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Abstract This paper presents the mechanization of a process algebra for Mobile Ad hoc
Networks andWireless Mesh Networks, and the development of a compositional framework
for proving invariant properties. Mechanizing the core process algebra in Isabelle/HOL is
relatively standard, but its layered structure necessitates special treatment. The control states
of reactive processes, such as nodes in a network, aremodelled by termsof the process algebra.
We propose a technique based on these terms to streamline proofs of inductive invariance.
This is not sufficient, however, to state and prove invariants that relate states across multiple
processes (entire networks). To this end, we propose a novel compositional technique for
lifting global invariants stated at the level of individual nodes to networks of nodes.

Keywords Interactive theorem proving · Isabelle/HOL · Process algebra · Compositional
invariant proofs · Wireless Mesh Networks · Mobile Ad hoc Networks

1 Introduction and Related Work

The Algebra for Wireless Networks (AWNs) is a process algebra developed in particular
for modelling and analysing protocols for Mobile Ad hoc Networks (MANETs) and Wire-
less Mesh Networks (WMNs) [10,11], but that can be used for reasoning about routing
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and communication protocols in general. This paper reports on both its mechanization in
Isabelle/HOL [29] and the development of a compositional framework for showing invariant
properties of models.1 The techniques we describe are a response to problems encountered
during the mechanization of a model and proof of a crucial correctness property for the Ad
hoc On-demand Distance Vector (AODV) routing protocol, a widely used protocol, stan-
dardized by the IETF [31]. The AODV case study is described in detail elsewhere [5] and
we only refer to it briefly in this paper. The property we study is loop freedom, meaning
that no data packet is sent in cycles forever. Such a property can only be expressed by relat-
ing states of different (neighbouring) network nodes. Encoding such inter-node properties
in an Interactive Theorem Prover (ITP) proved quite challenging, since the proof is per-
formed inductively for an arbitrary number of nodes and the base case is a single node whose
neighbours do not yet exist. We develop a novel compositional technique to address this
challenge.

Despite extensive research on related problems [33] and several mechanized frame-
works for reactive systems [9,18,27], we are not aware of other solutions that allow the
compositional statement and proof of properties relating the states of different nodes in a
message-passing model—at least not within the strictures imposed by an ITP.

Related work AWN is a process algebra, but for the purposes of proving properties we
treat it essentially as a structured programming language and employ a technique originally
proposed by Floyd [13] and later developed by Manna and Pnueli [23], whereby a set of
semantic rules is defined to link the syntax of a program to an induced transition system.
Safety properties are then shown to hold for all reachable states by induction from a set of
initial states over the set of transitions. Rather than define the induced transition system in
terms of labels and (virtual) program counters [23, Chapter 1], we use term derivatives and
Structural Operational Semantics (SOS) rules [32].

This separation between language andmodel differs from the approach taken in formalisms
likeUNITY [8] and I/OAutomata [22], where initial states and sets of transitions are specified
directly, and also from that of TLA+ [21], where the initial states and transition relation
are written as a formula of first-order logic. The advantage of the language-plus-semantics
approach is that sequencing and branching in models is expressed by syntactic operators with
the implied changes in the underlying control state being managed by the semantic rules.
Arguably, this permits models that are easier to understand by experts in the system being
modelled. The disadvantage is some extra complexity and layers of definitions. We find,
however, that these details are well managed by ITPs and—once defined—intrude little on
the verification task.

AWN provides a unique mix of communication primitives and a treatment of data struc-
tures that are essential for studying MANET and WMN protocols with dynamic topologies
and sophisticated routing logic [11, § 1]. It supports communication primitives for one-to-
one (unicast), one-to-many (groupcast), and one-to-all (broadcast) message passing. AWN
comprises distinct layers for expressing the structure of nodes and networks. We exploit this
structure critically in our proofs, and we expect the techniques proposed in Sects. 3 and 4 to
also apply to similar layered modelling languages [15,16,24,25,28,34].

Besides this, our work differs from other mechanizations for verifying reactive systems,
likeUNITY [18], TLA+ [9], or I/OAutomata [27] (fromwhichwe drew themost inspiration),
in its explicit treatment of control states, in the form of process algebra terms, as distinct
from data states. In this respect, our approach is close to that of Isabelle/Circus [12], but it

1 The Isabelle/HOL source files can be found in the Archive of Formal Proofs (AFP) [4].
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differs in (1) the treatment of operators for composing nodes, which we model directly as
functions on automata, (2) the treatment of recursive invocations, which we do not permit,
and (3) our inclusion of a framework for compositional proofs.

Within the process algebraic tradition, other work in ITPs focuses on showing properties
of process algebras, such as the treatment of binders [1], that bisimulation equivalence is a
congruence [17,19], or properties of fix-point induction [36], while we focus on what has
been termed ‘proof methodology’ [14], and develop a compositional method for showing
correctness properties of protocols specified in a process algebra.

As an alternative to the frameworks cited above, and the work we present, Paulson’s
inductive approach [30] can be applied to show properties of protocols specified with less
generic infrastructure. In fact, it has also been applied to model the AODV protocol [39]; a
detailed comparison is given elsewhere [5, § 9]. But we think this approach to be better suited
to systems specified in a ‘declarative’ style as opposed to the strongly operational models we
consider. The question of style has practical implications. It determines the ‘distance’ between
the original specification and the formal model—perhaps surprisingly protocol descriptions
are often quite operational (this is the case for AODV [31]). It also likely influences proofs
of refinement between abstract and implementation models.

Structure and contributions Section 2 describes the mechanization of AWN. The basic
definitions are routine but the layered structure of the language and the treatment of opera-
tors on networks as functions on automata are relatively novel and essential to understanding
later sections. Section 3 describes our mechanization of the theory of inductive invariants,
closely following [23]. We exploit the structure of AWN to generate verification conditions
corresponding to those of pen-and-paper proofs [11, § 7]. Section 4 presents a compositional
technique for stating and proving invariants that relate states across multiple nodes. Basically,
we substitute ‘open’ SOS rules over the global state for the standard rules over local states
(Sect. 4.1), show the property over a single sequential process (Sect. 4.2), ‘lift’ it succes-
sively over layers that model message queueing and network communication (Sect. 4.3), and,
ultimately, ‘transfer’ it to the original model (Sect. 4.4).

Note This paper is an extended version of [6]. It presents all details with regards to the
mechanization—many of which were skipped in [6] due to lack of space. We also present
more details about the novel compositional technique for lifting global invariants, including
motivation and examples. As a case study, the framework we present in this paper was
successfully applied in the mechanization of a proof of AODV’s loop freedom, the details of
which are available in the AFP [7] and presented elsewhere [5].

2 The Process Algebra AWN

The Algebra for Wireless Networks (AWN) comprises five layers [11, § 4]: (1) sequential
processes for encoding the protocol logic as a recursive specification; (2) parallel composi-
tion of sequential processes for running multiple processes simultaneously on a single node;
(3) node expressions for encapsulating processes running on a node and tracking a node’s
address and neighbours (other nodes within transmission range); (4) partial network expres-
sions for describing networks as parallel compositions of nodes and (5) complete network
expressions for closing partial networks to further interactions with an environment. We treat
each layer as an automaton with states of a specific form and a given set of transition rules.
We describe the layers from the bottom up over the following sections.
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Fig. 1 Term constructors for sequential processes: (’k, ’p, ’l) seqp
(leading λ-abstractions are omitted, for example, λl u p. {l}[[u]] p is written {l}[[u]] p)

2.1 Sequential Processes

Sequential processes are used to encode protocol logic. Each is modelled by a (recursive)
specification Γ of type ’p ⇒ (’k, ’p, ’l) seqp, which maps process names of type ’p to terms of
type (’k, ’p, ’l) seqp, also parameterized by ’k, data states, and ’l, labels. States of sequential
processes have the form (ξ , p) where ξ is a data state of type ’k and p is a control term of type
(’k, ’p, ’l) seqp.2

Process terms are built from the constructors that are shownwith their types in Fig. 1. Here
we make use of types data, msg, and ip of application layer data, messages and IP addresses
(or any other node identifiers). These are to be defined separately for any application of AWN.
Furthermore, for any type ’t, the type of sets of objects of type ’t is denoted ’t set. The inductive
set seqp-sos, shown in Fig. 2, contains SOS rules for each constructor. It is parameterized by
a specification Γ and relates triples of source states, actions, and destination states.

The ‘prefix’ constructors are each labelled with an {l}. Labels are used to strengthen
invariants when a property is only true in or between certain states; they have no influ-
ence on control flow (unlike in [23]). The prefix constructors are assignment, guard/bind,
network synchronizations unicast/broadcast/groupcast/receive, and internal communications
send/receive/deliver.

The assignment {l}[[u]] p transforms the data state ξ deterministically into the data state ξ ’,
according to the function u, and then acts as p. ‘During’ the update a τ -action is performed.

In the original AWN [10,11], the data state ξ was defined as a partial function from data
variables to values of the appropriate type, and the assignment u modified or extended this
partial function by (re)mapping a specific variable to a new value, which could depend on
the current data state. In our mechanization the type of data states is given as an abstract
parameter of the language that is not yet instantiated in any particular way. Consequently,
u is taken to be any function of type ’k ⇒ ’k, modifying the data state. In comparison with
[10,11], our current treatment is less syntactic and more general.

The guard/bind statement {l}〈g〉 p encodes both guards and variable bindings. Here g is of
type ’k ⇒ ’k set, a function from data states to sets of data states. Executing a guard amounts to
making a nondeterministic choice of one of the data states obtainable from the current state
ξ by applying g; in case g(ξ ) is empty no transition is possible. For a valuation function h of

2 In fact, control terms are also parameterized by the type of messages, which are specific to a given protocol,
but we prefer to omit this detail from the presentation given here.
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Fig. 2 SOS rules for sequential processes: seqp-sos

type ’k ⇒ bool the guard statement is implemented as {l}〈λξ . if h ξ then {ξ } else ∅〉 p, which has
no outgoing transition if h evaluates to false. Variable binding like 〈λξ . {ξ(|no := n|) | n < 5}〉 p
returns all possible states that satisfy the binding constraint. In the original AWN [10,11],
where the data state ξ was a partial function from data variables to values, the execution
of a guard/bind construct could only extend the domain of ξ , thereby assigning values to
previously unbound variables. In our more abstract approach to data states, we must allow
any manipulation of the (as of yet unspecified) data state. As this includes changing values of
already bound variables, the guard/bind construct strictly subsumes assignment. Since this
‘misuse’ of a guard as assignment is not allowed in the original semantics of AWN [10,11],
we prefer to keep both.

The sequential process {l}unicast(sid , smsg) . p � q tries to unicast the message smsg to the
destination sid ; if successful it continues to act as p and otherwise as q. In other words,
unicast(sid , smsg) . p is prioritized over q, which is only considered when the unicast action is
not possible (¬unicast (sid ξ )). Which of the actions unicast or ¬unicast will occur depends on
whether the destination sid is in transmission range of the current node; this is implemented
by the first two rules of Fig. 7 (described later). In [10,11] the message smsg is an expression
with variables that evaluates to a message depending on the current values of those variables.
Here, more abstractly, it can be any function of type ’k ⇒ msg that constructs a message
from the current data state. The sequential process {l}broadcast(smsg) . p broadcasts smsg to the
other network nodes within transmission range.3 The process {l}groupcast(sids, smsg) . p tries
to transmit smsg to all destinations sids, and proceeds as p regardless of whether any of the
transmissions is successful.

The sequential process {l}send(smsg) . p synchronously transmits a message to another
process running on the same network node; this action can occur only when the other sequen-
tial process is able to receive the message. The sequential process {l}receive(umsg) . p receives
any message umsg either from another node, from another sequential process running on the

3 Whether a node is within transmission range or not is determined later on.
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same node, or from the client4 connected to the local node. It then proceeds as p, but with
an updated data state (the state change is triggered by the message). In the original syntax
and semantics of AWN, umsg was a data variable of type msg; here it is an abstract function
of type msg ⇒ ’k ⇒ ’k, which changes the data state. The submission of data from a client
is modelled by the receipt of a special message (Newpkt d dst), where the function Newpkt
generates a message containing the data d and the intended destination dst. Data is delivered
to the client by {l}deliver(sdata) . p.

The other constructors are unlabelled and serve to ‘glue’ processes together: The choice
construct p ⊕ q takes the union of two transition sets and hence may act either as p or as q. The
procedure call call(pn) affixes a term from the specification (Γ pn). The behaviour of call(pn) is
exactly the same as that of the sequential process that Γ associates to the process name pn. In
[10,11], on the other hand, process names pn are explicitly parameterized with a list of data
variables which can be defined by arbitrary data expressions at the call site. The semantics
of the process call involves running the process Γ pn on an updated data state, obtained
by evaluating the data expressions in the current state and assigning the resulting values to
the corresponding variables, while clearing the values of all variables that do not occur as
parameters of pn, effectively making them undefined. In the current treatment, this behaviour
is recovered by preceding a call(pn) by an explicit assignment statement. As variables cannot
be made undefined, they are cleared by setting them to arbitrary values. This change is the
biggest departure from the original definition of AWN; it simplifies the treatment of call, as
we show in Sect. 3.1, and facilitates working with automata where variable locality makes
little sense. The drawback is that the atomic ‘assign and jump’ semantics is lost, which is
sometimes inconvenient (an example is given later in Sect. 2.2).

An example sequential process We give the specification of a simple ‘toy’ protocol as a
running example. The formal AWN specification is presented in Fig. 3. Nodes following the
protocol broadcast messages containing an integer no. Each remembers the largest integer it
has received and drops messages containing smaller or equal values.

The protocol is defined by a process named PToy that maintains three variables: the integer
no; an identifier id—also an integer, which uniquely identifies a node (for example, the node’s
IP address); and an identifier nhid that stores a node address (either that of the node itself, or
the address of another node that supplied the largest number in the last comparison it made).5

The initial values of nhid and no are id and 0, respectively.
The behaviour of a single node in our toy protocol is given by the recursive specification

Γ Toy and an initial state (ξ , p) consisting of a data state ξ—defined above—and a control term
p—here the process Γ Toy PToy. The specification Γ Toy, given in Fig. 3, assigns a process term
to each process name—here only to the name PToy.

The process term Γ Toy PToy is defined as the result of applying a function labelled to two
arguments: an identifier and the actual process without labels. The labels are supplied by the
function labelled: it associates its first argument paired with a number as a label to every prefix
construct occurring as a subterm. We show these labels on the right-hand side of Fig. 3. Note
that the choice construct ⊕ and the subterms call(PToy) do not receive a label. Moreover, the
function labelled is defined in such a way that both arguments of the ⊕ receive the same label;
this way labels correspond exactly to states that can be reached during the execution of the
process.

4 The application layer that initiates packet sending and awaits receipt of a packet.
5 The protocol behaviour regarding nhid is rather arbitrary; it only serves to illustrate some forthcoming
concepts.
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Fig. 3 AWN-specification of a toy protocol

A node id running the protocolPToywill wait until it receives amessagemsg’ (line {PToy-:0}).
The protocol then updates the local data state ξ by assigning the message msg’ to the variable
msg (λξ . ξ (| msg := msg’ |)). In our scenario, there are two message constructors Pkt d src and
Newpkt d dst; both carry an identifier (src and dst) and an integer-payload d. Here, src is, by
design, the sender of the message. We require that all messages from the client of a node
must have the form Newpkt d dst. All messages sent by a node have the form Pkt d src. The
message type thus uniquely determines whether the message originated from the application
layer or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message received
is a new packet or a ‘standard’ one. In the former case, the guard/bind statement is-newpkt
‘evaluates to true’6 and copies the message content d to the variable num. Formally, is-newpkt
is defined as

is-newpkt ξ = case msg ξ of
Pkt d src ⇒ ∅

| Newpkt d dst ⇒ {ξ(|num := d|)} .
Afterwards, the process proceeds to execute the lines labelled {PToy-:3}, {PToy-:4}, and

{PToy-:5}. In the case of a ‘standard’ message, the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid, and the protocol
proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer num that came
from the incoming message, determines and stores the larger one into the variable no, and
broadcasts this value to all its neighbours with itself listed as sender (line {PToy-:4}). After
that, in line {PToy-:5}, the process calls itself recursively, after resetting the local variablesmsg,
num, and sid to arbitrary values.

Depending on the contents of the ‘standard’ message, the protocol performs two different
sequences of actions. (1) If the integer taken from the message and stored in variable num
is larger than the stored no (line {PToy-:6}), then it is stored in variable no (line {PToy-:7}) and
the sender of the message is stored in nhid (line {PToy-:8}). Before resetting the local variables
and returning to the start of the protocol by a recursive call (line {PToy-:10}), the node sends

6 By this we mean that when it is applied to the current data state it returns a non-empty set of updated data
states.
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Fig. 4 Control state structure of Γ Toy

out the just updated number no, again identifying itself as sender (line {PToy-:9}). (2) If the
integer from the message is smaller than or equal to no (line {PToy-:6}), the node considers the
message content outdated, drops the message, and calls itself recursively.

As mentioned before, every sequential process is modelled by an automaton—a record7

of two fields: a set of initial states and a set of transitions—parameterized by an address i:

ptoy i = (|init = {(toy-init i, Γ Toy PToy)}, trans = seqp-sos Γ Toy|) ,
where toy-init i yields the initial data state (|id = i, no = 0, nhid = i, msg = SOME x. True, num =
SOME x. True, sid = SOME x. True|). The last three variables are initialized to arbitrary values,
as they are considered local. A representation of the automaton toy-init i that abstracts from
the data state is depicted in Fig. 4.

2.2 Local Parallel Composition

Message sending protocols must nearly always be input enabled, that is, nodes should always
be in a state where they can receive messages.8 To achieve this, and to model asynchronous
message transmission, the protocol process is combined with a queue model. A queue can be
expressed in AWN as the specification Γ qmsg with a single process Qmsg shown in Fig. 5.
Unlike the data state of the PToy process, which mapped variable names to values, the data
state msgs of Qmsg is simply a list of messages. The control term is always ready to receive
a message (lines {Qmsg-:0}, {Qmsg-:1}, and {Qmsg-:2}), in which case it appends (@ concatenates
lists) the received message onto the state. When the state is not empty (line {Qmsg-:0}), the first

7 The generic record has type (’s, ’a) automaton, where the type ’s is the domain of states, here pairs of data
records and control terms, and ’a is the domain of actions.
8 The semantics of AWN ensures that any message transmitted by a node will be received by all intended
destinations that are within transmission range—the reasons for this design decision are given in [10,11]. In
this setting, the absence of input enabledness would give rise to the unrealistic phenomenon of blocking, the
situation where one node is unable to transmit a message simply because another one is not ready to receive it.
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Fig. 5 AWN-specification of the queue process

Fig. 6 SOS rules for parallel processes: parp-sos

element can be sent (line {Qmsg-:1}: hd returns the head of a list), and, on doing so, removes
it from the state (line {Qmsg-:2}: tl returns the tail of a list). A receive command must be
repeated at each control location to ensure input enabledness. Compared to the Qmsg process
in the original presentation of AWN [11, Process 6], there is an extra receive at {Qmsg-:2}.
It is necessary due to the modelling of parameter passing by an assignment followed by a
recursive call, which introduces a τ -transition. This is unfortunate, but eliminating parameter
passing greatly simplifies the constructions presented in Sect. 3.

The corresponding automaton is instantiated with an initially empty list:

qmsg = (|init = {([ ], Γ qmsg Qmsg)}, trans = seqp-sos Γ qmsg|) ,
The composition of the example protocol with the queue is expressed as

ptoy i 〈〈 qmsg .

This local parallel operator is a function over automata:

A 〈〈 B = (|init = init A × init B, trans = parp-sos (trans A) (trans B)|) .
This is an operator of type (’s, ’a) automaton ⇒ (’t, ’a) automaton ⇒ (’s × ’t, ’a) automaton. The
process (automaton) A 〈〈 B is a parallel composition of A and B, running on the same network
node. As formalized in Fig. 6, an action receive m of A synchronizes with an action send m
of B into an internal action τ . The receive actions of A and send actions of B cannot occur
separately. All other actions of A and B, including send actions of A and receive actions of B,
occur interleaved in A 〈〈 B. A parallel process expression denotes a parallel composition of
sequential processes—each with states (ξ , p)—with information flowing from right to left.
The variables of different sequential processes running on the same node are maintained
separately, and thus cannot be shared.

2.3 Nodes

At the node level, a local (parallel) process A is wrapped in a layer that records its address i
and tracks the set of neighbouring node addresses, initially R0. We define a function from
these two parameters and A, an arbitrary automaton, as

〈i : A : R0〉 = (|init = {s i
R0

| s∈ init A}, trans = node-sos (trans A)|) .
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Fig. 7 SOS rules for nodes: node-sos

Node states are triples denoted s i
R. Figure 7 presents the rules of node-sos. Output network

synchronizations, like groupcast or broadcast, are filtered by the list of neighbours to become
∗cast actions. So, an action R:∗cast(m) transmits a message m that can be received by the
set R of network nodes. A failed unicast attempt by the process A is modelled as an internal
action τ of the node expression.

There is no rule for propagating send m actions from sequential processes to the node
level. These actions may only occur locally when paired with a receive action; they then
become τ -transitions, which are propagated. The H¬K:arrive(m) action—instantiated in Fig. 7
as ∅¬{i}:arrive(m) and {i}¬∅:arrive(m)—is used to model a message m received simultaneously
by nodes in H and not by those in K. The rules for arrive m in Fig. 7 state that the arrival of a
message at a node happens if and only if the node receives it, whereas non-arrival can happen
at any time. This embodies the assumption that, at any time, any message that is transmitted
to a node within range of the sender is actually received by that node [10,11].

Internal actions τ and the action {i}:deliver(d) are simply inherited by node expressions from
the processes that run on these nodes. Finally, we allow actions connect(i, i’) and disconnect(i, i’)
for nodes i and i’. They model changes in network topology. Each node must synchronize
with such an action. These actions can be thought of as occurring nondeterministically or as
actions instigated by the environment of the modelled network protocol. In this formalization
node i’ is in the range of node i, meaning that i’ can receive messages sent by i, if and only if i
is in the range of i’.

2.4 Partial Networks

Partial networks are specified by values of type net-tree. A net-tree is either a node 〈i; R0〉 with
address i and a set of initial neighbours R0, or a composition of two net-trees Ψ 1‖Ψ 2. Hence it
denotes a network topology. The net-tree ((〈1; {2}〉 ‖ 〈2; {1, 3}〉) ‖ 〈3; {2}〉), for instance, puts the
three nodes 1, 2, and 3 in a linear topology where 2 is connected to 1 and 3. The name net-tree
refers to the parse tree of its syntactic expression; unlike in [10,11], it is treated as a tree
because we do not make use of the associativity of the parallel composition.
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Fig. 8 SOS rules for partial networks pnet-sos

The function pnet maps such a value, together with the process np i to execute at each
node i, here parameterized by an address, to an automaton:

pnet np 〈i; R0〉 = 〈i : np i : R0〉
pnet np (Ψ 1 ‖Ψ 2) = (|init = {s1 �s2 | s1 ∈ init (pnet np Ψ 1) ∧ s2 ∈ init (pnet np Ψ 2)},

trans = pnet-sos (trans (pnet np Ψ 1)) (trans (pnet np Ψ 2))|) .

The states of such automata mirror the tree structure of the network term; we denote
composed states by s1�s2. This structure and the node addresses remain constant during an
execution.

The preceding definitions for sequential processes, local parallel composition, nodes, and
partial networks suffice to model an example three-node network of toy processes:

(pnet (λi. ((ptoy i) 〈〈 qmsg)) ((〈1; {2}〉 ‖ 〈2; {1, 3}〉) ‖ 〈3; {2}〉)) .

The function pnet is not present in [10,11], where a partial network is defined simply as
a parallel composition of nodes, where in principle a different process could be running on
each node. With pnet we ensure that in fact the same process is running on each node, and
that this process is specified separately from the network topology.

Figure 8 presents the rules of pnet-sos. AnR:∗cast(m) action of one node synchronizes with
an action arrive m of all other nodes, where this arrive m amalgamates the arrival of messagem
at the nodes in the transmission range R of the ∗cast m, and the non-arrival at the other nodes.
The third rule of Fig. 8, in combination with the rules for arrive in Fig. 7 and the fact that
qmsg is always ready to receive m, ensures that a partial network can always perform an
H¬K:arrive(m) for any combination of H and K consistent with its node addresses. Yet pairing
with an R:∗cast(m), through the first two rules in Fig. 8, is possible only for those H and K
that are consistent with the destinations in R.

Internal actions τ and the action i:deliver(d) are interleaved in the parallel composition of
nodes that makes up a network.
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Fig. 9 SOS rules for complete networks

2.5 Complete Networks

The last layer closes a network to further interactions with an environment. It ensures that a
message cannot be received unless it is sent within the network or it is a Newpkt.

closed A = A(|trans := cnet-sos (trans A)|) .
The rules for cnet-sos are straightforward and presented in Fig. 9.

The closed-operator passes through internal actions, as well as the delivery of data to
destination nodes, this being an interaction with the outside world. The ∗cast actions are
declared internal at this level; they cannot be influenced by the outside world. The connect
and disconnect actions are passed through in Fig. 9, thereby placing them under the control
of the environment. Actions arrive m are simply blocked by the encapsulation—they cannot
occur without synchronizing with a ∗cast m—except for {i}¬K:arrive(Newpkt d dst). This action
represents new data d that is submitted by a client of the modelled protocol to node i for
delivery at destination dst.

3 Basic Invariance

This paper only considers proofs of invariance, that is, properties of reachable states and
reachable transitions. The basic definitions are classic [27, Part III].

Definition 3.1 (Reachability) Given an automaton A and an assumption I over actions,
reachable A I is the smallest set defined by the rules:

s∈ init A

s∈ reachable A I

s∈ reachable A I (s, a, s’)∈ trans A I a

s’∈ reachable A I
.

As usual, all initial states are reachable, and so is any state that can be reached froma reachable
state by a single a-transition that satisfies property I.

Definition 3.2 (Invariance) Given an automaton A and an assumption I, a predicate P is
(state) invariant, denoted A ||� (I →) P, iff ∀ s∈ reachable A I. P s.

We define reachability relative to an assumption on (input) actions I. When I is λ-. True, we
write simply A ||� P.

Using this definition of invariance, we can state a basic property of an instance of the toy
process:

ptoy i ||� onl Γ Toy (λ(ξ , l). l∈ {PToy-:2..PToy-:8} −→ nhid ξ = id ξ ) . (1)

This invariant states that between the lines labelled PToy-:2 and PToy-:8, that is, after the
assignment of PToy-:1 until before the assignment of PToy-:8, the values of nhid and id are
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equal. Here onl Γ P, defined as λ(ξ , p). ∀ l∈ labels Γ p. P (ξ , l), extracts labels from control
states, thereby converting a predicate on data states and line numbers into one on data states
and control terms. 9 Because a⊕-control term is unlabelled, the function label takes the labels
of both of its arguments; for this reason labels Γ p generally yields a set of labels rather than
a single label. As a control state call(pn) also is unlabelled, the function label associates labels
with it by unwinding the recursion; to enable this, label takes the recursive specification Γ as
an extra argument.

The statements of properties that are true of all reachable states (for example, (5), given
later) do not depend on the values of control states nor the associated labels, but their proofs
will if they involve other invariants (like that of (1)). Technically, the labels then form an
integral part of the process model. While this is unfortunate, expressing invariants in terms
of the underlying control states is simply impractical: the terms are unwieldy and susceptible
to modification.

State invariants concentrate on single states only. It is, however, often useful to characterize
properties describing possible changes of the state.

Definition 3.3 (Transition invariance) Given an automaton A and an assumption I, a predi-
cate P is transition invariant, denoted A ||≡ (I →) P, iff

∀a. I a −→ (∀ s∈ reachable A I. ∀ s’. (s, a, s’)∈ trans A −→ P (s, a, s’)) .

An example for a transition invariant of our running example is that the value of no never
decreases over time:

ptoy i ||≡ (λ((ξ , -), -, (ξ ’, -)). no ξ ≤ no ξ ’) . (2)

Here, the assumption on (input) actions I is λ-. True and hence skipped. In case we want to
restrict the statement to specific line numbers, the mechanization provides a function that
extracts labels from control states, similar to onl for state invariance:

onll Γ P = λ((ξ , p), a, (ξ ’, p’)). ∀ l∈ labels Γ p. ∀ l’∈ labels Γ p’. P ((ξ , l), a, (ξ ’, l’)) .

Our invariance proofs follow the compositional strategy recommended by de Roever et
al. in [33, § 1.6.2]. That is, we show properties of sequential process automata using the
induction principle of Definition 3.1, and then apply generic proof rules to successively lift
such properties over each of the other layers. The inductive assertion method, as stated by
Manna and Pnueli in rule inv- b of [23], requires a finite set of transition schemas, which,
together with the obligation on initial states yields a set of sufficient verification conditions.
We develop this set in Sect. 3.1 and use it to derive the main proof rule presented in Sect. 3.2
together with some examples.

3.1 Control Terms

Given a specification Γ over finitely many process names, we can generate a finite set of
verification conditions because transitions from (’s, ’p, ’l) seqp terms always yield subterms
of terms in Γ . But, rather than simply considering the set of all subterms, we prefer to define
a subset of ‘control terms’ that reduces the number of verification conditions, avoids tedious
duplication in proofs, and corresponds with the obligations considered in pen-and-paper

9 Using labels in this way is standard, see, for instance, [23, Chap. 1], or the ‘assertion networks’
of [33, § 2.5.1].
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proofs. The main idea is that the ⊕ and call operators serve only to combine process terms:
they are, in a sense, executed recursively by seqp-sos (see Sect. 2.1) to determine the actions
that a term offers to its environment. This is made precise by defining a relation between
sequential process terms.

Definition 3.4 (�Γ ) For a (recursive) specification Γ , let �Γ be the smallest relation such
that (p ⊕ q) �Γ p, (p ⊕ q) �Γ q, and (call(pn)) �Γ Γ pn.

We write �Γ
∗ for its reflexive transitive closure. We consider a specification to be well

formed, when the inverse of this relation is well founded:

wellformed Γ = wf {(q, p) | p �Γ q} .10

Most of our lemmas apply only to well-formed specifications, since otherwise functions over
the terms they contain cannot be guaranteed to terminate. Neither of these two specifications
is well formed: Γ a (1) = p ⊕ call(1); Γ b(n) = call(n+1).

We will also need a set of ‘start terms’ of a process—the subterms that can act directly.

Definition 3.5 (sterms) Given a wellformed Γ and a sequential process term p, sterms Γ p
is the set of maximal elements related to p by the reflexive transitive closure of the �Γ

relation:11
sterms Γ (p ⊕ q) = sterms Γ p ∪ sterms Γ q ,
sterms Γ (call(pn)) = sterms Γ (Γ pn) , and,
sterms Γ p = {p} otherwise.

As an example, consider the sterms of the Γ qmsg Qmsg process from Fig. 5.

sterms Γ qmsg (Γ qmsg Qmsg) ={
{Qmsg-:0}receive(λmsg msgs. msgs @ [msg]) . call(Qmsg) ,
{Qmsg-:0}〈λmsgs. if msgs �= [ ] then {msgs} else ∅〉 ({Qmsg-:1}send(λmsgs. hd msgs) · · · )

}
,

which contains the two subterms from either side of the initial choice: one that receives and
loops, and another that begins by testing the value of msgs. An execution of the Γ qmsg Qmsg
process amounts to an execution of one of these two terms.

We also define ‘local start terms’ by stermsl (p1 ⊕ p2) = stermsl p1 ∪ stermsl p2 and otherwise
stermsl p = {p} to permit the sufficient syntactic condition that a specification Γ is well formed
if call(pn’) /∈ stermsl (Γ pn).

Since sterms Γ qmsg (Γ qmsg Qmsg) = stermsl (Γ qmsg Qmsg), and Qmsg is the only process
in Γ qmsg, we can conclude that Γ qmsg is well formed,

Similarly to theway that start terms act as direct sources of transitions,wedefine ‘derivative
terms’ giving possible ‘active’ destinations of transitions.

10 A specification is well formed iff it can be converted into one that is weakly guarded in the sense of [26].
11 This characterization is equivalent to {q | p �Γ

∗ q ∧ (�q’. q �Γ q’)}. Termination follows from
wellformed Γ , that is, wellformed Γ �⇒ sterms-dom (Γ , p) for all p.
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Definition 3.6 (dterms) Given a wellformed Γ and a sequential process term p, dterms p is
defined by:

dterms Γ (p ⊕ q) = dterms Γ p ∪ dterms Γ q ,
dterms Γ (call(pn)) = dterms Γ (Γ pn) ,

dterms Γ ({l}〈g〉 p) = sterms Γ p ,
dterms Γ ({l}[[u]] p) = sterms Γ p ,
dterms Γ ({l}unicast(sid , smsg) . p � q) = sterms Γ p ∪ sterms Γ q ,
dterms Γ ({l}broadcast(smsg) . p) = sterms Γ p ,
dterms Γ ({l}groupcast(sids, smsg) . p) = sterms Γ p ,
dterms Γ ({l}send(smsg) . p) = sterms Γ p ,
dterms Γ ({l}deliver(sdata) . p) = sterms Γ p , and,
dterms Γ ({l}receive(umsg) . p) = sterms Γ p .

For Γ qmsg Qmsg, for example, we calculate dterms Γ qmsg (Γ qmsg Qmsg) =

⎧⎪⎪⎨
⎪⎪⎩

{Qmsg-:0}receive(λmsg msgs. msgs @ [msg]) . call(Qmsg) ,
{Qmsg-:0}〈λmsgs. if msgs �= [ ] then {msgs} else ∅〉 ({Qmsg-:1}send(λmsgs. hd msgs) · · · ) ,
{Qmsg-:1}send(λmsgs. hd msgs) . ({Qmsg-:2}[[λmsgs. tl msgs]] call(Qmsg) ⊕ · · · ) ,
{Qmsg-:1}receive(λmsg msgs. msgs @ [msg]) . call(Qmsg)

⎫⎪⎪⎬
⎪⎪⎭
.

These derivative terms overapproximate the set of sterms of processes that can be reached in
exactly one transition, since they do not consider the truth of guards (like msgs �= [ ]) nor the
willingness of communication partners (like receive(. . .)).

These auxiliary definitions lead to a succinct definition of the set of control terms of a
specification.

Definition 3.7 (cterms) For a specification Γ , cterms is the smallest set where:

p∈ sterms Γ (Γ pn)

p∈ cterms Γ

q∈ cterms Γ p∈dterms Γ q

p∈ cterms Γ

There are, for example, six control terms in cterms Γ qmsg =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{Qmsg-:0}receive(λmsg msgs. msgs @ [msg]) . call(Qmsg) ,
{Qmsg-:0}〈λmsgs. if msgs �= [ ] then {msgs} else ∅〉 ({Qmsg-:1}send(λmsgs. hd msgs) · · · ) ,
{Qmsg-:1}send(λmsgs. hd msgs) . ({Qmsg-:2}[[λmsgs. tl msgs]] call(Qmsg) ⊕ · · · ) ,
{Qmsg-:2}[[λmsgs. tl msgs]] call(Qmsg) ,
{Qmsg-:2}receive(λmsg msgs. tl msgs @ [msg]) . call(Qmsg) ,
{Qmsg-:1}receive(λmsg msgs. msgs @ [msg]) . call(Qmsg)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

In terms of the main example, the set cterms Γ Toy has fourteen elements; exactly one for
each printed line in Fig. 3 or each transition in Fig. 4.12

When proving state or transition invariants of the form onl Γ P or onll Γ P, these are the
only control states for which the conditions of Definitions 3.2 and 3.3 need be checked.

As for sterms, it is useful to define a local version independent of any specification.

12 Of all the control terms, only those beginning with unicast may induce more than one transition.
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Definition 3.8 (ctermsl) Let ctermsl be the smallest set defined by:
ctermsl (p ⊕ q) = ctermsl p ∪ ctermsl q,
ctermsl (call(pn)) = {call(pn)},
ctermsl ({l}〈g〉 p) = {{l}〈g〉 p} ∪ ctermsl p ,
ctermsl ({l}[[u]] p) = {{l}[[u]] p} ∪ ctermsl p ,
ctermsl ({l}unicast(sid , smsg) . p � q) = {{l}unicast(sid , smsg) . p � q}

∪ (ctermsl p ∪ ctermsl q) ,
ctermsl ({l}broadcast(smsg) . p) = {{l}broadcast(smsg) . p} ∪ ctermsl p ,
ctermsl ({l}groupcast(sids, smsg) . p) = {{l}groupcast(sids, smsg) . p} ∪ ctermsl p ,
ctermsl ({l}send(smsg) . p) = {{l}send(smsg) . p} ∪ ctermsl p ,
ctermsl ({l}deliver(sdata) . p) = {{l}deliver(sdata) . p} ∪ ctermsl p , and,
ctermsl ({l}receive(umsg) . p) = {{l}receive(umsg) . p} ∪ ctermsl p .

For our running example we have ctermsl (Γ qmsg Qmsg) = cterms Γ qmsg ∪ {call(Qmsg)}.
Including call terms ensures that q∈ stermsl p implies q∈ ctermsl p, which facilitates proofs.
For wellformed Γ, ctermsl allows an alternative definition of cterms,

cterms Γ = {p | ∃pn. p∈ ctermsl (Γ pn) ∧ not-call p} . (3)

While the original definition is convenient for developing the meta-theory, due to the accom-
panying induction principle, this one is more useful for systematically generating the set of
control terms of a specification, and thus, as we will see, sets of verification conditions. And,
for wellformed Γ , we have as a corollary that

cterms Γ = {p | ∃pn. p∈ subterms (Γ pn) ∧ not-call p ∧ not-choice p} , (4)

where subterms, not-call, and not-choice are defined in the obvious way.
Our example already indicates that cterms over-approximates the set of start terms of

reachable control states. Formally we have the following theorem.

Lemma 3.9 For wellformed Γ and automaton A where control-within Γ (init A) and trans A =
seqp-sos Γ , if (ξ , p)∈ reachable A I and q∈ sterms Γ p then q∈ cterms Γ .

The predicate control-within Γ Z = ∀ (ξ , p)∈Z. ∃pn. p∈ subterms (Γ pn) serves to state that the
initial control state is within the specification.

3.2 Basic Proof Rule and Invariants

State invariants such as (1) are solved using a procedure whose soundness is justified as a
theorem. The proof exploits (3) and Lemma 3.9.

Theorem 3.10 To prove A ||� (I →) onl Γ P, where wellformed Γ , simple-labels Γ ,
control-within Γ (init A), and trans A = seqp-sos Γ , it suffices

(init) for arbitrary (ξ , p)∈ init A and l∈ labels Γ p, to show P (ξ , l), and,
(trans) for arbitrary p∈ ctermsl (Γ pn), but not-call p, and l∈ labels Γ p, given that p∈ sterms

Γ pp for some (ξ , pp)∈ reachable A I, to assume P (ξ , l), and then for any a with I a and
any (ξ ’, q) such that ((ξ , p), a, (ξ ’, q))∈ seqp-sos Γ and l’∈ labels Γ q, to show P (ξ ’, l’).

Here, simple-labels Γ = ∀pn. ∀p∈ subterms (Γ pn). ∃! l. labels Γ p = {l}: each subterm must
have exactly one label, that is,⊕ terms must be labelled consistently. The specification Γ c Q =
{Q-:1}[[f]] call(Q)⊕ {Q-:2}[[g]] call(Q), for updates f and g, does not satisfy simple-labels. Overlook-
ing the technicalities, Theorem 3.10 defines the expected set of verification conditions: we
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must show that a property P holds of all initial states and that it is preserved by all transitions
from control terms in a specification Γ .

We incorporate this theorem into a generic tactic that (1) applies it as an introduction
rule, (2) replaces p∈ ctermsl (Γ pn) by a disjunction over the values of pn, (3) applies Defini-
tion 3.8 and repeated simplifications of Γ s and eliminations on disjunctions to generate one
subgoal (verification condition) for each control term, (4) replaces control term derivatives,
the subterms in Definition 3.6, by fresh variables, and, finally, (5) tries to solve each subgoal
by simplification. Step 4 replaces potentially large control terms by their (labelled) heads,
which is important for readability and prover performance. The tactic takes as arguments a
list of existing invariants to include after having applied the introduction rule and a list of
lemmas for trying to solve any subgoals that survive the final simplification. There are no
schematic variables in the subgoals and we benefit greatly from Isabelle’s parallel_goals
tactical [38].

In practice, one states an invariant, applies the tactic, and examines the resulting goals.
One may need new lemmas for functions over the data state or explicit proofs for difficult
goals. That said, we find that the tactic generally dispatches the uninteresting goals, and the
remaining ones typically correspond with the cases treated explicitly in the pen-and-paper
proofs [5].

Using the generic tactic, the verification of (1) is fully automatic. Isabelle rapidly dis-
patches the fourteen cases; one for each element of ctermsl Γ Toy.

For transition invariants, we show a counterpart to Theorem 3.10, and declare it to the
tactic described above.

Theorem 3.11 To prove A ||≡ (I →) onll Γ P, where wellformed Γ , simple-labels Γ ,
control-withinΓ (init A), and trans A = seqp-sos Γ, it suffices for arbitrary p∈ ctermsl (Γ pn),
but not-call p, and l∈ labels Γ p, given that p∈ sterms Γ pp for some (ξ , pp)∈ reachable A I, for
any a with I a, and for any (ξ ’, q) such that ((ξ , p), a, (ξ ’, q))∈ seqp-sos Γ and l’∈ labels Γ q, to
show P ((ξ , l), a, (ξ ’, l’)).

Again, stripped of its technicalities, this theorem simply requires checking a predicate P
across all transitions from all control terms in a specification Γ .

Using Theorem 3.11 we can prove that, within our toy-protocol, the value of no never
decreases (Eq. (2)). Isabelle dispatches all cases but one, leaving the goal no ξ ≤ no ξ ’ to
be shown after the update [[λξ . ξ (|nhid := sid ξ |)]] at line {PToy-:7}. In fact, Isabelle determines
that no ξ ’ = num ξ , and hence it suffices to prove no ξ ≤ num ξ before the update. A manual
inspection shows that neither no ξ nor num ξ change after the guard is evaluated and hence
that the statement must be true. However, Isabelle cannot ‘inspect’ the specification and we
must introduce an auxiliary invariant:

ptoy i ||� onl Γ Toy (λ(ξ , l). l∈ {PToy-:7..PToy-:8} −→ no ξ ≤ num ξ ) .

This state invariant is proven by Isabelle immediately, using our tactic; afterwards the tran-
sition invariant ptoy i ||≡ (λ((ξ , -), -, (ξ ’, -)). no ξ ≤ no ξ ’) passes without difficulty.

4 Open Invariance

The analysis of network protocols often requires ‘inter-node’ invariants, like

wf-net-tree Ψ �⇒ closed (pnet (λi. ptoy i 〈〈 qmsg) Ψ ) ||�
netglobal (λσ . ∀ i. no (σ i) ≤ no (σ (nhid (σ i)))),

(5)
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which states that, for any network topology, specified as a net-treewith disjoint node addresses
(wf-net-tree Ψ ), the value of no at a node is never greater than its value at the ‘next hop’—the
address in nhid. This is a property of a global state σ mapping addresses to corresponding
local data states ξ .

We build a global state in two steps. The first step maps a tree of states to a partial function
from addresses to the data states of node processes:

netlift ps (s i
R) = [i �→ fst (ps s)] ,

netlift ps (s � t) = netlift ps s ++ netlift ps t .

The netlift function is parameterized by a ‘process selection’ function ps that is applied to
the state of a node process—that is, a state of the np i of Sect. 2.4. In typical applications,
such a state is the local parallel composition of a protocol process and a message queue
(see Sect. 2.2). In such a case, ps selects just the protocol process, while abstracting from
the queue. The first netlift rule associates the node address i with the process data state. The
fst elides the local component of the process state. The second rule concatenates the partial
maps generated for each branch of the state tree. The assumption of disjoint node addresses
is critical for reasoning about the resulting map.

The idea is to treat all (local) data states ξ as a single global state σ and to abstract from
local details like the process control state and queue. The local details are important for
stating and showing intermediate lemmas, but their inclusion in global invariants would be
an unnecessary complication.

The second step in building the global state is to add default elements df for undefined
addresses i. We first define the auxiliary function

default df f = (λi. case f i of None ⇒ df i | Some s ⇒ s) ,

and then apply it to the result of netlift in the definition of netglobal. For our example we set

netglobal P = λs. P (default toy-init (netlift fst s)) .

Basically, we associate a state with every node address by setting the state at non-existent
addresses to the initial state (here toy-init). The advantage is that invariants and associated
proofs need not consider the possibility of an undefined state or, in other words, that σ i could
be None. In (5), for example, this convention avoids three guards on address definedness.
One must decide, however, whether this convention is appropriate for a given property.

While we can readily state inter-node invariants of a complete model, showing them
compositionally is another issue. Sections 4.1 and 4.2 present a way to state and prove such
invariants at the level of sequential processes—in our example that is, with only ptoy i left
of the turnstile. Sections 4.3 and 4.4 present, respectively, rules for lifting such results to
network models and for recovering invariants like (5).

4.1 The Open Model

In (the standard model of) AWN as presented in Sect. 2, a network state is a closed parallel
composition of the states of the nodes in the network, arranged in a tree structure. A state of a
node is, in turn, awrapper around a local parallel composition of states of sequential processes,
each consisting of a local data state ξ and a control term p. To reason compositionally about the
relations between these local data states, we introduce the open model of AWN. This model
collects relevant information from the individual local states ξ into a single global state σ . For
our applications so far,we have not needed to includeall local state elements in this global data
state; in fact we need only one local data state per node, namely the one stemming from the
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leftmost component of the (non-commutative) local parallel compositionof processes running
on that node. The leftmost component is by convention the main protocol process. This type
of global state is not only sufficient for our purposes, but also easier to manipulate in Isabelle.

Recall that the data type ip contains identifiers for all nodes that could occur in a network.
Since the leftmost parallel process running on a node has a local data state of type ’k, our
global data state is of type ip ⇒ ’k. As described previously, identifiers that are not in a given
network are mapped to default values.

In the open model, a state of a network is described as a pair (σ , s) of such a global state
and a closed parallel composition s of the control states of the nodes in the network. The
control state of a node is a wrapper around a local parallel composition of states of sequential
processes, where we take only the control term p from the state (ξ , p) of the leftmost parallel
process running on the node, and the entire state from all other components. As a result, a
state in the open model contains exactly the same information as a state in the default model,
even if it is arranged differently.

Figures 10–14 present the SOS rules for the open model. Many of them are similar to the
rules presented in Sect. 2; for the sake of completeness we list them nevertheless.

4.1.1 Sequential Processes

The rules for the sequential control terms in the open model, oseqp-sos, are presented in
Fig. 10. They are nearly identical to the ones in the original model, but have to be parame-

Fig. 10 Sequential processes: oseqp-sos
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terized by an address i and constrain only that entry of the global state, either to say how it
changes (σ ’ i = u (σ i)) or that it does not change (σ ’ i = σ i). These rules do not restrict changes
in the data state of any other node j (j �= i). In principle, the data states of these nodes can change
arbitrarily, so that any state (σ , p) has infinitely many outgoing transitions. However, the com-
position with other nodes, introduced in a higher layer of the process algebra, will limit the
set of outgoing transitions by combining the restrictions imposed by each of the nodes.

4.1.2 Local Parallel Composition

The states (σ , s) in an automaton of the open model are of type (ip ⇒ ’k) × ’s with
ip ⇒ ’k the type of global data states and ’s the type of control states. Hence, such
an automaton has type ((ip ⇒ ’k) × ’s, ’a) automaton. The local parallel composition
of the open model pairs an open automaton with a standard one, and thus has type
((ip ⇒ ’k) × ’s, ’a) automaton ⇒ (’t, ’a) automaton ⇒ ((ip ⇒ ’k) × (’s × ’t), ’a) automaton.

The rules for oparp-sos, depicted in Fig. 11, only allow the first sub-process to constrain
σ : the global data state that appears in the parallel composition is simply taken from its first
component. This choice precludes comparing the states of qmsgs (and any other local filters)
across a network, but it also simplifies the mechanics and use of this layer of the framework.
Since our mechanization aims at the verification of (routing) protocols [5], which nearly
always implement a queue, simplifying the mechanization in this way seems reasonable. The
treatment of the other layers is independent of this choice. So, if our work were to be applied
in another setting where queues are not used, or where data states of more than one parallel
control term need to be lifted to a control state, only this layer need be adapted.

4.1.3 Nodes and Partial Networks

The sets onode-sos (Fig. 12) and opnet-sos (Fig. 13) need not be parameterized by an address
since they are generated inductively from lower layers. Together they constrain parts of σ .
This occurs naturally for rules like those for arrive and ∗cast, where the synchronous com-
munication serves as a conjunction of constraints on different parts of σ . But for others that
normally only constrain a single element, like those for τ , assumptions (∀ j �= i. σ ’ j = σ j) are
introduced here and dispatched later (Sect. 4.4). Such assumptions aid later proofs, but they
must be justified when transferring results to closed systems.

4.1.4 Complete Networks

The rules for ocnet-sos are shown in Fig. 14. Each rule includes a precondition that ensures
that elements not addressed within a model do not change: net-ips gives the set of node
addresses in a state of a partial network.

Fig. 11 Parallel processes: oparp-sos
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Fig. 12 Nodes: onode-sos

4.1.5 Application

Wenow show how to construct an openmodel. For the running example, a sequential instance
of the toy protocol is defined as

optoy i = (|init = {(toy-init, Γ Toy PToy)}, trans = oseqp-sos Γ Toy i|) ,

combined with the standard qmsg process into

onp i = optoy i 〈〈i qmsg ,
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Fig. 13 Partial networks: opnet-sos

Fig. 14 Complete networks: ocnet-sos

using the operator

A 〈〈i B = (|init = {(σ , (s, t)) | (σ , s)∈ init A ∧ t∈ init B},

trans = oparp-sos i (trans A) (trans B)|),

and lifted to the node level via the open node constructor

〈i : onp : R0〉o = (|init = {(σ , s i
R0
) | (σ , s)∈ init onp}, trans = onode-sos (trans onp)|) .
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Similarly, to map a net-tree term to an open model we define:

opnet onp 〈i; R0〉 = 〈i : onp i : R0〉o
opnet onp (Ψ 1‖Ψ 2) = (|init = {(σ , s1�s2) | (σ , s1)∈ init (opnet onp Ψ 1)

∧ (σ , s2)∈ init (opnet onp Ψ 2)
∧ net-ips s1 ∩ net-ips s2 = ∅},

trans = opnet-sos (trans (opnet onp Ψ 1)) (trans (opnet onp Ψ 2))|) .
The third requirement on initial states makes the open model non-empty only for net-trees
with disjoint node addresses. Including such a constraint within the open model, rather than
as a separate assumption like the wf-net-tree n in (5), eliminates an annoying technicality from
the inductions described in Sect. 4.3. As with the extra premises in the open SOS rules, we
can freely adjust the open model to facilitate proofs, but each ‘encoded assumption’ becomes
an obligation that must be discharged in the transfer lemma of Sect. 4.4.

Of course, the above constructs apply to any function onp from addresses to automata in
the open model, that is, any onp of type ip ⇒ ((ip ⇒ ’k) × ’s, ’a) automaton.

An operator for adding the last layer is also readily defined by

oclosed A = A(|trans := ocnet-sos (trans A)|) ,
giving all the definitions necessary to turn a standard model into an open one.

4.2 Open Invariants

The basic definitions of reachability, invariance, and transition invariance, Definitions
3.1–3.3, apply to open models since they are given for generic automata, but constructing
a compositional proof requires considering the effects of both synchronized and interleaved
actions of possible environments. Our automaton A could, for instance, be a partial network,
consisting of several nodes, and the environment could be another partial network running
in parallel. An action performed by the environment and the automaton together, or indeed,
since the distinction is unimportant here, by the automaton alone, is termed synchronized
and an action made by the environment without the participation of the automaton is termed
interleaved. We identify the nature of a synchronized action by the environment through the
action of A that synchronizes with it. We focus first of all on the case where A is a single
node i.

The proper analysis of properties of A, such as (5), often requires assumptions on the
behaviour of the environment.We consider assumptions on both synchronized and interleaved
actions.

A typical example for an assumption on synchronized actions is

(∀ j. j �= i −→ no (σ j) ≤ no (σ ’ j)) ∧ orecvmsg msg-ok σ a , (6)

where orecvmsg applies a predicate (here msg-ok) to receive actions and is otherwise true:
msg-ok σ (Pkt data src) = (data≤ no (σ src)) andmsg-ok σ (Newpkt d dst) = True. So, the assumption
manifests two properties of the environment (nodes that are not equal to i) (1) it guarantees
that all nodes different from i preserve the property that the value of no cannot be decreased
by the protocol; (2) whenever a Pkt message is sent, the value d stored in the message is
smaller than or equal to the current value of no, stored at the sender of the message src. The
synchronization occurs via the exchange of messages.

A typical example for an interleaved (un-synchronized) action from the environment is

(∀ j. j �= i −→ no (σ j) ≤ no (σ ’ j)) ∧ σ ’ i = σ i , (7)
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Fig. 15 Open reachability with assumptions on synchronized and interleaved actions

This assumption states that (1) nodes that are not equal to i do not decrease the value of no—as
before—and (2) that the data state at node i does not change. So transitions of the environment
may interleave with actions performed by node i, as long as they are ‘well-behaved’ and do
not interfere with the state of i.

Definition 4.1 (Open reachability) Given an automaton A and assumptions S and U over,
respectively, synchronized and interleaved actions of the environment, oreachable A S U is
the smallest set defined by the rules:

(σ , s)∈ init A

(σ , s)∈ oreachable A S U

(σ , s)∈ oreachable A S U U σ σ ’

(σ ’, s)∈ oreachable A S U

(σ , s)∈ oreachable A S U ((σ , s), a, (σ ’, s’))∈ trans A S σ σ ’ a

(σ ’, s’)∈oreachable A S U
.

The first rule declares all initial states reachable. The second declares as reachable all states
that result from an interleaving transition of the environment that satisfies U and where the
process s does not perform any action. In the third rule process s performs an action that
yields a reachable state if s in combination with the global data state was reachable and if
the assumption S is respected by the action and the environment. Figure 15 illustrates the
main idea of synchronized and interleaved actions—the solid arrow represents an action a
performed by state (σ , s), the dashed arrows indicate transitions taken by other nodes (on the
left in synchrony with action a).

In practice, we use restricted forms otherwith E N I and other E N of the assumptions S
and U, respectively:

otherwith E N I σ σ ’ a = (∀ i. i /∈ N −→ E (σ i) (σ ’ i)) ∧ I σ a , and (8)

other E N σ σ ’ = ∀ i. if i∈N then σ ’ i = σ i else E (σ i) (σ ’ i). (9)

The requirements (6) and (7), presented above, have exactly these forms.
The assumptions otherwith and other are parameterized with a set N of type ip set of

scoped nodes—those that occur in the control states of the automaton. They both restrict
the environments under consideration by applying a predicate E of type ’s ⇒ ’s ⇒ bool to
possible changes of (local) data states of nodes i of the environment. In addition, otherwith
permits constraints on the information I from shared actions, like broadcast or receive. These
constraints refer to the action a and the global data state σ .

In contrast to (8), Eq. (9) excludes changes in scoped nodes (σ ’ i = σ i).

Definition 4.2 (Open invariance) Given an automaton A and assumptions S and U over
synchronized and interleaved actions, respectively, a predicateP is an open invariant, denoted
A |� (S, U →) P, iff ∀ s∈oreachable A S U. P s.

It follows easily that existing invariants can be made open. In practice, this means that most
invariants can be shown in the basic context but still exploited in the more complicated one.
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Fig. 16 Schema of the overall proof structure

Lemma 4.3 Given an invariant A ||� (I →) P where trans A = seqp-sos Γ , and any pred-
icate F, there is an open invariant A’ |� (λ- -. I, other F {i} →) (λ(σ , p). P (σ i, p)) where
trans A’ = oseqp-sos Γ i, provided that init A = {(σ i, p) | (σ , p)∈ init A’}.

Open transition invariance and a similar transfer lemma are defined similarly. Themeta theory
for basic invariants is also readily adapted, in particular,

Theorem 4.4 To show A |� (S, U →) onl Γ P, in addition to the conditions and the obligations
(init) and (trans) of Theorem 3.10, suitably adjusted, it suffices,

(env) for arbitrary (σ , p)∈ oreachable A S U and l∈ labels Γ p,
to assume both P (σ , l) and U σ σ ’, and then to show P (σ ’, l).

This theorem (together the counterpart of Theorem 3.11 for open transition invariance) is
declared to the tactic described in Sect. 3.2 and proofs proceed as before, but with the new
obligation to show invariance over interleaved transitions.

We finally have sufficient machinery to state and prove Invariant (5) at the level of a
sequential process:

optoy i |� (otherwith nos-inc {i} (orecvmsg msg-ok), other nos-inc {i} →)
(λ(σ , -). no (σ i) ≤ no (σ (nhid (σ i)))) ,

(10)

where nos-inc ξ ξ ’ = no ξ ≤ no ξ ’, So, given that the variables no in the environment never
decrease and that incoming Pkts reflect the state of the sender, there is a relation between the
local node and the next hop. Similar invariants occur in proofs of realistic protocols [5].

4.3 Lifting Open Invariants

The preceding two sections provide enough machinery to state and show global invariants at
the level of sequential processes, that is, over automata like optoy i in Invariant (10). It still
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remains to extend such results to models of entire networks, and ultimately to re-establish
them in the original model of Sect. 2.

Our approach is sketched in Fig. 16. We prove as many invariants as possible in the
closed sequential model (seqp-sos) as described in Sect. 3.2. These invariants are extended
to the open sequential model (oseqp-sos) using Lemma 4.3, where they support proofs of the
forms of global invariants described in Sect. 4.2. Invariants that cannot be stated in seqp-sos,
because they interrelate the states of multiple nodes, are proved directly in oseqp-sos using
Theorem4.4 and its counter part for open transition invariance.Once established in oseqp-sos,
global invariants can be lifted successively over the composition operators of the open model
(oparp-sos, onode-sos, opnet-sos, ocnet-sos), using the lemmas described in this section, and
then transferred into the closed complete model (cnet-sos), using the lemma described in the
next section. Figure 16 shows, in grey, examples of the forms of invariants at each stage. The
goal is to show a property P over an entire arbitrary network in the closed model (at top-left).
The property P is proven via a succession of intermediate invariants, starting with P1, which
is expressed relative to a single node, possibly in relation to the rest of the network (P ′

1). At
each step its form changes slightly (P ′

2, P
′
3, P

′
4, and P ′

5) to hide technical details introduced
at each layer and as its range extends to multiple nodes.

The first lifting rule (Corollary 4.8) treats composition with the qmsg process. It mixes
oreachable and reachable predicates: the former for the automaton being lifted, the latter
for properties of qmsg. Two main properties of qmsg are required: only received messages
are added to the queue and sent messages come from the queue. They are shown using the
techniques of Sect. 3.

Lemma 4.5 qmsg ||≡ (λ((msgs, q), a, (msgs’, q’)).
case a of receive m ⇒ set msgs’ ⊆ set (msgs @ [m])

| - ⇒ set msgs’ ⊆ set msgs).

Lemma 4.6 qmsg ||≡ (λ((msgs, q), a, -). sendmsg (λm. m∈ set msgs) a).

These two properties of qmsg are used to prove a lemma that decomposes open reachability
of A 〈〈i qmsg into open reachability of A and reachability of qmsg.

Lemma 4.7 (qmsg reachability)
Given (σ , (s, (msgs, q)))∈ oreachable (A 〈〈i qmsg) S U, with assumptions on synchronizing

and interleaved transitions S = otherwith E {i} (orecvmsg M) and U = other F {i}, and provided

1. F is reflexive,
2. for all ξ , ξ ’, E ξ ξ ’ implies F ξ ξ ’,
3. A |≡ (S, U →) (λ((σ , -), -, (σ ’, -)). F (σ i) (σ ’ i)), and,
4. for all σ , σ ’, m, ∀ j. F (σ j) (σ ’ j) and M σ m imply M σ ’ m,

then (σ , s)∈oreachable A S U and (msgs, q)∈ reachable qmsg (recvmsg (M σ )), and furthermore
∀m∈ set msgs. M σ m.

In the qmsg part of the local state (msgs, q),msgs is a list of messages and q is the control state
of the queue. We write set msgs to generate a set of messages from the list of messages. The
key intuition behind the four clauses is that every message m received, queued, and sent by
qmsgmust satisfyM σ m. That is, the properties of messages received into the queue continue
to hold—even as the environment and thus the original senders act—until those messages are
transmitted from the queue to the automaton A. The proof is by induction over oreachable.
The M’s are preserved when the external environment acts independently (1, 4), when it acts
synchronously (2, 4), and when the local process acts (3, 4).
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The preceding lemma allows open reachability of the parallel composition to be decom-
posed into (open) reachability of its components. It follows easily that an invariant of the
principle component (A) is also an invariant of the composition.

Corollary 4.8 (qmsg lifting) Given A |� (S, U →) (λ(σ , -). P σ ), with the predicates
S = otherwith E {i} (orecvmsg M) and U = other F {i}, and provided

1. F is reflexive,
2. for all ξ , ξ ’, E ξ ξ ’ implies F ξ ξ ’,
3. A |≡ (S, U →) (λ((σ , -), -, (σ ’, -)). F (σ i) (σ ’ i)), and,
4. for all σ , σ ’, m, ∀ j. F (σ j) (σ ’ j) and M σ m imply M σ ’ m,

then A 〈〈i qmsg |� (S, U →) (λ(σ , -). P σ ).

This lifting rule is specific to the queue model presented in Fig. 5. Changes to the model may
necessitate changes to the rule or its proof, or indeed, a different parallel composition would
require a new rule and proof. No assumptions are made, however, on the structure of A, the
automaton being lifted.

The rule for lifting to the node level is straightforward since a node simply encapsulates
the state of the underlying model. It is necessary, though, to adapt assumptions on receive
actions (orecvmsg) to arrive actions (oarrivemsg), but this is essentially a minor technicality.

Lemma 4.9 (onode reachability) If, for all ξ and ξ ’, E ξ ξ ’ implies F ξ ξ ’, then given
(σ , s i

R)∈oreachable (〈i : A : R0〉o) (otherwith E {i} (oarrivemsg M)) (other F {i}) it follows that

(σ , s)∈oreachable A (otherwith E {i} (orecvmsg M)) (other F {i}).

The sole condition E ξ ξ ’ ⇒ F ξ ξ ’ is needed because certain node-level actions—namely
connect, disconnect, and ∅¬{i}:arrive(m)—synchronize with the environment (giving E ξ ξ ’)
but appear to ‘stutter’ (requiring F ξ ξ ’) relative to the underlying process. That is, showing
oreachable by induction involves the three cases in Definition 4.1. The first two, initial states
and interleaved actions, followdirectly from the induction hypothesis at the node level. For the
third, synchronized actions where A participates also follow directly, but when the node layer
acts alonewe only know that the state component ofA is unchanged (σ ’ i = σ i) and that changes
in the environment components (σ ’ j for all j �=i) satisfy the synchronizing assumption (E).
The implication between E and F gives other F {i} and thus open reachability in A is preserved
by applying the rule for an interleaved transition.

Corollary 4.10 (onode lifting) If, for all ξ and ξ ’,E ξ ξ ’ implies F ξ ξ ’, then givenA |� (otherwith
E {i} (orecvmsg M), other F {i} →) (λ(σ , -). P σ ) it follows that

〈i : A : R0〉o |� (otherwith E {i} (oarrivemsg M), other F {i} →) (λ(σ , -). P σ ).

The lifting rule for partial networks is the most demanding to state and prove. We require
the function net-tree-ips, which gives the set of addresses in a net-tree. It is defined in the
obvious way:

net-tree-ips 〈i; R0〉 = {i} , and
net-tree-ips (Ψ 1‖Ψ 2) = net-tree-ips Ψ 1 ∪ net-tree-ips Ψ 2 .

This function is important for bookkeeping in inductions over net-trees since it allows the
identification of the nodes on either side of a partial network composition.13 In turn, this

13 Recall that the wf-net-tree condition on the disjointness of such sets is encoded in opnet.
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identification determines which nodes are scoped to each side of the composition, and whose
properties are assured by the induction hypothesis, and which are in the environment, and
whose properties are thus assumed by the induction hypothesis.

Similarly to the treatment of parallel composition with qmsg, it is necessary to break
the open reachability of a composition of partial networks into open reachability of both
components. For this, we require transition invariants guaranteeing that the messages sent
by nodes in one partial network satisfy the assumptions made by nodes in the other partial
network on messages arriving from their environment. We therefore introduce the castmsg
predicate: castmsg M σ (R:∗cast(m)) iff M σ m, while castmsg M σ a is true for all other a.

Lemma 4.11 (opnet reachability) If (σ, s �t)∈ oreachable (opnet onp (Ψ 1‖Ψ 2)) S U, with S =
otherwith E (net-tree-ips (Ψ 1‖Ψ 2)) (oarrivemsg M), U = other F (net-tree-ips (Ψ 1‖Ψ 2)), and E and
F reflexive, and given

1. 〈i : onp i : R0〉o |≡ (λσ -. oarrivemsg M σ , other F {i} →)

(λ((σ , -), a, (σ ’, -)). castmsg M σ a),

2. 〈i : onp i : R0〉o |≡ (λσ -. oarrivemsg M σ , other F {i} →)

(λ((σ , -), a, (σ ’, -)). a �= τ ∧ (∀d. a �= i:deliver(d)) −→ E (σ i) (σ ’ i)), and

3. 〈i : onp i : R0〉o |≡ (λσ -. oarrivemsg M σ , other F {i} →)

(λ((σ , -), a, (σ ’, -)). a = τ ∨ (∃d. a = i:deliver(d)) −→ F (σ i) (σ ’ i)),

then it follows that both

1. (σ , s)∈ oreachable (opnet onp Ψ 1) S1 U1and
2. (σ , t)∈ oreachable (opnet onp Ψ 2) S2 U2 ,

where S1 = otherwith E (net-tree-ips Ψ 1) (oarrivemsg M), U1 = other F (net-tree-ips Ψ 1),
S2 = otherwith E (net-tree-ips Ψ 2) (oarrivemsg M), and U2 = other F (net-tree-ips Ψ 2).

The proof is by induction over oreachable. The initial and interleaved cases are trivial. For
the local case, given open reachability of (σ , s) and (σ , t) for Ψ 1 and Ψ 2, respectively, and
((σ , s � t), a, (σ ’, s’� t’))∈ trans (opnet onp (Ψ 1 ‖Ψ 2)), we must show open reachability of (σ ’, s’)
and (σ ’, t’). The proof proceeds by a case distinction on actions a. The key step is to have stated
the lemma without introducing cyclic dependencies between (synchronizing) assumptions
and (transition-invariant) guarantees: that is, each partial network Ψ i assumes that the other
partial network Ψ j satisfies S j and U j , while itself guaranteeing Si and Ui thanks to the
lifting of Conditions (2) and (3). For a synchronizing action like arrive, Definition 4.1 requires
satisfaction of S1 in order to advance in Ψ 1 and of S2 to advance in Ψ 2, but the assumption S
only guarantees that E holds for addresses j /∈ net-tree-ips (Ψ 1‖Ψ 2)—the gap is filled by
Assumption (2). This is why the transition invariants required of nodes (Conditions (1–3))
may not assume otherwith E {i}. This is not unduly restrictive, since the transition invariants
provide guarantees for individual local state elements and not between network nodes. The
assumption oarrivemsg M σ is never cyclic: it is either assumed of the environment for paired
arrives, or trivially satisfied for the side that ∗casts.

The transition invariants are lifted fromnodes to networks by inductionovernet-trees, using
the above decomposition of open reachability. For non-synchronizing actions, we exploit the
extra guarantees built into the open SOS rules.

Corollary 4.12 (opnet lifting) Given

〈i : onp i : R0〉o |� (otherwith E {i} (oarrivemsg M), other F {i} →) (λ(σ , -). P i σ )
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and provided that,

1. 〈i : onp i : R0〉o |≡ (λ(σ , -) . oarrivemsg M σ , other F {i} →)

(λ((σ , -), a, (σ ’, -)). castmsg M σ a),

2. 〈i : onp i : R0〉o |≡ (λ(σ , -) . oarrivemsg M σ , other F {i} →)

(λ((σ , -), a, (σ ’, -)). a �= τ ∧ (∀d. a �= i:deliver(d)) −→ E (σ i) (σ ’ i)), and

3. 〈i : onp i : R0〉o |≡ (λ(σ , -) . oarrivemsg M σ , other F {i} →)

(λ((σ , -), a, (σ ’, -)). a = τ ∨ (∃d. a = i:deliver(d)) −→ F (σ i) (σ ’ i)),

for all i and R0, with E and F reflexive, then
opnet onp Ψ |� (otherwith E (net-tree-ips Ψ ) (oarrivemsg M), other F (net-tree-ips Ψ ) →)

(λ(σ , -). ∀ i∈ net-tree-ips Ψ . P i σ ).

For transition invariants, we obtain results similar to Corollaries 4.8, 4.10, and 4.12. They
are essential for discharging the three conditions of Corollary 4.12.

The rule for closed networks is similar to the others. Its important function is to eliminate
the synchronizing assumption (S in the lemmas above), since messages no longer arrive from
the environment. The conclusion of this rule has the form required by the transfer lemma of
the next section.

Lemma 4.13 (ocnet reachability) From (σ , s)∈oreachable (oclosed (opnet onp Ψ )) (λ- - -. True)
U, it follows that (σ , s)∈ oreachable (opnet onp Ψ ) (otherwith (op =) (net-tree-ips Ψ ) inoclosed) U,
where inoclosed σ (H¬K:arrive(Newpkt d dst)), but ¬ inoclosed σ (H¬K:arrive(m)), for all other
m, ¬ inoclosed σ (i:newpkt(d, dst)), and otherwise, for all other a, inoclosed σ a.14

That is, reachability in opnet onp p prior to closing need not consider transitions with the
action arrive for any message other than a Newpkt, nor with the action newpkt.

Corollary 4.14 (ocnet lifting) From opnet np Ψ |� (otherwith (op =) (net-tree-ips Ψ )
inoclosed, U →) P, it follows that oclosed (opnet np Ψ ) |� (λ- - -. True, U →) P.

4.4 Transferring Open Invariants

The rules in the last section extend invariants over sequential processes, like (10), for example,
to arbitrary, open network models. All that remains is to transfer the extended invariants to
the standard model. Our approach is to define a relation between a standard automaton and
an open automaton, for instance at the level of local parallel processes, and then to show that
this relation implies the desired transfer property between the respective network models at
the closed level.

We construct our proofs using Isabelle’s locale feature [20], which allows one to fix a
set of constants and their properties, and then to derive lemmas about them. The constants
can later be instantiated with any terms that satisfy the assumed properties and the system
automatically specializes the associated lemmas. Specifically, we define the locale openproc
np onp sr, which relates the three constants

1. np of type ip ⇒ (’s, proc-action) automaton ,
2. onp of type ip ⇒ ((ip ⇒ ’k) × ’t, proc-action) automaton , and
3. sr of type ’s ⇒ ’k × ’t ,

14 The predicate (op =) simply compares its two arguments for equality.
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Fig. 17 Schema of the openproc np onp sr relation

where proc-action stands for the actions on transitions in Figs. 2 and 6, and where sr is a
simulation relation that effectively divides the states of np i into data and control states.
Unlike for the process selection function ps described in Sect. 4, we cannot simply dis-
card control state elements because they are critical to formalizing and reasoning about the
relationship between the two automata. The three constants must satisfy two technical con-
ditions that guarantee that the initial states of np i are correctly ‘embedded’ into the (global)
initial states of onp i, which we do not detail here, and a condition relating transitions across
the two models. The condition on transitions is illustrated in Fig. 17: for every transition
(s, a, s’)∈ trans (np i), and given σ i = fst (sr s) and σ ’ i = fst (sr s’), it must be the case that
((σ , snd (sr s)), a, (σ ’, snd (sr s’)))∈ trans (onp i). In other words, openproc np onp sr holds if onp
simulates np for each component i of σ .

The simulation requirement ensures that any step of the standard model is taken into
account by the corresponding open model. Indeed, for any state reachable in the standard
model, a corresponding state is reachable in the open model.

Lemma 4.15 (Transfer reachability)Given np, onp, and sr such that openproc np onp sr, then
for any wf-net-tree Ψ and s∈ reachable (closed (pnet np Ψ )) (λ-. True), it follows that
(default (someinit np sr) (netlift sr s), netliftc sr s)

∈oreachable (oclosed (opnet onp Ψ )) (λ- - -. True) U.

This lemma uses two openproc constants: someinit np sr i chooses an arbitrary initial data state
from np i,15 with which default completes missing state elements, and netliftc lifts the control
part of a process state to nodes and partial networks:

netliftc sr (s i
R) = (snd (sr s)) iR

netliftc sr (s � t) = (netliftc sr s) � (netliftc sr t) .

Lemma 4.15 is shown by lifting the simulation relation to nodes and partial networks by
an induction on Ψ . A separate subproof is required for each type of action and the assump-
tions incorporated into the corresponding open SOS rules (see Sects. 4.1.3 and 4.1.4) are
‘discharged’ using contextual information from the transition in the standard model. The
result is that every transition in the standard model (closed (pnet np Ψ )) is simulated by a
transition in the open model (oclosed (opnet onp Ψ )). An implication from an open invariant
on an open model to an invariant on the corresponding standard model follows directly.

Corollary 4.16 (Transfer) Given np, onp, and sr such that openproc np onp sr, and provided
wf-net-tree Ψ , then from oclosed (opnet onp Ψ ) |� (λ- - -. True, U →) (λ(σ ,-). P σ ), it follows that
closed (pnet np Ψ ) ||� netglobal np sr P.

15 SOME x. x∈ (fst ◦ sr) ‘ init (np i), where the ‘‘’ is the image operator.
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In terms of our running example, we first show openproc ptoy optoy id. We then apply a
generic sublocale relation for parallel composition with qmsg to obtain
openproc (λi. ptoy i 〈〈 qmsg) (λi. optoy i 〈〈i qmsg) (λ((ξ , p), q). (ξ , (p, q))), to which we can
apply Corollary 4.16 to obtain an appropriate transfer lemma. Compared to the netglobal
constant in Invariant (5), the one in Corollary 4.16 is defined generically within the openproc
locale and is therefore parameterized by np and sr. The former is obtained from the latter by
a simple instantiation.

Summary The technicalities of the lemmas in this and the preceding section are essential
for the underlying proofs to succeed. The key idea is that through an open version of AWN
where automaton states are segregated into data and control components, one can reason
locally about global properties, but still, using the transfer and lifting results, obtain a result
over the original model (c.f. Fig. 16).

5 Concluding Remarks

Wepresent amechanization ofAWN, amodelling language forMANETandWMNprotocols,
including a streamlined adaptation of standard theory for showing invariants of individual
reactive processes, and a novel and compositional framework for lifting such results to net-
work models. The framework allows the statement and proof of inter-node properties. We
think that many elements of our approach would apply to similarly structured models in other
formalisms.

It is reasonable to ask whether the basic model presented in Sect. 2 could not simply be
abandoned in favour of the open model of Sect. 4.1. We believe, however, that the basic
model is the most natural way of describing what AWN means, proving semantic properties
of the language, showing ‘node-only’ invariants, and, potentially, for showing refinement
relations. Having such a reference model allows us to freely incorporate assumptions into
the open SOS rules, knowing that their soundness will later be justified.

The AODV case study The framework we present in this paper was successfully applied
in the mechanization of a proof of loop freedom [11, § 7] of the AODV protocol [31], a
widely-used routing protocol designed for MANETs, and one of the four protocols currently
standardized by the IETFMANETworking group. Themodel has about 100 control locations
across 6 different processes, and uses about 40 functions to manipulate the data state. The
main property (loop freedom) roughly states that ‘a data packet is never sent round in circles
without being delivered’. To establish this property, we proved around 400 lemmas. Due to
the complexity of the protocol logic and the length of the proof, we present the details else-
where [5]. The case study shows that the presented framework can be applied to verification
tasks of industrial relevance.

Verifying implementations We argue in the introduction that AWN is well-adapted for
modelling MANET and WMN protocols due to its support for their data structures and
specialized communication primitives, and also because of its operational style. In the rest of
the paper, we present techniques for the machine-assisted and compositional verification of
safety properties of networks of cooperating nodes; and we claim that the AODV case study
is testament to the effectiveness of this approach. An important question remains: are AWN
models suitable specifications for protocol implementations? For instance, is it feasible to
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prove that a program written in C or a similar programming language correctly implements
a sequential AWN process? Would it be better to try to refine or transform an AWN process
into an executable form? Or simply to analyse network traces against an instantiation of
the model [2]? In any case, all of these challenges require precise, and ideally mechanized,
protocol models, and proofs that they satisfy given properties.
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