
J Autom Reasoning (2015) 54:353–390
DOI 10.1007/s10817-015-9325-5

Interpolation Systems for Ground Proofs in Automated
Deduction: a Survey

Maria Paola Bonacina · Moa Johansson

Received: 27 March 2014 / Accepted: 6 March 2015 / Published online: 20 March 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Interpolation is a deductive technique applied in program analysis and veri-
fication: for example, it is used to compute over-approximations of images or refine
abstractions. An interpolation system takes a refutation and extracts an interpolant by build-
ing it inductively from partial interpolants. We survey color-based interpolation systems
for ground proofs produced by key inference engines of state-of-the-art solvers: DPLL for
propositional logic, equality sharing for combination of convex theories, and DPLL(T )
for SMT-solving. Since color-based interpolation systems use colors to track symbols in
proofs, equality is problematic, because replacement of equals by equals mixes symbols and
therefore colors. We analyze interpolation in the presence of equality, and we demonstrate
the color-based approach by giving a complete interpolation system for ground proofs by
superposition.

Keywords Interpolation systems · Satisfiability modulo theories · Decision procedures ·
Theory combination

1 Introduction

1.1 Motivation and Aim

Automated reasoners play a major rôle in supporting tools for program analysis and verifi-
cation, as described for instance in [8, 32, 33, 81]. A theorem-proving technique applied in

Research supported in part by grant no. 2007-9E5KM8 of the Ministero dell’Istruzione Università e
Ricerca, Italy, and by COST Action IC0901 Rich-model Toolkit of the European Union.

M. P. Bonacina (�)
Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
e-mail: mariapaola.bonacina@univr.it

M. Johansson
Department of Computer Science, Chalmers University of Technology, Göteborg, Sweden
e-mail: moa.johansson@chalmers.se

mailto:mariapaola.bonacina@univr.it
mailto:moa.johansson@chalmers.se


354 M.P. Bonacina, M. Johansson

this context is interpolation, or the operation of extracting interpolants from proofs. Given
closed formulæ A and B such that A implies B, an interpolant of A and B is a closed for-
mula that is implied by A, implies B, and contains only symbols they share; if A implies
¬B, A and B are inconsistent, and an interpolant of A and ¬B is a reverse interpolant
of A and B. If A and B are written in the language of a theory, so is the interpolant, and
implication is implication in the theory.

The first motivation to study interpolation was to allow software model checking to ben-
efit from theorem proving by abstraction refinement (e.g., [2, 48, 52, 64, 66]). A model
checker is applied to determine whether an abstraction of a concrete program P satisfies a
property: if it does, so does P ; otherwise, the model checker produces a counter-example,
representing an execution trace leading to an error state, and a formula, which is satisfiable
if and only if the counter-example applies also to P . If the formula is found unsatisfiable
by a theorem prover, the counter-example is spurious, and the abstraction should be refined
to exclude it. Interpolants of the refutation may capture intermediate states in the spuri-
ous error trace, and can be used to refine the abstraction, by re-introducing, for instance,
predicate symbols occurring in interpolants, to exclude states that lead to the spurious error.

Interpolation for abstraction refinement was proposed first for propositional logic and
propositional satisfiability (SAT) (e.g., [37, 52, 64, 86]), and then for quantifier-free frag-
ments of first-order theories, their combinations (e.g., [21, 23, 45, 88]), and satisfiability
modulo theories (SMT) (e.g., [24, 48, 53, 86]). Considered theories include equality [26, 39,
58, 65], linear rational arithmetic [26, 65], linear integer arithmetic [17, 19], or fragments
thereof [26], arrays [2, 18, 22], and bitvectors [46, 86]. In these approaches, the theory rea-
soning is done either by specialized inference systems [17–19, 48, 65] or by satisfiability
procedures [2, 22, 39, 46, 86], built into the DPLL(T ) framework for the “lazy” approach
to SMT (e.g., [26, 45, 88]). In the “eager” approach, the first-order theory is encoded into
propositional logic. Although the “lazy” approach is generally preferred, if the application
suggests to be “eager,” one may remedy the loss of proof structure caused by the encoding,
by lifting the propositional resolution proof produced by the SAT-solver to a proof in the
first-order theory, and interpolate the latter [58].

In all these contexts, the formulae A and B to be interpolated and the proofs are ground,
because the fragments are quantifier-free and the theory axioms are built-in. This does
not imply that interpolants are quantifier-free. A theory is quantifier-free interpolating if
quantifier-free input formulæ are guaranteed to have quantifier-free interpolants. Given a
ground proof, it is obviously desirable to extract a quantifier-free interpolant, and there-
fore this end of the field is mostly interested in quantifier-free interpolation. Sufficient
and necessary conditions to ensure that a union of quantifier-free interpolating theories is
quantifier-free interpolating were given in [21, 23].

In this article, we study interpolation of ground proofs, referring to [15] for the general
case. We consider some of the main inference engines at the heart of contemporary solvers
and provers: DPLL, equality sharing, DPLL(T ), and superposition. DPLL stands for the
Davis-Putnam-Logemann-Loveland procedure for propositional satisfiability (SAT) origi-
nated in [29, 30]: the version assumed here is the one with Conflict-Driven Clause Learning
(DPLL-CDCL) [61, 62, 71], which is the basis of contemporary SAT-solvers. Equality shar-
ing is the original name (cf. pages 383–386 in [35]) of the Nelson-Oppen method [75]
to combine satisfiability procedures for theories T1, . . . ,Tn to get a satisfiability proce-
dure for their union T = ⋃n

i=1 Ti (cf. Chapter 10 of [16] for a textbook presentation).
DPLL(T ) is DPLL with a built-in procedure for satisfiability in theory T [76], typically
obtained by equality sharing. DPLL(T ) and equality sharing are the foundations of SMT-
solvers. Superposition-based inference systems are used in theorem provers for first-order



Interpolation Systems for Ground Proofs in Automated Deduction 355

logic with equality, and also yield decision procedures for theories relevant to program
verification (e.g., [3, 4, 10, 11]).

1.2 State of the Art

Given a refutation, an interpolation system works by associating a partial interpolant to
every clause, in such a way that the partial interpolant of the empty clause is a reverse
interpolant of the input formulæ. We call this approach inductive, because an interpolation
system is defined by defining how it builds the partial interpolant of the conclusion from
those of the premises, for all inference rules. We deem an interpolation system complete for
an inference system, if for all its refutations it extracts a reverse interpolant. Since it does not
require the generation of all possible interpolants of a refutation, this notion of completeness
lets an inference system have different complete interpolation systems generating different
interpolants.

Complete interpolation systems for propositional resolution, and therefore for DPLL,
which produces proofs by propositional resolution, were given in [51, 56, 64, 77, 88] and
surveyed in [37]. Since [88], an interpolation system for DPLL(T ) is obtained by uniting
interpolation systems for DPLL and equality sharing. A complete interpolation system for
equality sharing was given in [88] for convex theories, assuming that the Ti-satisfiability
procedures produce proofs and interpolants. An interpolation algorithm for combinations of
theories, that goes beyond the convex case, was obtained in [21, 23] by a different method.
Interpolation of refutations produced by a DPLL(T )-based SMT-solver from inputs includ-
ing also non-ground clauses was investigated in [25, 69]. The non-ground input clauses are
instantiated upfront by an instantiation procedure (e.g., [31, 35, 42, 43, 70]) invoked by the
SMT-solver, so that the refutations to be interpolated are ground. Interpolation for ground
superposition was studied in [55] continuing work in [67].

1.3 Overview of Contributions

In this article we survey what we call the color-based approach to the interpolation of
ground proofs: the interpolation system tracks non-shared symbols, called local (e.g., A-
local and B-local) or colored (e.g., A-colored and B-colored), to exclude them from the
interpolant, and determine which literals descend from A or B, in order to ensure that the
reverse interpolant is entailed by A and inconsistent with B. We begin with color-based
interpolation systems for propositional resolution. Intuitively, the color-based approach
requires that A-colored and B-colored symbols do not mix. At the propositional level this
is obvious, since no new literals are generated. Ground proofs in first-order logic are like
propositional proofs in this regard.

The situation changes as soon as we add equality, already for ground proofs: regardless
of whether equality reasoning is done by congruence closure or superposition, equali-
ties where one side is A-colored and the other B-colored are problematic. We clarify
why this is the case, and we explain how the restriction to equality-interpolating convex
theories in [88], and the assumption of a separating ordering for ground superposition in
[55, 67], prevent precisely such AB-mixed equalities. We relate these two notions, by giv-
ing a superposition-based proof that the quantifier-free fragment of the theory of equality
is equality-interpolating. We cover color-based interpolation systems for equality sharing
in the case of convex theories, and DPLL(T ). All papers on color-based interpolation in
DPLL(T ) that we are aware of refer to [88] for the proofs of completeness of the interpola-
tion systems for DPLL, equality sharing, and DPLL(T ). Since the proofs appeared in [87],



356 M.P. Bonacina, M. Johansson

and with discrepancies in definitions and notations between [87] and [88], we reconstruct
them here.

Proofs without inferences that mix A-colored and B-colored symbols were called local
(e.g., [67]) — later colored — and ground refutations by superposition are colored under
a separating ordering [55]. We give a new complete color-based interpolation system for
ground refutations by a standard inference system Γ for first-order logic with equal-
ity, based on resolution and paramodulation/superposition. In summary, our contributions
include:
– A unified framework of definitions for the inductive approach to interpolation;
– A survey of interpolation systems for DPLL, equality sharing and DPLL(T ); and
– An analysis of interpolation in the presence of equality, resulting in a complete

interpolation system for ground superposition.

This article is organized as follows. Section 2 introduces basic concepts and notations.
Section 3 surveys interpolation for propositional proofs. Section 4 analyzes interpolation
and equality. Section 5 covers interpolation for equality sharing and DPLL(T ). Section 6
contains the interpolation system for ground superposition. Section 7 closes the article with
a discussion summarizing related work and contributions. The contents of Sections 3, 4
and 5 appeared in preliminary form in [13] and those of Section 6 in [14].

2 Background

We assume the basic definitions and notations commonly used in theorem proving, such as
⊥ for f alse, � for true, � for the empty clause, |= for logical consequence from formulæ
or truth in a model, and � for derivability, where � without subscript means generic, sound
and complete derivability in the logic, while � with subscript (e.g., �Γ ) will be used for
concrete derivation in a specific inference system. Equality is denoted by the symbol �,
which is symmetric, the symbol �� stands for either � or ��, and = is reserved for identity.
We typically use a, b, c for constant symbols, f , g for function symbols, l, r , s, t for terms,
l, m, r for literals, and C, D for clauses. A clause C is a disjunction of literals l1 ∨ . . . ∨ ln,
and its negation ¬C is the conjunction ¬l1 ∧ . . . ∧ ¬ln. Both C and ¬C can be seen as
sets of literals. We use “symbol” to mean a constant, function or predicate symbol, that is,
a non-variable symbol, and “variable” for variable symbol. A term s is a subterm of a term,
or literal, l, if s appears in l; s is a proper subterm, if it is not l itself. The notation l[s]
represents a term, or literal, where s occurs as subterm; in this notation l is called context.

2.1 Preliminaries on Interpolation

Given formula A, let ΣA be the signature of symbols occurring in A. Let A and B be two
formulæ to be interpolated, such that ΣA �⊆ ΣB and ΣB �⊆ ΣA, so that their intersection
ΣA,B = ΣA ∩ ΣB is not trivial.

Definition 1 (Interpolant) A formula I is an interpolant of formulæ A and B such that
A � B, or an interpolant of (A,B), if (i) A � I , (ii) I � B and (iii) all symbols in I are in
ΣA,B .

If ΣA ⊆ ΣB , then ΣA,B = ΣA and A itself would be an interpolant. Symmetrically, if
ΣB ⊆ ΣA, then ΣA,B = ΣB and B itself would be an interpolant. The above assumption
on signatures excludes these trivial cases.



Interpolation Systems for Ground Proofs in Automated Deduction 357

The following fundamental result, known as Craig’s Interpolation Lemma [28], and
presented for instance in [38, 82], applies to closed formulæ, that is, formulæ where all
variables are quantified:

Theorem 1 If A and B are closed formulæ such that A � B, and ΣA,B contains at least one
predicate symbol, then an interpolant I of A and B exists, and it is also a closed formula.
If ΣA,B contains no predicate symbol, then either B is valid (and the interpolant is �), or
A is unsatisfiable (and the interpolant is ⊥).

From now on we consider only closed formulæ or sentences. Since automated reasoners
work refutationally, it is useful to adopt the notion of reverse interpolant, thus named in
[55]:

Definition 2 (Reverse interpolant) A formula I is a reverse interpolant of formulæ A and
B such that A,B �⊥, if (i) A � I , (ii) B, I �⊥ and (iii) all symbols in I are in ΣA,B .

It is simple to see that a reverse interpolant of (A,B) is an interpolant of (A,¬B),
and that if I is a reverse interpolant of (A,B), then ¬I is a reverse interpolant of (B,A).
Swapping A and B may be relevant to applications, where it means going backward rather
than forward, or vice versa, on a given path in a program or model.

A theory is presented by a set T of sentences, meaning that the theory is the set
of all logical consequences of T . It is customary to call T itself a theory. Let ΣT

be the signature of T . Its symbols are called defined, because they are defined by
the axioms in T , or interpreted, because they are interpreted in the models of T .
The other symbols are called free or uninterpreted. Interpreted symbols are allowed in
interpolants:

Definition 3 (Theory interpolant) A formula I is a theory interpolant of formulæ A and
B such that A �T B, if (i) A �T I , (ii) I �T B and (iii) all uninterpreted symbols in
I are in ΣA,B . A formula I is a reverse theory interpolant of formulæ A and B such that
A, B �T ⊥, if (i) A �T I , (ii) B, I �T ⊥ and (iii) all uninterpreted symbols in I are in
ΣA,B .

Interpreted symbols may appear in A and B, so that the intersections ΣA ∩ ΣT ,
ΣB ∩ ΣT , and ΣA,B ∩ ΣT are not empty in general. The relaxing of the third require-
ment of Definitions 1 and 2 in Definition 3 means that a symbol that is not shared may
appear in the interpolant provided it is interpreted. Equivalently, if the interpolant contains
uninterpreted symbols, then they must shared. Since we consider refutational systems, and
keeping with most of the literature, in the following we write “interpolant” for “reverse
interpolant,” unless the distinction is relevant, and omit “theory” whenever clear from
context.

Since most reasoners transform closed formulæ into sets, or conjunctions, of clauses,
from now on we assume that A and B are disjoint sets of clauses. This includes as special
case sets of unit clauses, or, equivalently, conjunctions of literals. Since sets are understood
as conjunctions, we may write A ∪ B � � or, equivalently, A ∧ B �⊥ or A,B �⊥,
depending on context.

A difficulty with interpolation is to ensure that uninterpreted symbols in interpolants
are shared. The following definition, where \ is set difference, introduces terminology that
facilitates the discussion:



358 M.P. Bonacina, M. Johansson

Definition 4 An uninterpreted symbol is transparent, if it is in ΣA,B , A-colored, if it is
in ΣA \ ΣB , and B-colored, if it is in ΣB \ ΣA. It is colored, if it is either A-colored or
B-colored.

The assumption that ΣA �⊆ ΣB and ΣB �⊆ ΣA means that both A and B contain at least
one colored symbol.

Definition 5 A term, literal, or clause is

– Transparent, if all its uninterpreted symbols are transparent,
– A-colored, if all its uninterpreted symbols are either A-colored or transparent and at

least one is A-colored,
– B-colored, if all its uninterpreted symbols are either B-colored or transparent and at

least one is B-colored, and
– AB-mixed, otherwise.

A term, literal, or clause is colored, if it is either A-colored or B-colored.

This terminology, or variants thereof, is widely adopted. Some authors use A-local in
place of A-colored, B-local in place of B-colored, and AB-common, or global, or shared,
in place of transparent. Asymmetric definitions, where A-local corresponds to A-colored,
and B-local to B-colored or transparent, were given in [65]. We adopt the color-based ter-
minology, because “local” has another (and older) meaning in automated deduction since
[44, 63], although in verification, “local” and “global” may be connected to the scope of pro-
gram variables. We hope that this survey will contribute to establish a standard, but readers
should always check the meaning of terms in a paper. Following [45] we also use:

Definition 6 A literal is colorable if it is not AB-mixed, or, equivalently, if it is either
A-colored or B-colored or transparent. A clause is colorable if all its literals are.

Colorable is more general than colored: a colorable clause may have both A-colored and
B-colored literals, whereas a colored clause cannot.

In the inductive approach to interpolation, interpolants are built by structural induction
on a refutation of A ∪ B. The intermediate interpolants during the construction are called
partial interpolants. The definition of partial interpolant requires that of projection. Thus,
we begin by defining projections, for disjunctions of literals, because we work with clauses,
and conjunctions of literals, that arise when negating clauses:

Definition 7 (Projection) Let C be a disjunction (conjunction) of literals and let ΣX stand
for either ΣA, ΣB or ΣA,B . The projection of C on signature ΣX , denoted C|X , is the
disjunction (conjunction) of literals of C whose uninterpreted symbols are all in ΣX . By
convention, if C is a disjunction and C|X is empty, then C|X =⊥; if C is a conjunction and
C|X is empty, then C|X = �.

Assume that C and D are disjunctions or conjunctions of literals. Definition 7 implies
that (¬C)|X = ¬(C|X), and we generalize it slightly by stipulating that (C ∨ D)|X =
C|X ∨ D|X and (C ∧ D)|X = C|X ∧ D|X . Transparent literals of C belong to both C|A
and C|B , while AB-mixed literals belong to neither. If C is a conjunction, C|A ⇒ C|A,B



Interpolation Systems for Ground Proofs in Automated Deduction 359

and C|B ⇒ C|A,B ; if it is a disjunction, C|A,B ⇒ C|A and C|A,B ⇒ C|B . Clause C is
colorable if and only if C = C|A ∨ C|B . Alternatively, transparent literals may be put only
in the projection on ΣB as in [64, 65]:

Definition 8 (Asymmetric projection) Let C be a disjunction (conjunction) of literals. The
asymmetric projections of C are C\B = C|A \ C|A,B and C ↓B = C|B .

Starting with [64], a partial interpolant is an interpolant relative to a clause in a refutation,
so that a partial interpolant of the empty clause will be an interpolant:

Definition 9 (Partial interpolant) A partial interpolant PI (C) of a clause C occurring in
a refutation of A ∪ B is an interpolant of gA(C) = A ∧ ¬(C|A) and gB(C) = B ∧ ¬(C|B).

Indeed, PI (�) is an interpolant of (A,B). If C occurs in a refutation of A ∪ B, it means
that A ∧ B � C, or A ∧ ¬C � ¬B ∨ C. Thus, one could seek an interpolant of A ∧ ¬C

and ¬B ∨ C, or, equivalently, a reverse interpolant of A ∧ ¬C and B ∧ ¬C. However, the
signatures of A ∧ ¬C and B ∧ ¬C are not necessarily ΣA and ΣB , unless C is transparent.
Thus, the definition of partial interpolant uses projections and takes gA(C) and gB(C),
whose signatures are ΣA and ΣB , so that to be transparent with respect to gA(C) and gB(C)

is the same as to be transparent with respect to A and B.

Proposition 1 For all clauses C occurring in a refutation of A ∪ B, the partial interpolant
PI (C) has the following properties:

1. A ∧ ¬(C|A) � PI (C) or, equivalently, A � C|A ∨ PI (C),
2. B ∧ ¬(C|B) ∧ PI (C) �⊥ or, equivalently, B ∧ PI (C) � C|B , and
3. PI (C) is transparent.

Proof It follows from Definitions 2 and 9.

For ease of reference in definitions of interpolation systems, we will write c : C to say that
c is the identifier of clause C, and then we may use c|X , PI (c), gA(c) and gB(c).

An interpolation system takes a refutation of A∪B, attaches a partial interpolant to every
clause, and returns the partial interpolant of the empty clause as the interpolant of (A, B). In
order to define an interpolation system, one has to define its partial interpolants. Since each
clause in a refutation is generated by some inference rule, the definition of an interpolation
system needs to cover all inference rules that generate clauses. The fundamental property of
an interpolation system is completeness, that we define with respect to an inference system
or a transition system, because in the sequel we consider both:

Definition 10 (Complete interpolation system) Given inference system Γ , or transition
system U , an interpolation system is complete for Γ , or U , if for all sets of clauses A and
B, such that A∪B is unsatisfiable, and for all refutations of A∪B by Γ , or U , respectively,
it generates an interpolant of (A,B).

In order to prove that an interpolation system is complete, it is sufficient to show that its
partial interpolants satisfy Proposition 1.



360 M.P. Bonacina, M. Johansson

2.2 Inference Systems and their Proof Trees in the Ground Case

Let Γ be a resolution and superposition based inference system. Inference systems of this
kind feature expansion inferences, that expand the existing set by generating clauses, such as
resolution and superposition, and contraction inferences, that contract the set by removing
clauses, such as simplification and subsumption. We are interested only in inferences that
appear in proofs because they generate clauses: expansion inferences, and those contraction
inferences, such as simplification, that replace clauses by clauses; contraction inferences
that merely remove clauses do not appear in proofs. We use the name generative rules for
expansion rules and replacement rules.

Let � be a complete simplification ordering, that is, a simplification ordering which is
total on ground terms and literals. The recursive path orderings (RPO’s) and Knuth-Bendix
orderings (KBO’s), that are commonly implemented in theorem provers, are complete sim-
plification orderings (e.g., [34] for basic definitions about orderings). The generative rules of
Γ in the ground case are in Fig. 1: substitutions are not needed, and constraints of the form ��
take the form �, because the ordering is total on ground terms and literals. Paramodulation,
superposition, and reflection build equality into the inference system; we use superposition
when the literal paramodulated into is equational, and paramodulation otherwise. Duplicate
literals in clauses are removed by a standard book-keeping operation known as merging,
whose usefulness in the context of interpolation was recognized in [45].

Definition 11 (Γ -derivation) Given an input set of clauses S0, a Γ -derivation is a sequence
S0 �Γ S1 �Γ . . . Si �Γ Si+1 �Γ . . ., where for all i > 0, Si is a set of clauses derived from
Si−1 by a Γ -inference.

Let T h(S) = {C | S |= C}: inferences are sound (Si �Γ Si+1 implies Si+1 ⊆ T h(Si))
and adequate (Si �Γ Si+1 implies Si ⊆ T h(Si+1)). S∗ = ⋃

i≥0 Si is the set of all generated
clauses. A Γ -derivation is successful if � ∈ Sk for some k, which reveals that the input set
S0 is inconsistent.

Fig. 1 Generative rules of Γ in the ground case



Interpolation Systems for Ground Proofs in Automated Deduction 361

Upon success, the theorem prover extracts a refutation, or refutational proof, or proof,
for short, which includes only the inferences and clauses involved in the generation of �. A
proof is usually represented as a proof tree drawn with the root at the bottom and the leaves
at the top:1

Definition 12 (Γ -proof tree) Given a Γ -derivation S0 �Γ S1 �Γ . . . Si �Γ Si+1 �Γ . . ., for
all C ∈ S∗, the Γ -proof tree ΠΓ (C) of C is defined as follows:

– If C ∈ S0, ΠΓ (C) consists of a node labeled by C;
– If C is inferred by a generative Γ -inference from premises C1, . . . , Ck , ΠΓ (C) consists

of a node labeled by C with k subtrees ΠΓ (C1), . . . , ΠΓ (Ck).

If the derivation is successful, � ∈ S∗ and ΠΓ (�) is a Γ -refutation.

If a proof is made only of equations, it can be also represented as a chain of equational
replacement steps. A simplification step where s � r simplifies t[s] to t[r] is represented
by the proof chain t[s] →s�r t[r]. The subterm s is called a redex, and a term is in normal
form if it has no redex. A superposition step of s � r into l[s] � t is represented by the
proof chain t ←l[s]�t l[s] →s�r l[r]. It is well known from the theory of completion that a

ground equational proof s
∗↔ t can be reduced to a rewrite proof, or valley proof, that is a

chain in the form s
∗→ r

∗← t for some term r . The interested reader can find in [9] a recent
treatment, historical background, and references for the theory of completion.

2.3 Equality Sharing and its Proof Trees

The Nelson-Oppen scheme is a standard method to combine theories. Its original name
is equality sharing [35, 73, 74]. We summarize the relevant elements for what follows,
referring the interested reader to (e.g., [16, 35, 73–75]) for a complete presentation and more
references. Let T be a union

⋃n
i=1 Ti of quantifier-free fragments of first-order theories,

where each Ti is assumed to be equipped with a Ti-satisfiability procedure, that we name
Qi , which decides whether a set of ground Ti-literals has a Ti-model. Equality sharing
is not concerned with the inner working of these procedures; it combines them to yield
a procedure that decides whether a set S of ground T -literals has a T -model, under a
few requirements. First, the Ti’s are required to be disjoint: their signatures share only
uninterpreted constants and equality. Second, they are required to be stably infinite:

Definition 13 A theory T is stably infinite, if a quantifier-free T -formula is T -satisfiable
if and only if it has a T -model with domain of infinite cardinality.

For instance, the theory of equality, linear arithmetic, and theories of data structures
such as lists and arrays, are stably infinite (e.g., [16]). The first phase of equality sharing,
called separation, transforms S into a collection S1, . . . , Sn, where Si , for 1 ≤ i ≤ n,
is a set of ground Ti-literals. Function symbols from signatures of different theories that
occur mixed in the terms are separated by introducing new uninterpreted constant symbols.
For example, f (g(a)) � b, where f and g belong to the signatures of different theories,
becomes f (c) � b ∧ g(a) � c, where c is a new constant. Separation ensures that each Qi

1In general, it is a rooted graph, called ancestor-graph [12], but it can be put in the form of a tree by allowing
different vertices to have the same clause as label.



362 M.P. Bonacina, M. Johansson

deals only with Ti-literals. Since only new constants are introduced, all literals in
⋃n

i=1 Si

are ground, and S and
⋃n

i=1 Si are T -equisatisfiable.
In the second phase of equality sharing, each Qi , for 1 ≤ i ≤ n, propagates to all

other Qj ’s, for 1 ≤ j �= i ≤ n, the disjunctions of equalities between shared constants,
that it Ti-deduces from its set of Ti-literals. Completeness requires that each Qi deduces
and propagates all such disjunctions that are Ti-entailed by the set of Ti-literals that Qi

works with. If the theories are convex, it is sufficient to propagate equalities between shared
constants:

Definition 14 A theory T is convex, if whenever H |=T
∨m

k=1 sk � tk , then H |=T sj �
tj , for some j , 1 ≤ j ≤ m, where H is a conjunction of literals.

It was proved in [6] that every first-order theory that is convex and has no trivial models
is stably-infinite.

For interpolation, we are interested in defining the proof tree generated by equality shar-
ing. For uniformity with the other inference or transition systems considered in this article,
we view literals as unit clauses, and use � for the contradiction generated by the procedure:
in equality sharing the contradiction is detected by one of the Qi’s. We use K for the set
of propagated equalities, we stipulate that also � gets propagated, and we denote with �Ti

a Ti-deduction by Qi . Since equality sharing treats each Qi as a black box, a deduction
in Qi is viewed like a single inference by equality sharing. For the same reason, equality
sharing is not concerned with all the literals that a Qi generates, but only with those that it
propagates, namely equalities between shared constants and �:

Definition 15 (ES-derivation) Given a union T = ⋃n
i=1 Ti of quantifier-free fragments

of disjoint convex first-order theories, with Ti-satisfiability procedures Qi , 1 ≤ i ≤ n, and
an input set of ground T -literals (unit clauses) S, a derivation by equality sharing, or an
ES-derivation for short, is a sequence

(S1, . . . , Sn,K0) �
ES

(S1, . . . , Sn,K1) �
ES

. . . (S1, . . . , Sn,Kj ) �
ES

(S1, . . . , Sn, Kj+1) �
ES

. . .

where S1, . . . , Sn is the separation of S, K0 = ∅, and for all j > 0, Kj = Kj−1∪{C}, where
C is either � or an equality between shared constants, C �∈ Kj−1, and Si ∪ Kj−1 �Ti

C,
for some i, 1 ≤ i ≤ n.

Since equality sharing is a decision procedure, an ES-derivation is guaranteed to halt,
and if it generates �, a proof can be extracted:

Definition 16 (ES-proof tree) Given an ES-derivation from input set S, which halts at
stage h, for all C ∈ ⋃n

i=1 Si ∪ Kh, the ES-proof tree ΠES(C) of C is defined as follows:

– If C ∈ ⋃n
i=1 Si , ΠES(C) consists of a node labeled by C;

– If {C1, . . . , Ck} �Ti
C, for some i, 1 ≤ i ≤ n, ΠES(C) consists of a node labeled by

C with k subtrees ΠES(C1), . . . , ΠES(Ck).

If a contradiction is found, � ∈ Kh and ΠES(�) is an ES-refutation.

We gave the definitions of derivation and proof tree under the hypothesis that all com-
bined theories are convex, because in the rest of this article we will be primarily concerned
with this case.



Interpolation Systems for Ground Proofs in Automated Deduction 363

2.4 Transition Systems and their Proof Trees

While inference system refers to a set of non-deterministic inference rules that yield a proof
procedure once coupled with a search plan, transition system is used for algorithmic engines
such as DPLL-CDCL and DPLL(T ), where inference and control are separated only to
a lesser degree. These transition systems operate in two modes: search mode and conflict
resolution mode. In search mode, the state of the system has the form M||F , where M is
a sequence of assigned literals, and F is a set of clauses. Intuitively, M represents a par-
tial assignment to literals, possibly with a justification, and therefore it represents a partial
model, or a set of candidate models. An assigned literal can be either a decided literal or
an implied literal. A decided literal represents a guess, and has no justification. An implied
literal lC is a literal l justified by a clause C: all other literals of C are false in M so that l

needs to be true. No assigned literal occurs twice in M nor does it occur negated in M . If
neither l nor ¬l appears in M , then l is said to be undefined. The set of assigned literals in
M is denoted lits(M).

In conflict resolution mode, the state has the form M||F ||C, where C is a clause in F

whose literals are all false in M . Such a clause is in conflict and is called conflict clause.
We could state that C is in conflict by writing M |= ¬C. In DPLL(T ), the DPLL engine
accepts only propositional clauses, whereas the Qi’s accept ground first-order literals. To
bridge this gap, an abstraction function α maps first-order ground atoms to propositional
atoms, and then straightforwardly first-order ground clauses to propositional clauses (e.g.,
[5]). Thus, it is customary to write M |=P ¬C, read M “propositionally satisfies” ¬C, to
mean M |= ¬α(C).

Definition 17 (Transition system derivation) Given a transition system U and an input
set of clauses F0, a transition system derivation, or U -derivation, is a sequence

Δ0 =⇒
U

Δ1 =⇒
U

. . . Δi =⇒
U

Δi+1 =⇒
U

. . .

where Δ0 = ||F0, and ∀i > 0, Δi is of the form Mi ||Fi or Mi ||Fi ||Ci , and is produced from
Δi−1 by a transition rule in U .

A transition system derivation is characterized by the sets F ∗ = ⋃
i≥0 Fi of all generated

clauses and C∗ = {Ci |i > 0} of all conflict clauses. If all conflict clauses were learnt,
which is not the case in practice, then C∗ ⊆ F ∗. In DPLL-CDCL and DPLL(T ) learning
a conflict clause is the only way to generate a new clause. In the sequel, we use U1 for
DPLL-CDCL and U2 for DPLL(T ) as subscripts.

The transition rules of DPLL-CDCL are in Fig. 2. Rules Decide, UnitPropagate and
Conflict apply in search mode. Decide guesses the truth value of a literal that occurs in
F ; UnitPropagate propagates the implications of guesses; Conflict detects the presence of
a conflict clause and puts the system in conflict resolution mode. Rules Explain, Learn,
Backjump, and Unsat apply in conflict resolution mode. Explain resolves a literal, say ¬l, in
a conflict clause, with its complement l in the clause that is the justification of l in M; the
resolvent is also a conflict clause. Learn adds to F a clause derived by Explain, because it is
a logical consequence of the original set of clauses. Backjump unassigns at least one decided
literal, named l′ in the rule definition, and drives the system back from conflict resolution
mode to search mode. A typical choice is that l′ be the least recently decided literal that
satisfies the conditions of the rule. There is always a way to come back to search mode from



364 M.P. Bonacina, M. Johansson

Fig. 2 Transition rules of DPLL-CDCL

conflict resolution mode, unless the conflict clause is empty, in which case the Unsat rule
concludes that the input is unsatisfiable.

A refutation by DPLL-CDCL is a refutation by propositional resolution, composed of
the resolution steps performed by Explain, as noticed first in [89], according to [81]. The
clauses that appear in the refutation are input clauses and conflict clauses:

Definition 18 (DPLL-proof tree) Given a DPLL-derivation,

Δ0 =⇒
U1

Δ1 =⇒
U1

. . . Δi =⇒
U1

Δi+1 =⇒
U1

. . . ,

for all C ∈ F0 ∪ C∗ the DPLL-proof tree ΠU1(C) of C is defined as follows:

– If C ∈ F0, ΠU1(C) consists of a node labeled by C;
– If C is generated by resolving conflict clause C1 with justification C2, ΠU1(C) consists

of a node labeled by C with subtrees ΠU1(C1) and ΠU1(C2).

If the derivation terminates in state unsat , � ∈ C∗ and ΠU1(�) is a DPLL-refutation.

A justification C2 is either an input clause or a learnt clause, which was once a conflict
clause, and therefore ΠU1(C2) is defined. An example illustrates proof generation:

Example 1 Assume F = {p ∨ q,¬p ∨ q,¬q ∨ p, ¬p ∨ ¬q}. The derivation starts with a
Decide step, followed by a UnitPropagate step, which leads to a conflict:

∅||F =⇒ p||F =⇒ p, q¬p∨q ||F =⇒ p, q¬p∨q ||F ||¬p ∨ ¬q.



Interpolation Systems for Ground Proofs in Automated Deduction 365

An Explain step performs the resolution between conflict clause ¬p ∨ ¬q and justification
¬p ∨ q, the resolvent ¬p is learnt, and Backjump applies with M empty, l′ = p, M ′ =
¬q¬p∨q , C empty, and l = ¬p:

p, q¬p∨q ||F ||¬p ∨ ¬q =⇒ p,¬q¬p∨q ||F ||¬p =⇒ p, ¬q¬p∨q ||F,¬p||¬p

=⇒ ¬p¬p||F,¬p,

where ΠU1(¬p) is given by the resolution step between ¬p ∨ ¬q and ¬p ∨ q. The search
restarts with a UnitPropagate step, which leads to another conflict:

¬p¬p||F,¬p =⇒ ¬p¬p, qp∨q ||F,¬p =⇒ ¬p¬p, qp∨q ||F,¬p||¬q ∨ p.

An Explain step performs the resolution between conflict clause ¬q ∨ p and justification
p ∨ q, and the resolvent p is learnt:

¬p¬p, qp∨q ||F,¬p||¬q ∨ p =⇒ ¬p¬p, qp∨q ||F,¬p||p =⇒ ¬p¬p, qp∨q ||F,¬p, p||p,

where ΠU1(p) is given by the resolution step between ¬q ∨ p and p ∨ q. Another Explain
step resolves conflict clause p and justification ¬p:

¬p¬p, qp∨q ||F,¬p, p||p =⇒ ¬p¬p, qp∨q ||F,¬p, p||� =⇒ unsat.

The refutation ΠU1(�) is given by the resolution step between p and ¬p, with ΠU1(p) and
ΠU1(¬p) as subtrees.

Note that a derivation that simulates truth tables by guessing assignments and back-
tracking chronologically, without generating a proof by resolution, is not allowed by
these transition rules, because Backjump is driven by the conflict clause according to its
conditions, and therefore needs one or more Explain steps.

The addition of transition rules T-Propagate and T-Conflict, shown in Fig. 3, yields
DPLL(T ). These two rules connect the DPLL engine with the T -satisfiability procedure,
by letting it propagate T -consequences of M . Both T-Propagate and T-Conflict apply in
search mode, and T-Conflict causes the system to switch to conflict resolution mode. T-
Propagate detects that if literals l1, . . . , ln are true, then l must also be true in T , or,
equivalently, ¬l1 ∨ . . .∨¬ln ∨ l is a T -lemma. If a disjunction l ∨ l′ is entailed, it makes no
difference, because it is the same as saying that l1, . . . , ln,¬l′ entail l, or ¬l1∨. . .∨¬ln∨l∨l′
is a T -lemma. T-Conflict detects that a subset l1, . . . , ln of M is T -inconsistent, or, equiv-
alently, ¬l1 ∨ . . . ∨ ¬ln is a T -lemma, which is generated as T -conflict clause. If the
T -satisfiability procedure is a combination of Qi’s by equality sharing, ever since [75], the
propagation of disjunctions of equalities between shared constants, is implemented through

Fig. 3 Additional transition rules for DPLL(T )



366 M.P. Bonacina, M. Johansson

case analysis and backtracking. In DPLL(T ), the case analysis and backtracking are those
of DPLL, as a disjunction coming from a theory is treated like any other clause.

In a refutation by DPLL(T ), in addition to conflict clauses generated by Conflict and
Explain, there may be T -conflict clauses, and also T -lemmas generated by T-Propagate
may be involved as justifications. Since T -conflict clauses are also T -lemmas, we use
T -lemmas for both. Thus, we need to assume that the Qi’s and their combination produce
proofs of T -lemmas, that we denote by ΠT (C). The proof of the T -unsatisfiability of
l1, . . . , ln is a proof that C = ¬l1 ∨ . . . ∨ ¬ln is a T -lemma. Similarly, the proof that
l1, . . . , ln T -entail l is a proof that ¬l1 ∨ . . . ∨ ¬ln ∨ l is a T -lemma. Refutations by
DPLL(T ) are ground, but not propositional, because the inverse α−1 of the abstraction
function is applied to restore first-order ground atoms.

Definition 19 (DPLL(T )-proof tree) Given a DPLL(T )-derivation,

Δ0 =⇒
U2

Δ1 =⇒
U2

. . . Δi =⇒
U2

Δi+1 =⇒
U2

. . . ,

for all C ∈ F0 ∪ C∗ and all C that are T -lemmas, the DPLL(T )-proof tree ΠU2(C) of C

is defined as follows:

– If C ∈ F0, ΠU2(C) consists of a node labeled by C;
– If C is generated by resolving conflict clause C1 with justification C2, ΠU2(C) consists

of a node labeled by C with subtrees ΠU2(C1) and ΠU2(C2);
– If C is a T -lemma, ΠU2(C) = ΠT (C).

If the derivation terminates in state unsat , � ∈ C∗ and ΠU2(�) is a DPLL(T )-refutation.

Both DPLL-proof trees and DPLL(T )-proof trees are made of inferences performed in
conflict resolution mode, except for the ΠT (C) subtrees.

3 Propositional Interpolation Systems

In this section we see the first instance of the inductive approach to interpolation by cov-
ering interpolation systems for resolution refutations in propositional logic. If the input
problem is propositional, DPLL(T ) solves it by using DPLL alone, and Γ proves it
by resolution. Thus, the interpolation systems of this section apply to a refutation that
could be produced by anyone of DPLL, DPLL(T ), and Γ , if applied to a propositional
problem.

Let A and B be disjoint sets of propositional clauses: a literal is either a propositional
variable or its negation, and Definitions 4 and 5 apply to propositional variables, literals and
clauses. In propositional logic the set of literals that may appear in a refutation is determined
once and for all by the set of literals that occur in the input set A ∪ B. Since input literals
are either A-colored or B-colored or transparent, so is every literal in a proof: in other
words, there are no AB-mixed literals. Therefore, interpolation systems build inductively
the partial interpolant of every resolvent from those of its parents, distinguishing whether
the literal resolved upon is A-colored or B-colored or transparent:

Definition 20 (HKPYM interpolation system) Let c : C be a clause in a refutation of
A ∪ B by propositional resolution:

• If c : C ∈ A, then PI (c) = ⊥,



Interpolation Systems for Ground Proofs in Automated Deduction 367

• If c : C ∈ B, then PI (c) = �,
• If c : C ∨ D is a propositional resolvent of p1 : l ∨ C and p2 : ¬l ∨ D then:

– If l is A-colored, then PI (c) = PI (p1) ∨ PI (p2),
– If l is B-colored, then PI (c) = PI (p1) ∧ PI (p2) and
– If l is transparent, then PI (c) = (l ∨ PI (p1)) ∧ (¬l ∨ PI (p2)).

This interpolation system comes from [88], where it is called Pudlàk algorithm with
[77] as source. The author of [77] refers the reader also to [56]. This interpolation system
was analyzed also in [36, 37, 86], and called HKP in [36], from the initials of Huang [51],
Krajı́ček [56] and Pudlàk [77], its three independent authors. We add the initials of Yorsh
and Musuvathi and call it HKPYM, on the account of the proof of completeness in [87]. The
system in [51] did not use colors, but a notion of literals coming from A, from B, or from
both, and was for first-order resolution and paramodulation, with propositional resolution as
a special case: we studied interpolation in the first-order case in [15], including a discussion
of [51].

The following system was introduced in [64, 65] and studied in [37, 86]. We call
it MM from the two M in McMillan. While HKPYM treats A and B symmetri-
cally, MM is slanted towards B, by the choice of partial interpolant for input clauses
in A, and by treating B-colored and transparent literals resolved upon in the same
way:

Definition 21 (MM interpolation system) Let c : C be a clause in a refutation of A ∪ B

by propositional resolution:

• If c : C ∈ A, then PI (c) = C|A,B ,
• If c : C ∈ B, then PI (c) = �,
• If c : C ∨ D is a propositional resolvent of p1 : l ∨ C and p2 : ¬l ∨ D then:

– If l is A-colored, then PI (c) = PI (p1) ∨ PI (p2),
– If l is B-colored or transparent, then PI (c) = PI (p1) ∧ PI (p2).

The following example applies both systems to the same input:

Example 2 Assume A = {a ∨ e, ¬a ∨ b, ¬a ∨ c} and B = {¬b ∨ ¬c ∨ d, ¬d, ¬e}. In
the refutation, each clause is decorated with its partial interpolant surrounded by brackets.
We apply first HKPYM:

– a∨e [⊥] resolves with ¬e [�] to yield a [e]: since e is transparent, the partial interpolant
of the resolvent is (e ∨ ⊥) ∧ (¬e ∨ �) = e;

– a [e] resolves with ¬a∨c [⊥] to yield c [e]: since a is A-colored, the partial interpolant
of the resolvent is e ∨ ⊥= e;

– a [e] resolves with ¬a ∨ b [⊥] to yield b [e]: again a is A-colored, and the partial
interpolant of the resolvent is e ∨ ⊥= e;

– b [e] resolves with ¬b ∨ ¬c ∨ d [�] to yield ¬c ∨ d [b ∨ e]: since b is transparent, the
partial interpolant of the resolvent is (b ∨ e) ∧ (¬b ∨ �) = b ∨ e;

– c [e] resolves with ¬c ∨ d [b ∨ e] to yield d [e ∨ (c ∧ b)]: c is also transparent, and the
partial interpolant of the resolvent is (c ∨ e) ∧ (¬c ∨ b ∨ e) = e ∨ (c ∧ b);

– d [e ∨ (c ∧ b)] resolves with ¬d [�] to yield � [e ∨ (c ∧ b)]: as d is B-colored, the
interpolant is (e ∨ (c ∧ b)) ∧ � = e ∨ (c ∧ b).



368 M.P. Bonacina, M. Johansson

We apply next MM to the same refutation:

– a∨e [e] resolves with ¬e [�] to yield a [e]: since e is transparent, the partial interpolant
of the resolvent is e ∧ � = e;

– a [e] resolves with ¬a ∨ c [c] to yield c [e ∨ c]: since a is A-colored, the partial
interpolant of the resolvent is e ∨ c;

– a [e] resolves with ¬a ∨ b [b] to yield b [e ∨ b]: again a is A-colored, and the partial
interpolant of the resolvent is e ∨ b;

– b [e ∨ b] resolves with ¬b ∨ ¬c ∨ d [�] to yield ¬c ∨ d [e ∨ b]: as b is transparent, the
partial interpolant of the resolvent is (e ∨ b) ∧ � = e ∨ b;

– c [e ∨ c] resolves with ¬c ∨ d [e ∨ b] to yield d [e ∨ (c ∧ b)]: c is also transparent, so
that the partial interpolant of the resolvent is (e ∨ c) ∧ (e ∨ b) = e ∨ (c ∧ b);

– d [e ∨ (c ∧ b)] resolves with ¬d [�] to yield � [e ∨ (c ∧ b)]: since d is B-colored, the
interpolant is (e ∨ (c ∧ b)) ∧ � = e ∨ (c ∧ b).

The final result is the same, but some of the intermediate partial interpolants differ: for
each step of the proof, the HKPYM partial interpolant implies the MM partial interpolant,
but the converse is not true. This is interesting because it was shown in [37] that final
MM interpolants imply final HKPYM interpolants. In this example the HKPYM interpolant
starts out stronger and sufficiently weak.

Both [64, 65] for MM and [88] for HKPYM give the asymmetric definition of projec-
tion (cf. Definition 8). However the proof of completeness of HKPYM in [87] requires the
symmetric definition (cf. Definition 7):

Theorem 2 (Yorsh and Musuvathi, 2005) HKPYM is a complete interpolation system for
propositional resolution.

Proof We need to prove that for all clauses c : C in the refutation, PI (c) is an interpolant
of gA(c) = A ∧ ¬(C|A) and gB(c) = B ∧ ¬(C|B), that is, it satifies the requirements:

1. gA(c) � PI (c),
2. gB(c) ∧ PI (c) �⊥, and
3. PI (c) is transparent.

The proof is by induction on the structure of the refutation by resolution:

Base case

– If c : C ∈ A, then ¬(C|A) = ¬C; and gA(c) = A ∧ ¬C =⊥, since C ∈ A. Since
PI (c) =⊥, both (1) and (2) reduce to ⊥ � ⊥, which is trivially true, and PI (c) is
trivially transparent.

– If c : C ∈ B, then ¬(C|B) = ¬C; and gB(c) = B ∧ ¬C = ⊥, since C ∈ B. Since
PI (c) = �, (1) is trivial, (2) reduces to ⊥ � ⊥, which is trivially true, and PI (c) is
trivially transparent.

Inductive hypothesis for k ∈ {1, 2} it holds that:

1. gA(pk) � PI (pk),
2. gB(pk) ∧ PI (pk) �⊥,
3. PI (pk) is transparent.



Interpolation Systems for Ground Proofs in Automated Deduction 369

Inductive case

a. l is A-colored: PI (c) = PI (p1) ∨ PI (p2).
First we observe that p1|A ∧ p2|A ⇒ C|A ∨ D|A (*). Indeed, since l is A-colored,
p1|A = (l∨C)|A = l∨C|A and p2|A = (¬l∨D)|A = ¬l∨D|A. Then, p1|A ∧p2|A =
(l ∨ C|A) ∧ (¬l ∨ D|A) ⇒ C|A ∨ D|A by resolution.
We show (1) gA(c) ⇒ PI (c):
gA(c) = A ∧ ¬((C ∨ D)|A) = A ∧ ¬(C|A ∨ D|A)

A ∧ ¬(C|A ∨ D|A) ⇒ A ∧ ¬(p1|A ∧ p2|A) by contrapositive of (*)
A ∧ ¬(p1|A ∧ p2|A) = A ∧ (¬p1|A ∨ ¬p2|A) = (A ∧ ¬p1|A) ∨ (A ∧ ¬p2|A) =
gA(p1) ∨ gA(p2) and gA(p1) ∨ gA(p2) ⇒ PI (p1) ∨ PI (p2) by induction hypothesis.
We show (2) gB(c) ∧ PI (c) ⇒⊥:
gB(c) ∧ PI (c) = B ∧ ¬((C ∨ D)|B) ∧ PI (c) = B ∧ ¬(C|B ∨ D|B) ∧ PI (c) =
B ∧ ¬(C|B) ∧ ¬(D|B) ∧ (P I (p1) ∨ PI (p2)) ⇒
(B ∧ ¬(C|B) ∧ PI (p1)) ∨ (B ∧ ¬(D|B) ∧ PI (p2)) =
(B ∧ ¬((l ∨ C)|B) ∧ PI (p1)) ∨ (B ∧ ¬((¬l ∨ D)|B) ∧ PI (p2)) =
(because l is A-colored and, therefore, C|B = (l ∨ C)|B and D|B = (¬l ∨ D)|B )
= (B ∧ ¬(p1|B) ∧ PI (p1)) ∨ (B ∧ ¬(p2|B) ∧ PI (p2)) =
(gB(p1) ∧ PI (p1)) ∨ (gB(p2) ∧ PI (p2)) ⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) follows by induction hypothesis.

b. l is B-colored: PI (c) = PI (p1) ∧ PI (p2).
Similar to Case (a), we have that p1|B ∧ p2|B ⇒ C|B ∨ D|B (**).
We show (1) gA(c) ⇒ PI (c):
gA(c) = A ∧ ¬((C ∨ D)|A) = A ∧ ¬(C|A ∨ D|A) = A ∧ ¬(C|A) ∧ ¬(D|A) =
A ∧ ¬((l ∨ C)|A) ∧ ¬((¬l ∨ D)|A) =
(because l is B-colored and, therefore, C|A = (l ∨ C)|A and D|A = (¬l ∨ D)|A)
= A∧¬(p1|A)∧¬(p2|A) = (A∧¬(p1|A))∧ (A∧¬(p2|A)) = gA(p1)∧ gA(p2) and
gA(p1) ∧ gA(p2) ⇒ PI (p1) ∧ PI (p2) by induction hypothesis.
We show (2) gB(c) ∧ PI (c) ⇒⊥:
gB(c) ∧ PI (c) = B ∧ (¬((C ∨ D)|B)) ∧ PI (p1) ∧ PI (p2) =
B ∧ (¬(C|B ∨ D|B)) ∧ PI (p1) ∧ PI (p2) ⇒ by contrapositive of (**)
B ∧ (¬(p1|B ∧ p2|B)) ∧ PI (p1) ∧ PI (p2) = B ∧ (¬(p1|B) ∨ ¬(p2|B)) ∧ PI (p1) ∧
PI (p2) = [(B ∧ ¬(p1|B)) ∨ (B ∧ ¬(p2|B))] ∧ PI (p1) ∧ PI (p2) =
(gB(p1) ∧ PI (p1) ∧ PI (p2)) ∨ (gB(p2) ∧ PI (p1) ∧ PI (p2)) ⇒
(gB(p1) ∧ PI (p1)) ∨ (gB(p2) ∧ PI (p2)) ⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) follows by induction hypothesis.

c. l is transparent: PI (c) = (l ∨ PI (p1)) ∧ (¬l ∨ PI (p2)).
We show (1) gA(c) ⇒ PI (c), or, equivalently, gA(c) ∧ ¬PI (c) ⇒⊥:
gA(c) ∧ ¬PI (c) = A ∧ (¬(C|A ∨ D|A)) ∧ ¬[(l ∨ PI (p1)) ∧ (¬l ∨ PI (p2))] =
A ∧ ¬(C|A) ∧ ¬(D|A) ∧ [¬(l ∨ PI (p1)) ∨ ¬(¬l ∨ PI (p2))] =
[A∧¬(C|A)∧¬(D|A)∧¬(l∨PI (p1))]∨[A∧¬(C|A)∧¬(D|A)∧¬(¬l∨PI (p2))] ⇒
[A ∧ ¬(C|A) ∧ ¬(l ∨ PI (p1))] ∨ [A ∧ ¬(D|A) ∧ ¬(¬l ∨ PI (p2))] =
[A ∧ ¬(C|A) ∧ ¬l ∧ ¬PI (p1)] ∨ [A ∧ ¬(D|A) ∧ l ∧ ¬PI (p2)] = (l is transparent)
= [A ∧ ¬((l ∨ C)|A) ∧ ¬PI (p1)] ∨ [A ∧ ¬((¬l ∨ D)|A) ∧ ¬PI (p2)] =
(gA(p1) ∧ ¬PI (p1)) ∨ (gA(p2) ∧ ¬PI (p2)) ⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
We show (2) gB(c) ∧ PI (c) ⇒⊥:
gB(c) ∧ PI (c) = B ∧ ¬(C|B ∨ D|B) ∧ [(l ∨ PI (p1)) ∧ (¬l ∨ PI (p2))] =
B ∧ ¬(C|B) ∧ ¬(D|B) ∧ [(l ∨ PI (p1)) ∧ (¬l ∨ PI (p2))]
at this point we reason that l is either true or false; if l is true, l holds, l subsumes



370 M.P. Bonacina, M. Johansson

l ∨ PI (p1) and simplifies ¬l ∨ PI (p2) to PI (p2); if l is false, ¬l holds, ¬l subsumes
¬l ∨ PI (p2) and simplifies l ∨ PI (p1) to PI (p1); thus, we get
[B ∧ ¬(C|B) ∧ ¬(D|B) ∧ l ∧ PI (p2)] ∨ [B ∧ ¬(C|B) ∧ ¬(D|B) ∧ ¬l ∧ PI (p1)] ⇒
[B ∧ ¬(D|B) ∧ l ∧ PI (p2)] ∨ [B ∧ ¬(C|B) ∧ ¬l ∧ PI (p1)] =
[B ∧ ¬(D|B ∨ ¬l) ∧ PI (p2)] ∨ [B ∧ ¬(C|B ∨ l) ∧ PI (p1)] = (l is transparent)
= (B ∧ ¬(p2|B) ∧ PI (p2)) ∨ (B ∧ ¬(p1|B) ∧ PI (p1)) =
(gB(p2) ∧ PI (p2)) ∨ (gB(p1) ∧ PI (p1)) ⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) follows from the assumption that l is transparent and the induction
hypothesis.

Given an interpolation system, its dual [36, 51], or inverse [37], is the interpolation sys-
tem that associates to every clause C in a refutation of A ∪ B the partial interpolant that the
original system would associate to C if A and B were exchanged. Applying this to �, the
interpolant of (A,B) produced by the inverse system is the interpolant of (B,A) produced
by the original system. An interpolation system is symmetric, if its interpolant of (A,B)

is the negation of the interpolant of (A,B) produced by its inverse, or if the interpolant of
(A,B) is the negation of the interpolant of (B,A).

4 Interpolation and Equality

The addition of equality, even in the ground case, changes the picture, because an AB-mixed
equation ta � tb, where ta is an A-colored ground term and tb is a B-colored ground term,
may be derived. Other AB-mixed literals may appear, if occurrences of ta in A-colored lit-
erals are replaced by tb or vice versa. Thus, it is no longer true that literals in a refutation are
either A-colored or B-colored or transparent, as assumed by the propositional interpolation
systems.

Furthermore, in the propositional case, the status of literals with respect to colors is sta-
ble: if a literal is A-colored, B-colored, or transparent, in the initial state of a derivation,
it will remain such throughout the derivation. In a Γ -derivation, if ta � tb is generated,
ta and tb are in normal form with respect to the current set of equations, and ta � tb,
simplification replaces all occurrences of ta , including those in A, by occurrences of tb.
Thus, tb should become transparent. In a DPLL(T )-derivation, if ta � tb is generated,
the congruence classes of ta and tb have to be merged. Assume that the congruence class
of ta only contains A-colored terms, that of tb only contains B-colored terms, and ta
and tb are the representatives of their congruence classes. If tb were chosen as the rep-
resentative of the new class, it should become transparent, in order to represent both
A-colored and B-colored terms. Note that if either one of the two classes already con-
tains a transparent term t , then the equation ta � tb is harmless, because t can be the
representative of the new class, containing both A-colored and B-colored terms. Regard-
less of whether equality reasoning is done by rewriting or congruence closure, inferences
with AB-mixed equalities cause the status of terms and literals with respect to colors to be
unstable.

A proof without AB-mixed equalities was termed colorable in [45] referring to
DPLL(T ). Since we do not assume that equality is the only predicate, we give the definition
for literals:



Interpolation Systems for Ground Proofs in Automated Deduction 371

Definition 22 (Colorable proof tree) A proof tree is colorable if all its clauses are;
equivalently, a proof tree is colorable if it contains no AB-mixed literals.

A key property to ensure that proofs are colorable was identified in [88]:

Definition 23 (Equality-interpolating convex theory) A convex theory T is equality-
interpolating if, for all interpolation problems (A,B), where there exist transparent ground
terms, whenever A ∧ B |=T ta � tb, where ta is an A-colored ground term and tb is a
B-colored ground term, then A∧B |=T ta � t ∧ tb � t for some transparent ground term t .

The term t is called equality-interpolating term. This definition is for convex theories,
because it considers only the case where a unit equality is entailed. The theory of equality is
convex. If the proof that T is equality-interpolating is constructive, it yields an algorithm to
compute equality-interpolating terms. If an equality-interpolating term t can be computed
whenever a ta � tb is generated, t can be adopted as the representative of the merged
congruence class.

In a Γ -derivation, it suffices to have an ordering that ensures that simplification replaces
ta and tb by t . An ordering that makes terms in a shared signature smaller than terms in an
extended signature was introduced for hierarchic reasoning [41]. For interpolation, a notion
of ordering oriented for (A,B), whereby any A-colored term is larger than any B-colored
or transparent term, was introduced in [67]. The definition that we adopt here was given in
[55]:

Definition 24 (Separating ordering) An ordering � is separating, if for all ground terms,
or literals, l and r , l � r whenever r is transparent and l is not.

For a recursive path ordering (RPO), which is defined based on a precedence on function
and predicate symbols, it is sufficient to assume a separating precedence, namely one where
colored symbols are larger than transparent ones, to obtain a separating RPO. In a separating
RPO, a term t with a colored symbol will be larger than any term s made of transparent
symbols, regardless of the number of symbols in s. For a Knuth-Bendix ordering (KBO),
which is defined based on a precedence and a weight assignment to symbols, a separating
precedence is not sufficient, because of the rôle of weight, which prevents this kind of
behavior. As noticed in [49], an ordinal KBO [60], where colored symbols have weight ω

and transparent symbols have finite weight is a separating ordering. The following lemma
shows that a separating ordering excludes AB-mixed literals:

Lemma 1 If the ordering is separating, all ground Γ -proof trees are colorable.

Proof By induction on the structure of the proof tree:

Base Case By definition, there are no AB-mixed literals in the input clauses A ∪ B.

Inductive Case

– Resolution: By induction hypothesis, the parent clauses do not contain AB-mixed lit-
erals. Since a ground resolvent is made of literals inherited from its parents, it does not
contain AB-mixed literals either.



372 M.P. Bonacina, M. Johansson

– Paramodulation/Superposition/Simplification: let s � r be the equation and l[s] be the
paramodulated into or simplified literal. By inductive hypothesis, neither s � r nor l[s]
are AB-mixed. Since s � r and � is separating, either r has the same color as s or it
is transparent. If s and r have the same color, also l[s] and l[r] have the same color.
If s is colored and r is transparent, then l[r] either has the same color as l[s] or it is
transparent, the latter if s was its only colored term. In either case, l[r] is not AB-mixed.

Based on this lemma we give a different proof of Lemma 2 in [88]. Since our proof uses
a separating ordering, it connects the equality-interpolating property proposed for equality
sharing with the separating ordering proposed for superposition:

Theorem 3 The quantifier-free fragment of the theory of equality is equality-interpolating.

Proof Assume Γ employs a separating ordering, and (A,B) is an interpolation problem
where there exist transparent ground terms. If A ∧ B |= ta � tb, where ta is an A-colored
ground term and tb is a B-colored ground term, then, since Γ is refutationally complete,
there is a successful Γ -derivation from A∪B ∪{ta �� tb}. Note that although ta �� tb appears
to be part of the input, it plays no rôle in the inferences, except that ta and tb get rewritten.
Since the ordering is separating, the resulting refutation ΠΓ (�) contains no AB-mixed
literals by Lemma 1. ΠΓ (�) is made only of rewriting steps and therefore represents a

rewrite proof ta
∗→ t

∗← tb. Since there are no AB-mixed literals in ΠΓ (�), there must be at
least a transparent term in this proof chain. Since the ordering is separating, the smallest term
t is transparent. Since the inferences are sound, it follows that A∧B |= ta � t ∧ tb � t .

In [67] an inference is local if all its symbols are either in ΣA or in ΣB . The defini-
tion in [50, 55] also requires that if all premises are transparent, so is the conclusion. A
proof is local if all its inferences are. Since there are no AB-mixed clauses in the input and
inferences do not mix colors, a local proof has no AB-mixed clauses:

Definition 25 (Colored proof tree) A proof tree is colored if it contains no AB-mixed
clauses.

As for literals and clauses, colorable is more general than colored, or local, also for
proofs. A separating ordering implies the stronger requirement as well (cf. Theorem 6 in
[55]):

Lemma 2 If the ordering is separating, all ground Γ -proof trees are colored.

Proof By Lemma 1 there are no AB-mixed literals and we only need to show by induction
that there is no clause with literals of different color.

Base Case By definition, there are no AB-mixed clauses in A ∪ B.

Inductive Case

– Resolution: By induction hypothesis, neither l ∨ C nor ¬l ∨ D is AB-mixed. The
only way that the resolvent C ∨ D could be AB-mixed is if C contains an A-colored
literal, D contains a B-colored literal, or vice versa, and l is transparent. However, this



Interpolation Systems for Ground Proofs in Automated Deduction 373

is impossible, because under a separating ordering l and ¬l cannot be transparent and
�-maximal in clauses containing colored literals.

– Paramodulation/Superposition/Simplification: assume non-AB-mixed clauses s � r ∨
C and l[s] ∨ D generate C ∨ l[r] ∨ D with s � r . For C ∨ l[r] ∨ D to be AB-mixed
we need that C contains an A-colored literal and l[r] ∨ D contains a B-colored literal,
or vice versa. If C contains an A-colored literal, since C ∨ s � r is not AB-mixed, s

is either transparent or A-colored. If s is transparent, since � is separating, and s � r ,
then r is also transparent. This is impossible, because s � r cannot be �-maximal and
transparent in C ∨ s � r which contains an A-colored literal. If s is A-colored, r is
either A-colored or transparent. Context l cannot be B-colored, because otherwise l[s]
would be AB-mixed. Clause D cannot contain a B-colored literal, because otherwise
l[s] ∨ D would be AB-mixed. Thus, C ∨ l[r] ∨ D cannot be AB-mixed.

5 Interpolation for Equality Sharing and DPLL(T )

In this section we see how excluding AB-mixed literals is crucial also when combin-
ing theories by equality sharing (or Nelson-Oppen if the reader prefers). Let A and B be
disjoint sets of ground T -literals, or unit T -clauses, and T = ⋃n

i=1 Ti be a combi-
nation of equality-interpolating convex disjoint theories, with Ti-satisfiability procedures
Q1, . . . , Qn, that satisfy the requirements for the completeness of equality sharing2 (cf.
Section 2.3). We assume that each Qi is capable of generating equality-interpolating terms,
proofs, and Ti-interpolants for its proofs.

The interpolation partition of S = A∪B into A and B, and its separation into S1, . . . , Sn,
based on the theories’ signatures, are orthogonal. Constant symbols introduced by separa-
tion inherit the status of the term they replace: for example, if f (g(a)) � b, where f and g

belong to the signatures of different theories, becomes {f (c) � b, g(a) � c}, the new con-
stant c is A-colored, B-colored or transparent, depending on what g(a) is. This is possible
because the input, by definition, contains no AB-mixed terms. For every Qi the input set of
literals is Si = Ai∪Bi , where Ai contains the Ti-literals in A and Bi contains the Ti-literals
in B. By Definition 16, an ES-refutation ΠES(�) is made of input literals and propagated
equalities. The restriction to equality-interpolating convex theories (cf. Definition 23), and
the assumption that each Qi generates equality-interpolating terms, ensure that all propa-
gated equalities are colorable: if an AB-mixed ta � tb is entailed, colorable literals ta � t

and tb � t are deduced and propagated instead. It follows that under these hypotheses any
ES-refutation ΠES(�) is colorable.

In order to define an interpolation system for equality sharing, we need to define partial
interpolants for the propagated literals in ΠES(�). Every such literal l is generated by a
Ti-deduction Ai ∪ Bi ∪ K �Ti

l, where K is the set of propagated equalities involved in
Ti-deducing l, and l may be � as a special case. A key observation is that a partial Ti-
interpolant of l that Qi may generate cannot be a partial Ti-interpolant of l with respect to
(Ai, Bi), because the premises of the Ti-deduction of l also include K . It will be a partial

2Note however that completeness of an interpolation system for a proof procedure (cf. Definition 10) and
completeness of the proof procedure itself are orthogonal concepts: if the proof procedure is incomplete,
there will be unsatisfiable A∪B for which it does not produce a proof, and therefore the interpolation system
will not even be invoked to extract an interpolant from the proof.



374 M.P. Bonacina, M. Johansson

Ti-interpolant of l with respect to some partition (A′, B ′) of Ai ∪Bi ∪K . Since K contains
no AB-mixed literals, it is possible to define A′ and B ′ based on colors as defined by the
original (A,B) partition, by using asymmetric projections (cf. Definition 8) with respect to
A and B: let A′ be Ai ∪ K\B and B ′ be Bi ∪ K ↓B . It follows that ΣA′ = ΣA, ΣB ′ = ΣB ,
and what is transparent with respect to (A′, B ′) is transparent with respect to (A,B). The
absence of AB-mixed equalities is crucial here, because color-based projections cannot
handle them.

Definition 26 (Theory-specific partial interpolant) Let T1, . . . ,Tn be equality-inter-
polating convex disjoint theories, with satisfiability procedures Q1, . . . , Qn capable of
generating equality-interpolating terms, proofs, and Ti-interpolants. For all i, 1 ≤ i ≤ n,
for all Ti-deductions Ai ∪ Bi ∪ K �Ti

l, where Ai is the set of Ti-literals in A, Bi is the
set of Ti-literals in B, K is the set of colorable propagated equalities involved in deducing
l, and l is a ground colorable propagated literal, the theory-specific partial interpolant of l,
denoted PI i

(A′,B ′)(l), is the Ti-interpolant of (A′ ∧¬(l\B), B ′ ∧¬(l ↓B)) generated by Qi ,
where A′ = Ai ∪ K\B and B ′ = Bi ∪ K ↓B .

The following interpolation system for equality sharing, that we name YM from the
initials of Yorsh and Musuvathi, extracts a T -interpolant of (A,B) from an ES-refutation
ΠES(�) of A ∪ B, by combining the theory-specific partial interpolants computed by the
Qi’s for the propagated equalities in ΠES(�). The definition is inductive in the length of
the derivation:

Definition 27 (YM interpolation system) Let C be a literal (unit clause) in a refutation of
A ∪ B by equality sharing:

• Base case (the derivation of C has length 0):

– If C ∈ A, then PI (C) = ⊥,
– If C ∈ B, then PI (C) = �;

• Inductive case (the derivation of C has length m > 0):
if Ai ∪ Bi ∪ K �Ti

C for some Qi , 1 ≤ i ≤ n, then

PI (C) = (P I i
(A′,B ′)(C) ∨

∨

l∈A′
PI (l)) ∧

∧

l∈B ′
PI (l),

where A′ = Ai ∪K\B , B ′ = Bi ∪K ↓B , and therefore each l ∈ A′ ∪B ′ was generated
by a derivation of length smaller than m.

The base cases of this definition follow HKPYM (cf. Definition 20) rather than MM (cf.
Definition 21), so that PI (C) coincides with PI i

(A′,B ′)(C), if C is derived without involving
propagated equalities. Indeed, if K = ∅, we have K\B = K ↓B= ∅, A′ = Ai , B ′ = Bi ,
PI (l) = ⊥, which is the unit of disjunction, for all l ∈ Ai , and PI (l) = �, which is the unit
of conjunction, for all l ∈ Bi . Similarly, if there were only one theory, K would be empty,
and the partial interpolant of C would be equal to its theory-specific partial interpolant. The
following example from [88] shows how Definitions 26 and 27 work together:

Example 3 Assume A = {f (x1) + x2 � x3, f (y1) + y2 � y3, y1 ≤ x1} and B =
{x2 � g(b), y2 � g(b), x1 ≤ y1, x3 < y3}. The combined theories are equality (T1



Interpolation Systems for Ground Proofs in Automated Deduction 375

with procedure Q1) and linear rational arithmetic (T2 with procedure Q2). Separation gives
A1 = {a1 � f (x1), a2 � f (y1)}, A2 = {a1 + x2 � x3, a2 + y2 � y3, y1 ≤ x1},
B1 = {x2 � g(b), y2 � g(b)}, and B2 = {x1 ≤ y1, x3 < y3}. Thus, {f, a1, a2} are A-
colored, {g, b} are B-colored, and {x1, y1, x2, y2, x3, y3} are transparent. The set of constant
symbols shared by T1 and T2 is V = {a1, x1, a2, y1, x2, y2}. The proof of unsatisfiability
of A ∪ B generated by equality sharing is made of the following steps, where literals are
decorated with their partial interpolants in brackets:

1. Procedure Q2 deduces x1 � y1 from input literals y1 ≤ x1 [⊥] and x1 ≤ y1 [�].
Since x1, y1 ∈ V , x1 � y1 is propagated to Q1. YM computes its partial interpolant
as follows. Since no propagated equalities are involved, A′ = A2 and B ′ = B2. Since
x1 � y1 is transparent, (x1 � y1)\B =⊥, and A′ ∧ ¬((x1 � y1)\B) = A2 ∧ � = A2;
(x1 � y1) ↓B = x1 � y1, and B ′ ∧ ¬((x1 � y1) ↓B) = B2 ∪ {x1 �� y1}. The
theory-specific partial interpolant of x1 � y1 is PI 2

(A′,B ′)(x1 � y1) = y1 ≤ x1, T2-
interpolant of A2 and B2 ∪ {x1 �� y1}, because it follows from y1 ≤ x1 ∈ A2 and it is
T2-inconsistent with {x1 ≤ y1, x1 �� y1}, where x1 ≤ y1 ∈ B2. The partial interpolant
of x1 � y1 is PI (x1 � y1) = (y1 ≤ x1∨ ⊥) ∧ � = y1 ≤ x1.

2. Procedure Q1 deduces a1 � a2 from input equalities a1 � f (x1) [⊥] and a2 � f (y1)

[⊥], and propagated equality x1 � y1 [y1 ≤ x1]. Since a1, a2 ∈ V , a1 � a2 is
propagated to Q2. YM computes its partial interpolant as follows. Since the propa-
gated equality x1 � y1 is involved in deducing a1 � a2, K = {x1 � y1}; and since
x1 � y1 is transparent, A′ = A1 and B ′ = B1 ∪ {x1 � y1}. Since a1 � a2 is A-
colored, (a1 � a2)\B = a1 � a2, and A′ ∧ ¬((a1 � a2)\B) = A1 ∪ {a1 �� a2};
(a1 � a2) ↓B =⊥, and B ′ ∧ ¬((a1 � a2) ↓B) = B1 ∪ {x1 � y1}. The theory-
specific partial interpolant of a1 � a2 is PI 1

(A′,B ′)(a1 � a2) = x1 �� y1, T1-interpolant
of A1 ∪ {a1 �� a2} and B1 ∪ {x1 � y1}, because it follows from {a1 � f (x1), a2 �
f (y1), a1 �� a2}, and it is inconsistent with {x1 � y1}. The partial interpolant of
a1 � a2 is PI (a1 � a2) = (x1 �� y1∨ ⊥) ∧ y1 ≤ x1 = y1 < x1.

3. Procedure Q1 deduces x2 � y2 from input equalities x2 � g(b) [�] and y2 � g(b) [�].
Since x2, y2 ∈ V , x2 � y2 is propagated to Q2. YM computes its partial interpolant
as follows. Since no propagated equalities are involved, A′ = A1 and B ′ = B1. Since
x2 � y2 is transparent, (x2 � y2)\B =⊥, and A′ ∧ ¬((x2 � y2)\B) = A1 ∧ � = A1;
(x2 � y2) ↓B = x2 � y2, and B ′ ∧ ¬((x2 � y2) ↓B) = B1 ∪ {x2 �� y2}. The theory-
specific partial interpolant of x2 � y2 is PI 1

(A′,B ′)(x2 � y2) = �, T1-interpolant of A1

and B1 ∪ {x2 �� y2}, because B1 ∪ {x2 �� y2} is T1-inconsistent. The partial interpolant
of x2 � y2 is PI (x2 � y2) = (� ∨ ⊥) ∧ � = �.

4. Procedure Q2 deduces � from input literals a1+x2 � x3 [⊥], a2+y2 � y3 [⊥], x3 < y3
[�], and propagated equalities a1 � a2 [y1 < x1] and x2 � y2 [�]. YM computes
the partial interpolant of �, as follows. Since the propagated equalities a1 � a2 and
x2 � y2 are involved in deducing �, K = {a1 � a2, x2 � y2}; and since a1 � a2 is
A-colored and x2 � y2 is transparent, A′ = A2 ∪ {a1 � a2}, and B ′ = B2 ∪ {x2 � y2}.
Then, (�)\B = � = (�) ↓B ; A′ ∧ ¬((�)\B) = A2 ∪ {a1 � a2} ∧ � = A2 ∪ {a1 �
a2}; and B ′ ∧ ¬((�) ↓B) = B2 ∪ {x2 � y2} ∧ � = B2 ∪ {x2 � y2}. The theory-
specific partial interpolant of � is PI 2

(A′,B ′)(�) = x3 − x2 � y3 − y2, T2-interpolant
of A2 ∪{a1 � a2} and B2 ∪{x2 � y2}, because {a1 +x2 � x3, a2 +y2 � y3, a1 � a2}
entail x3 − x2 � y3 − y2, which is T2-inconsistent with {x3 < y3, x2 � y2}. The
partial interpolant of �, and interpolant of the original problem, is PI (�) = (x3−x2 �
y3 − y2 ∨ y1 < x1) ∧ � = x3 − x2 � y3 − y2 ∨ y1 < x1.



376 M.P. Bonacina, M. Johansson

Repeating the same example with symmetric projections shows why asymmetric ones
are preferable for Definitions 26 and 27:

Example 4 We assume everything is as in Example 3, except that symmetric projections are
applied. We only show the changes that ensue:

1. In the first step, since x1 � y1 is transparent, (x1 � y1)|A = x1 � y1 = (x1 � y1)|B ;
A′ ∧ ¬((x1 � y1)|A) = A2 ∪ {x1 �� y1}, and B ′ ∧ ¬((x1 � y1)|B) = B2 ∪ {x1 �� y1}.
Then PI 2

(A′,B ′)(x1 � y1) = y1 < x1, T2-interpolant of A2 ∪ {x1 �� y1} and B2 ∪
{x1 �� y1}, because it follows from {y1 ≤ x1, x1 �� y1} and is T2-inconsistent with
{x1 ≤ y1, x1 �� y1}. It follows that PI (x1 � y1) = (y1 < x1∨ ⊥) ∧ � = y1 < x1, so
that here symmetric projections give a stronger interpolant than asymmetric ones.

2. In the second step, since x1 � y1 is transparent, applying symmetric projections to
K means that x1 � y1 ends up in both A′ and B ′: A′ = A1 ∪ {x1 � y1} and B ′ =
B1 ∪{x1 � y1}. Since a1 � a2 is A-colored, (a1 � a2)|A = a1 � a2, and A′ ∧¬((a1 �
a2)|A) = A1 ∪ {x1 � y1, a1 �� a2}; (a1 � a2)|B =⊥, and B ′ ∧ ¬((a1 � a2) ↓B

) = B1 ∪ {x1 � y1}. Then PI 1
(A′,B ′)(a1 � a2) =⊥, T1-interpolant of A1 ∪ {x1 �

y1, a1 �� a2} and B1 ∪ {x1 � y1}, because the first set is T1-inconsistent. It follows
that PI (a1 � a2) = (⊥ ∨ y1 < x1) ∧ y1 < x1 = y1 < x1, so that here symmetric
projections give the same result as asymmetric ones.

3. In the third step, since x2 � y2 is transparent, (x2 � y2)|A = x2 � y2 = (x2 � y2)|B ;
A′∧¬((x2 � y2)|A) = A1∪{x2 �� y2}; and B ′∧¬((x2 � y2)|B) = B1∪{x2 �� y2}. Then
PI 1

(A′,B ′)(x2 � y2) = �, T1-interpolant of A1 ∪ {x2 �� y2} and B1 ∪ {x2 �� y2}, because
B1 ∪ {x2 �� y2} is T1-inconsistent. As before, PI (x2 � y2) = (� ∨ ⊥) ∧ � = �.

4. In the fourth step, since a1 � a2 is A-colored and x2 � y2 is transparent, A′ = A2 ∪
{a1 � a2, x2 � y2}, and B ′ = B2 ∪ {x2 � y2}. Since (�)|A = � = (�)|B , we have
A′ ∧ ¬((�)|A) = A2 ∪ {a1 � a2, x2 � y2} ∧ � = A2 ∪ {a1 � a2, x2 � y2}; and
B ′ ∧¬((�)|B) = B2 ∪{x2 � y2}∧� = B2 ∪{x2 � y2}. Then PI 2

(A′,B ′)(�) = x3 � y3,
T2-interpolant of A2 ∪ {a1 � a2, x2 � y2} and B2 ∪ {x2 � y2}, because {a1 + x2 �
x3, a2 + y2 � y3, a1 � a2, x2 � y2} entail x3 � y3, which is T2-inconsistent with
x3 < y3. The partial interpolant of � is PI (�) = (x3 � y3 ∨ y1 < x1 ∨ �) ∧ � = �,
which is trivial. The glitch is that symmetric projections put the transparent propagated
equality x2 � y2 in both A′ and B ′: since x2 � y2 descends only from B, this spoils
the interpolant.

The following theorem proves the completeness of YM for refutations by equality shar-
ing. Since what matters are the propagated equalities, the inner induction in the proof is on
the set K:

Theorem 4 (Yorsh and Musuvathi, 2005) If T = ⋃n
i=1 Ti is a union of equality-

interpolating convex disjoint theories, YM is a complete interpolation system for refutations
by equality sharing of sets A ∪ B of ground T -literals.

Proof We prove that for all literals, or unit clauses, C in the refutation, PI (C) is a T -
interpolant of gA(C) = A ∧ ¬(C\B) and gB(C) = B ∧ ¬(C ↓B), that is, it satifies the
requirements:

1. gA(C) �T PI (C),
2. gB(C) ∧ PI (C) �T ⊥, and



Interpolation Systems for Ground Proofs in Automated Deduction 377

3. PI (C) is transparent.

The proof is by induction on the length of the derivation of C. The base case (proof of length
0, C ∈ A or C ∈ B) is the same as in the proof of Theorem 2. The inductive case, for a C

such that Ai ∪ Bi ∪ K �Ti
C by a derivation of length m > 0, in a theory Ti , for some i,

1 ≤ i ≤ n, requires another induction on K .

Base case if K = ∅, then A′ = Ai , B ′ = Bi , and PI (C) = PI i
(A′,B ′)(C). By Definition 26,

PI (C) is a Ti-interpolant of (Ai ∧ ¬(C\B), Bi ∧ ¬(C ↓B)); since Ai ⊆ A and Bi ⊆ B,
PI (C) is also a T -interpolant of A ∧ ¬(C\B) and B ∧ ¬(C ↓B).

Inductive case if K �= ∅, then A′ = Ai ∪ K\B , B ′ = Bi ∪ K ↓B and PI (C) =
(P I i

(A′,B ′)(C) ∨ ∨
l∈K\B

P I (l)) ∧ ∧
l∈K↓B

P I (l), because PI (l) = ⊥ for all l ∈ Ai and
PI (l) = � for all l ∈ Bi .

Inductive hypothesis for all l ∈ K\B , PI (l) is a T -interpolant of (A∧¬(l\B), B ∧¬(l ↓B

)), that is, a T -interpolant of (A∧¬l, B), because l\B = l and l ↓B= ⊥ as l ∈ K\B ; for all
l ∈ K ↓B , PI (l) is a T -interpolant of (A∧¬(l\B), B ∧¬(l ↓B)), that is, a T -interpolant
of (A, B ∧ ¬l), because l\B = ⊥ and l ↓B= l as l ∈ K ↓B ; so that:

– For all l ∈ K\B :

(1A) A ∧ ¬l �T PI (l) or, equivalently, A �T l ∨ PI (l),
(2A) B ∧ PI (l) �T ⊥,
(3A) PI (l) is transparent; and

– For all l ∈ K ↓B :

(1B) A �T PI (l),
(2B) B ∧ ¬l ∧ PI (l) �T ⊥, or, equivalently, B ∧ PI (l) �T l,
(3B) PI (l) is transparent.

We show that Requirements 1, 2 and 3 are satisfied:

1. A ∧ ¬(C\B) �T PI (C):
By Definition 26, Ai ∧ K \B ∧¬(C\B) �Ti

P I i
(A′,B ′)(C), or, equivalently,

Ai ∧ ¬(C\B) �Ti
¬K \B ∨PI i

(A′,B ′)(C) (1)

where ¬K\B is the disjunction ¬l1 ∨ . . . ∨ ¬lq , if K\B is the conjunction l1 ∧ . . . ∧ lq .
By induction hypothesis (1A), we have

A �T lj ∨ PI (lj ) f or 1 ≤ j ≤ q (2)

By q resolution steps between (1) and (2), and since A ⇒ Ai , it follows that A ∧
¬(C\B) �T PI i

(A′,B ′)(C) ∨ ∨
l∈K\B

P I (l). By induction hypothesis (1B), A �T

PI (l) for all l ∈ K ↓B . Therefore, we conclude that A ∧ ¬(C\B) �T (P I i
(A′,B ′)(C) ∨

∨
l∈K\B

P I (l)) ∧ ∧
l∈K↓B

P I (l).
2. B ∧ ¬(C ↓B) ∧ PI (C) �T ⊥:

By Definition 26, Bi ∧ K ↓B ∧¬(C ↓B) ∧ PI i
(A′,B ′)(C) �Ti

⊥. Since B ⇒ Bi , we
have

B ∧ K ↓B ∧¬(C ↓B) ∧ PI i
(A′,B ′)(C) �Ti

⊥ (3)



378 M.P. Bonacina, M. Johansson

By induction hypothesis (2A), we have B ∧ PI (l) �T ⊥ for all l ∈ K\B , and thus
B ∧ ∨

l∈K\B
P I (l) �T ⊥, and

B ∧ K ↓B ∧¬(C ↓B) ∧
∨

l∈K\B

P I (l) �T ⊥ (4)

Combining (3) and (4) gives

B ∧ K ↓B ∧¬(C ↓B) ∧ (P I i
(A′,B ′)(C) ∨

∨

l∈K\B

P I (l)) �T ⊥

or, equivalently,

B ∧ ¬(C ↓B) ∧ (P I i
(A′,B ′)(C) ∨

∨

l∈K\B

P I (l)) �T ¬K ↓B (5)

where ¬K ↓B is the disjunction ¬l1 ∨ . . .∨¬lq , if K ↓B is the conjunction l1 ∧ . . .∧ lq .
By induction hypothesis (2B), we have

B ∧ PI (lj ) �T lj f or 1 ≤ j ≤ q (6)

By q resolution steps between (5) and (6), we get

B ∧ ¬(C ↓B) ∧ (P I i
(A′,B ′)(C) ∨

∨

l∈K\B

P I (l)) ∧
∧

l∈K↓B

P I (l) �T ⊥

that is, B ∧ ¬(C ↓B) ∧ PI (C) �T ⊥.
3. PI (C) is transparent, because PI i

(A′,B ′)(C) is transparent by Definition 26, and the
PI (l)’s are transparent by induction hypotheses (3A) and (3B).

Having an interpolation system for DPLL and YM, we have all the ingredients for an
interpolation system for DPLL(T ). Let A and B be sets of ground T -clauses. According to
Definition 19, a DPLL(T )-refutation of A ∪ B will be a refutation by propositional resolu-
tion plus T -lemmas. Such a refutation is colorable, because all its literals are input literals,
since also T -lemmas are made of input literals (cf. rule T-Propagate in Section 2.4). Let
CPT be the set of T -lemmas that appear in the DPLL(T )-refutation of A ∪ B. Such a
refutation shows that A∪B is T -unsatisfiable, by showing that A∪B∪CPT is proposition-
ally unsatisfiable. An interpolation system for DPLL(T ) will be given by an interpolation
system for propositional resolution plus partial interpolants for T -lemmas. A clause C is a
T -lemma, if and only if its negation ¬C, which is a set, or conjunction, of literals, is T -
unsatisfiable. Since C is colorable, C = C \B ∨C ↓B , whence ¬C = (¬C) \B ∧(¬C) ↓B .
Then, (¬C) \B ∧(¬C) ↓B is T -unsatisfiable, and we can compute a T -interpolant of
((¬C)\B, (¬C) ↓B) by YM. This T -interpolant provides the partial interpolant for the
T -lemma C.

Then, we can define two interpolation systems for DPLL(T ) by adding a case for T -
lemmas to either HKPYM (cf. Definition 20), as done in [88], or MM (cf. Definition 21), as
done in [26, 45]. The case for T -lemmas is a third base case, because they are sort of input
clauses from the point of view of the propositional engine:

Definition 28 (HKPYM(T ) interpolation system) For c : C a clause in a DPLL(T )-
refutation of A ∪ B:

• If c : C ∈ A, then PI (c) = ⊥,



Interpolation Systems for Ground Proofs in Automated Deduction 379

• If c : C ∈ B, then PI (c) = �,
• If c : C is a T -lemma, PI (c) is the T -interpolant of ((¬C)\B, (¬C) ↓B) produced

by YM from the refutation ¬C �T ⊥;
• If c : C ∨ D is a propositional resolvent of p1 : l ∨ C and p2 : ¬l ∨ D then:

– If l is A-colored, then PI (c) = PI (p1) ∨ PI (p2),
– If l is B-colored, then PI (c) = PI (p1) ∧ PI (p2) and
– If l is transparent, then PI (c) = (l ∨ PI (p1)) ∧ (¬l ∨ PI (p2)).

Definition 29 (MM(T ) interpolation system) For c : C a clause in a DPLL(T )-refutation
of A ∪ B:

• If c : C ∈ A, then PI (c) = C|A,B ,
• If c : C ∈ B, then PI (c) = �,
• If c : C is a T -lemma, PI (c) is the T -interpolant of ((¬C)\B, (¬C) ↓B) produced

by YM from the refutation ¬C �T ⊥;
• If c : C ∨ D is a propositional resolvent of p1 : l ∨ C and p2 : ¬l ∨ D then:

– If l is A-colored, then PI (c) = PI (p1) ∨ PI (p2),
– If l is B-colored or transparent, then PI (c) = PI (p1) ∧ PI (p2).

The completeness of HKPYM(T ), or MM(T ), follows from that of HKPYM, or MM,
and YM. However, there are theories used in practice that are not convex:

Example 5 By relying on the proof that the theory of equality is equality-interpolating (cf.
Theorem 3), it was shown in [88] that the theory of non-empty, possibly cyclic lists, which
is convex, is also equality-interpolating. The theory of possibly empty, possibly cyclic lists
is not convex, since l � nil ∨ l � cons(car(l), cdr(l)) is valid in the theory, but neither
disjunct is. Similarly, the theory of arrays is not convex, since select (store(a, i, e), j) �
e ∨ select (store(a, i, e), j) � select (a, j) is valid in the theory, but neither disjunct is.
The presentations of these theories can be found, for instance, in [3].

Example 6 Linear rational arithmetic is convex (cf. Example 10.12 in [16]), and it was
shown to be equality-interpolating in [88]: first, A ∧ B ⇒ a � b, where a is A-colored
and b is B-colored, is written as A ∧ B ⇒ a ≤ b ∧ b ≤ a; second, it is shown that if
A ∧ B ⇒ a ≤ b, there exists a transparent term t such that A ∧ B ⇒ a ≤ t ≤ b (cf.
Lemma 3 in [88]); third, from A ∧ B ⇒ a ≤ t1 ≤ b and A ∧ B ⇒ b ≤ t2 ≤ a, one gets
A∧B ⇒ a � t1 � t2 � b, so that t1, or t2, is the equality-interpolating term. Linear integer
arithmetic is not convex: 2 ≤ a ∧ a ≤ 3 implies a � 2 ∨ a � 3, but it does not imply
either disjunct. Neither it is equality-interpolating: if A contains 2a � c and B contains
2b � c, where a is A-colored, b is B-colored, and c is transparent, A ∧ B ⇒ a � b, but
the needed interpolating term c/2 is not in the integers. Approaches to interpolation in the
quantifier-free fragment of linear integer arithmetic were presented in [17, 19].

A generalization of the definition of equality-interpolating theory to non-convex theories
was suggested in [87]; however, no theory was shown to satisfy it. A weaker, and therefore
more general, definition, which is satisfied by several theories of interest, was given in
[21, 23], together with a thorough comparison with [87], and a non-deterministic algorithm
for interpolation in any combination of disjoint, stably-infinite, quantifier-free interpolating
theories. This algorithm is based on the meta-level rules approach of [22], rather than on a



380 M.P. Bonacina, M. Johansson

color-based interpolation system, and is therefore outside the scope of this survey. We refer
the interested reader to [23].

6 Interpolation for Ground Superposition

In this section we push as far as possible the color-based approach to interpolation by giving
a color-based interpolation system for ground Γ -refutations of A ∪ B containing ground
clauses.

Definition 30 (Interpolation system GΓ I) Let c : C be a clause in a ground colorable
Γ -refutation of A ∪ B:

• If c : C ∈ A, then PI (c) = ⊥,
• If c : C ∈ B, then PI (c) = �,
• If c : C is generated by a Γ -inference from premises p1 and p2, PI (c) is defined as

follows:

– Resolution: c : C ∨ D is generated from p1 : l ∨ C and p2 : ¬l ∨ D

If l is A-colored, then PI (c) = PI (p1) ∨ PI (p2),
If l is B-colored, then PI (c) = PI (p1) ∧ PI (p2), and
If l is transparent, then PI (c) = (l ∨ PI (p1)) ∧ (¬l ∨ PI (p2));

– Reflection: c : C is generated from p1 : s �� s ∨ C: PI (c) = PI (p1);
– Paramodulation: c : C∨l[r]∨D is generated from p1 : s � r∨C and p2 : l[s]∨

D; and Superposition: c : C ∨ l[r] �� t ∨ D is generated from p1 : s � r ∨ C

and p2 : l[s] �� t ∨ D

If s � r is A-colored, then PI (c) = PI (p1) ∨ PI (p2),
If s � r is B-colored, then PI (c) = PI (p1) ∧ PI (p2), and
If s � r is transparent, then PI (c) = (s � r ∨ PI (p1)) ∧ (s ��
r ∨ PI (p2)).

GΓ I is a generalization of HKPYM (cf. Definition 20) from propositional logic to ground
first-order logic with equality.

Example 7 Assume A = {Q(f (a)), f (a) � c} and B = {¬Q(f (b)), f (b) � c}, so that a

is A-colored, b is B-colored, and all other symbols are transparent. As in previous examples,
each clause in the refutation is decorated with its partial interpolant surrounded by brackets.

– Q(f (a)) [⊥] is simplified by f (a) � c [⊥] to Q(c) [⊥], as f (a) � c in a separating
ordering: since f (a) � c is A-colored, the partial interpolant is ⊥ ∨ ⊥=⊥;

– ¬Q(f (b)) [�] is simplified by f (b) � c [�] to ¬Q(c) [�], as f (b) � c in a separating
ordering: since f (b) � c is B-colored, the partial interpolant is � ∧ � = �;

– Q(c) [⊥] resolves with ¬Q(c) [�] to yield � [Q(c)]: since Q(c) is transparent, the
partial interpolant is (Q(c)∨ ⊥) ∧ (¬Q(c) ∨ �) = Q(c).

Theorem 5 The interpolation system GΓ I is complete for ground colorable Γ -refutations.

Proof We need to prove that for all clauses c : C in the refutation,

1. A ∧ ¬(C|A) � PI (c) or, equivalently, A � C|A ∨ PI (c),



Interpolation Systems for Ground Proofs in Automated Deduction 381

2. B ∧ ¬(C|B) ∧ PI (c) �⊥ or, equivalently, B ∧ PI (c) � C|B , and
3. PI (c) is transparent.

The proof is by induction on the structure of the refutation: the base case is the same as for
Theorem 2.

Inductive hypothesis for k ∈ {1, 2} it holds that:

1. A ∧ ¬(pk|A) � PI (pk) or, equivalently, A � pk|A ∨ PI (pk)

2. B ∧ ¬(pk|B) ∧ PI (pk) �⊥ or, equivalently, B ∧ PI (pk) � pk|B
3. PI (pk) is transparent.

Inductive cases

Resolution c : C ∨ D is generated from p1 : l ∨ C and p2 : ¬l ∨ D; there are three cases:

– l is A-colored; then (l ∨ C)|A = l ∨ C|A, (¬l ∨ D)|A = ¬l ∨ D|A, (l ∨ C)|B = C|B
and (¬l ∨ D)|B = D|B :

1. A � (C ∨ D)|A ∨ PI (p1) ∨ PI (p2)

From inductive hypothesis (1) we have A � (l ∨ C)|A ∨ PI (p1) and A � (¬l ∨
D)|A ∨ PI (p2). Since l is A-colored and �-maximal in l ∨ C, and PI (p1) is
transparent, l is �-maximal in (l ∨ C)|A ∨ PI (p1). Similarly, ¬l is �-maximal in
(¬l ∨ D)|A ∨ PI (p2). Thus, a resolution step gives A � (C ∨ D)|A ∨ PI (p1) ∨
PI (p2) as desired.

2. B ∧ (P I (p1) ∨ PI (p2)) � (C ∨ D)|B
From inductive hypothesis (2) we have B ∧PI (p1) � C|B and B ∧PI (p2) � D|B
from which follows the inductive conclusion.

3. Transparency of the partial interpolant follows from the inductive hypothesis.

– l is B-colored; then (l ∨ C)|A = C|A, (¬l ∨ D)|A = D|A, (l ∨ C)|B = l ∨ C|B and
(¬l ∨ D)|B = ¬l ∨ D|B :

1. A ∧ ¬(C ∨ D)|A � PI (p1) ∧ PI (p2) is equivalent to
A ∧ ¬(C|A) ∧ ¬(D|A) � PI (p1) ∧ PI (p2) which follows from inductive
hypotheses (1) A ∧ ¬(C|A) � PI (p1) and A ∧ ¬(D|A) � PI (p2).

2. B ∧ PI (p1) ∧ PI (p2) � (C ∨ D)|B
From inductive hypothesis (2) we have B ∧PI (p1) � (l∨C)|B and B ∧PI (p2) �
(¬l ∨ D)|B ; by resolution this gives B ∧ PI (p1) ∧ PI (p2) � (C ∨ D)|B .

3. Transparency of the partial interpolant follows from the inductive hypothesis.

– l is transparent:

1. A ∧ ¬(C ∨ D)|A � (l ∨ PI (p1)) ∧ (¬l ∨ PI (p2))

or, equivalently, A ∧ ¬C|A ∧ ¬D|A � (l ∨ PI (p1)) ∧ (¬l ∨ PI (p2))

From inductive hypothesis (1) we have A ∧ ¬C|A � l ∨ PI (p1) and A ∧ ¬D|A �
¬l ∨ PI (p2), which together give the desired result.

2. B ∧ (l ∨ PI (p1)) ∧ (¬l ∨ PI (p2)) � (C ∨ D)|B
By case analysis on l in PI (c): if l is true, l holds, l subsumes l ∨ PI (p1) and
simplifies ¬l∨PI (p2) to PI (p2); if l is false, ¬l holds, ¬l subsumes ¬l∨PI (p2)

and simplifies l ∨ PI (p1) to PI (p1); so that we need to establish:



382 M.P. Bonacina, M. Johansson

(a) B ∧ l ∧ PI (p2) � (C ∨ D)|B
From inductive hypothesis (2) we have B ∧ PI (p2) � ¬l ∨ D|B whence
B ∧ l ∧ PI (p2) � D|B .

(b) B ∧ ¬l ∧ PI (p1) � (C ∨ D)|B
From inductive hypothesis (2) we have B ∧ PI (p1) � l ∨ C|B whence B ∧
¬l ∧ PI (p1) � C|B .

– Transparency of the partial interpolant follows from the inductive hypothesis and
the assumption that l is transparent.

Reflection c : C is generated from p1 : s �� s ∨ C

– s is A-colored: (s �� s ∨ C)|A = s �� s ∨ C|A, (s �� s ∨ C)|B = C|B
1. A ∧ ¬(C|A) � PI (c)

Inductive hypothesis (1) is A ∧ ¬(s �� s ∨ C|A) � PI (p1), whence A ∧ s �
s ∧ ¬(C|A) � PI (p1), and A ∧ ¬(C|A) � PI (c), since PI (c) = PI (p1).

2. B ∧ ¬(C|B) ∧ PI (c) �⊥
Inductive hypothesis (2) gives B ∧ ¬(C|B) ∧ PI (c) �⊥ since PI (c) = PI (p1).

3. The partial interpolant is transparent by inductive hypothesis.

– s is B-colored: (s �� s ∨C)|A = C|A, (s �� s ∨C)|B = s �� s ∨C|B ; the rest of the proof
is symmetric to the previous case.

– s is transparent: (s �� s ∨ C)|A = s �� s ∨ C|A, (s �� s ∨ C)|B = s �� s ∨ C|B ; the rest of
the proof is as in the previous cases.

Paramodulation c : C ∨ l[r] ∨ D is generated from p1 : s � r ∨ C and p2 : l[s] ∨ D

– s � r is A-colored: either s and r are both A-colored, or, since s � r , s is A-colored
and r is transparent; since there are no AB-mixed literals, either l[s] and l[r] are both
A-colored, or l[s] is A-colored and l[r] is transparent; (s � r ∨ C)|A = s � r ∨ C|A,
(l[s]∨D)|A = l[s]∨D|A, (C ∨ l[r]∨D)|A = C|A ∨ l[r]∨D|A, (s � r ∨C)|B = C|B ,
(l[s] ∨ D)|B = D|B :

1. A � (C ∨ l[r] ∨ D)|A ∨ PI (p1) ∨ PI (p2)

Inductive hypothesis (1) gives A � s � r ∨ C|A ∨ PI (p1) and A � l[s] ∨ D|A ∨
PI (p2); since s � r is �-maximal in s � r ∨ C and PI (p1) is transparent, s � r

is �-maximal also in s � r ∨ C|A ∨ PI (p1); similarly, l[s] is �-maximal also in
l[s] ∨ D|A ∨ PI (p2); thus, the inductive conclusion follows by a paramodulation
step.

2. B ∧ (P I (p1) ∨ PI (p2)) � (C ∨ l[r] ∨ D)|B
From inductive hypothesis (2) we have B∧PI (p1) � C|B and B∧PI (p2) � D|B ,
which proves the inductive conclusion.

3. The partial interpolant is transparent by inductive hypothesis.

– s � r is B-colored: similar to the previous case, either l[s] and l[r] are both B-colored,
or l[s] is B-colored and l[r] transparent, so that (s � r ∨ C)|B = s � r ∨ C|B ,
(l[s]∨D)|B = l[s]∨D|B , (C ∨ l[r]∨D)|B = C|B ∨ l[r]∨D|B , (s � r ∨C)|A = C|A,
(l[s] ∨ D)|A = D|A:

1. A ∧ ¬((C ∨ l[r] ∨ D)|A) � PI (p1) ∧ PI (p2) is equivalent to
A ∧ ¬(C|A) ∧ ¬l[r]|A ∧ ¬(D|A) � PI (p1) ∧ PI (p2) which follows from A ∧
¬C|A � PI (p1) and A ∧ ¬D|A � PI (p2), that hold by inductive hypothesis (1).



Interpolation Systems for Ground Proofs in Automated Deduction 383

2. B ∧ PI (p1) ∧ PI (p2) � (C ∨ l[r] ∨ D)|B or, equivalently,
B ∧ PI (p1) ∧ PI (p2) � C|B ∨ l[r] ∨ D|B (*)
By inductive hypothesis (2) we have B∧PI (p1) � s � r∨C|B and B∧PI (p2) �
l[s] ∨ D|B so that (*) follows by a paramodulation step.

3. The partial interpolant is transparent by inductive hypothesis.

– s � r is transparent:

1. A � (C ∨ l[r] ∨ D)|A ∨ ((s � r ∨ PI (p1)) ∧ (s �� r ∨ PI (p2))) is equivalent to
A ∧ ((s �� r ∧ ¬PI (p1)) ∨ (s � r ∧ ¬PI (p2))) � (C ∨ l[r] ∨ D)|A

(a) Assume s �� r; then it suffices to establish A∧s �� r ∧¬PI (p1) � (C∨ l[r]∨
D)|A. By induction hypothesis (1) we have A ∧ ¬(s � r ∨ C)|A � PI (p1),
whence A∧(s �� r)|A ∧¬(C|A) � PI (p1), and A∧s �� r ∧¬PI (p1) � C|A,
which proves the required.

(b) Assume s � r; then it suffices to establish A ∧ s � r ∧ ¬PI (p2) � (C ∨
l[r] ∨ D)|A or, equivalently, A ∧ s � r ∧ ¬PI (p2) � (C ∨ l[s] ∨ D)|A since
s � r holds, and the literals l[r] and l[s] are treated in the same way by the
projection, as s and r are transparent. By induction hypothesis (1) we have
A ∧ ¬(l[s] ∨ D)|A � PI (p2), whence A ∧ ¬PI (p2) � (l[s] ∨ D)|A, and we
are done.

2. B ∧ (s � r ∨ PI (p1)) ∧ (s �� r ∨ PI (p2)) � (C ∨ l[r] ∨ D)|B
(a) Assume s � r; then s � r∨PI (p1) is subsumed, and s �� r∨PI (p2) reduces

to PI (p2). Thus, it suffices to establish B∧s � r∧PI (p2) � (C∨l[r]∨D)|B ,
which is equivalent to B ∧ s � r ∧ PI (p2) � (C ∨ l[s] ∨ D)|B , since s � r

holds, and l[r] and l[s] are treated in the same way by the projection, as s

and r are transparent. By induction hypothesis (2) we have B ∧ PI (p2) �
(l[s] ∨ D)|B , which closes this case.

(b) Assume s �� r; then s �� r∨PI (p2) is subsumed, and s � r∨PI (p1) reduces
to PI (p1). Thus, we need to establish B ∧ s �� r ∧ PI (p1) � (C ∨ l[r] ∨
D)|B . By induction hypothesis (2) we have B ∧ PI (p1) � (s � r ∨ C)|B , or
B ∧PI (p1) � (s � r)|B ∨C|B , whence B ∧ s �� r ∧PI (p1) � C|B , because
s � r is transparent.

3. Transparency follows from the transparency of s � r and the inductive hypothesis.

Superposition is treated like paramodulation, with l[s] replaced by l[s] �� t , and the case
analysis for simplification is subsumed by those for paramodulation and superposition.

Corollary 1 If the ordering is separating, GΓ I is a complete interpolation system for
ground Γ -refutations.

Proof It follows from Lemma 1 and Theorem 5.

7 Discussion

The existence of interpolants in first-order logic was established by Craig’s Interpola-
tion Lemma in [28]. Constructive proofs based on cut elimination were given in [40,
54, 84]. One of the first studies of the complexity of interpolation appeared in [72]. In



384 M.P. Bonacina, M. Johansson

[56, 57, 77] interpolation was studied to advance what is known as “Cook’s program,”
which can be summarized as follows. Since the result by Cook and Reckhow in [27] that
NP = co−NP if and only if there is a polynomially bounded proof system for the clas-
sical propositional tautologies, the goal of that research line has been to prove that there
is no polynomially bounded proof system in order to settle NP �= co−NP . A proof
system as defined in [27] (or [85] for a survey), is a function f such that f (x) = y,
if x is a string representing a proof, and y is a string representing the tautology proved
by x. The proof system f is polynomially bounded if the length of x is polynomially
bounded by the length of y. The results of [56, 77] are lower bounds on the length of inter-
polants, that imply lower bounds on the length of proofs and show that the proof system
at hand is not polynomially bounded. The investigation in [57] studies limitations to this
approach.

The relevance of interpolation for model checking was discovered by Ken McMillan
beginning with [64], and since then interpolation has received increasing attention (e.g.,
[2, 17–19, 22, 23, 45, 48, 52, 65, 68, 78, 80, 86]), and has been implemented in reasoners,
such as Foci [65, 67, 69], MathSAT [26], OpenSMT [24], Vampire [49, 50], and program
analyzers based on model checking, such as CSIsat [7], Wolverine [59], and Eldarica [80].
In model checking one is interested in interpolants that accelerate convergence towards a
fixed point in forward, or backward, reachability search. This goal has led to study several
techniques, including interpolation systems with labelling, or coloring, functions, to tune
the strength of interpolants [37, 78, 86], and abstraction over terms [2] or entire interpolants
[80].

There are several approaches to practical interpolation. One is the inductive and color-
based approach surveyed here, which is appropriate for generic inference and transition
systems. Another one consists of building interpolation into specialized inference systems
[17–19, 48, 65] and satisfiability procedures [2, 22, 39, 46, 86] both with the theory built-in.
For instance, the interpolation algorithm of [39] is for a congruence-closure-based satisfia-
bility procedure for the quantifier-free fragment of the theory of equality. The interpolation
systems for equality sharing and DPLL(T ), that we covered in this article, are consumers
of interpolation algorithms incorporated into satisfiability procedures for specific theories,
because they assume that every Ti-satisfiability procedure produces Ti-interpolants. A
third one formulates the interpolation problem as a set of Horn clauses with an unknown
query, and gives an algorithm to solve it: the solution is a conjunction of constraints that
represents the interpolant [47, 79].

An approach to combination and interpolation based on the notion of locality of theories
of [44, 63] was pursued in [83]. A theory T is local in this sense, if the T -satisfiability
of a set of ground clauses can be decided by involving only finitely many ground instances
of the T -axioms. A combination of theories is seen as a series of local extensions of a
convex core theory, where an extension is local if the resulting theory is local. The notion
of equality-interpolating convex theory was generalized in [83] to that of P -interpolating
convex theory, where P is the main predicate symbol of the core theory (e.g., an ordering
in place of equality).

The methodology of [20–23] offers a different approach to both interpolation algorithm
design and combination of theories. It uses meta-rules to obtain interpolation algorithms:
it was applied in [22] to the theory of arrays with extensionality, in [20] to a combina-
tion of arrays and integer difference constraints, and in [21, 23] to any combination of
disjoint, stably-infinite, quantifier-free interpolating theories. The latter algorithm relies
on a notion of equality-interpolating theories, which is the most general in the literature
thus far.



Interpolation Systems for Ground Proofs in Automated Deduction 385

The study of interpolation for superposition in [67] aimed at generalizing to refutations
in first-order logic with equality the color-based approach that had been applied to propo-
sitional resolution [64] and to quantifier-free fragments of first-order theories [48, 65]. The
notions of local inference and local proof were introduced in [67], together with that of
ordering oriented for (A,B), which was a precursor of the separating ordering. “Local”
was replaced by “colored” in [45]. Ground refutations by superposition with a separating
ordering were shown to be colored in [55].

Approaches based on instantiation and proof transformation were developed in [25] and
[69] for ground refutations by a DPLL(T )-based SMT-solver, equipped with an instantia-
tion procedure (e.g., [31, 35, 42, 43, 70]). The instantiation procedure is used to generate
ground instances of non-ground input axioms. For instance in [69] this technique is applied
to proofs generated by Z3, that are processed and then passed on to Foci for interpolation.
The refutations to be interpolated are ground, but not necessarily local, because the instan-
tiation procedure may have introduced AB-mixed literals. Thus, AB-mixed literals are
eliminated by proof transformation.

In this article, we surveyed color-based interpolation systems for ground refutations.
After covering interpolation systems for propositional resolution, or, equivalently, DPLL,
we analyzed interpolation and equality. When going from propositional reasoning to equal-
ity reasoning, already in the ground case, and regardless of whether equality reasoning is
done by rewriting or congruence closure, interpolation becomes more difficult, because
equality makes colors unstable as soon as terms of different colors become equal. We clar-
ified how the requirement of convex equality-interpolating theory for equality sharing and
that of a separating ordering for ground superposition address this same issue, as both aim
at avoiding AB-mixed literals, and ensuring that the proof is colorable (cf. Lemma 1). We
connected them by using the separating ordering to prove that the quantifier-free fragment
of the theory of equality is equality-interpolating (cf. Theorem 3). Then we surveyed color-
based interpolation systems for combinations of convex equality-interpolating theories by
equality sharing and for DPLL(T ). The key point is that propagated equalities are not AB-
mixed, so that the proof is colorable. Next we studied interpolation of ground Γ -refutations.
Under the assumption of a separating ordering, ground Γ -refutations are colorable (cf.
Lemma 1) and colored (cf. Lemma 2). “Colorable” is more general and more precise then
“colored,” since it captures exactly the absence of AB-mixed literals. We gave a new inter-
polation system, named GΓ I, which is complete for ground Γ -refutations (cf. Theorem 5),
and generalizes the interpolation systems for propositional resolution. The interested reader
may find in [15] an approach to the interpolation of non-ground Γ -refutations.

The state of the art on ground interpolation can be advanced by giving interpolation
systems that produce better interpolants than the existing ones, in terms of strength, length,
or other features [1, 37, 39, 78, 80], or by giving interpolation systems for quantifier-free
fragments of theories that do not have them. The latter include non-linear arithmetic, where
interpolation is relevant to hybrid system verification, theories of data structures beyond
arrays, sets, and multisets [53], where interpolation is relevant to the verification of heap-
manipulating programs, and the theory of bitvectors [46, 86], where interpolation is relevant
to applications in hardware verification and security. For example, it is not known how
to extract theory interpolants from the propositional proofs produced by solving bitvector
problems by bit-blasting.

Acknowledgments This work started when also the second author was with the Dipartimento di Informat-
ica of the Università degli Studi di Verona. Early versions of parts of this work were presented at a meeting
of COST Action No. IC0109 “Rich-model toolkit: an infrastructure for reliable computer systems” held in



386 M.P. Bonacina, M. Johansson

Turin, Italy, in October 2011, and at a Z3 Special Interest Group Meeting in Cambridge, UK, in Novem-
ber 2011. We thank the organizers of those meetings, Leonardo de Moura, Mnacho Echenim, and Madan
Musuvathi for their comments, and the anonymous reviewers for their suggestions.

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith, H. (eds.) Proceed-
ings of the 25th Conference on Computer Aided Verification (CAV), volume 8044 of Lecture Notes in
Computer Science, pp. 313–329. Springer, Berlin (2013)

2. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstraction with interpolants for
arrays. In: Bjørner N, Voronkov, A. (eds.) Proceedings of the 18th Conference on Logic, Programming
and Automated Reasoning (LPAR), volume 7180 of Lecture Notes in Artificial Intelligence, pp. 46–61.
Springer, Berlin (2012)

3. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability
procedures. ACM Trans. Comput. Log. 10(1), 129–179 (2009)

4. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf.
Comput. 183(2), 140–164 (2003)

5. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by incremental trans-
lation to SAT. In: Larsen, K.G., Brinksma, E. (eds.) Proceedings of the 14th Conference on Computer
Aided Verification (CAV), volume 2404 of Lecture Notes in Computer Science, pp. 236–249. Springer,
Berlin (2002)

6. Barrett, C.W., Dill, D.L., Stump, A.: A generalization of Shostak’s method for combining deci-
sion procedures. In: Armando, A. (ed.) Proceedings of the 4th Workshop on Frontiers of Com-
bining Systems (FroCoS), volume 2309 of Lecture Notes in Computer Science. Springer, Berlin
(2002)

7. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: interpolation for LA+EUF. In: Gupta, A., Malik, S. (eds.)
Proceedings of the 20th Conference on Computer Aided Verification (CAV), volume 5123 of Lecture
Notes in Computer Science, pp. 304–308. Springer, Berlin (2008)

8. Bonacina, M.P.: On theorem proving for program checking – historical perspective and recent devel-
opments. In: Fernandez, M. (ed.) Proceedings of the 12th International Symposium on Principles and
Practice of Declarative Programming (PPDP), pp. 1–11. ACM, New York (2010)

9. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Comput. Log. 8(1), 180–208
(2007)

10. Bonacina, M.P., Echenim, M.: Rewrite-based satisfiability procedures for recursive data structures. In:
Cook, B., Sebastiani, R. (eds.) Proceedings of the 4th Workshop on Pragmatics of Decision Procedures
in Automated Reasoning (PDPAR 2006), volume 174(8) of Electronic Notes in Theoretical Computer
Science, pp. 55–70. Elsevier, Amsterdam (2007)

11. Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial T -satisfiability procedures. J. Log.
Comput. 18(1), 77–96 (2008)

12. Bonacina, M.P., Hsiang, J.: On the modelling of search in theorem proving – towards a theory of strategy
analysis. Inf. Comput. 147, 171–208 (1998)

13. Bonacina, M.P., Johansson, M.: On interpolation in decision procedures. In: Brünnler, K., Metcalfe,
G. (eds.) Proceedings of the 20th International Conference on Analytic Tableaux and Related Meth-
ods (TABLEAUX), volume 6793 of Lecture Notes in Artificial Intelligence, pp. 1–16. Springer, Berlin
(2011)

14. Bonacina, M.P., Johansson, M.: Towards interpolation in an SMT solver with integrated superposition.
In: Lahiri, S., Seshia, S.A. (eds.) Notes of the 9th International Workshop on Satisfiability Modulo
Theories (SMT), number UCB/EECS-2011-80 in Technical Reports, pp. 9–18. Department of EECS,
University of California at Berkeley, Berkeley (2011)

15. Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving. J. Autom. Reason.
54(1), 69–97 (2015)

16. Bradley, A.R., Manna, Z.: The calculus of computation – decision procedures with applications to
verification. Springer, Berlin (2007)

17. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calculus for quantifier-free
Presburger arithmetic. In: Giesl, J., Hähnle, R. (eds.) Proceedings of the 5th International Joint Con-
ference on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence,
pp. 384–399. Springer, Berlin (2010)



Interpolation Systems for Ground Proofs in Automated Deduction 387

18. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Program verification via Craig interpolation for Pres-
burger arithmetic with arrays. Notes of the 6th International Verification Workshop (VERIFY), 2010.
Available at http://www.philipp.ruemmer.org/

19. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Beyond quantifier-free interpolation in extensions of
Presburger arithmetic. In: Jhala, R., Schmidt, D. (eds.) Proceedings of the 12th International Conference
on Verification, Model Checking and Abstract Interpretation (VMCAI), volume 6538 of Lecture Notes
in Computer Science, pp. 88–102. Springer, Berlin (2011)

20. Bruttomesso, R., Ghilardi, S., Ranise, S.: A combination of rewriting and constraint solving
for the quantifier-free interpolation of arrays with integer difference constraints. In: Tinelli, C.,
Sofronie-Stokkermans, V. (eds.) Proceedings of the 8th Symposium on Frontiers of Combining Sys-
tems (FroCoS), volume 6989 of Lecture Notes in Artificial Intelligence, pp. 103–118. Springer, Berlin
(2011)

21. Bruttomesso, R., Ghilardi, S., Ranise, S.: From strong amalgamability to modularity of quantifier-free
interpolation. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Proceedings of the 6th International Joint
Conference on Automated Reasoning (IJCAR), volume 7364 of Lecture Notes in Artificial Intelligence,
pp. 118–133. Springer, Berlin (2012)

22. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation for a theory of arrays. Logical
Methods Comput. Sci. 8(2) (2012)

23. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation in combinations of equality
interpolating theories. ACM Trans. Comput. Log. 15(1) (2014)

24. Bruttomesso, R., Rollini, S.F., Sharygina, N., Tsitovich, A.: Flexible interpolation generation in satisfia-
bility modulo theories. In: Proceedings of the 14th International Conference on Computer-Aided Design
(ICCAD), pp. 770–777. IEEE, Los Alamitos (2010)

25. Christ, J., Hoenicke, J.: Instantiation-based interpolation for quantified formulae. Notes of the 8th
International Workshop on Satisfiability Modulo Theories (SMT) (2010)

26. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability modulo
theories. ACM Trans. Comput. Log. 12(1), Article 7 (2010)

27. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1),
36–50 (1979)

28. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–
268 (1957)

29. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm. ACM 5(7),
394–397 (1962)

30. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)
31. de Moura, L., Bjørner, N.: Efficient E-matching for SMT-solvers. In: Pfenning, F. (ed.) Proceedings

of the 21st Conference on Automated Deduction (CADE), volume 4603 of Lecture Notes in Artificial
Intelligence, pp. 183–198. Springer, Berlin (2007)

32. de Moura, L., Bjørner, N.: Bugs, moles and skeletons: Symbolic reasoning for software development.
In: Giesl, J., Hähnle, R. (eds.) Proceedings of the 5th International Joint Conference on Automated
Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence, pp. 400–411. Springer,
Berlin (2010)

33. de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Comm. ACM
54(9), 69–77 (2011)

34. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of automated
reasoning, vol. 1, pp. 535–610. Elsevier, Amsterdam (2001)

35. Detlefs, D.L., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3),
365–473 (2005)

36. D’Silva, V.: Propositional interpolation and abstract interpretation. In: Gordon, A.D. (ed.) Proceedings
of the 19th European Symposium on Programming (ESOP), volume 6012 of Lecture Notes in Computer
Science, pp. 185–204. Springer, Berlin (2010)

37. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: Barthe, G.,
Hermenegildo, M.V. (eds.) Proceedings of the 11th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), volume 5944 of Lecture Notes in Computer Science,
pp. 129–145. Springer, Berlin (2010)

38. Fitting, M.: First-order logic and automated theorem proving. Springer, Berlin (1996)
39. Fuchs, A., Goel, A., Grundy, J., Krstić, S., Tinelli, C.: Ground interpolation for the theory of equality.

Logical Methods Comput. Sci. 8(1) (2012)
40. Gallier, J.: Logic for computer science – foundations of automatic theorem proving. Wiley, New York

(1987)

http://www.philipp.ruemmer.org/


388 M.P. Bonacina, M. Johansson

41. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions
with Evans equality. Inf. Comput. 240(10), 1453–1492 (2006)

42. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using satisfiability mod-
ulo theories. In: Pfenning, F. (ed.) Proceedings of the 21st conference on automated deduction
(CADE), volume 4603 of Lecture Notes in Artificial Intelligence, pp. 167–182. Springer, Berlin
(2007)

43. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiability modulo theories.
In: Bouajjani, A., Maler, O. (eds.) Proceedings of the 21st conference on computer aided verifi-
cation (CAV), volume 5643 of Lecture Notes in Computer Science, pp. 306–320. Springer, Berlin
(2009)

44. Givan, R., McAllester, D.: Proceedings of the 3rd international conference on principles of knowledge
representation and reasoning (KR). In: Nebel, B., Rich, C., Swartout, W.R. (eds.), pp. 403–412. Morgan
Kaufmann (1992)

45. Goel, A., Krstić, S., Tinelli, C.: Ground interpolation for combined theories. In: Schmidt, R. (ed.) Pro-
ceedings of the 22nd Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in
Artificial Intelligence, pp. 183–198. Springer, Berlin (2009)

46. Griggio, A.: Effective word-level interpolation for software verification. In: Bjesse, P., Slobodova,
A. (eds.) Proceedings of the 11th Conference on Formal Methods in Computer Aided Design (FMCAD).
ACM and IEEE, New York (2011)

47. Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free Horn clauses over LI+UIF. In: Yang,
H. (ed.) Proceedings of the 9th Asian Symposium on Programming Languages and Systems (APLAS),
volume 7078 of Lecture Notes in Computer Science. Springer, Berlin (2011)

48. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Leroy, X. (ed.)
Proceedings of the 31st ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL), pp. 232–244. ACM, New York (2004)

49. Hoder, K., Kovàcs, L., Voronkov, A.: Interpolation and symbol elimination in Vampire. In: Giesl,
J., Hähnle, R. (eds.) Proceedings of the 5th international joint conference on automated reasoning
(IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence, pp. 188–195. Springer, Berlin
(2010)

50. Hoder, K., Kovàcs, L., Voronkov, A.: Playing in the grey area of proofs. In: Hicks, M. (ed.) Proceedings
of the 39th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL),
pp. 259–272. ACM, New York (2012)

51. Huang, G.: Constructing Craig interpolation formulas. In: Du, D.-Z., Li, M. (eds.) Proceedings of the 1st
Annual International Conference on Computing and Combinatorics (COCOON), volume 959 of Lecture
Notes in Computer Science, pp. 181–190. Springer, Berlin (1995)

52. Jain, H.: Verification using satisfiability checking, predicate abstraction and Craig interpolation. PhD
thesis, School of Computer Science, Carnegie Mellon University (2008)

53. Kapur, D., Majumdar, R., Zarba, C.G., et al.: Interpolation for data structures. In: Devambu, P. (ed.)
Proceedings of the 14th ACM SIGSOFT Symposium on the Foundations of Software Engineering. ACM
Press (2006)

54. Kleene, S.C.: Mathematical logic. Wiley Interscience, New York (1967)
55. Kovàcs, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R. (ed.) Proceedings of

the 22nd Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial
Intelligence, pp. 199–213. Springer, Berlin (2009)

56. Krajı́ček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic. J. Symb. Log. 62(2), 457–486 (1997)

57. Krajı́ček, J., Pudlàk, P.: Some consequences of cryptographical conjectures for s1
2 and EF. Inf. Comput.

140, 82–94 (1998)
58. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-level. In: Baumgartner,

J., Sheeran, M. (eds.) Proceedings of the 7th Conference on Formal Methods in Computer Aided Design
(FMCAD), pp. 85–89. ACM and IEEE, New York (2007)

59. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with Wolverine. In:
Gopalakrishnan, G., Qaader, S. (eds.) Proceedings of the 23rd Conference on Computer Aided Ver-
ification (CAV), volume 6806 of Lecture Notes in Computer Science, pp. 573–578. Springer, Berlin
(2011)

60. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like properties. In:
Dershowitz, N., Voronkov, A. (eds.) Proceedings of the 14th Conference on Logic, Programming and
Automated Reasoning (LPAR), volume 4790 of Lecture Notes in Artificial Intelligence, pp. 348–362.
Springer, Berlin (2007)



Interpolation Systems for Ground Proofs in Automated Deduction 389

61. Malik, S., Zhang, L.: Boolean satisfiability: from theoretical hardness to practical success. Comm. ACM
52(8), 76–82 (2009)

62. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A new search algorithm for satisfiability. In: Proceedings
of the 1996 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 220–227
(1997)

63. McAllester, D.: Automatic recognition of tractability in inference relations. J. ACM 40(2), 284–303
(1993)

64. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proceedings of the 15th Conference
on Computer Aided Verification (CAV), volume 2725 of Lecture Notes in Computer Science, pp. 1–13.
Springer, Berlin (2003)

65. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121
(2005)

66. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) Proceedings of the
18th Conference on Computer Aided Verification (CAV), volume 4144 of Lecture Notes in Computer
Science, pp. 123–136. Springer, Berlin (2006)

67. McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover.
In: Ramakrishnan, C.R., Rehof, J. (eds.) Proceedings of the 14th Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in Computer
Science, pp. 413–427. Springer, Berlin (2008)

68. McMillan, K.L.: Lazy annotation for program testing and verification. In: Proceedings of the 22nd Con-
ference on Computer Aided Verification (CAV), volume 6174 of Lecture Notes in Computer Science,
pp. 104–118. Springer, Berlin (2010)

69. McMillan, K.L.: Interpolants from Z3 proofs. In: Bjesse, P., Slobodova, A. (eds.) Proceedings of the
11th Conference on Formal Methods in Computer Aided Design (FMCAD). ACM and IEEE, New York
(2011)

70. Moskał, M.: Fx7 or in software, it is all about quantifiers. System Descriptions at the Satisfiability
Modulo Theories Competition (SMT-COMP) (2007). Available at http://research.microsoft.com/en-us/
um/people/moskal/

71. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT
solver. In: Blaauw, D., Lavagno, L. (eds.) Proceedings of the 39th Design Automation Conference
(DAC), pp. 530–535 (2001)

72. Mundici, D.: Complexity of Craig’s interpolation. Fundamenta Informaticae 5, 261–278 (1982)
73. Nelson, G.: Techniques for Program Verification. PhD thesis, Stanford University, 1979. A revised

version was published as Xerox PARC Computer Science Laboratory Research Report No.
CSL-81-10

74. Nelson, G.: Combining satisfiability procedures by equality sharing. In: Bledsoe, W.W., Loveland,
D.W. (eds.) Automatic Theorem Proving: After 25 Years, pp. 201–211. American Mathematical Society
(1983)

75. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program.
Lang. Syst. 1(2), 245–257 (1979)

76. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

77. Pudlàk, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J.
Symbolic Logic 62(3), 981–998 (1997)

78. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model checking. In:
Parthasarathy, M., Seshia, S.A. (eds.) Proceedings of the 24th Conference on Computer Aided
Verification (CAV), volume 7358 of Lecture Notes in Computer Science, pp. 193–209. Springer, Berlin
(2012)

79. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolation for Horn clause verification. In: Sharygina,
N., Veith, H. (eds.) Proceedings of the 25th Conference on Computer Aided Verification (CAV), volume
8044 of Lecture Notes in Computer Science, pp. 347–363. Springer, Berlin (2013)

80. Rümmer, P., Subotić, P.: Exploring interpolants. In: Jobstmann, B., Ray, S. (eds.) Proceedings
of the 13th Conference on Formal Methods in Computer Aided Design (FMCAD). FMCAD Inc
(2013)

81. Shankar, N.: Automated deduction for verification. ACM Comput. Surv. 41(4), 40–96 (2009)
82. R. M. Smullyan: First-order logic. Dover Publications, New York (1995). First published by Springer in

1968
83. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. Logical Methods in Computer

Science 4(4), Article 1 (2008)

http://research.microsoft.com/en-us/um/people/moskal/
http://research.microsoft.com/en-us/um/people/moskal/


390 M.P. Bonacina, M. Johansson

84. Takeuti, G.: Proof theory, volume 81 of studies in logic. North Holland, Amsterdam (1975)
85. Urquhart, A.: The complexity of propositional proofs. Bull. Symb. Log. 1, 425–467 (1995)
86. Weissenbacher, G.: Program Analysis with Interpolants. PhD thesis, Magdalen College, Oxford

University (2010)
87. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. Technical Report MSR-

TR-2004-108, Microsoft Research (2004)
88. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwenhuis, R. (ed.)

Proceedings of the 20th Conference on Automated Deduction (CADE), volume 3632 of Lecture Notes
in Artificial Intelligence, pp. 353–368. Springer, Berlin (2005)

89. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: practical
implementations and other applications. In: Proceedings of the Conference on Design Automation and
Test in Europe (DATE), pp. 10880–10885. IEEE, Los Alamitos (2003)


	Interpolation Systems for Ground Proofs in Automated Deduction
	Abstract
	Introduction
	Motivation and Aim
	State of the Art
	Overview of Contributions

	Background
	Preliminaries on Interpolation
	Inference Systems and their Proof Trees in the Ground Case
	Equality Sharing and its Proof Trees
	Transition Systems and their Proof Trees

	Propositional Interpolation Systems
	Base case
	Inductive hypothesis
	Inductive case



	Interpolation and Equality
	Base Case
	Inductive Case
	Base Case
	Inductive Case



	Interpolation for Equality Sharing and DPLL( T)
	Base case
	Inductive case
	Inductive hypothesis



	Interpolation for Ground Superposition
	Inductive hypothesis
	Inductive cases
	Resolution
	Reflection
	Paramodulation



	Discussion
	Acknowledgments
	References


