
J Autom Reasoning (2015) 55:199–210
DOI 10.1007/s10817-015-9340-6

Reconsidering Pairs and Functions as Sets

Chad E. Brown1

Received: 27 August 2013 / Accepted: 29 July 2015 / Published online: 18 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract We give representations for ordered pairs and functions in set theory with the
property that ordered pairs are functions from the finite ordinal 2. We conjecture that
these representations are useful for formalized mathematics since certain isomorphic sets
are identified. The definitions, theorems and proofs have been formalized in the proof
assistant Coq using only the simply typed features of Coq. We describe the development
within the context of an intuitionistic simply typed (higher-order) version of (well-founded)
Zermelo-Fraenkel set theory without the axiom of infinity.

Keywords Set theory · Higher-order logic · Simple type theory · Higher-order theorem
proving · Ordered pairs · Functions

1 Introduction

A foundation for mathematics must support the basic building blocks of the mathematical
universe. Among these basic building blocks are numbers, pairs, sets and functions. A com-
mon foundation for mathematics is Zermelo-Fraenkel set theory (ZF) [23]. Sets are the only
innate basic building blocks in ZF. However, there are well-known constructions for num-
bers, pairs and functions. The finite von Neumann ordinals in which n = {0, . . . , n − 1}
give a common representation for natural numbers. Kuratowski’s representation of pairs
(x, y) as {{x}, {x, y}} is popular and it is common to identify functions with their graphs.
For example, these are the representations used in the proof assistants Isabelle-ZF [16] and
Mizar [3, 4, 7, 21].

Given sets X and Y , X×Y is notation for the set of pairs with components from X and Y

and XY is notation for the set of functions from Y to X. Sometimes the notation for X × X

� Chad E. Brown
idonotuseemail@mailinator.com

1 Independent Researcher, mathgate.info/cebrown/contact.php

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10817-015-9340-6-x&domain=pdf
mailto:idonotuseemail@mailinator.com
http://mathgate.info/cebrown/contact.php

200 C. E. Brown

is simplified to be X2. However, if 2 is the finite ordinal {0, 1}, then we have an ambiguity.
Is X2 notation for the set X × X of pairs or for the set X{0,1} of functions from {0, 1} to X?
Mathematically, this is not a serious ambiguity. There is an obvious isomorphism between
the sets X × X and X{0,1} that respects the relevant structures. In particular, functions f ∈
X{0,1} can be mapped to pairs (f 0, f 1) and pairs (x, y) ∈ X × X can be mapped to a
function f ∈ X{0,1} such that f 0 = x and f 1 = y. Mathematicians are justified in thinking
of X × X and X{0,1} as being, essentially, the same sets.

When formalizing mathematics, there are drawbacks to having different isomorphic rep-
resentations for such a basic operation as pairing. In Mizar’s library, Kuratowski pairs are
defined in the document giving the axioms of the set theory [21]. Later, finite sequences
are defined leading to a different notion of pairing defined as a function from {1, 2} [6].
Once one has these two definitions, there is always the question of which notion of pairing
is appropriate in different situations. An expert will choose one or the other depend-
ing on the situation. For example, Definition 11 of the Mizar article [5] has the form
[0, 〈a, b〉] meaning the Kuratowski pair of 0 and the function mapping 1 to a and 2 to
b.1 This also means that theorems may be formulated using the different pairing oper-
ations. In order to apply the theorem when the pairing operations do not match, one
would need to explicitly apply an isomorphism. The need to apply isomorphisms can-
not be altogether avoided, but in cases involving such basic objects as pairs and functions
it is worthwhile to consider representations chosen so that many such isomorphic sets
will be equal.

We will describe representations for pairs and functions with the property that the set
X × X will be the same as X{0,1}. That is, pairs will be functions with domain {0, 1}. A
pair u will be equal to (u0, u1) where u0 is u applied to 0 and u1 is u applied to 1. We will
continue to use the representation of natural numbers as finite ordinals. The representation
of functions we will use is one due to Aczel [1]. The representation of pairs is similar to one
considered by Morse [13] and can be informally described as being the disjoint union of the
two sets. Morse ultimately used a different version of ordered pairs in [13].

Our constructions will work with both finite and infinite sets, but we will never need
to make explicit use of infinite sets. Consequently, we work with a variant of ZF without
the axiom of infinity. Instead of formulating the set theory in first order logic, we formu-
late it in simple type theory (higher-order logic). We include a description operator at the
base type. Our simple type theory is intuitionistic. Since we are working in an intuitionis-
tic setting, the set theory axioms must be chosen carefully. For example, the usual axiom
of regularity implies excluded middle, and so it must be replaced by an ∈-induction axiom.
The axioms we choose are essentially those of ZFIR as described in [19] (a system first
studied by Myhill [14]) except that infinity is omitted and the axioms are translated into the
simply typed setting. The representation in simple type theory is similar to the version in
Isabelle-ZF [16], but with higher-order aspects similar to those in [2, 15]. One benefit of
using simple type theory is that we can quantify over predicates and (meta-level) functions.
Consequently, the axioms of replacement, separation and ∈-induction can each be stated
with a single formula instead of using a schema of formulas. Another advantage of using

1Actually, in the pdf versions of the Mizar articles, the notation for Kuratowski pairs uses bold 〈 and 〉.

Reconsidering Pairs and Functions as Sets 201

simple type theory is that we can prove that we can define (meta-level) functions by ∈-
recursion before defining an object-level notion of pairing. In fact, ∈-recursion will be used
to define pairing.

In Section 2 we give the simply typed set theory. In Section 3 we give a few basic defini-
tions and results, including an ∈-recursion theorem. In Section 4 we specify what we require
of our representation of pairs and functions. In Section 5 we define pairing and prove a
number of results, and in Section 6 we do the same for functions. In Section 7 we define
dependent sums and products (sets of pairs and functions).

The material described here has been formalized in the Coq theorem prover [12] using
only the simply typed features of Coq.

2 Intuitionistic Simply Typed Set Theory

We briefly describe an intuitionistic form of Church’s simple type theory [8, 9]. We start
with two base types ι (the type of sets) and o (the type of propositions). Other (simple)
types are function types: given two types σ and τ , the function type στ is a type (the type
of functions from σ to τ). Let T be the set of types.

Let (Vσ)σ∈T be a disjoint family of infinite sets of variables. We use metavariables such
as x, y, z, . . . to range over variables. We also have a set Cσ of constants of type σ . We will
describe the specific constants in each Cσ shortly. We use the metavariable c to range over
constants.

For each type σ there is a set Λσ of all terms of type σ . We use metavariables s, t and
u to range over terms. This family of sets is defined inductively as follows: If x ∈ Vσ , then
x ∈ Λσ . If c ∈ Cσ , then c ∈ Λσ . If s ∈ Λστ and t ∈ Λσ , then (st) ∈ Λτ . If x ∈ Vσ and
t ∈ Λτ , then (λx.t) ∈ Λστ . If s ∈ Λo and t ∈ Λo, then (s → t) ∈ Λo. If x ∈ Vσ and
t ∈ Λo, then (∀x.t) ∈ Λo.

When s ∈ Λσ , we say s is a term of type σ . If s is a term of type o, we say s is a formula.
When writing terms we omit parentheses whenever possible under the following conven-
tions. Application associates to the left, so that stu means ((st)u). Implication associates to
the right, so that s → t → u means (s → (t → u)). Application binds more tightly than
implication, so that st → su means ((st) → (su)). The scope of binders λ and ∀ is as far to
the right as possible, so that λx.st means (λx.(st)) and ∀x.s → t means (∀x.(s → t)). We
write λx1 · · · xn.s for λx1. · · · .λxn.s and ∀x1 · · · xn.s for ∀x1. · · · .∀xn.s. We will usually
not be explicit about the types of variables if the intended type can be determined. Later we
will introduce more notational conventions for terms when convenient.

We say two terms are α-equivalent if they are the same up to the names of bound vari-
ables. For example, λxy.xy is α-equivalent to λyx.yx. We will treat α-equivalent terms as
being equal. We assume the usual notion of free variables and let F s denote the (finite)
set of variables that occur free in s. We denote the capture-avoiding substitution of t for
the free occurrences of x in s by sx

t . A β-redex is a term of the form (λx.s)t . The β-reduct
of (λx.s)t is sx

t . An η-redex is a term of the form λx.sx where x /∈ F s. The η-reduct of
λx.sx is s. We say s is a redex with reduct t if either s is a β-redex with β-reduct t or s is
an η-redex with η-reduct t . We say s one-step reduces to t if there is a redex as a subterm
of s and t is the result of replacing the redex with its reduct. Convertibility is simply the
reflexive, symmetric, transitive closure of one-step reducibility. We write s ≈ t if s and t

are convertible.

202 C. E. Brown

A context is a set of formulas. We use Γ to range over contexts. We define FΓ to be⋃
s∈Γ F s. The natural deduction calculus given by the rules in Fig. 1 define when Γ � s

holds for a context Γ and formula s.
What we have developed so far is a general intuitionistic simple type theory. Since our

only interest is a specific instance corresponding to a set theory, we now fix the constants in
the sets Cσ . We will only have seven constants:

– d is a constant of type (ιo)ι. This will be used as a description operator.
– ∈ is a constant of type ιιo. This will be used to represent membership. We write for-

mulas ∈ s t using infix notation as s ∈ t . As infix notation, we assume ∈ binds more
tightly than implication but less tightly than application, so that st ∈ tu → st ∈ tu

means (((st) ∈ (tu)) → ((st) ∈ (tu))).
– ∅ is a constant of type ι. This will be used as the empty set.
–

⋃
and ℘ are constants of type ιι. For s ∈ Λι, the term

⋃
s will correspond to the union

of the set s and the term ℘s will correspond to the power set of s.
– s is a constant of type ι(ιo)ι. This will correspond to sets formed by separation. We will

use the notation {x ∈ s|t} to represent the term ss(λx.t).
– r is a constant of type ι(ιι)ι. This will correspond to sets formed by replacement. We

will use the notation {t |x ∈ s} to represent the term rs(λx.t).

We next define false, negation, conjunction, disjunction, equivalence, equality, existential
and unique existential quantification. It is well-known that such operators can be defined in
such a type theory. Russell indicated how to make some of the definitions [18], and most
of the rest can be found in Prawitz [17]. Let ⊥ be the formula ∀q.q. Let ¬ be the term
λp.p → ⊥ of type oo. Let ∧ be the term λpq.∀r.(p → q → r) → r of type ooo.
Let ∨ be the term λpq.∀r.(p → r) → (q → r) → r of type ooo. Let ≡ be the term
λpq. ∧ (p → q)(q → p) of type ooo. We use infix notation for ∧, ∨ and ≡. We assume
application and ∈ bind more tightly than ∧, ∧ binds more tightly than ∨, ∨ binds more
tightly than →, and → binds more tightly than ≡. We also write s �∈ t for ¬(s ∈ t) and
assume �∈ has the same binding strength as ∈.

Equality can be defined at every type, but we will only need it at the base type ι. Let =
be the term λxy.∀p.px → py of type ιιo. We use infix notation for =, and assume = has
the same binding strength as ∈. We also write s �= t for ¬(s = t).

Existential quantification can also be defined at every type. We will only need it at two
types: ι and ιι. Let E be the term λq.∀p.(∀x.qx → p) → p of type (ιo)o. Let EF be the
term λQ.∀p.(∀F.QF → p) → p of type ((ιι)o)o. We write ∃x.s for E(λx.s) when x ∈ Vι

and for EF (λx.s) when x ∈ Vιι. We also define unique existential quantification at type ι.
Let E! be the term λq.(∃x.qx) ∧ ∀xy.qx → qy → x = y. We write ∃!x.s for E!(λx.s).

Let ⊆ be the term λXY.∀x.x ∈ X → x ∈ Y of type ιιo. We use infix notation for ⊆, and
assume ⊆ has the same binding strength as ∈ and =.

We can now state the axioms of our intuitionistic simply typed set theory. We give the
axioms as a context Γa consisting of the following formulas:

Fig. 1 Natural deduction calculus

Reconsidering Pairs and Functions as Sets 203

– (Description) ∀P.(∃!x.Px) → P(dP)

– (Extensionality) ∀XY.X ⊆ Y → Y ⊆ X → X = Y

– (∈-Induction) ∀P.(∀X.(∀x.x ∈ X → Px) → PX) → ∀X.PX

– (Empty) ¬∃x.x ∈ ∅
– (Union) ∀Xx.x ∈ ⋃

X ≡ ∃Y.x ∈ Y ∧ Y ∈ X

– (Power) ∀XY.Y ∈ ℘X ≡ Y ⊆ X

– (Separation) ∀XPx.x ∈ {z ∈ X|Pz} ≡ x ∈ X ∧ Px

– (Replacement) ∀XFy.y ∈ {Fz|z ∈ X} ≡ ∃x.x ∈ X ∧ y = Fx

We refer to the theory given by Γa as IZF−∞
ω . The subscript indicates the use of sim-

ple type theory (a form of higher-order logic). The superscript indicates that the axiom of
infinity is omitted. We say a formula s is a theorem of IZF−∞

ω if Γa � s holds.
From now on, we will only be concerned with theorems of IZF−∞

ω . We will state them as
formulas, but the intended meta-theorem is that the given formula is a theorem of IZF−∞

ω .
We will describe the interesting proofs informally, but all the proofs have been formalized
in Coq in a way that corresponds to proofs in IZF−∞

ω .
The following lemma gives a few theorems which the reader may easily verify.

Lemma 1 We have ∀X.∅ ⊆ X, ∀X.∅ ∈ ℘X, ∀X.X ∈ ℘X, ∀F.{Fx|x ∈ ∅} = ∅ and
∀XFG.(∀x.x ∈ X → Fx = Gx) → {Fx|x ∈ X} = {Gx|x ∈ X}.

3 Basic Definitions and Results

Now that we have fixed the set theory in question, we make a few basic definitions and
indicate a few basic theorems which will be needed in the rest of the paper. In particular, we
will define unordered pairs, singletons, binary unions, set difference and unions of families
of sets. Also, we give some natural numbers as finite ordinals.

Zermelo included unordered pairs among the axioms of his original set theory [22].
However, once one adds Fraenkel’s Replacement Axiom, unordered pairs can be defined.
Zermelo points this out in [23]. Suppes gives the easy proof in [20] and Paulson formalized
the proof in Isabelle/ZF [16]. The proof in classical ZF constructs the ordered pair {y, z} by
applying replacement with the two element set ℘(℘∅) and a function mapping ∅ to y and
℘∅ to z. The proof is not quite as easy in IZF−∞

ω , but is still within reach. First, let T be
{X ∈ ℘(℘∅)|∅ ∈ X ∨ ∅ /∈ X}. It is easy to prove both ∅ and ℘∅ are elements of this set.
Consider the term

tX := λw.∀p.(∅ /∈ X → py) → (∅ ∈ X → pz) → pw

of type ιo. If ∅ /∈ X, then y is the unique w such that tXw. If ∅ ∈ X, then z is the unique
w such that tXw. Let F be the term λX.dtX of type ιι. By the description axiom, ∅ /∈ X →
FX = y and ∅ ∈ X → FX = z. Consequently, {FX|X ∈ T} is a set that contains precisely
y and z, as desired. Putting this together (and β-reducing), we define U to be the term
λyz.{d(λw.∀p.(∅ /∈ X → py) → (∅ ∈ X → pz) → pw)|X ∈ T} of type ιιι. We write
{s, t} for the term Ust . Formalizing the argument above, one can prove ∀xyz.x ∈ {y, z} ≡
x = y ∨ x = z.

Once one has unordered pairs, singletons {s} can be taken to mean {s, s}. Unordered
pairs also allow us to define binary unions. We take s ∪ t to mean

⋃{s, t}, and assume ∪
binds more tightly than ∈. Set difference is definable from separation. Let M be λXY.{x ∈
X|x /∈ Y }. We write s \ t forMst and assume \ binds as tightly as ∪.

204 C. E. Brown

We can also describe a union of a family of sets. Let F be λXF.
⋃{Fx|x ∈ X} of type

ι(ιι)ι. We write
⋃

x∈s t for terms of the form Fs(λx.t) and treat this notation as a binder that
binds x and whose scope is as far to the right as possible. Let y ∈ Vι. It is easy to prove the
theorem ∀XFy.y ∈ (

⋃
x∈X Fx) ≡ ∃x.x ∈ X ∧ y ∈ Fx.

We now describe a few finite ordinals. We take 0 to be ∅, as usual. The ordinal successor
of a set X is taken to be X ∪ {X}. To this end, let s+ be notation for the term s ∪ {s}. We
assume the postfix + notation binds more tightly than all other notation. We take 1 to be 0+
and take 2 to be 1+. One can easily prove 1 = {0} and 2 = {0, 1}, as expected.

We next describe definitions by ∈-recursion. Definitions by ∈-recursion are justi-
fied by the axiom of ∈-induction. Suppose Φ is of type ι(ιι)ι. Let CΦ be the formula
∀XFG.(∀x.x ∈ X → Fx = Gx) → ΦXF = ΦXG. If CΦ , then the value ΦXF depends
only on X and the values Fx for x ∈ X. Under this condition, Φ can be used to define a
(meta-level) function RΦ such that ∀X.RΦX = ΦX(λx.R�x). Since we are working in
a higher-order logic, we can define such an operator R of type (ι(ιι)ι)ιι without too much
trouble. First let G of type (ι(ιι)ι)ιιo be

λΦXY.∀R.(∀XF.(∀x.x ∈ X → Rx(Fx)) → RX(ΦXF)) → RXY.

The term GΦ corresponds to the least relation R such that if ∀x.x ∈ X → Rx(Fx), then
RX(ΦXF).2 We will prove that GΦ is the graph of the function RΦ we want to define.
This justifies defining R to be the term λΦX.d(GΦX).

Lemma 2 We have the following.

1. ∀ΦXF.(∀x.x ∈ X → GΦx(Fx)) → GΦX(ΦXF)

2. ∀ΦR.(∀XF.(∀x.x ∈ X → GΦx(Fx) ∧ Rx(Fx)) → RX(ΦXF)) →
∀XY.GΦXY → RXY

3. ∀ΦXY.GΦXY → ∃F.(∀x.x ∈ X → GΦx(Fx)) ∧ Y = ΦXF

4. ∀Φ.CΦ → ∀XYZ.GΦXY → GΦXZ → Y = Z

5. ∀Φ.CΦ → ∀X.GΦX(RΦX)

6. ∀Φ.CΦ → ∀X.GΦX(ΦX(RΦ))

Proof The first part follows easily from the definition of G. Part 2 is an induction princi-
ple which is proven using the relation λXY.G�XY ∧ RXY with the definition of G and
using Part 1. Part 3 is an inversion principle which follows from Part 2 using the relation
λXY.∃F.(∀x.x ∈ X → GΦx(Fx)) ∧ Y = ΦXF . Part 4 is proven by ∈-induction using
Part 3. Part 5 is proven by ∈-induction using the description axiom and Parts 1 and 4. Part 6
follows easily from Parts 1 and 5.

Theorem 1 ∀Φ.CΦ → ∀X.RΦX = ΦX(RΦ).

Proof This follows from Parts 4, 5 and 6 of Lemma 2.

One could alternatively define GΦ via the Knaster-Tarski Fixed Point Theorem with the
monotone operator λRXY.∃F.(∀x.x ∈ X → Rx(Fx)) ∧ Y = ΦXF .

2The formalization of ∈-recursion could be simplified in Coq by defining G as an inductive predicate since
Coq automatically generates and proves induction principles. We use the definition here to remain within
simple type theory.

Reconsidering Pairs and Functions as Sets 205

4 Specification of Pairs and Functions

We are now in a position to precisely state what we would like an implementation of pairs
and functions to satisfy. For s, t ∈ Λι, we need a term (s, t) of type ι. This can be provided
by a term P of type ιιι which constructs pairs (s, t) as Pst . Similarly, given a term s ∈ Λι

(corresponding to a set) and a term t ∈ Λιι (corresponding to a function from sets to sets),
we would like to have a term Lst of type ι that encodes the function t when restricted
to the set s. This can be given by a term L of type ι(ιι)ι. We use the λ-binder to have
the binder notation λx ∈ s.t for terms of the form Ls(λx.t). One can distinguish the set
theory level λ from the type theory level λ by the presence or absence of ∈ after the bound
variable. The basic correctness property for pairing is ∀xywz.(x, y) = (w, z) ≡ x =
w ∧ y = z. Similarly, the basic correctness property for L is ∀XFG.(∀x.x ∈ X → Fx =
Gx) ≡ (λx ∈ X.Fx) = λx ∈ X.Gx. We must choose P and L so that these formulas
will be theorems.

Note that we will now have two kinds of functions: functions at the level of the type
theory are of type στ and functions at the level of the set theory are of type ι. Because of
this distinction in the types, no confusion should arise. We will exclusively use F and G to
range over variables of type ιι and f to range over variables of type ι. Note that the operator
L takes a set X and a type theory level function F and returns the set theory level function
λx ∈ X.Fx.

In principle this is enough to say we have an encoding of pairs and functions. How-
ever, typically we also want to consider sets of pairs and functions. We specify this for
the dependent case. We want terms QΣ and QΠ of type ι(ιι)ι. We use binder notation
Σx ∈ s.t for terms of the form QΣs(λx.t) and use binder notation Πx ∈ s.t for terms
of the form QΠs(λx.t). Intuitively, Σx ∈ s.t should be the set of pairs (x, y) where
x ∈ s and y ∈ t (and t may depend on x). Likewise, Πx ∈ s.t should be the set of
functions f taking each x ∈ s to an element of t (and where the intended domain of f

is the set s). We require ∀XYz.z ∈ (�x ∈ X.Yx) ≡ ∃x.x ∈ X ∧ ∃y.y ∈ Yx ∧ z =
(x, y) and ∀XYf.f ∈ (Πx ∈ X.Yx) ≡ ∃F.(∀x.x ∈ X → Fx ∈ Yx) ∧ f =
λx ∈ X.Fx to be theorems. When x /∈ F t , we write s × t for Σx ∈ s.t and we
write t s for Πx ∈ s.t .

A practical implementation of functions should include an operator for applying a func-
tion to an argument. This will be a term A of type ιιι. A term Ast corresponds to applying
the object-level function to argument t . (For now, let us assume s corresponds to an object-
level function and t corresponds to a member of its intended domain.) As usual, we would
like to have an infix notation for Ast . Since s has type ι (and hence does not have a function
type), there is no ambiguity in writing st for Ast . We have two basic correctness criteria for
application. The first corresponds to β-reduction: ∀XFx.x ∈ X → (λx ∈ X.Fx)x = Fx.
The second has the form of a common typing rule in dependent type theory: ∀XYf x.f ∈
(Πx ∈ X.Yx) → x ∈ X → f x ∈ Yx.

We now extend the specification to include extra properties of pairs and functions. Since
the intention is that pairs (s, t) are actually functions with domain 2, we require ∀F.(λx ∈
2.Fx) = (F0, F1). In addition, we will fix the behavior of application when used outside
the domain of an object-level function by using 0 as a default value and requiring ∀XFx.x /∈
X → (λx ∈ X.Fx)x = 0.

Finally, we will also require that the set ℘1 satisfies certain closure properties. These
properties were, in fact, the original motiviation for considering alternative representations
for pairs and functions. A common way to give a set theoretic (proof irrelevant) semantics
for a type theory with an impredicative universe Prop of propositions is to interpret Prop

206 C. E. Brown

Fig. 2 Specification of pairs and functions

as ℘1.3 Since ℘1 is not closed under function spaces when representing functions as graphs,
Aczel [1] introduced an alternative representation so that℘1 is closed under function spaces.
We will require ℘1 to be closed under function spaces (where the codomain is in ℘1) and
closed under sets of pairs (where the sets containing both components are in ℘1).

All the requirements of the specification are summarized in Fig. 2. The last two formulas
are the formal versions of closure requirements for ℘1.

If we assume the properties of the specification, then a number of theorems are provable.
For example, ∀X.X × X = X2, ∀xy.(x, y)0 = x and ∀xy.(x, y)1 = y are provable from
the specification.

5 Pairs as Disjoint Unions

We will define the pair (X, Y) so that it equals {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y }. That is, we
will define pairing via disjoint union. Of course, {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y } already
makes use of pairing. To avoid circularity, we use ∈-recursion to define a function I1. We
will later prove (after defining pairing) that I1y = (1, y). From I1 we can easily define a
function I0 which will later have the property I0x = (0, x). Once we have I1 and I0, we can
define pairing as {I0x|x ∈ X} ∪ {I1y|y ∈ Y }.

We define I1 by ∈-recursion as on operator that recursively adjoins 0. Let I1 be the term
R(λXF.{0} ∪ {Fx|x ∈ X}) of type ιι.

Lemma 3 ∀X.I1X = {0} ∪ {I1x|x ∈ X}

Proof This follows from Theorem 1 and Lemma 1.

Let I0 be the term λX.{I1x|x ∈ X} of type ιι.
We will need to know I0 and I1 are injective. To this end, we define a one-sided inverse I−

by ∈-recursion. The function I− will be a one-sided inverse to both I0 and I1 simultaneously.
Let I− be the term R(λXF.{Fx|x ∈ X \ {0}}).

3Note that under classical assumptions, ℘1 is simply 2, in which case 2 has two “propositions” – 0 (false)
and 1 (true).

Reconsidering Pairs and Functions as Sets 207

Lemma 4 ∀X.I−X = {I−x|x ∈ X \ {0}}

Proof This follows from Theorem 1 and Lemma 1.

Lemma 5 We have ∀X.I−(I0X) = X and ∀X.I−(I1X) = X.

Proof The proof of ∀X.I−(I1X) = X is by ∈-induction using Lemmas 3 and 4. The proof
of ∀X.I−(I0X) = X uses ∀X.I−(I1X) = X, the definition of I0 and Lemma 4.

From Lemma 5 we can conclude that I0 and I1 are injective functions, as desired. We
also want to prove that I0 and I1 have disjoint images.

Lemma 6 ∀XY.I0X �= I1Y

Proof It is easy to prove 0 ∈ I1Y and 0 /∈ I0X.

Before moving on to pairs, we establish the following simple result.

Lemma 7 I00 = 0

Proof This follows immediately from Lemma 1 and the definition of I0.

We now define pairing. Let P be the term λXY.{I0x|x ∈ X}∪{I1y|y ∈ Y } of type ιιι. We
write (s, t) as notation for the term Pst . A number of results follow easily from the lemma
above and the definition of P.

Lemma 8 (0, 0) = 0, ∀x.I0x = (0, x) and ∀x.I1x = (1, x).

Due to the equations in Lemma 8 we no longer need to consider the functions I0 and I1.
(This is why I0 and I1 were not included in the specification in Section 4.) In fact, we can
characterize the set encoding the pair as originally intended.

Lemma 9 ∀XYz.z ∈ (X, Y) ≡ (∃x.x ∈ X ∧ z = (0, x)) ∨ (∃y.y ∈ Y ∧ z = (1, y)).

Using Lemma 9 it is easy to prove the following.

Lemma 10 We have ∀xy.(0, x) = (0, y) → x = y, ∀xy.(1, x) = (1, y) → x = y and
∀xy.(0, x) �= (1, y).

Using Lemmas 9 and 10 we obtain Lemma 11.

Lemma 11 We have ∀XYx.(0, x) ∈ (X, Y) → x ∈ X, ∀XYy.(1, y) ∈ (X, Y) → y ∈ Y ,
∀xywz.(x, y) ⊆ (w, z) → x ⊆ w and ∀xywz.(x, y) ⊆ (w, z) → y ⊆ z.

Proof We prove the first statement. The other proofs are similar. Assume (0, x) ∈ (X, Y).
By Lemma 9 and the last part of Lemma 10 there is some x′ ∈ X such that (0, x) = (0, x′).
By the first part of Lemma 10 x = x′ and so x ∈ X.

From Lemma 11 we can easily prove the following theorem.

208 C. E. Brown

Theorem 2 ∀xywz.(x, y) = (w, z) ≡ x = w ∧ y = z.

Note that Theorem 2 corresponds to the first required property in Fig. 2.

6 Aczel Representation of Functions

We now turn to the representation of functions. Given X of type ι and a function F of
type ιι, we will define a set λx ∈ X.Fx of type ι which will represent the correspond-
ing set theory level function. As a set, λx ∈ X.Fx will contain precisely the pairs (x, y)

where y ∈ Fx. We define L to be the term λXF.
⋃

x∈X{(x, y)|y ∈ Fx} of type ι(ιι)ι.
We write λx ∈ s.t as notation for the term Ls(λx.t). The following lemma is clear from
the definition.

Lemma 12 ∀XFz.z ∈ (λx ∈ X.Fx) ≡ ∃x.x ∈ X ∧ ∃y.y ∈ Fx ∧ z = (x, y)

Using Lemma 12 and Theorem 2 we have the following.

Lemma 13 ∀XFxy.(x, y) ∈ (λx ∈ X.Fx) ≡ x ∈ X ∧ y ∈ Fx

We next define an application operator A. Given an object level function f and a poten-
tial argument x, Af x should be the set of all y such that (x, y) ∈ f . Let A be the term
λf x.{d(λy.z = (x, y))|z ∈ {z ∈ f |∃y.z = (x, y)}} of type ιιι. We write st as notation for
Ast when s and t are terms of type ι.

Lemma 14 ∀f xy.y ∈ f x ≡ (x, y) ∈ f .

Proof Note that f x is notation for Af x. Let f and x be given. By the axiom of description
and Theorem 2, we know ∀y.(x, y) = (x, d(λw.(x, y) = (x,w))) and so ∀y.d(λw.(x, y) =
(x, w)) = y. Given this, we can prove ∀y.y ∈ f x ≡ (x, y) ∈ f using the axioms of
separation and replacement.

We now have the infrastructure to prove more properties from Fig. 2.

Theorem 3 We have ∀XFx.x ∈ X → (λx ∈ X.Fx)x = Fx. Furthermore, we have
∀XFx.x /∈ X → (λx ∈ X.Fx)x = 0.

Proof By Lemmas 13 and 14, y ∈ (λx ∈ X.Fx)x if and only if (x, y) ∈ (λx ∈ X.Fx) if
and only if x ∈ X ∧ y ∈ Fx. This suffices to prove both results.

Theorem 4 ∀XFG.(∀x.x ∈ X → Fx = Gx) ≡ (λx ∈ X.Fx) = λx ∈ X.Gx.

Proof Lemma 12 implies one direction. Theorem 3 implies the other.

Theorem 5 ∀F.(λz ∈ 2.F z) = (F0, F1).

Proof Assume u ∈ (λz ∈ 2.F z). By Lemma 12 there exist z ∈ 2 and y ∈ Fz such that
u = (z, y). Either z = 0 or z = 1. In either case u ∈ (F0, F1) by Lemma 9. Assume
u ∈ (F0, F1). By Lemma 9, either u = (0, x) for some x ∈ F0 or u = (1, y) for some
y ∈ F1. In either case u ∈ (λz ∈ 2.F z) by Lemma 12.

Reconsidering Pairs and Functions as Sets 209

We also prove application to 0 and 1 operate as projections on pairs as expected.

Theorem 6 ∀xy.(x, y)0 = x, ∀xy.(x, y)1 = y and ∀xyi.i /∈ 2 → (x, y)i = 0.

Proof The first two results follow from Lemmas 9, 11 and 14. For the last result, assume
z ∈ (x, y)i. By Lemma 14 (i, z) ∈ (x, y) and so i ∈ 2 by Lemma 9.

7 Sums and Products

Defining dependent sums (sets of pairs) is trivial. Let QΣ be L. We write Σx ∈ s.t as
notation for Σs(λx.t). Note that Σx ∈ s.t is the same term as λx ∈ s.t . Lemma 12 can
now be written as ∀XFz.z ∈ (Σx ∈ X.Fx) ≡ ∃x.x ∈ X ∧ ∃y.y ∈ Fx ∧ z = (x, y)

justifying the property of QΣ specified in Fig. 2. Lemma 8 implies ℘1 is closed under Σ :
∀X.X ∈ ℘1 → ∀Y.(∀x.x ∈ X → Yx ∈ ℘1) → (Σx ∈ X.Yx) ∈ ℘1.

Defining dependent products (sets of functions) is not quite as easy, but does not require
new ideas. Let QΠ be λXY.{f ∈ ℘(Σx ∈ X.

⋃
(Yx))|∀x.x ∈ X → f x ∈ Yx}

in Λι(ιι)ι. We write Πx ∈ s.t for QΠs(λx.t), or t s when x /∈ F t . It is straightforward to
verify the remaining properties in Fig. 2. We also have ∀X.X × X = X2, where X × X is
Σx : X.X, using Theorem 5.

A number of monotonocity results are provable, including the following:

∀XY.X ⊆ Y → (∀ZW.(∀x.x ∈ X → Zx ⊆ Wx) → (Σx ∈ X.Zx) ⊆ Σy ∈ Y.Wy

∀XYAB.(∀x.x ∈ X → Ax ⊆ Bx) → X ⊆ Y → (∀y.y ∈ Y → y ∈ X ∨ y /∈ X)

→ (∀y.y ∈ Y → y /∈ X → 0 ∈ By) → (Πx ∈ X.Ax) ⊆ �y ∈ Y.By

A consequence of the monotonicity result for Π is that Am ⊆ An whenever 0 ∈ A and m

and n are finite ordinals with m ∈ n.

8 Conclusion

We have shown how one can define pairs and functions so that pairs are functions from 2
and the equation X × X = X{0,1} holds. We conjecture that these representations of pairs
and functions are more convenient in the context of formalized mathematics than the usual
convention of taking pairs to be Kuratowski pairs and functions to be their graphs. For
example, if u is a pair, it is common to write u0 and u1 for the two components. With the
representation here, this subscript notation can simply be formalized as application of the
function u to 0 or 1.

Acknowledgments Most of this work was done while part of Professor Gert Smolka’s Programming
Systems Lab at Saarland University. Thanks to Professor Gert Smolka for his support and stimulating conver-
sations. Jonas Kaiser formalized Kuratowski pairs and Aczel functions using Tarski-Grothendieck set theory
axiomatized in Coq as part of his Master’s Thesis [11]. The discussions we had during this period improved
my understanding of the Aczel representation of functions.

References

1. Aczel, P.: On relating type theories and set theories. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.)
TYPES, Lecture notes in computer science, vol. 1657, pp. 1–18. Springer (1998)

210 C. E. Brown

2. Agerholm, S., Gordon, M.: Experiments with ZF set theory in HOL and Isabelle. In: Proceedings of
the 8th International Workshop on Higher Order Logic Theorem Proving and its Applications, LNCS,
pp. 32–45. Springer (1995)

3. Bancerek, G.: The ordinal numbers. Formalized Mathematics 1(1), 91–96 (1990). http://fm.mizar.org/
1990-1/pdf1-1/ordinal1.pdf

4. Bancerek, G.: Sequences of ordinal numbers. Formalized Mathematics 1(2), 281–290 (1990). http://fm.
mizar.org/1990-1/pdf1-2/ordinal2.pdf

5. Bancerek, G.: Algebra of morphisms. Formalized Mathematics 6(2), 303–310 (1997). http://fm.mizar.
org/1997-6/pdf6-2/catalg 1.pdf

6. Bancerek, G., Hryniewiecki, K.: Segments of natural numbers and finite sequences. Formalized
Mathematics 1(1), 107–114 (1990). http://fm.mizar.org/1990-1/pdf1-1/finseq 1.pdf

7. Byliński, C.: Functions and their basic properties. Formalized Mathematics 1(1), 55–65 (1990). http://
fm.mizar.org/1990-1/pdf1-1/funct 1.pdf

8. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)
9. DeMarco, M., Lipton, J.: Completeness and cut-elimination in the intuitionistic theory of types. J. Log.

Comput. 15(6), 821–854 (2005)
10. van Heijenoort, J.: From Frege to Gödel. A source book in mathematical logic 1879–1931. Harvard

University Press, Cambridge (1967)
11. Kaiser, J.: Formal Construction of a Set Theory in Coq. Master’s thesis, Universität des Saarlandes

(2012)
12. The Coq development team: The Coq proof assistant reference manual. LogiCal Project (2012). http://

coq.inria.fr. Version 8.4
13. Morse, A.P.: A theory of sets. Academic Press (1965)
14. Myhill, J.: Some properties of intuitionistic Zermelo-Fraenkel set theory. In: Mathias, A., Rogers,

H. (eds.) 1971 Cambridge summer school in mathematical logic, Lecture Notes in Mathematics, vol. 337,
pp. 206–231. Springer, Berlin (1973)

15. Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC,
Lecture Notes in Computer Science, vol. 4281, pp. 272–286. Springer (2006)

16. Paulson, L.C.: Set theory for verification: I. from foundations to functions. J. Autom. Reason. 11, 353–
389 (1993)

17. Prawitz, D.: Natural deduction: a proof-theoretical study. Dover (2006)
18. Russell, B.: The principles of mathematics. Cambridge University Press (1903)
19. Sĉêdrov, A.: Intuitionistic set theory. In: Harrington, A.S.L.A., Morley, M.D., Simpson, S. (eds.) Har-

vey Friedman’s research on the foundations of mathematics, Studies in Logic and the Foundations of
Mathematics, vol. 117, pp. 257–284. Elsevier (1985)

20. Suppes, P.: Axiomatic set theory. Dover (1972)
21. Trybulec, A.: Tarski Grothendieck set theory. Formalized Mathematics 1(1), 9–11 (1990). http://fm.

mizar.org/1990-1/pdf1-1/tarski.pdf
22. Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen 65, 261–

281 (1908). English translation, “Investigations in the foundations of set theory” in [10], pages 199–215
23. Zermelo, E.: Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae 16, 29–47 (1930)

http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf
http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf
http://fm.mizar.org/1990-1/pdf1-2/ordinal2.pdf
http://fm.mizar.org/1990-1/pdf1-2/ordinal2.pdf
http://fm.mizar.org/1997-6/pdf6-2/catalg_1.pdf
http://fm.mizar.org/1997-6/pdf6-2/catalg_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://coq.inria.fr
http://coq.inria.fr
http://fm.mizar.org/1990-1/pdf1-1/tarski.pdf
http://fm.mizar.org/1990-1/pdf1-1/tarski.pdf

	Reconsidering Pairs and Functions as Sets
	Abstract
	Introduction
	Intuitionistic Simply Typed Set Theory
	Basic Definitions and Results
	Specification of Pairs and Functions
	Pairs as Disjoint Unions
	Aczel Representation of Functions
	Sums and Products
	Conclusion
	Acknowledgments
	References

