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Abstract Locales are a module system for managing theory hierarchies in a the-
orem prover through theory interpretation. They are available for the theorem
prover Isabelle. In this paper, their semantics is defined in terms of local theories
and morphisms. Locales aim at providing flexible means of extension and reuse.
Theory modules (which are called locales) may be extended by definitions and
theorems. Interpretation to Isabelle’s global theories and proof contexts is possible
via morphisms. Even the locale hierarchy may be changed if declared relations
between locales do not adequately reflect logical relations, which are implied by the
locales’ specifications. By discussing their design and relating it to more commonly
known structuring mechanisms of programming languages and provers, locales are
made accessible to a wider audience beyond the users of Isabelle. The discussed
mechanisms include ML-style functors, type classes and mixins (the latter are found
in modern object-oriented languages).

Keywords Theorem prover ·Module system ·Theory hierarchy ·
Theory interpretation · Isabelle

1 Introduction

The developers of the computer algebra system Axiom pioneered implementing
complex hierarchies of algebraic structures in a computer language. The user manual
[13] shows a graph of 45 interconnected algebraic structures at 15 levels in the basic
algebra hierarchy all of which are implemented as types in that system. Standard
libraries of programming languages usually have many more classes, but hierarchies
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tend to be less deep. (For example, the Java 6 Standard Edition class library contains
almost 3800 classes at only eight levels [20].) It is evident that such libraries are only
maintainable if they can be extended easily.

Locales provide flexible means of building and using hierarchic developments
of theory modules and were designed so that abstract algebraic theories could be
represented in an adequate fashion. Today, locales are used in many domains.
Examples include proofs in graph theory [18], set theory [21] and state space
management in programming language semantics [22]. Also Isabelle’s class package
uses locales [10].

Locales provide some of the automation that makes Isabelle’s type classes attrac-
tive, but they are not restricted to a single carrier type. Theorem reuse is rigourously
based on interpretation (often called theory interpretation in the context of provers),
and locales can deal with important forms of circular theory module dependencies.

A re-implementation of locales was released with Isabelle 2009. Users have
mainly benefited from more powerful locale expressions, which provide flexible
means for composing theory hierarchies. In particular, locale expressions now admit
parameter instantiation, while previously only renaming was possible. This is useful,
for example, for expressing duality. Local theories [11], which became available in
Isabelle at that time, helped clarify the design and reduce the code size of the locales
implementation to about two thirds.

The purpose of the present paper is to provide an operational semantics of
locales relative to local theories, and to outline the design goals. Relations to other
structuring mechanisms, both for formal theory developments and programming
languages, are established. Users of locales should also consult the tutorial [5].

The following section contains formalisations of algebraic structures that illustrate
important features of locales and serve as a base for examples in the subsequent
sections. Local theories and other devices necessary to define locales are introduced
in Section 3. Section 4 is the core of the paper. Locales and the user-level operations
are defined. In Section 5 relations to ML-style modules and other means of reuse in
provers and programming languages are discussed.

2 Example—the Lattice of Subgroups

The formalisation presented in this section serves to introduce locales by example.
It involves two algebraic structures, lattice and group, who are related by identifying
the lattice induced by the subgroup relation.

Isabelle’s notation for formulas is close to what is common in mathematics. Both∧
and ∀ denote universal quantification, and =⇒ and −→ denote implication.1

Double square brackets abbreviate nested implication: [[ A1; . . .; An ]] =⇒ B
means A1 =⇒ . . . =⇒ An =⇒ B. The double arrow ←→ is an alternative notation
for equality on Booleans, and with precedence lower than that of the logical
connectives ∧, ∨ etc.

1The differences between Isabelle’s meta-logical connectives
∧

and =⇒ and the connectives ∀ and
−→ of the HOL object-logic are not relevant for understanding the examples.
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2.1 Algebraic Structures

An abstract algebraic structure like group or lattice is declared with the locale
command. Our example is based on lattices and we start with the formalisation of
partial orders.

locale partial_order =
fixes S and le (infixl "�" 50)
assumes refl: "x ∈ S =⇒ x � x"

and antisym: "[[ x � y; y � x; x ∈ S; y ∈ S ]] =⇒ x = y"
and trans: "[[ x � y; y � z; x ∈ S; y ∈ S; z ∈ S ]] =⇒ x � z"

The carrier set S and the order relation le (with concrete syntax �) are the
parameters (fixes) of the specification, which consists of the usual axioms (assumes).

Infima do not necessarily exist in partial orders, but it is useful to have a notion
for the concept already here. The context command enables to focus on a locale and
to extend it—in this case, by a definition.

context partial_order begin
definition is_inf where "is_inf x y w←→ w � x ∧ w � y ∧

(∀z ∈ S. z � x ∧ z � y −→ z � w) ∧ x ∈ S ∧ y ∈ S ∧ w ∈ S"
end

That is, is_inf is a predicate, and is_inf x y w means that w is the infimum of
x and y in the carrier set. A semilattice is a partial order where infima for any two
elements exist.

locale semilattice =
partial_order "S" "le" for S and le (infixl "�" 50) +
assumes existence: "[[ x ∈ S; y ∈ S ]] =⇒ ∃inf. is_inf x y inf"

This declaration consists of a locale expression (the second line), and an additional
axiom. A locale expression contains one or several locale instances and an optional
for clause. Here the expression describes an instance of partial_order, which is
imported. While in the previous locale the parameters were declared in a fixes clause,
here they have moved to the for clause so that they can be referred to in the instance
of the imported locale.

Within semilattice we can now define an operation for the infimum, by
means of the definite selection operator,2 and elaborate its properties, for example
associativity:

context semilattice begin
definition meet (infixl "�" 70)

where "op � = (λx ∈ S. λy ∈ S. THE inf. is_inf x y inf)"
lemma assoc: "(x � y) � z = x � (y � z)" 〈proof 〉
...

end

2Since HOL is total, bounded λ-abstraction denotes a function that maps all arguments outside the
domain to a fixed but unknown value, about which nothing can be proved. Likewise for the definite
selection operator THE if the described element does not exist or is not unique.
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2.2 Duality

It is immediate from the axioms that the inverse relation of a partial order is again a
partial order. With locales, this can be expressed with the sublocale command:

sublocale partial_order ⊆ dual!: partial_order "S" "λx y. y � x"
〈proof 〉

The declaration consists of a locale (to the left of ⊆) called the target and a locale
expression. Based on the provided proof, the target locale is enriched by definitions
and theorems of the locale instance given in the expression. The qualifier dual
identifies these dual versions. For example, dual.is_inf is now recognised as the
dual of is_inf. The exclamation mark asserts that the qualifier is required when
referencing names in the dual instance. This prevents accidental hiding of names of
the original locale. In contrast to the expression in the locale declaration above, here
a for clause is not needed: S and � are parameters of the target.

We may now introduce syntax for the supremum predicate.

context partial_order begin
abbreviation is_sup where "is_sup ≡ dual.is_inf"

end

Its definition is already available through the sublocale declaration.
A lattice consists of a lower semilattice and a dual upper semilattice. In contrast

to the previous situation, where duality only implied new definitions and theorems,
we now need to obtain a new axiom, namely the existence of the supremum. This is
achieved by declaring a locale that imports two instances of semilattice.

locale lattice =
semilattice "S" "le" + dual!: semilattice "S" "λx y. y � x"
for S and le (infixl "�" 50)

Like for is_sup, syntax for the supremum operation could now be declared.

2.3 A Concrete Instance

Interpretation facilitates reuse of definitions and theorems from locales in other
contexts. Given a proof of an instance of the axioms within a context, the context
is enriched by instances of the theorems. To illustrate this, we consider the power set
of a set X, which is a lattice with respect to the subset relation.

The interpretation command interprets a locale in the context of Isabelle’s global
background theory. We proceed in two steps, first showing that the power set is
partially ordered:

interpretation power!: partial_order "Pow X" "op ⊆" 〈proof 〉
Since the base set X is arbitrary it is represented by a variable. The interpretation
yields theorems qualified by power—for example, power.trans,

[[x ⊆ y; y ⊆ z; x ∈ Pow X; y ∈ Pow X; z ∈ Pow X]] =⇒ x ⊆ z

and its dual power.dual.trans,

[[y ⊆ x; z ⊆ y; x ∈ Pow X; y ∈ Pow X; z ∈ Pow X]] =⇒ z ⊆ x
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The above interpretation merely instantiated the locale parameters. For lattice it
is desirable to replace definitions in the locale by corresponding concepts from the
target context. This is achieved by extending the interpretation.

interpretation power!: lattice "Pow X" "op ⊆"
where "power.meet = (λA ∈ Pow X. λB ∈ Pow X. A ∩ B)"

and "power.dual.meet = (λA ∈ Pow X. λB ∈ Pow X. A ∪ B)"

〈proof 〉
The infimum is, of course, set intersection and its dual set union. In order to meet the
definitions, the operations need to be restricted to the carrier set.

2.4 Interpretation in Generic Contexts

Interpretations occur naturally in the contexts of algebraic structures themselves. A
well-known example is the lattice of subgroups of a group.

The carrier set of a group is closed under group operations. Since this notion is
required for both the definition of groups and subgroups, we declare a locale for it.

locale closed =
fixes G and mult (infixl "·" 70) and one ("1") and inv
assumes mult_closed: "[[ x ∈ G; y ∈ G ]] =⇒ x · y ∈ G"

and one_closed: "1 ∈ G" and inv_closed: "x ∈ G =⇒ inv x ∈ G"

The locale declaration for the actual group definition imports this locale:

locale group = closed +
assumes assoc: "[[ x ∈ G; y ∈ G; z ∈ G ]] =⇒ (x · y) · z = x · (y · z)"

and l_one: "x ∈ G =⇒ 1 · x = x"
and l_inv: "x ∈ G =⇒ inv x · x = 1"

Here, the parameters of closed are not instantiated explicitly. A short-hand no-
tation is used that makes the parameters of the instance implicit parameters of the
declared locale. For details, see the locales tutorial [5].

A subgroup is a subset that is closed under group operations. This naturally leads
to the set G of all subgroups of G and the closure 〈S〉 of a set S, which is the smallest
subgroup of G that contains S. The subgroup relation itself is denoted by �.

context group begin
definition subgroup (infixl "�" 50)

where "H � K ←→ H ⊆ K ∧ closed H mult one inv"
definition groups ("G")

where "G = {H. H � G}"
definition closure ("〈_〉")

where "〈S〉 =
⋂
{H. S ⊆ H ∧ H � G}"

end

The definition of subgroup involves the predicate closed, which is generated by
the declaration of the locale closed and abbreviates its specification.



128 C. Ballarin

We are now ready to show that G is a lattice. By means of the sublocale command,
we provide an interpretation of lattice in the context of group, where the
supremum operation is set intersection, and the infimum of two subgroups is the
group generated by the union of their carrier sets:

sublocale group ⊆ sub!: lattice "G" "op �"
where "sub.meet = (λK ∈ G. λL ∈ G. K ∩ L)"

and "sub.dual.meet = (λK ∈ G. λL ∈ G. 〈K ∪ L〉)"
〈proof 〉

The group context is now enriched by instances of lattice theorems qualified by
sub—for example associativity of the join operation, sub.dual.assoc,

(λK∈G. λL∈G. 〈K ∪ L〉) ((λK∈G. λL∈G. 〈K ∪ L〉) x y) z =
(λK∈G. λL∈G. 〈K ∪ L〉) x ((λK∈G. λL∈G. 〈K ∪ L〉) y z)

3 Logic and Architecture Prerequisites

Locales provide means for building and working with large theory developments
based on small components or little theories [8]. In Isabelle, these components are the
local theories implemented by Haftmann and Wenzel [11] on top of the Isabelle/Isar
framework. While locales are implemented in the local theories framework, concep-
tually they are not closely tied to Isabelle and Isar and could be implemented in other
provers as well. Properties of the logic and facilities of a theorem prover architecture
required by locales are defined in this section.

3.1 Logic Calculus

Locales require certain properties of the calculus implemented by the prover. These,
along with notation, are introduced now.

Terms s, t, . . . and formulas A, B, . . . are distinguished, and formulas are terms.3

Theorems are sequents A1, . . . , An � B, where n ≥ 0 and the hypotheses A1, . . . , An

and the proposition B are formulas. Variables are denoted by x, y, . . ., sequences of
variables, terms and formulas by x, y, . . . etc. Free variables in theorems are implicitly
universally quantified, and theorems are closed under instantiation of variables:

A[x] � B[x]
A[t] � B[t]

Instantiation may be restricted—for example, to ensure type correctness if the logic is
typed. There is an equivalence ≡ of terms, where s ≡ t is a formula, and implication

3Alternatively, terms and formulas may be distinct syntactic categories. Then all requirements for
terms are duplicated for formulas.
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and conjunction over formulas, denoted by =⇒ and ∧ respectively. Theorems are
closed under substitution of equivalent terms:

A � s ≡ t B[s] � C[s]
A, B[t] � C[t]

3.2 Global Theories

Based on the calculus, the prover provides global theories. These are not parametric.
Locales require global background theories to store deductive information and so-
called foundational constants, which are the base for operations provided in local
theories. Global theories implement the calculus, and they provide facilities for
defining foundational constants and noting theorems. These are the operations on
global theories (thy):

base : thy

def : name → term → thy → thy

note : name → thm → thy → thy

The base theory base is the global theory that implements the logic calculus by
providing its connectives and deductive machinery. It may contain additional axioms,
operation symbols and definitions that are not part of the calculus. Examples are
Isabelle’s object logics HOL and ZF.

The prover must implement a mechanism for retrieving axioms and theorems
from a theory, and, of course, for deriving new theorems. This is not made explicit
here, and axioms and theorems in global theories are not distinguished. Constant and
theorem names are qualified—that is, are of the form q1. · · · .qk.n in general.

The operation def c t extends a global theory by the foundational constant c
along with its definition � c ≡ t. For readability, we will write def c x ≡ t instead of
def c (λx. t).

The note operation models binding a theorem: note b (� A) extends a theory by
binding � A to b . Theorems in global theories may not have hypotheses. Whether
derivability of theorems is checked depends on the prover, which—as is the case for
Isabelle—may request and check a proof.

3.3 Local Theories

Local theories are parametric. Unlike global theories, whose sets of axioms are
extensible (by definitions of foundational constants), the specification of a local
theory is fixed. New operation symbols are simulated through abbreviations, and
definitions are derived. These operations are available on local theories (lthy):

initialize : vars → form → thy → lthy

promote : (thy → thy) → lthy → lthy

abbreviate : name → term → lthy → lthy

note : name → thm → lthy → lthy
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A local theory may be obtained from a global theory by initialize x A[x]. It has the
parameters x and the specif ication A, whose only free variables are the parameters.4

The local theory inherits language and theorems of the global theory, which is called
its underlying theory; promote f changes the underlying theory of a local theory via f .
Only extensions of the underlying theory by def and note are allowed.

An operation in a local theory is introduced by adding an abbreviation:
abbreviate c t[x] causes the term t[x] to be displayed as c when a term is printed,
and c to be stored as t[x] in the internal representation when a term is read; x refers
to the parameters of the local theory that is extended. Operation symbols introduced
through abbreviate must be distinct from symbols inherited from the global theory.
In contrast to global theories, theorems in local theories may have the local theory
specification A[x] as a hypothesis: note b (A[x] � B[x]).

3.4 Morphisms

Morphisms are a key ingredient to the composition of specifications (and their
local theories) to hierarchies. They also define how local theories are interpreted
in contexts. A morphism

ϕ = (ϕn, ϕt, ϕth)

consists of three mappings: ϕn is applied to operation and theorem names, ϕt maps
terms, and ϕth transforms theorems. Application of a morphism ϕ to a name n,
term t or theorem A � B is denoted by ϕ(n), ϕ(t) and ϕ(A � B), respectively.
Composition of morphisms is by component and denoted by “◦”.

There are the four primitive morphisms:

qual(q) = (n �→ q.n, t[c] �→ t[q.c], th[c] �→ th[q.c])
inst(t/x) = (id, t′[x] �→ t′[t], th[x] �→ th[t])

intp(A � B) = (id, id, B � C �→ A � C)

rewr(A � s ≡ t) = (id, t′[s] �→ t′[t], A � C[s] �→ A � C[t])
All morphisms used in locales are composed from these; id denotes the identity
morphism. The qualif ication morphism qual(q) prepends operation and theorem
names with the qualifier q. Qualification of operation names is not necessarily a
morphism on theorems. It is, though, in the context of a local theory, where operation
names are bound names, and thus are renamed in definitions and theorems in a
consistent manner.

For the other three to be morphisms, the underlying logic must enjoy the prop-
erties outlined in Section 3.1. The instantiation morphism inst(t/x) instantiates a
variable x by a term t. If some specification A entails some other specification B

4Although the parameters are represented by variables, they may not be instantiated within the
local theory itself. That would violate the contract of the specification and prohibit interpretation. In
the implementation of local theories in Isabelle parameters are represented by free, not schematic
variables.
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then theorems may be lifted from the weaker to the stronger context. This is known
as theory interpretation, and we denote the corresponding interpretation morphism by
intp(A � B). Finally, the rewrite morphism rewr(A � s ≡ t) replaces all occurrences
of s in terms and theorems by t.

4 Locales

Locales are a means of persisting local theories, and they provide flexible means of
reuse: a locale declaration may extend one or several locales (import), a locale can
be made available in other locales, or in other kinds of contexts the prover provides
(interpretation). Locales are defined in this section, and their semantics is given by
mapping them to local theories.

The core algorithm will be presented in pseudo code based on Standard ML [16].
Finite sequences (lists) will be denoted by square brackets; “:” is infix notation for the
cons operator and “@” concatenation. Juxtaposition denotes function application,
and x � f is an alternative notation for f x. The function fold folds a binary operation
f over a list:

fun fold f [] y = y
| fold f (x : xs) y = fold f xs ( f x y)

Parentheses are used for morphism application: ϕ(x).

4.1 Definition

Locales are named, and there is a locale environment lenv that maps locale names to
locales. A locale lenv n consists of these components:

– The parameters parms n, a sequence of variables x.
– The specif ication spec n, a proposition A.
– The declarations decls n, a sequence of declarations of either the form

abbreviates c t or notes b B. Declarations are templates that will eventually be
converted to the corresponding local theory operations—that is, they correspond
to definitions and theorems inside the locale.

– The dependencies deps n, a sequence of pairs of locale names and morphisms.
Such a pair (m, ϕ) is called locale interpretation. Dependencies model the rela-
tionship between locales as given by import and sublocale declarations.

Parameters and specification are the head of a locale, declarations the body part.
Parameters, specification and declarations are also called locale elements. In the
sequel, n is generally used instead of lenv n when there is no danger of confusion.
Occasionally, locales are denoted as 4-tuples where the components appear in the
order (parms n, spec n, decls n, deps n).

4.2 Mapping Locales to Local Theories

A local theory is obtained from a locale through application of local theory
operations, which are generated from the locale elements. For a locale without
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dependencies this is straightforward. For a locale with dependencies, it involves tra-
versing the graph defined by the locale dependencies. In both cases, this takes place
in the presence of some global background theory �0 and the locale environment
lenv.

4.2.1 Locales without Dependencies

The case of a locale without dependencies is considered first. The local theory
corresponding to a locale is obtained by initialising a local theory from its parameters
and specification and adding the declaration elements. The latter is achieved by
means of the activate operator:

fun activate (n, ϕ) ctxt =
fold (fn abbreviates (c ≡ t) ⇒ abbreviate ϕ(c ≡ t)

| notes b B ⇒ note ϕ(b) ϕ(B)) (decls n) ctxt

It folds local theory operations over the sequence of declaration of the locale n. Using
this operator, the local theory corresponding to locale n is

�0 � initialize (parms n) (spec n)

� activate (n, id)

The morphism argument ϕ enables to transform declarations before applying them
to the local theory. This is required for resolving locales with dependencies.

4.2.2 Locales with Dependencies

If a locale n has the interpretation (m, ϕ) as a dependency this means that the
declarations of m, transformed by ϕ, are part of the local theory corresponding to
n. For this to be sound, ϕ must map the parameters of the interpreted locale m
to terms in the local theory and the specification of m to a theorem of the local
theory.

Since m may have dependencies as well, obtaining the local theory corresponding
to n is a recursive process, which traverses the locale dependency graph given by the
dependencies of all locales in the locale environment, and computes an enumeration
of locale interpretations, all of whose declarations become part of the local theory
corresponding to n. It is useful to allow cycles in the locale dependency graph—
for example, for situations as in Section 2.2, where the locale partial_order
has an interpretation of itself as a dependency. See also Fig. 1, which shows the
locale dependency graph of that example. For obtaining a concrete local theory, the
enumeration must be finite.

The enumeration of locale dependencies is based on the principle that an enu-
meration of locale interpretations contains at most one interpretation for each locale
instance. This avoids duplication of declarations and enables to deal with cycles to a
certain extent. A locale instance is a pair of locale name and terms (n, (t1, . . . , tk))
where k is the number of parameters of n. The locale instance of a locale inter-
pretation (n, ϕ) is (n, (ϕ(x1), . . . , ϕ(xk))), where x1, . . . , xk are the parameters of
n. The notion of a locale instance is thus an abstraction of locale interpretation,



Locales: A Module System for Mathematical Theories 133

Fig. 1 Locale dependency
graph for the examples in
Section 2

taking only the effect of the interpretation on the locale parameters into account.5

A locale instance (n, s) subsumes another instance (n, t) if there is a substitution σ

such that σ(si) = ti simultaneously for all i. Depending on the logic, subsumption
may be modulo an equational theory—for example, modulo α, β and η-conversion
in the case of higher-order logic. Lifting subsumption to locale interpretations is
straightforward: (n, ϕ) � (m, ψ) if n = m and the locale instance of (n, ϕ) subsumes
the locale instance of (m, ψ). Subsumption of locale interpretations is a quasi order—
that is, it is reflexive and transitive.

We are now ready to introduce the roundup algorithm, which is the key to
activating locales with dependencies:

fun add χ (n, ϕ) (interps, marked) =
if ∃(m, ψ) ∈ marked. (m, ψ) � (n, χ ◦ ϕ)

then (interps, marked)

else
let val (interps′, marked′) =

fold (add (χ ◦ ϕ)) (deps n) ([], marked ∪ {(n, χ ◦ ϕ)})
in (interps @ interps′ @[(n, χ ◦ ϕ)], marked′) end

fun roundup activate (n, ϕ) ctxt =
let val (interps, _) = add id (n, ϕ) ([], ∅)

in fold activate interps ctxt end

5It does not matter whether this is achieved through instantiation morphisms, rewrite morphisms or
a combination of both.
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roundup activate (n, ϕ) recursively processes the locale interpretation (n, ϕ) and its
dependencies. It computes the enumeration of locale interpretations for (n, ϕ) and
folds the operation activate over it. The local theory corresponding to locale n with
dependencies is defined thus:

�0 � initialize (parms n) (spec n)

� roundup activate (n, id)

The roundup operator traverses the locale dependency graph depth-first. It is
important to note that the depth-first search is not on locales but on the graph of
locale instances induced by the locale dependency graph reachable from the initial
instance (n, (ϕ(x1), . . . , ϕ(xk))).

The function add performs the traversal. add χ (n, ϕ) (interps, marked) extends
the enumeration interps by all nodes reachable via the morphism χ pointing to
the interpretation (n, ϕ). Nodes subsumed by nodes that are already marked and
their descendants are skipped to avoid duplicate declarations. The enumeration of
interpretations is in post-fix order. Post-fix is necessary so that declarations in the
dependencies of a locale are available to the declarations in its body.

Roundup terminates if the locale dependency graph is acyclic. It also terminates
if every path eventually reaches a locale instance that is subsumed by an instance
earlier on the path.

Roundup omits instances that are subsumed by instances occurring earlier in the
enumeration. Instances subsumed by later instances are not removed, because there
might already be instances in the enumeration whose declarations depend on such
an instance. This leads to redundancy in enumerations if a specific interpretation of
a locale is declared first and later a more general interpretation of the same locale is
added.6

4.3 User-Level Operations

Most user-level operations of locales were encountered in Section 2. They are: locale
declaration, entering the context of a locale, adding theorems, definitions and syntax
abbreviations to a locale, introducing new locale dependencies and interpreting
locales in the background theory. In addition to these, locales may also be interpreted
in Isar proof contexts. The operations are now explained in terms of locales and
local theories. They operate on a global state consisting of the background theory
�0 and the locale environment lenv. In Isabelle, the locale environment is part of
�. The background theory is initialised to base, the locale environment is initially
empty.

6That might be necessary when “bootstrapping” a development, but in practice it appears to happen
rarely.
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4.3.1 Locale Declaration

A locale declaration consists of an import expression, parameter declarations and
assumptions. The general form of a locale declaration is this:

locale n = q1 : n1 t1 + . . . + qk : nk tk

for x + fixes y + assumes a1 : A1, . . . , a j : A j

It adds a new locale named n, where x and y are the parameters, q1 : n1 t1 + . . . + qk :
nk tk for x is the imported expression, and A1, . . . , A j are the assumptions. Each
qi : ni ti denotes a locale instance (ni, ti) with qualifier qi. The ai are the names of
the assumptions. Of the parameters, the x may occur in the imported expression and
both x and y may occur in the assumptions. The latter are versions of the user input
where free variables except parameters are universally closed.

The specification of the locale is combined from the import expression and the
assumptions. Let xi = parms ni be the parameters of locale ni. Instantiation and
qualification are described by the instantiation morphism

σi = inst(ti/xi) ◦ qual(qi).

Let Bi = spec ni be the specification of locale ni. The specification of the new locale
involves the locale predicate

Pn x y ≡ σ1(B1) ∧ . . . ∧ σk(Bk) ∧ A1 ∧ . . . ∧ A j

and is A ≡ Pn x y.
By definition the specification A of n implies the specification σi(Bi) for each

locale instance (ni, ti). This enables to lift theorems from the instance to the new
locale via the interpretation morphism

τi = intp(A � σi(Bi)).

The locale predicate is added to the background theory—that is, �0 becomes

�0 � def Pn x y ≡ σ1(B1) ∧ . . . ∧ σk(Bk) ∧ A1 ∧ . . . ∧ A j.

The locale environment is extended such that

lenv n = ([x, y], A,

[notes a1 (A � A1), . . . , notes a j (A � A j)],
[(n1, τ1 ◦ σ1), . . . , (nk, τk ◦ σk)]).

Example The declaration of locale partial_order in Section 2.1 defines the locale
predicate partial_order by extending the background theory via

def partial_order S le ≡
(∧

x. x ∈ S =⇒ le x x
)
∧ . . .
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For brevity, only reflexivity is shown; antisymmetry and transitivity are indicated by
dots. The locale environment is extended such that

lenv partial_order

= ([S, le], partial_order S le,

[notes refl
(∧

x. x ∈ S =⇒ le x x
)

, notes antisym . . . , notes trans . . .], [])

holds. The locale has no import and consequently no dependencies.

4.3.2 Working in the Context of a Locale

The context command enables to access a locale. It is followed by a block of
declarations, which form the body:

context n begin . . . end

In the scope of the body, a current local theory �1 is maintained. Initially it is the
local theory corresponding to n:

�0 � initialize (parms n) (spec n)

� roundup activate (n, id).

Declarations in the body update the current local theory and add declarations to
the locale. When leaving the scope of the context command, the current theory is
discarded, but it can be recreated from the declarations stored in the locale when
entering the locale for the next time.

The commands that are available in the body of the context command are syntax
abbreviation, theorem declaration and definition:

abbreviation c where c ≡ t

theorem b : B

definition c where c ≡ t

The first two are straightforward, for they correspond directly to local theory
operations and locale declarations. For the syntax abbreviation command the current
local theory is updated via abbreviate c t, and the declaration abbreviates c t is added
to the declarations of the locale n. Likewise, for a theorem declaration the current
local theory is extended by note b (A � B) and the declaration that is added to the
locale is notes b (A � B).

Definition is more complicated, for it involves defining a foundational constant
in the background theory. Let x be the parameters of the locale n and A its
specification. The foundational constant is n.c, and its definition is that of c lifted
over the parameters of the locale. That is, the background theory is replaced by this:

�0 � def n.c x ≡ t
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The definition is also made in the underlying theory of the current local theory, which
is then extended by the foundational constant.

�1 � promote (def n.c x ≡ t)

� abbreviate c (n.c x)

� note c_def (A � c ≡ t)

This becomes the new current local theory.
To persist the change, the declarations abbreviates c (n.c x) and notes c_def (A �

c ≡ t) are added to the locale.

Examples Further declarations from Section 2.1 can now be explained.

1. The definition of is_inf in the locale partial_order creates the foundational
constant partial_order.is_inf in the background theory:

def partial_order.is_inf S le x y w ≡ le w x ∧ le w y ∧ . . .

The locale itself is extended by an abbreviation is_inf and the theorem is_inf_def:

lenv partial_order

= ([S, le], partial_order S le,

[notes refl . . . , notes antisym . . . , notes trans . . . ,

abbreviates is_inf (partial_order.is_inf S le),

notes is_inf_def (is_inf x y w ←→ le w x ∧ le w y ∧ . . .)], [])
2. The locale semilattice extends partial_order. This is reflected in the definition

of the locale predicate, which is based on the locale predicate of the extended
locale.

def semilattice S le

≡ partial_order S le∧
(∧

x y. x ∈ S ∧ y ∈ S =⇒ ∃inf . is_inf x y inf
)

The locale environment entry only contains declarations related to semilattices:

lenv semilattice

= ([S, le], semilattice S le,

[notes existence
(∧

x y. x ∈ S ∧ y ∈ S =⇒ ∃inf . is_inf x y inf
)
],

[(partial_order, intp(semilattice S le � partial_order S le))])
Import of partial_order is reflected in the dependency. It incorporates decla-
rations from partial_order, lifting them to the context of semilattices via the
interpretation morphism intp(semilattice S le � partial_order S le).
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Enumeration of interpretations for (semilattice, id) via the roundup algorithm
yields a sequence with two elements:

(partial_order, intp(semilattice S le � partial_order S le))

(semilattice, id)

The local theory corresponding to this sequence of interpretations is obtained by
applying the morphisms to the declarations of the locales, which lifts them to the
context of semilattice:

�0 � initialize [S, le] (semilattice S le)

� note refl (semilattice S le �
∧

x. x ∈ S =⇒ le x x)

� . . .

� abbreviate is_inf (partial_order.is_inf S le)

� note is_inf_def (semilattice S le � is_inf x y w ←→ le w x ∧ le w y ∧ . . .)

� note existence

(semilattice S le �
∧

x y. x ∈ S ∧ y ∈ S =⇒ ∃inf . is_inf x y inf )

Declarations for antisymmetry and transitivity have again been indicated by dots.

4.3.3 Sublocale Declaration

Theory interpretation relations between locales are established with the sublocale
command.

sublocale n ⊆ q1 : n1 t1 + . . . + qk : nk tk where s ≡ u 〈proof 〉
This extends the target locale n with interpretations of the locale instances (ni, ti).
Equations of the optional rewrite clauses, identified by the keyword where after the
locale instances, enable to specify more elaborate mappings from the languages of
the locale instances to the target locale than what is possible through instantiation.
This is intended for (but not restricted to) mapping derived operations to suitable
concepts in the target locale as illustrated in Section 2.4.

Let xi again be the parameters of ni and Ai the specification. Let A be the
specification of n. The instantiation morphisms of the locale instances are

σi = inst(ti/xi) ◦ qual(qi).

Interpretation is based on these theorems:

A � σ(A1), . . . , A � σ(Ak)

A � s1 ≡ u1, . . . , A � s j ≡ u j

To simplify establishing them, the local theory corresponding to n is provided when
presenting the proof obligations. Proofs are provided by the user. The first set of
theorems gives rise to the interpretation morphisms

τi = intp(A � σi(Ai)),
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the second set to the rewrite morphism υ:

υi = rewr(A � si ≡ ui)

υ = υ j ◦ . . . ◦ υ1

Finally, the locale environment is changed at n by adding the interpretations (ni, υ ◦
τi ◦ σi) for i = 1, . . . , k after the existing dependencies.

Examples We are now ready to explain the sublocale declarations from Section 2.

1. The sublocale declaration at the beginning of Section 2.2,

sublocale partial_order ⊆ dual: partial_order "S" "λx y. y � x"

extends contexts generated from the locale partial_order by facts for the dual
partial order induced by λx y. le y x. This is achieved by adding a dependency on
itself to the locale partial_order.
First, duality needs to be established. This proof obligation is generated, and a
proof supplied by the user:

partial_order S le � partial_order S (λx y. le y x)

Based on the theorem, the locale is extended by a dependency, which is an
interpretation that also takes care of qualification and instantiation of the order
relation by its dual:

lenv partial_order

= ([S, le], . . . ,
[(partial_order, intp(partial_order S le � partial_order S (λx y. le y x)) ◦

inst(λx y. le y x/ le) ◦ qual(dual)])
After this extension, roundup of (semilattice, id) yields a sequence of three locale
interpretations:

(partial_order,intp(semilattice S le � partial_order S (λx y. le y x)) ◦
inst(λx y. le y x/ le) ◦ qual(dual)),

(partial_order,intp(semilattice S le � partial_order S le)),

(semilattice, id)

This corresponds to the sequence

(partial_order, [S, (λx y. le y x)])
(partial_order, [S, le])

(semilattice, [S, le])
of three locale instances, and because

inst(λx y. le y x/ le) ◦ inst(λx y. le y x/ le) ≡ id

in the λ-calculus the sequence of interpretations is complete.
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2. The sublocale declaration in Section 2.4 establishes the lattice of subgroups:

sublocale group ⊆ sub: lattice "G" "op �"
where "sub.meet = (λK ∈ G. λL ∈ G. K ∩ L)"

and "sub.dual.meet = (λK ∈ G. λL ∈ G. 〈K ∪ L〉)"
Supremum and infimum on subgroups are identified in rewrite clauses, which
yield rewrite morphisms. Three proof obligations are generated:

group G mult one inv � lattice G op �

group G mult one inv � semilattice.meet G op � = (λK ∈ G . λL ∈ G . K ∩ L)

group G mult one inv � semilattice.meet G (λK L.L � K) = (λK ∈ G .λL ∈ G .〈K ∪ L〉)
The notations sub.meet and sub.dual.meet are unfolded to
semilattice.meet G op � and semilattice.meet G (λK L. L � K) respectively in
the obligations.7 After discharging the proof obligations, the locale group is
extended by a dependency to lattice.

4.3.4 Interpretation

These commands interpret locales in global theories and Isar proof contexts,
respectively:

interpretation q1 : n1 t1 + . . . + qk : nk tk where s ≡ u 〈proof 〉
interpret q1 : n1 t1 + . . . + qk : nk tk where s ≡ u 〈proof 〉

They are discussed in detail in an earlier publication on locales [4]. Interpretations
for all given locale instances, and for all locale instances reachable from these by
the roundup algorithm, are added immediately to the global theory or proof context.
Equations refine the interpretations as in the sublocale command. The interpreted
instances are tracked (they correspond to marked instances in roundup), and inter-
pretations subsumed by earlier interpretations, possibly from previous interpretation
commands, are skipped.

Tracking of interpreted instances enables providing two additional services in
global theories: whenever a declaration is added to a locale, it is propagated to the
global theory for all instances of that locale in the global theory; likewise, whenever
a dependency is added to a locale, interpretations of locale instances newly entailed
by existing instances are added to the global theory. In this way, global theories
“subscribe” to locales via interpretations like locales do to locales via sublocale
declarations.

Such facilities are not provided for interpretation in proof contexts: these disap-
pear after closing, and the Isar proof language does not permit extending locales
from within the body of a proof.

7These abbreviations are declared in lattice and are only introduced to group by the sublocale
declaration. To simplify the notation in where clauses, from Isabelle 2011-1, they are already
available when the where clauses are processed.
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5 Other Theory Module Structuring Mechanisms

Locales employ interpretation as the main means of reuse. This, and the high amount
of automation obscure how locales are related to more commonly known structuring
mechanisms. In this section, relations to ML-style modules, type classes and also
mixin modules, the latter of which are found in modern object-oriented languages,
are studied.

5.1 ML-Style Module Systems

The module system of the programming language ML (actually, Standard ML [16])
is a well-understood means for structuring software developments. Locales enable
modular development of formal theories. Both languages are different, nonetheless
modularity provided by locales can be explained with notions borrowed from ML
modules.

In ML a module consists of component bindings, which represent data fields
and code. A signature consists of component declarations, which merely assert the
component’s types. A module m is said to implement a signature I, written m : I, if
for every declaration in I there is a binding in m, and each bound value in m is of the
type given in the corresponding declaration. This arrangement enables a programmer
to code against a module without having it available. The signature is sufficient.

The situation is analogous in formal theory developments, where if the com-
ponents bindings of modules contain proofs and the component declarations of
signatures contain the theorem statements, knowing the signature of an imported
theory module is sufficient to use its theorems when providing new proofs.

For explaining locales, this idea is now elaborated. The notation for ML-style
modules from Harper and Pierce [12] is modified to accommodate theorems and
proofs. A formal development P consists of module and signature bindings:

P ::= B+ B ::= module m[: I] = M | signature J = I

A module can be a basic module consisting of component bindings, the reference
to a module variable (unqualifed or qualifed), a functor, or be obtained by functor
application.8

F, M :: = mod
{
CB+} | m | M.m | λm : I.M | F(M)

CB :: = val x = t | abbrev y = t | thm X = T | module m = M | open M

Conceptually, a component binding either binds a value to its definition or it binds
a proof. To model local theories more adequately, value bindings, which instantiate
parameters, and syntax abbreviations are distinguished. Qualified and unqualified
import of modules is also available.

Terms include values and values bound in nested modules. Likewise for proofs.

t ::= . . . | x | M.x T ::= 〈� t〉 | X | M.X

Rather than denoting proofs explicitly, we write 〈� t〉 for a proof of the theorem � t.

8The grammar permits higher-order modules, but they will not be used.
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Of signatures only the basic ones are required:

I :: = sig
{
CD+}

CD :: = val x | abbrev y = t | thm X : � t | module m = M

The component declaration syntax of signatures corresponds to the component
binding syntax of modules. The notation thm X : � t says that X will be bound to
a proof of � t.

In terminology of modules and signatures, a locale is a functor that maps a
parameter module, consisting of several value bindings and a theorem binding, to a
module, which extends the parameter module by abbreviation bindings and (typically
many) additional theorem bindings. Developing this connection formally is beyond
the scope of this discussion, but we will illustrate key points in a series of examples,
which are taken from the previous sections.

The locale created in the initial declaration of the locale partial_order in
Section 2.1 corresponds to a functor whose parameter has the signature

signature PO =
sig { val S val le thm partial_order : � partial_order S le }

and the functor itself is this:

module po_fun = λ po : PO.
mod {

val S = po.S val le = po.le
thm partial_order = po.partial_order
thm refl = 〈� ∧

x. x ∈ S =⇒ le x x〉
thm antisym = . . . thm trans = . . .

}

Reflexivity, antisymmetry and transitivity are derived from the theorem parameter.
In favour of concise notation this is not made explicit here. The definition of is_inf
extends the functor to this:

module po_fun = λ po : PO.
mod {

val S = po.S val le = po.le
thm partial_order = po.partial_order
thm refl = 〈� ∧

x. x ∈ S =⇒ le x x〉
thm antisym = . . . thm trans = . . .
abbrev is_inf = partial_order.is_inf S le
thm is_inf_def = 〈� is_inf x y w ←→ le w x ∧ le w y ∧ . . .〉

}

Composition of locales is achieved through interpretation, either by sublocale
declarations, or through interpretations generated from imports in locale declara-
tions. Within locales, interpretations are stored as dependencies, and are resolved
by the roundup algorithm. The functor po_fun above models extensibility of the
locale partial_order by syntax abbreviations and theorems. In order to model
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extensibility through dependencies, the functor is split into a body functor, modelling
the body part of the locale, and a functor for dependencies:

module po_body = λ po : PO.
mod {

thm partial_order = po.partial_order
thm refl = 〈� ∧

x. x ∈ S =⇒ le x x〉
· · ·

}

module po_deps = λ po : PO.
mod {

val S = po.S val le = po.le
open po_body(po)

}

The body functor contains no value bindings, these have moved to the dependency
functor, which imports the body functor. When adding a dependency to a locale,
this amounts to extending the dependency functor by import declarations or module
bindings of applications of body functors of locales as enumerated by roundup.
To illustrate this, we consider adding the dependency of its dual to the locale
partial_order. The dependency functor changes to this:

module po_deps = λ po : PO.
mod {

val S = po.S val le = po.le
module dual = po_body(

mod {
val S = S val le = (λx y. le y x)

thm partial_order = 〈� partial_order S le〉
})

open po_body(po)
}

A second instance of po_body is applied to the partial order obtained by inverting the
order relation. The resulting submodule is bound to the module variable dual in order
to achieve qualification of identifiers. Within the dependency functor the “wiring”
of parameters of the body functors takes place. Notably, while both applications of
po_body share the parameter S, one application is to the order relation le, the other
to its inverse λx y. le y x. The theorem partial_order in the functor argument of the
module binding dual is derived from the incoming theorem po.partial_order via the
theorem provided in the dependency.

5.2 Type Classes

Isabelle’s type classes are an adaption of Haskell-style type classes to the type system
of Gordon’s HOL prover. They replace the plain Hindley–Milner polymorphism of
the latter by an order-sorted polymorphism where the sorts are finite sets of classes.
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Nipkow [17] discusses the idea and Wenzel [24] shows how the integration with the
logic can be done in a sound manner.

A class represents the set of types for which certain operation symbols are
available (systematic overloading as in Haskell) and for which certain axioms hold.
Classes are ordered and the overloaded operations and axioms of a superclass are
available in each of its subclasses. A sort denotes the set of types present in each of
the contained classes. The order on classes ⊆ induces an order on sorts �. Both are
reflexive and transitive.

Instantiation of classes is available in two flavours: arity declarations of type
constructors and class inclusion. An arity declaration tc :: (s1, . . . , sn) c means that the
type constructor tc applied to types of sorts s1, . . . , sn yields a type of class c. Class
inclusion c′ ⊆ c means that all types in c′ also belong to c. Arities and class inclusion
must be established formally. That is, proofs that the axioms of class c are fulfilled
need to be supplied in both cases.

Both forms of instantiation can be expressed in the framework of locales through
interpretation. To illustrate this, here is a formalisation of partial orders and semilat-
tices with type classes:9

axclass order_syntax ⊆ type

consts le :: "’a::order_syntax ⇒ ’a ⇒ bool" (infixl "�" 50)

axclass partial_order ⊆ order_syntax
refl: "x � x"
antisym: "[[ x � y; y � x ]] =⇒ x = y"
trans: "[[ x � y; y � z ]] =⇒ x � z"

definition is_inf where "is_inf x y w ←→
w � x ∧ w � y ∧ (∀z. z � x ∧ z � y −→ z � w)"

The class partial_order is declared in two steps: order_syntax extends the class
type of all types. At this level the overloaded operation le is introduced. The class
is then extended with axioms, obtaining partial_order. The predicate is_inf is,
by type inference, also associated to order_syntax. A class for (lower) semilattices
is obtained by a further extension:

axclass semilattice ⊆ partial_order
existence: "∃inf. is_inf x y inf"

definition meet (infixl "�" 70)
where "op � = (λx y. THE inf. is_inf x y inf)"

9Isabelle’s type classes are also known as axiomatic type classes. The examples here are deliberately
based on the old user interface in Isabelle 2009, because it provides more direct access to the
discussed mechanisms than the combination of type classes and locales, called constructive type
classes, from later versions. The structures’ carrier is not made explicit. This is merely a convenience,
not a restriction of type classes.
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5.2.1 Class Inclusion

A natural example for class inclusion through instantiation are total orders, which
are partial orders that fulfill an additional axiom:

axclass total_order ⊆ partial_order
total: "x � y ∨ y � x"

On the other hand, they are lattices, and the class hierarchy can be changed by adding
a class inclusion relation with an instance declaration:

instance total_order ⊆ semilattice 〈proof 〉
The formalisation with locales is analogous. The locale for total orders is obtained by
extending the locale partial_order from Section 2, and the inclusion is established
with a sublocale declaration:

locale total_order =
partial_order "S" "le"for S and le(infixl "�" 50)+
assumes total: "[[x ∈ S; y ∈ S]] =⇒ x � y ∨ y � x"

sublocale total_order ⊆ lattice "S" "le" 〈proof 〉
Since the second argument of the sublocale command is an expression, lattices other
than the order relation le could be interpreted as well. This is not possible with class
inclusion, where the second argument is only a class name.

5.2.2 Type Instantiation

There are two ways of translating type instantiation to locales, and which one
is applicable depends on the arity of the type constructor. For type constructors
without parameters—that is, for primitive types—instantiation is achieved through
interpretation in the background theory. For type constructors with parameters, the
interpretation is relative to a locale.

The first example involves the primitive type nat of natural numbers, which is
totally ordered by magnitude. Like declaration, type instantiation of classes proceeds
in two steps:

instance nat :: order_syntax

makes the operation le available for nat. It can then be defined (using a variant of
the definition command with reduced syntactic checks):

defs (overloaded) le_nat_def: "(m::nat) � n ≡ m ≤ n"

Finally, the validity of the instance is shown, using facts of the natural numbers.

instance nat :: total_order 〈proof 〉
The corresponding construction is achieved in locales via an interpretation in the
background theory:

interpretation nat: total_order "UNIV::nat set" "op ≤" 〈proof 〉
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An instantiation of a type constructor with parameters requires a locale that
represents the sorts of the type parameters. For example, the order on pairs can
be defined based on the orders of the left and right components. First, again the
formalisation with type classes. Let “*” be the type constructor for pairs. The first
instance declaration makes the syntax available for pairs:

instance * :: (order_syntax, order_syntax) order_syntax

There are several ways of defining an order relation on pairs. We choose the
lexicographic order:

defs (overloaded) le_pair_def: "x � y ≡
if fst x �= fst y then fst x � fst y else snd x � snd y"

This order is partial if the orders on the left and right components are partial. It is
total, if the orders on the components are total. Such a mapping of one class hierarchy
to another is common, and it can be expressed through two instance declarations.

instance * :: (partial_order, partial_order) partial_order
〈proof 〉

instance * :: (total_order, total_order) total_order
〈proof 〉

Representing these instantiations in locales requires a target locale per arity. In the
first instantiation both parameters are partial orders:

locale pair_partial_order =
left: partial_order "S1" "le1" + right: partial_order "S2"
"le2"for S1 and le1 (infixl "�1" 50) and S2 and le2 (infixl "�2" 50)

begin
definition le_lex (infixl "�lex" 50) where "x �lex y ←→
(if fst x �= fst y then fst x �1 fst y else snd x �2 snd y)"

end

The definition of the combined order relation op �lex takes place in the target
locale, and the dependency is introduced with this sublocale declaration:

sublocale pair_partial_order ⊆ lex:
partial_order "S1 × S2" "op �lex" 〈proof 〉

In the target locale for the second instantiation both order relations are total orders:

locale pair_total_order =
left: total_order "S1" "le1" + right: total_order "S2" "le2"
for S1 and le1 (infixl "�1" 50) and S2 and le2 (infixl "�2" 50)

This is a special case of the previous target locale, and so the definition and
theorems can be carried over from pair_partial_order and, by transitivity of the
dependency relation, from its dependencies with a first sublocale declaration:

sublocale pair_total_order ⊆
pair_ partial_order "S1" "le1" "S2" "le2" 〈proof 〉
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Fig. 2 Locale dependency graph for the examples in Section 5.2

The interpretation representing the instantiation follows:

sublocale pair_total_order ⊆ lex: total_order "S1 × S2" "op �lex"
〈proof 〉

The resulting locale dependencies are shown in Fig. 2.

5.2.3 Comparison

As a mechanism for structuring theory modules, type classes are relatively weak.
The type system does not provide dependent types, and in some systems, including
Isabelle, a class is restricted to a single type parameter. Locales do not have these
shortcomings. On the other hand, classes provide more automation.

A deeper comparison is possible by observing that in terms of a functorial module
system type classes are the signatures and instance declarations are the functors.
See also Harper and Pierce [12], who discuss this relationship for Haskell’s type
classes. The order-sorted polymorphism of Isabelle’s type classes admits principal
types and therefore sort information can be computed by type inference. This means
that functor applications are computed “on the fly” when automatic tools such as
Isabelle’s rewrite engine (commonly known as the simplif ier) are active.

Locales compute functor applications by resolving locale dependencies with the
roundup algorithm. Since this is only executed when entering a context target, locales
are required that serve as working contexts. Target locales express specification
situations that are the focus of particular mathematical analyses. A type instantiation
tc :: (s1, . . . , sn) c can be translated to the language of locales by providing a target
locale that imports the locales corresponding to s1, . . . , sn and adding c as a depen-
dency by showing that the target locale is a sublocale of c. If there is another type
instantiation tc :: (s′1, . . . , s′n) c′ of the same type constructor and s1 � s′1, . . . , sn � s′n,
then it needs to be shown that the target locale of the former type instantiation is a
sublocale of the latter. This enriches the working context by information that would
be inferred by type classes.
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Type instantiation of primitive types is a special case and dealt with by interpreta-
tion in the global background theory. Class inclusion declarations translate directly
to sublocale declarations.

5.3 Beyond Parameter Substitution

Many module systems have in common that the desired ways of reuse must be
anticipated. For example, in the case of a functor, only the parameters can be
instantiated when the functor is applied. It is not possible to identify components
defined in the body of one functor with components of some other functor. In
general, when combining two modules, components of one may need to be identified
with components of the other. This is known as the coherence problem [12]. The
diamond problem, where one module is inherited through two different paths in an
inheritance diagram, is a special case.

5.3.1 Mixin Modules

In object-oriented programming languages the coherence problem occurs with
multiple inheritance. A solution adopted by some languages is to restrict multiple
inheritance to classes that do not encapsulate state—that is, without member fields.
Coherence is achieved by redefining a method inherited from more than one super-
class such that the desired version is called. Usually, one superclass with member
fields is allowed. The others are said to be mixed in. This approach is known as mixin
modules [1, 6]. Terminology varies. For example, in the programming language Scala,
classes that are amenable to mixing in with other classes are called traits [19].

The coherence problem also exists when combining mathematical theories. Here,
usually some base operations are specified via axioms; other, derived operations are
defined in terms of the base operations. A natural representation of such a theory
module as a functor puts the base operations in the parameter signature and the
derived operations in the functor body. We have done so in the locale examples in
Section 2, where the order relation le is a base operation of the partial_order
locale and the group operations are base operations of groups. Supremum and
infimum and the subgroup relation are derived.

When transporting the theorems of a theory module to some other context,
replacing the base operations only is in general not sufficient. In Section 2.3 the
supremum and infimum operations were mapped to set operations that already
existed in the background theory. Likewise, in Section 2.4, they were mapped to
group operations of the target locale. Locales enable replacing derived operations by
means of rewrite morphisms. There is an analogy to redefining a method in a class:
in either case the modified component is not a parameter. In other words, the change
is not anticipated. The soundness of rewrite morphisms is rooted in the underlying
logical system.

5.3.2 Equivalent Formalisations

An important use case of rewrite morphisms, other than the one described above,
are equivalent formalisations. Often there is not only one (the canonical) set of base
operations for a mathematical theory. For example, while the base operations of
groups are usually the binary operation, unit and inverse, the latter two are unique
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in a semigroup (if they exist) and they can be formalised as derived operations.
Gunter [9] proposed this, presumably because fewer parameters are simpler to
manage. A more involved example are lattices, which allow for an alternative set of
axioms where supremum and infimum are the base operations. This is elaborated
in Fig. 3. The top part shows the formalisation based on partial orders (like the

Fig. 3 Two formalisations of lattice
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example in Section 2, but for conciseness omitting the carrier set). Beneath follows
the alternative formalisation. At the bottom, equivalence of the two locales is
established formally with two circular sublocale declarations. It is worth noting that
roundup terminates both when entering the context of lattice and when entering
the context of lattice’. The arrangement achieved with these declarations makes
theorems from one formalisation of lattice available in the other and vice versa.

The roundup algorithm operates on locale instances, which are an abstraction of
locale interpretations: if there are two interpretations such that the effect of both
their morphisms on the locale parameters is the same, then only one interpretation
will be generated (the one that appears first in the enumeration). This means that
there cannot be two interpretations that agree on the parameters but map a derived
operation, via a rewrite morphism, to different (but equivalent) terms. In such a
situation, a possible solution is choosing an alternative formalisation where the
operation in question is a parameter.10

6 Conclusion

Locales are a powerful tool for organising mathematical knowledge. They provide
commands for declaring locales, entering the context of a locale, extending locales,
identifying logical relations between locales and translating the knowledge of a locale
to other contexts—in particular, global theories and proof contexts. And, locales can
be integrated with local theories, an abstraction of various forms of theories and
contexts found in Isabelle, but which are not fundamentally linked to Isabelle or to
its logic.

Locales are organised in a dependency graph that encodes the logical relations
between them. A locale is persisted mathematical knowledge that can be “brought
to life” by converting it to a local theory, in which reasoning may take place.
This is called activation, and relations from the dependency graph are resolved by
the roundup algorithm. Activation makes locales dynamic: declarations added to a
locale are propagated to all instances automatically. This enables users to provide
definitions, theorems and interpretations, including locale dependencies, in an order
that is natural for the mathematics that is being formalised.

Activation is along morphisms. A locale can be activated to its induced local
theory via the identity morphism, or, by interpretation, to other target contexts.
For interpretation, the image of the specification under the morphism must be
derivable in the target context. Interpretation makes locales first-order functors. By
tracking interpreted instances, the dynamic flavour of activation is also provided for
interpretation in global theories.

Locale predicates reflect locales, which are by themselves extra-logical, into the
logic and enable reasoning about locales. This was used in this paper only in passing,
in the definition of the subgroup relation based on the locale closed. Locale
predicates can, for example, be used to deal with infinite families of locales. This
is demonstrated in detail elsewhere [4].

10In Isabelle, this may also be resolved by putting the interpretations in different global theories.
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Locales are partially correct: if roundup terminates then the generated theo-
rems are derivable from the specification. Roundup terminates if the dependency
graph is acyclic. It also terminates for important cyclic cases: logically equivalent
specifications and operators that are self-dual.11

Activation is a fairly expensive operation. When a locale is activated, morphisms
are applied to all its declarations and to the declarations of all dependencies.
Nevertheless, the implementation is efficient enough so that locales have become
a mainstay of Isabelle’s theory libraries. Morphisms can be applied to declarations
that are to be activated in parallel, which enables making use of modern, parallel
hardware. Users can improve the performance of theory developments by putting
several declarations into the block of a single context command, which avoids
unnecessary repetitions of activation.

6.1 Management of Theory Module Hierarchies

One can distinguish declared and derived relations between theory modules. De-
clared relations are given as import in locale declarations, and derived relations
are provided with the sublocale command. Both are via morphisms, which enable
mapping the language of the source to the language of the target. Internally,
both kinds of relations are uniformly implemented through interpretation of locale
dependencies.

Module hierarchies in programming languages are usually trees (or directed
acyclic graphs if multiple inheritance is supported) and extension is only possible
at the fringe. This can lead to the same concept being developed at several places
in a library simultaneously. To avoid this redundancy, the tiny theories method was
proposed [7]. This is a more radical version of the little theories approach, where
extensions of theory modules are done by introducing one axiom at a time. This
would ensure that in a theory library of, for example, order relations or rings even the
more obscure variants of these structures are readily available. While being a great
convenience for the user, the tiny theories method can complicate library design,
because it requires anticipating all variants.

Locales enable the library designer to insert a theory module into an existing
hierarchy via the sublocale command, a feature that is inspired by Isabelle’s type
classes. This means that theory modules are not required to be built up incrementally
in a per-axiom fashion. Neither need more rarely used variants of theories be
anticipated from the beginning, just because they are in the middle of the hierarchy.
They may be added when needed.

6.2 Extensibility of Theory Modules

While locales can be seen as first-order ML-style functors, this does not capture all
operational aspects adequately. In particular, bodies of ML functors are not exten-
sible. But this is an important requirement for a module system for mathematical
theories. The Coq module system [23], which implements a higher-order variant of

11The latter relies on term equivalence being modulo αβη-conversion in Isabelle. Important other
cyclic locale dependencies can be made acyclic by introducing additional logically equivalent locales.
For an example, see the tutorial [5].
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ML-style functors fairly closely, overcomes this problem by introducing namespaces
as an additional layer of abstraction so that bindings from several functors contribut-
ing to a theory module can be referred to in a uniform manner. Locales have been
designed to be extensible by theorem bindings right away. Extensibility by definitions
was introduced with local theories [11].

6.3 Rewrite Morphisms and Coherence

Locales can be combined by means of locale expressions, either in the import section
of a locale declaration, or in an interpretation. Locales can be combined with target
contexts through interpretation. In the case of the sublocale command, the target
context is again a locale.

In order to achieve coherence between the combined locales, relations be-
tween parameters may be given through parameter instantiations in the expres-
sion. In interpretations, including sublocale declarations, additionally value bindings
(i.e., definitions) in locale bodies may be changed through rewrite morphisms, which
map bound names to terms in the target context of the interpretation. (In principle,
locale declarations could also accept rewrite morphisms, but requesting the needed
proofs might seem counter-intuitive to users.)

The need for instantiation as opposed to, for example, renaming, is immediately
clear for interpretation. But also in locale declarations instantiation leads to a more
expressive system. One may, for example, consider a locale for homomorphisms
where one parameter represents the operation of the domain and another parameter
the operation of the co-domain. With instantiation, a locale for endomorphisms can
be derived easily by setting both parameters to the same operation [5, Section 6.2].
With renaming this is not possible, since distinct names need to remain distinct.

The relation of rewrite morphisms to mixin modules of object-oriented program-
ming languages discussed in Section 5.3 is a striking example of how the need for
flexible means of reuse in module systems can lead to related solutions in different
domains. This was understood by the author only after conceiving rewrite morphisms
as a natural extension to interpretation of definitions as they are handled in local
theories.

Acknowledgements The first design of locales was inspired by Coq sections [14, 15]. Wenzel inte-
grated locales with the Isar proof language and provided means for constructing locale hierarchies
[2]. Theorem reuse through interpretation and means for changing the locale hierarchy were added
by the author [3, 4]. Local theories [11] considerably helped clarify locales. Without them, the re-
design for Isabelle 2009 would not have been possible.
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