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Abstract We formally prove correct a C program that implements a numerical
scheme for the resolution of the one-dimensional acoustic wave equation. Such an
implementation introduces errors at several levels: the numerical scheme introduces
method errors, and floating-point computations lead to round-off errors. We an-
notate this C program to specify both method error and round-off error. We use
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Frama-C to generate theorems that guarantee the soundness of the code. We
discharge these theorems using SMT solvers, Gappa, and Coq. This involves a large
Coq development to prove the adequacy of the C program to the numerical scheme
and to bound errors. To our knowledge, this is the first time such a numerical analysis
program is fully machine-checked.

Keywords Formal proof of numerical program · Convergence of numerical
scheme · Proof of C program · Coq formal proof · Acoustic wave equation ·
Partial differential equation · Rounding error analysis

1 Introduction

Ordinary differential equations (ODE) and partial differential equations (PDE)
are ubiquitous in engineering and scientific computing. They show up in nuclear
simulation, weather forecast, and more generally in numerical simulation, including
block diagram modelization. Since solutions to nontrivial problems are non-analytic,
they must be approximated by numerical schemes over discrete grids.

Numerical analysis is a part of applied mathematics that is mainly interested in
proving the convergence of these schemes [21], that is, proving that approximation
quality increases as the size of discretization steps decreases. The approximation
quality represents the distance between the exact continuous solution and the
approximated discrete solution; this distance must tend toward zero in order for the
numerical scheme to be useful.

A numerical scheme is typically proved to be convergent with pen and paper. This
is a difficult, time-consuming, and error-prone task. Then the scheme is implemented
as a C/C++ or Fortran program. This introduces new issues. First, we must ensure
that the program correctly implements the scheme and is immune from runtime
errors such as out-of-bounds accesses or overflows. Second, the program introduces
round-off errors due to floating-point computations and we must prove that those
errors could not lead to irrelevant results. Typical pen-and-paper proofs do not ad-
dress floating-point nor runtime errors. Indeed the huge number of proof obligations,
and their complexity, make the whole process almost intractable. However, with the
help of mechanized program verification, such a proof becomes feasible. In the first
place, because automated theorem provers can alleviate the proof burden. More
importantly, because the proof is guaranteed to cover all aspects of the verification.

Our Case Study We consider the acoustic wave equation in an one-dimensional
space domain. The equation describes the propagation of pressure variations (or
sound waves) in a fluid medium; it also models the behavior of a vibrating string.
Among the wide variety of numerical schemes to approximate the 1D acoustic wave
equation, we choose the simplest one: the second order centered finite difference
scheme, also known as three-point scheme. To keep it simple, we assume an homoge-
neous medium (the propagation velocity is constant) and we consider discretization
over regular grids with constant discretization steps for time and space. Our goal is
to prove the correctness of a C program implementing this scheme.

Method and Tools We use the Jessie plug-in of Frama-C [42, 55] to perform the
deductive verification of this C program. The source code is augmented with ACSL
annotations [6] to describe its formal specification. When submitted to Frama-C,
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proof obligations are generated. Once these theorems are proved, the program is
guaranteed to satisfy its specification and to be free from runtime errors. Part of the
proof obligations are discharged by automated provers, e.g. Alt-Ergo [10], CVC3 [5],
Gappa [24], and Z3 [28]. The more complicated ones, such as the one related to
the convergence of the numerical scheme, cannot be proved automatically. These
obligations were manually proved with the Coq [8, 54] interactive proof assistant.
In the end, we have formally verified all the properties of the C program. To our
knowledge, this is the first time this kind of verification is machine-checked. The
annotated C program and the Coq sources of the formal development are available
from http://fost.saclay.inria.fr/wave_total_error.html.

State of the Art There is an abundant literature about the convergence of numerical
schemes, e.g. see [56, 58]. In particular, the convergence of the three-point scheme
for the wave equation is well-known and taught relatively early [7]. Unfortunately,
no article goes into all the details needed for a formal proof. These mathematical
“details” may have been skipped for readability, but some mandatory details may
have also been omitted due to oversights.

In the fields of automatic provers and proof assistants, few works have been
done for the formalization and mechanical proofs of mathematical analysis, and
even fewer works for numerical analysis. The first developments on real numbers
and real analysis are from the late 90’s, in systems such as ACL2 [32], Coq [43],
HOL Light [34], Isabelle [31], Mizar [52], and PVS [29]. An extensive work has
been done by Harrison regarding R

n and the dot product [35]. Constructive real
analysis [23, 33, 37] and further developments in numerical analysis [47, 48] have
been carried out at Nijmegen. We can also mention the formal proof of an automatic
differentiation algorithm [44].

As explained by Rosinger in 1985, old methods to bound round-off errors were
based on “unrealistic linearizing assumptions” [49]. Further work was done un-
der more realistic assumptions about round-off errors [49, 50], but none of these
assumptions were proved correct with respect to the numerical schemes. As Roy
and Oberkampf, we believe that round-off errors should not be treated as random
variables and that traditional statistical methods should not be used [51]. They
propose the use of interval arithmetic or increased precision to control accuracy.
Note that their example of hypersonic nozzle flow is converging so fast that round-
off errors can be neglected [51]. Interval arithmetic can also take method error into
account [53]. The final interval is then claimed to contain the exact solution. This is
not formally proved, though. Additionally, the width of the final interval can be quite
large.

There are other tools to bound round-off errors not dedicated to numerical
schemes. Some successful approaches are based on abstract interpretation [22, 26].
In our case, they are of little help, since there is a complex phenomenon of error
compensation during the computations. Ignoring this compensation would lead to
bounds on round-off errors growing as fast as O(2k) (k being the number of time
steps). That is why we had to thoroughly study the propagation of round-off errors
in this numerical scheme to get tighter bounds. It also means that most of the proofs
had to be done by hand to achieve this part of the formal verification.

Outline Section 2 presents the PDE, the numerical scheme, and their mathematical
properties. Section 3 is devoted to the proofs of the convergence of the numerical
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scheme and the upper bound for the round-off error. Finally, Section 4 describes
the formalization, i.e. the tools used, the annotated C program, and the mechanized
proofs.

2 Numerical Scheme for the Wave Equation

A partial differential equation (PDE) modeling an evolution problem is an equation
involving partial derivatives of an unknown function of several independent space
and time variables. The uniqueness of the solution is obtained by imposing initial
conditions, i.e. values of the function and some of its derivatives at initial time. The
problem of the vibrating string tied down at both ends, among many other physical
problems, is formulated as an initial-boundary value problem where the boundary
conditions are additional constraints set on the boundary of the supposedly bounded
domain [56].

This section, as well as the steps taken at Section 3.1 to conduct the convergence
proof of the numerical scheme, is inspired by [7].

2.1 The Continuous Equation

The chosen PDE models the propagation of waves along an ideal vibrating elastic
string that is tied down at both ends, see [1, 18], see also Fig. 1. The PDE is obtained
from Newton’s laws of motion [46].

The gravity is neglected, so the string is supposed rectilinear when at rest. Let xmin

and xmax be the abscissas of the extremities of the string. Let � = [xmin, xmax] be the
bounded space domain. Let p(x, t) be the transverse displacement of the point of
the string of abscissa x at time t from its equilibrium position; it is a (signed) scalar.
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Fig. 1 Space-time representation of the signal propagating along a vibrating string. Each curve
represents the string at a different time step
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Let c be the constant propagation velocity; it is a positive number that depends on
the section and density of the string. Let s(x, t) be the external action on the point of
abscissa x at time t; it is a source term, such that t = 0 ⇒ s(x, t) = 0. Finally, let p0(x)

and p1(x) be the initial position and velocity of the point of abscissa x. We consider
the initial-boundary value problem

∀t ≥ 0, ∀x ∈ �, (L(c) p)(x, t) def= ∂2 p
∂t2

(x, t) + A(c) p(x, t) = s(x, t), (1)

∀x ∈ �, (L1 p)(x, 0)
def= ∂p

∂t
(x, 0) = p1(x), (2)

∀x ∈ �, (L0 p)(x, 0)
def= p(x, 0) = p0(x), (3)

∀t ≥ 0, p(xmin, t) = p(xmax, t) = 0 (4)

where the differential operator A(c) is defined by

A(c) def= − c2 ∂2

∂x2
. (5)

This simple partial derivative equation happens to possess an analytical solution
given by the so-called d’Alembert’s formula [38], obtained from the method of
characteristics and the image theory [36], ∀t ≥ 0, ∀x ∈ �,

p(x, t) = 1

2
( p̃0(x − ct) + p̃0(x + ct)) + 1

2c

∫ x+ct

x−ct
p̃1(y)dy

+ 1

2c

∫ t

0

(∫ x+c(t−σ)

x−c(t−σ)

s̃(y, σ )dy
)

dσ (6)

where the quantities p̃0, p̃1, and s̃ are respectively the successive antisymmetric
extensions in space of p0, p1, and s defined on � to the entire real axis R.

We have formally verified d’Alembert’s formula as a separate work [40]. But for
the purpose of the current work, we just admit that under reasonable conditions on
the Cauchy data p0 and p1 and on the source term s, there exists a unique solution p
to the initial-boundary value problem (1)–(4) for each c > 0. Simply supposing the
existence of a solution instead of exhibiting it, opens the way to scale our approach
to more general cases for which there is no known analytic expression of a solution,
e.g. in the case of a nonuniform propagation velocity c.

For such a solution p, it is natural to associate at each time t the positive definite
quadratic quantity

E(c)(p)(t) def= 1

2

∥∥∥∥
(

x �→ ∂p
∂t

(x, t)
)∥∥∥∥

2

+ 1

2
‖(x �→ p(x, t))‖2

A(c) (7)

where 〈q, r〉 def= ∫
�

q(x)r(x)dx, ‖q‖2 def= 〈q, q〉 and ‖q‖2
A(c)

def= 〈A(c) q, q〉. The first
term is interpreted as the kinetic energy, and the second term as the potential energy,
making E the mechanical energy of the vibrating string.

2.2 The Discrete Equations

Let imax be the positive number of intervals of the space discretization. Let the space
discretization step �x and the discretization function i�x be defined as

�x def= xmax − xmin

imax
and i�x(x)

def=
⌊

x − xmin

�x

⌋
.
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Fig. 2 Three-point scheme:
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Let us consider the time interval [0, tmax]. Let �t ∈]0, tmax[ be the time discretiza-
tion step. We define

k�t(t)
def=

⌊
t

�t

⌋
and nk

def= k�t(tmax).

Now, the compact domain � × [0, tmax] is approximated by the regular discrete
grid defined by

∀k ∈ [0..nk], ∀i ∈ [0..imax], xk
i

def= (xi, tk)
def= (xmin + i�x, k�t). (8)

For a function q defined over � × [0, tmax] (resp. �), the notation qh denotes any
discrete approximation of q at the points of the grid, i.e. a discrete function over
[0..imax] × [0..nk] (resp. [0..imax]). By extension, the notation qh is also a shortcut to
denote the matrix (qk

i )0≤i≤imax,0≤k≤nk (resp. the vector (qi)0≤i≤imax ). The notation q̄h is
reserved to the approximation defined on [0..imax] × [0..nk] by

q̄k
i

def= q(xk
i ) (resp. q̄i

def= q(xi)).

Let p0h and p1h be two discrete functions over [0..imax]. Let sh be a discrete
function over [0..imax] × [0..nk]. Then, the discrete function ph over [0..imax] × [0..nk]
is said to be the solution of the three-point1 finite difference scheme, as illustrated in
Fig. 2, when the following set of equations holds:

∀k ∈ [2..nk], ∀i ∈ [1..imax − 1],

(Lh(c) ph)
k
i

def= pk
i − 2pk−1

i + pk−2
i

�t2
+ (Ah(c) (i′ �→ pk−1

i′ ))i = sk−1
i , (9)

∀i ∈ [1..imax − 1], (L1h(c) ph)i
def= p1

i − p0
i

�t
+ �t

2
(Ah(c) (i′ �→ p0

i′))i = p1,i, (10)

∀i ∈ [1..imax − 1], (L0h ph)i
def= p0

i = p0,i, (11)

∀k ∈ [0..nk], pk
0 = pk

imax
= 0 (12)

1In the sense “three spatial points”, for the definition of matrix Ah(c).
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where the matrix Ah(c), a discrete analog of A(c), is defined for any vector qh, by

∀i ∈ [1..imax − 1], (Ah(c) qh)i
def= − c2 qi+1 − 2qi + qi−1

�x2
. (13)

A discrete analog of the energy is also defined by2

Eh(c)(ph)
k+ 1

2
def= 1

2

∥∥∥∥∥
(

i �→ pk+1
i − pk

i

�t

)∥∥∥∥∥
2

�x

+ 1

2

〈(
i �→ pk

i

)
,
(
i �→ pk+1

i

)〉
Ah(c)

(14)

where, for any vectors qh and rh,

〈qh, rh〉�x
def= ∑imax

i=0 qiri�x, ‖qh‖2
�x

def= 〈qh, qh〉�x ,

〈qh, rh〉Ah(c)
def= 〈Ah(c) qh, rh〉�x , ‖qh‖2

Ah(c)
def= 〈qh, qh〉Ah(c) .

Note that the three-point scheme is parameterized by the discrete Cauchy data p0h

and p1h, and by the discrete source term sh. Of course, when these discrete inputs
are respectively approximations of the continuous functions p0, p1, and s (e.g. when
p0h = p̄0h, p1h = p̄1h, and sh = s̄h), then the discrete solution ph is an approximation
of the continuous solution p.

2.3 Convergence

Let ξ be in ]0, 1[. The CFL(ξ) condition (for Courant–Friedrichs–Lewy, see [21])
states that the discretization steps satisfy the relation

c�t
�x

≤ 1 − ξ. (15)

The convergence error eh measures the distance between the continuous and
discrete solutions. It is defined by

∀k ∈ [0..nk], ∀i ∈ [0..imax], ek
i

def= p̄k
i − pk

i . (16)

Note that when p0h = p̄0h, then for all i, e0
i = 0. The truncation error εh measures

at which precision the continuous solution satisfies the numerical scheme. It is
defined for k ∈ [2..nk] and i ∈ [1..imax − 1] by

εk
i

def= (Lh(c) p̄h)
k
i − s̄k−1

i , (17)

ε1
i

def= (L1h(c) p̄h)i − p̄1,i, (18)

ε0
i

def= (L0h p̄h)i − p̄0,i. (19)

Again, note that when p0h = p̄0h and p1h = p̄1h, then for all i, ε0
i = 0 and ε1

i =
e1

i /�t. Furthermore, when there is also sh = s̄h, then the convergence error eh is itself
solution of the same numerical scheme with inputs defined by, for all i, k,

p0,i = ε0
i = 0, p1,i = ε1

i = e1
i

�t
, and sk

i = εk+1
i .

2By convention, the energy is defined between steps k and k + 1, hence the notation k + 1
2 .
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The numerical scheme is said to be convergent of order 2 if the convergence
error tends toward zero at least as fast as �x2 + �t2 when both discretization steps
tend toward zero.3 More precisely, the numerical scheme is said to be convergent of
order (m,n) uniformly on the interval [0, tmax] if the convergence error satisfies4

∥∥∥
(

i �→ ek�t(t)
i

)∥∥∥
�x

= O[0,tmax](�xm + �tn). (20)

The numerical scheme is said to be consistent with the continuous problem at
order 2 if the truncation error tends toward zero at least as fast as �x2 + �t2 when
the discretization steps tend toward 0. More precisely, the numerical scheme is said
to be consistent with the continuous problem at order (m, n) uniformly on interval
[0, tmax] if the truncation error satisfies∥∥∥

(
i �→ ε

k�t(t)
i

)∥∥∥
�x

= O[0,tmax](�xm + �tn). (21)

The numerical scheme is said to be stable if the discrete solution of the associated
homogeneous problem (i.e. without any source term, s(x, t) = 0) is bounded inde-
pendently of the discretization steps. More precisely, the numerical scheme is said to
be stable uniformly on interval [0, tmax] if the discrete solution of the problem without
any source term satisfies

∃α, C1, C2 > 0, ∀t ∈ [0, tmax], ∀�x,�t > 0,
√

�x2 + �t2 < α

⇒
∥∥∥
(

i �→ pk�t(t)
i

)∥∥∥
�x

≤ (C1 + C2t)(‖p0h‖�x + ‖p0h‖Ah(c) + ‖p1h‖�x). (22)

The result to be formally proved at Section 3.1 states that if the continuous
solution p is regular enough on � × [0, tmax] and if the discretization steps satisfy
the CFL(ξ) condition, then the three-point scheme is convergent of order (2, 2)
uniformly on interval [0, tmax].

We do not admit (nor prove) the Lax equivalence theorem which stipulates that
for a wide variety of problems and numerical schemes, consistency implies the equiv-
alence between stability and convergence. Instead, we establish that consistency and
stability implies convergence in the particular case of the one-dimensional acoustic
wave equation.

2.4 Program

The main part of the C program is listed in Listing 1.
The grid steps �x and �t are respectively represented by the variables dx and dt,

the grid sizes imax and nk by the variables ni and nk, and the propagation velocity
c by the variable v. The initial position p0h is represented by the function p0. The
initial velocity p1h and the source term sh are supposed to be zero and are not
represented. The discrete solution ph is represented by the two-dimensional array p
of size (imax + 1) × (nk + 1). (This is a simple naive implementation, a more efficient
implementation would store only two time steps.)

3Note that �x tending toward 0 actually means that imax goes to infinity.
4See Section 3.1.1 for the precise definition of the big O notation.
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Listing 1 The main part of the C code, without annotations

To assemble the stiffness matrix Ah(c), we only have to compute the square of
the CFL coefficient c�t

�x (lines 1 and 2). Then, we recognize the space loops for the
initial conditions: (11) on lines 8–9, and (10) with p1h = 0 on lines 18–20. The space-
time loop on lines 27–33 for the evolution problem comes from (9). And finally, the
boundary conditions of (12) are spread out on lines 6, 12, 16, 23, 29, 36.

3 Bounding Errors

3.1 Method Error

We first present the notions necessary to formalize and prove the method error.
Then, we detail how the proof is conducted: we establish the consistency, the stability
and prove that these two properties imply convergence in the case of the one-
dimensional acoustic wave equation.
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3.1.1 Big O, Dif ferentiability, and Regularity

When considering a big O equality a = O(b), one usually assumes that a and b are
two expressions defined over the same domain and its interpretation as a quantified
formula comes naturally. Here the situation is a bit more complicated. Consider

f (x,�x) = O(g(�x))

when ‖�x‖ goes to 0. If one were to assume that the equality holds for any x ∈ R
2,

one would interpret it as

∀x, ∃α > 0, ∃C > 0,∀�x, ‖�x‖ ≤ α ⇒ | f (x,�x)| ≤ C · |g(�x)|,
which means that constants α and C are in fact functions of x. Such an interpretation
happens to be useless, since the infimum of α may well be zero while the supremum
of C may be +∞.

A proper interpretation requires the introduction of a uniform big O relation with
respect to the additional variable x:

∃α > 0, ∃C > 0, ∀x ∈ �x, ∀�x ∈ ��x,

‖�x‖ ≤ α ⇒ | f (x,�x)| ≤ C · |g(�x)|. (23)

To emphasize the dependency on the two subsets �x and ��x, uniform big O
equalities are now written

f (x,�x) = O�x,��x(g(�x)).

We now precisely define the notion of “sufficiently regular” functions in terms of
the full-fledged notation for the big O. The further result on the convergence of the
numerical scheme requires that the solution of the continuous equation is actually
sufficiently regular. We introduce two operators that, given a real-valued function f
defined on the 2D plane and a point in the plane, return the values ∂ f

∂x and ∂ f
∂t at this

point. Given these two operators, we can define the usual 2D Taylor polynomial of
order n of a function f :

TPn( f, x)
def= (�x,�t) �→

n∑
p=0

1

p!

( p∑
m=0

(
p
m

)
· ∂ p f
∂xm∂tp−m

(x) · �xm · �tp−m

)
.

Let �x ⊂ R
2. We say that the previous Taylor polynomial is a uniform approxi-

mation of order n of f on �x when the following uniform big O equality holds:

f (x + �x) − TPn( f, x)(�x) = O�x,R2

(‖�x‖n+1
)
.

A function f is then said to be sufficiently regular of order n uniformly on �x when
all its Taylor polynomials of order smaller than n are uniform approximations of f
on �x.

3.1.2 Consistency

The consistency of a numerical scheme expresses that, for �x small enough, the
continuous solution taken at the points of the grid almost solves the numerical
scheme. More precisely, we formally prove that when the continuous solution of the
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wave equation (1)–(4) is sufficiently regular of order 4 uniformly on [xmin, xmax] ×
[0, tmax], the numerical scheme (9)–(12) is consistent with the continuous problem at
order (2, 2) uniformly on interval [0, tmax] (see definition (21) in Section 2.3). This is
obtained using the properties of Taylor approximations; the proof is straightforward
while involving long and complex expressions.

The key idea is to always manipulate uniform Taylor approximations that will be
valid for all points of all grids when the discretization steps goes down to zero.

For instance, to take into account the initialization phase corresponding to (10),
we have to derive a uniform Taylor approximation of order 1 for the following
continuous function (for any v sufficiently regular of order 3)

((x, t), (�x,�t)) �→ v(x, t + �t) − v(x, t)
�t

−�t
2

c2 v(x + �x, t) − 2v(x, t) + v(x − �x, t)
�x2

.

Note that the expression of this function involves both x + �x and x − �x,
meaning that we need a Taylor approximation which is valid for both positive and
negative growths. The proof would have been impossible if we had required 0 < �x
(as a space grid step) in the definition of the Taylor approximation.

In contrast with the case of an infinite string [16], we do not need here a lower
bound for c �t

�x .

3.1.3 Stability

The stability of a numerical scheme expresses that the growth of the discrete solution
is somehow bounded in terms of the input data (here, the Cauchy data u0h and u1h,
and the source term sh). For the proof of the round-off error (see Section 3.2), we
need a statement of the same form as definition (22) of Section 2.3. Therefore, we
formally prove that, under the CFL(ξ) condition (15), the numerical scheme (9)–(12)
is stable uniformly on interval [0, tmax].

But, as we choose to prove the convergence of the numerical scheme by using
an energetic technique,5 it is more convenient to formulate the stability in terms of
the discrete energy. More precisely, we also formally prove that under the CFL(ξ)

condition (15), the discrete energy (14) satisfies the following overestimation,

√
Eh(c)(ph)

k+ 1
2 ≤

√
Eh(c)(ph)

1
2 +

√
2

2
√

2ξ − ξ 2
· �t ·

k∑
k′=1

∥∥∥
(

i �→ sk′
i

)∥∥∥
�x

for all t ∈ [0, tmax] and with k = ⌊ t
�t

⌋ − 1.
The evolution of the discrete energy between two consecutive time steps is shown

to be proportional to the source term. In particular, the energy is constant when

5The popular alternative, using the Fourier transform, would have required huge additional Coq
developments.
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the source is inactive. Then, we obtain the following underestimation of the discrete
energy,

∀k,
1

2

(
1 −

(
c

�t
�x

)2
) ∥∥∥∥∥

(
i �→ pk+1

i − pk
i

�t

)∥∥∥∥∥
�x

≤ Eh(c)(ph)
k+ 1

2 .

Therefore, the non-negativity of the discrete energy is directly related to the CFL(ξ)

condition.
Note that this stability result is valid for any input data p0h, p1h, and sh.

3.1.4 Convergence

The convergence of a numerical scheme expresses the fact that the discrete solution
gets closer to the continuous solution as the discretization steps go down to zero.
More precisely, we formally prove that when the continuous solution of the wave
equation (1)–(4) is sufficiently regular of order 4 uniformly on [xmin, xmax] × [0, tmax],
and under the CFL(ξ) condition (15), the numerical scheme (9)–(12) is convergent
of order (2, 2) uniformly on interval [0, tmax] (see definition (20) in Section 2.3).

Firstly, we prove that the convergence error eh is itself the discrete solution of a
numerical scheme of the same form but with different input data.6 In particular, the
source term (on the right-hand side) is here the truncation error εh associated with
the initial numerical scheme for ph. Then, the previous stability result holds, and we
have an overestimation of the square root of the discrete energy associated with the
convergence error Eh(c)(eh) that involves a sum of the corresponding source terms,
i.e. the truncation error. Finally, the consistency result also makes this sum a big O
of �x2 + �t2, and a few more technical steps conclude the proof.

3.2 Round-Off Error

As each operation is done with IEEE-754 floating-point numbers [45], round-off
errors will occur and may endanger the accuracy of the final results. On this program,
naive forward error analysis gives an error bound that is proportional to 2k2−53 for
the computation of a pk

i . If this bound was sensible, it would cause the numerical
scheme to compute only noise after a few steps. Fortunately, round-off errors actually
compensate themselves. To take into account the compensations and hence prove a
usable error bound, we need a precise statement of the round-off error [12] to exhibit
the cancellations made by the numerical scheme.

3.2.1 Local Round-Of f Errors

Let δk
i be the (signed) floating-point error made in the two lines computing pk

i (lines
32 and 33 in Listing 1). Floating-point values as computed by the program will be
underlined: a, pk

i
to distinguish them from the discrete values of previous sections.

They match the expressions a and p[i][k] in the annotations, while a and pk
i can

be represented in the annotations by \exact(a) and \exact(p[i][k]), as described in
Section 4.1.4.

6Of course, there is no associated continuous problem.
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The δk
i are defined as follow:

δk+1
i = pk+1

i
−

(
2pk

i
− pk−1

i
+ a ×

(
pk

i+1
− 2pk

i
+ pk

i−1

))
.

Note that the program explained in Section 2.4 gives us that

pk+1
i

= fl
(

2pk
i

− pk−1
i

+ a ×
(

pk
i+1

− 2pk
i

+ pk
i−1

))

where fl(·) means that all the arithmetic operations that appear between the paren-
theses are actually performed by floating-point arithmetic, hence a bit off.

In order to get a bound on δk
i , we need to have the range of pk

i
. For this bound to

be usable in our correctness proof, we need the range to be [−2, 2]. We have proved
this fact by using the bounds on the method error and the round-off error of all the
pk and pk−1.

To prove the bound on δk
i , we perform forward error analysis and then use interval

arithmetic to bound each intermediate error. We prove that, for all i and k, we have
|δk

i | ≤ 78 × 2−52 for a reasonable error bound for a, that is to say |a − a| ≤ 2−49.

3.2.2 Convolution of Round-Of f Errors

Note that the global floating-point error �k
i = pk

i
− pk

i depends not only on δk
i , but

also on all the δk−l
i+ j for 0 < l ≤ k and −l ≤ j ≤ l. Indeed round-off errors propagate

along floating-point computations. Their contributions to �k
i , which are independent

and linear (due to the structure of the numerical scheme), can be computed by per-
forming a convolution with a function λ : (Z × Z) → R. This function λ represents
the results of the numerical scheme when fed with a single unit value:

λ0
0 = 1 ∀i �= 0, λ0

i = 0

λ1
−1 = λ1

1 = a λ1
0 = 2(1 − a) ∀i �∈ {−1, 0, 1}, λ1

i = 0

λk
i = a × (λk−1

i−1 + λk−1
i+1 ) + 2(1 − a) × λk−1

i − λk−2
i

Theorem 1

�k
i = pk

i
− pk

i =
k∑

l=0

l∑
j=−l

λl
j δk−l

i+ j .

Details of the proof can be found in [12], but this point of view using convolution
is new. The proof mainly amounts to performing numerous tedious transformations
of summations until both sides are proved equal.

The previous proof assumes that the double summation is correct for all (i′, k′)
such that k′ < k. This would be correct if there was an unbounded set of i where pk

i
is computed. This is no longer the case for a finite string. Indeed, at the ends of the
range (i = 0 or imax), pk

i and pk
i

are equal to 0, so �k
i has to be 0 too.

The solution is to define the successive antisymmetric extension in space (as is
done for d’Alembert’s formula in Section 2.1) and to use it instead of δ. This ensures
that both �k

0 and �k
imax

are equal to 0. It does not have any consequence on the values
of �k

i for 0 < i < imax.
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3.2.3 Bound on the Global Round-Of f Error

The analytic expression of �k
i can be used to obtain a bound on the round-off error.

We will need two lemmas for this purpose.

Lemma 1
+∞∑

i=−∞
λk

i = k + 1.

Proof We have

+∞∑
i=−∞

λk+1
i = 2ǎ

+∞∑
i=−∞

λk
i + 2(1 − ǎ)

+∞∑
i=−∞

λk
i −

+∞∑
i=−∞

λk−1
i = 2

+∞∑
i=−∞

λk
i −

+∞∑
i=−∞

λk−1
i .

The sum by line verifies a simple linear recurrence. As
∑

λ0
i = 1 and

∑
λ1

i = 2, we
have

∑
λk

i = k + 1. ��

Lemma 2 λk
i ≥ 0.

Proof The demonstration was found out by M. Kauers and V. Pillwein.
If we denote by P the Jacobi polynomial, we have

λ j
n =

n∑
k= j

(
2k

j + k

)(
n + k + 1

2k + 1

)
(−1) j+kak = a j

n− j∑
k=0

P(2 j,0)

k (1 − 2a)

Now the conjecture follows directly from the inequality of Askey and Gasper [3],
which asserts that

∑n
k=0 P(r,0)

k (x) > 0 for r > −1 and −1 < x ≤ 1 (see Theorem 7.4.2
in The Red Book [2]). ��

Theorem 2

∣∣�k
i

∣∣ =
∣∣∣pk

i
− pk

i

∣∣∣ ≤ 78 × 2−53 × (k + 1) × (k + 2).

Proof According to Theorem 1, �k
i is equal to

∑k
l=0

∑l
j=−l λ

l
j δk−l

i+ j . We know that for
all j and l, |δl

j| ≤ 78 × 2−52 and that
∑

λl
i = l + 1. Since the λk

i are nonnegative, the

error is easily bounded by 78 × 2−52 × ∑k
l=0(l + 1). ��

3.3 Total Error

Let Eh be the total error. It is the sum of the method error (or convergence error) eh

of Sections 2.3 and 3.1.4, and of the round-off error �h of Section 3.2.
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From Theorem 2, we can estimate7 the following upper bound for the spatial norm
of the round-off error when �x ≤ 1 and �t ≤ tmax/2: for all t ∈ [0, tmax],

∥∥∥
(

i �→ �
k�t(t)
i

)∥∥∥
�x

=
√√√√ imax∑

i=0

(
�

k�t(t)
i

)2
�x

≤ √
(imax + 1)�x × 78 × 2−53 ×

(
tmax

�t
+ 1

)
×

(
tmax

�t
+ 2

)

≤ √
xmax − xmin + 1 × 78 × 2−53 × 3 × t2

max

�t2
.

Thus, from the triangular inequality for the spatial norm, we obtain the following
estimation of the total error:

∀t ∈ [0, tmax], ∀�x, ‖�x‖ ≤ min(αe, α�)

⇒
∥∥∥
(

i �→ Ek�t(t)
i

)∥∥∥
�x

≤ Ce(�x2 + �t2) + C�

�t2

where the convergence constants αe and Ce were extracted from the Coq proof (see
Section 3.1.4) and are given in terms of the constants for the Taylor approximation
of the exact solution at degree 3 (α3 and C3), and at degree 4 (α4 and C4) by

αe = min(1, tmax, α3, α4),

Ce = 2μtmax
√

xmax − xmin

(
C′
√

2
+ μ(tmax + 1)C′′

)

with μ =
√

2√
2ξ−ξ 2

, C′ = max(1, C3 + c2C4 + 1), and C′′ = max(C′, 2(1 + c2)C4), and

where the round-off constants α� and C�, as explained above, are given by

α� = min(1, tmax/2),

C� = 234 × 2−53 × t2
max

√
xmax − xmin + 1.

To give an idea of the relative importance of both errors, we consider the academic
case where the space domain is the interval [0, 1], the velocity of waves is c = 1, and
there is no initial velocity (u1(x) = 0) nor source term (s(x, t) = 0). We suppose that
the initial position is given by u0(x) = χ(2(x − x0)/ l) where x0 = 0.5, l = 0.25, and χ

is the C4 function defined on [−1, 1] by χ(z) = (cos( π
2 z))5, and with null continuation

on the real axis. For this function, we may take α3 = α4 = √
2/2, C3 = 5120

√
2, and

C4 = 409600/3. The corresponding solution presents two hump-shaped signals that
propagate in each direction along the string, see Fig. 1.

The upper bound on the total error is represented in Fig. 3. Note that everything
is in logarithmic scale. Of course, decreasing the size of the grid step decreases the
method error, but in the same time, it increases the round-off error. Hence, the
existence of a minimum for the upper bound on the total error (about 0.02 in our
test case), corresponding to optimal grid step sizes. Fortunately, the effective total

7When tmax
�t ≥ 2, we have

( tmax
�t + 1

) ( tmax
�t + 2

) ≤ 3 t2max
�t2

.
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Fig. 3 Upper bound for the total error in log-scale. Left: For �x and �t satisfying the CFL
condition. The lighter area (in yellow) represents the higher values above 104, whereas the darker
area represents the lower values below 10−1. Right: For an optimal CFL condition with �t = 1−ξ

c �x.
The green crosses represent the effective total error computed by the C program for a few values of
the space step

error usually happens to be much smaller than this upper bound (by about a factor
of 106 in our example).

Even if the effective total error on this example is off by several orders of
magnitude with respect to the theoretical bound, this experiment is still reassuring.
First, the left side of Fig. 3 shows that the optimal choice (the darker part) for
choosing �x and �t is reached near the limit of the CFL condition. This property
matches common knowledge from numerical analysis. Second, the right side shows
that both the effective error and the theoretical error have the same asymptotic
behavior. So the properties we have verified in this work are not intrinsically easier
than the best theorems one could state. It is just that the constants of the formulas
extracted from the proofs (which we did not tune for this specific purpose) are not
optimal for this example.

4 Mechanization of Proofs

In Sections 3.1 and 3.2, we have mostly described the method and round-off errors
introduced when solving the wave equation problem with the given numerical
scheme. We do not yet know whether this formalization actually matches the
program described in Section 2.4 and fully given in Appendix A. In addition, the
program might contain programming errors like out-of-bound accesses, which would
possibly be left unattended while comparing the program and its formalization.

To fully verify the program, our process is as follows. First, we annotated the
C program with comments specifying its behavioral properties, that is, what the
program is supposed to compute. Second, we let Frama-C/Why generate proof
obligations that state that the program matches its specification and that its execution
is safe. Third, we used automated provers and Coq to prove all of these obligations.

Section 4.1 presents all the tools we have used for verifying the C program. Then
Section 4.2 explains how the program was annotated. Finally, Section 4.3 shows how
we proved all the obligations, either automatically or with a proof assistant.
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4.1 Tools

Several software packages are used in this work. The formal proof of the method
error has been made in Coq. The formal proof of the round-off error has been made
in Coq, and using the Gappa tactic. The certification of the C program has used
Frama-C (with the Jessie plug-in), and to prove the produced goals, we used Gappa,
SMT provers, and the preceding Coq proofs. This section is devoted to present these
tools and necessary libraries.

4.1.1 Coq

Coq8 is a formal system that provides an expressive language to write mathematical
definitions, executable algorithms, and theorems, together with an interactive envi-
ronment for proving them [8]. Coq’s formal language is based on the Calculus of
Inductive Constructions [20] that combines both a higher-order logic and a richly-
typed functional programming language. Coq allows to define functions or predi-
cates, that can be evaluated efficiently, to state mathematical theorems and software
specifications, and to interactively develop formal proofs of these theorems. These
proofs are machine-checked by a relatively small kernel, and certified programs can
be extracted from them to external programming languages like Objective Caml,
Haskell, or Scheme [41].

As a proof development system, Coq provides interactive proof methods, decision
and semi-decision algorithms, and a tactic language for letting the user define its
own proof methods. Connection with external computer algebra system or theorem
provers is also available.

The Coq library is structured into two parts: the initial library, which contains
elementary logical notions and data-types, and the standard library, a general-
purpose library containing various developments and axiomatizations about sets,
lists, sorting, arithmetic, real numbers, etc.

In this work, we mainly use the Reals standard library [43], that is a classical
axiomatization of an Archimedean ordered complete field. We chose Reals to make
our numerical proofs because we do not need an intuitionistic formalization.

For floating-point numbers, we use a large Coq library9 initially developed in [25]
and extended with various results afterwards [11]. It is a high-level formalization
of IEEE-754 with gradual underflow. This is expressed by a formalization where
floating-point numbers are pairs (n, e) associated with real values n × βe. The
requirements for a number to be in the format (emin, β

p) are

|n| < β p and emin ≤ e.

This formalization is convenient for human interactive proofs as testified by the
numerous proofs using it. The huge number of lemmas available in the library (about
1,400) makes it suitable for a large range of applications. This library has since then
been superseded by the Flocq library [17], but it was not yet available at the time we
proved the floating-point results of this work.

8http://coq.inria.fr/
9http://lipforge.ens-lyon.fr/www/pff/

http://coq.inria.fr/
http://lipforge.ens-lyon.fr/www/pf/f/
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4.1.2 Frama-C, Jessie, Why, and the SMT Solvers

We use the Frama-C platform10 to perform formal verification of C programs at the
source-code level. Frama-C is an extensible framework that combines static analyzers
for C programs, written as plug-ins, within a single tool. In this work, we use the
Jessie plug-in for deductive verification. C programs are annotated with behavioral
contracts written using the ANSI C Specif ication Language (ACSL for short) [6].
The Jessie plug-in translates them to the Jessie language [42], which is part of the
Why verification platform [30]. This part of the process is responsible for translating
the semantics of C into a set of Why logical definitions (to model C types, memory
heap, etc.) and Why programs (to model C programs). Finally, the Why platform
computes verification conditions from these programs, using traditional techniques
of weakest preconditions, and emits them to a wide set of existing theorem provers,
ranging from interactive proof assistants to automated theorem provers. In this work,
we use the Coq proof assistant (Section 4.1.1), SMT solvers Alt-Ergo [19], CVC3 [5]
and Z3 [28], and the automated theorem prover Gappa (Section 4.1.3). Details about
automated and interactive proofs can be found in Section 4.3. The dataflow from C
source code to theorem provers can be depicted as follows:

More precisely, to run the tools on a C program, we use a graphical interface called
gWhy. A screenshot is in Appendix B. In this interface, we may call one prover on
one or on many goals. We then get a graphical view of how many goals are proved
and by which prover.

In ACSL, annotations are using first-order logic. Following the programming by
contract approach, the specifications involve preconditions, postconditions, and loop
invariants. Contrary to other approaches focusing on run-time assertion checking,
ACSL specifications do not refer to C values and functions, even if pure, but refer
instead to purely logical symbols. In the following contract for a function computing
the square of an integer x

the postcondition, introduced with ensures, refers to the return value \result and
argument x. Both are denoting mathematical integer values, for the corresponding

10http://www.frama-c.cea.fr/

http://www.frama-c.cea.fr/
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C values of type int. In particular, x ∗ x cannot overflow. Of course, one could give
function square a more involved specification that handles overflows, e.g. with a
precondition requiring x to be small enough. Simply speaking, we can say that C
integers are reflected within specifications as mathematical integers, in an obvious
way. The translation of floating-point numbers is more subtle and explained in
Section 4.1.4.

4.1.3 Gappa

The Gappa tool11 adapts the interval-arithmetic paradigm to the proof of properties
that occur when verifying numerical applications [24]. The inputs are logical formulas
quantified over real numbers whose atoms are usually enclosures of arithmetic
expressions inside numeric intervals. Gappa answers whether it succeeded in veri-
fying it. In order to support program verification, one can use rounding functions
inside expressions. These unary operators take a real number and return the closest
real number in a given direction that is representable in a given binary floating-
point format. For instance, assuming that operator ◦ rounds to the nearest binary64
floating-point number, the following formula states that the relative error of the
floating-point addition is bounded:

∀x, y ∈ R, ∃ε ∈ R, |ε| ≤ 2−53 ∧ ◦(◦(x) + ◦(y)) = (◦(x) + ◦(y)) × (1 + ε).

Converting straight-line numerical programs to Gappa logical formulas is easy
and the user can provide additional hints if the tool were to fail to verify a property.
The tool is specially designed to handle codes that are performing convoluted
manipulations. For instance, it has been successfully used to verify a state-of-the-art
library of correctly-rounded elementary functions [27]. In the current work, Gappa
has been used to check much simpler properties. (In particular, no user hint was
needed to discharge a proof automatically.) But the length of their proofs would
discourage even the most dedicated users if they were to be manually handled. One
of the properties is the round-off error of a local evaluation of the numerical scheme
(Section 3.2.1). Other properties mainly deal with proving that no exceptional be-
havior occurs while executing the program: due to the initial values, all the computed
values are sufficiently small to never cause overflow.

The verification of some formulas requires reasonings that are so long and
intricate [27], that it might cast some doubts on whether an automatic tool actually
succeeded in proving them. This is especially true when the tool ends up proving a
property stronger than what the user expected. That is why Gappa also generates
a formal certificate that can be mechanically checked by a proof assistant. This
feature has served as the basis for a Coq tactic for automatically solving goals related
to floating-point and real arithmetic [15]. The tactic reads the current Coq goal,
generates a Gappa goal, executes Gappa on it, recovers the certificate, and converts
it to a complete proof term that Coq matches against the current goal. At this point,
whether Gappa is correct or not no longer matters: the original Coq goal is formally
proved by a complete Coq proof.

This tactic has been used whenever a verification condition would have been
directly proved by Gappa, if not for some confusing notations or encodings of matrix

11http://gappa.gforge.inria.fr/

http://gappa.gforge.inria.fr/
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elements. We just had to apply a few basic Coq tactics to put the goal into the proper
form and then call the Gappa tactic to discharge it automatically.

4.1.4 Floating-Point Formalizations

A natural question is the link between the various representations of floating-
point numbers. We assume that the execution environment (mostly the processor)
complies with the IEEE-754 standard [45], which defines formats, rounding modes,
and operations. The C program we consider is compiled in an assembly code that
will directly use these formats and operations. We also assume that the compiler
optimizations preserve the visible semantics of floating-operations from the original
code, e.g. no use of the extended registers. Such optimizations could have been taken
into account though, but at a cost [14].

When verifying the C program, the floating-point operations are translated by
Frama-C/Jessie/Why following some previous work by two of the authors [13]. A
floating-point number f is modeled in the logic as a triple of real numbers (r, e, m).
Value r simply stands for the real number that is immediately represented by f ; value
e stands for the exact value of f , as obtained if no rounding errors had occurred;
finally, value m stands for the model of f , which is a placeholder for the value
intended to be computed and filled by the user. The two latter values have no
existence in the program, but are useful for the specification and the verification.
In particular, they help state assertions about the rounding or the model error of a
program. In ACSL, the three components of the model of a floating-point number f
can be referred to using f, \exact(f), and \model(f), respectively. \round_error(f) is a
macro for the rounding error, that is, \abs(f - \exact(f)).

For instance, the following excerpt from our C program specifies the error on the
content of the dx variable, which represents the grid step �x (see Section 2).

Note that 0x1.p-53 is a valid ACSL (and C too) literal meaning 2−53.
Proof obligations are extracted from the annotated C program by computing

weakest preconditions and then translated to automated and interactive provers. For
SMT provers, the three fields r, e, and m, of floating-point numbers are expressed
as real numbers and operations on floating-point numbers are uninterpreted rela-
tions axiomatized with basic properties such as bounds on the rounding error or
monotonicity. For Gappa too, the fields are seen as real numbers. The tool, however,
knows about floating-point arithmetic and its relation to real arithmetic. So floating-
point operations are translated to the corresponding symbols from Gappa.

For Coq, we use the formalization described in Section 4.1.1 with a limited pre-
cision and gradual underflow (so that subnormal numbers are correctly translated).
It is based on the real numbers of the standard library, which are also used for the
translation of the exact and the model parts of the floating-point number.

While the IEEE-754 standard defines infinities and Not-a-Number as floating-
point values, our translation does not take them into account. This does not
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compromise the correctness of the translation though, as each operation has a
precondition that raises a proof obligation to guarantee that no exceptional events
occur, such as overflow or division by zero, and therefore no infinities nor Not-a-
Number are produced by the program.

To summarize, there is one assumption about the actual arithmetic being executed
(IEEE-754 compliant and no overly aggressive optimizations from the compiler) and
three formalizations of floating-point arithmetic used to verify the program: one used
by Jessie/Why and then sent to the SMT solvers, one used by Gappa, and one used
by Coq. The combination of these three different formalizations does not introduce
any inconsistency. Indeed, we have formally proved in Coq that Gappa’s and Coq’s
formalizations are equivalent for floating-point formats with limited precision and
gradual underflow, that is, IEEE-754 formats. We have also formally proved that
the Jessie/Why specifications and the properties for SMT provers are compatible
with these formalizations, including the absence of special values (infinity or Not-
a-Number) and the possibility to disregard the upper bound on reals representing
floating-point numbers.

In fact, there is a fourth formalization of floating-point arithmetic involved, which
is the one used internally by the interval computations of Gappa for proving results
about real-valued expressions. It is not equivalent to the previous ones, since it is a
multi-precision arithmetic, but it has no influence whatsoever on the formalization
that Gappa uses for modeling floating-point properties.

4.2 Program Annotations

The full annotations are given in Appendix A. We give here hints about how to
specify this program.

There are two axiomatics. The first one corresponds to the mathematics: the exact
solution of the wave equation and its properties. It defines the needed values (the
exact solution p, and its initialization p0). We here assume that s and p1 are zero
functions. It also defines the derivatives of p (psol1, first derivative for the first
variable of p, and psol11, second derivative for the first variable, and psol2 and psol22

for the second variable) as functions such that their value is the limit of p(x+�x)−p(x)

�x
when �x → 0. As the ACSL annotations are only first order, these definitions are
quite cumbersome: each derivative needs 5 lines to be defined.

We also put as axioms the fact that the solution has the expected properties (1)–
(4). The last property needed on the exact solution is its regularity. We require it to be
near its Taylor approximations of degrees 3 and 4 on the whole interval [xmin, xmax].
For instance, the following annotation states the property for degree 3.

The second axiomatic corresponds to the properties and loop invariant needed by
the program. For example, we require the matrix to be separated: it means that a line
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of the matrix should not mix with another line (or a modification could alter another
point of the matrix). We also state the existence of the loop invariant analytic_error
that is needed for applying the results of Section 3.2.

The initializations functions are specified, but not stated. This corresponds firstly
to the function array2d_alloc that initializes the matrix and p_zero that produces an
approximation of the p0 function. Our program verification is modular: our proofs
are generic with respect to p0 and its implementation.

The preconditions of the main functions are the following ones:

– imax and nk must be greater than one, but small enough so that imax + 1 and nk + 1
do not overflow;

– the grid sizes �x must fulfill some mathematical conditions that are required for
the convergence of the scheme;

– the floating-point values computed for the grid sizes must be near their mathe-
matical values;

– to prevent exceptional behavior in the computation of a, the time discretization
step must be greater than 2−1000 and c�t

�x must be greater than 2−500.

There are two postconditions, corresponding to the method and round-off errors.
See Sections 3.1 and 3.2 for more details.

4.3 Automation and Manual Proofs

This section is devoted to formal specifications and proofs corresponding to the
bounds proved in Section 3. We give some key points of the automated proofs.

Big O In Section 3.1.1, we present two interpretations of the big O notation. Usual
mathematical pen-and-paper proofs switch from one interpretation to the other
depending on which one is the most adapted, without noticing that they may not be
equivalent. The formal development was helpful in bringing into light the erroneous
reasoning hidden by the usage of big O notations. We introduced the notion of
uniform big O in [16] in the context of an infinite string. In the present paper, we
consider the case of the finite string, hence for compactness reasons, both notions
are in fact equivalent. However, we still use the more general uniform big O notion
to share most of the proof developments between the finite and the infinite cases. Re-
garding automation, a decision procedure has been developed in [4]; unfortunately,
those results were not applicable since we needed a more powerful big O.

Differential Operators As long as we were studying only the method error, we did
not have to define the differential operators nor assume anything about them [16].
Their only properties appeared through their usage: function p is a solution of the
partial differential equation and it is sufficiently regular. This is no longer possible
for the annotated C program. Indeed, due to the underlying logic, the annotations
have to define p as a solution of the PDE by using first-order formulas stating
differentiability, instead of second-order formulas involving differential operators.
Since the formalization of Taylor approximations has been left unchanged, the
natural way to relate the C annotations with the Coq development is therefore to
define the operators as actual differential operators. Note that this has forced us to
introduce a small axiom. Indeed, our definition of Taylor approximation depends on
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differential operators that are total functions, while Coq’s standard library defines
only partial operators. So we have assumed the existence of some total operators that
are equal to the partial ones whenever applied to differentiable functions. The axiom
states absolutely nothing about the result of these operators for nondifferentiable
functions, so no inconsistencies are introduced this way. This is just a specific instance
of Hilbert ε operator [57], which does not make the logic inconsistent [39].

Method Error The Coq proof of the method error is about 5000-line long. About
half of it is dedicated to the wave equation and the other half is re-usable (definition
and properties of the dot product, the big O, Taylor expansions. . . ). We formally
proved without any axiom that the numerical scheme is convergent of order 2,
which is the known mathematical result. An interesting aspect of the formal proof
in Coq is that we were able to extract the constants α and C appearing in the big O
for the convergence result in order to obtain their precise values. The recursive
extraction was fully automatic after making explicit some inlining. The mathematical
expressions are given in Section 3.3.

Round-Off Errors Except for Lemma 2, all the proofs described in Section 3.2 have
been done and machined-checked using Coq. In particular, the proof of the bound on
δk

i was done automatically by calling Gappa from Coq. Lemma 2 is a technical detail
compared to the rest of our work, that is not worth the immense Coq development
it would require: keen results on integrals but also definitions and results about the
Legendre, Laguerre, Chebychev, and Jacobi polynomials.

The Program Proof Given the program code, the Why tool generates 149
verification conditions that have to be proved. While possible, proving all of them
in Coq would be rather tedious. Moreover, it would lead to a rather fragile construct:
any later modification to the code, however small it is, would cause different proof
obligations to be generated, which would then require additional human interaction
to adapt the Coq proofs. We prefer to have automated provers (SMT solvers and
Gappa) discharge as many of them as possible, so that only the most intricate ones are
left to be proven in Coq. The following table shows how many goals are discharged
automatically and how many are left to the user.12

Prover Proved behavior VC Proved safety VC Total
Alt-Ergo 18 80 98
CVC3 18 89 107
Gappa 2 20 22
Z3 21 63 84

Automatically proved 23 94 117
Coq 21 11 32

Total 44 105 149

12Note that verification conditions might be discharged by one or several automated provers.
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On safety goals (matrix access, loop variant decrease, overflow), automatic
provers are helpful: they prove about 90 % of the goals. On behavior goals (loop
invariant, assertion, postcondition), automatic provers succeed for half of the goals.
As our loop invariant involves an uninterpreted predicate, the automatic provers
cannot prove all the behavior goals (they would have been too complicated any-
way). That is why we resort to an interactive higher-order theorem prover, namely
Coq.

Coq proofs are split into two sets: first, the mathematical proof of convergence
and second, the proofs of bounded round-off errors and absence of runtime errors.
Appendix C displays the layout of the Coq formalization.

The following tabular gives the compilation times of the Coq files on a 3-GHz dual
core machine.

Type of proofs Nb spec lines Nb lines Compilation time
Convergence 991 5,275 42 s
Round-off + runtime errors 7,737 13,175 32 min

Note that most theorem statements regarding round-off and runtime errors
are automatically generated (7,321 lines out of 7,737) by the Frama-C/Jessie/Why
framework.

The compilation time may seem prohibitive; it is mainly due to the size of the
theorems and to calls to the omega decision procedure for Presburger arithmetic.
The difficulty does not lie in the arithmetic statement itself, but rather in a large
number of useless hypotheses. In order to reduce the compilation time, we could
manually massage the hypotheses to speed up the procedure, but this would defeat
the point of using an automatic tactic.

5 Conclusion

In the end, having formally verified the C program means that all of the proof obliga-
tions generated by Frama-C/Jessie/Why have been proved, either by automated tools
or by Coq formal proofs. These formal proofs depend on some axioms specific to this
work: the fact about Jacobi polynomials, the existence and regularity of a solution to
the EDP, and the existence of differential operators. The last two have been tackled
by subsequent works, which means that the only remaining Coq axiom is the one
about Jacobi polynomials.

We succeeded in verifying a C program that implements a numerical scheme for
the resolution of the one-dimensional acoustic wave equation. This is comprised
of three sets of proofs. First we formalized the wave equation and proved the
convergence of a scheme for its numerical resolution. Second we proved that the
C program behaves safely: no out-of-bound array accesses and no overflow during
floating-point computations. Third we proved that the round-off errors are not
causing the numerical results to go astray. This is the first verification of this kind
of program that covers all its aspects, both mathematics and implementation.

This work shows a tight synergy between researchers from applied mathematics
and logic. Three domains are intertwined here: applied mathematics for an initial
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proof that was enriched and detailed upon request, computer arithmetic for smart
bounds on round-off errors, and formal methods for machine-checking them. This
may be the reason why such proofs never appeared before, as this kind of collabora-
tion is uncommon.

Each proof came with its own hurdles. For ensuring the correct behavior of the
program, the most tedious point was to prove that setting a result value did not cause
other values to change, that is, that all the lines of the matrix are properly separated.
In particular, verifying the loop invariant requires checking that, except for the new
value, the properties of the memory are preserved. An unexpectedly tedious part
was to check that the program actually complies with our mathematical model for
the numerical scheme.

Another difficulty lies in the mathematical proof itself. We based our work on
proofs found in books, courses, and articles. It appears that pen-and-paper proofs
are sometimes sketchy: they may be fuzzy about the needed hypotheses, especially
when switching quantifiers. We have also learned that filling the gaps may cause us
to go back to the drawing board and to change the basic blocks of our formalization
to make them more generic (e.g. devising a big O that needs to be uniform and also
generic with respect to a property P).

An unexpected side effect of having performed this formal verification in Coq
is our ability to automatically extract the constants hidden inside the proofs. That
way, we are able to explicitly bound the total error rather than just having the usual
O(�x2 + �t2) bound. In particular, we can compare the magnitudes of the method
error and round-off error and then decide how to scale the discretization grid.

Coq could have offered us more: it would have been possible to describe and
prove the algorithm directly in Coq. The same formalism would have been used all
the way long, but we were more interested in proving a real-life program in a real-
life language. This has shown us the difficulties lying in the memory handling for
matrices. In the end, we have a C code with readable annotations instead of a Coq
theorem and that seems more convincing to applied mathematicians.

For this exploratory work, we considered the simple three-point scheme for the
one-dimensional wave equation. Further works involve scaling to higher-dimension.
The one-dimensional case showed us that summations and finite support functions
play a much more important role in the development than we first expected. We are
therefore moving to the SSReflect interface and libraries for Coq [9], so as to simplify
the manipulations of these objects in the higher-dimensional case.

This example also exhibits a major cancellation of rounding errors and it
would be interesting to see under which conditions numerical schemes behave so
well.

Another perspective is to generalize our approach to other higher-order numerical
schemes for the same equation, and to other PDEs. However, the proofs of Sec-
tion 3.1 are entangled with particulars of the presented problem, and would therefore
have to be redone for other problems. So a more fruitful approach would be to prove
once and for all the Lax equivalence theorem that states that consistency implies the
equivalence between convergence and stability. This would considerably reduce the
amount of work needed for tackling other schemes and equations.
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Appendix A: Source Code
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Appendix B: Screenshot

This is a screenshot of gWhy: we have the list of all the verification conditions and if
they are proved by the various automatic tools.



Wave Equation Numerical Resolution: A Comprehensive Mechanized Proof 453

Appendix C: Dependency Graph

In the following graph, the ellipse nodes are Coq files formalizing the wave equation
and the convergence of its numerical scheme. The octagon nodes are Coq files
that deal with proof obligations generated from the dirichlet.c program file,
that is, propagation of round-off errors and error-free execution. Arrows represent
dependencies between the Coq files.
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