
J Autom Reasoning (2015) 54:285–326
DOI 10.1007/s10817-015-9320-x

Formally-Verified Decision Procedures for Univariate
Polynomial Computation Based on Sturm’s and Tarski’s
Theorems

Anthony Narkawicz · César Muñoz · Aaron Dutle

Received: 4 March 2014 / Accepted: 19 January 2015 / Published online: 5 February 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Sturm’s theorem is a well-known result in real algebraic geometry that provides
a function that computes the number of roots of a univariate polynomial in a semi-open
interval, not counting multiplicity. A generalization of Sturm’s theorem is known as Tarski’s
theorem, which provides a linear relationship between functions known as Tarski queries
and cardinalities of certain sets. The linear system that results from this relationship is in fact
invertible and can be used to explicitly count the number of roots of a univariate polynomial
on a set defined by a system of polynomial relations. This paper presents a formalization
of these results in the PVS theorem prover, including formal proofs of Sturm’s and Tarski’s
theorems. These theorems are at the basis of two decision procedures, which are imple-
mented as computable functions in PVS. The first, based on Sturm’s theorem, determines
satisfiability of a single polynomial relation over an interval. The second, based on Tarski’s
theorem, determines the satisfiability of a system of polynomial relations over the real line.
The soundness and completeness properties of these decision procedures are formally veri-
fied in PVS. The procedures and their correctness properties enable the implementation of
PVS strategies for automatically proving existential and universal statements on polynomial
systems. Since the decision procedures are formally verified in PVS, the soundness of the
strategies depends solely on the internal logic of PVS rather than on an external oracle.

Keywords Non-linear arithmetic · Decision procedure · Prototype Verification System
(PVS) · polynomial inequalities · Sturm’s theorem · Tarski’s theorem · Automated theorem
proving · Interactive Theorem Proving

A. Narkawicz · C. Muñoz (�) · A. Dutle
NASA Langley Research Center, Hampton, VA 23681, USA
e-mail: Cesar.A.Munoz@nasa.gov

A. Narkawicz
e-mail: Anthony.Narkawicz@nasa.gov

A. Dutle
e-mail: Aaron.M.Dutle@nasa.gov

mailto:Cesar.A.Munoz@nasa.gov
mailto:Anthony.Narkawicz@nasa.gov
mailto:Aaron.M.Dutle@nasa.gov

286 A. Narkawicz et al.

1 Introduction

Problems involving polynomial inequalities appear in applications such as air traffic con-
flict detection and resolution algorithms [24], floating point analysis [10], and uncertainty
and reliability analysis of dynamic and control systems [6, 15]. Solving these prob-
lems in a rigorous way is fundamental to the logical correctness of these safety-critical
systems.

Formal reasoning about polynomials and other nonlinear functions in an interactive
theorem prover is challenging. Fortunately, significant advances have been made in this
area in recent years. In addition to related work described in later sections, the authors
developed formalizations in the Prototype Verification System (PVS) [36] of multivariate
Bernstein polynomials [33] and a generic branch and bound algorithm [34], both of which
are at the basis of well-known numerical approximation methods. These PVS developments
include formally-verified semi-decision procedures for checking validity and satisfiabil-
ity of nonlinear properties involving variables ranging over real intervals. The procedures
are integrated into the PVS theorem prover as automated proof-producing strategies such
as bernstein, which uses Bernstein polynomials, and interval, which uses interval
arithmetic. To automatically verify a formula such as

x120 − 2x60 + 1.001 > 0, (1)

whenever x ∈ [0, 3], the user simply needs to invoke one of those strategies in PVS. In
particular, the user does not need the insight that the polynomial in Formula (1) is equal
to (x60 − 1)2 + 0.001. While these strategies are powerful, they inherit the downsides of
other numerical approximation methods. For instance, neither of these strategies succeeds
in discharging Formula (1) when the variable x is unbounded even though the inequality
still holds for any real number x. Moreover, in general, tools based on Bernstein poly-
nomials and interval arithmetic can compute a tight bound for the range of a polynomial
but not the exact range. Thus, the strategies bernstein and interval cannot prove
that

x120 − 2x60 + 1 ≥ 0, (2)

whenever x ∈ [0, 3], because 0 is the precise minimum of the polynomial on this interval.
This paper addresses these shortcomings of numerical approximation methods for the

special case of univariate polynomials. In particular, this paper presents two decision
procedures, which are formally verified in PVS, that can be used to check satisfiabil-
ity and validity of univariate systems of polynomials, involving any of the relations
=, >, <, �=, ≥,≤. The decision procedures presented in this paper are based on Tarski’s
theorem. In its basic form, Tarski’s theorem can be used to explicitly calculate the
difference

card({x ∈ (a, b] : p(x) = 0 ∧ g(x) > 0})
− card({x ∈ (a, b] : p(x) = 0 ∧ g(x) < 0}),

where a and b are (extended) real numbers, p and g are univariate polynomials, and card
indicates cardinality. This theorem is a generalization of Sturm’s theorem, which allows one
to explicitly compute the cardinality

card({x ∈ (a, b] : p(x) = 0}).

Decision Procedure for Univariate Polynomial Computation 287

The full version of Tarski’s theorem is a statement about systems of polynomials. Let
ggg = (g0, . . . , gk) be a sequence of univariate polynomials. Tarski’s theorem states that there
is a linear relationship between cardinalities of the form

card({x ∈ R : p(x) = 0 ∧ g0(x) R0 0 ∧ . . . ∧ gk(x) Rk 0}), (3)

where Ri ∈ {=, >, <} for 0 ≤ i ≤ k, and a collection of so-called Tarski queries of p

and polynomials derived from ggg. Crucially, Tarski queries are computable using remain-
der sequences. This relationship allows for the explicit computation of cardinalities in
Formula (3). In this paper, a slight generalization of this relationship is used to accommodate
relations Ri in the larger set {=, >, <, �=, ≥,≤}.

This result is then used to define a function, in the PVS specification language, that
explicitly computes whether any given system of polynomials is satisfiable. The input
system to this function does not require that one of the polynomials play the role of p

in Formula (3). That is, systems without an equality among the relations are permitted
as well. The only restriction on the polynomial system is that all relations lie in the set
{=, >, <, �=,≥,≤}.

In addition, a second PVS function is defined, based on Sturm’s theorem, that computes
whether a polynomial relation p(x)R 0, where R ∈ {=, >, <, �=, ≥,≤}, is satisfiable on
any interval. This problem could be decided with the PVS function for systems of rela-
tions described above by encoding the interval containment conditions as extra polynomial
inequalities, but solving the problem this way is significantly less efficient. This is because
the encoding requires computing several Tarski queries due to the additional constraints.
Thus, it is beneficial to solve this special type of problem using an algorithm based on
Sturm’s theorem. This algorithm counts roots in an interval and uses a subdivision schema
that continually subdivides the interval until each subinterval contains at most one root.
This is a common approach to univariate satisfiability problems of the form p(x) R 0, where
R ∈ {=, >, <, �=, ≥,≤}.

The PVS functions presented in the paper are actually decision procedures for determin-
ing satisfiability of formulas involving univariate polynomials. In particular, the correctness
of the decision procedure based on Tarski’s theorem proves the base case of a quantifier
elimination algorithm for the closed field of real numbers. As noted above, the decision
procedures are defined as functions in the PVS specification language and their correctness
statements are specified as theorems regarding the output of these functions. These theo-
rems are at the basis of proof producing strategies in PVS for automatically proving simply
quantified formulas involving polynomial expressions.

The strategy tarski handles any univariate polynomial system, the strategy sturm
handles any polynomial relation over any real interval, and the strategy mono-poly han-
dles monotonicity properties of any univariate polynomial on any real interval. These
strategies always terminate and their results are provably correct. The soundness of each
strategy only relies on the PVS deduction engine. In particular, the strategies do not depend
on any trusted external oracle. The core of the strategies is the invocation of the associated
correctness theorems of computable functions fully specified and verified in PVS.

The rest of this paper is organized as follows. Tarski’s and Sturm’s theorems are pre-
sented in Section 2. A key element in the formalization of these theorems is the computation
of a sequence of polynomials reminders. This is the subject of Section 3. Decision proce-
dures based on Sturm’s and Tarski’s theorems are described in Sections 4 and 5, respectively.
PVS strategies sturm, mono-poly, and tarski are defined in Section 6. Formalization
issues and related work are discussed in Sections 7 and 8, respectively. Finally, conclusions
are presented in Section 9.

288 A. Narkawicz et al.

The formal development presented in this paper is electronically available in the contri-
butions Sturm1 and Tarski2 in the NASA PVS Library.3 All theorems presented in this
paper are formally verified in PVS. For readability, standard mathematical notation is used
throughout much of the paper. Some theorems in this paper correspond to multiple formal
theorems in PVS. Appendix A contains a table that relates theorems in this paper to for-
mal theorems in the PVS development. Furthermore, a PVS specification of the examples
presented in this paper is listed in Appendix B. More examples are provided in the theories
Tarski@examples.pvs and Sturm@examples.pvs, which are available as part of
the NASA PVS Library.

2 Tarski’s and Sturm’s Theorems

A univariate real polynomial p is a formal expression

p ≡
n∑

i=0

cix
i, (4)

where x is an indeterminate, each ci is a real constant, and cn �= 0. As usual, the natural
number n is called the degree of p, and each ci , with 0 ≤ i ≤ n, is called a coefficient
of p.4 The coefficient cn is called the leading coefficient of p. Such a polynomial can be
identified with a polynomial function from R into R by evaluation. The polynomial function
can be extended to a function from R

∞ = R∪ {−∞,∞} into R
∞ by setting the evaluation

of the polynomial at ±∞ to ±∞ depending on the degree of the polynomial and the sign of
its leading coefficient. The reader is referred to Section 7.1 for a precise definition of R∞
in PVS. It is well known that the identification of a polynomial to its polynomial function
is unique for real polynomials and so, in subsequent sections, the distinction between a
polynomial and its corresponding polynomial function is only made when it is material.

In the PVS formalization presented in this paper, a polynomial is represented by a
nonempty list of numerical coefficients of type T ⊆ R, i.e., the i-th element of the list rep-
resents the coefficient ci . For instance, the polynomial p ≡ 1 − 3x2 is represented by the
list (1, 0,−3). In general, the type T is the PVS native type real, since coefficients are
real numbers. However, it can be instantiated with any subtype of real numbers to restrict
the type of the coefficients of the polynomial. In particular, if each coefficient ci is an inte-
ger for every i ≤ n then p will be called an integer polynomial. Similarly, if each such ci is
a rational number, then p will be called a rational polynomial. If ci , with 0 ≤ i ≤ n, are the
coefficients of polynomial p, the derivative of p, denoted p′, is the constant polynomial 0,
if n = 0; otherwise, p′ is the polynomial of degree n−1 with coefficients c′

i = (i +1) ci+1.
Nothing in this paper fundamentally depends on the particular representation of poly-

nomials as lists of coefficients. By abuse of notation, this paper uses italic lowercase
letters, e.g., f, g, . . . , p, q, . . . to denote polynomials, when they appear in the mathemat-
ical discourse, and polynomial representations, i.e., finite lists of real numbers, when they
appear in a formal PVS context. Given a list of numerical constants p ≡ (c0, . . . , cn), a

1http://shemesh.larc.nasa.gov/people/cam/Sturm.
2http://shemesh.larc.nasa.gov/people/cam/Tarski.
3http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.
4By convention, the zero polynomial is defined to have degree −1.

http://shemesh.larc.nasa.gov/people/cam/Sturm
http://shemesh.larc.nasa.gov/people/cam/Tarski
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library

Decision Procedure for Univariate Polynomial Computation 289

higher-order function polylist is defined in PVS to specify its corresponding polynomial
function. That is, polylist(p) is a function that maps a real number x to the real number∑n

i=0 cix
i . Hence, the notation p(x), when it appears in a formal PVS context, is used to

denote the application of the function polylist(p) to x, i.e., p(x) ≡ polylist(p)(x).
Furthermore, PVS functions that compute the degree, i-th coefficient, and leading coeffi-
cient of a polynomial p are defined as deg(p) ≡ n, coeff(p, i) ≡ ci , and lc(p) ≡
coeff(p,deg(p)), respectively.

Let g and h be univariate polynomials, such that h is nonzero. Using the division algo-
rithm, one can uniquely write g = q ·h+ r where q and r are polynomials, and r has degree
strictly less than h. Let rem(g, h) be the polynomial r in this expression. Given univariate
polynomials p and g, the Sturm sequence of p and g is a sequence S of polynomials

p0, p1, p2, . . . , pm, (5)

where

p0 = p,

p1 = g · p′,
∀ d > 1 : pd = −rem(pd−2, pd−1),

pm = 0, and

pm−1 �= 0.

(6)

Evaluating each of the polynomials in a Sturm sequence at some x ∈ R
∞ produces

a sequence of extended real numbers S(x). A function σp,g is defined on R
∞ by setting

σp,g(x) to be equal to the number of sign changes in S(x), where the number of sign changes
in a sequence is defined as follows. Let A = (a0, a1, . . . , ak) be a finite sequence of nonzero
extended real numbers. The number of sign changes in A is defined as the number of indices
i such that ai and ai+1 have different signs. Given a finite sequence A with extended real
entries, define the sequence Ā to be the sequence A with all zero entries removed. The
number of sign changes in A is defined as the number of sign changes in Ā.

The condition that pd = −rem(pd−2, pd−1) in Formula (6) can be relaxed to allow,
for each remainder, multiplication by any positive real number c such that pd = −c ·
rem(pd−2, pd−1). A sequence of polynomials Ŝ that results from successively applying
this transformation to the polynomials of the Sturm sequence S is called a Sturm chain. In
practice, the value of each c will be chosen so that if p0 and p1 have integer coefficients,
then each pd , for j > 1, will have primitive integer coefficients; that is, the GCD of all
of the coefficients will be 1. This is a simplification of a common approach examined by
Knuth, Collins, Brown and Traub, and others [16].

It is easy to verify that for any real number x, the number of sign changes in a Sturm
chain Ŝ(x) is equal to the number of sign changes in the Sturm sequence S(x). Hence, Sturm
chains can be used instead of Sturm sequences to compute σp,g . Choosing an appropriate
Sturm chain can greatly improve the computation of σp,g . The precise definition of the
Sturm chain used to compute σp,g in the formalization presented in this paper is discussed
in Section 3.

The general form of Tarski’s theorem states that for a, b ∈ R
∞ with a < b, if neither a

nor b is a root of both p and p′ · g, then

σp,g(a) − σp,g(b) = card({x ∈ (a, b] : p(x) = 0 ∧ g(x) > 0})
− card({x ∈ (a, b] : p(x) = 0 ∧ g(x) < 0}).

290 A. Narkawicz et al.

The case where g is the constant polynomial 1 is commonly known as Sturm’s theorem [41].
This version of the result, which is stated by Theorem 1 below, has been formally proven in
PVS (see Appendix A).

Theorem 1 Let p, g be univariate polynomials. For a, b ∈ R
∞, with a < b, if neither a nor

b is a root of both p and p′, and if g is the constant polynomial 1, then σp,g(a) − σp,g(b) is
equal to

card({x ∈ (a, b] : p(x) = 0}).

Theorem 1 is the basis of the PVS function sturm, presented in Section 4, that speci-
fies a decision procedure for determining the satisfiability of a single rational polynomial
relation over an interval with rational or unbounded endpoints.

Fixing a = −∞ and b = ∞ and letting p and g be considered parameters in the general
version of Tarski’s theorem motivates the definition of the Tarski query, TQ, which is a
function with polynomials p and g as inputs.

TQ(p, g) ≡ σp,g(−∞) − σp,g(∞).

The following theorem involving Tarski queries has been formally proven in PVS (see
Appendix A).

Theorem 2 Let p, g be univariate polynomials. The Tarski query TQ(p, g) is equal to

card({x ∈ R : p(x) = 0 ∧ g(x) > 0}) − card({x ∈ R : p(x) = 0 ∧ g(x) < 0}).

In Section 5, Theorem 2 is used to determine the number of roots of a polynomial (not
counting multiplicities) that also satisfy a system of polynomial inequalities. This result
becomes the basis of the PVS function tarski that specifies a decision procedure for
determining the satisfiability of a system of rational polynomial relations.

Numerous well-written proofs of Sturm’s and Tarski’s theorems can be found in the
literature [3, 13, 40]. The authors are content to avoid redundancy by duplicating such a
proof. The PVS proofs of Theorems 1 and 2 most closely follow the approach presented
in [40].

3 Remainder Sequences

An important element in the formalization presented in this paper is a function that explic-
itly computes the remainder after polynomial division. The remainder after division of a
polynomial g by a nonzero polynomial h has coefficients that are expressions involving the
coefficients of both g and h. These coefficients involve divisions by powers of the lead-
ing coefficient of h. In a sequence of remainders of integer polynomials, such as the Sturm
sequence of two integer polynomials p and g (Formula (5) in Section 2), the coefficients
of the higher numbered polynomials in the sequence can have large denominators. Compu-
tation with these large rationals is less efficient than computation with integers. Thus, it is
desirable to have a division algorithm for integer polynomials that does not produce rational
coefficients in the remainder sequence.

To avoid rational coefficients in the remainder sequence, the development presented in
this paper uses an algorithm called pseudo division instead of the standard polynomial

Decision Procedure for Univariate Polynomial Computation 291

division algorithm. This division method does not involve division by coefficients of the
polynomials, which means that if the coefficients of the original polynomials are integers,
then the coefficients of their remainder after pseudo division will also be integers. The moti-
vation for this is that the coefficients of the polynomials in the standard remainder sequence
become quite complex as successive remainders are calculated. Computations involving
these rationals with many digits in both their numerators and denominators are less efficient
than computations on large integers, making the pseudo-remainder more efficient than the
standard remainder. In PVS, pseudo division of polynomial g by nonzero polynomial h is
defined by the following function, which is recursive on a parameter i ∈ N, and returns a
pair (q, r) of polynomials.

pseudo div(g, h, i) ≡
if i > deg(g) − deg(h) then (0, g)

elsif deg(h) = 0 then (g, 0)

else let (q, r) = if i = deg(g) − deg(h) then (0, g)

else pseudo div(g, h, i + 1)

endif in

(q with [i :=lc(r)], f)

endif,

(7)

where f is the polynomial of degree less or equal than deg(h) + i, whose coefficients bi ,
with 0 ≤ i ≤ deg(h) + i, satisfy

bj =
{
lc(h) · coeff(r, j) if j < i,

lc(h) · coeff(r, j) − lc(r)) · coeff(h, j − i) if i ≤ j ≤ deg(h) + i.

The polynomial r computed by the pseudo division algorithm is called the pseudo remain-
der. The pseudo remainder is not equal to the remainder after standard division, but is a
power of the leading coefficient of h multiplied by the standard remainder. This power can
be either positive or negative. Therefore, a correctly signed pseudo remainder can be used
in place of the standard remainder in the computation of a Sturm chain. However, the coef-
ficients of the pseudo reminder may still be too large for the computation of σp,g . Hence,
the pseudo remainder r is multiplied by the reciprocal of its content (GCD of all its coef-
ficients), which still ensures that the output is an integer polynomial. This multiplication
helps to mitigate coefficient growth and, since the resulting polynomial is still a multiple of
the reminder, it can be used in the computation of a Sturm chain.

Let g and h be integer polynomials, such that h is nonzero. The PVS func-
tion adjusted reminder(g, h), defined below, computes a negative multiple of the
reminder of the division of g by h that is used in the formal definition of the function σp,g .

adjusted reminder(g, h) ≡
let (q, r) = pseudo div(g, h, 0),

d = gcd coeff(r) in

if lc(h) > 0 ∨ even(deg(g) − deg(h) + 1)

then − r/d

else r/d endif.

(8)

292 A. Narkawicz et al.

In this paper, the polynomial returned by adjusted reminder is referred to as the
adjusted remainder. In the PVS development, the function gcd coeff(r) computes the
greatest common divisor of the coefficients of the nonzero integer polynomial r .

It can be verified that since g and h both have integer coefficients, the polyno-
mial adjusted reminder(g, h) does as well. The key mathematical properties of
adjusted reminder(g, h) are that its degree is less than deg(h) and that there exists a
positive real number c, and a polynomial q such that

g = q · h − c · adjusted reminder(g, h).

This implies that adjusted reminder(g, h) is a negative multiple of the standard
remainder after division of g by h. A corollary of this fact that is instrumental in the proof
of Theorem 2 is that if h(x) = 0 for some x ∈ R, then g and adjusted reminder(g, h)

have opposite signs at x. Thus, if g, h, and adjusted reminder(g, h) are consec-
utive terms in a sequence of remainders, and if g(x) �= 0 and h(x) = 0, then there
is exactly one sign change in this sequence, when evaluated at x between g(x) and
adjusted reminder(g, h).

The function compute remainder seq, defined below, explicitly computes the
remainder sequence for any two integer polynomials g and h such that the degree of h

is less than the degree of g. It has a list � of integer polynomials as an input, which is
also used as an accumulator to store the sequence that is recursively computed by the
function.

compute remainder seq(g, h, �) ≡
if length(�) = 0 then compute remainder seq(g, h,cons(g, �))

elsif deg(head(�)) = 0 then �

elsif length(�) = 1 then compute remainder seq(g, h,cons(h, �))

else let p = adjusted reminder(head(tail(�)),head(�)) in

compute remainder seq(g, h,cons(p, �))

endif.

(9)

The function remainder seq, defined below, computes the remainder sequence of g

and h, which in PVS is represented as list of polynomials.

remainder seq(g, h) ≡ compute remainder seq(g, h, ()), (10)

where () refers to the empty list. The function remainder seq computes a remain-
der list in reverse order with respect to the sequence p0, . . . pm given by Formula (5) in
Section 2. It can be easily checked that the number of sign changes in � and reverse(�) are
equal.

Let � be a nonempty list of integer polynomials (p0, . . . , pm), e.g., a Sturm chain com-
puted by the function remainder seq, and x an extended real number, i.e., x ∈ R

∞ .
The function sigma above formalizes in PVS the function σp,g presented in Section 2.

sigma(�, x) ≡ let a = �(x) in sign changes(a, 1, 0, a0), (11)

where �(x) denotes the list of real numbers (p0(x), . . . pm(x)), with 0 ≤ i ≤ m. The PVS
function sign changes is recursively defined as follows, where i is an index between

Decision Procedure for Univariate Polynomial Computation 293

1 to m + 1, n counts the number of sign changes below index i, and ak is the value of the
last value below index i that is nonzero.

sign changes(a, i, n, ak) ≡
if i > length(a) then n

elsif ai �= 0 ∧ ak �= 0 ∧ sign(ai) �= sign(ak) then

sign changes(a, i + 1, n + 1, ai)

elsif ai �= 0 then sign changes(a, i + 1, n, ai)

else sign changes(a, i + 1, n, ak)

endif.

(12)

4 A Decision Procedure Based on Sturm’s Theorem

Sturm’s theorem, proved in PVS as Theorem 1, provides a method for counting the number
of roots of a polynomial p (not counting multiplicities) in a half-open interval (a, b] under
the condition that neither endpoint is a root of p of multiplicity greater than 1. This section
details the use of this theorem to decide whether a rational polynomial inequality is always
true on an arbitrary interval, provided the endpoints are either rational or infinite. The reader
is referred to [35] for more technical information on how Sturm’s theorem is formalized in
PVS.

4.1 Decision Procedure for Integer Polynomials

This section presents a decision procedure for computing the sign of an integer polyno-
mial p, i.e., its positivity, nonpositivity, negativity, nonnegativity, or nonzero property, on a
nonempty interval, which may or may not have infinite endpoints. This decision procedure
depends on a function that explicitly computes the number of roots of p in that interval. One
immediately obvious problem with using the function σ from Sturm’s theorem to define
such function is that it will not work when either the lower bound or the upper bound of the
interval is a root of multiplicity greater than one, i.e., when the polynomial and its derivative
both have roots at that point.

The problem of having roots of multiplicity greater than 1 at the endpoints of an interval
can be addressed by perturbing such bounds outward by a small amount so that the new
interval contains exactly the same number of roots as the original but has endpoints that are
not roots with multiplicity greater than 1. To see how such a perturbation can be computed,
let r be a root of p, so p(r) = 0. A function can be defined with p and r as inputs that
computes the width of a small interval around r that contains no other roots of p. The first
step is to compute the degree of the first successive derivative of p that does not vanish at
r , which is accomplished with the following recursive function.

md(p, r) ≡ if deg(p) = 0 ∨ p(r) �= 0 then n

else md(p′, r) endif.
(13)

The function md is well defined since the degree of the polynomial that is passed as
parameter strictly decreases at each recursive call.

By using Taylor’s theorem, p is approximated in a small neighborhood of r

by p(n−md(p,r))(r) · (x − r)n−md(p,r). The error is bounded by a constant times
(x − r)n−md(p,r)+1, where p(n−md(p,r))(r) is the (n − md(p, r))-th derivative of p at r . The

294 A. Narkawicz et al.

interval around r containing no other roots is determined by computing a neighborhood of
r on which this derivative is always nonzero. Since it is always nonzero, it can be proved
by induction and the mean value theorem that all lesser derivatives vanish only at r on this
neighborhood. This neighborhood is computed as follows. First, the following function is
defined that takes as inputs a polynomial p, a real number x, and a positive real number ε.
It returns a positive real number δ with the property that for all y ∈ R, if |x − y| < δ then
|p(x) − p(y)| < ε.

pcc(p, x, ε) ≡
let n = deg(p),

c = n
max
i=0

|coeff(p, i)| + 1 in

if n = 0 then 1/2

else min

⎛

⎝ε

c

⎛

⎝1 +
n∑

i=1

i∑

j=1

(
i

j − 1

)
|x|j−1

⎞

⎠ ,
1

2

⎞

⎠

endif.

(14)

Using the function pcc, it is now possible to define a radius around the point r in which the
polynomial p has no other roots. This radius is computed with the function root rad.

root rad(p, r) ≡ let n = deg(p) in

pcc(p(n−md(p,r)), r, |p(n−md(p,r))(r)|). (15)

Note that the function root rad can be used to compute the number of roots in any inter-
val, not simply an interval whose endpoints are not roots of multiplicity greater than 1. To
see this by example, note that if (a, b] is an interval of real numbers such that b is a root of
p of multiplicity greater than 1, but a is not, then the interval (a, b + root rad(p, b)/2]
contains the same number of roots as (a, b] but neither endpoint is a root of multiplicity
greater than 1.

The next step in the development is to define a function called roots cl int with two
extended real numbers a and b as inputs, with a < b, along with an integer polynomial p.
The function returns the number of roots in the closed interval [a, b], not counting multi-
plicities. This means, for instance, that for the polynomial p ≡ x3 on the interval [−1, 1],
it will count exactly one root. The other input to the function roots cl int is a list � of
polynomials. In practice � is set to sturm chain(p) ≡ remainder seq(p, p′), where
remainder seq computes a Sturm chain as defined by Formula (10) in Section 3.

roots cl int(p, a, b, �) ≡
let a∗ = if a = −∞ ∨ p(a) �= 0 ∨ p′(a) �= 0 then a

else a − root rad(p, a)/2 endif

b∗ = if b = ∞ ∨ p(b) �= 0 ∨ p′(b) �= 0 then b

else b + root rad(p, b)/2 endif

c = if a �= −∞ ∧ p(a) = 0 ∧ p′(a) �= 0 then 1

else 0 endif

in sigma(�, a∗) − sigma(�, b∗) + c.

(16)

Decision Procedure for Univariate Polynomial Computation 295

The definition of roots cl int uses the function sigma, defined by Formula (11) in
Section 3. This function takes as inputs a finite list � of polynomials and an extended real
number r , and returns the number of sign changes in that list when each element is evaluated
at r . The introduction of the number c in the definition of roots cl int addresses the
limitation in Sturm’s theorem, which only gives a way to count the number of roots in a half
open interval that does not include its lower bound. The term c adjusts this number based
on whether the lower bound is equal to the newly computed a∗ and is also a root of p but
not of its derivative.

The following theorem states the correctness of the function roots cl int. It has been
formally proved in PVS (see Appendix A).

Theorem 3 Let a, b ∈ R
∞, with a < b, p be an integer polynomial, and S = {r ∈ R | a ≤

r ≤ b and p(r) = 0}. It holds that

card(S) = roots cl int(p, a, b,sturm chain(p)).

The next step in the PVS development is to use the function roots cl int to define a
function roots interval that computes the number of roots of an integer polynomial in
any interval, whether it is closed, open, half open and half closed, unbounded, and whether
or not the polynomial has a root of multiplicity greater than 1 at an endpoint of the interval.
The precise definition of this function is omitted from this description, because it is straight-
forward to define it directly in terms of the function roots cl int. The reader is referred
to the PVS development Sturm in the NASA PVS Library for the precise definition of this
function. Basically, the number of roots in the closure of the given interval is computed
using roots cl int, and this number is then adjusted upward or downward depending
on whether the lower bound or the upper bound of the interval is a root of the polynomial,
and whether the interval itself actually contains this bound. The following theorem has been
proved in PVS (see Appendix A).

Theorem 4 Let p be an integer polynomial, I an interval, whose bounds are extended reals,
and S = {r ∈ R | r ∈ I and p(r) = 0}. It holds that

card(S) = roots interval(p, I,sturm chain(p)).

It can now be noted that if a polynomial is always positive on a given interval, it is trivial
to prove that this is true using the function roots interval. All that must be checked is
that the function roots interval returns 0, so that the polynomial has no roots on the
interval, and that it is positive at any fixed point in the interval, such as (a +b)/2 in the case
where a, b ∈ R. Thus, the difficulty when determining whether the polynomial p satisfies
p(r) R 0 for all r in a given interval, when R is a relation in {>,<, �=,≥,≤} lies in the case
when R is nonstrict, i.e., when R ∈ {≥,≤}. Moreover, if a decision procedure can be defined
for when R is ≥, then it can be defined for when R is ≤ as well by just replacing p with −p.
Thus, the next step is to define a specific decision procedure that determines whether an
integer polynomial is always nonnegative on a bounded closed interval. The PVS function
nonneg int takes as inputs an integer polynomial p, real numbers x and y (not extended
real numbers), and a list � of polynomials, which in practice is set to sturm chain(p).
It returns a Boolean, which is equal to true if and only if p(r) ≥ 0 for r in the closed,
bounded interval [x, y].

The function nonneg int works by recursively subdividing the interval [x, y] into left
and right halves, until each subinterval is small enough that it contains at most one root of

296 A. Narkawicz et al.

the polynomial p. Then, the polynomial p is evaluated at each endpoint of each subinter-
val. One important fact that is used in the verification of this function is that a continuous
function with at most one root in a closed, bounded interval is always nonnegative on that
interval if and only if it is nonnegative at its endpoints. This result follows directly from the
intermediate value theorem. The recursive function nonneg int is defined below.

nonneg int(p, x, y, �) ≡
if x > y then true

elsif x = y then p(x) ≥ 0

elsif roots cl int(p, x, y, �) ≤ 1 then p(x) ≥ 0 ∧ p(y) ≥ 0

else nonneg int(p, x, (x + y)/2, �) ∧
nonneg int(p, (x + y)/2, y, �)

endif.

(17)

The function nonneg int is a decision procedure for nonnegativity on closed, bounded
intervals. However, it should be noted that a polynomial is always nonnegative on any given
interval if and only if it is nonnegative on the closure of that interval. For instance, p is
always nonnegative on the open interval (0, 1) if and only if it is nonnegative on the closed
interval [0, 1]. Thus, the function nonneg int can be used as a decision procedure on any
bounded interval, even if it is open.

To extend this function to unbounded intervals, a number is computed that is guaran-
teed to bound all of the roots of a given polynomial. Such bounds are commonly referred
to as Cauchy bounds, and can help reduce any unbounded interval to a bounded interval
on which the polynomial is nonnegative if and only if it is nonnegative on the original
unbounded interval. While there are many possible definitions of such bounds, the formal-
ization presented in this paper uses Knuth’s bound as in [31]. The reader is referred to the
development reals in the NASA PVS library, where the precise definition of the func-
tion Knuth poly root strict bound, which specifies Knuth’s bound. The following
theorem is proved in PVS (see Appendix A).

Theorem 5 For any nonzero real polynomial p, any root of p lies in the open interval
(−k, k), where k = Knuth poly root strict bound(p).

The function nonneg int can now be used to define a function always nonneg
that takes as inputs an integer polynomial p and two extended (so possibly unbounded) real
numbers a and b with a < b. It returns true precisely when p is always nonnegative on
(a, b), which, as noted above, is equivalent to p being nonnegative on the closure of this
interval.

always nonneg(p, a, b) ≡
let � = sturm chain(p),

M = Knuth poly root strict bound(p) in

if a �= −∞ ∧ b �= ∞ then nonneg int(p, a, b, �)

elsif b �= −∞ then nonneg int(p, min(−M,b − 1), b, �)

elsif a �= ∞ then nonneg int(p, a, max(M, a + 1), �)

else nonneg int(p,−M,M, �)

endif.

(18)

Decision Procedure for Univariate Polynomial Computation 297

The following theorem has been proved in PVS (see Appendix A).

Theorem 6 If a, b ∈ R
∞, with a < b, and p is an integer polynomial, then

always nonneg(p, a, b) = true if and only if every real number x, with a ≤ x ≤ b,
satisfies p(x) ≥ 0.

Note again that the continuity of p implies that this theorem is true if either (or both) of
the non-strict inequalities in the condition a ≤ x ≤ b is replaced by strict inequality.

The decision procedure that determines whether p(x) R 0 for all x in a given inter-
val I , with extended real bounds a, b, and where R is a relation in {>,<, �=,≥,≤}, can
now be defined as follows. If R is either ≥ or ≤, then the function always nonneg is
used for either p or −p (respectively). Otherwise, it is simply checked that the function
roots interval returns 0 on the interval and that a given point r in the interval satis-
fies p(r) R 0. The correctness of the procedure then follows from the intermediate value
theorem. The point r can be chosen in a number of ways. For this development, it is simply
assumed that there is a function choose(I) that returns a real number in the interval I that
is neither a nor b. For a precise definition of this function in PVS, the reader is referred to
Section 7.1. The input p to the function compute poly sat, defined below, must be an
integer polynomial.

compute poly sat(p, I, R) ≡
if R = (≥) then always nonneg(p, a, b)

elsif R = (≤) then always nonneg(−p, a, b)

else roots interval(p, I,sturm chain(p))

∧ p(choose(p, I)) R 0

endif,

(19)

where a and b are the extended real numbers denoting the upper and lower bounds of I ,
respectively. The following theorem has been formally proved in PVS (see Appendix A).

Theorem 7 Let p be a nonzero integer polynomial, I be an interval whose bounds are
extended real numbers, and R be a relation in {>, <, �=, ≥,≤}. It holds that

compute poly sat(p, I, R) = true

if and only if p(x) R 0 for all real numbers x ∈ I .

Example 1 Consider the integer polynomial p ≡ x120 − 2x60 + 1, as in Formula (2)
in Section 1, and the open interval I ≡ (0, 3). It can be checked that

compute poly sat(p, I,≥) = true,

compute poly sat(p, I,>) = false.
(20)

By Theorem 7, it holds that ∀(x : I) : p(x) ≥ 0. Furthermore, it does not hold that
∀(x : I) : p(x) > 0. Therefore, ∃(x : I) : p(x) = 0. Indeed, p factors as (x60 − 1)2.

4.2 Decision Procedure for Rational Polynomials

If p is rational polynomial, the relation p(x) R 0 can be decided on any given interval by
multiplying the coefficients of p by the product of the denominators of its coefficients and
then using the function compute poly sat on the resulting integer polynomial.

298 A. Narkawicz et al.

While this appears to be a simple process, the particular mechanics of PVS make this dif-
ficult. In PVS, rational numbers are represented by a primitive type. For example, numerical
constants 1

2 , 2
4 , and 0.5 are indistinguishable. Hence, the definition of a PVS function that

computes the numerator and denominator of a rational number is not straightforward. The
solution to this problem, while interesting in the context of an interactive theorem prover
as PVS, is not directly necessary for the explanations in this section. Interested readers are
referred to Section 7.2 for further explanation. In this section, it is assumed that there is a
function, namely compute pos rat, that takes a positive rational number r as input and
returns a pair of natural numbers (a, b), relative primes, such that r = a/b.

The function rat2poly can then be defined in PVS which takes a rational polynomial
and coverts it to an integer polynomial. This process works by recursively considering each
coefficient of the polynomial. At each step, it multiplies the polynomial by the denominator
of the coefficient in question, and it also stores the current greatest common divisor of all
resulting integer coefficients that it has simplified so far in the recursion. At the end of the
recursion, all of the coefficients are divided by this greatest common divisor to simplify
the answer. It can be easily verified that rat2poly(p) is an integer polynomial that is a
positive multiple of p. The function sturm defined below specifies a decision procedure
for rational polynomials.

sturm(p, I, R) ≡ compute poly sat(rat2poly(p), I, R). (21)

The following theorem has been formally proved in PVS (see Appendix A).

Theorem 8 Let p be a nonzero rational polynomial, I be an interval, whose bounds are
extended real numbers, and R be a relation in {>, <, �=, ≥,≤}. It holds that

sturm(p, I, R) = true

if and only if p(x) R 0 for all real numbers x ∈ I .

Example 2 Consider the rational polynomial p ≡ x120 − 2
3x60 + 1

9 and the open unbounded
interval I ≡ (−∞, 3). It can be checked that

sturm(p,−∞, 3,false,false,≥) = true,

sturm(p,−∞, 3,false,false, >) = false.
(22)

By Theorem 8, it holds that ∀(x : I) : p(x) ≥ 0. Furthermore, it does not hold that

∀(x : I) : p(x) > 0. Therefore, ∃(x : I) : p(x) = 0. Indeed, p factors as
(
x60 − 1

3

)2
.

The formalization presented in this paper also includes a PVS function mono that decides
if a polynomial function represented by p is increasing or decreasing in a given interval
I . This function simply calls sturm to check the sign of the derivative of p on I . More
precisely, mono has as parameters a representation of a rational polynomial, an interval
representing the variable range, and two real order relations. It returns a Boolean value
satisfying the following theorem, which is formally verified in PVS (see Appendix A).

Theorem 9 Let p be a nonzero rational polynomial, I be an interval, whose bounds are
extended real numbers, and R1, R2 be relations in {<,≤,>, ≥, �=}, mono(p, I, R1, R2) =
true if and only if ∀(x, y : R) : x, y ∈ I ∧ x R1 y =⇒ p(x) R2 p(y).

The proof of Theorem 9 follows directly from Theorem 8.

Decision Procedure for Univariate Polynomial Computation 299

5 A Decision Procedure Based on Tarski Queries

Theorem 2 in Section 2 asserts a relationship between a Tarski query TQ(p, q), which can
be explicitly calculated using the methods presented in Section 3, and the cardinalities of
two sets defined by the polynomials p and g. In Section 5.1, it is shown how this can be
used to determine card({x ∈ R : p(x) = 0 ∧ g0(x) R0 0 ∧ . . . ∧ gk(x)Rk 0}), where
each gi is a polynomial and each Ri ∈ {=, >, <, �=, ≥,≤}. In Section 5.2, this result is
used to define an algorithm in PVS for determining the satisfiability of an arbitrary system
of rational polynomial relations.

5.1 Generalizing Tarski Queries to Polynomial Systems

Theorem 2 states that the Tarski query TQ(p, g) is equal to

card({x ∈ R : p(x) = 0 ∧ g(x) > 0}) − card({x ∈ R : p(x) = 0 ∧ g(x) < 0}).
Instantiating the polynomial g with 1, g, and g2, it can be seen that

⎡

⎣
TQ(p, 1)

TQ(p, g)

TQ(p, g2)

⎤

⎦ =
⎡

⎣
1 1 1
0 1 −1
0 1 1

⎤

⎦ ·
⎡

⎣
card({x : p(x) = 0 ∧ g(x) = 0})
card({x : p(x) = 0 ∧ g(x) > 0})
card({x : p(x) = 0 ∧ g(x) < 0})

.

⎤

⎦ (23)

By inverting the 3 × 3 matrix above and calculating the three Tarski queries, the vector on
the far right hand side can easily be computed.

Most treatments of the generalization of Tarski queries to systems of polynomials con-
sider Formula (23) as the starting point, noting that for R ∈ {�=,≥,≤} the value of
card({x : p(x) = 0 ∧ g(x) R 0}) can be calculated as the sum of two of the known car-
dinalities [3]. The present development includes the additional relations from the outset.
Equation (23) and Theorem 2 imply the following equality of vectors.

⎡

⎢⎢⎢⎢⎢⎢⎣

TQ(p, 1)

TQ(p, g)

TQ(p, g2)

0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
0 1 −1 0 0 0
0 1 1 0 0 0
0 −1 −1 1 0 0

−1 −1 0 0 1 0
−1 0 −1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

card(S=)

card(S>)

card(S<)

card(S �=)

card(S≥)

card(S≤)

⎤

⎥⎥⎥⎥⎥⎥⎦
, (24)

where SR = {x : p(x) = 0 ∧ g(x) R 0}. The system (24) is used in lieu of the simpler sys-
tem in (23) because it simplifies the decision procedure. As noted above, if the 3 × 3 matrix
were used in the following constructions and in the decision procedure presented later, a
final step for calculating cardinalities of solution sets of systems involving multiple poly-
nomials relations with ≤,≥, and �= would require adding cardinalities of the sets with the
simpler relations =,>, and <. This final step is exponential in the number of the relations
with ≤,≥, and �=, whereas it is not even necessary if the 6 × 6 matrix M6 is used instead
of the 3 × 3 matrix.

Throughout this paper, and in the PVS development, entries of matrices are expressed
with indices starting at 0. That is, the top left entry of a matrix is its (0, 0)-th entry, and
the first entry of a vector is its 0-th entry. This greatly simplifies the expressions to follow,
which refer to the entries of matrices and vectors using base-3 and base-6 representations
of indices. The expression A[i, j] denotes the (i, j) entry of a matrix A.

300 A. Narkawicz et al.

Let M6 denote the 6 × 6 matrix in (24). Suppose that ggg = {g0, . . . , gk} is a sequence
of polynomials and define TQ6(p,ggg) to be the vector with 6k+1 entries whose i-th entry is
given as follows. Let (i0, . . . , ik) be the base-6 representation of i. If id < 3 for all d ≤ k,
then the i-th entry is given by

TQ

(
p,

k∏

d=0

g
id
d

)
.

Otherwise, the i-th entry is 0. Similarly, let N6(p,ggg) be the vector with 6k+1 entries whose
j -th entry is given by the cardinality of the set SolSet(p,ggg, j), defined by

SolSet(p,ggg, j) = {x ∈ R : p(x) = 0 ∧ g0(x) R0 0 ∧ . . . ∧ gk(x) Rk 0},
where each relation Rd , with 0 ≤ d ≤ k, is given by

Rd ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

= if jd = 0,

> if jd = 1,

< if jd = 2,

�= if jd = 3,

≥ if jd = 4,

≤ if jd = 5,

and where (j0, . . . , jk) is the base-6 representation of j . The following theorem asserts a
linear relation between TQ6(p,ggg) and N6(p,ggg). It has been formally verified in PVS (see
Appendix A).

Theorem 10 For a nonzero polynomial p and list of nonzero polynomials ggg =
(g0, . . . , gk), all with real coefficients,

TQ6(p,ggg) = M⊗(k+1)
6 · N6(p,ggg). (25)

The matrix M⊗(k+1)
6 in Formula (25) denotes the standard tensor power of M6. The

formal proof of Theorem 10 mostly relies on basic mathematics and Theorem 2. An outline
of the formal proof in PVS is given below.

Proof Sketch Choose i < 6k+1, and let (i0, . . . , ik) be the base-6 representation of i. The
i-th entry of M⊗(k+1)

6 · N6(p,ggg) is given by

6k+1−1∑

j=0

(
k∏

d=0

M6[id , jd]
)

· card(SolSet(p,ggg, j)). (26)

Suppose first that id < 3 for all d ≤ k. Then, Theorem 2 implies that the i-th entry of
TQ6(p,ggg) is given by

TQ

(
p,

k∏

d=0

g
id
d

)
= card

({
x ∈ (a, b] : p(x) = 0 ∧

k∏

d=0

gd(x)id > 0

})

− card

({
x ∈ (a, b] : p(x) = 0 ∧

k∏

d=0

gd(x)id < 0

})
.

Decision Procedure for Univariate Polynomial Computation 301

Each coefficient
∏k

d=0 M6[id , jd] in the sum in Formula (26) is either 0, 1 or −1. It is
relatively straightforward to show that the sets SolSet(p,ggg, j) in Formula (26) for which
this entry is −1 are disjoint and that their union is equal to

{
x ∈ (a, b] : p(x) = 0 ∧

k∏

d=0

gd(x)id < 0

}
.

Similarly, the sets for which this entry is 1 are disjoint and their union is equal to
{

x ∈ (a, b] : p(x) = 0 ∧
k∏

d=0

gd(x)id > 0

}
,

which proves the result in this case.
Now suppose that iq ≥ 3 for some q ≤ k. For example, assume that q = 0 and that

i0 = 4. The general case is similar, although it requires reordering the sum in (26). Then

6k+1−1∑

j=0

(
k∏

d=0

M6[id , jd]
)

· card(SolSet(p,ggg, j))

=
6k−1∑

t=0

6·(t+1)−1∑

j=6t

(
k∏

d=0

M6[id , jd]
)

· card(SolSet(p,ggg, j)).

However, for any t < 6k ,

6·(t+1)−1∑

j=6t

(
k∏

d=0

M6[id , jd]
)

· card(SolSet(p,ggg, j))

= (−1) ·
(

k∏

d=1

M6[id , (6t)d]
)

· card(SolSet(p,ggg, 6t))

+ (−1) ·
(

k∏

d=1

M6[id , (6t + 1)d]
)

· card(SolSet(p,ggg, 6t + 1))

+ 0 ·
(

k∏

d=1

M6[id , (6t + 2)d]
)

· card(SolSet(p,ggg, 6t + 2))

+ 0 ·
(

k∏

d=1

M6[id , (6t + 3)d]
)

· card(SolSet(p,ggg, 6t + 3))

+ 1 ·
(

k∏

d=1

M6[id , (6t + 4)d]
)

· card(SolSet(p,ggg, 6t + 4))

+ 0 ·
(

k∏

d=1

M6[id , (6t + 5)d]
)

· card(SolSet(p,ggg, 6t + 5)).

For any d such that 1 ≤ d ≤ k, the numbers (6t)d , (6t + 1)d , (6t + 2)d , (6t + 3)d , (6t + 4)d
and (6t + 5)d are all equal, so the five products appearing in this sum are all equal. Also,
the set SolSet(p,ggg, 6t + 4) is equal to the (disjoint) union of SolSet(p,ggg, 6t) and
SolSet(p,ggg, 6t + 1). This completes the proof.

302 A. Narkawicz et al.

The proof of Theorem 10 is mostly straightforward. However, its formal proof is long,
due to the fact that the informal proof tends to gloss over details that must be made pre-
cise in the formal proof. In particular, neither base-6 nor base-3 representations are even
mentioned in most references to this theorem in textbooks [3], while Theorem 10 involves
vectors whose entries are actually defined using the base-6 or base-3 representations of
the indices. It appears that the reason for this difference is that the theorem itself is usu-
ally viewed inductively, meaning that the point in most literature is to help the reader
understand why it is true for k polynomials rather than how to compute with it directly.
The formal PVS proof often proves equivalences of multidimensional constructions, such
as vectors, by proving that individual entries are equal. Thus, much of the PVS develop-
ment must refer to the entries of certain vectors, and these entries are computed by first
converting the index to either its base-6 or base-3 representation. The PVS proof requires
multiple translations between natural numbers and their and base-6 representations, which
can be cumbersome at times and do not appear in the informal proofs. For this reason,
the PVS proof, while not intellectually difficult, is more complex than the mathematical
proof.

To determine if a system of polynomial inequalities has a solution, it is necessary to
compute entries of the vector N6(p,ggg) from Theorem 10. Fortunately, the matrix M⊗(k+1)

6
is invertible and its inverse is given by

(
M⊗(k+1)

6

)−1 =
(

M−1
6

)⊗(k+1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0

0 1
2

1
2 0 0 0

0 1
2 − 1

2 0 0 0

0 0 1 1 0 0

1 1
2 − 1

2 0 1 0

1 − 1
2 − 1

2 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗
(k+1)

.

The formalization and implementation of the aspects of linear algebra used in the present
development are discussed in Section 7.3. The following theorem has been verified in PVS
(see Appendix A).

Theorem 11 For a nonzero polynomial p and list of nonzero polynomials
ggg = (g0, . . . , gk), all with real coefficients,

N6(p,ggg) = (M−1
6)⊗(k+1) · TQ6(p,ggg).

When using Theorem 11 to actually compute entries of N6(p,ggg), it is worth noting
that most of the entries of TQ6(p,ggg) are zero. The following reduction simplifies this
computation significantly.

Let TQ3(p,ggg) be the vector of length 3k+1 whose i-th entry is given by

TQ

(
p,

k∏

d=0

g
id
d

)
,

Decision Procedure for Univariate Polynomial Computation 303

where (i0, . . . , ik) is the base-3 representation of i. Let A63 denote the 6 by 3 matrix
obtained from M−1

6 by simply deleting the last three columns, i.e.,

A63 ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1

0 1
2

1
2

0 1
2 − 1

2

0 0 1

1 1
2 − 1

2

1 − 1
2 − 1

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The following theorem has been verified in PVS (see Appendix A).

Theorem 12

N6(p,ggg) = A⊗(k+1)
63 · TQ3(p,ggg).

Theorem 12 follows from the fact that any entry of TQ6(p,ggg) is 0 if the base-6 rep-
resentation of its index contains any number greater than 2. Again, the formal proof
is straightforward, but tedious due to multiple conversions between natural numbers in
standard, base-3, and base-6 representation.

5.2 Decision Procedure for Polynomial Systems

This section presents a formally defined decision procedure that computes whether a system
of univariate polynomial relations has at least one solution in R, where each polynomial
has rational coefficients. Analogous to the formal development presented in Section 4, the
procedure will be defined for systems with integer coefficients, and a preprocessing step of
clearing denominators is used when the polynomials have rational coefficients.

The PVS functions for determining satisfiability of systems of polynomials encode
the system with the sequence ggg = (g0, . . . , gk) of polynomials, as well as a sequence
rrr = (r0, . . . , rk) of elements of the set N5 ≡ {0, 1, 2, 3, 4, 5}. Elements in N

5 correspond
to relations on the polynomials in ggg via the bijection R.

R(j) ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

= if j = 0,

> if j = 1,

< if j = 2,

�= if j = 3,

≥ if j = 4,

≤ if j = 5.

The first step in defining the decision procedure is to define a function comp NSol that
takes as input an integer polynomial p, a sequence of integer polynomials ggg (of length k),
and the sequence rrr (of length k), and returns the number

card({x ∈ R : p(x) = 0 ∧ g0(x) R(r0) 0 ∧ . . . ∧ gk(x) R(rk) 0}).
This number is the j -th entry of the vector N3(p,ggg), where

j =
k∑

d=0

rd · 6k. (27)

304 A. Narkawicz et al.

The function that performs this calculation, called comp NSol, is defined as follows.

comp NSol(p,ggg, rrr) ≡ (row(A63)(r0) ⊗ · · · ⊗ row(A63)(rk)) · TQ3(p,ggg).

It is worth noting that (row(A63)(r0) ⊗ · · · ⊗ row(A63)(rk)) is a tensor product of k + 1
rows of A63. This tensor product of rows is equal to the j -th row of A⊗(k+1)

63 , where j is
given by (27). The function is defined using this tensor product of rows to avoid comput-
ing the entire matrix A⊗(k+1)

63 when a single row will suffice. In fact, the PVS development
does not directly compute the dot product in the equation above. In many cases, a given
entry of (row(A63)(r0) ⊗ · · · ⊗ row(A63)(k)) will be 0, making it unnecessary to compute
the corresponding entry of TQ3(p,ggg). Instead, the algorithm computes this dot product
in a way that calculates an entry of TQ3(p,ggg) only when the corresponding entry of
(row(A63)(r0) ⊗ · · · ⊗row(A63)(k)) is nonzero. Specifying and and verifying the correct-
ness of this computation requires some work in the PVS development, but helps to improve
the efficiency of the decision procedure.

The next step in defining a decision procedure is to account for systems which may
not include an equality relation. To accommodate such systems, the following approach
is used. For any collection of polynomials g0, . . . , gk and relations R0, . . . , Rk , where
Rd ∈ {=, >, <, �=,≥,≤} for 0 ≤ d ≤ k, the system S ≡ g0(x) R0 0 ∧ . . . ∧ gk(x) Rk 0
is satisfiable if and only if one of the following conditions holds, where Q is the polynomial∏k

d=0 gd .

– S is satisfiable at −∞.

– S is satisfiable at ∞.

– S and Q = 0 are satisfiable at a common point.

– S and Q′ = 0 are satisfiable at a common point.

This result is not proven as a stand-alone theorem in PVS, but is instead embedded in the
functions compute solvable single and compute solvable to follow, which are
proven to be correct.

Furthermore, it is convenient for the PVS proofs if none of the equations contains
a < or ≤ relation. This reduces the number of cases in the proof. Thus, the decision
procedure converts every < relation (respectively, ≤) to a > relation (respectively, ≥),
multiplying each of the corresponding polynomials by −1. This is accomplished through
functions greatify rel and greatify poly. The function greatify rel takes
the sequence rrr as an input and returns a new sequence of elements in N

5, the same length
as rrr , whose i-th entry is given by

greatify rel(rrr)i ≡

⎧
⎪⎨

⎪⎩

1 if ri = 2,

4 if ri = 5,

ri otherwise.

The function greatify poly takes the sequences ggg and rrr as inputs and returns another
sequence of polynomials whose i-th entry is given by

greatify poly(ggg, rrr)i ≡
{

(−1) · gi if ri = 2 ∨ ri = 5,

gi otherwise.

Decision Procedure for Univariate Polynomial Computation 305

Recall that the decision procedure for satisfiability takes an arbitrary number k of
polynomials as input. Partly to make the proof more modular, a function is defined
for when there is precisely one polynomial relation, i.e., k = 0. The function
compute solvable single is defined below. It takes as input an element i ∈ N

5 and
a nonzero polynomial p, which has integer coefficients. It returns a Boolean value.

compute solvable single(i, p) ≡
if deg(p) = 0 then coeff(p, 0) R(i) 0

elsif deg(p) = 1 ∨ i = 3 then true

elsif i = 0 then comp NSol(p, (1), (1))

elsif i �= 1 ∧ i �= 2 ∧ comp NSol(p, (1), (1)) then true

else

let p∗ = if (1 R(i) 0) then p else(−1) · p endif in

coeff(p∗,deg(p)) > 0 ∨
(odd(deg(p)) ∧ coeff(p∗,deg(p)) < 0) ∨
comp NSol(p′, (p∗),greatify rel((i))) �= 0

endif.

(28)

The following theorem has been proved in PVS (see Appendix A).

Theorem 13 Let p be an integer polynomial and i ∈ N
5. There is a real number x such

that p(x) R(i) 0 if and only if compute solvable single(i, p) = true.

The function for determining satisfiability of a system of polynomial relations, for
integer polynomials, is named compute solvable. It has as parameters a sequence
ggg = (g0, . . . , gk) of integer polynomials and a sequence rrr = (r0, . . . , rk). The func-
tion returns a Boolean value. If any element of rrr is equal to 0, which means that one
of the relations in the system is an equality, then the function comp NSol can be
directly used to determine satisfiability. The function first eq, defined below, returns
the first number j for which rj = 0, and if there is no such j , then it returns
k + 1.

first eq(rrr) ≡ if ∃ (j ≤ k) : rj = 0 then

min({j ≤ k | rj = 0})
else

k + 1

endif.

306 A. Narkawicz et al.

The PVS function compute solvable is defined below.

compute solvable(ggg, rrr) ≡
let

ggg∗ = greatify poly(ggg, rrr),

rrr∗ = greatify rel(rrr),

e = first eq(rrr),

Qprod =
k∏

i=0

g∗
i ,

G = (g∗
0 , . . . , g∗

e−1, g
∗
e+1, . . . , g

∗
k),

R = (r∗
0 , . . . , r∗

e−1, r
∗
e+1, . . . , r

∗
k),

in

if k = 0 then compute solvable single(r0, g0)

elsif (∃ (i ≤ k) : r∗
i = 0) then comp NSol(g∗

e ,G,R)

elsif deg(Qprod) > 0 ∧ comp NSol(Qprod,ggg∗, rrr∗) then true
elsif deg(Qprod) < 2 then false

elsif (∀ (j ≤ k) : coeff(g∗
j ,deg(g∗

j)) R(r∗
j) 0) then true

elsif (∀ (j ≤ k) :
(odd(deg(g∗

j)) ⇒ −coeff(g∗
j ,deg(g∗

j)) R(r∗
j) 0) ∨

(even(deg(g∗
j)) ⇒ coeff(g∗

j ,deg(g∗
j)) R(r∗

j) 0))

then true

else comp NSol(Qprod′,ggg∗, rrr∗)
endif.

(29)

The following theorem, which is the correctness statement for the decision procedure
compute solvable for integer polynomials, has been proved in PVS (see Appendix A).

Theorem 14 If each polynomial in the sequence ggg = (g0, . . . , gk) has integer coefficients
and positive degree, then there exists a real number x such that gj (x) R(rrr(j)) 0, for all
j ≤ k, if and only if compute solvable(ggg, rrr) = true.

As in the development presented in Section 4, the decision procedure for rational poly-
nomials is defined based on the decision procedure for integer polynomials, reusing the
function rat2poly, which returns an integer polynomial that is a positive multiple of the
input rational polynomial.

tarski(qqq, rrr) ≡ compute solvable((p0, . . . , pk)), rrr), (30)

where pd = rat2poly(qd), for 0 ≤ d ≤ k. The following theorem has been formally
proved in PVS (see Appendix A).

Theorem 15 If each polynomial in the sequence qqq = (q0, . . . , qk) has rational coefficients
and positive degree, then there exists a real number x such that qj (x) R(rrr(j)) 0, for all
j ≤ k, if and only if tarski(ggg, rrr) = true.

Decision Procedure for Univariate Polynomial Computation 307

6 Automated Strategies

The functions sturm, mono, and tarski, and their correctness properties, i.e., Theo-
rems 8, 9, and 15, respectively, can be used to mechanically prove, in a theorem prover,
properties involving univariate polynomials. The technical details of how this is done
depend on the particular theorem prover where those functions and theorems are specified
and verified. This section concerns the mechanical verification of polynomial inequalities
in PVS, but a similar approach is directly applicable to other interactive theorem provers.

6.1 PVS Theorem Prover

In a nutshell, a PVS sequent is a logical judgement of the form Γ � Δ, where Γ , called the
antecedent, and Δ, called the consequent, are lists of logical formulas. The intuitive meaning
of a sequent is that from the conjunction of formulas in Γ , the disjunction of formulas in Δ

can be deduced. PVS proof commands are logical rules that transform a sequent into a set of
sequents, with the objective of producing sequents where the formula false appears in the
antecedent or the formula true appears in the consequent. When all sequents generated by
a proof command are of one of these forms, the initial sequent is discharged. Hence, a proof
in PVS can be represented by a tree of proof commands that discharge an initial sequent.

The PVS type real is a primitive type, i.e., it is axiomatically defined in the PVS pre-
lude. Furthermore, PVS supports subtyping. For example, the types int (integer numbers),
rat (rational numbers), and real (real numbers) are axiomatically defined such that nat
is a subtype of int, int is a subtype of rat, and rat is a subtype of real. Furthermore,
all numerical constants are members of rat. Decimal notation is supported as syntactic
sugar for rational numbers, e.g., the decimal number 0.52 represents the rational number
52

100 . In PVS, expressions such as (x−1)2 and x2 −2x+1, where x is a PVS variable of type
real, are both real number expressions. The fact that they represent the same real number
is not, apriori, known to PVS. Such an equality has to be verified in the theorem prover.

As with most modern interactive theorem provers, the set of proof commands of PVS
can be conservatively extended by user-defined proof rules. In PVS, user-defined proof
rules are called strategies and they are procedures written in the PVS strategy language
that, when executed by the proof engine, produce PVS proofs. The PVS strategy language
includes combinators for sequencing, branching, and backtracking of proof commands. The
language also provides mechanisms to inspect the internal representation of PVS syntactic
elements within a proof context. PVS strategies, as tactics in the LCF-style of interactive
theorem provers, preserve the logical consistency of the proof system. That is, any strategy
within a proof can be expanded into a tree of proof commands that only includes basic PVS
proof rules.

This section concerns the development of PVS strategies for reasoning, in an automated
way, about relations on a class of real number expressions, called polynomial expressions,
involving a real number variable x. Formally, polynomial expressions on a variable x of type
real are formal PVS expressions of type real whose syntax is inductively defined as
follows. Numerical constants and the real number variable x are polynomials expressions on
x. Furthermore, if a and b are polynomial expressions on x, n is a natural number constant,
and k is a nonzero numerical constant, then a+b, −a, a−b, a b, an, and a

k
are all polynomial

expressions on x. Henceforth, the expression p〈x〉 denotes a polynomial expression on x.
It is clear that any function that maps a real number x into a polynomial expression p〈x〉
is a polynomial function and can be represented by its list of coefficients as explained in
Section 2.

308 A. Narkawicz et al.

6.2 Computational Reflection

The following example describes the use of Theorem 8 to discharge a PVS sequent involving
polynomial expressions. Consider the sequent below displayed in a vertical layout. Formu-
las in a PVS sequent are numbered using the notation {n}, where n < 0 in the antecedent
and n > 0 in the consequent. In this sequent, x is a free real variable (actually, a Skolem
real constant in PVS terminology).

{−1} x < 3
�
{ 1 } x120 − 2

3x60 + 1
9 ≥ 0

1. The first step in the PVS proof is to perform a proof command that instantiates Theo-
rem 8 such that I is the interval (−∞, 3) and p is a list of rational numbers that is 0
everywhere except in the positions 0, 60, and 120, where it has the values 1

9 , − 2
3 , and

1, respectively. That proof command yields the following sequent.

{−1} sturm(p, I,≥) ⇐⇒ (∀(x : R) : x ∈ I =⇒ p(x) ≥ 0)

{−2} x < 3
�
{ 1 } x120 − 2

3x60 + 1
9 ≥ 0

2. Next, the Boolean value resulting from the evaluation of sturm(p, I,≥) is found. This
evaluation can be effectively performed, for example, by expanding the definition of
sturm and simplifying the resulting expression. The following sequent is obtained.

{−1} true ⇐⇒ (∀(x : R) : x ∈ I =⇒ p(x) ≥ 0)

{−2} x < 3
�
{ 1 } x120 − 2

3x60 + 1
9 ≥ 0

3. Sequent formula {−1} can be reduced using propositional simplification to

{−1} ∀(x : R) : x ∈ I =⇒ p(x) ≥ 0
{−2} x < 3
�
{ 1 } x120 − 2

3x60 + 1
9 ≥ 0

4. Next, the quantified variable x in sequent formula {−1} is instantiated with the Skolem
constant x appearing in sequent formulas {−2} and {1}. This instantiation yields the
sequent.

{−1} x ∈ I =⇒ p(x) ≥ 0
{−2} x < 3
�
{ 1 } x120 − 2

3x60 + 1
9 ≥ 0

5. The elimination of the implication in sequent formula {−1} yields two sequents.

{−1} x < 3
�
{ 1 } x ∈ I

{ 2 } x120 − 2
3x60 + 1

9 ≥ 0

{−1} p(x) ≥ 0
{−2} x < 3
�
{ 1 } x120 − 2

3x60 + 1
9 ≥ 0

Decision Procedure for Univariate Polynomial Computation 309

6. The left-hand side and right-hand side sequents can be discharged by fully expanding
the definitions in sequent formulas 1 and −1, respectively.

In the example above, the discharged sequent involves the polynomial expression
p〈x〉 ≡ x120 − 2

3x60 + 1
9 , whereas the function sturm and its correctness theorem involve

the polynomial representation p ≡ (1
9 , . . . , − 2

3 , . . . , 1), which is a list of real numbers.
The equality p(x) = p〈x〉 has to be formally verified in PVS. This example illustrates a
well-known technique in theorem proving known as computational reflection [19]. The key
steps in a proof by computational reflection are a change of representation from objects of
a theory of interest into a target theory and the use of trusted or verified algorithms in the
target theory that decide particular types of properties. The correctness properties of these
algorithms relate properties in the target theory to properties in the object theory. In the
development presented in this paper, the theory of interest is that of polynomial expressions,
the target theory are polynomials represented as lists of rational numbers, the properties of
interest are real order relations, the verified algorithms are sturm, mono, and tarski,
and their correctness properties are stated by Theorems 8, 9, and 15.

Computational reflection is particularly well-adapted for the development of automated
proof strategies in interactive theorem provers. It produces proofs whose size is independent
of the size of the initial sequent. In particular, the same proof method used in the example
above can be used for discharging inequalities on any polynomial expression. Furthermore,
proofs by computational reflection are small since the most involved logical steps are done
once for all in the proof of theorems such as Theorem 8 and Theorem 15. Finally, from the
point of view of the proof engine, proofs by computational reflection are efficient since they
depend on computation rather than on deduction.

The two key steps of a computational reflection proof, i.e., changing the representation
of the objects of interest and evaluating the verified algorithms, can be implemented in the
PVS strategy language in several ways. Neither of these steps is particularly challenging
from a logical point of view. However, implementing them in a way that is computationally
efficient in PVS requires some additional formalization effort.

6.3 A Deep Embedding of Univariate Polynomials

In the PVS strategy language, it is possible to traverse the internal representation of a poly-
nomial expression such as x120− 2

3x60+ 1
9 and construct a concrete list p of rational numbers

that represents it. The code that implements this construction does not have to be trusted
since the equality p(x) = x120 − 2

3x60 + 1
9 is discharged by the strategy. Since p(x) is equal

to polylist(p)(x), to discharge that equality it suffices to fully expand the definition
of polylist. This approach was followed in a first implementation of the strategies pre-
sented in this paper. However, it has some drawbacks. To be useful, the code that constructs
the polynomial representation should recognize any type of polynomial expressions, not
only those that are written as sum of monomials, and construct their representations accord-
ingly. This approach results in a large amount of strategy code. Furthermore, expanding the
definition of polylist, which is a recursive function, may be inefficient. Since the PVS
theorem prover does not provide enough control to expand a particular occurrence of a def-
inition, expressions involving polylist tend to grow quickly, before they are simplified
by the PVS strategies.

For the current version of the strategies presented below, an alternative approach to
proving p(x) = p〈x〉 is implemented, which requires a deep embedding of univariate poly-
nomials. In this deep embedding, a polynomial function is still represented by a list of

310 A. Narkawicz et al.

rational numbers, but the concrete list is not computed by the strategies. Instead, operations
to construct those lists are directly defined in PVS. For instance, the PVS function pconst
has as parameter a rational number c and returns a list that contains c as its only element.
List representations of monomials are constructed with the function pconst, which takes
as parameters a rational number c and a natural number i and returns the list of length i + 1
that has zeros everywhere except at its last positions where it has the value c. Similarly,
functions psum, pminus, pneg, pprod, pscal, pdiv, and ppow are defined that take
as parameters list representations of polynomial functions and return list representations of
their addition, subtraction, negation, product, scalar multiplication by a given rational num-
ber, division by a given rational number, and power to a given natural number. The following
theorem, which shows the correctness of the embedding, has been formally proved in PVS
(see Appendix A).

Theorem 16 For all polynomial representations p and q, rational number c, natural
number i, and real number x

– polylist(pconst(c))(x) = c.
– polylist(pmonom(c, i))(x) = c xi .
– polylist(psum(p, q))(x) = p(x) + q(x).
– polylist(pneg(p))(x) = −p(x).
– polylist(pminus(p, q))(x) = p(x) − q(x).
– polylist(pprod(p, q))(x) = p(x) · q(x).
– polylist(pscal(c, p))(x) = c p(x).
– polylist(pdiv(p, c))(x) = p(x)

c
, when c �= 0.

– polylist(ppow(p, i))(x) = p(x)i .

In the new approach, the strategy code takes a polynomial expression such
as x120 − 2

3x60 + 1
9 and constructs its representation using the deep embedding,

i.e., psum(pminus(pmonom(1, 120),pmonom(2
3 , 60)),pconst(1

9)). The strategy code
required to construct this object is considerably simpler than the code that constructs a con-
crete list representation of the polynomial expression. Indeed, it is a simple pretty-printer
that reflects the syntactical structure of the input polynomial expression. The proof that
p(x) = p〈x〉, where p is the deep embedding of the polynomial expression p〈x〉, proceeds
by rewriting the left-hand side of this equality using Theorem 16. For simple polynomials,
the new approach is slightly slower than the original one due to the overhead created by the
deep embedding. However, since a polynomial expression and its deep embedding are syn-
tactically isomorphic, rewriting is significantly faster than expanding, especially on large
polynomial expressions.

6.4 Ground Evaluation

The computational approach used by the strategies presented in this paper requires the eval-
uation of algorithms, defined as PVS functions, on ground parameters. This evaluation can
be performed by fully expanding the definitions involved in the algorithms and simplifying
the resulting expressions using PVS’s deductive rules. As explained in Section 6.3, the lim-
ited control offered by the PVS theorem prover to perform expansions makes this approach
impractical. In the case of ground expressions, PVS provides, as part of its trusted code
base, a ground evaluator [32]. The ground evaluator efficiently evaluates PVS expressions
by translating them into Lisp objects and executing them using the PVS’s Lisp engine.

Decision Procedure for Univariate Polynomial Computation 311

The ground evaluator supports a large set of the PVS language including higher order
functions, literals of primitive types, abstract datatypes, and bounded quantifications over
integers [38]. It should be noted that while the soundness of the strategies presented in the
following section depends on the correctness of the ground evaluator, the formal develop-
ment presented in the previous sections does not. Furthermore, it is theoretically possible,
although impractical, to replace every instance of the PVS ground evaluator in a proof by
computational reflection by a strategy that only depends on symbolic evaluation such as
PVS’s grind.

6.5 PVS Strategies sturm, mono-poly, tarski

The formal development presented in this paper includes the PVS strategies sturm,
mono-poly, and tarski that implement computational reflection methods for automat-
ically proving properties involving polynomial inequalities.

The strategy sturm implements an enhanced version of the method described in
Section 6.2. More generally, the strategy sturm automatically discharges sequents having
one of the following forms

1. X1, . . . , Xm, Γ � p1〈x〉 R p2〈x〉,Δ
2. X1, . . . , Xm,p1〈x〉 R′ p2〈x〉, Γ � Δ

3. Γ � ∀(x : T) : X1 ∧ . . . ∧ Xm =⇒ p1〈x〉 R p2〈x〉,Δ
4. ∀(x : T) : X1 ∧ . . . ∧ Xm =⇒ p1〈x〉 R p2〈x〉, Γ � Δ

5. Γ � ∃(x : T) : X1 ∧ . . . ∧ Xm ∧ p1〈x〉 R′ p2〈x〉,Δ
6. ∃(x : T) : X1 ∧ . . . ∧ Xm ∧ p1〈x〉 R′ p2〈x〉, Γ � Δ

where

– T is a subtype of R,
– Γ and Δ are arbitrary lists of formulas, which are ignored by the strategy,
– m ≥ 0 and for 1 ≤ j ≤ m, Xm denotes a Boolean expression of one of the forms

a ≺ x, x ≺ a, |x| ≺ a, or x ∈ I , where ≺ ∈ {<, ≤}, a is a numerical rational constant,
and I is an interval, whose bounds are extended real numbers,

– p1〈x〉 and p2〈x〉 denote polynomial expressions on a real number variable x,
– R is a relation in {<,≤,>, ≥, �=} and R′ is a relation in {<,≤,>, ≥,=}.

The strategy sturm works on a formula of interest, which is the underlined formula in
the forms above. By default, the strategy assumes that the formula of interest is the first
formula in the consequent, but the user can specify a different formula through an optional
parameter in the strategy. As specified above, the formula of interest can appear in the
antecedent or in the consequent, be nonquantified or quantified, and the quantifier can be
existential or universal.

The strategy proceeds as follows. First, it examines the sequent and determines whether
or not it has one of the supported forms. If this is not the case, the strategy prints an error
message and does nothing else. If the sequent is supported, the strategy considers the for-
mula of interest and constructs a PVS expression p that represents the deep embedding of
the polynomial expression p1〈x〉 − p2〈x〉. Next, the strategy computes PVS data structures
for instantiating the interval I in Theorem 8. These data structures are constructed by exam-
ining the relational formulas Xj , 1 ≤ j ≤ m and the type T . The correctness of the strategy
is not compromised by the constructions of these objects. Indeed, the strategy formally
verifies that the semantics of the original expressions and their data structure embeddings
coincide.

312 A. Narkawicz et al.

The instantiation of the relation in Theorem 8 depends on the form of the sequent. In
the case of forms 1, 3, and 4, the relation is instantiated with R. Otherwise, the relation is
instantiated with ¬R′. From this point on, the strategy follows a computational reflection
approach. Some minor modifications are needed for the cases where the formula of interest
is quantified. Sequents of the forms 3 and 6 can be transformed into sequents of the forms 1
and 2 by introducing the quantified variable (this process is called Skolemization, in PVS
terminology) and propositional simplification. Sequents of the forms 4 and 5 use the fact
that Theorem 8 is a double implication. In this case, the evaluation of the function sturm on
the given parameters should return false and the rest of the proof proceeds accordingly.
Finally, if the sequent holds, the strategy succeeds and the sequent is discharged. If the
sequent does not hold, the strategy prints a message stating that the sequent is not provable.

Example 3 Turan’s inequality for Legendre’s polynomials is a theorem that states that
pn(x)2 > pn−1(x)·pn+1(x) for all x such that −1 < x < 1, where pj is the j -th Legendre’s
polynomial (of degree j). Turan’s inequality for n = 9 yields the following sequent

{−1} |x| < 1
�
{ 1 } p9〈x〉2 < p8〈x〉 · p10〈x〉

where

– p8〈x〉 ≡ 6435x8−12012x6+6930x4−1260x2+35
128 ,

– p9〈x〉 ≡ 12155x9−25740x7+18018x5−4620x3+315x
128 , and

– p10〈x〉 ≡ 46189x10−109395x8+90090x6−30030x4+3465x2−63
256 .

The strategy sturm automatically discharges this sequent in less than 5 sec.5

The strategy mono-poly uses the PVS function mono and its correctness property
(Theorem 9) to automatically prove properties regarding monotonicity of univariate poly-
nomials in a given variable range. As in the case of the strategy sturm, the strategy
mono-poly works on a formula of interest. By default, the strategy assumes that the for-
mula of interest is the first formula in the consequent, but the user can specify a different
formula through an optional parameter in the strategy. The strategy mono-poly discharges
sequents having one of the following forms, where the formula of interest is underlined.

1. Y1, . . . , Ym, Γ � p1〈x〉 R2 p2〈y〉, Δ
2. Y1, . . . , Ym,p1〈x〉 R′

2 p2〈y〉, Γ � Δ

3. Γ � ∀(x, y : T) : Y1 ∧ . . . ∧ Ym =⇒ p1〈x〉 R p2〈y〉,Δ
4. ∀(x, y : T) : Y1 ∧ . . . ∧ Ym =⇒ p1〈x〉 R p2〈y〉, Γ � Δ

5. Γ � ∃(x, y : T) : Y1 ∧ . . . ∧ Ym ∧ p1〈x〉 R′ p2〈y〉,Δ
6. ∃(x, y : T) : Y1 ∧ . . . ∧ Ym ∧ p1〈x〉 R′ p2〈y〉, Γ � Δ

where

– T is a subtype of R,
– Γ and Δ are arbitrary lists of formulas, which are ignored by the strategy,

5All the examples in this paper are executed in a MacBook Pro 2.4 GHz Inter Core 2 Duo with 8 GB of
memory.

Decision Procedure for Univariate Polynomial Computation 313

– m ≥ 0 and for 1 ≤ j ≤ m, Ym denotes a Boolean expression of one of the forms a ≺ v,
v ≺ a, |v| ≺ a, v ∈ I , or x R1 y, where ≺ ∈ {<, ≤}, R1 ∈ {<,≤,>, ≥, �=}, v ∈ {x, y},
a is a numerical rational constant, and I is an interval, whose bounds are extended real
numbers,

– p1〈x〉 and p2〈y〉 denote polynomial expressions on real number variables x and y,
respectively,

– R2 are relations in {<,≤,>, ≥, �=} and R′
2 is a relation in {<,≤,>, ≥,=}.

The strategy determines whether or not (a) the sequent has one of the supported forms,
(b) variables x and y are defined on the same range, and (c) at least one of the formulas
Ym has the form x R1 y. If this is not the case, the strategy prints an error message and
does nothing else. If the sequent is supported, the strategy constructs deep embeddings
of the polynomial expressions p1〈x〉 and p2〈y〉 and ground evaluates them into lists of
rational numbers. If the resulting lists are not equal, the strategy fails with a message and
does nothing else. Otherwise, it proceeds by computational reflection applying the function
mono and Theorem 9 to appropriate parameters according to the form of the sequent.

Example 4 The following sequent states that the 10-th Legendre’s polynomial is decreasing
in the range [−0.75, −0.6].

{−1} x ∈ [−0.75, −0.6]
{−2} y ∈ [−0.75, −0.6]
{−3} x < y

�
{ 1 } p10〈x〉 > p10〈y〉

where the polynomial p10 is defined as in Example 3. The sequent is automatically
discharged by the strategy mono-poly in less than 5 sec.

Finally, the strategy tarski automatically discharges existential conjunctive formu-
las of polynomial inequalities or universal disjunctive formulas of polynomial inequalities.
The strategy supports a superset of the sequents supported by the strategy sturm. On the
sequents supported by both strategies, sturm is generally faster than tarski since the
later encodes the conditions on the variable range as additional polynomial constraints.
In contrast to the strategies sturm and mono-poly, the strategy tarski allows for
the specification of several formulas of interest. By default, the strategy assumes that the
formulas of interests are all the formulas in the sequent, but the user can specify a dif-
ferent formula through an optional parameter in the strategy. The sequents supported by
the strategy tarski have one the following forms, where the formulas of interest are
underlined.

1. P1, . . . , Pm, Γ � Pm+1, . . . , Pn,Δ,
2. Γ � ∀(x : T) : P1 ∧ . . . ∧ Pm =⇒ Pm+1 ∨ . . . ∨ Pn, Δ

3. ∀(x : T) : P1 ∧ . . . ∧ Pm =⇒ Pm+1 ∨ . . . ∨ Pn, Γ � Δ

4. Γ � ∃(x : T) : P1 ∧ . . . ∧ Pm,Δ

5. ∃(x : T) : P1 ∧ . . . ∧ Pm, Γ � Δ

where

– T is a subtype of R,
– Γ and Δ are arbitrary lists of formulas, which are ignored by the strategy,

314 A. Narkawicz et al.

– 0 ≤ m and for 1 ≤ j ≤ m, Pj has one the forms pj 〈x〉 Rj qj 〈x〉, |pj 〈x〉| ≺j qj 〈x〉, or
pj 〈x〉 ∈ Ij , where Rj ∈ {<,≤,>, ≥, �=,=}, ≺j ∈ {<,≤}, pj 〈x〉 and qj 〈x〉 denote
polynomial expressions on a variable x, and I is an interval, whose bounds are extended
real numbers,

– m ≤ n and for m < j ≤ n, Pj has one the forms pj 〈x〉 Rj qj 〈x〉 or |pj 〈x〉| �j

qj 〈x〉, where Rj ∈ {<,≤,>, ≥, �=,=}, �j ∈ {>, ≥}, and pj 〈x〉 and qj 〈x〉 denote
polynomial expressions on a variable x.

As is the case of sturm and mono-poly, the strategy tarski first determines
whether or not the sequent has one of the supported forms and reports an error if this is not
the case. Then, it computes deep embeddings of polynomials representing pj 〈x〉−qj 〈x〉 and
proceeds by computational reflection by applying the function tarski and Theorem 15 to
appropriate parameters according to the form of the sequent.

Example 5 The following sequent states that at every point at least one of Legendre’s
polynomials pi , with 2 ≤ i ≤ 6, is nonnegative.

�
{1} p2〈x〉 ≥ 0
{2} p3〈x〉 ≥ 0
{3} p4〈x〉 ≥ 0
{4} p5〈x〉 ≥ 0
{5} p6〈x〉 ≥ 0

where

– p2〈x〉 ≡ 3x2−1
2 ,

– p3〈x〉 ≡ 5x3−3x
2 ,

– p4〈x〉 ≡ 35x4−30x2+3
8 ,

– p5〈x〉 ≡ 63x5−70x3+15x
8 , and

– p6〈x〉 ≡ 231x6−315x4+105x2−5
16 .

The strategy tarski automatically discharges this sequent in less than 10 sec.

Example 6 In air traffic management [11], the predicate

conflict?(s, v, sz, vz, T) ≡ ∃ (t : R) : t ∈ [0, T] ∧
s2 + 2 (s · v) t + v2 t2 < D2 ∧
|sz + t vz| < H,

(31)

where s, v are 2-dimensional vectors, sz, vz are real numbers, and D, H, T are positive
real numbers, specifies that two aircraft flying straight line trajectories will be in a loss of
separation at some future time t ≤ T . A loss of separation is a violation of a minimum
horizontal distance D, typically 5 nautical miles (9260 m), and a minimum vertical distance
H , typically 1000 feet (305 m). In Formula (31), s denotes the relative horizontal position
of the aircraft at time 0, v denotes their relative horizontal velocity, sz denotes their relative
altitude, and vz denotes their relative vertical speed.

Let so = (−37040, 0), soz = 9144, si = (37000, 0), and siz = 9000 be the horizon-
tal and vertical positions (in meters) of two aircraft and vo = (218, 218), voz = 2.54,
vi = (−205, 205), voz = 2.5 be their horizontal velocity and vertical speed (in meters

Decision Procedure for Univariate Polynomial Computation 315

per second). The following sequents state that the aircraft will be in conflict when T is 5
minutes, but they will be conflict free when T is 2.5 minutes.

� conflict?(so − si , vo − vi , soz − siz, voz − viz, 300)

conflict?(so − si , vo − vi , soz − siz, voz − viz, 150) �
Both sequents are discharged in less than 5 sec by expanding the definition of conflict?
and applying tarski.

7 Formalization Issues

Every result in the formalization presented in this paper has been formally verified in PVS.
There are no axioms other than those defining the PVS logic. The developments Sturm and
Tarski, in the NASA PVS Library, consist of 415 lemmas and 378 lemmas, respectively,
which amount to 3119 lines of PVS specification. These numbers do not include lemmas
added to other developments in the library, e.g., reals and matrices, which are needed
in the present work. The strategies are encoded in 774 lines of PVS strategy code.

During the PVS specification and verification of properties and algorithms presented in
this paper, numerous formalization issues arose. Most of these issues are due to the fact that
in a formal development every technical detail in a proof has to be made explicit. Some of
these technical details required the specification and development of nontrivial fundamental
mathematical concepts. This section describes the main technical issues and the work done
to overcome them. This section is primarily for the benefit of other PVS users who might
find such solutions useful, and for users of other theorem-provers who may run into similar
problems.

7.1 Extended Reals and Intervals

The formalization presented here uses extended real numbers R
∞ that extends the set of

real numbers with infinite numbers −∞ and ∞. There is no built-in support for extended
reals in PVS. Hence, these numbers are presented by a pair (k, b), where k is a real number
and b is a Boolean. When b is the Boolean constant true, (k, b) represents the real number
k. In any other case, (k, b) represents an infinite number. The sign of that infinite number is
the sign of the real number k. Using this data structure, the evaluation of a polynomial p at
an extended real r = (k, b) is defined as the extended real (k′, b), where

k′ ≡
⎧
⎨

⎩

p(k) if b = true,

lc(p) if b = false ∧ even(deg(p)),

sign(k) · lc(p) otherwise.

In addition to polynomial evaluation on extended reals, the real order relations are
extended to R

∞ such that

– (k1,true) < (k2, b), when k1 < k2 or b = false.
– (k1,false) < (k2, b), when b = true or sign(k1) < sign(k2).
– Infinite numbers are incomparable for equality.

No other operations are defined on infinite extended real numbers.
Extended intervals are represented by a 4-tuple (l, u, cl, cu), where l, u are extended real

numbers and cl, cb are Boolean values. The extended real numbers l and u represent the
lower and upper bounds of the interval, respectively. The Boolean values cl and cu indicate

316 A. Narkawicz et al.

whether or not the lower and upper bounds, respectively, are included in the interval. It
is assumed that intervals are nonempty and contain more than one element, i.e., l < u.
Furthermore, to simplify the manipulation of intervals, they are constructed such that the
following properties are satisfied.

– If l and u are both infinite numbers, then l = (−1,false), u = (1,false), and
cl = cu = false.

– If l = (kl,false) and u = (ku,true), then kl = −|ku − 1|, and cl = false.
– If l = (kl,true) and u = (ku,false), then ku = |ku + 1|, and cu = false.

For instance, the PVS functions choose(I) that returns a real number k that is strictly
included in I is defined as follows. If I is the interval (l, u, cl, cu), where l = (kl, bl) and
u = (ku, bu), then k = kl+ku

2 . It is easy to see that the extended, but finite, real number
represented by the pair (k,true) satisfies the strict inequalities l < (k,true) < u.

7.2 Computing the Decomposition of a Rational Number

In Section 4.2, a function is described which takes a polynomial with rational coefficients
and returns a multiple of the polynomial with integer coefficients by multiplying by the
product of the denominators of all of the coefficients. To do so, a function must be defined
that computes the denominator of a given rational number. In PVS, where rational numbers
are a primitive type, defining such a function is not as simple as it appears. This is mainly
due to the fact that in the PVS specification language, different representations of the same
rational number, e.g., 1

2 , 2
4 , and 0.5, are indistinguishable.

There are several ways in which a function that computes the numerator and denomina-
tor of a rational number can be defined in PVS. The PVS function that computes the rational
decomposition is a recursive function called compute pos rat, which in essence com-
putes the continued fraction representation of the rational number to recover the numerator
and denominator. The function takes a positive rational number and returns a pair of positive
integers, the first being the numerator and the second being the denominator.

compute pos rat(r) ≡
if floor(r) = r then (floor(r), 1)

elsif r > 1 then let (a, b) = compute pos rat(r − floor(r)) in

(b · floor(r) + a, b)

else let (a, b) = compute pos rat(1/r) in (b, a) endif.

(32)

The function compute pos rat is then be used to define two other functions, i.e.,
numerator and denominator, which are simply given by the first and second
component of the output of compute pos rat. It has been verified in PVS that
r = numerator(r)/denominator(r), for all positive rational number r .

A challenging part of proving the correctness of compute pos rat is showing that
the function terminates. In PVS, showing termination requires that the function be given a
measure, which is a function on the inputs of the function that returns a natural number and
strictly decreases in value every time the function is called recursively. In PVS, the measure
function of the recursive function compute pos rat is defined by

pos rat meas(r) ≡ if r < 1 then 10g else 10g − 1 endif, (33)

where r is a rational number and g is the least integer such that there exists positive rational
numbers a and b with r = a/b and g = a + b.

Decision Procedure for Univariate Polynomial Computation 317

7.3 Matrices

The PVS library for linear algebra presented in [22] does not include a computable formal-
ization of invertibility of matrices. In particular, using that library, an inverse could not be
computed, Gauss-Jordan elimination was not formalized, and the theorem that the determi-
nant of a matrix is nonzero if and only if the matrix is invertible was not proved. All of these
results were recently added to the NASA PVS Library in direct support of the formalization
of Tarski’s theorem. In fact, a new library called matrices was developed by the authors
with a definition of matrices that is designed for computation.

In this new PVS development, matrices are defined with lists of lists of numbers, e.g.,
the n × m-matrix ⎡

⎢⎣
a11 . . . a1m

...
. . .

...

an1 . . . anm

⎤

⎥⎦

is represented by the list ((a11, . . . , a1m) . . . (an1, . . . , anm)), of length n, of lists of length
m.

The library includes formalization and proof of many of the main theorems related to
matrices, determinants, and inverses. In addition, the particular application to Tarski’s theo-
rem required the specification and proof of many properties concerning the tensor product
and tensor power of matrices. Chief among these were the fact that the tensor and inverse
operations commute for nonsingular matrices, and the specification of a function that cal-
culates an entry of a tensor power without calculating the entire tensor power. As alluded to
in Section 5.1, this involved the manipulation of numbers in several different bases, which
was at times tedious.

The development of the matrices library provided several examples of the subtleties of
formalizing mathematics. To understand why this is the case, consider the following basic
facts about matrices, which have omitted some of the obvious hypotheses that they require.

1. det(A · B) = det(A) · det(B).
2. det(A) �= 0 if and only if A is invertible.
3. A can be translated to upper triangular form by Gauss-Jordan elimination.
4. If det(A) �= 0, then A is a product of elementary matrices.
5. If det(A) �= 0, then the inverse of A can be computed by performing Gauss-Jordan

elimination on the matrix (A I).

When doing mathematics on a blackboard, it is relatively easy to prove each of these
properties. In fact, one might even say that Gauss-Jordan elimination is equivalent to mul-
tiplying by a sequence of elementary matrices, and the first four properties follow directly
from that. The final property might require a little more work to prove, but it would follow
directly from the other four. Now, loosely speaking, the five properties above have almost
identical proofs. In each case, there is a property P on matrices, and a specific matrix A is
considered that can be written as the result of a finite number n of operations on the iden-
tity matrix. These operations are multiplications by certain elementary matrices, although
in the proofs they may be expressed simply as Gauss-Jordan operations. The proof of each
of these properties is by induction on n. Each time n increases by 1, this corresponds to
multiplying by one more elementary matrix, and it is shown in the proof that this does not
affect the property P .

One way to formalize each of these five properties is individually. This requires this
induction to be carried out five times. If done in the most naive way, this would be quite

318 A. Narkawicz et al.

inefficient, since it would result in formalizing Gauss-Jordan elimination multiple times.
One key motivation in formalizing mathematics is not doing more work than necessary.
Thus, in the PVS formalization, these 5 properties are proved simultaneously, so that the
induction step only happens once. What this means is that there is a single formalization
of the Gauss-Jordan process that is computable. In addition, the five properties above are
encoded into types of the objects that are returned by the functions performing the Gauss-
Jordan process. The Gauss-Jordan process, and inverse computation, occurs in three steps,
each of which is performed by a single PVS function:

1. Translate the original matrix A to upper triangular form with elementary row opera-
tions. Return the resulting upper triangular matrix, as well as the matrix representing
this sequence of operations and its inverse.

2. Translate the upper triangular matrix to a diagonal matrix if its determinant is nonzero,
leaving any column alone where the matrix has a 0 on the diagonal. Again, return the
resulting matrix, as well as the matrix representing the operations and its inverse.

3. An function which takes the resulting diagonal matrix, when its determinant is nonzero,
and computes the inverse of the diagonal matrix. Save the matrix representing these
operations, as well as its inverse.

The inverse of the original matrix A can easily be computed using these three functions. All
that one must do is return the product Q∗ of the matrices returned by these three functions,
which correspond to the Gauss-Jordan operations. When A has nonzero determinant, Q∗
will then trivially have the property that Q∗ ·A = I , and thus A has a left inverse. Since each
of the three functions above also computes the inverse of the operations matrix, multiplying
each of these in the correct order yields another matrix R∗ such that R∗ is the product of
elementary matrices and Q∗ ·R∗ = I . Since this process has already showed that any matrix
with a nonzero determinant has a left inverse, this means that Q∗ has a left inverse. Thus, it
is trivial to conclude that A = R∗, making A the product of elementary matrices.

For most of the specifics on how these functions are defined in PVS, the readers are
referred to the PVS specifications. However, the first of these functions, which translates a
matrix into upper triangular form through elementary row operations, is described below.
This should help the reader to understand how the five matrix properties at the beginning of
this section are encoded into the return types of the functions, requiring only one induction
scheme in the correctness proof. The function upper triang in PVS performs this upper
triangulation process, and a slightly simplified version of it is described here. The actual
version has flags that allow the matrices of operations to not be computed, making the
function faster to evaluate. There are six inputs to upper triang, which conditions on
their types:

– A positive integer n.
– The original n by n matrix A.
– An n by n matrix Q which is the product of finitely many elementary matrices.
– An n by n matrix R which is the product of finitely many elementary matrices, such

that Q · R = I and R · Q = I .
– The pivot column j .
– The pivot row i.

The function upper triang is recursive on the pivots j and i. It returns three matrices,
and the types of matrices are specified by the return type of the function:

– An upper triangular n by n matrix A∗ such that det(A∗) = det(A).

Decision Procedure for Univariate Polynomial Computation 319

– An n by n matrix Q∗, which is the product of finitely many elementary matrices, such
that Q∗ · A = A∗.

– An n by n matrix R∗, which is the product of finitely many elementary matrices, such
that Q∗ · R∗ = I and R∗ · Q∗ = I .

Specifying these conditions on the outputs of the functions performing Gauss-Jordan elim-
ination makes the final proofs of the main properties of determinants and invertibility quite
easy, once the correctness of output types of these Gauss-Jordan functions has been verified.

8 Related Work

The authors are aware of the following bodies of work that are closely related to the formal-
ization presented in this paper. Harrison proved Sturm’s theorem in HOL and used it there
for root isolation [20]. The intended application of that work was to guarantee error bounds
of polynomial approximations to transcendental functions. Root isolation was used on the
derivative of the error to find the places where an error may be maximized. In that work,
Sturm’s theorem was proved in the case where the polynomial is square free, which simpli-
fies the proof. In that paper, Harrison writes “[. . .] we would prefer the polynomial to have
no multiple real roots [. . .] Sturm’s theorem is easier to prove for polynomials without mul-
tiple real roots - this is actually the only form we have proved in HOL.” Harrison was not
interested in proving statements like p(x) ≥ 0, so a decision procedure for such problems
was out of the scope of his paper. However, finding the square free part of p could be used
as a preprocessing step, before root counting, since p and it square free part have the same
roots. This would allow Harrison’s proof to be used to verify a decision procedure for such
statements.

Cohen and Mahboubi implemented a decision procedure in Coq for first order formulas
over real closed fields that uses Tarski’s theorem as a central result [4]. Their satisfiability
theorem is more general than the one presented in this paper since it also covers the case
of quantifier elimination for multivariate polynomials. However, the authors consider the
developed procedure as primarily a theoretical result and thus make no attempt to automate
the procedure for use as a proof tactic. Indeed, the authors note that the “[. . .] proce-
dure is formally proved correct and complete, but is totally ineffective for the time being.”
In contrast, one of the central goals of the current PVS implementation was to provide
users a complete and correct, formally verified, but also computationally feasible auto-
mated procedure for deciding concrete instances of these problems in the real expressions of
PVS.

The recent work by Eberl [12] is the most similar to this paper. It was apparently being
completed concurrently with this work. Eberl completed a formal proof in Isabelle/HOL of
Sturm’s Theorem and used it to define proof methods sturm in Isabelle/HOL for solving
polynomial relations similar to those solved by PVS strategies sturm and mono-poly.
In the case of non-strict universally-quantified inequalities, Eberl’s proof method relies on
unverified ML code to generate the interval splitting as a witness. In practice, the use of
ML code improves efficiency and does not compromise soundness. However, it may com-
promise completeness. In contrast, the PVS strategies presented in this paper rely on PVS
algorithms that are proven to be correct and complete. Another distinction between the cur-
rent paper and the work of Eberl is in the use of pseudo division instead of regular division.
A point worth noting regarding the differences between the work in this paper and that by
Eberl is that the proofs of Sturm’s theorem are different. Eberl proves Sturm’s theorem in

320 A. Narkawicz et al.

the square free case, similar to Harrison’s proof in HOL [20]. In the non-square free case,
the proof proceeds by dividing each term in the remainder sequence by the greatest com-
mon divisor of the original polynomial and its derivative. The resulting sequence is not
a Sturm sequence in the standard sense, but it maintains similar properties regarding root
counting. The proof of Sturm’s theorem in the PVS development presented in this paper
follows a direct approach that considers the highest power of a linear divisor that divides
each polynomial in the sequence and analyzes whether the polynomial swaps signs at the
corresponding root. The distinctions between these proof methods primarily amount to user
preference. Finally, the development presented in [12] does not consider the more general
Tarski’s theorem.

Sturm sequences and several speed enhancements such as the use of pseudo division
are implemented in the SMT solver Z3 [31]. That implementation was the inspiration for
the work presented in this paper. Z3 is a highly efficient tool. In some cases, for exam-
ple when a formula is satisfiable, Z3 can produce models, which can be understood as
proof certificates for existential formulas. However, in general, Z3 statements are not sup-
ported by formal proofs. Hence, in formal verifications efforts, Z3 is used as a trusted
oracle.

Z3 is used as an external algebraic decision method (EADM) in Metitarski, a theorem
prover for real numbers [1]. In a recent work, Denman and Muñoz [9] developed the PVS
proof rule metit that integrates Metitarski as an external oracle into PVS theorem prover.
In contrast to the work presented in this paper, metit is not implemented as a proof pro-
ducing strategy. Nevertheless, the integration of Metitarski/Z3 in PVS, while unproven, is
quite useful and has helped the authors to check results that were impossible with previous
strategies in PVS.

There is a much larger collection of works on the general problem of reasoning about
nonlinear arithmetic. Sophisticated implementations of the Cylindrical Algebraic Decom-
position (CAD) [5] procedure are available in the Redlog system6 and in the QEPCAD
library.7 The systems RealPaver [18] and dReal [14] integrate powerful methods based
on interval constraint propagation [18]. MetiTarski [1] and RAHD (Real Algebra in High
Dimensions) [37] are specialized theorem provers for the theory of real closed fields.
MetiTarski is designed to prove universally quantified inequalities involving real-valued
functions such as trascendental functions. RAHD combines several decision methods for
the existential theory of real closed fields. Both systems use quantifier elimination pro-
cedures among many other proof strategies. As indicated by Section 2, Tarski’s theorem
is a generalization of Sturm’s theorem, and Tarski’s original proof was based on Sturm’s
theorem [42].

Proof tactics that implement Hörmander’s quantifier elimination method are available in
Coq and HOL Light [26, 28]. These tactics are theoretically interesting and still practical
for some type of problems. However, Hörmander’s method is known to be more inefficient
than CAD. An implementation of CAD that will eventually yield a proof producing tac-
tic is available in Coq [25]. Another approach to solve multivariate polynomial inequalities
in theorem provers is based on polynomial sum of square (SOS) decompositions through
semidefinite programming. Such an approach has been implemented in HOL Light [21]

6http://redlog.dolzmann.de.
7http://www.usna.edu/cs/∼qepcad/B/QEPCAD.html.

http://redlog.dolzmann.de
http://www.usna.edu/cs/~qepcad/B/QEPCAD.html

Decision Procedure for Univariate Polynomial Computation 321

and seems to be more promising than quantifier elimination for polynomials with many
variables. Semidefinite programming is a somewhat complicated numerical procedure that
is usually implemented with floating point numbers. Because of numerical approximation
errors, it is difficult to integrate this method into theorem provers. Recent developments in
SOS address this issue by producing rational polynomial decompositions [23, 30]. Proof
producing strategies for proving real-number properties based on interval arithmetic and
branch and bound methods are available in PVS [7], Coq [29], HOL Light [39]. As stated
in the introduction, the authors have developed semi-decision procedures for multivariate
polynomials, based on Bernstein polynomials [33], and Boolean expressions involving real-
valued functions, based on interval arithmetic [34]. Those algorithms are quite powerful
and can prove tight bounds on complex polynomials with up to 16 variables and degree 4.
However, techniques based on Bernstein polynomials and interval arithmetic cannot always
prove exact bounds on a polynomial. That is, in general, they cannot prove that p(x) ≥ 0
for x in a fixed, bounded interval unless it is also true that p(x) > c for some posi-
tive c. This limitation is a key motivation to the authors’ development presented in this
paper.

The formal development presented in this paper includes a formalization in PVS of linear
algebra concepts such as matrices and tensors that are needed for the definition of a deci-
sion procedure based on Tarski’s theorem. As discussed in Section 7.3, this development
improves over the work presented in [22] by providing computable definitions of determi-
nants and the Gauss-Jordan elimination algorithm. This work in PVS complements existing
work on computable formalizations of linear algebra in other theorem provers [2, 8, 17, 27].

9 Conclusion

This paper presents formalizations of Sturm’s and Tarksi’s theorems in PVS. These theo-
rems are used to develop decision procedures for deciding the satisfiability of univariate
rational polynomial systems where the polynomial variable ranges over an interval, which
can be any connected set of real numbers. The decision procedures, which are proven to
be complete and correct in PVS, are used to implement several proof strategies for auto-
matically discharging sequents involving polynomial expressions. The correctness of these
strategies depend only on the PVS deduction engine, as opposed to an external oracle. The
strategies are based on computational reflection, which is a theorem proving technique for
building efficient strategies. Although the strategies employ data structures for representing
and manipulating polynomials and infinite numbers, these data structures are invisible to
the user. The strategies can be used to discharge proof sequents involving native PVS real
number expressions.

The authors’s main motivation for developing these tools for polynomial computation
in PVS stems from NASA’s ongoing verification efforts for aircraft separation assurance
systems.8 The PVS proofs of correctness of these systems are decidedly nontrivial and
require considerable algebraic manipulation. In one particular case of an actual verification
effort, a 176-line sequent involving a 16-variable polynomial was generated. That sequent
was automatically checked using a PVS proof rule that integrates Metitarski and Z3 as
trusted external oracles into the PVS theorem prover [9]. This example clearly illustrates the

8http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html,

http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html

322 A. Narkawicz et al.

usefulness of techniques based on Sturm sequences and Tarski queries, which are imple-
mented in Z3. Unfortunately, because the proof described above relies on external tools,
it cannot be turned into a proof that relies solely on the internal logic of PVS. The ulti-
mate goal of the work presented here is to provide such functionality directly in PVS with
a formal proof of its correctness. The work with univariate polynomials presented in this
paper is a first step in that direction. The next step is to define algorithms that not only han-
dle multivariate polynomials, but also handle arbitrary Boolean expressions involving those
polynomials. This work will be guided by the algorithms developed by de Moura in Z3, but
the authors expect subtleties to arise, since they will have to be designed with formal verifi-
cation in mind. That is, having to prove their correctness formally may change the way that
these algorithms are specified in PVS.

Acknowledgments The authors are grateful to the anonymous reviewers for their insightful comments that
greatly helped to improve this manuscript. Special thanks to Manuel Eberl for pointing out misprints in an
earlier version of this document and for providing access to his formal development of Sturm’s theorem in
Isabelle/HOL. Last but not least, the authors would like to give credit to Leonardo de Moura for directing
their work in the direction of Sturm’s and Tarski’s theorems and advising them in this effort.

Appendix A: Map of Theorems to Formal Theorems in PVS

Theorem PVS Theory PVS Theorems

Theorem 1 Sturm@sturm sturm,
sturm unbounded left,
sturm unbounded right,
sturm unbounded

Theorem 2 Tarski@sturmtarski sturm tarski unbounded
Theorem 3 Sturm@compute sturm roots closed int def
Theorem 4 Sturm@compute sturm number roots interval def
Theorem 5 reals@more polynomial props Knuth poly root strict bound
Theorem 6 Sturm@compute sturm always nonnegative def
Theorem 7 Sturm@compute sturm compute poly sat def
Theorem 8 Sturm@poly strategy sturm def
Theorem 9 Sturm@compute sturm mono def
Theorem 10 Tarski@tarski query matrix multi sturm tarski 6by6
Theorem 11 Tarski@tarski query matrix multi sturm tarski NSol
Theorem 12 Tarski@tarski query matrix multi sturm tarski NSol63
Theorem 13 Tarski@poly system strategy compute solvable single def
Theorem 14 Tarski@poly system strategy compute solvable def
Theorem 15 Tarski@poly system strategy tarski def
Theorem 16 Sturm@polylist polylist const,

polylist monom,
polylist sum,
polylist minus,
polylist neg,
polylist prod,
polylist scal,
polylist div,
polylist pow

Decision Procedure for Univariate Polynomial Computation 323

Appendix B: PVS Examples

324 A. Narkawicz et al.

Decision Procedure for Univariate Polynomial Computation 325

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued special
functions. J. Autom. Reason. 44(3), 175–205 (2010)

2. Aransay, J., Divasón, J.: Formalization and execution of linear algebra: from theorems to algorithms. In:
Gupta, G., Peña, R. (eds.): Proceedings, 23rd International Symposium on Logic-Based Program Synthe-
sis and Transformation, LOPSTR 2013, Madrid, Spain. Dpto. de Systemas Informáticos y Computation,
Universidad Complutense de Madrid, TR-11-13 (2013)

3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry (Algorithms and Computation
in Mathematics). Springer-Verlag New York, Inc., USA (2006)

4. Cohen, C.: Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered fields to quantifier
elimination. Logical Methods Comput. Sci. 8(1:02), 1–40 (Feb 2012). https://hal.inria.fr/inria-00593738

5. Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In:
Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Science,
vol. 33, pp. 134–183. Springer-Verlag, Kaiserslautern (1975)

6. Crespo, L.G., Muñoz, C.A., Narkawicz, A.J., Kenny, S.P., Giesy, D.P.: Uncertainty analysis via failure
domain characterization: Polynomial requirement functions. In.: Proceedings of European Safety and
Reliability Conference, p. 2011. Troyes, France

7. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for interval arithmetic.
IEEE Trans. Comput. 58(2), 1–12 (2009)

8. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational algebra in Coq. In:
Beringer, L., Felty, A.P. (eds.): Interactive Theorem Proving - Third International Conference, ITP 2012,
Princeton, NJ, USA, August 13-15, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7406,
pp. 83–98. Springer (2012). doi:10.1007/978-3-642-32347-8

9. Denman, W., Muñoz, C.: Automated real proving in PVS via MetiTarski. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.): Proceedings of the 19th International Symposium on Formal Methods (FM 2014). Lecture
Notes in Computer Science, vol. 8442, pp. 194–199. Springer, Singapore (2014)

10. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implementation of an elemen-
tary function using Gappa. IEEE Trans. Comput. 60(2), 242–253 (2011)

11. Dowek, G., Geser, A., Muñoz, C.: Tactical conflict detection and resolution in a 3-D airspace.
In: Proceedings of the 4th USA/Europe Air Traffic Management R&D Seminar, ATM 2001. Santa
Fe, New Mexico (2001), a long version appears as report NASA/CR-2001-210853 ICASE Report
No. 2001-7

12. Eberl, M.: A decision procedure for univariate real polynomials in Isabelle/HOL. In: Proceedings of
the 2015 Conference on Certified Programs and Proofs, CPP ’15, pp. 75–83. ACM, New York (2015).
doi:10.1145/2676724.2693166

13. Eisermann, M.: The fundamental theorem of algebra made effective: An elementary real-algebraic proof
via Sturm chains. Am. Math. Mon. 119(9), 715–752 (2012)

14. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals. In:
Bonacina, M.P. (ed.): Automated Deduction - CADE-24 - 24th International Conference on Automated
Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7898, pp. 208–214. Springer (2013). doi:10.1007/978-3-642-38574-2

15. Garloff, J.: Application of Bernstein expansion to the solution of control problems. Reliab. Comput. 6,
303–320 (2000)

16. von zur Gathen, J., Lücking, T.: Subresultants revisited. Theor. Comput. Sci. 297(1–3), 199–239 (2003).
doi:10.1016/S0304-3975(02)00639-4

17. Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M.C.J.D., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.): Interactive Theorem Proving - ITP 2011, vol. 6898, pp. 103–118.
Radboud University of Nijmegen, Springer, Berg en Dal, Netherlands (2011). https://hal.inria.fr/
hal-00805966

18. Granvilliers, L., Benhamou, F.: RealPaver: An interval solver using constraint satisfaction techniques.
ACM Trans. Math. Softw. 32(1), 138–156 (2006)

19. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report
CRC-053. SRI Cambridge, Millers Yard, Cambridge (1995)

20. Harrison, J.: Verifying the accuracy of polynomial approximations in HOL. In: Gunter, E.L., Felty,
A. (eds.): Theorem Proving in Higher Order Logics: 10th International Conference, TPHOLs’97. Lecture
Notes in Computer Science, vol. 1275, pp. 137–152. Springer-Verlag, Murray Hill, NJ (1997)

21. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Theorem Proving in Higher Order
Logics. Lecture Notes in Computer Science, vol. 4732, pp. 102–118. Springer (2007)

https://hal.inria.fr/inria-00593738
http://dx.doi.org/10.1007/978-3-642-32347-8
http://doi.acm.org/10.1145/2676724.2693166
http://dx.doi.org/10.1007/978-3-642-38574-2
http://dx.doi.org/10.1016/S0304-3975(02)00639-4
https://hal.inria.fr/hal-00805966
https://hal.inria.fr/hal-00805966

326 A. Narkawicz et al.

22. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.L., Feron, E., Perez, G., Ascariz, P.: PVS lin-
ear algebra libraries for verification of control software algorithms in C/ACSL. In: Goodloe, A., Person,
S. (eds.): NASA Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA, April
3-5, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7226, pp. 147–161. Springer (2012).
doi:10.1007/978-3-642-28891-3

23. Kaltofen, E.L., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via
sums-of-squares of rational functions with rational coefficients. In: Robbiano, L., Abbott, J. (eds.):
Approximate Commutative Algebra. Springer Vienna, Texts and Monographs in Symbolic Computation
(2010)

24. Kuchar, J., Yang, L.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell.
Transp. Syst. 1(4), 179–189 (2000)

25. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Math.
Struct. Comput. Sci. 17(1), 99–127 (2007)

26. Mahboubi, A., Pottier, L.: Elimination des quantificateurs sur les réels en Coq. In: Journées Francophone
des Langages Applicatifs (JFLA) (2002)

27. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension linear spaces with
application to quantum theory. In: Brat, G., Rungta, N., Venet, A. (eds.): NASA Formal Methods, 5th
International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 7871, pp. 413–427. Springer (2013). doi:10.1007/978-3-642-38088-4

28. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic.
In: Nieuwenhuis, R. (ed.): Proceedings of the 20th International Conference on Automated Deduction,
proceedings. Lecture Notes in Computer Science, vol. 3632, pp. 295–314 (2005)

29. Melquiond, G.: Proving bounds on real-valued functions with computations. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.): Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, August 12-15, 2008, Proceedings. Lecture Notes in Computer Science,
vol. 5195, pp. 2–17. Springer (2008). doi:10.1007/978-3-540-71070-7 2

30. Monniaux, D., Corbineau, P.: On the generation of Positivstellensatz witnesses in degenerate cases. In:
Proceedings of Interactive Theorem Proving (ITP). Lecture Notes in Computer Science (2011)

31. de Moura, L., Passmore, G.: Computation in real closed infinitesimal and transcendental extensions
of the rationals. In: Automated Deduction - CADE-24, 24th International Conference on Automated
Deduction, Lake Placid, New York, June 9-14, 2013, Proceedings (2013)

32. Muñoz, C.: Rapid prototyping in PVS. Contractor Report NASA/CR-2003-212418, NASA, Langley
Research Center, Hampton VA 23681-2199, USA (2003)

33. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and applications
to global optimization. J. Autom. Reason. 51(2), 151–196 (2013). doi:10.1007/s10817-012-9256-3

34. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for global optimization.
In: Cohen, E., Rybalchenko, A. (eds.): Fifth Working Conference on Verified Software: Theories, Tools
and Experiments (VSTTE 2013). Lecture Notes in Computer Science, vol. 8164, pp. 326–343. Springer
(2014)

35. Narkawicz, A.J., Muñoz, C.A.: A formally-verified decision procedure for univariate polynomial com-
putation based on Sturm’s theorem. Technical Memorandum NASA/TM-2014-218548, NASA, Langley
Research Center, Hampton VA 23681-2199, USA (2014)

36. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.): Proceed-
ing of the 11th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial
Intelligence, vol. 607, pp. 748–752. Springer (1992)

37. Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential theory of the reals. In:
Dixon, L. (ed.): Proceedings of Calculemus/Mathematical Knowledge Management. pp. 122–137. No.
5625 in LNAI. Springer-Verlag (2009)

38. Shankar, N.: Efficiently executing PVS. Tech. rep., Project Report, ComputerScience Laboratory. SRI
International, Menlo Park (1999)

39. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor interval approxima-
tions. In: Brat, G., Rungta, N., Venet, A. (eds.): Proceedings of the 5th International Symposium NASA
Formal Methods. Lecture Notes in Computer Science, vol. 7871, pp. 383–397 (2013)

40. Sottile, F.: Chapter 2: Real solutions to univariate polynomials. course Notes. http://www.math.tamu.
edu/sottile/teaching/10.S/Ch2.pdf

41. Sturm, C.: Mémoire sur la résolution des équations numériques. In: Pont, J.C. (ed.): Collected Works of
Charles François Sturm, pp. 345–390. Birkhäuser Basel (2009). doi:10.1007/978-3-7643-7990-2 29

42. Tarski, A.: A decision method for elementary algebra and geometry. Bull. Am. Math. Soc., 59 (1951)

http://dx.doi.org/10.1007/978-3-642-28891-3
http://dx.doi.org/10.1007/978-3-642-38088-4
http://dx.doi.org/10.1007/978-3-540-71070-7_2
http://dx.doi.org/10.1007/s10817-012-9256-3
http://www.math.tamu.edu/ sottile/teaching/10.S/Ch2.pdf
http://www.math.tamu.edu/ sottile/teaching/10.S/Ch2.pdf
http://dx.doi.org/10.1007/978-3-7643-7990-2_29

	Decision Procedure for Univariate Polynomial Computation
	Abstract
	Introduction
	Tarski's and Sturm's Theorems
	Remainder Sequences
	A Decision Procedure Based on Sturm's Theorem
	Decision Procedure for Integer Polynomials
	Decision Procedure for Rational Polynomials

	A Decision Procedure Based on Tarski Queries
	Generalizing Tarski Queries to Polynomial Systems
	Decision Procedure for Polynomial Systems

	Automated Strategies
	PVS Theorem Prover
	Computational Reflection
	A Deep Embedding of Univariate Polynomials
	Ground Evaluation
	PVS Strategies sturm, mono-poly, tarski

	Formalization Issues
	Extended Reals and Intervals
	 Computing the Decomposition of a Rational Number
	Matrices

	Related Work
	Conclusion
	Acknowledgments
	Appendix A Map of Theorems to Formal Theorems in PVS
	 PVS Examples
	Appendix B PVS Examples
	References

