J Autom Reasoning (2015) 55:39-59
DOI 10.1007/s10817-015-9326-4

Automated Theorem Proving in GeoGebra: Current
Achievements

Francisco Botana! - Markus Hohenwarter? -
Predrag Jani¢ié3 - Zoltan Kovacs? -
Ivan Petrovié® - Tomas Recio® -

Simon Weitzhofer?

Received: 20 March 2014 / Accepted: 11 March 2015 / Published online: 29 March 2015
© Springer Science+Business Media Dordrecht 2015

Abstract GeoGebra is an open-source educational mathematics software tool, with mil-
lions of users worldwide. It has a number of features (integration of computer algebra,
dynamic geometry, spreadsheet, etc.), primarily focused on facilitating student exper-
iments, and not on formal reasoning. Since including automated deduction tools in
GeoGebra could bring a whole new range of teaching and learning scenarios, and since
automated theorem proving and discovery in geometry has reached a rather mature
stage, we embarked on a project of incorporating and testing a number of different
automated provers for geometry in GeoGebra. In this paper, we present the current
achievements and status of this project, and discuss various relevant challenges that
this project raises in the educational, mathematical and software contexts. We will
describe, first, the recent and forthcoming changes demanded by our project, regard-
ing the implementation and the user interface of GeoGebra. Then we present our vision

P4 Zoltan Koviacs
zoltan @ geogebra.org

Francisco Botana
fbotana@uvigo.es

Markus Hohenwarter
markus.hohenwarter @jku.at

Predrag Janici¢
janicic@matf.bg.ac.rs

Ivan Petrovi¢
ivan.petrovic.matf @ gmail.com

Tomads Recio
tomas.recio@unican.es

Simon Weitzhofer
simon@geogebra.org

@ Springer

mailto:zoltan@geogebra.org
mailto:fbotana@uvigo.es
mailto:markus.hohenwarter@jku.at
mailto:janicic@matf.bg.ac.rs
mailto:ivan.petrovic.matf@gmail.com
mailto:tomas.recio@unican.es
mailto:simon@geogebra.org

40 F. Botana et al.

of the educational scenarios that could be supported by automated reasoning features,
and how teachers and students could benefit from the present work. In fact, current
performance of GeoGebra, extended with automated deduction tools, is already very
promising—many complex theorems can be proved in less than 1 second. Thus, we
believe that many new and exciting ways of using GeoGebra in the classroom are on their
way.

Keywords Secondary education - Interactive learning environments - Intelligent tutoring
systems - Automatic theorem proving

1 Introduction

Proofs in mathematical education play an important role in understanding mathematics and
developing student skills in problem solving and discovering facts in real life and science.
One traditional way for using proofs in developing mathematical skills is to teach Euclidean
geometry as a mainstream topic, since it is an “empirical theory” and one of the most well-
established theories of all ([24], p. 896). For instance, by measuring the angles of triangles
by a protractor we always get a sum near 180 degrees, and these empirical results yield a
simple theorem.

Modern ways of teaching geometry include using dynamic geometry tools, even among
teachers who stick to traditional methods. With dynamic geometry tools, the user can create
and manipulate geometric constructions. Thus, the user can start a construction with several
points, build new objects depending on the existing ones, and then move the starting points
to explore how the whole construction changes, while keeping the established interrelations
amonyg its different components. In this way, the user can test a given or conjectured thesis,
for instance, that some three points are always (for whatever positions of the initially given
points) collinear, or that some two constructed lines are always (for every placement of the
starting points) parallel etc. However, this is only thesis testing and not proving. Even if a
thesis is affirmatively tested for hundreds of different starting points, it still does not mean
that the thesis will be always true. The only way to show that the thesis is always true (i.e.,
that it is a geometry theorem) is to prove it. There are several methods for automated theo-
rem proving (ATP) in geometry, but the way humans prove theorems is still very difficult to
get automated.

In this paper we present our initial efforts in integrating ATP features in GeoGebra [26].
GeoGebra is an open-source mathematics software application for learning and teaching,
with millions of users worldwide, and hence an excellent choice for showing and promoting
the benefits of ATP educational scenarios. We will briefly present several theorem provers

Department of Applied Mathematics I, Escola de Enxefieria Forestal, University of Vigo at
Pontevedra, Campus A Xunqueira, 36005 Pontevedra, Spain

Department of Mathematics Education, Johannes Kepler University, Altenbergerstr 69, 4040 Linz,
Austria

Department for Computer Science, Faculty of Mathematics, University of Belgrade, Studentski trg
16, 11000 Belgrade, Serbia

Department of Mathematics, Statistics and Computation, Faculty of Sciences, University of
Cantabria, Avenida de los Castros, s/n, 39071 Santander, Spain

@ Springer

ATP in GeoGebra 41

already integrated in GeoGebra, some challenges, some examples and some possible appli-
cations in education. At the current stage, we do not aim at obtaining readable proofs from
the provers. Instead, we will focus on using the new ATP features for guiding the user explo-
ration process, since ATP would allow GeoGebra to automatically provide information on
whether some user-conjectured thesis is valid or not.

In Section 2 we briefly overview the state of the art concerning the merging of dynamic
geometry programs and ATP. Section 3 describes our main contribution concerning the
inclusion of ATP in GeoGebra. Section 4 discusses in some detail two examples and pro-
vides performance data on a collection of examples. Section 5 focuses on educational
questions. Finally, Section 6 summarizes our results and future plans.

2 Dynamic Geometry Software and Theorem Proving

Although Sketchpad [47] is commonly considered as the generic ancestor of current
computer graphic software, the first computer program able to construct and manipulate
geometric constructions in microcomputers, the Geometric Supposer [46], can be traced
back to 1981. Over a decade after, a new generation of personal computers supported the
global spread of dynamic geometry in education, exemplified by The Geometer’s Sketch-
pad [28] and Cabri Geometry [2]. The accuracy of constructions and the visual evidence for
properties provided by this piece of software were sometimes used as a replacement of proof
[25, 48]. Automatic checking abilities—through the numerically approximate verification
of a conjectured property in a large number of cases, yielding a highly probable claim—
introduced in newer versions (of Cabri, for instance) reinforced lessening the role of proving
when using these learning environments. Reacting to these techniques and exploiting the-
oretical developments mainly coming from academia, automated deduction techniques
have recently started to enrich the field of dynamic geometry. We briefly review some
dynamic geometry software (DGS) equipped with automated proving and other related
features.

ATP in geometry has a history of more than fifty years [14]. Initial attempts to implement
automatized theorem proving in geometry appear, in the realm of Artificial Intelligence
(AID), in the 50’s, when Gelernter created a theorem prover that could find solutions to a
number of problems taken from high-school textbooks in plane geometry [22]. The impact
of Gelernter’s geometry machine led to a line of work within the Al context, on systems
able to automatically build geometry proofs. An early example (from the late 70’s) is Geom,
a Prolog-based geometry theorem-prover [15]. Other systems worth mentioning are Chypre
[3], Cabri-Euclide [38] or Geometrix [23].

On one hand, the greatest accomplishments (i.e., in terms of the complexity of the theo-
rems to be proven) of ATP in geometry have been achieved by algebraic methods, in which
the geometric statement is first translated to an algebraic counterpart and then is subject to
some computer algebra manipulation. In this category we can mention the non-probabilistic,
multiple checking approach which is behind the “exact check” method we will refer to in
the next section [59], but the two most important methods in this group are Wu’s method
[9, 55] and the Grobner bases method [8, 31]. Both of them can efficiently prove (or dis-
prove) complicated geometry assertions; however, they output only a yes/no answer and
do not provide human readable, traditional geometry proofs. Other algebraic approaches,
such as the coordinate-free methods known as the area method [10, 30] and the full angle
method [11, 12], also deal with complex expressions involving certain geometry quanti-
ties, but the proofs they produce are, sometimes, short and readable. There are methods,

@ Springer

42 F. Botana et al.

such as the deductive database method [11], that can generate readable proofs (e.g., in terms
of higher-order lemmas), but they still have a smaller scope than the algebraic provers.

On the other hand, recent interest on formal provers has led to the design of systems
where proofs are verified by proof assistants such as Cog. For instance, GeoView! is a tool
that combines a dynamic geometry drawing tool GeoplanJ with PCogq, a user interface for
the general purpose proof assistant Coq ([4]). The statements of plane geometry theorems
and their proofs are manually constructed and then verified within Coq proof assistant.
Dynamic geometry figures can be automatically generated from PCoq theorem statements.
A related program is GeoProof,? an interactive geometry tool that can communicate with
the Coq proof assistant to perform interactive proofs of geometry theorems [41, 42]. Other
formal systems like E [1] focus on diagrammatic reasoning by translating Euclid’s Elements
to a faithful axiomatic system which can be handled algorithmically.

Concerning algebraic provers, we can mention Discover [7], that combines a standard
DGS with calls to some computer algebra systems (CoCoA: [16], and Mathematica: [54])
for automated discovery in Euclidean geometry. For a user-defined construction, conditions
for some property to hold can be automatically discovered and then formally checked, using
the Grobner basis method. Another example of this kind is GCLC, a DGS with custom
specification language for representing geometry constructions and geometry theorems. The
program has three theorem provers built-in: provers based on the area method, Wu’s method
and the Grobner bases method [29].

Let us mention a few other examples in this direction, such as Geometry Expert3 (GEX,
[13]), a DGS focused on ATP, that implements Wu’s, the Grobner basis, vector, full angle,
and the area method. Another example is Java Geometry Expert 4 (JGEX, [57, 58]), under
development from 2004, a new, Java version of GEX. JGEX combines dynamic geometry,
automated geometry theorem proving, and, as its most distinctive part, visual dynamic pre-
sentation of proofs. It provides a series of visual effects for presentation of proofs which
can be visualized either manually or automatically. Within the program distribution, there
are more than six hundred examples of proofs.

GEOTHER’ [50] is an environment that combines drawing routines and interface writ-
ten in Java with five algebraic theorem provers implemented in Maple. On the bases of
the textual description of a conjecture, GEOTHER automatically produces dynamic dia-
grams, i.e., assigns coordinates to the involved points in an appropriate manner. Geometry
Explorer [53] is a dynamic geometry tool that produces human-readable proofs of proper-
ties of constructed objects, using the full-angle method. It can produce diagrammatic proof
visualizations that aim to be more intuitive than textual proofs. MMP/Geometer® automates
geometric diagram generation, geometry theorem proving, and geometry theorem discov-
ering [21]. MMP/Geometer implements Wu’s method, the area method, and the geometry
deductive database method. Conjectures are given in a restricted pseudo-natural language
or in a point-and-click manner.

As a final example, but of a different approach to proving properties, we can refer
to Cinderella [32, 33], an interactive geometry system that uses randomized theorem

Thttp://www-sop.inria.fr/lemme/geoview/geoview.html
Zhttp://home.gna.org/geoproof/
3http://www.mmrc.iss.ac.cn/gex/
“http://woody.cs.wichita.edu/
Shttp://www-salsa.lip6.fr//wang/ GEOTHER/

Shttp://www.mmrc.iss.ac.cn/xgao/software.html

@ Springer

http://www-sop.inria.fr/lemme/geoview/geoview.html
http://home.gna.org/geoproof/
http://www.mmrc.iss.ac.cn/gex/
http://woody.cs.wichita.edu/
http://www-salsa.lip6.fr// wang/GEOTHER/
http://www.mmrc.iss.ac.cn/ xgao/software.html

ATP in GeoGebra 43

checking for analyzing constructions. It is not a symbolic, deductive theorem prov-
ing method, but a probabilistic method for checking whether a conjecture is likely a
theorem.

The above systems with ATP features can efficiently prove many complex geometry
theorems, but these ATP features are not primarily designed for applications in educa-
tion, i.e., as a helping tool in a wider process of exploring and discovering conjectures by
the students. They are, in many aspects, still only academic tools, in the prototype phase,
not yet well distributed, maintained or not fully operative. This is why we would like to
fill the gap by introducing a different solution to be much more useful for the school
community.

3 Proving Capabilities in GeoGebra

GeoGebra is already a well-developed framework with a wide range of functionalities
and with a stable interface familiar to millions of users. On the other hand, state of
the art theorem provers also have features that are difficult to change (e.g., the pre-
cise way to introduce the conjectures to be proved, or the sort of output results, etc.).
Hence, adding proving capabilities to GeoGebra, via several theorem provers integrated
(see Section 3.4), poses a series of challenges, at different levels (e.g., user interface,
internal representation and communication, etc.), sometimes confronted with our main
goals.

3.1 Goals

We have the following goals in adding proving capabilities to GeoGebra:

1. Intuitive interface: The user interface should remain as intuitive as possible.
GeoGebra is primarily not for (deductive) proving but for experimenting, and
we want to provide a simple interface for both teachers and students. Integra-
tion of proving capabilities should follow the de facto standards of the user
community.

2. Simplified output: Details of a proof should not be shown to the user at this stage. In
fact, as mentioned above, the most efficient proving methods do not produce readable
proofs, but only a yes/no answer, following often very long internal algebraic compu-
tations, such as sequences of elimination steps. Also, even “degeneracy conditions” [9,
45] should be hidden for most users.

3. Small size and efficiency: Code size of the implementation matters: after introducing
ATP features, GeoGebra should start not much slower than before. Also, the execution
speed is important: we expect a yes/no answer for most classroom problems within a
second.

4. Usability in different GeoGebra subsystems: Re-use of a yes/no answer may be use-
ful for other subsystems. For example, since GeoGebra could be used for computer
aided assessment (CAA) for open ended tests, a proving subsystem could enable a quick
evaluation whether the student created a solution that is different from the one provided
by the teacher, but is still mathematically equivalent to it.

5. Modular architecture: The architecture of the system should be modular in order to
allow adding and using multiple methods for theorem proving. Since different methods
may have different efficiency, it would be useful to provide an automatic way to select
the most promising method for the given statement.

@ Springer

44 F. Botana et al.

3.2 New GeoGebra Commands

The usual way for the user to define a statement in GeoGebra is to create a Boolean query,
e.g. asking if lines a and b are parallel (a||b) or certain quantities are equal (x> + y2 ==72).
Normally, GeoGebra decides whether a Boolean expression is true or not by using numerical
computations. However, the new Prove command, that returns true/false/undefined for the
given user input, uses symbolic (deductive) methods to determine whether a statement is
generically true (i.e., a theorem) or not. If GeoGebra cannot determine the answer, the result
is undefined.

We also created the ProveDetails command to get more details exactly when the state-
ment is true. There may usually be some minor relations which must not hold to ensure
the statement to be true: for example, many Euclidean theorems for triangles are not
valid if the triangle is degenerate, i.e., its third vertex lies on the opposite side (i.e.,
the triangle has an area of zero). For most students these fine details are usually not
interesting since the teacher silently assumes some small extra conditions during the con-
struction steps. But for a computer these details are not negligible: an automated proof in
the background will classify the statement if it is always true or true only under certain
conditions.

The output of the ProveDetails command is an empty list {} if GeoGebra cannot deter-
mine the answer, a list with one element: {false} if the statement is not a theorem (i.e., if it
is not generically true), a list with one element: {true} if the statement is always true, or a
list with the Boolean value true and another list for the degeneracy conditions, if the state-
ment is valid in general but under certain conditions. In this last case, if all conditions in the
additional list are false, then the statement is true. This means that the list of these degen-
eracy conditions is just a sufficient but not necessary list of assumptions, and also it cannot
be guaranteed that the list is the simplest possible one.

In some cases, the ProveDetails command cannot translate the degeneracy conditions to
human readable form. In such cases {true,{’’...”’}} will be returned.

Both new GeoGebra commands accept a wide variety of Boolean expressions as input.
On one hand, these expressions can represent a certain geometric correlation: equality, par-
allelism, orthogonality, collinearity, concurrency or concyclicity. Here are some examples

of providing these properties: A 2 B (or A==B or AreEqual[A,B]), c||d (or AreParal-
lel[c,d]), ¢ L f (or ArePerpendicular[e,f]), AreCollinear[g,h], AreConcurrent[C,D,E],
AreConcyclic[P,Q,R,S]. On the other hand, the user can type a relation given by an equa-
tion (e.g. a+ b == ¢). Logical operators and functions like V, A and negation are not
supported at the moment.

It is also possible to use some specific quantities or even complicated expres-
sions inside the input formula, like the sum of the square of distances between some
given points. For classroom use, the preferred way may still be to define these quan-
tities as previous steps in the construction itself. For example, in Fig. 1 the student
proves the Pythagorean theorem by constructing the right triangle BAC and typ-
ing the proper input for the Prove command by simply referencing the segments of
the triangle. The same result could be done by defining lengths x=Segment[A,B],
y=Segment[A,C], z=Segment[B,C] and use Prove[x? + y2 == 7?]. Even in this sim-
ple case, it is not straightforward to decide which approach is better for the classroom
use, but the teacher has the freedom to choose the better formulation for the educational
situation.

@ Springer

ATP in GeoGebra 45

b Construction Protocol - Pythagoras.ggb

R ERE =
No. | Name | Definition

1 Point A

2 Point B

3lLline a Line through A, B

4Lline b Line through A perpendicular to a

6 Boolean Value ¢ Prove[Segment[A, B]? + Segment[A, C]? = Segment[B, C]?]

Fig. 1 Construction protocol for stating Pythagoras’ theorem

In our opinion, this design is already rich enough to cover many theorems in Euclidean
geometry. Also it is simple enough to help the student distinguishing between the hypothe-
ses of the theorem (appearing as construction steps) and the thesis (the input of the Prove
and ProveDetails commands).

3.3 Examples

Let us suppose that we have defined three free points, A=(1,2), B=(3,4), C=(5,6). The com-
mand AreCollinear[A,B,C] yields true, since a numerical check is used on the current
coordinates of the points. On the other hand, Prove[AreCollinear[A,B,C]] will return false
as an answer, since the three free points are not collinear in general, i.e., considering they
are just constrained to be “free”.

Second, let us define a triangle with vertices A, B and C, and define D=MidPoint[B,C],
E=MidPoint[A,C], p=Line[A,B], q=Line[D,E]. Now both p|q and Prove[p| q] return
true, since a midline of a triangle will always be parallel to the appropriate side (see Fig. 2).”
In addition, also ProveDetails[p| q] returns {true} because the statement is true without any
further condition for the points.3

Third, as a more complex example let us consider Pappus’s hexagon theorem. Let A, B,
C and D be free points and let us put points £ on AB, F on AC, and G on AD. Now let
H, I and J be the intersection points of CD and FG, BD and EG, BC and EF, respec-
tively. Pappus claims that the points H, I and J will be collinear. This statement is true,
however, only when a set of conditions is already met: for example if AD and CE are par-
allel, the intersection point H cannot even be defined in the Euclidean plane (but still may
be meaningful in the projective plane). GeoGebra can give a quite detailed answer on what
conditions should be assumed. Namely, ProveDetails[AreCollinear[H,LJ]] will return

"The parallel sign must be inserted as a special character in GeoGebra by clicking first the icon on the
right side of the Input Bar which opens a window, and then the correct character can be chosen—it is the 8th
element in the 4th row. Another method is to select the correct Unicode character from a different application
and paste it into the Input Bar in GeoGebra.

8In the future the output of ProveDetails command may include other pieces of information about the
computation, for example, the calculation time and methods used.

@ Springer

46 F. Botana et al.

Fig.2 p || ¢ when D and E are midpoints of BC and AC

{true, {”AreCollinear[D,E,A], AreEqual[DE,BC], AreEqual[EA,BC], AreEqual[F,A],
AreParallel[DB,EF], AreParallel[FA,BC]”}}. This means that if

— D, E and A are not collinear, and

— lines DE and BC are different, and

— lines EA and BC are different, and

— points F and A are different, and

— lines DB and EF are not parallel, and
— lines FA and BC are not parallel

then H, I and J will be collinear. This set of conditions is strict in the sense that by omitting
any element of it the theorem may be no longer valid.

For educational use this result (which is obtained by OpenGeoProver by using Wu’s
method)? is too long and unnecessarily complicated.'® Luckily, there is another technique
(described in [45] and now fully implemented in GeoGebra) which usually obtains a smaller
list for degeneracy conditions. For Pappus’s hexagon theorem the smallest possible lists are:

1. — A, B and F are not collinear, and
— BC is not perpendicular to AC.

2. — A, Band C are not collinear, and
— A, B and F are not collinear.

3. — A, Band C are not collinear, and

— A, C and D are not collinear.

For a student user, of course, it would be important that GeoGebra selects the “easi-
est” or “most beautiful” one of the possible set of conditions. In this third example the
third set is the best: it contains only free variables and it is visually straightforward.

9GeoGebra must be started to achieve this output by adding - -prover=engine:OpenGeoProver,
method:Wu to the command line [49].

107¢ is well known that there are several mathematical and computational difficulties when defining and
obtaining degeneracy conditions, such as those described by [51] in the GEOTHER system.

@ Springer

ATP in GeoGebra 47

Fig. 3 Pappus’s hexagon theorem realized in a good-looking configuration

From the perspective of automated proofs and programming, however, it can be diffi-
cult to make such a decision. It is easy to draw the case of the theorem shown in Fig. 3
when AB||CD and AB # CD. Clearly, these assumptions imply both the second and

v

GeoGebra

Exact checks

in a bounded .
Singular
number of e i
webservice symbolic T
e G2 computations prover 1

Fig. 4 GeoGebra can choose from several prover subsystems to answer questions

@ Springer

48 F. Botana et al.

the third list of the conditions above, but to find this geometrically good-looking config-
uration, the background work of the teacher is still required. (Even in the very special
case AB = BE = 2CF = 2FD, shown in the figure, it can still be a challenge for
many students to find the arguments why the theorem holds.) On the other hand, the
problem with AD||CE is still not handled even in this case since the applied technique
computes results in projective geometry and the non-Euclidean interpretation cannot be
excluded (Fig. 3).

3.4 Methods Supported

The new GeoGebra commands proceed by launching the prover subsystem,!! which uses
the following engines (cf. the provided references to learn about how the engines work) to
decide whether a statement is true:

1. Exact checks in a bounded number of test cases (“Engine 17, [5], [34], [52]).12:13
Algebraization of the given statement and then attempting to find its proof by using
Grébner bases computation (“Engine 27, [6]). This engine!* uses outsourced computa-
tions by the computer algebra system Singular (so the computation is very fast, [18])
running on a remote web server.

3. Outsourcing the decision to OpenGeoProver, '3 a stand-alone open source prover. Open-
GeoProver currently supports Wu’s method (“Engine 3a”, [40]) and the area method
(“Engine 3b”, [19]), but will be extended by additional methods in the future.

There is a built-in heuristic that, for a given statement, tries to find the most suitable engine
(and the most applicable method within each engine, if it supports several ones) among the
available ones. Currently we use a dummy heuristic which calls the provers in the order
above. This is based on the expected time of calculation from our current benchmark exam-
ples. We are planning to develop more sophisticated portfolio solvers, successfully used in
other automated reasoning domains [43, 56] (Fig. 4).

3.5 Programming Challenges

GeoGebra is complex software, written mostly in Java, by around 70 developers from sev-
eral countries. The source code consists of about 7000 Java files representing more than
1,200,000 lines of code. OpenGeoProver was also a complex system already with more than
200 Java files. Enhancement of GeoGebra and OpenGeoProver required programmers with
skills in programming, mathematics and community based development.

We had to improve both systems for building up an efficient intercommunication when
creating the construction data structure inside GeoGebra and sending it to an acceptable

See http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/util/Prover java
for the detailed Java source code of the prover subsystem in GeoGebra.

12This method has a monitoring helper method called Pure symbolic prover which can be used for GeoGebra
development purposes, but is too slow for regular use.

13The Java source code of this engine can be found at http://dev.geogebra.org/trac/browser/trunk/geogebra/
common/src/geogebra/common/kernel/prover/AbstractProverReciosMethod.java.

4The Java source code of this engine can be obtained from http:/dev.geogebra.org/trac/browser/trunk/
geogebra/common/src/geogebra/common/kernel/prover/ProverBotanasMethod.java.

I5The Java source code of OpenGeoProver can be found at https:/code.google.com/p/open-geo-prover/
source/browse/#svn/branches/geogebra_ogp/OpenGeoProver.

@ Springer

http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/util/Prover.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/AbstractProverReciosMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/AbstractProverReciosMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/ProverBotanasMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/ProverBotanasMethod.java
https://code.google.com/p/open-geo-prover/source/browse/#svn/branches/geogebra_{o}gp/OpenGeoProver
https://code.google.com/p/open-geo-prover/source/browse/#svn/branches/geogebra_{o}gp/OpenGeoProver

ATP in GeoGebra 49

Fig. 5 One of the six different formulations of the same geometry statement

form to OpenGeoProver for computation. Also for Engine 1 and 2 we had to create internal
data structures for storing and computing polynomials efficiently enough. For Engine 2
we had to implement a lightweight communication protocol between GeoGebra and a web
server which runs Singular remotely inside a Linux virtualization. We also had to make
some security improvements in Singular to prevent anonymously sent unsandboxed system
calls.

Since we use several independent provers and they do not share the same representation
of polynomials and other abstract objects, it is out of our scope to describe the implementa-
tion details for each prover in this paper. The reader can find all programming nuisances in
the freely available source code of each engine.

3.6 Achieved Goals

Here we refer to goals described in Section 3.1.

The command line functionality for theorem proving tasks for GeoGebra is in a first
stage, but it seems as a suitable integration into the standard user interface.

Goal 1 would be further supported by adding a Prove tool with a dialog window. Also
the extension of the Relation Tool, that automatically detects relations between geome-
try objects in the construction (numerically at the moment), could be extended by using
symbolic computations. Engine 1 can be used by both the desktop and web versions of
GeoGebra, but the other engines, however, are not prepared to be multiplatform yet.'®

Goal 2 seems to be a drawback for advanced users, but the ProveDetails command can
be a good compromise. Showing a small set of degeneracy conditions and converting it into
a visualized geometry content should be supported in the future.

16Engine 2 can already be utilized by using the embedded computer algebra system Giac [36] with limited
capabilities.

@ Springer

50 F. Botana et al.

Goal 3 has been successfully achieved. Engine 1 often gives an answer within 20 ms on
a modern workstation. Engine 2 is usually between 50 and 100 ms.!” Engine 3 gives the
result between 100 and 250 ms. Since Engine 3 consists of standalone implementations, it
was required to attach it to GeoGebra as an external package. Its binary size is below 75
kilobytes and thus quite small.

Goal 4 is work in progress.

Goal 5 has been accomplished by design.

4 Classroom Examples and Benchmarks

In this section we provide some detailed comments on the performance of the GeoGebra
prover engines over two elementary geometry problems. The first one is about the concur-
rency of the bisectors of the sides of a triangle; the second one is Simson’s theorem. We will
show some different formulations (i.e., construction steps for the hypotheses and thesis)
of the same statements could have a non negligible impact on the different prover engines
performance. We think this is an important observation, since end users of GeoGebra are
students rather than researchers, and, thus, we have to take into consideration that they could
be describing a given statement in rather unexpected ways.

In the last part of this section we present some data on the performance of our ATP
implementation on a benchmark suite.

4.1 Concurrency of Side Bisectors of a Triangle

Some test cases for the provers are defined in separate files called circumcenterN (N =
1, ..., 6)in [35]. One can test the proving methods by exploring different formulations of
the same geometry statement:

1. Triangle ABC is created as a polygon with free vertices. The perpendicular bisectors
(d, e) of two sides of the triangle are created, and their intersection point is D. A point
E is the midpoint of the third side, aline f is Line[D,E], and g is perpendicular bisector
of the third side. The statement to decide is whether f is parallel to g (Fig. 5).

2. This is similar to the first configuration, but points A, B and C are created as free
objects, and lines through them will be used instead of segments. For this reason the
perpendicular bisector of the three point-pairs will be used (instead of the three seg-
ments). This also means that the lines of the sides are not used in the computation but
for visualization only. (Internal GeoGebra representation for a triangle and a set of three
free points is substantially different, this is why we need to consider this as a different
case.)

3. Free points A, B, C and lines through them are created and perpendicular bisectors
of all pairs of the free points are tested whether they are concurrent. By using the
AreConcurrent command, this can be achieved in a convenient way.

4. Same as the previous, but we use a polygon instead of lines. (Again, this must be
considered as a different case because of GeoGebra internals.)

5. We create free points A, B and C and their circumcircle. Then two of the bisectors
of the pairs of free points are created and their intersection D is constructed. Now we

17Giac is about 3 times slower in the desktop version than Singular and there is another factor of 10 for the
web version. Its overall performance is still acceptable in many classroom situations.

@ Springer

ATP in GeoGebra 51

Fig. 6 Simson’s theorem

measure the distance of D to two free points. If they are the same, it means D is the
same distance from all three free points, thus D is the center of the circumcircle. Finally,
one shall obtain from uniqueness that the perpendicular bisectors are concurrent.

6. Finally, another approach is to create point D as intersection of bisectors of AB and
AC, and create point E as intersection of bisectors of AC and BC. Now we prove that
D equals E.

All formulations can be proved by all our proving methods, except that the Sth one cannot
be computed by Engine 1 since it is not capable of dealing with circles. Benchmarking
results are approximately the same for the same method for each configuration: Engine 1
returns the result in 8—13 ms, Engine 2 in 38-104 ms, Engine 3 in 98-187 ms or 8§7-100
ms (depending on the applied prover technique). Since GeoGebra selects Engine 1 as the
preferred way for computation, this problem can be solved by GeoGebra usually near 10 ms
(Table 1).

4.2 Simson’s theorem

Here we consider two possible formulations of Simson’s theorem.

Table 1 Comparison of proving methods

Formulation Engine 1 Engine 2 Engine 3a Engine 3b
#1 10 57 187 100

#2 7 39 124 84

#3 8 38 126 94

#4 8 44 128 91

#5 n.a. 44 98 88

#6 13 104 118 87

@ Springer

52 F. Botana et al.

1. Create a circle lying on the free points A, B, C. Put D on the circle and define the
triangle ABC. Create perpendiculars on D to the side lines of the triangle. Create the
side lines, too. Create the intersection points of the perpendiculars and the side lines.
Prove that they are collinear (by using the new AreCollinear command). (See Fig. 6.)

2. Similar to the first formulation, but do not create a triangle, just use side lines.

One can see that the second construction has less complexity since there are fewer objects
to consider. Despite that, Engine 1 cannot handle this construction at the moment (because
of the same reason mentioned in Section 4.1). By contrast, Engine 2 can compute the result
by using the algorithm described in [17] (pp. 300-303) and sending the computation request
to Singular. The final result is returned in less than 80 ms for both formulations.

Also Engine 3 does a good job with both prover techniques. Wu’s method takes about
250 ms and the area method solves the problems in about 150 ms.

4.3 Other Tests

GeoGebra has an automated benchmarking suite to measure 60 different conjectures for
measuring performance of all implemented prover methods [37].

The prover subsystem in GeoGebra can still be considered as just a prototype, but in
many cases it does a remarkable job. On a benchmark set of 60 conjectures, GeoGebra gives
53 correct answers since Engine 1 gives 30 results; Engine 2, 47 results, and Engine 3 gives
47 and 42 correct results for the two different techniques, respectively (the remaining 7 tests

—— Engine 1
[— Engine 2
s ---- Engine 3a
-------- Engine 3b
e
z
©
S
o
2
§ o
2 o 4
=
<
o
o
o
Q —
o
o
o -
o
T T T T T
0 50 100 150 200

Milliseconds

Fig. 7 Density estimate of benchmark time output visualized on the working tests

@ Springer

ATP in GeoGebra 53

return “undefined”) [37]. However, the test database is created for internal testing, and a
third-party database is planned to be used soon.

Making a thorough comparison between the presented provers and other provers is
quite a formidable task and it is not within the goals of our paper. Even if we manage to
make some automatic translation between input formats—this will not lead to a fair com-
parison. Namely, it is not only an input language issue what is at stake, but also deeper
expressibility—some provers natively support some geometric constructs, while for some
one has to deal with them in some less efficient way. So, the benchmark set and the trans-
lation used could be easily biased towards one or another system. On the other hand, we do
believe that the time has just arrived to start creating wide and well-thought open databases
with the opportunity to compare open systems.

Still, the overall conclusion is that GeoGebra, endowed with the ATP features we have
introduced, could already be used for theorem proving in education. (See also Fig. 7 for a
visual comparison of its embedded provers.)

5 Educational Relevance

In this section we discuss some basic aspects for teaching proofs in a classroom and how
ATP and DGS tools could improve the educational process.

5.1 Fundamental Aspects

DeVilliers [20] describes how proofs can support student understanding of mathematical
concepts. It outlines the following steps in problem solving towards a proof:

Introduction, prerequisites
Discovery

Verification (testing)

Intellectual challenge
Systematization (the proof itself)

DAL

Step 1 should make the students understand the problem by describing the topic and the
involved objects and by presenting a closer look to the applicable techniques. Step 2
should let students to use the related tools on their own, and to make them comfortable
enough with the topic as to allow the formulation of conjectures and guesses. This may
require much more time than teachers usually have in classroom teaching. At Step 3 stu-
dents (with or without the help of the teacher) should make as many tests as required for
being convinced about the conjectured properties. Step 4 is for collecting and attempt-
ing to assemble as many related pieces of information as possible, to prepare for Step
5, which is about constructing the actual solution of the given problem, and about pre-
senting a clear and rigorous reasoning explaining the truth or falsity of the different
required steps.

Computers, namely DGS tools, can help students in Steps 1 and 2, in order to get familiar
with the involved mathematical objects and to visualize their properties. At Step 1 it is not
required to use an ATP-capable DGS in the classroom. For example, to introduce Ceva’s
theorem (Fig. 8), it is enough to use a system which can draw lines, create the corresponding
intersection points, to measure length of segments and to compute divisions and products.
On the other hand, Steps 2 and 3 could be greatly enhanced by computer assistance. For

@ Springer

54 F. Botana et al.

File Edit View Options Tools Window Help

o T T - - ‘ - ‘ §|
A R || ‘.\. Fe | 4,“ Y ABC a=2|| 2

’k ‘.'7/7]/7‘ “/VG)VK.'VIV«.7 7_._7‘|‘-I+7J) **
» Algebra [x] 7| v Graphics ||

A =(-3.58, 1.48) LIE e~

B = (0.96, 5.52)

C = (2.24, 0.39)

b = SegmentIC, A, polyl]

a = SegmentlB, C, polyl]

c = Segment[A, B, polyl]

polyl = PolygonlA, B, C]

D = (0.68, 2.42)

d = Line[B, D]

e = Line[A, D]

f = LinelC, D]

E = Intersect[e, al
F = Intersect[d, bl
G = Intersectlc, f]
g = Segment[A, G]
h = Segment[G, B]
i = Segment[B, E]

j = Segmentl[E, C]

k = SegmentIC, F]
| = Segment[F, Al

m=g/hi/jk/I

2 n=Prove[m = 1]

(O VL Vi Vi Vi VL SR VR VL VR VI VI VR VL VL VL VL VL VL VR Y

Input: |

Fig. 8 Cevas theorem in GeoGebra: Given a triangle ABC, let the lines AD, BD and C D be drawn from the
vertices to a common point D to meet opposite sides at E, F and G respectively. Then AG/GB - BE/EC -
CF/FA =1

example, a DGS/ATP system could systematically help the user conjecturing in the correct
direction. See Section 6 for our further plans along these lines.

Of course, DGS tools using probabilistic methods for verification can give almost
sure results very quickly, and they may be incorrect only in very rare cases. In spite of
the possible practical demand to use it, we emphasize here that there is a sharp divid-
ing line in education use between “almost sure” and “sure”. Unlike other disciplines,
mathematics as science can indeed provide “sure” results about relations of its abstract
objects. This is a special property of mathematics and logic, making mathematics a com-
plete different discipline than others. From the educational point of view, students need
to make a difference between ‘“2+2 equals always 4” and ‘“2+2 equals most of the time
4”. Actually, in real life the every day rules have just a certain possibility: physical
laws (like gravity) mostly work in normal circumstances (at least, they usually do), and
machines controlled by physical laws (like a vacuum cleaner) work in most cases with-
out being repaired for a long time. On the contrary, mathematical laws are essentially
different.

Existing ATP tools usually have a more precise conclusion, but using them may be inad-
equate from the educational point of view: they may require using special specification
languages, they could have a non-intuitive user interface, and, in some cases, results may
be given too slowly. Our improvements on GeoGebra may be a bridge between DGS and
ATP systems, since its intuitive user interface could help the average student to describe the
problem and to ask questions to the underlying prover engines.

@ Springer

ATP in GeoGebra 55

Nevertheless, Step 4 is not covered by our work at the moment. In this step the student
should collect minor facts of the geometrical construction which will build up the complete
sequence of reasons explaining how to solve a given problem. GeoGebra already has a par-
tial support for this by providing the Relation Tool, but a detailed investigation is not yet
supported. An interesting approach for collecting information about an existing construc-
tion is Z. Magajna’s OK Geometry software [39] which could be a step forward in helping
students to build up their own proofs.

Finally, Step 5 is still a question of automated finding and verifying human readable
proofs, including the consideration of possible ways on how a student could handle a
point-and-click user interface to design and to describe the whole proof of a geometric
theorem.

As [24, p. 905] emphasizes that proofs which best promote understanding . . . much more
likely to yield not only knowledge that, but also knowledge why. In our vision GeoGebra
could focus on this approach in future enhancements of the proving subsystem.

5.2 Other Uses and Abuses

Step 3 only gives a yes/no answer (or unknown) for a statement like a black box. While
this seems to be just a small step if we are to consider the computer a real tutor in learn-
ing mathematics, we must emphasize that generating full proofs by an ATP may also be
misleading. First of all, today’s ATP systems usually generate too long proofs which can-
not show the beauty and elegance of geometrical proofs. Moreover, many methods do not
provide geometric proofs, but algebraic computations. That is why we simply try to give
a yes/no answer at the moment. Of course, such an answer can also be dangerous if no
preparation was done in the previous classroom process, i.e., if Steps 1 and 2 were not fully
elaborated in advance. This can lead to student responses like ‘So what?’ if the software
simply tells whether a theorem is true or not.

An important possible use of a yes/no answer is automated checking of open ended
tests. For example, the teacher asks the student to create a right triangle by using a DGS.
When the teacher designs this question, he/she could be thinking of one correct construc-
tion, where the third vertex is the output and it depends on the first two vertices as inputs,
by using Euclidean steps only (i.e., only a compass and a ruler). During the test time the
teacher’s construction steps will be hidden for the student, but a built-in ATP system could
check if the output vertex of the student coincides with the one of the teacher’s template—
even if the student intermediate steps are different form those of the teacher. Here an ATP
tool could give a sure yes/no answer, and the computer would be able to decide whether
the student has solved the problem correctly or not. Since GeoGebra (powered with ATP
features) is already fast enough in such computations, we think it opens the door to cre-
ate computer aided open ended tests in geometry. This subject has also been studied in
[27], using a numerical comparison between template constructions and those provided by
users.

We can also think of open ended tests where finding the intermediate steps can also be
crucial. For example, given a circle ¢ with its center O and an external point P, the student’s
task is to construct a tangent line ¢ from P to c. The teacher knows that the basic idea for
the usual solution is to create the midpoint M of O P. It helps drawing a second circle d
with center M aligning on both O and P, and now the intersection points of ¢ and d will
define the tangent points (because of Thales’ circle theorem). Here finding the importance
of M is already an intellectual challenge and thus the teacher may highlight “important
intermediate points” in his/her template, not only the possible final results #; and #,. In case

@ Springer

56 F. Botana et al.

the student finds M by constructing it somehow the software tool could give encouragement
by confirming the good direction.

Ultimately, we also expect a dramatical change of the idea of mathematical reason-
ing from the teacher’s perspective as well. Proof is traditionally considered as a human
act which requires intellectual work. But to utilize a computer to obtain the conclusion is
actually something purely mechanical. This may change the teacher’s role fundamentally,
raising her to a higher level in the education process.

6 Conclusions and Future Work

We released the theorem prover subsystem as a part of GeoGebra version 5, in September
2014. In the next forthcoming GeoGebra versions we plan to enhance the existing engines
and to add implementations of other proving methods to OpenGeoProver. Furthermore, in
the future we want to make use of the database of the GeoThms project [44] as a benchmark,
and possibly use Chou’s [9] and Wang’s [50] collections as well.

Integration of theorem proving features in GeoGebra is not an ad-hoc task, but a complex
process yielding an evolving system, meeting users’ needs and progress in theorem proving
technology. After getting feedback about the current features, the long term plans are care-
ful GUI changes in GeoGebra, that will turn using proving features more comfortable for
the end user. From the educational perspective, GeoGebra could then be used as an expert
system in elementary geometry which not only tells a yes/no answer but is capable of show-
ing a step-by-step explanation if a machine generated proof is considered human readable.
Such efforts have already been started by extending the OpenGeoProver with the ability to
generate more readable proofs, based on the mass point method ([60]).

When a construction is given, GeoGebra could also automatically identify certain
“interesting” properties on the construction. For example, when the circumcenter, the
centroid and the orthocenter of a triangle have already been constructed, GeoGebra
could “know” that these points are collinear and provide this information to the user
when asked. Such an auto-relation feature could extend the already existing Relation
Tool.

GeoGebra could also give a counterexample when the checked statement is not always
true. For Engine 1 this could be achieved immediately by post-processing its internal
computations.

Despite the fact that these improvements should be intuitive enough we still
plan to involve a wider group of experts to help creating explanatory materials
for teachers and students and share them with the community. Some demonstra-
tional examples are already available to introduce the new GeoGebra commands
(see, for instance http://wiki.geogebra.org/en/ProveDetails_Command, http://tube.geogebra.
org/student/m55158, https://www.youtube.com/watch?v=7aDe0YMm-OE or http://tube.
geogebra.org/student/b104296).

The overall goal of all these improvements is to support the problem solving process of
students related to proving, in particular, in the geometry context.

References

1. Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s Elements. Rev. Symb. Log. 2(4), 700—
768 (2009)

@ Springer

http://wiki.geogebra.org/en/ProveDetails_Command
http://tube.geogebra.org/student/m55158
http://tube.geogebra.org/student/m55158
https://www.youtube.com/watch?v=7aDe0YMm-OE
http://tube.geogebra.org/student/b104296
http://tube.geogebra.org/student/b104296

ATP in GeoGebra 57

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.

27.

28.

. Baulac, Y., Bellemain, F., Laborde, J.M.: Cabri Geometry II. Dallas, Texas Instruments (1994)
. Bernat, P.: Using dynamic geometry environments for problem solving: CHYPRE: an interactive envi-

ronment for elementary geometry problem solving. Abstract of a presentation at The 8th International
Congress on Math Education (ICME 8). Retrieved 06.08.13, from, http://mathforum.org/mathed/seville/
bernat/abst_bernat.html. Seville (1996)

. Bertot, Y., Guilhot, F,, Pottier, L.: Visualizing geometrical statements with GeoView. Electr. Notes Theor.

Comput. Sci. 103, 49-65 (2004)

. Botana F,, Kovdcs, Z., Recio, T., Weitzhofer, S.: Implementing theorem proving in GeoGebra by using

a Singular webservice, or by exact check of a statement in a bounded number of test cases, http://ggbl.
idm.jku.at/~kovzol/talks/eacal2/EACA2012-BotanaKovacsRecioWeitzhofer.pdf (2012)

. Botana, F., Kovics, Z., Weitzhofer, S.: Implementing theorem proving in GeoGebra by using a Sin-

gular webservice. In: Proceedings EACA 2012. Libro de Restimenes del XIII Encuentro de Algebra
Computacional y Aplicaciones, pp. 67-70. Alcald de Hendres, Universidad de Alcald (2012)

. Botana, F,, Valcarce, J.: A dynamic symbolic interface for geometric theorem discovery. Comput. Educ.

38, 21-35 (2002)

. Buchberger, B. In: Rice, J.R. (ed.): Applications of Grobner Bases in Non-Linear Computational

Geometry, pp. 59-87. Springer, New York (1987)

. Chou, S.C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht

(1988)

Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated production of traditional proofs for constructive geometry
theorems. In: Vardi, M. (ed.) Proceedings of the 8th Annual IEEE Symposium on Logic in Computer
Science (LICS), pp. 48-56. IEEE Computer Society Press (1993)

Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific, Singapore
(1994)

Chou, S.C., Gao, X.S., Zhang, J.-Z.: Automated generation of readable proofs with geometric invariants
(II). Theorem proving with full-angles. J. Autom. Reason. 17, 349-370 (1996)

. Chou, S.C., Gao, X.S., Zhang, J.Z.: An introduction to Geometry Expert. In: McRobbie, M.A.,

Slaney, J.K. (eds.) CADE 13, volume 1104 of Lecture Notes in Artificial Intelligence. Springer-Verlag
(1996)

Chou S.C., Gao X.S.: Automated reasoning in geometry. In: Handbook of Automated Reasoning.
Elsevier, and MIT Press (2001)

Coelho, H., Moniz-Pereira, M.: Automated reasoning in geometry theorem proving with Prolog (1986).
J. Autom. Reason. 2, 329-390 (1986)

CoCoATeam: CoCoA: A system for doing Computations in Commutative Algebra. Retrieved 02.09.13,
from http://cocoa.dima.unige.it (2012)

Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An Introduction to Computational
Algebraic Geometry and Commutative Algebra (Undergraduate Texts in Mathematics). Springer-Verlag,
Secaucus, NJ (2008)

Decker, W., Greuel, G.-M., Pfister, G., Schonemann, H.: Singular 3-1-6 — A Computer Algebra System
for Polynomial Computations. Retrieved 02.09.13, from, http://www.singular.uni-kl.de (2012)
Desfontaines, D.: Theorem proving in GeoGebra: Implementing the Area Method into Open-
GeoProver (Internship report). Retrieved 02.02.13, from, http://www.eleves.ens.fr/home/desfonta/
InternshipReport-v2.pdf (2012)

DeVilliers, M.: Rethinking Proof with Sketchpad. Key Curriculum Press. Retrieved 02.02.13, from,
http://mzone.mweb.co.za/residents/profmd/proof.pdf (1999)

Gao, X.S., Lin, Q.: MMP/Geometer a software package for automated geometric reasoning. In: Winkler,
F. (ed.) Automated Deduction in Geometry: 4th International Workshop, (ADG 2002), volume 2930 of
Lecture Notes in Computer Science, 44—66. Springer-Verlag (2004)

Gelernter, H.: Realisation of a geometry-proving machine. In: Proceedings of the International Confer-
ence on Information Processing, 273-282, Paris, vol. 15-20, p. 1959 (1959)

Gressier, J.: Geometrix IV. Retrieved 06.08.13, from, http://geometrix.free.fr (2013)

Hanna, G., Jahnke, H.N.: Proofs and proving. In: A. J. Bishop A. J., Clements K., Keitel C., Kilpatrick
J., Laborde C. (eds.) International Handbook of Mathematics Education, Part Two, pp. 877-908. Kluwer
Academic Publishers, Dordrecht (1996)

Hanna, G.: The ongoing value of proof. J. Math. Didaktik 18(2), 171-185 (1997)

Hohenwarter, M.: Ein Softwaresystem fiir dynamische Geometrie und Algebra der Ebene, master thesis.
Paris Lodron University, Salzburg (2002)

Isotani, S., Branddo, L.O.: An algorithm for automatic checking of exercises in a dynamic geometry
system: iGeom. Comput. Educ. 51, 1283-1303 (2008)

Jackiw, N.R.: The Geometer’s Sketchpad, v3.0. Key Curriculum Press, Berkeley, CA (1995)

@ Springer

http://mathforum.org/mathed/seville/bernat/abst_bernat.html
http://mathforum.org/mathed/seville/bernat/abst_bernat.html
http://ggb1.idm.jku.at/~kovzol/talks/eaca12/EACA2012-BotanaKovacsRecioWeitzhofer.pdf
http://ggb1.idm.jku.at/~kovzol/talks/eaca12/EACA2012-BotanaKovacsRecioWeitzhofer.pdf
http://cocoa.dima.unige.it
http://www.singular.uni-kl.de
http://www.eleves.ens.fr/home/desfonta/InternshipReport-v2.pdf
http://www.eleves.ens.fr/home/desfonta/InternshipReport-v2.pdf
http://mzone.mweb.co.za/residents/profmd/proof.pdf
http://geometrix.free.fr

58

F. Botana et al.

29.
. Janici¢, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. J. Autom. Reason. 48(4), 489—

31

32.
33.

35.

36.

37.
38.

39.

40.
41.

42.

43.

44,
45.
46.

47.

48.
49.

50.

51.

52.

53.

Jani¢i¢, P.: Geometry constructions language. J. Autom. Reason. 44(1-2), 3-24 (2010)

532 (2012)

Kapur, D.: Using Grobner bases to reason about geometry problems. J. Symb. Comput. 2(4), 399-408
(1986)

Kortenkamp, U.: Foundations of Dynamic Geometry. Ph.D. Dissertation, ETH, Zurich (1999)
Kortenkamp, U., Richter-Gebert, J.: Using automatic theorem proving to improve the usability of
geometry software. In: Workshop on Mathematical User Interfaces (2004)

. Kovécs, Z., Recio, T., Weitzhofer, S.: Implementing theorem proving in GeoGebra by exact check of a

statement in a bounded number of test cases. In: Proceedings EACA 2012. Libro de Restimenes del XIII
Encuentro de Algebra Computacional y Aplicaciones, pp. 123-126. Alcald de Hendres, Universidad de
Alcald (2012)

Kovics, Z., Weitzhofer, S., Desfontaines, D., JaniCi¢, P.: Test cases for benchmarking statements.
Retrieved 11.09.12, from, https://dev.geogebra.org/trac/browser/trunk/geogebra/test/scripts/benchmark/
prover (2012)

Kovics, Z., Parisse, B.: Giac and GeoGebra — improved Grobner basis computations, Special Semester
on Applications of Algebra and Number Theory, Workshop 3 on Computer Algebra and Polynomi-
als. Retrieved 18.10.14, from, https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/
parisse-kovacs.pdf (2013)

Kovics, Z.: Prover benchmark for GeoGebra 5.0.14.0. Retrieved 10.09.14, from, http://test.geogebra.
org/~kovzol/data/Prove-20150219/ (2014)

Luengo, V.: Cabri-Euclide: Un micromonde de Preuve intégrant la réfutation, PhD thesis. Université
Joseph Fourier, Grenoble (1997)

Magajna, Z.: An observation tool as an aid for building proofs. Electronic J. of Mathematics
and Technology 5/3. Retrieved 02.02.13, from, http://www.freepatentsonline.com/article/Electronic-
Journal-Mathematics-Technology/270980194.html (2011)

Marié, F., Petrovié, 1., Petrovié¢, D., Jani¢i¢, P.: Formalization and implementation of algebraic methods
in geometry. Electron. Proc. Theor. Comput. Sci. 79, 63-81 (2011)

Narboux, J.: A graphical user interface for formal proofs in geometry. J. Autom. Reason. 39(2), 161-180
(2007)

Narboux, J.: Geoproof, a user interface for formal proofs in geometry. In: Mathematical User-Interfaces
Workshop, Schloss Hagenberg, Linz, Austria. Electronic proceedings at http://www.activemath.org/
workshops/MathUI/07/proceedings/Narboux- Geoproof-MathUI07.html (2007)

Nikoli¢, M., Mari¢, F., Janici¢, P.: Instance-based selection of policies for SAT Solvers. In: Theory and
Applications of Satisfiability Testing — SAT 2009, volume 5584 of Lecture Notes in Computer Science,
pp. 326-340. Springer-Verlag (2009)

Quaresma, P., Jani¢i¢, P.. GeoThms — a web system for euclidean constructive geometry. Electron.
Notes Theor. Comput. Sci. (ENTCS) 174(2), 35-48 (2007). doi:10.1016/j.entcs.2006.09.020

Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J. Autom. Reason. 23,
63-82 (1999)

Schwartz, J.L., Yerushalmy, M.: The Geometric Supposer. Sunburst Communications, Pleasantville, NY
(1983)

Sutherland, L.E.: Sketchpad: A Man-Machine Graphical Communication System, Lincoln Laboratory,
Massachusetts Institute of Technology via Defense Technical Information Center, Technical Report No.
296. Lexington, MA. Retrieved 02.02.13, from, http://handle.dtic.mil/100.2/AD404549 (1963)

Tall, D.: Cognitive development, representations and proof. In: Proceedings of the conference Justifying
and Proving in School Mathematics, pp. 27-38. Institute of Education, London (1995)

The GeoGebra Team: Reference: Command Line Arguments — GeoGebraWiki (2015). http://wiki.
geogebra.org/en/Reference:Command_Line_Arguments

Wang, D.: Geother 1.1: Handling and proving geometric theorems automatically. In: Automated Deduc-
tion in Geometry, volume 2930 of Lecture Notes in Artificial Intelligence, pp. 194-215. Springer-Verlag
(2004)

Wang, D.: Elimination Practice: Software Tools and Applications. London: Imperial College Press.
Geother 1.1: Handling and proving geometric theorems automatically. In: Automated Deduction in
Geometry, volume 2930 of Lecture Notes in Artificial Intelligence, pp. 194-215. Springer-Verlag
(2004)

Weitzhofer, S.: Mechanic Proving of Theorems in Plane Geometry. Johannes Kepler University, Linz,
Austria (2013). http://test.geogebra.org/~kovzol/guests/SimonWeitzhofer/Dipl Arbeit.pdf

Wilson, S., Fleuriot, J.: Combining dynamic geometry, automated geometry theorem proving and
diagrammatic proofs. In: Workshop on User Interfaces for Theorem Provers (UITP) (2005)

@ Springer

https://dev.geogebra.org/trac/browser/trunk/geogebra/test/scripts/benchmark/prover
https://dev.geogebra.org/trac/browser/trunk/geogebra/test/scripts/benchmark/prover
https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/parisse-kovacs.pdf
https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/parisse-kovacs.pdf
http://test.geogebra.org/~kovzol/data/Prove-20150219/
http://test.geogebra.org/~kovzol/data/Prove-20150219/
http://www.freepatentsonline.com/article/Electronic-Journal-Mathematics-Technology/270980194.html
http://www.freepatentsonline.com/article/Electronic-Journal-Mathematics-Technology/270980194.html
http://www.activemath.org/workshops/MathUI/07/proceedings/ Narboux-Geoproof-MathUI07.html
http://www.activemath.org/workshops/MathUI/07/proceedings/ Narboux-Geoproof-MathUI07.html
http://dx.doi.org/10.1016/j.entcs.2006.09.020
http://handle.dtic.mil/100.2/AD404549
http://wiki.geogebra.org/en/Reference:Command_Line_Arguments
http://wiki.geogebra.org/en/Reference:Command_Line_Arguments
http://test.geogebra.org/~kovzol/guests/SimonWeitzhofer/DiplArbeit.pdf

ATP in GeoGebra 59

54.
55.

56.

57.

58.

59.

60.

Wolfram Research, Inc.: Mathematica, Version 3.0. Champaign, IL (1996)

Wu, W.T.: On the decision problem and the mechanization of theorem proving in elementary geometry.
Sci. Sin. 21, 157-179 (1978)

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT.
J. Artif. Intell. Res. (JAIR) 32, 565-606 (2008)

Ye, Z., Chou S.C., Gao, X.S.: An Introduction to Java Geometry Expert. In: Automated Deduc-
tion in Geometry, 7th International Workshop, ADG 2008, Shanghai, China, September 22-24, 2008,
Revised Papers, volume 6301 of Lecture Notes in Computer Science, pp. 189-195. Springer-Verlag
(2011)

Ye, Z., Chou, S.C., Gao, X.S.: Visually dynamic presentation of proofs in plane geometry. J. Autom.
Reason. 45(3), 213-241 (2010)

Zhang, J.Z., Yang, L., Deng, M.: The parallel numerical method of mechanical theorem proving. Theor.
Comput. Sci. 74(3), 253-271 (1990)

Zou, Y., Zhang, J.Z.: Automated Generation of Readable Proofs for Constructive Geometry State-
ments with the Mass Point Method. In: Lecture Notes in Computer Science, Volume 6877, Automated
Deduction in Geometry, 221-258 (2011)

@ Springer

	ATP in GeoGebra
	Abstract
	Introduction
	Dynamic Geometry Software and Theorem Proving
	Proving Capabilities in GeoGebra
	Goals
	New GeoGebra Commands
	Examples
	Methods Supported
	Programming Challenges
	Achieved Goals

	Classroom Examples and Benchmarks
	Concurrency of Side Bisectors of a Triangle
	Simson's theorem
	Other Tests

	Educational Relevance
	Fundamental Aspects
	Other Uses and Abuses

	Conclusions and Future Work
	References

