
J Autom Reasoning (2014) 52:31–65
DOI 10.1007/s10817-013-9275-8

Generalising Unit-Refutation Completeness and SLUR
via Nested Input Resolution

Matthew Gwynne · Oliver Kullmann

Received: 3 July 2012 / Accepted: 28 January 2013 / Published online: 9 March 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The class SLUR (Single Lookahead Unit Resolution) was introduced in
Schlipf et al. (Inf Process Lett 54:133–137, 1995) as an umbrella class for efficient
(poly-time) SAT solving, with linear-time SAT decision, while the recognition
problem was not considered. Čepek et al. (2012) and Balyo et al. (2012) extended this
class in various ways to hierarchies covering all of CNF (all clause-sets). We introduce
a hierarchy SLURk which we argue is the natural “limit” of such approaches. The
second source for our investigations is the class UC of unit-refutation complete clause-
sets, introduced in del Val (1994) as a target class for knowledge compilation. Via
the theory of “hardness” of clause-sets as developed in Kullmann (1999), Kullmann
(Ann Math Artif Intell 40(3–4):303–352, 2004) and Ansótegui et al. (2008) we obtain
a natural generalisation UCk, containing those clause-sets which are “unit-refutation
complete of level k”, which is the same as having hardness at most k. Utilising the
strong connections to (tree-)resolution complexity and (nested) input resolution, we
develop basic methods for the determination of hardness (the level k in UCk). A
fundamental insight now is that SLURk = UCk holds for all k. We can thus exploit
both streams of intuitions and methods for the investigations of these hierarchies.
As an application we can easily show that the hierarchies from Čepek et al. (2012)
and Balyo et al. (2012) are strongly subsumed by SLURk. Finally we consider the
problem of “irredundant” clause-sets in UCk. For 2-CNF we show that strong minimi-
sations are possible in polynomial time, while already for (very special) Horn clause-
sets minimisation is NP-complete. We conclude with an extensive discussion of open
problems and future directions. We envisage the concepts investigated here to be

M. Gwynne · O. Kullmann (B)
Computer Science Department, College of Science, Swansea University,
Swansea, SA2 8PP, UK
e-mail: O.Kullmann@Swansea.ac.uk
URL http://cs.swan.ac.uk/∼csoliver

M. Gwynne
e-mail: csmg@swansea.ac.uk
URL http://cs.swan.ac.uk/∼csmg/

32 M. Gwynne, O. Kullmann

the starting point for a theory of good SAT translations, which brings together the
good SAT-solving aspects from SLUR together with the knowledge-representation
aspects from UC, and expands this combination via notions of “hardness”.

Keywords SAT (satisfiability) · Generalised unit-propagation ·
Unit-refutation completeness · Hardness · Nested input resolution · SLUR ·
Knowledge compilation · Polynomial time SAT decision

1 Introduction

The boolean satisfiability problem, SAT for short, in its core version is the problem of
deciding satisfiability of a conjunctive normal form (clause-set) F; see the handbook
[6] for further information. An important theme is the search for relevant classes C of
clause-sets F for which one can (at least) decide satisfiability in polynomial time (that
is, deciding whether F logically implies the empty clause); see Section 1.19 in [22] for
some basic information. For the task of knowledge compilation one wants more from
the target-class C, namely that the clausal entailment problem (deciding whether F
logically implies some given clause) can be decided in polynomial time; see [17] for an
overview. In this article now we bring together two previously unconnected streams
of research from these two areas:

SLUR The SLUR algorithm is an incomplete linear-time SAT-decision algorithm,
based on look-ahead via unit-clause propagation.

UC The class UC of unit-refutation complete clause-sets enables clausal-entail-
ment decision in linear time via unit-clause propagation.

That both streams are based on unit-clause propagation, which is also the basic tool
for efficient SAT solving, we consider as an essential feature. It means that actually
we have some form of “SAT knowledge compilation”, where the “knowledge” is
compiled in such a way that a SAT solver can “understand” it! In Sections 1.1 and
1.2 we will discuss these two streams in turn, while their unification is outlined
in Section 1.3, and applications to SAT knowledge compilation are discussed in
Section 1.4. This is the journal version of the conference paper [28], while the
underlying report is [27].

1.1 The Quest for SLUR Hierarchies

In the year 1995 in [43] the SLUR algorithm was introduced, a simple incom-
plete non-deterministic SAT-decision algorithm, which always succeeded on various
classes with polynomial-time SAT decision where previously only rather complicated
algorithms were known. The computation is divided into two phases for input-clause-
set F: First we check via unit-clause propagation (UCP) for unsatisfiability. If this
check fails, then we assume F is satisfiable, and guess a satisfying assignment, using
UCP-look-ahead for the guessed assignments to avoid obviously false assignments.
The class SLUR contains those F where this algorithm always succeeds (i.e.,
determines unsatisfiability in the first phase, or always finds a satisfying assignment
in the second phase).

Generalising Unit-Refutation Completeness and SLUR 33

So recognition of SLUR seems a non-trivial problem, while SAT decision for
F ∈ SLUR can be done in linear time. The natural question arises, whether SLUR
can be turned into a hierarchy, covering in the limit all clause-sets. A generalisation
of SLUR has been considered in [23] under the name “ISLUR” (improved SLUR),
allowing a polynomial number p(�(F)) of backtracks (for a fixed polynomial p, in
the input-size �(F)), in the unsatisfiability as well as in the satisfiability phase of the
SLUR algorithm, before giving up. It is mentioned that ISLUR gives up on every
large enough “sparse” clause-set (which are “typical” as random k-CNF clause-sets),
when no variable occurs “too often”. This was considered to be “disappointing”—
but from our point of view the value of the class SLUR lies not in being a “big”
class of clause-sets with polynomial-time SAT solving, but in establishing a basic
target class for representations of boolean functions with very strong properties
via clause-sets; see Section 1.4 for further discussions. For all fixed k there exists
a polynomial p such that the k-th level of our hierarchy, SLURk, is contained in
the class ISLUR (those clause-sets where the ISLUR algorithm never gives up).
So all levels are negligible when considering the above sparse clause-sets, but as
we will argue in Section 1.4, nevertheless this hierarchy is proper regarding good
representations of boolean functions, and the parameter k is meaningful and robust
(not just a numerical parameter like the polynomial p).

In [2, 12] the authors finally proved that membership decision of SLUR is coNP-
complete, and presented three hierarchies, SLUR(k),SLUR∗(k) and CANON(k).
It still seemed that none of these hierarchies is the final answer, though they
all introduce a certain natural intuition. We now present what seems the natural
“limit hierarchy”, which we call SLURk, and which unifies the two basic intuitions
embodied inSLUR(k),SLUR∗(k) on the one hand and CANON(k) on the other hand.

In order to do so we need a precise analysis of the SLUR-class. We introduce the

SLUR transition relation F
SLUR−−−→ F ′ between clause-sets F, F ′, which makes precise

one non-deterministic step of the SLUR-algorithm. This transition from F to F ′
happens when assigning a (single) literal in such a way that UCP does not create the
empty clause. The core of the classes SLUR(k) and SLUR∗(k) is to strengthen the
transition relation by requesting that not just one literal is choosable, but actually k
literals can be chosen, while the difference between them is that SLUR∗(k) performs
UCP inbetween the choices, while the weaker class SLUR(k) does not.

Before we can describe our solution, the SLURk-hierarchy, we need to discuss
the second source of our approach, the class UC of “unit-refutation complete clause-
sets”, which is related to the stream embodied by CANON(k).

1.2 Unit-Refutation Completeness and “Hardness”

In the year 1994 in [20] the class UC was introduced, containing clause-sets F such
that clausal entailment, that is, whether F |= C holds (clause C follows logically
from F, i.e., C is an implicate of F), can be decided by unit-clause propagation. The
motivation was knowledge compilation, that is, to have a more succinct alternative to
the use of the set of all prime implicates of a given clause-set F0 (clausal database),
for which one seeks an equivalent F such that clausal entailment can be decided
quickly.

A second development is important here, namely the development of the notion
of “hardness” in [1, 36, 37]. The first source [36] from 1999 introduced the notion of

34 M. Gwynne, O. Kullmann

hardness as a measure hd0 : CLS → N0, assigning natural numbers to clause-sets in
the following way (using SAT ⊂ CLS for the satisfiable clause-sets, and USAT :=
CLS \ SAT):

• hd0(F) := 0 for the simplest clause-sets F ∈ CLS regarding SAT decision, con-
taining the empty clause (i.e., ⊥ ∈ F) or being empty (i.e., F =).1

• hd0(F) = k ≥ 1 iff there is a literal x such that for F ′ := 〈x → 0〉 ∗ F (setting x to
0) we have hd0(F ′) ≤ k − 1 and either F ′ ∈ USAT and hd0(〈x → 1〉 ∗ F) ≤ k, or
F ′ ∈ SAT .

The second source [37] from 2004 generalised this approach to constraint satisfaction
problems (and beyond). The third source [1] from 2008 considered hd0(F) on unsat-
isfiable clause-sets F ∈ USAT , relating it to backdoors, cycle-cutsets and treewidth,
and performing an experimental study on random instances. Also in [1] we find
a different extension of hd0 : USAT → N0 to a measure hd : CLS → N0, using for
satisfiable instances F ∈ SAT the maximisation over all unsatisfiable sub-instances
obtained by applying partial assignments. This hardness notion is harder to measure:
as we show in this article, determining whether hd(F) ≤ k holds for a fixed k ≥ 1 is
coNP-complete, while hd0(F) ≤ k can be decided in polynomial time (for fixed k).
Nevertheless it is the central measure for this article, and we consider it as measuring
“representation hardness”, while hd0 measures “solver hardness”.2

As we show in Theorem 5.7, hd(F) ≤ k is equivalent to the property of F, that all
implicates of F (i.e., all clauses C with F |= C) can be derived by k-times nested input
resolution from F, a generalisation of input resolution as introduced and studied in
[36, 37].3 So we obtain that UC is precisely the class of clause-sets F with hd(F) ≤ 1! It
is then natural to define the hierarchy UCk via the property hd(F) ≤ k. The hierarchy
CANON(k) is based on resolution trees of height at most k, which is a special case
of k-times nested input resolution, and so we have CANON(k) ⊂ UCk.

1.3 Bringing SLUR and UC Together

In order to get back to SLUR, we need to emphasise the two-sided nature of the
hardness measure, as developed in [36, 37]. In Section 1.2 we discussed the proof-
theoretic side of it. The algorithmic side is given by the reductions rk : CLS → CLS
(introduced in [36]), which perform certain forced assignments:

1. r1 is UCP, assigning x → 1 for unit-clauses {x} until all are eliminated.
2. r2 is (complete) failed-literal elimination, assigning, while possible, x → 1 for

literals x such that the assignment x → 0 yields a contradiction via r1; see

1Actually a two-dimensional family hdU ,S of such measures was introduced, based on oracles
U ⊆ USAT , S ⊆ SAT for deciding unsatisfiability resp. satisfiability, and setting hdU ,S(F) := 0
for F ∈ U ∪ S. In this article we consider only the simplest base case hd0 = hdU0,S0 , where U0 :=
{F ∈ CLS : ⊥ ∈ F} and S := {	}. Oracle S does not play a role in the setting of this article, which
is fully unsatisfiability-based. See Section 6.3 for more information on these hierarchies, and see
Section 9.4 for an outlook on relativised hardness.
2hd(F) actually captures tree-like resolution (in a sense). In Section 9.5 we discuss a width-based
measure of hardness, which captures dag-like resolution. We consider the tree-hardness as the
natural starting point.
3Equivalently, as shown in [36, 37], one can say that all implicates C have a tree-resolution proof
using space at most k + 1.

Generalising Unit-Refutation Completeness and SLUR 35

Section 5.2.1 in [32] for the usage of failed literals in SAT solvers (so-called
“look-ahead solvers”), and see Section 7.2.2 in [39] for the general explanation
of r2 being the “look-ahead version” of r1.

3. In general rk+1 is the “look-ahead version” of rk, assigning, while possible, x → 1
for literals x such that the assignment x → 0 yields a contradiction via rk.

For unsatisfiable F the hardness hd(F) is equal to the minimal k such that rk(F)
detects unsatisfiability of F, i.e., rk(F) = {⊥}. This yields the basic observation UC ⊆
SLUR—and actually we have UC = SLUR!

So by replacing the use of r1 in the SLUR algorithm by rk (using our analysis
via the transition relation) we obtain a natural hierarchy SLURk, which includes
the previous SLUR-hierarchies SLUR(k) and SLUR∗(k), and where we have
SLURk = UCk. This equality of these two hierarchies is our argument that we have
found the “limit hierarchy” for SLUR.

1.4 Outlook on Good Representations of Boolean Functions

The ideas presented in Sections 1.1–1.3 are the main thrust for the results of this
paper (Sections 3–7), while in the final Section 8 (and also in the outlook in Section 9)
we touch upon what we consider as the main application area and the main area
for future developments of the theory, namely a theory of good representations of
boolean functions. More precisely, in Section 8 we consider the complexity of finding
short equivalent clause-sets of bounded hardness for the most basic CNF classes, 2-
CNF and Horn clause-sets, and we show feasibility for the former, NP-completeness
for the latter. We roughly outline now the basic ideas on “good representations” in
general, while in Section 9 some more details are presented.

SAT algorithms have seen an astounding development in the last two decades.
Especially efficient algorithms, data structures and heuristics have been developed.
The main bottleneck currently is that the underlying constraint problem needs to
be represented via boolean CNF, and it is not clear at all how to do this so that
SAT solving becomes as easy as possible. “SAT modulo Theories” (SMT; see [3])
boosts the representation by extending the general method, however it does not yield
insights into how to construct the basic representations by CNFs. What is needed
is a systematic investigation into “good representations” of boolean functions f by
clause-sets F, with the aim of “intelligent” SAT translations.

As a first answer, we consider the classes UCk as the most basic target classes,
that is, F ∈ UCk for k “as small as possible” is the (basic) fundamental guideline.
The motivation for UC was that of a “good representation”, while the motivation for
SLUR was “good SAT solving”—the hierarchies UCk = SLURk bring these two
aspects together, and this in a parameterised way, so that k can be traded against
the size of F. So the theory of good representations F of boolean functions f can
be considered as “SAT knowledge representation”, where the “knowledge”, the
boolean function f , must be represented by a clause-set F such that all “aspects”
of f (most fundamental the prime implicates) are represented in such a way that a
SAT solver can “understand” this representation.

What is now the precise relation between the boolean function f to be repre-
sented, and the representation F, a clause-set? The most basic idea is to consider that
F as a CNF is equivalent to f , which we write as F ∼= f (more precisely, CNF(F) ∼=
f). Good representations in this (restricted) setting then amount to consider subsets

36 M. Gwynne, O. Kullmann

F ⊆ prc0(f) of the set of prime implicates of f , such that F ∼= f and such that hd(F)
and �(F) (the size of F) are in a “reasonable” relationship (the lower hd(F) the higher
�(F), and so a balance is to be sought). The basic conjecture then states that allowing
larger hardness yields more possibilities for short representations:

Conjecture 1.1 For every k ∈ N0 there exists a sequence (fn)n∈N of boolean func-
tions, such that no polysize-sequence (Fn)n∈N (i.e., where (�(Fn))n∈N is polynomially
bounded in n) exists with

• Fn
∼= fn

• hd(Fn) ≤ k

for all n, but where such a sequence (Fn)n∈N exists when allowing hd(Fn) ≤ k + 1.

Conjecture 9.4 extends this conjecture to include the use of new variables, and
also refines it by introducing intermediate levels between the hardness-levels.4

The algorithmic approach for such representations (not using new variables) is to
systematically search for small F with a given hardness upper-bound. In Section 8 one
finds the most basic considerations. In [26] we presented some initial experimental
results on using this approach for the (small) building-blocks like the S-boxes in block
ciphers like AES and DES, for their SAT-based cryptanalysis (see Section 9.3 for
more information).

1.5 The Schaefer Classes

We conclude by some remarks on the four main classes from Schaefer’s dichotomy
result (see Section 12.2 in [16] for an introduction, and see [15] for an in-depth
overview on recent developments). Our point of view here is that we consider a
boolean function f which is either Horn, dual Horn, bijunctive or affine, and we
ask for a good representation F ∈ CLS of f :

• If f is Horn or dual Horn, then there is a (dual) Horn clause-set F equivalent
to f , and by Part 4 of Lemma 6.5 we have hd(F) ≤ 1. So obtaining a represen-
tation F ∈ UC is trivial; however optimising the size of F is NP-complete (see
Theorem 8.4).

• If f is bijunctive, then there is a 2-CNF F equivalent to f , and by Part 3 of
Lemma 6.5 we have hd(F) ≤ 2. Moreover, by Theorem 8.3 we can reduce the
hardness to 0 or 1 (as we wish) in polynomial time, and that by optimal (shortest)
such F.

• If f is affine, that is, f is the conjunction of m linear equations x1 ⊕ · · · ⊕ xp = 0
over {0,1} viewed as a 2-element field, with addition ⊕ as exclusive-or, then the
situation regarding the existence of a representation of bounded hardness is not
fully understood yet:

1. If m = 1, then there is precisely one CNF-representation of f without
new variables, containing 2p−1 clauses and being (trivially) of hardness 0.
So without new variables we have a polysize representation of bounded
hardness iff p is bounded.

4In [29] we have meanwhile established that Conjecture 1.1 is true.

Generalising Unit-Refutation Completeness and SLUR 37

2. While when allowing new variables, then for m = 1 there is a representation
F ∈ UC, as will be shown in [29].

3. For arbitrary m there is definitely no small representation without new
variables when the clause-length p is unbounded. When bounding p, or
when allowing new variables, then the existence of a polysize F ∈ UCk for
some fixed k seems to be an interesting open problem; for some partial
results see [40]. Perhaps no polysize representations F ∈ UC exist, even for
the “relative condition”, where propagation-conditions are posed only for
the variables in the XOR-clauses; see [5] for general tools for such lower
bounds, and see Sections 9.2 and 9.4 for more discussions.

1.6 Overview

After discussing basic terminology in Section 2, in Section 3 we discuss SLUR
and existing extensions. We give a precise (mathematical) definition of the class
SLUR, achieving a conceptually clear understanding, and based on these concepts
we give precise (mathematical) definitions of the various SLUR hierarchies from
the literature. In Section 4 we provide the background about generalised unit-clause
propagation, that is, the reductions rk : CLS → CLS, where CLS is the set of all
clause-sets and r1 is unit-clause propagation. Section 5 then introduces the hardness
hd : CLS → N0 and defines the classes UCk ⊂ CLS of “unit-refutation complete
clause-sets of level k” as those F with hd(F) ≤ k. The first main result is Theorem 5.7,
which states that the elements of UCk are precisely the clause-sets F where every
prime implicate of F can be derived by k-times nested input resolution from F. In
Section 6 we develop various tools to determine hardness. First we consider various
constructions in Section 6.1. Then in Section 6.2 we provide tools to show that
classes of clause-sets have bounded hardness, with applications to common classes
and to stability properties of the classes UCk. Alternative and generalised hardness-
notions are considered in Section 6.3. We conclude by considering algorithmic ways
to determine the hardness-measure in Section 6.4. Section 7 introduces the SLURk

hierarchy. Our second major result is Theorem 7.4, showing that UCk = SLURk

holds. From this characterisation we derive in Theorem 7.5 the coNP-completeness
of membership decision for UCk when k ≥ 1. And in Theorems 7.6 and 7.7 we show
that the previous hierarchies are (strictly) included in the SLURk hierarchy, which
we consider as a kind of “completion”, where both approaches, based on SLUR and
UC, meet. In Section 8 we turn towards the problem of finding short equivalent
clause-sets of low hardness for a given clause-set F. In Theorem 8.3 we show that
for F in 2-CNF we can compute optimal equivalent clause-sets (of low hardness) in
polynomial time. While in Theorem 8.4 we show that already for Horn clause-sets F,
even when all prime implicates are given as part of the input, the decision whether
there is an equivalent clause-set (of low hardness) using at most a given number of
clauses is NP-complete. We conclude in Section 9 with the summary and an extensive
discussion of future directions.

2 Preliminaries

We follow the general notions and notations as outlined in [35]. We use N =
{1, . . .} and N0 = N ∪ {0}. Based on an infinite set VA of variables, we form the set
LIT := VA ·∪VA of positive and negative literals, using complementation. A clause

38 M. Gwynne, O. Kullmann

C ⊂ LIT is a finite set of literals without clashes, i.e., C ∩ C = ∅, where for L ⊆
LIT we set L := {x : x ∈ L}. The set of all clauses is denoted by CL. A clause-set
F ⊂ CL is a finite set of clauses, and the set of all clause-sets is denoted by CLS.
For k ∈ N0 we use k–CLS := {F ∈ CLS | ∀C ∈ F : |C| ≤ k} for the set of clause-sets
where all clauses have length at most k.

A special clause is the empty clause ⊥ := ∅ ∈ CL, and a special clause-set is the
empty clause-set 	 := ∅ ∈ CLS. By lit(F) := ⋃

F ∪⋃
F we denote the set of literals

occurring at least in one polarity in F.
We use var : LIT → VA for the underlying variable of a literal, var(C) :=

{var(x) : x ∈ C} ⊂ VA for the set of variables in a clause, and var(F) := ⋃
C∈F var(C)

for the set of variables in a clause-set. So lit(F) = var(F) ∪ var(F). The number of
variables in a clause-set is n(F) := |var(F)| ∈ N0, the number of clauses is c(F) :=
|F| ∈ N0, and the number of literal occurrences is �(F) := ∑

C∈F |C| ∈ N0.
A full clause-set is a clause-set F such that each clause contains all variables, that

is, for all C ∈ F we have var(C) = var(F). The set of Horn clause-sets is HO ⊂ CLS,
where every clause contains at most one positive literal, while HO+ ⊂ HO is the
set of pure Horn clause-sets, where every clause contains exactly one positive literal.
HO ⊂ RHO ⊂ CLS is the set of renamable (“hidden”) Horn clause-sets, which by
flipping signs can be turned into a Horn clause-set.

A partial assignment ϕ : V → {0, 1} maps a finite V ⊂ VA to truth-values, the
set of all partial assignments is PASS . A special partial assignment is the empty
partial assignment 〈〉 := ∅ ∈ PASS . We can construct partial assignments via 〈v1 →
ε1, . . . , vn → εn〉 ∈ PASS for vi ∈ VA and εi ∈ {0, 1} (which must be consistent). We
use var(ϕ) := V = dom(ϕ) for the variables in the domain of ϕ, and by TASS(V) we
denote the set of all “total assignments” for V, that is, the ϕ ∈ PASS with var(ϕ) = V.
And n(ϕ) := |var(ϕ)| ∈ N0 is the number of variables assigned by ϕ.

For a partial assignment ϕ ∈ PASS and a clause-set F ∈ CLS the application of
ϕ to F is denoted by ϕ ∗ F ∈ CLS, which results from F by removing all satisfied
clauses (containing at least one satisfied literal), and removing all falsified literals
from the remaining clauses. A class C ⊆ CLS of clause-sets is stable under (applica-
tion of) partial assignments if for all F ∈ C and ϕ ∈ PASS holds ϕ ∗ F ∈ C.

A clause-set F is satisfiable (i.e., F ∈ SAT ⊂ CLS) if there exists a partial
assignment ϕ with ϕ ∗ F = 	, otherwise F is unsatisfiable (i.e., F ∈ USAT := CLS \
SAT). For a clause C the partial assignment ϕC ∈ PASS is defined as ϕC := 〈x →
0 : x ∈ C〉, that is, it sets precisely the literals of C to 0 (and leaves all other variables
unassigned). For example ϕ⊥ = 〈〉 and ϕ{x} = 〈x → 0〉.

Two clauses C, D ∈ CL are resolvable if they clash in exactly one literal x, that
is, C ∩ D = x, in which case their resolvent is (C ∪ D) \ {x, x} (with resolution literal
x). A resolution tree is a binary tree formed by the resolution operation. We write
T : F � C if T is a resolution tree with axioms (the clauses at the leaves) all in F and
with derived clause (at the root) C. By Comp*

R(F) for unsatisfiable F the minimum
number of leaves in a tree-resolution-refutation T : F � ⊥ is denoted.

A boolean function f is a map f : TASS(V)→ {0, 1} for some finite V =: var(f);
we can also use f (ϕ) ∈ {0, 1} for ϕ ∈ PASS with var(f) ⊆ var(ϕ), in which case ϕ
is restricted to var(f). Special boolean functions are 0V and 1V for the constant-
0 resp. constant-1 functions with domain V. We write f |= g for boolean functions
f, g if for all partial assignments ϕ with var(ϕ) ⊇ var(f) ∪ var(g) we have f (ϕ) = 1 ⇒
g(ϕ) = 1. Equivalence of boolean functions f, g means f |= g and g |= f (so all 0V

are equivalent, and all 1V are equivalent).

Generalising Unit-Refutation Completeness and SLUR 39

The interpretation of clauses C and clause-sets F as boolean functions is explicitly
denoted by CNF(C) and CNF(F), using the CNF-interpretation (a clause as a
disjunction of literals, a clause-set as a conjunction of clauses), and happens in this
article typically implicitly.

For a boolean function f the set of prime implicates is denoted by prc0(f), the
set of all clauses C with f |= C while for C′ ⊂ C holds f �|= C′. (The “0” in prc0(f)
resp. prc0(F) in the set of prime implicates of a boolean function or a clause-set
(interpreted as CNF) shall remind at “false” or “unsatisfiable”, since CNF have
“falsity” at the core.) So a boolean function f is equivalent to prc0(f), that is, more
explicitly, to CNF(prc0(f)). As it is well-known, by considering any clause-set F
equivalent to f and computing the resolution-closure of F, followed by subsumption-
elimination, we obtain precisely prc0(f).

We denote by CNF(f) the “distinguished canonical normal form”, or the set of
“minterms of f”, that is, the set of clauses C ∈ CL with var(C) = var(f) and f |= C
(that is, f |= CNF(C)). Dually, by DNF(f) we denote the set of clauses C ∈ CL with
var(C) = var(f) and DNF(C) |= f (the “maxterms of f”; note that for us a clause
is a combinatorial object, and the logical interpretation has to be added). In the
DNF-interpretation a clause is the conjunction of its literals, and a clause-set is the
disjunction of its clauses.

Finally, by r1 : CLS → CLS unit-clause propagation is denoted, that is applying
F � 〈x → 1〉 ∗ F as long as there are unit-clauses {x} ∈ F, and reducing F � {⊥} in
case of ⊥ ∈ F. In Definition 4.3 the general rk : CLS → CLS is defined.

3 The SLUR Class and Extensions

The SLUR-algorithm and the class SLUR ⊂ CLS have been introduced in [43].
The SLUR-algorithm for input F ∈ CLS is an incomplete polynomial-time SAT
algorithm, which either returns “SAT”, “UNSAT” (in both cases correctly) or gives
up. This algorithm is non-deterministic, and SLUR is the class of clause-sets where
it never gives up (and thus SAT-decision for F ∈ SLUR can be done in polynomial
time). Due to an observation attributed to Truemper in [21], the SLUR-algorithm
can be implemented such that it runs in linear time. Decision of membership, that
is whether F ∈ SLUR holds, by definition is in coNP, but only in [12] it was finally
shown that this decision problem is coNP-complete.

The original motivation was that SLUR contains several other classes, including
renamable Horn, extended Horn, hidden extended Horn, simple extended Horn and
CC-balanced clause-sets, where for each class it was known that the SAT problem
is solvable in polynomial time, but with in some cases rather complicated proofs,
while it is trivial to see that the SLUR-algorithm runs in polynomial time. In [21, 24]
probabilistic properties of SLUR have been investigated.5

5At this point a popular misunderstanding should be avoided: The well-known dichotomy result
of Schaefer (see Section 1.5) states that under certain conditions there are precisely six classes of
problem instances with polytime SAT solving (unless P=NP). However this has no bearing on the
classes considered here, since they do not fall within the restricted framework of Schaefer’s theorem.

40 M. Gwynne, O. Kullmann

In this section we first give a semantic definition of SLUR in Section 3.1. In a
nutshell, SLUR is the class of clause-sets where either UCP (unit-clause propagation
aka r1) creates the empty clause, or where otherwise iteratively making assignments
followed by UCP will always yield a satisfying assignment, given that these transitions
do not obviously create unsatisfiable results, i.e., do not create the empty clause. In
order to understand this definition (and its various extensions) clearly, we present a
precise mathematical (non-algorithmic) definition, based on the transition relation

F
SLUR−−−→ F ′ (Definition 3.3), which represents one non-deterministic step of the

SLUR algorithm: If r1 on input F ∈ CLS does not determine unsatisfiability (in
which case we have F ∈ SLUR), then F ∈ SLUR iff 	 can be reached by this
transition relation, while everything else reachable from F is not an end-point of
this transition relation.

In [2, 12] recently three approaches towards generalising SLUR have been
considered, and we discuss them in Section 3.2. Our generalisation, called SLURk,
which we see as the natural completion of these approaches, will be presented in
Section 7.

3.1 SLUR

The SLUR-algorithm (“Single Lookahead Unit Resolution”) from [43] is described
for input F ∈ CLS as follows:

1. First run UCP, that is, reduce F � r1(F).
2. If now ⊥ ∈ F then we determined F unsatisfiable.
3. If not, then the algorithm guesses a satisfying assignment for F, by repeated

transitions F
SLUR−−−→ F ′, where F ′ is obtained by assigning one variable and then

performing UCP, i.e., F ′ = r1(〈x → 1〉 ∗ F) for some literal x.
4. The “lookahead” means that a transition with F ′ = {⊥} is avoided.
5. The algorithm might find a satisfying assignment in this way, or it gets stuck, that

is, for the chosen literal both assignments x → 1 and x → 1 yield {⊥}, in which
case it “gives up”.

The SLUR class is defined as the class of clause-sets where this algorithm never
gives up. The precise details are as follows. First we define the underlying transition
relation (one non-failing transition from F to F ′):

Definition 3.1 For clause-sets F, F ′ ∈ CLS the relation F
SLUR−−−→ F′ holds if there

is x ∈ lit(F) such that F ′ = r1(〈x → 1〉 ∗ F) and F ′ �= {⊥}. The transitive-reflexive

closure is denoted by F
SLUR−−−→∗ F′.

Example 3.2 Considering when we have F
SLUR−−−→∗ F ′ and when not:

1. F
SLUR−−−→∗ 	 iff F ∈ SAT .

2. {C} SLUR−−−→ 	 precisely for all clauses C �= ⊥.

3. {{x, y} , {x, y}} SLUR−−−→ 	.

4. {{x, y} , {y, z}} SLUR−−−→ 	 (due to e.g. r1(〈x → 1〉 ∗ {{x, y} , {y, z}}) =).

Generalising Unit-Refutation Completeness and SLUR 41

5. F
SLUR−−−→ F ′ does not hold if there is no literal to set, or if r1 detects unsatisfiability

of F ′. That is, there are no clause-sets F, F ′ such that any of the following hold:

(a) 	 SLUR−−−→ F.

(b) {⊥} SLUR−−−→ F.

(c) F
SLUR−−−→ F.

(d) F
SLUR−−−→ F ′ where r1(F ′) = {⊥}.

Via the transition-relation F
SLUR−−−→ F ′ we can now easily define the class SLUR,

which will find a natural generalisation in Definition 7.1 to SLURk for k ∈ N0 (where
SLUR = SLUR1):

Definition 3.3 The set of all fully reduced clause-sets reachable from F ∈ CLS is
denoted by

slur(F) :=
{

F ′ ∈ CLS | F
SLUR−−−→∗ F ′ ∧ ¬∃ F ′′ ∈ CLS : F ′ SLUR−−−→ F ′′

}
.

Finally the class of all clause-sets which are either identified by UCP to be unsat-
isfiable, or where by SLUR-reduction always a satisfying assignment is found, is
denoted by SLUR := {F ∈ CLS : r1(F) �= {⊥} ⇒ slur(F) = {	}}.

We could define
SLUR−−−→ as F

SLUR−−−→ 〈x → 1〉 ∗ F iff r1(〈x → 1〉 ∗ F) �= ⊥, and this
would yield the same class SLUR but a different transition relation (one would not
be forced to immediately make forced assignments).

Example 3.4 Computing slur(F) for clause-sets F:

1. slur(F) �= ∅ (in the “worst” case we have F ∈ slur(F)).
2. slur({⊥}) = {{⊥}}.
3. slur() = {	}.
4. slur({C}) = {	} iff C �= ⊥.
5. If r1(F) = 	 then slur(F) = {	}.
6. slur({{x, y} , {x, y}}) = {	}.
7. slur({{x, y} , {y, z}}) = {	}.
8. For F := {{x, y} , {x, y} , {x, y} , {x, y}} we have slur(F) = {F}.
9. For F ′ := {{z, x, y} , {z, x, y} , {z, x, y} , {z, x, y}} we have 	, F ∈ slur(F ′).

3.2 Previous Approaches for SLUR Hierarchies

In [2, 12] three hierarchies SLUR(k),SLUR∗(k) (k ∈ N) and CANON(k) (k ∈ N0)
have been introduced. In Section 4 of [2] it is shown that SLUR(k) ⊂ SLUR∗(k) for
all k ∈ N and so we restrict our attention to SLUR∗(k) and CANON(k).

CANON(k) is defined to be the set of clause-sets F such that every C ∈ prc0(F)
can be derived from F by a resolution tree of height at most k. Note that basically
by definition (using stability of resolution proofs under application of partial assign-
ments) we get that each CANON(k) is stable under application of partial assignments
and under variable-disjoint union.

42 M. Gwynne, O. Kullmann

The SLUR∗(k) hierarchy is derived in [2] from the SLUR class by extending the
reduction r1. We provide an alternative formalisation here, in the same manner as
in Section 3.1. The main question is the transition relation F � F ′. The SLUR∗(k)-
hierarchy provides stronger and stronger witnesses that F ′ might be satisfiable, by
longer and longer assignments (making “k decisions”) not yielding the empty clause:

Definition 3.5 That partial assignment ϕ ∈ PASS makes k decisions for some k ∈
N0 w.r.t. F ∈ CLS is defined recursively as follows: For k = 0 this relation holds
if ϕ ∗ F = r1(F), while for k > 0 this relation holds if either there is k′ < k such
that ϕ makes k′ decision w.r.t. F and ϕ ∗ F = 	, or there exists x ∈ lit(F) and a
partial assignment ϕ′ making k − 1 decision for r1(〈x → 1〉 ∗ F), and where ϕ ∗ F =
ϕ′ ∗ r1(〈x → 1〉 ∗ F).

Now F
SLUR∗k−−−−→ F′ for k ≥ 1 by definition holds if there is a partial assignment ϕ

making k decision w.r.t. F with F ′ = ϕ ∗ F, where F ′ �= {⊥}. The reflexive-transitive

closure is
SLUR∗k−−−−→∗.

Finally we can define the hierarchy:

slur∗(k)(F) :=
{

F ′ ∈ CLS | F
SLUR∗k−−−−→∗ F ′ ∧ ¬∃ F ′′ : F ′ SLUR∗k−−−−→ F ′′

}

SLUR∗(k) := {F ∈ CLS : slur∗(k)(F) �= {F} ⇒ slur∗(k)(F) = {	}} .

The unsatisfiable elements of SLUR∗(k) are those F �= 	 with slur∗(k)(F) = {F}.
By definition each SLUR∗(k) is stable under application of partial assignments, but
not stable under variable-disjoint union, since the number of decision variables is
bounded by k (in Lemma 6.7 we will see that our hierarchy is stable under variable-
disjoint union, which is natural since it strengthens the CANON(k)-hierarchy).

Example 3.6 Some examples for CANON(k) and SLUR∗(k) (k ∈ N):

1. Consider the unsatisfiable clause-set F := {{x, y} , {x, y} , {x, y} , {x, y}}.
(a) F �∈ SLUR because F is unsatisfiable but r1(F) �= {⊥}.
(b) F ∈ SLUR∗(1) because r1(〈x′ → 1〉 ∗ F) = {⊥} for all x′ ∈ lit(F) and so

slur∗(1)(F) = {F}.
(c) This establishes SLUR ⊂ SLUR∗(1).
(d) F ∈ CANON(2) \ CANON(1) because actually all tree-resolution refuta-

tions of F are full binary trees of height 2.

2. Consider the satisfiable clause-set F ′ := {{x1, . . . , xk} ∪ C | C ∈ F}.
(a) F ′ �∈ SLUR∗(k) because F ′ SLUR∗k−−−−→∗ F, where F is unsatisfiable and thus

¬(F SLUR∗k−−−−→∗), whence slur∗(k)(F ′) �= {	}.
(b) F ′ ∈ SLUR∗(k + 1) because we have r1(ϕ ∗ F ′) ∈ {	, {⊥}} for all partial

assignments ϕ of length k + 1 on variables of F ′ hence slur∗(k)(F1) = {	}.
(c) F ′ ∈ CANON(2) because the only prime implicate is {x1, . . . , xk} and actu-

ally all its tree-resolution proofs are full binary trees of height 2.

Generalising Unit-Refutation Completeness and SLUR 43

4 Generalised Unit-Clause Propagation

In this section we review the approximations of forced assignments as computed
by the hierarchy of reductions rk : CLS → CLS from [36, 37] for k ∈ N0. First
we introduce the semantical notion of forced literals/assignments in Section 4.1
together with the limit-reduction r∞ : CLS → CLS, which eliminates all forced
assignments. In Section 4.2 then the rk-reductions themselves (eliminating some
forced assignments) are defined and basic properties discussed. In Section 4.3 finally
we introduce generalised (nested) input resolution and its main parameter, the
“Horton–Strahler number” of the corresponding resolution tree, generalising the
well-known refutational equivalence between unit resolution and input resolution,
and providing the proof-theoretic background.

For further discussions of these reductions, in the context of SAT decision and
in their relations to various consistency and width-related notions, see [36, 37] and
Section 3 in [38]. It seems to us that the rk-reductions establish the SAT-counterpart
to consistency-notions from the constraint literature (see [4] for an overview). We
have the following basic distinction between SAT and CSP: SAT has the extremely
“thin” clauses, enabling the global point of view (“no (or flat) hierarchies”), while
CSP has “fat” constraints, the “lumping together” of clauses. In the SAT world,
the rk-reductions approximate global consistency via approaching all assignments of
r∞, while in the CSP world, consistency means making the constraints stronger and
stronger (lumping more and more clauses together), until only one constraint is left.
Thus the (stronger) consistency-notions of CSP are more related to width-restricted
resolution, while, as shown in [36, 37], the rk-reductions are much weaker (each only
using linear space). Making a clause-set F “consistent” in the SAT world thus means
(to us) to find a “representation” F ′ of F (see Section 9.2 for some discussion on
“representations”), where via rk for some k ∈ N0 we can derive “everything”, which is
embodied in its most elementary form in the UCk-hierarchy, that is, via the condition
F ′ ∈ UCk (Definition 5.6).

4.1 Forced Literals/Assignments

Fundamental is the notion of a “forced literal” of a boolean function resp. a clause-
set,6 which are literals which must be set to true in order to satisfy the function resp.
clause-set:

Definition 4.1 A literal x is forced for a boolean function f if f |= x, and the set of
forced literals for f is fl(f) ⊆ LIT . A literal is forced for a clause-set F if it is forced
for CNF(F), and we set fl(F) := fl(CNF(F)).

Every literal is forced for every 0V . In fact a boolean function f is constant zero iff
fl(f) = LIT iff there is a literal x with x, x ∈ fl(f). No literal is forced for any 1V

(i.e., fl(1V) = ∅). We have for every boolean function f that

fl(f) =
⋂

LIT
DNF(f)

6We prefer this logical (and common) terminology over “backbone literal”, which is only used in a
special context.

44 M. Gwynne, O. Kullmann

(the index “LIT ” in the intersection is the “universe” of the sets considered in the
intersection, which becomes the result if there are no sets to intersect, that is, if f
is unsatisfiable). More directly we can read off the forced literals from the prime
clauses, namely x is forced for f iff prc0(f) ∩ {⊥, {x}} �= ∅.

Example 4.2 Here are some basic determinations of fl(F):

1. fl({⊥}) = LIT .
2. fl() = ∅.
3. fl({{x1} , . . . , {xn}}) = {x1, . . . , xn}.
4. fl({{x, y} , {x, y}}) = ∅.
5. fl({{x, y} , {x, y}}) = {x}.

If x is a forced literal for F, then the forced assignment 〈x → 1〉 yields the clause-
set 〈x → 1〉 ∗ F which is satisfiability-equivalent to F. We denote by r∞(F) ∈ CLS
the result of applying all forced assignments to F. Note that F is unsatisfiable
iff r∞(F) = {⊥} (while F is uniquely satisfiable after discarding variables without
influence iff r∞(F) =).

4.2 A Hierarchy of Reductions

We now review the hierarchy rk : CLS → CLS, k ∈ N0, of reductions [36], which
achieves approximating r∞ by poly-time computable functions. The basic idea is that
unit-clause propagation in a sense computes the most direct forced assignments (at
“level k = 1”), and generalisations like failed-literal elimination (level k = 2) find
more forced assignments.

Definition 4.3 [36] The maps rk : CLS → CLS for k ∈ N0 are defined as follows (for
F ∈ CLS):

r0(F) :=
{
{⊥} if ⊥ ∈ F

F otherwise

rk+1(F) :=
{

rk+1(〈x → 1〉 ∗ F) if ∃ x ∈ lit(F) : rk(〈x → 0〉 ∗ F) = {⊥}
F otherwise

.

r1 is unit-clause propagation, r2 is (full) failed literal elimination. We call rk

generalised unit-clause-propagation of level k. In [36] one finds the following basic
observations proven (for k ∈ N0, F ∈ CLS and ϕ ∈ PASS):

• The map rk : CLS → CLS is well-defined (does not depend on the choices).
• rk applies only forced assignments (and so rk(F) is satisfiability-equivalent to F).
• rk(F) is computable in time O(�(F) · n(F)2(k−1)) and linear space.
• rk(F) = {⊥} implies rk(ϕ ∗ F) = {⊥}.
• rk(ϕ ∗ rk(F)) = rk(ϕ ∗ F).

Quasi-automatisation of tree-resolution is achieved for inputs F ∈ USAT by ap-
plying r0(F), r1(F), . . . until unsatisfiability has been achieved [36]. Also satisfiable

Generalising Unit-Refutation Completeness and SLUR 45

instances are handled in [36], however in this paper we do not consider these
algorithmical aspects.

Actually, a more general form was introduced in [36], namely rUk for some oracleU
deciding unsatisfiability at level 0. We believe that this generalisation is important for
further progress (see Section 9.4), however in this article we mostly consider only the
trivial oracle U = {F ∈ CLS : ⊥ ∈ F}, which recognises unsatisfiability at level 0 iff
the empty clause occurs (see Section 6.3 for some discussion of this choice). A further
generalisation to constraint-like systems (via an abstract, axiomatic approach) was
achieved in [37], however in this initial study we do only consider boolean values and
CNF-representations.

Example 4.4 Computing some rk(F) (using literals x1, . . . , xn, x, y with pairwise
different underlying variables):

1. rk({⊥}) = {⊥} for k ≥ 0.
2. rk() = 	 for k ≥ 0.
3. For F := {{x1} , . . . , {xn}}: r0(F) = F, rk(F) = 	 for k ≥ 1.
4. For F ′ := F ∪ {{x, y}}: r0(F ′) = F ′, rk(F ′) = {{x, y}} for k ≥ 1 (note that {{x, y}}

has no forced assignments).
5. For F := {{x, y} , {x, y}}: rk(F) = F for k ≤ 1, rk(F) = 	 for k ≥ 2.
6. For F := {{x, y} , {x, y} , {x, y} , {x, y}}: rk(F) = F for k ≤ 1, rk(F) = {⊥}

for k ≥ 2.

Via the reductions rk we can approximate the implication relation F |= C as follows:

Definition 4.5 [36, 37] For k ∈ N0, clause-sets F and clauses C the relation F |=k C
holds if rk(ϕC ∗ F) = {⊥}.

As it is well-known, F |=1 C iff some subclause of C follows from F via input
resolution.

Example 4.6 Consider k ∈ N0 and literals x, y, w:

1. For all k ≥ 0 and all clauses C we have:

(a) F |=k C if there is D ∈ F with D ⊆ C (note ⊥ ∈ ϕC ∗ F).
(b) {⊥} |=k C and 	 �|=k C.

2. {{x, y} , {x, y}} |=k {x} iff k ≥ 1.
3. For F := {{x, y} , {y, z}} we have F |=k {x, z} iff k ≥ 1.
4. For F := {{x, y, w} , {y, z, w} , {x, y, w} , {y, z, w}} we have F |=k {x, z} iff k ≥ 2

(note that 〈x → 1, z → 0〉 ∗ F ∈ 2–CLS).

4.3 Generalised Input Resolution

In [36], Chapter 4, the levelled height “h(T)” of branching trees T has been
introduced, which was further generalised in [37], Chapter 3 (to a general form
of constraint satisfaction problems). It handles satisfiable as well as unsatisfiable
clause-sets. In this article we will only use the unsatisfiable case. In this case the

46 M. Gwynne, O. Kullmann

measure reduces to a well-known measure which only considers the structure of the
tree. As discussed in Sections 4.2 and 4.3 of [36], this case, the levelled height of
splitting trees for unsatisfiable clause-sets, appeared at many places in the literature.
Ansótegui et al. [1] used the term “Horton–Strahler number” (sometimes also
“Strahler number”): it seems the oldest source (from 1945), however disconnected
from its various (re-)inventions in computer science. As in [1], the Horton–Strahler
number of the trivial tree is 0.

Definition 4.7 Consider a resolution tree T. The Horton–Strahler number hs(T) ∈
N0 is defined as hs(T) := 0, if T is trivial (consists only of one node), while otherwise
we have two subtrees T1,T2, and we set hs(T) := max(hs(T1), hs(T2)) if hs(T1) �=
hs(T2), while in case of hs(T1) = hs(T2) we set hs(T) := max(hs(T1), hs(T2))+ 1.

See Sections 4.2 and 4.3 in [36] for various characterisations of hs(T).

Example 4.8 Examples of trees with their Horton–Strahler numbers. We denote by
T1 and T2 in each example the left and right sub-trees of the root.

In [36], Section 7 (generalised in [37], Section 5), generalised input resolution was
introduced. We use the notation “�k” for it:

Definition 4.9 [36, 37] For a clause-set F ∈ CLS and a clause C ∈ CL the relation
F �k C (C can be derived from F by k-times nested input resolution) holds if there
exists a resolution tree T and C′ ⊆ C with T : F � C′ and hs(T) ≤ k.

By parts 1 and 2 of Theorem 7.5 in [36], generalised in Corollary 5.12 in [37]:

Lemma 4.10 [36, 37] For clause-sets F, clauses C and k ∈ N0 we have F |=k C if and
only if F �k C.

http://en.wikipedia.org/wiki/Strahler_number

Generalising Unit-Refutation Completeness and SLUR 47

5 Hardness

This section is devoted to the discussion of hd : CLS → N0. It is the central concept
of the paper, from which the hierarchy UCk is derived (Definition 5.6). The basic
idea is to start with some measurement h : USAT → N0 of “the complexity” of
unsatisfiable F. This measure is extended to arbitrary F ∈ CLS by maximising over
all “sub-instances” of F, that is, over all unsatisfiable ϕ ∗ F for (arbitrary) partial
assignments ϕ. A first guess for h : USAT → N0 is to take something like the
logarithm of the tree-resolution complexity of F. However this measure is too fine-
grained, and doesn’t yield a hierarchy like UCk, where each level brings a qualitative
enhancement. Another approach is algorithmical, measuring how far F is from being
refutable by unit-clause propagation. As shown in [36, 37], actually these two lines
of thought can be brought together by the hardness measure hd : USAT → N0.
Why only tree-resolution, and not dag-resolution (i.e., full resolution)? The tree-
resolution approach is the natural starting point, and what is easy for tree-resolution
is also easy for dag-resolution. Our basic approach towards the more complicated
handling of dag-resolution is shown in Section 9.5.

The outline of this section is as follows. hd(F) is defined and discussed for
unsatisfiable F in Section 5.1. The general case (arbitrary F) is handled in Section 5.2
by reduction to the unsatisfiable cases within F (as produced by applying partial
assignments). The central result of this section can be seen in Theorem 5.7, which
shows that F ∈ UCk (i.e., hd(F) ≤ k) is equivalent to the condition that all prime
implicates of F can be derived by some resolution tree with a Horton–Strahler
number at most k. In this way some form of geometric intuition is gained, and a
machinery becomes available. The first applications are given by the various lemmas
in Section 6 for determining hardness under various circumstances.

We remark that, when considering only unsatisfiable clause-sets F, in [36, 37]
actually a general concept of “hardness” was introduced, parameterised by an oracle
U ⊆ USAT for (“easy”) detection of special cases of unsatisfiability. In this article
only U = {F ∈ CLS : ⊥ ∈ F} is used, but we expect the general theory to become
important in the future. See Section 9.4 for some further discussions.

5.1 Hardness of Unsatisfiable Clause-Sets

In [36] the following hardness parameter was introduced and investigated (further
generalised in [37]):

Definition 5.1 [36, 37] The hardness hd(F) of an unsatisfiable F ∈ CLS is the mini-
mal k ∈ N0 such that rk(F) = {⊥}.

As shown in [36], hd(F)+ 1 is precisely the clause-space complexity of F regarding
tree-resolution (see [41] for a recent overview on space complexity of resolution).
In [36, 37] the notation “h(F)” was used (resp., more generally, “hU ,S(F)”, using
oracles for unsatisfiability and satisfiability detection), which seems now to us too
unspecific. From [31] we gain the insight that for F ∈ USAT holds hd(F) ≤ 1
iff there exists F ′ ⊆ F which is an unsatisfiable renamable Horn clause-set (i.e.,

48 M. Gwynne, O. Kullmann

F ′ ∈ RHO ∩ USAT). By Theorem 7.8 (and Corollary 7.9) in [36] (or, more gen-
erally, Theorem 5.14 in [37]) we have for F ∈ USAT :

2hd(F) ≤ Comp*
R(F) ≤ (n(F)+ 1)hd(F).

Example 5.2 Some basic determinations of hd(F) for unsatisfiable F:

1. hd(F) = 0 iff ⊥ ∈ F.
2. hd({{x} , {x}}) = 1.
3. hd({{x} , {x, y} , {y, z} , {z}}) = 1.
4. hd({{x, y} , {x, y} , {x, y} , {x, y}}) = 2.
5. hd({{x, y} , {x, y} , {y, z} , {y, z} , {x, y, z} , {x, y, z}}) = 2.

By Lemma 4.10 we get:

Lemma 5.3 [36, 37] For an unsatisf iable clause-set F and k ∈ N0 we have hd(F) ≤ k
if f F |=k ⊥ if f F �k ⊥.

By applying partial assignments we can reach all hardness-levels in a clause-set, as
the following lemma shows.

Lemma 5.4 For an unsatisf iable clause-set F and every 0 ≤ k ≤ hd(F) there exists a
partial assignment ϕ with n(ϕ) = k and hd(ϕ ∗ F) = hd(F)− k.

Proof We proceed by induction on n(F). As k ≤ hd(F) ≤ n(F), for the base case we
consider n(F) = k. If n(F) = k then all ϕ with n(ϕ) = k have hd(ϕ ∗ F) = hd({⊥}) =
0 = hd(F)− k. For n(F) > k, we make a case distinction on the value of k. If k = 0
then choose ϕ = 〈〉. If k = 1 then:

1. Assume for the sake of contradiction that there is no x ∈ lit(F) such that hd(〈x →
1〉 ∗ F) = hd(F)− 1; otherwise we are done.

2. If for all x ∈ lit(F)we had hd(〈x → 1〉 ∗ F) ≤ hd(F)− 2 then by Definition 5.1 we
would have hd(F) ≤ k − 1, a contradiction.

3. Therefore there must exist an x ∈ lit(F) such that

hd(F) = hd(〈x → 1〉 ∗ F) > hd(〈x → 0〉 ∗ F)+ 1.

4. By induction hypothesis we have a partial assignment ϕ with n(ϕ) = 1 such that
hd(ϕ ∗ (〈x → 1〉 ∗ F)) = hd(F)− 1.

5. Application of partial assignments doesn’t increase hardness (Lemma 3.11 of
[36]) and so we have

hd(ϕ ∗ F) ≥ hd(〈x → 1〉 ∗ (ϕ ∗ F)) = hd(F)− 1.

6. By our choice of x we have

hd(〈x → 1〉 ∗ (ϕ ∗ F)) = hd(F)− 1

hd(〈x → 0〉 ∗ (ϕ ∗ F)) ≤ hd(F)− 2,

therefore by Definition 5.1 we have hd(ϕ ∗ F) ≤ hd(F)− 1.
7. Thus we have that hd(ϕ ∗ F) = hd(F)− 1.

Generalising Unit-Refutation Completeness and SLUR 49

Finally, for k > 1, we apply induction using the k = 1 case; once we can reduce by 1
we can reduce by k. ��

5.2 Hardness of Arbitrary Clause-Sets

The hardness hd(F) of arbitrary clause-sets can now be defined as the maximum
hardness over all unsatisfiable instances obtained by partial assignments.

Definition 5.5 The hardness hd(F) ∈ N0 for F ∈ CLS is the minimal k ∈ N0 such that
for all clauses C with F |= C we have F |=k C (recall Definition 4.5; by Lemma 4.10
this is equivalent to F �k C).

In other words, if F �= 	 then hd(F) is the maximum of hd(ϕ ∗ F) for partial
assignments ϕ such that ϕ ∗ F ∈ USAT . To our knowledge, the measure hd(F) for
satisfiable F was mentioned the first time in the literature in [1], Definition 8 (the
only result there concerning this measure is Lemma 9, relating it to another hardness-
alternative for satisfiable F). Note that one can restrict attention in Definition 5.5 to
C ∈ prc0(F). Hardness 0 means that all prime clauses are there, i.e., hd(F) = 0 iff
prc0(F) ⊆ F. Especially hd() = 0.

Lemma 5.4, stating that hd(ϕ ∗ F) takes exactly the values from 0 to hd(F), extends
by definition to satisfiable F ∈ CLS, when adding to the size of the partial assignment
ϕ the minimum size of a partial assignment ψ with ψ ∗ F ∈ USAT and hd(ψ ∗ F) =
hd(F).

Definition 5.6 For k ∈ N0 let UCk := {F ∈ CLS : hd(F) ≤ k} (the class of unit-
refutation complete clause-sets of level k).

The class UC1 has been introduced in [20] for knowledge compilation. Various
(resolution-based) algorithms computing for clause-sets F some equivalent set F ′ ∈
UC1 of prime implicates are discussed there. Based on the results from [36, 37], we
can now give a powerful proof-theoretic characterisation for all classes UCk:

Theorem 5.7 For k ∈ N0 and F ∈ CLS we have

F ∈ UCk ⇐⇒ ∀C ∈ prc0(F) : F �k C.

Thus if every C ∈ prc0(F) has a tree-resolution refutation using at most 2k+1 − 1 leaves
(i.e., Comp*

R(ϕC ∗ F) < 2k+1), then hd(F) ≤ k.

Proof The equivalence F ∈ UCk ⇔ ∀C ∈ prc0(F) : F �k C follows from Lemma
4.10. And if hd(F) > k, then there is C ∈ prc0(F) with F ��k C, and then every tree-
resolution derivation of C from F needs at least 2k+1 leaves due to 2hd(ϕC∗F) ≤
Comp*

R(ϕC ∗ F) (as stated before). ��

Example 5.8 Here are some basic calculations of hardness for satisfiable clause-sets
(for unsatisfiable F see Example 5.2), using Theorem 5.7:

1. hd() = 0.
2. hd({{x}}) = 0.

50 M. Gwynne, O. Kullmann

3. For F := {{x, y} , {x, y}} we have hd(F) = 1:

(a) prc0(F) = {{x}}.
(b) hd(〈x → 0〉 ∗ F) = hd({{y} , {y}}) = 1.

4. For F := {{x, y} , {y, z}} we have hd(F) = 1:

(a) prc0(F) = {{{x, y} , {y, z} , {x, z}}}.
(b) hd(〈x → 1, y → 0〉 ∗ F) = hd({⊥}) = 0.
(c) hd(〈y → 1, z → 0〉 ∗ F) = hd({⊥}) = 0.
(d) hd(〈x → 1, z → 0〉 ∗ F) = hd({{y} , {y}}) = 1.

5. For F := {{z, x, y} , {z, x, y} , {z, x, y} , {z, x, y}} we have hd(F) = 2:

(a) prc0(F) = {{z}}.
(b) hd(〈z → 0〉 ∗ F) = hd({{x, y} , {x, y} , {x, y} , {x, y}} = 2.

6 Fundamental Properties of UCk

In Section 6.1 we determine hardness for various constructions. In Section 6.2 we
consider various classes contained in some UCk together with stability properties
of UCk. Relations to alternative hierarchies from the literature are discussed in
Section 6.3. We conclude our discussion of basic properties of hardness in Section 6.4,
considering the most basic cases of precise hardness-computations. We stress that
(algorithmic) computation of hardness for arbitrary instances is less important
here,7 since we aim more at constructing “soft” (low hardness) representations than
measuring hardness of given instances. What is needed is a theory to identify general
constructions.

6.1 Some Basic Hardness Determinations

The following basic lemma follows directly by definition:

Lemma 6.1 If two clause-sets F and F′ are variable-disjoint, then we have:

1. If F, F ′ ∈ SAT , then hd(F ∪ F ′) = max(hd(F), hd(F ′)).
2. If F ∈ SAT and F ′ ∈ USAT , then hd(F ∪ F ′) = hd(F ′).
3. If F, F ′ ∈ USAT , then hd(F ∪ F ′) = min(hd(F), hd(F ′)).

Via full clause-sets An with n variables and 2n clauses we obtain (unsatisfiable,
simplest) examples with hd(An) = n, and when removing one clause for n ≥ 1, then
we obtain satisfiable examples A′

n with hd(A′
n) = n − 1:

Lemma 6.2 Consider a full clause-set F ∈ CLS (i.e., each clause contains all variables).

1. hd() = 0.
2. If F is unsatisf iable then hd(F) = n(F).

7Decision of membership in UCk for k ≥ 1 is coNP-complete, as shown in Theorem 7.5, which seems
natural for classes with strong expressive power.

Generalising Unit-Refutation Completeness and SLUR 51

3. If F �= 	, then hd(F) = n(F)− minC∈prc0(F)|C|.
4. If for F no two clauses are resolvable, then hd(F) = 0.

Proof Part 1 follows by definition, Part 2 is Lemma 3.18 in [36], while Part 4 follows
from Part 3. It remains to show Part 3. If F is unsatisfiable, then we get Part 2.
For satisfiable F and a partial assignment ϕ with var(ϕ) ⊆ var(F) it is ϕ ∗ F a full
clause-set with n(ϕ ∗ F) = n(F)− n(ϕ), and so the assertion follows by reduction to
the unsatisfiable case. ��

The following lemma yields a way of pumping up hardness:

Lemma 6.3 Consider F ∈ CLS and v ∈ VA \ var(F). Let F ′ := {C ∪ {v} : C ∈ F} ∪
{C ∪ {v} : C ∈ F}. Then we have hd(F ′) = hd(F)+ 1.

Proof We have hd(F ′) ≤ hd(F)+ 1 by definition (if v is not set by the test-
assignment, then it can be set to an arbitrary value, yielding a forced assignment
at level hd(F)). Now consider a partial assignment ϕ with var(ϕ) ⊆ var(F), ϕ ∗ F ∈
USAT and hd(ϕ ∗ F) = hd(F). Now also ϕ ∗ F ′ ∈ USAT holds, where ϕ ∗ F ′ =
{C ∪ {v} : C ∈ ϕ ∗ F} ∪ {C ∪ {v} : C ∈ ϕ ∗ F}. Thus we have reduced the assertion of
the lemma to the special case where F ∈ USAT , and where hd(F ′) ≥ hd(F)+ 1 is
left to be shown. This now follows easily by induction on the number of variables. ��

6.2 Containment and Stability Properties

The following fundamental lemma is obvious from the definition:

Lemma 6.4 Consider C ⊆ CLS stable under application of partial assignments and
k ∈ N0. If C ∩ USAT ⊆ UCk then C ⊆ UCk.

We apply Lemma 6.4 to various well-known classes C (stating in brackets the
source for the bound on the unsatisfiable cases).

Lemma 6.5 Consider F ∈ CLS.

1. For ϕ ∈ PASS we have hd(ϕ ∗ F) ≤ hd(F) (by Lemma 3.11 in [36]).
2. hd(F) ≤ n(F) (by Lemma 3.18 in [36]).
3. If F ∈ 2–CLS = {F ∈ CLS | ∀C ∈ F : |C| ≤ 2}, then hd(F) ≤ 2 (by Lemma 5.6 in

[36]).
4. If F ∈ HO = {F ∈ CLS | ∀C ∈ F : |C ∩ VA| ≤ 1} (Horn clause-sets), then

hd(F) ≤ 1 by (Lemma 5.8 in [36]).
5. More generally, if F ∈ QHO, the set of q-Horn clause-sets (see Section 6.10.2 in

[14], and [44]), then hd(F) ≤ 2 (by Lemma 5.12 in [36]).
6. Generalising Horn clause-sets to the hierarchy HOk from [34] (with HO1 = HO):

if F ∈ HOk for k ∈ N, then hd(F) ≤ k (by Lemma 5.10 in [36]).

Obviously Part 4 of Lemma 6.5 can be generalised to F ∈ RHO (see Lemma 6.7,
Part 3). And considering Part 3, by a standard autarky-argument for 2–CLS (see
[35]) we can sharpen the hardness-upper-bound 2 for satisf iable clause-sets:

Lemma 6.6 For F ∈ 2–CLS ∩ SAT we have hd(F) ≤ 1.

52 M. Gwynne, O. Kullmann

Proof Consider a partial assignment ϕ with unsatisfiable ϕ ∗ F. Now we have r1(ϕ ∗
F) = {⊥}, since otherwise r1(ϕ ∗ F) ⊆ F, and thus r1(ϕ ∗ F) would be satisfiable. ��

We have the following stability properties:

Lemma 6.7 Consider k ∈ N0.

1. UCk is stable under application of partial assignments (with Lemma 6.5, Part 1;
this might reduce hardness).

2. UCk is stable under variable-disjoint union (with Lemma 6.1).
3. UCk is stable under renaming variables and switching polarities (by def inition).
4. UCk is stable under subsumption-elimination (by basic properties of resolution).
5. UCk is stable under addition of inferred clauses (by def inition; this might reduce

hardness).

Example 6.8 Examples for non-stability:

1. UC0 is obviously not stable under removal of clauses.
2. UC0 is not stable under removal of literal occurrences, for example

{{x, y} , {x, y}} ∈ UC0, but {{x} , {x, y}} /∈ UC0.
3. UC0 is not stable under crossing out of variables, e.g. {{x, y} , {x, y}} ∈ UC0, but

when crossing out variable x we obtain {{y} , {y}} /∈ UC0.
4. UC0 is not stable under addition of clauses, for example {{x}} ∈ UC0, but

{{x} , {x}} /∈ UC0.
5. UC0 is not stable under addition of literal occurrences, e.g. {{x} , {y}} ∈ UC0, but

{{x, y} , {y}} /∈ UC0.

6.3 Alternative Hierarchies

No class UCk is stable under removal of clauses. We will see in this subsection that
this boils down to the class U0 of clause-sets containing the empty clauses not being
stable under removal of clauses. Some classes contained in UC1 however are stable
under removal of clauses, for examples renamable Horn clause-sets (RHO), and
in [11] hierarchies based on this more restricted class have been considered. To
understand the connection to our approach, some comments on the use of “oracles”
in this setting are needed (see Section 9.4 for future developments).

In [36, 37] the hierarchy Gk(U ,S) ⊆ CLS (k ∈ N0) has been introduced, using
oracles U ⊆ USAT for unsatisfiability detection and S ⊆ SAT for satisfiability
detection:

1. The minimal oracles considered there are U0 := {F ∈ CLS : ⊥ ∈ F} and S0 :=
{	}.

2. One uses G0
k(U ,S) := Gk(U ,S) ∩ USAT and G1

k(U ,S) := Gk(U ,S) ∩ SAT .
Since G0

k(U ,S) does not depend on S, one writes G0
k(U) := G0

k(U ,S).
3. For all k ∈ N0 holds G0

k(U0) = UCk ∩ USAT . On satisfiable instances in general
the hierarchies are incomparable.

4. If C ⊆ CLS is stable under application of partial assignments, then each class
Gk(C) := Gk(C ∩ USAT ,C ∩ SAT) (for k ∈ N0) is also stable under partial
assignments (Lemma 4.2 in [37]). So if C ∩ USAT ⊆ UCk′ for some k′ ∈ N0, then

Generalising Unit-Refutation Completeness and SLUR 53

we have Gk(C) ⊆ UCk+k′ (using Lemma 6.4). This is the basis of all inclusion-
relations of Section 6.

5. In [36, 37] it is assumed that U0 ⊆ U holds. This ensures that UCk ∩ USAT ⊆
G0

k(C) always holds, but in most cases makes classes Gk(U ,S) unstable under
elimination of clauses.

In [11] two hierarchies (�k)k∈N0 , (ϒk)k∈N0 have been introduced; the basic motiva-
tions and the relations to our hierarchies are as follows:

1. We have �k ∩ USAT = G0
k(RHO) and �k ∩ SAT ⊆ G1

k(RHO) (with �0 =
RHO). Note that we do not have U0 ⊆ RHO here.

2. It is RHO ∩ USAT ⊂ G0
1(U0) (Lemma 6.5, Part 4), while RHO ∩ SAT is not

included in any G1
k(U ,S0). More generally we have�k ∩ USAT ⊂ G0

k+1(U0) for
all k ≥ 0.

3. So the choice of the oracle RHO is less powerful on unsatisfiable instances than
the choice of U0 (when going up one level in the hierarchy), while the special
recognition of satisfiability for RHO is (naturally) not captured by any level
of the Gk-hierarchy, when using only the trivial satisfiability-oracle S0 (even
using U = USAT does not change this, since this only yields full handling of
all forced assignments, while a satisfiable instance in RHO might not have any
forced assignment).

4. For k ≥ 1 we have �k ∩ SAT ⊂ G1
k(RHO), where an example for F ∈

G1
k(RHO) \�k is given by F := {{v} ∪ C : C ∈ F ′} for some F ′ ∈ CLS \�k

and v ∈ VA \ var(F ′). The point is that recognition for the Gk(U ,S)-hierarchy
includes satisfiability-decision at lower levels, and if one branch, here 〈v → 1〉,
yields a satisfiable instance, then the other branch (〈v→ 0〉) is not inspected—
which however is the case for �k.

5. RHO is stable under application of partial assignments, and, that is its main
feature, stable under removal of clauses. This yields that all �k are stable under
removal of clauses, which is the main motivation for this choice of the base
oracle.

6. U0 is not contained in any �k, and thus there are unsatisfiable clause-sets of
hardness 0 not contained in any given�k.

7. Čepek and Kučera [11] considered also (shortly) the hierarchy ϒk ⊂ CLS (k ∈
N0), with ϒk ∩ USAT = G0

k(QHO) and ϒk ∩ SAT ⊆ G1
k(QHO), based on the

stronger oracle QHO ⊃ RHO of q-Horn clause-sets (again stable under appli-
cation of partial assignments and removal of clauses). We have ϒk ∩ USAT ⊂
G0

k+2(U0) for all k ≥ 0 (Lemma 6.5, Part 5).

By Lemma 6.4 we get:

Lemma 6.9 For all k ∈ N0 we have �k ⊂ UCk+1 and ϒk ⊂ UCk+2 for the hierarchies
�k, ϒk introduced in [11].

6.4 Determining Hardness Computationally

By the well-known computation of prc0(F) via resolution-closure we obtain:

Lemma 6.10 Whether for F ∈ CLS we have hd(F) = 0 or not can be decided in
polynomial time, namely hd(F) = 0 holds if and only if F is stable under resolution

54 M. Gwynne, O. Kullmann

modulo subsumption (which means that for all resolvable C, D ∈ F with resolvent R
there exists E ∈ F with E ⊆ R).

Thus if the hardness is known to be at most 1, we can compute it efficiently:

Corollary 6.11 Consider a class C ⊆ CLS of clause-sets where C ⊆ UC1 is known.
Then for F ∈ C one can compute hd(F) ∈ {0, 1} in polynomial time.

Examples for C are given by HO ⊂ UC1 (Lemma 6.5) and in Section 3.1. Another
example class with known hardness is given by 2–CLS ⊂ UC2 (Lemma 6.5), and also
here we can compute the hardness efficiently:

Lemma 6.12 For F ∈ 2–CLS one can compute hd(F) ∈ {0, 1, 2} in polynomial time.

Proof One method is to observe that for elements of 2–CLS the set of prime-
implicates can be determined in polynomial time, while SAT-decision can be done in
linear time. More efficient is the following:

1. Determine first whether F is satisfiable or not.
2. If F is satisfiable, then hd(F) ∈ {0, 1} by Lemma 6.6, and whether hd(F) = 0 or

not can be determined by Lemma 6.10.
3. If F is unsatisfiable, then it suffices to compute r0(F) and r1(F). ��

See Theorem 7.5 for coNP-completeness of determining an upper bound on hardness.

7 The SLUR Hierarchy

We now define the SLURk hierarchy, generalising SLUR (recall Section 3.1) in a
natural way, by replacing r1 with rk. In Section 7.1 we show SLURk = UCk, and as
application obtain coNP-completeness of membership decision for UCk for k ≥ 1. In
Section 7.2 we determine the relations to the previous hierarchies SLUR∗(k) and
CANON(k) as discussed in Section 3.2.

Definition 7.1 Consider k ∈ N0. For clause-sets F, F ′ ∈ CLS the relation

F
SLURk−−−−→ F′ holds if there is x ∈ lit(F) such that F ′ = rk(〈x → 1〉 ∗ F) and F ′ �= {⊥}.

The transitive-reflexive closure is denoted by F
SLURk−−−−→∗ F′. The set of all fully

reduced clause-sets reachable from F is denoted by

slurk(F) :=
{

F ′ ∈ CLS | F
SLURk−−−−→∗ F ′ ∧ ¬∃ F ′′ ∈ CLS : F ′ SLURk−−−−→ F ′′

}
.

Finally the class of all clause-sets which are either identified by rk to be unsatisfiable,
or where by k-SLUR-reduction always a satisfying assignment is found, is denoted
by SLURk := {F ∈ CLS : rk(F) �= {⊥} ⇒ slurk(F) = {	}}.

We have SLUR1 = SLUR (recall Definition 3.3). Note also the following simple
properties for F ∈ CLS:

1. 	 ∈ slurk(F)⇔ F ∈ SAT .

Generalising Unit-Refutation Completeness and SLUR 55

2. For F ′ ∈ slurk(F) \ {	}we have F ′ ∈ USAT , and if F ∈ SAT , then rk(F ′) �= {⊥}.
3. If F ∈ SLURk, then F ∈ SAT and F

SLURk−−−−→∗ F ′ implies F ′ ∈ SAT .

Again we could define the transition relation in a less restricted way, as F
SLURk−−−−→

〈x → 1〉 ∗ F iff rk(〈x → 1〉 ∗ F) �= ⊥, and this would yield the same class SLURk.

Example 7.2 Some examples for SLUR2 \ SLUR1:

1. Consider the unsatisfiable clause-set F := {{x, y} , {x, y} , {x, y} , {x, y}}.
(a) F �∈ SLUR1 because F is unsatisfiable but r1(F) �= {⊥}.
(b) F ∈ SLUR2 because r2(F) = {⊥}.

2. Consider the satisfiable clause-set F ′ := {{x1, x2} ∪ C | C ∈ F}.
(a) F ′ �∈ SLUR1 = SLUR because F ′ SLUR−−−→∗ F = 〈x1, x2 → 0〉 ∗ F ′, where

slur(F) = {F} and so F ∈ slur(F ′).
(b) F ′ ∈ SLUR2 because for any ϕ such that F ′ SLUR2−−−−→∗ ϕ ∗ F ′ and F ′ �= 	 we

have one of the following two cases:

i. ϕ ∗ F ′ is satisfiable, and so ϕ ∗ F ′ �∈ slur2(F).
ii. ϕ ∗ F ′ is unsatisfiable and so 〈x1 → 0, x2 → 0〉 ⊆ ϕ, but this contradicts

the fact that F ′ SLUR2−−−−→∗ ϕ ∗ F ′. That is, after setting either x1 or x2 to 0,
lookahead with r2 detects unsatisfiability of ϕ ∗ F ′ and so one can never
transition to ϕ ∗ F ′ from F ′.

Therefore slur2(F ′) = {	}.
More generally we have {{x1, . . . , xk} ∪ C | C ∈ F} ∈ SLUR2 \ SLUR∗(k) (re-
call Example 3.6).

Lemma 7.3 We have for F ∈ CLS, k ∈ N0 and a partial assignment ϕ with rk(ϕ ∗ F) �=
{⊥} that F

SLURk−−−−→∗ rk(ϕ ∗ F) holds.

Proof The assignments of ϕ can be performed via SLUR-k-transitions. ��

7.1 SLUR = UC

For F ∈ UCk there is the following polynomial-time SAT decision: F is unsatisfiable
iff rk(F) = {⊥}. And a satisfying assignment can be found for satisfiable F via self-
reduction, that is, probing variables, where unsatisfiability again is checked for
by means of rk. For k = 1 this means exactly that the nondeterministic “SLUR”-
algorithm will not fail. And that implies that F ∈ SLUR holds, where SLUR is the
class of clause-sets where that algorithm never fails. So UC1 ⊆ SLUR. Now it turns
out, that actually this property characterises UC1, that is, UC1 = SLUR holds, which
makes available the results on SLUR.

We now show that this equality between UC and SLUR holds in full generality
for the UCk and SLURk hierarchies.

Theorem 7.4 For all k ∈ N0 holds SLURk = UCk.

56 M. Gwynne, O. Kullmann

Proof Consider F ∈ CLS. We have to show F ∈ SLURk ⇔ hd(F) ≤ k. For F ∈
USAT this follows from the definitions, and thus we assume F ∈ SAT .

First consider F ∈ SLURk. Consider a partial assignment ϕ such that ϕ ∗ F ∈
USAT . We have to show rk(ϕ ∗ F) = {⊥}, and so assume rk(ϕ ∗ F) �= {⊥}. It follows

F
SLURk−−−−→∗ rk(ϕ ∗ F) by Lemma 7.3, whence rk(ϕ ∗ F) ∈ SAT contradicting ϕ ∗ F ∈

USAT .
Now assume hd(F) ≤ k, and we show F ∈ SLURk, i.e., slurk(F) = 	. Assume

there is F ′ ∈ slurk(F) \ {	}. By Property 2 for Definition 7.1 we get F ′ ∈ USAT
and rk(F ′) �= {⊥}. However by Lemma 6.5, Part 1 we get hd(F ′) ≤ k, and thus
rk(F ′) = {⊥}. ��

It seemed an essential feature of the class SLUR, that its most natural definition
is by the SLUR-algorithm; for example in [23] we find the quote “I find it inter-
esting that the algorithm seems simpler than the conditions under which it is a
decision procedure.” By Theorem 7.4 now we have a simple characterisation of
these conditions, namely that unsatisfiability after instantiation is always detected
by unit-clause propagation. Using the characterisation SLUR = UC, we can show
coNP-completeness of hardness-determination:

Theorem 7.5 For f ixed k ∈ N the decision whether hd(F) ≤ k (i.e., whether F ∈ UCk,
or, by Theorem 7.4, whether F ∈ SLURk) is coNP-complete.

Proof The decision whether F /∈ SLURk is in NP by definition of SLURk (or use
Lemma 5.4). By Theorem 3 in [12] we have that SLUR is coNP-complete, which by
Lemma 6.3 can be lifted to higher k. ��

7.2 Comparison to the Previous Hierarchies

The alternative hierarchies SLUR∗(k) and CANON(k) (recall Section 3.2) do not
generalise r1 by rk, but extend r1 in various ways (maintaining linear-time computa-
tion for the (non-deterministic) transitions). In this way in [2, 12] rather complicated
argumentations arise, in contrast to our elegant characterisation of the classes UCk

in Theorem 5.7. As a consequence, we can give short proofs that the alternative
hierarchies are subsumed by our hierarchy, while already the second level of our
hierarchy is (naturally) not contained in any levels of these two hierarchies (naturally,
since the time-exponent for deciding whether a (non-deterministic) transition can be
done w.r.t. hierarchy SLURk depends on k).

First we simplify and generalise the main result of [2], that CANON(1) ⊆ SLUR.
By definition we have CANON(0) = UC0.

Theorem 7.6 For all k ∈ N0 we have:

1. CANON(k) ⊆ UCk.
2. UC1 �⊆ CANON(k) (and thus CANON(k) ⊂ UCk for k ≥ 1).

Proof By Theorem 5.7 and the fact, that the Horton–Strahler number of a tree
is at most the height, we see that CANON(k) ⊆ UCk. That UC1 �⊆ CANON(k)
can be seen by observing that there are formulas in HO ∩ USAT with arbitrary

Generalising Unit-Refutation Completeness and SLUR 57

resolution-height complexity and so HO �⊆ CANON(k). By HO ⊂ UC1 we get
UC1 �⊆ CANON(k). ��

Also the other hierarchy SLUR∗(k) is strictly contained in our hierarchy:

Theorem 7.7 For all k ∈ N0 we have:

1. SLUR∗(k) ⊂ SLURk+1.
2. SLUR2 �⊆ SLUR∗(k).

Proof Part 1 follows most easily by using Lemma 6.4 together with the simple fact
that slur∗(k)(F) = {F} for F �= 	 implies rk+1(F) = {⊥}; for the strictness of the
inclusion use Part 2. Part 2 follows from CANON(2) �⊆ SLUR∗(k) (Lemma 13 in
[2]), while by Theorem 7.6 we have CANON(2) ⊆ SLUR2. ��

Part 1 of Theorem 7.7 can not be improved, since SLUR∗(k) and SLURk are
incomparable:

Lemma 7.8 For k ≥ 2 holds SLUR∗(k) �⊆ SLURk and SLURk �⊆ SLUR∗(k).

Proof That SLURk �⊆ SLUR∗(k) follows by Part 2 of Theorem 7.7. That
SLUR∗(k) �⊆ SLURk follows from the fact that for the full unsatisfiable clause-
set Fk on k variables (i.e., containing all 2k clauses of length k) we have Fk+1 ∈
SLUR∗(k) by Lemma 10 in [2] but Fk+1 �∈ SLURk by Part 2 of Lemma 6.2. ��

8 Optimisation

We conclude by considering the question of finding, for an input-clause-set F, short
equivalent clause-sets F ′ ∈ UCk for fixed k. Definition 8.1 provides the appropriate
notion of “irredundancy” via the notion of a “k-base”, where irredundancy refers
to both removal of literal occurrences and removal of clauses. In Theorem 8.3 we
show that the problem is solvable in polynomial time for inputs F ∈ 2–CLS , while
in Theorem 8.4 we show that the problem is NP-complete even when restricting the
input to Horn clause-sets with very few prime implicates.

Definition 8.1 A clause-set F is a k-base for some k ∈ N0 ∪ {+∞} if hd(F) ≤ k, and
after removing any literal occurrence or any clause from F, the result F ′ is either not
equivalent to F or has hd(F ′) > k.

Remarks:

1. Every k-base F is primal, that is, F ⊆ prc0(F).
2. A clause-set F is a 0-base iff F = prc0(F), while F is an ∞-base iff F is primal

and irredundant (removal of any clause yields a clause-set not equivalent to F).
3. For a given clause-set F, we consider the problem of computing a shortest (w.r.t.

the number of clauses or the number of literal occurrences) equivalent k-base F ′,
which we call a k-base for F:

(a) By [42] for k = ∞ this problem is �2-complete.

58 M. Gwynne, O. Kullmann

(b) A special case of interest here is when F = prc0(F), in which case F ′ ⊆ F
must hold. Since all prime implicates are given as input, for k <∞ the
decision problem whether F has a k-base of size at most k (k is part of the
input) is now in NP. In Theorem 8.4 we will see that this decision problem
is actually NP-complete, even under rather restricted circumstances.

Example 8.2 Consider the clause-set

F :=
⎧
⎨

⎩
{v1, v3, v4}︸ ︷︷ ︸

C1

, {v2, v3, v4}︸ ︷︷ ︸
C2

, {v2, v3, v4}︸ ︷︷ ︸
C3

, {v2, v3, v4}︸ ︷︷ ︸
C4

, {v1, v3, v4}︸ ︷︷ ︸
C5

, {v1, v2}︸ ︷︷ ︸
C6

⎫
⎬

⎭
.

and clause-sets F1 := F \ {C5} and F2 := F \ {C6}. We have that:

1. F is a 0-base, that is, prc0(F) = F.
We have to show that F is closed under resolution modulo subsumption. We have
the following possible resolutions in F with the associated subsuming clauses:
C1 C2 ⊃ C6, C1 C3 ⊃ C6, C2 C5 ⊃ C6, C3 C5 ⊃ C6, C4 C6 = C5.

2. F, F1 and F2 are the only k-bases (k ∈ N0) that are equivalent to F.
To show that there are no other k-bases equivalent to F we must show that all
other subsets of F are not equivalent to F. It suffices to show that the clauses
C1,C2,C3,C4 are irredundant (i.e., occur in all primal clause-sets equivalent to
F) and the clause-set F3 := F \ {C5,C6} is not equivalent to F. The irredundancy
of C1,C2,C3,C4 is seen by the fact that they are not obtained as resolvents. That
F3 is not equivalent to F follows from the fact that F3 does not contain positive
clauses while F does.

3. F1 is a 1-base (and 2-base) and is equivalent to F but is not a 0-base.
We have C4 C6 = C5 and thus F1 |= C5. To see hd(F1) = 1, observe hd(ϕC5 ∗
F1) = hd({{v2} , {v2}}) = 1.

4. F2 is a 2-base and is equivalent to F but is not a 1-base.
We have (C1 C3) (C2 C5) = C6 and thus F2 |= C6. Furthermore hd(ϕC6 ∗
F2) = hd({{v3, v4} , {v3, v4} , {v3, v4} , {v3, v4}}) = 2.

5. Thus F is neither a 1-base nor a 2-base.

Theorem 8.3 For clause-sets F ∈ 2–CLS we can compute shortest-size (minimum
number of clauses or minimum number of literal occurrences) equivalent k-bases F ′
for all k ∈ N0 ∪ {+∞} in polynomial time as follows:

1. If F is unsatisf iable, then the best possibility is F′ := {⊥}. So assume in the sequel
that F is satisf iable.

2. If F = 	, then F ′ := 	. So assume in the sequel that F �= 	.
3. If F has a forced literal x, then any k-base for F contains {x}, and we can split of f

x by considering an optimal k-base for 〈x → 1〉 ∗ F. So we can assume w.l.o.g. in
the sequel that F has no forced literals. (Thus F as well as prc0(F) contains only
clauses of length equal 2.)

4. Since all k-bases of F without new variables are subsets of prc0(F), when con-
sidering “shortest k-bases” now there is no dif ferences between the measures

Generalising Unit-Refutation Completeness and SLUR 59

c (number of clauses) and � (number of literal occurrences), and we can just speak
of “shortest k-bases”.

5. The (unique) 0-base of F, the set prc0(F) ∈ 2–CLS of all prime-implicates, can be
computed in polynomial time by the methods discussed in Section 5.8 in [14].

6. Every ∞-base of F without new variables is a 1-base (Lemma 6.6), and thus w.r.t.
k-bases for k ∈ N0 ∪ {+∞} only the determination of shortest 1-bases is left, where
the shortest 1-bases are precisely the smallest subsets of prc0(F) equivalent to F.

7. Finally in Chapter 9 of [13] (af f irmed in [30]) it is shown how to compute shortest
equivalent sets of prime-implicates, and thus shortest 1-bases can be computed in
polynomial time.

Theorem 8.4 Consider k ∈ N0 ∪ {+∞}.

1. Assume k ≥ 1. The decision problem “For inputs F ∈ HO+ ∩ 3–CLS with
prc0(F) = F and m ∈ N0, decide whether there is a k-base F′ of F with c(F ′) ≤ m.”
(note that here F ′ ⊆ F must hold) is NP-complete.

2. For k = 0 the decision problem “For input F ∈ HO and m ∈ N0, decide whether
there is a k-base F′ of F with c(F) ≤ m.” is in P.

Proof For Part 2 one enumerates with polynomial delay the prime implicates of F
(see Section 6.5 in [14] for efficient methods): if this process stops with at most m
prime implicates found, then the answer is “yes”, otherwise the answer is “no”.

For Part 1 we first note that the problem is in NP, since all prime clauses are
given, and hd(F) ≤ 1. The heart of the completeness is Theorem 6.18 in [14], which
states that “Horn minimisation w.r.t. the number of clauses remains NP-complete
even if the input is restricted to cubic pure Horn expressions.”, plus the fact from the
underlying report [9], that for the considered G ∈ HO+ ∩ 3–CLS all prime implicates
are also of length at most 3, and thus we can take as input F := prc0(G) ∈ HO+ ∩
3–CLS (which can be computed in polynomial time). ��

9 Conclusion and Outlook

We brought together two streams of research, one started by [20] in 1994, introducing
UC for knowledge compilation, and one started by [43] in 1995, introducing SLUR
for polytime SAT decision. Two natural generalisations,UCk and SLURk have been
provided, and the (actually surprising) identity SLURk = UCk provides both sides of
the equation with additional tools. Various basic lemmas have been shown, providing
a framework for elegant and powerful proofs. Regarding computational problems,
we solved the most basic questions.

Our main future application, which brings the UC-perspective and the SLUR-
perspective together, is in the area of “good SAT representations”; see Section 9.2
for more information. We consider the approach of representing a boolean function
f via a clause-set F ∈ UCk as the first beginning of what we envisage as a theory of
good SAT representations.

We outline now what seems to us the most promising directions for future
investigations (and where we already have partial results).

60 M. Gwynne, O. Kullmann

9.1 Propagation-Hardness

Complementary to “unit-refutation completeness” there is the notion of “propaga-
tion completeness”, as investigated in [7, 18]. This will be captured and generalised
by a corresponding measure phd : CLS → N0 of “propagation-hardness”, defined as
follows:

Definition 9.1 For F ∈ CLS we define the propagation-hardness (for short “p-
hardness”) phd(F) ∈ N0 as the minimal k ∈ N0 such that for all partial assignments
ϕ ∈ PASS we have

rk(ϕ ∗ F) = r∞(ϕ ∗ F).

Now the classPC of “propagation-complete clause-sets” can be properly generalised:

Definition 9.2 For k ∈ N0 let PCk :={F ∈ CLS :phd(F)≤k} (the class of propagation-
complete clause-sets of level k).

We have PC = PC1. These classes lie (strictly) between the UCk-classes:

Lemma 9.3 For k ∈ N0 we have PCk ⊂ UCk ⊂ PCk+1.

9.2 Good Representations of Boolean Functions

The real power of SAT representations comes with new variables. Expressive power
and limitations of “good representations” have to be studied. In the SAT-context
the most useful notion of “representation” of a boolean function f seems to be
�1-QCNF-representations, that is, clause-sets F with var(f) ⊆ var(F), where the
new variables (in var(F) \ var(f)) are implicitly existentially quantified—in other
words, the satisfying assignments of F projected to the variables of f are precisely
the satisfying assignments of f ; see [10] for some general results. The restricted
representations we already considered in Section 1.4 are those without new variables,
that is, where var(F) = var(f).

Additional conditions on F are needed to get “effective” representations, since
in general the evaluation of F for a total assignment for f is an NP-problem.
Strong representations are those with bounded hardness. Strengthening Conjecture
1.1 from the introduction, we conjecture that also with new variables the power of
representing boolean functions increases when allowing higher hardness:

Conjecture 9.4 For every k ∈ N0 the set of sequences (fn)n∈N of boolean functions
having sequences (Fn)n∈N of polysize-representations of p-hardness at most k (i.e.,
phd(Fn) ≤ k for all n) is strictly smaller then those having polysize-representations of
hardness at most k (i.e., hd(Fn) ≤ k for all n), which in turn is strictly smaller then those
having polysize-representations of p-hardness at most k + 1 (i.e., phd(Fn) ≤ k + 1
for all n).

Generalising Unit-Refutation Completeness and SLUR 61

We wish to remind the reader of the open problem mentioned in Section 1.5 about
the existence of a polysize-representation of bounded hardness for affine boolean
functions.

We need to emphasise here that representations F of boolean functions f with
hd(F) ≤ k fulfil an absolute condition, that is, we can determine unsatisfiability by rk

for arbitrary partial assignments, not just those using only the variables of f . When
only asking for this relative condition (currently the standard, posing conditions
only on variables occurring in the represented boolean function f , ignoring the new
variables of F), then by generalising [5] we can show that the hierarchies collapse to
the first level. This is due to the “uncontrolled” use of the new variables (the relative
condition doesn’t pose conditions on them). See [8] for a study on UC together with
the relative condition.

9.3 Applications to Cryptanalysis

As an application of the theory of “good representations” we consider cryptanalytic
problems, especially attacking AES/DES, as preliminary discussed in [25, 26]. For the
experimental evaluation we consider the various boolean functions (“constraints”)
used by these ciphers, most prominently the “S-boxes”, and systematically search
for short representations of hardness 0, 1, 2 and p-hardness 1, 2. Various solvers are
then run on the SAT-problems obtained by plaintext-/ciphertext pairs (where the
task is to determine the key). The strengthened inference power seems especially
interesting for the combination of look-ahead (“tree-resolution based”) and conflict-
driven (“dag-resolution based”) SAT solvers as introduced in [33].

9.4 Relativised Hardness

Generalising [5] we can show that for example the satisfiable pigeonhole formulas
PHPm

m do not have polysize representations of bounded hardness even for the relative
condition. One way to overcome this barrier is to generalise the theory started here
via the use of oracles as in [36, 37] (recall Section 6.3), and then employing oracles
which can handle pigeonhole formulas. The basic definitions are as follows.

Definition 9.5 A valid oracle for generalised unit-clause propagation is some U ⊆
USAT with {⊥} ∈ U which is stable under application of partial assignments. The
oracle is strong if U0 ⊆ U , where U0 := {F ∈ CLS : ⊥ ∈ F}.

Consider k ∈ N0. In [36] the reduction rUk : CLS → CLS has been defined. An
equivalent definition (generalising Definition 4.3) is as follows for F ∈ CLS :

rU0 (F) :=
{
{⊥} if F ∈ U
F otherwise

rUk+1(F) :=
{

rUk+1(〈x → 1〉 ∗ F) if ∃ x ∈ lit(F) : rUk (〈x → 0〉 ∗ F) = {⊥}
F otherwise

.

62 M. Gwynne, O. Kullmann

Note rk = rU0
k . Generalising Definitions 5.1 and 5.5:

Definition 9.6 Consider a valid oracle U . The hardness hdU (F) ∈ N0 (“hardness with
oracle U”) of an unsatisfiable F ∈ CLS is the minimal k ∈ N0 such that rUk (F) = {⊥}.
And for general F ∈ CLS we define hdU () := 0, while for F �= 	 let

hdU (F) := max {hdU (ϕ ∗ F) : ϕ ∈ PASS ∧ ϕ ∗ F ∈ USAT } ∈ N0.

We have hd = hdU0 , and if U is strong then for all F holds hdU (F) ≤ hd(F). An
interesting oracle U (with polytime membership decision) is given by the class of
unsatisfiable clause-sets defined in [19] via semidefinite programming, for which we
get hdU (PHPm

m) = 0.

9.5 Width-Based Hardness

The basic idea is to use width-restricted resolution instead of nested input resolution,
in order to increase inference power from tree-resolution to dag-resolution. A basic
weakness of the standard notion of width-restricted resolution, which demands
that both parent clauses must have length at most k for some fixed k ∈ N0 (the
“width”), is that even Horn clause-sets require unbounded width in this sense. The
correct solution, as investigated and discussed in [36, 37], is to use the notion of “k-
resolution” as introduced in [34], where only one parent clause needs to have length
at most k (thus properly generalising unit-resolution).

Definition 9.7 Consider k ∈ N0.

• Two resolvable clauses C, D are k-resolvable if |C| ≤ k or |D| ≤ k.
• We use F �k C if there is a resolution proof R of some C′ ⊆ C from F such that

all resolutions in R are k-resolutions.

This allows us now to define “width-hardness” (accordingly the “hardness” only
studied in this paper can be called “tree-hardness”):

Definition 9.8 For F ∈ USAT let whd(F) ∈ N0 be the minimal k ∈ N0 such that
F �k ⊥ holds. And for F ∈ CLS let whd(F) ∈ N0 be the minimal k ∈ N0 such that
for all partial assignments ϕ holds ϕ ∗ F ∈ USAT ⇒ ϕ ∗ F �k ⊥.

We have whd(F) = k ⇔ hd(F) = k for k ∈ {0, 1}, while in general whd(F) ≤ hd(F)
holds (for all F ∈ CLS).

Conjecture 9.9 For every k ∈ N0 the set of families of boolean functions having
polysize representations of width-hardness at most k is strictly smaller then those
having polysize-representations of width-hardness at most k + 1. For k ≥ 1 families
showing the separation can be chosen such that they have unbounded hardness.

Finally we mention that, as in Section 9.4, we also have a relativised version whdU ,
based on relativised k-resolution as studied in [36, 37].

Generalising Unit-Refutation Completeness and SLUR 63

References

1. Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Measuring the hardness of SAT instances.
In: Fox, D., Gomes, C. (eds.) Proceedings of the 23th AAAI Conference on Artificial Intelligence
(AAAI-08), pp. 222–228 (2008)

2. Balyo, T., Gurský, Š., Kučera, P., Vlček, V.: On hierarchies over the SLUR class. In: Twelfth
International Symposium on Artificial Intelligence and Mathematics (ISAIM 2012) (2012).
Available at http://www.cs.uic.edu/bin/view/Isaim2012/AcceptedPapers

3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A.,
Heule, M.J.H., van Maaren, H., Walsh, T. (eds) Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, vol. 185, chapter 26, pp. 825–885. IOS Press (2009). ISBN 978-1-
58603-929-5

4. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of
Constraint Programming. Foundations of Artificial Intelligence, chapter 3, pp. 29–83. Elsevier
(2006). ISBN 0-444-52726-5

5. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decompositions
of global constraints. In: Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI-09), pp. 412–418 (2009)

6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009). ISBN 978-1-58603-929-5

7. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In: Bieliková, M.,
Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012: Theory and Prac-
tice of Computer Science. Lecture Notes in Computer Science, vol. 7147, pp. 612–624. Springer
(2012)

8. Bordeaux, L., Janota, M., Marques-Silva, J., Marquis, P.: On unit-refutation complete formulae
with existentially quantified variables. In: Knowledge Representation 2012 (KR 2012). Associa-
tion for the Advancement of Artificial Intelligence (AAAI Press) (2012)

9. Boros, E., Čepek, O.: On the complexity of Horn minimization. Technical Report RRR 1-94,
Rutcor Research Report (1994)

10. Bubeck, U., Büning, H.K.: The power of auxiliary variables for propositional and quantified
boolean formulas. Stud. Log. 3(3), 1–23 (2010)

11. Čepek, O., Kučera, P.: Known and new classes of generalized Horn formulae with polynomial
recognition and SAT testing. Discrete Appl. Math. 149, 14–52 (2005)

12. Čepek, O., Kučera, P., Vlček, V.: Properties of SLUR formulae. In: Bieliková, M., Friedrich, G.,
Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012: Theory and Practice of Computer
Science. LNCS Lecture Notes in Computer Science, vol. 7147, pp. 177–189. Springer (2012)

13. Chang, T.: Horn formula minimization. Master’s thesis, Rochester Institute of Technology (2004)
14. Crama, Y., Hammer, P.L.: Boolean functions: theory, algorithms, and applications. In: Encyclo-

pedia of Mathematics and Its Applications, vol. 142. Cambridge University Press (2011). ISBN
978-0-521-84751-3

15. Creignou, N., Kolaitis, P., Vollmer, H. (eds.): Complexity of Constraints: An Overview of Cur-
rent Research Themes. Lecture Notes in Computer Science (LNCS), vol. 5250. Springer (2008).
ISBN-10 3-540-92799-9

16. Dantsin, E., Hirsch, E.A.: Worst-case upper bounds. In: Biere, A., Heule, M.J.H., van Maaren,
H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applica-
tions, vol. 185, chapter 12, pp. 403–424. IOS Press (2009). ISBN 978-1-58603-929-5

17. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)
18. Darwiche, A., Pipatsrisawat, K.: On the power of clause-learning SAT solvers as resolution

engines. Artif. Intell. 175(2), 512–525 (2011)
19. de Klerk, E., van Maaren, H., Warners, J.P.: Relaxations of the satisfiability problem using

semidefinite programming. J. Autom. Reason. 24, 37–65 (2000)
20. del Val, A.: Tractable databases: how to make propositional unit resolution complete through

compilation. In: Proceedings of the 4th International Conference on Principles of Knowledge
Representation and Reasoning (KR’94), pp. 551–561 (1994)

21. Franco, J.: Relative size of certain polynomial time solvable subclasses of satisfiability. In: Du,
D., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory and Applications (DIMACS
Workshop March 11–13, 1996). DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 35, pp. 211–223. American Mathematical Society (1997). ISBN 0-8218-
0479-0

http://www.cs.uic.edu/bin/view/Isaim2012/AcceptedPapers

64 M. Gwynne, O. Kullmann

22. Franco, J., Martin, J.: A history of satisfiability. In: Biere, A., Heule, M.J.H., van Maaren, H.,
Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185, chapter 1, pp. 3–74. IOS Press (2009). ISBN 978-1-58603-929-5

23. Franco, J., Schlipf, J.: 1997 final report: Describing new results under the research project entitled
Complexity of algorithms for problems in propositional logic. Covering the period January 1,
1994–march 31, 1997. Technical report, University of Cincinnati and Office of Naval Research
(1997). Available at http://www.dtic.mil/docs/citations/ADA325949

24. Franco, J., Van Gelder, A.: A perspective on certain polynomial-time solvable classes of sat-
isfiability. Discrete Appl. Math. 125, 177–214 (2003)

25. Gwynne, M., Kullmann, O.: Towards a better understanding of hardness. In: The Seventeenth
International Conference on Principles and Practice of Constraint Programming (CP 2011): Doc-
toral Program Proceedings, pp. 37–42 (2011). Proceedings available at http://www.dmi.unipg.it/
cp2011/downloads/dp2011/DP_at_CP2011.pdf

26. Gwynne, M., Kullmann, O.: Towards a better understanding of SAT translations. In: Berger, U.,
Therien, D. (eds.) Logic and Computational Complexity (LCC’11), as part of LICS 2011 (2011).
10 pp., available at http://www.cs.swansea.ac.uk/lcc2011/

27. Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR via nested
input resolution. Technical Report arXiv:1204.6529v5 [cs.LO], arXiv (2013)

28. Gwynne, M., Kullmann, O.: Generalising and unifying SLUR and unit-refutation completeness.
In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013: Theory and Practice of Computer Science. Lecture Notes in Computer Science (LNCS),
vol. 7741, pp. 220–232. Springer (2013). doi:10.1007/978-3-642-35843-2_20

29. Gwynne, M., Kullmann, O.: Towards a theory of good SAT representations. Technical Report
arXiv:1302.4421 [cs.AI], arXiv (2013)

30. Hemaspaandra, E., Schnoor, H.: Minimization for generalized boolean formulas. In: Walsh, T.
(ed.) Proceedings of the Twenty-Second International Joint Conference on Artificial Intelli-
gence, vol. 1, pp. 566–571. AAAI Press (2011)

31. Henschen, L.J., Wos, L.: Unit refutations and Horn sets. J. Assoc. Comput. Mach. 21(4), 590–605
(1974)

32. Heule, M.J.H., van Maaren, H.: Look-ahead based SAT solvers. In: Biere, A., Heule, M.J.H.,
van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelli-
gence and Applications, vol. 185, chapter 5, pp. 155–184. IOS Press (2009). ISBN 978-1-58603-
929-5

33. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding CDCL SAT
solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.) Hardware and Software:
Verification and Testing (HVC 2011). Lecture Notes in Computer Science (LNCS), vol. 7261,
pp. 50–65. Springer (2012). doi:10.1007/978-3-642-34188-5_8. http://cs.swan.ac.uk/∼csoliver/
papers.html#CuCo2011

34. Kleine Büning, H.: On generalized Horn formulas and k-resolution. Theor. Comput. Sci. 116,
405–413 (1993)

35. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, vol. 185, chapter 11, pp. 339–401 (2009). ISBN 978-1-58603-929-5.
doi:10.3233/978-1-58603-929-5-339

36. Kullmann, O.: Investigating a general hierarchy of polynomially decidable classes of CNF’s
based on short tree-like resolution proofs. Technical Report TR99-041, Electronic Colloquium
on Computational Complexity (ECCC) (1999)

37. Kullmann, O.: Upper and lower bounds on the complexity of generalised resolution and gener-
alised constraint satisfaction problems. Ann. Math. Artif. Intell. 40(3–4), 303–352 (2004)

38. Kullmann, O.: Present and future of practical SAT solving. In: Creignou, N., Kolaitis, P., Vollmer,
H. (eds.): Complexity of Constraints: An Overview of Current Research Themes. Lecture Notes
in Computer Science (LNCS), vol. 5250, pp. 283–319. Springer (2008). ISBN-10 3-540-92799-9.
doi:10.1007/978-3-540-92800-3_11

39. Kullmann, O.: Fundaments of branching heuristics. In: Biere, A., Heule, M.J.H., van Maaren, H.,
Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185, chapter 7, pp. 205–244. IOS Press (2009). ISBN 978-1-58603-929-5. doi:10.3233/978-1-
58603-929-5-205

40. Laitinen, T., Junttila, T., Niemelä, I.: Classifing and propagating parity constraints. In: Milano, M.
(ed.) Principles and Practice of Constraint Programming—CP 2012. Lecture Notes in Computer
Science (LNCS), vol. 7514, pp. 357–372. Springer (2012)

http://www.dtic.mil/docs/citations/ADA325949
http://www.dmi.unipg.it/cp2011/downloads/dp2011/DP_at_CP2011.pdf
http://www.dmi.unipg.it/cp2011/downloads/dp2011/DP_at_CP2011.pdf
http://www.cs.swansea.ac.uk/lcc2011/
http://arxiv.org/abs/1204.6529v5
http://dx.doi.org/10.1007/978-3-642-35843-2_20
http://arxiv.org/abs/1302.4421
http://dx.doi.org/10.1007/978-3-642-34188-5_8
http://cs.swan.ac.uk/~csoliver/papers.html#CuCo2011
http://cs.swan.ac.uk/~csoliver/papers.html#CuCo2011
http://dx.doi.org/10.3233/978-1-58603-929-5-339
http://dx.doi.org/10.1007/978-3-540-92800-3_11
http://dx.doi.org/10.3233/978-1-58603-929-5-205
http://dx.doi.org/10.3233/978-1-58603-929-5-205

Generalising Unit-Refutation Completeness and SLUR 65

41. Nordström, J.: Pebble games, proof complexity, and time-space trade-offs. In: Logical Methods
in Computer Science (2013, to appear)

42. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: a compendium.
SIGACT News 33(3), 32–49 (2002)

43. Schlipf, J.S., Annexstein, F.S., Franco, J.V., Swaminathan, R.P.: On finding solutions for ex-
tended Horn formulas. Inf. Process. Lett. 54, 133–137 (1995)

44. van Maaren, H.: A short note on some tractable cases of the satisfiability problem. Inf. Comput.
158(2), 125–130 (2000)

	Generalising Unit-Refutation Completeness and SLUR via Nested Input Resolution
	Abstract
	Introduction
	The Quest for SLUR Hierarchies
	Unit-Refutation Completeness and ``Hardness''
	Bringing SLUR and UC Together
	Outlook on Good Representations of Boolean Functions
	The Schaefer Classes
	Overview

	Preliminaries
	The SLUR Class and Extensions
	SLUR
	Previous Approaches for SLUR Hierarchies

	Generalised Unit-Clause Propagation
	Forced Literals/Assignments
	A Hierarchy of Reductions
	Generalised Input Resolution

	Hardness
	Hardness of Unsatisfiable Clause-Sets
	Hardness of Arbitrary Clause-Sets

	Fundamental Properties of UCk
	Some Basic Hardness Determinations
	Containment and Stability Properties
	Alternative Hierarchies
	Determining Hardness Computationally

	The SLUR Hierarchy
	SLUR = UC
	Comparison to the Previous Hierarchies

	Optimisation
	Conclusion and Outlook
	Propagation-Hardness
	Good Representations of Boolean Functions
	Applications to Cryptanalysis
	Relativised Hardness
	Width-Based Hardness

	References

