.: Conflict-driven conditional termination. In: Proceedings of Computer Aided
Verification, pp. 471–286. (2015b)

123

390 V. D’Silva, C. Urban

16. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: Proceedings of Principles of
Programming Languages, ACM Press, pp. 143–154. (2013)

17. D’Silva, V., Haller, L., Kroening, D.: Abstract satisfaction. In: Proceedings of Principles of Programming
Languages, ACM Press, pp. 139–150. (2014)

18. van den Elsen, S.: Weak monadic second-order theory of one successor. Seminar: Decision Procedures,
(2012) http://www.mpi-sws.org/~piskac/teaching/decpro-ws12/slides/WS1S.pdf

19. Grebenshchikov, S., Lopes, N. P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers from
proof rules. In: Proceedings of Programming Language Design and Implementation, ACM Press, pp.
405–416. (2012)

20. Gulavani, B. S., Chakraborty, S., Nori, A. V., Rajamani, S. K.: Automatically refining abstract interpreta-
tions. In: Proceedings of Tools and Algorithms for the Construction and Analysis of Systems, Springer,
LNCS, vol 4963, pp. 443–458. (2008)

21. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Proceedings of Programming Language
Design and Implementation, ACM Press, pp. 376–386. (2006)

22. Haller, L.C.R.: Abstract satisfaction. PhD thesis, University of Oxford (2014)
23. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis via satisfiability modulo

path programs. In: Proceedings of Principles of Programming Languages, pp. 71–82. (2010)
24. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In:

Proceedings of Computer Aided Verification, Springer, pp. 36–52. (2013)
25. Jensen, T. P.: Strictness analysis in logical form. In: FPCA, Springer, pp. 352–366. (1991)
26. Johnstone, P.: Stone Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press,

Cambridge (1986)
27. Jourdan, J. H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified c static analyzer. In:

Proceedings of Principles of Programming Languages, ACM Press, pp. 247–259. (2015)
28. Kroening, D., Reps, T.W., Seshia, S.A., Thakur, A.V.: Decision procedures and abstract interpretation

(Dagstuhl seminar 14351). Dagstuhl Rep. 4(8), 89–106 (2014)
29. Leino, K.R.M., Logozzo, F.: Using widenings to infer loop invariants inside an SMT solver, or: A theorem

prover as abstract domain. In: Workshop on Invariant Generation, RISC Report 07–07, pp. 70–84. (2007)
30. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract

Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53, 937–977 (2006)
31. Pelleau, M., Truchet, C., Benhamou, F.: Octagonal domains for continuous constraints. In: CP, pp. 706–

720. (2011)
32. Rasiowa, H., Sikorski, R.: The mathematics of metamathematics. Polish Academy of Science, Warsaw

(1963)
33. Schmidt, D. A.: Internal and external logics of abstract interpretations. In: Proceedings of Verification,

Model Checking and Abstract Interpretation, Springer-Verlag, Berlin, Heidelberg, pp. 263–278. (2008)
34. Surma, S. J.: On the origin and subsequent applications of the concept of the lindenbaum algebra. In:

L Jonathan Cohen HP Jerzy Loś, Podewski KP (eds) Logic, Methodology and Philosophy of Science
VI, Proceedings of the Sixth International Congress of Logic, Methodology and Philosophy of Science,
Studies in Logic and the Foundations of Mathematics, vol 104, Elsevier, pp. 719–734. (1982)

35. Thakur, A.V: Symbolic abstraction: Algorithms and applications. PhD thesis, The University of
Wisconsin—Madison (2014)

36. Thakur, A.V., Reps, T.: A generalization of Stålmarck’s method. In: Proceedings of Static Analysis
Symposium, Springer (2012a)

37. Thakur, A.V., Reps, T.W.: A method for symbolic computation of abstract operations. In: Proceedings of
Computer Aided Verification (2012b)

38. Thomas, W.: Languages, automata, and logic. In: Rozenberg G, Salomaa A (eds) Handbook of Formal
Languages, vol. 3, Springer, pp. 389–455. (1997)

39. Tiwari, A., Gulwani, S.: Logical interpretation: Static program analysis using theorem proving. In: Pro-
ceedings of Automated Deduction, pp. 147–166. (2007)

40. Truchet, C., Pelleau, M., Benhamou, F.: Abstract domains for constraint programming, with the example
of octagons. In: Symbolic and Numeric Algorithms for Scientific Computing, pp. 72–79. (2010)

41. Vardi, M. Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas]., pp. 629–736. (2008)

42. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inform. Comput. 115(1), 1–37 (1994)

123

http://www.mpi-sws.org/~piskac/teaching/decpro-ws12/slides/WS1S.pdf

	Abstract Interpretation as Automated Deduction
	Abstract
	1 Introduction
	2 Reachability as Second-Order Satisfiability
	2.1 Weak Monadic Second Order Theories of One Successor
	2.2 Encoding Reachability in WS1S(T)

	3 Abstract Interpreters as Second-Order Solvers
	4 Fragments of First-Order Theories
	4.1 First-Order Theories
	4.1.1 Logical Languages
	4.1.2 The Core Calculus
	4.1.3 Theory Specific Rules

	4.2 Soundness of the Proof Systems

	5 Characterizing Lattices with First-Order Theories
	5.1 The Lindenbaum-Tarski Construction and Logical Characterization
	5.2 Characterization of the Sign Proof Calculus
	5.3 Characterization of the Constant Proof Calculus
	5.4 Characterization of the Interval Proof Calculus

	6 Related Work and Discussion
	6.1 Related Work
	6.2 Applications and Extensions

	7 Conclusion
	References

