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Abstract We present a simple ExpTime (complexity-optimal) tableau decision pro-
cedure based on and-or graphs with sound global caching for checking satisfiability
of a concept w.r.t. a TBox in ALC. Our algorithm is easy to implement and provides
a foundation for ExpTime (complexity-optimal) tableau-based decision procedures
for many modal and description logics, to which various optimisation techniques can
be applied.

Keywords Description logic · Modal logic · Tableau-based decision procedures ·
Global caching complexity-optimal tableaux

1 Introduction

Description logics are (multi-modal) logics that represent the domain of interest in
terms of concepts, objects, and roles. They are useful for modelling and reasoning
about structured knowledge. The main deduction problems are whether a concept
is satisfiable; whether an ABox is consistent; whether a concept is satisfiable w.r.t. a
TBox; and whether an ABox is consistent w.r.t. a TBox. In the sequel, we concentrate
only on the problem of determining whether a concept is satisfiable w.r.t. a TBox.
See [32] for an extension of our method to the problem of checking consistency of
an ABox w.r.t. a TBox. The other deduction problems are usually reducible to this
latter problem (see [3] for details).
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The tableau method is a very general method for automated reasoning and has
been widely applied for modal logics [10] and description logics [2]. Tableau methods
usually come in two flavours as we explain shortly. Both methods build a rooted tree
with some leaves duplicating ancestors, thereby giving cycles. Because the same node
may be explored on multiple branches, tableau algorithms are typically complexity-
suboptimal w.r.t. the known theoretical bounds for many logics. For example, the
traditional tableau method for ALC requires double-exponential time even though
the decision problem is known to be ExpTime-complete [40].

A tableau is usually defined to be a tree of nodes where the children of a node are
created by applying a tableau rule to the parent and where each node contains a finite
set of formulae. We refer to this set as the “label” of a node. Thus a label is not a name
for a Kripke world as in some formulations of “labelled tableaux”. The ancestors of
a node are simply the nodes on the unique path from the root to that node.

A leaf node is “closed” when it can be deemed to be unsatisfiable, usually because
it contains an obvious contradiction like p and ¬p. A leaf is “open” when it can
be deemed to be satisfiable, usually when no rule is applicable to it, but also when
further rule applications are guaranteed to give an infinite branch. A branch is closed
(resp. open) if its leaf is closed (resp. open). A tableau is closed if every branch
is closed, and it is open if some branch is open. The aim of course is to use these
classifications to determine whether the root node is satisfiable or unsatisfiable w.r.t.
a TBox. But the tableaux used in modal logics and those used in description logics
are dual in a sense which is explained next. We ask the expert reader to bear with us
while we digress to elaborate this point.

Traditional Beth Tableaux are Or-trees Traditional modal tableaux a là Beth [4] are
or-trees in that branches are caused by disjunctions only. Each “existential/diamond”
formula in a node causes the creation of a “successor world”, fulfilling that formula.
But such successors of a given node are created and explored one at a time, using
backtracking, until one of them is closed, meaning that there is no explicit trace of
previously explored “open” successors in any single tableau. This or-tree perspective
makes sense when the goal is to find a closed tableau since we must close both
disjuncts of a disjunction but need to close only one “existential/diamond”-successor.
A closed tableau implies that the root node is unsatisfiable, but an open tableau does
not imply satisfiability since a different existential/diamond choice may give a closed
tableau. It is only after all such and-choices have been shown to be open that we can
assert satisfiability. We can summarise this view by writing the associated rules as
below where we use | for or-branching and use “,” for set union:

(∨)
X , C1 ∨ C2

X , C1 | X , C2
(∃)

X , ∃R.C
C , {D : ∀R.D ∈ X}

Traditional Description Logic Tableaux are And-trees The tableaux used in descrip-
tion logics are usually and-trees in that branches are caused by existential/diamond
formulae only. Each disjunctive formula causes the creation of a child, one at a
time, using backtracking, until one child is open, meaning that there is no explicit
trace of previously explored “closed” or-children in any single tableau. This and-tree
perspective makes sense when the goal is to find a Kripke model that satisfies the
given formula set since we must satisfy every existential/diamond formula in a node
but need to satisfy only one disjunct of a disjunction. A particular and-tree is usually
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called a “run” and the different or-choices give rise to multiple runs. The task is to
find one single run in which all (and-)branches are open since this implies that the
root is satisfiable. But a run in which some (and-)branch is closed does not imply
unsatisfiability since a different or-choice may give an open run. It is only after all
or-choices (i.e. runs) have been shown to be closed that we can assert unsatisfiability.
We can summarise this view by writing the associated rules as below where we
deliberately use || to flag and-branching and put Xi = {D : ∀Ri.D ∈ X} for 1 ≤ i ≤ n,
to save space:

(∨)
X , C1 ∨ C2

X , Ci
i ∈ {1, 2} (∃)

X , ∃R1.C1 , · · · , ∃Rn.Cn

C1 , X1 || · · · || Cn , Xn

Summary Thus, in both types of tableaux, the overall search space is really an and-
or tree: traditional modal (Beth) tableaux display only the or-related branches and
explore the and-related branches using backtracking while description logic tableaux
do the reverse. In this work we unify these two views by taking a global view which
considers tableaux as and-or graphs rather than as or-trees or and-trees. We can
summarise this view by writing the associated rules as below using both or-branching
and and-branching:

(∨)
X , C1 ∨ C2

X , C1 | X , C2
(∃)

X , ∃R1.C1 , · · · , ∃Rn.Cn

C1 , X1 || · · · || Cn , Xn

Termination via Blocking/Loop-checking Under certain circumstances, both types
of tableau can contain infinite branches because the same node appears again and
again on the same branch. To obtain termination, most tableau methods employ
a “loop check” or “blocking technique” [2, 21]. The simplest is called “ancestor
equality blocking” where we stop expansion of a branch when a node duplicates an
ancestor (on the same branch). A variation called “ancestor subset blocking” is to
stop expansion if a node is a subset of an ancestor (on the same branch). Note that
blocking is merely a device for termination: the a priori logical status of the blocked
node is “unknown” rather than satisfiable or unsatisfiable. Nevertheless, in certain
logics, we can classify such nodes as satisfiable, as explained next.

For most (non fix-point) modal and description logics, ancestor cycles are “good”
in that a branch ending with a node blocked by an ancestor can be soundly deemed
to be satisfiable. In modal tableau, such a branch will cause backtracking to a higher
node where a different and-choice can be made in the hope of finding a choice
that closes its branch. In description logic tableau, such a branch will cause no
backtracking. In description logic tableaux, where branches are all and-branches, a
further refinement called “anywhere blocking” [1] is also possible where a node can
be blocked by a node which lies on a different (previously created) and-branch of the
same run, although extra conditions are usually required to ensure soundness. Thus
in both types of tableaux for simple logics, a blocked node is immediately classified
as open even though its logical status is “unknown” rather than satisfiable.

Caching Even with all of these blocking refinements, the naive (description logic or
modal) tableau method for checking whether a concept C is satisfiable w.r.t. a TBox
� in ExpTime description logics like ALC or SHIQ leads to a double-exponential
time (2ExpTime) algorithm because each tableau branch may have an exponential
length, meaning that the method may explore a double-exponential number of nodes.
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To counter this, some authors have investigated the idea of remembering (“caching”)
the satisfiable or unsatisfiable status of previously seen nodes in a look-up table (see,
e.g., [6, 7, 22]). Then, when a new tableau node is created, we first check whether
this node already has a status of satisfiable or unsatisfiable in the cache, and attach
that same status to the new node. For most logics we can refine this to the following,
assuming that the current node has label X: if the cache contains a node with label
Y ⊇ X (respectively X ⊆ Y) and Y has status satisfiable (unsatisfiable) then the
current node is given the status satisfiable (unsatisfiable).

Differences Between Blocking and Caching Note the difference between block-
ing and caching: the status of a blocking node must be either satisfiable or un-
known/open, but cannot be unsatisfiable/closed, while the status of a cached node
must be known as either unsatisfiable or as satisfiable, but cannot be unknown/open.
Moreover, a blocking node must be in the same and-tree (i.e. run) while a cached
node is stored in an external data structure which sits outside the tableau under
construction. As a consequence, it is much easier to prove the soundness of blocking
than of caching.

Global Caching By global caching we mean that for each possible set of con-
cepts/formulae, the search space contains at most one node with that set as label and
that this node is processed (expanded) at most once.1 The notion of global caching
is an immediate foundation for an ExpTime procedure if the search space contains
at most an exponential number of different nodes and as long as the “processing”
at each node requires at most exponential time, both with respect to the size of the
given problem. Moreover, it can replace all of the previously mentioned notions of
equality-blocking and caching simultaneously because it does not rely on knowing
the satisfiability or unsatisfiability status of the cached nodes viz:

– ancestor equality blocking occurs automatically as a cache-hit;
– anywhere equality blocking occurs automatically as a cache-hit;
– caching occurs automatically since a previously seen node with a status known

as unsatisfiable or satisfiable must have been processed, so it will never be
processed again.

For simple logics without converse like ALC, when depth-first search is used,
global caching can be simulated by the combination of anywhere equality blocking
and systematic caching of both satisfiable and unsatisfiable labels which never
discards labels with known status: a cache-hit via global caching means that either the
label has previously appeared in the current run or it has been processed completely
and its status is known, and thus, either anywhere equality blocking or caching can be
applied. Note that anywhere equality blocking is restricted to nodes in the same and-
tree (i.e. run), whereas global caching allows blocking across or-branches (i.e. across
runs). Therefore, when a non-depth-first search strategy is used, the equivalence does
not hold even for ALC. Furthermore, for the description logic SHI , while global
caching (with appropriate cut rules) guarantees optimal complexity [13], the exact

1A node with status satisfiable/unsatisfiable can be deleted from the graph after propagating its
status to its parents, provided that its label and status are recorded in some structure for later loop-
checking [28].
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complexity of the combination of dynamic ancestor/anywhere equality blocking and
caching is not discussed in [23, 24, 26].2

Previous Work As shown in [40], ALC is a sub-logic of propositional dynamic
logic (PDL). By “internalizing” TBoxes, decision procedures for PDL, like those of
Pratt [38] and Fischer and Ladner [9], can be used to check ALC-satisfiability w.r.t.
a TBox.

The method of Fischer and Ladner first constructs the set of all subsets of the
Fischer-Ladner closure of the given initial formula [9]. The size of the Fischer-Ladner
closure is linear in the size of the given formula, so this method always requires
exponential time.

Pratt’s method [38] is formulated in a very indirect way via a labeled tableau
calculus, tree-like labeled tableaux, tree-like traditional (“lean”) tableaux, and “and-
or” graphs. Pratt proves the soundness of his “lean” tableaux [38, Lemma 4.8] via
the statement “The lean procedure leaves the root of a tableau for r unmarked if and
only if r is satisf iable”. Since Pratt’s “lean” tableaux are tree-tableaux they do not
use our notion of global caching. He does, however, discuss this notion informally
as follows [38, page 253]: “This suggests that we filter the tableau (the term used by
modal logicians for the process used in the proof in [6] of the f inite model theorem).
That is, we identify equivalent vertices to yield a directed graph, instead of a tree,
having at most 2n vertices. Such a graph can be ef fectively constructed by a machine”.
Thus Pratt [38] informally mentions the idea of global caching but does not prove
its soundness. Similar informal comments about reusing previously seen nodes are
made by Bucheit et al. [25, pages 127–128].

Pratt’s method proceeds in two stages, with the first stage requiring exponential
time and space even in simple cases. De Giacomo et al. [5] therefore sketched a
direct (single-stage) tableau calculus for checking consistency of a concept w.r.t. a
TBox in ALC. Donini and Massacci [7] extended this into a full ExpTime algorithm
because “the transformation of a tableau calculus into an ExpTime algorithm is only
sketched” [7, page 89] by De Giacomo et al. Donini and Massacci also showed that
many different optimisation techniques can be applied to their algorithm.

Donini and Massacci [7] state that the optimisation of caching both satisfiable
and unsatisfiable sets “prunes heavily the search space but its unrestricted usage may
lead to unsoundness [37]. It is conjectured that ‘caching’ leads to ExpTime-bounds
but this has not been formally proved so far, nor the correctness of caching has been
shown”. [7, page 89]. Later they explain that this is because “the [global] caching
optimisations are left out of the formal descriptions” [7, page 126]. Their algorithm
does not use global caching since it permanently caches “all and only unsatisf iable
sets of concepts”, and temporarily caches visited nodes on the current branch, even
though this means that “many potentially satisf iable sets of concepts are discarded
when passing from a branch to another branch” [7].

2In our opinion, dynamic anywhere equality blocking and systematic caching still requires NExpTime
for SHI, regardless of whether depth-first search is used, because of the presence of inverse roles and
the fact that dynamic anywhere equality blocking is restricted to nodes in the same and-tree (i.e. run).
Note, a refinement of global caching called “global state caching” guarantees optimal complexity for
inverse roles [18] without cut rules.
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Although the algorithms of De Giacomo et al. [5] and Donini and Massacci [7]
differ in many respects, they both globally cache only unsatisfiable sets (⊥-sets). In
contrast, our algorithm soundly caches both satisfiable and unsatisfiable sets.

Despite these ExpTime (complexity-optimal) algorithms, the implemented de-
scription logic tableau provers like DLP and FaCT [22] usually have non-optimal
complexity (2ExpTime). In their overview [3], Baader and Sattler explain that:
“The point in designing these [non-optimal] algorithms was not to prove worst-case
complexity results, but . . . to obtain ‘practical’ algorithms . . . that are easy to implement
and optimise, and which behave well on realistic knowledge bases. Nevertheless, the
fact that ‘natural’ tableau algorithms for such ExpTime-complete logics are usually
NExpTime-algorithms is an unpleasant phenomenon. . . . Attempts to design ExpTime-
tableaux for such logics (De Giacomo and Massacci, 1996; Donini and Massacci,
1999) usually lead to rather complicated (and thus not easy to implement) algorithms,
which (to the best of our knowledge) have not been implemented yet”. [3, page 26].

In summary: the existing ExpTime (complexity-optimal) method of Fischer-
Ladner always uses exponential time; the existing ExpTime (complexity-optimal)
method of Pratt is based upon and-or graphs and global caching but lacks a proof
of soundness of global caching; the existing ExpTime (complexity-optimal) method
of Donini and Massacci does not use global caching and is considered to be “rather
complicated (and thus not easy to implement)”; and finally, the existing implementa-
tions like DLP and FaCT deliberately use complexity-suboptimal methods precisely
because they are easy to optimise and easy to implement. One possible explanation
is that since some of the optimisations themselves are very complicated, it is much
easier to incorporate them into a simple complexity-suboptimal base method than
into a complicated ExpTime (complexity-optimal) one.

Our Contributions We present a simple, easy to implement, and easy to optimise
ExpTime (complexity-optimal) tableau decision procedure for checking satisfiability
of a concept w.r.t. a TBox in ALC using sound global caching. Our method can
be applied to many logics to convert complexity-suboptimal (tree) tableau proce-
dures into ExpTime (complexity-optimal) (and-or graph) ones when complexity-
suboptimality is caused by the exploration of the same node on multiple branches.
Various optimisation techniques can be incorporated into our procedure to increase
efficiency [28]. For example, as we show in Section 6, a basic kind of “on-the-fly”
propagation of satisfiability and unsatisfiability can be incorporated in a sound way
into our decision procedure.

Our algorithm is based on the and-or viewpoint explained previously so it builds
an and-or graph where an or-node reflects the application of a traditional Beth or-
branching rule while an and-node reflects the application of a traditional description
logic and-branching rule. We build global caching into the construction of the and-or
graph by ensuring that no two nodes of the graph have the same label. The status of a
non-end node is computed from the status of its children using its kind (and-node/or-
node) and treating satisfiability w.r.t. the TBox (i.e. sat) as true and unsatisfiability
w.r.t. the TBox (i.e. unsat) as false. When a node gets status sat or unsat, the status
can be propagated to its parents in a way appropriate to the graph’s and-or structure
if desired.

Finally, our framework does not depend on depth-first search and the basic
version of our ExpTime algorithm can accept any systematic search strategy.
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The Structure of This Paper In Section 2, we recall the notation and semantics
of ALC. In Section 3, we present our tableau calculus for ALC, formulated with
global caching. In Section 4, we prove soundness and completeness of the calculus.
In Section 5, we present a simple ExpTime decision procedure for ALC that is based
on the calculus. In Section 6, we give an improved algorithm that incorporates on-the-
fly propagation of satisfiability and unsatisfiability, giving an ExpTime (complexity-
optimal) decision procedure containing global caching whose best-case behaviour is
not always its worst-case-behaviour. In Section 7, we discuss further optimisations
for the procedure. In Section 8 we present comparisons with related work, and in
Section 9 we conclude.

Remark 1.1 This paper is an extension of our original workshop paper [12]. The
algorithm given in the workshop paper contains an error. The correction is to delete
the occurrences of “propagate(G, v)” in items (h) and (i), and add the following line
immediately after line (j) at the same indentation level:

(k) if v.status ∈ {sat, unsat} then propagate(G, v)

2 Notation and Semantics of ALC

We use A and B for concept names and use R and S for role names. We refer to A
and B also as atomic concepts, and refer to R and S also as roles. We use C and D to
denote arbitrary concepts.

Concepts in ALC are formed using the following BNF grammar:

C, D ::= 
 | ⊥ | A | ¬C | C � D | C � D | ∀R.C | ∃R.C

A TBox is a finite set of axioms of the form C  D or C = D.
An interpretation I = 〈�I , ·I〉 consists of a non-empty set �I , the domain of I ,

and a function ·I , the interpretation function of I , that maps every concept name A
to a subset AI of �I and maps every role name R to a binary relation RI on �I .
The interpretation function is extended to complex concepts as follows.


I = �I

⊥I = ∅
(¬C)I = �I \ CI

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(∀R.C)I = {
x ∈ �I | ∀y

[
(x, y) ∈ RI implies y ∈ CI]}

(∃R.C)I = {
x ∈ �I | ∃y

[
(x, y) ∈ RI and y ∈ CI]}

.

An interpretation I satisf ies a concept C if CI �= ∅, and validates C if CI = �I .
Clearly, I validates C iff it does not satisfy ¬C.

An interpretation I is a model of a TBox T if for every axiom C  D (resp. C =
D) of T , we have that CI ⊆ DI (resp. CI = DI).

We say that an interpretation I satisf ies a set X of concepts if there exists x ∈ �I

such that x ∈ CI for all C ∈ X. We say that a set X of concepts is satisf iable w.r.t. a
TBox T if there exists a model of T that satisfies X.
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3 A Tableau Calculus for ALC

Let T be a TBox and X be a finite set of concepts. In this section, we present a
tableau calculus for the problem of checking whether X is satisfiable w.r.t. T .

We assume that concepts are in negation normal form (NNF), where ¬ occurs only
directly before atomic concepts.3 We denote the NNF of ¬C by C. For simplicity, we
treat axioms of T as concepts representing global assumptions: an axiom C  D is
treated as C � D, while an axiom C = D is treated as (C � D) � (D � C). That is, we
assume that T consists of concepts in NNF and call such a T a TBox in NNF. Thus,
an interpretation I is a model of T iff I validates every concept C ∈ T . As this way
of handling TBoxes is not efficient in practice, in Section 7 we will discuss how the
“absorption” optimization techniques can be used to improve the performance of
our algorithm.

Tableau Rules Tableau rules are written downwards, with a set of concepts above
the line as the premise and a number of sets of concepts below the line as the
conclusions. A k-ary tableau rule has k conclusions and some rules have a side-
condition which must be true for their application. Each tableau rule is either an or-
rule or an and-rule. The conclusions of an or-rule are separated by |, while conclusions
of an and-rule are separated by ||. An or-rule has the meaning that, if the premise is
satisfiable w.r.t. the TBox T then some of the conclusions are also satisfiable w.r.t.
T . On the other hand, an and-rule has the meaning that, if the premise is satisfiable
w.r.t. T then all of the conclusions are also satisfiable w.r.t. T .

We use letters like Y and Z to denote sets of concepts and write Y, C or C, Y to
denote the set Y ∪ {C}. We define the tableau calculus CALC w.r.t. a TBox T to be
the set of the tableau rules given in Table 1. The rule (∃) is the only and-rule and
is also the only transitional rule (since it “realizes” concepts of the form ∃R.C). The
other rules of CALC are or-rules, and are also called static rules. For each rule of
CALC, the distinguished concepts of the premise are called the principal concepts of
the rule.

A rule ρ is applicable to a node if the node’s label is an instance of the premise
of ρ. The same instantiation then gives the instances of the conclusions of ρ that
correspond to this rule application. As is standard, we assume that the principal
concept is not a member of the set Y which appears in the rule descriptions, meaning
that no static rule carries its principal concepts into its conclusion.

Example 3.1 Let D1, · · · , D7 be arbitrary concepts and let T = {D7}. Instantiat-
ing the premise Y , ∃R1.C1 , . . . , ∃Rk.Ck of the rule (∃) to the label {∃R.D1,
∃R.D2, ∃S.D3, ∀R.D4, ∀R.D5, ∀S.D6} gives three ||-separated conclusions:
{D1, D4, D5, D7}, {D2, D4, D5, D7}, and {D3, D6, D7}.

Rule Application Strategy We assume the following order for applying the rules of
CALC:

(⊥0), (⊥), (�), (�), (∃).

3Every concept can be transformed in linear time to an equivalent concept in NNF.
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Table 1 Rules of the tableau calculus CALC

(⊥0)
Y , ⊥

⊥ (⊥)
Y , A , ¬A

⊥ (�)
Y , C � D
Y , C , D

(�)
Y , C � D

Y , C | Y , D

(∃)
Y , ∃R1.C1 , . . . , ∃Rk.Ck

C1 , Y1 , T || . . . || Ck , Yk , T if (*)

(*): Y contains no concepts of the form ∃R.C and Yi = {D : ∀Ri.D ∈ Y}

Tableau for (T , X) We now give a non-algorithmic description of the procedure
to create an and-or tableau. We have chosen this format over the more algorithmic
description in [12] to highlight its simplicity.

A graph (V, E) is an and-or graph if each node in V is classified as either an and-
node or an or-node. An and-or graph for (T , X), also called a tableau for (T , X), is
an and-or graph obtained by using our strategy to apply the rules of CALC repeatedly
to the nodes of a graph whose root node has the label T ∪ X as follows:

– For each node v of the graph, if at least one rule is applicable to its label and no
rules have been applied to it previously, then choose the applicable rule with the
highest priority and apply it to the label of the node to obtain the k conclusions.
Remove duplicates, leaving j ≤ k distinct sets Z1, . . . , Z j.

– If the graph already contains a node wi with label Zi then make wi a child of v

by adding the edge (v,wi), else create a new node wi with label Zi and add it to
the current graph as a child of v by adding the edge (v,wi).

– If the applied rule is (∃) then:

• if the edge (v, wi) has not been adorned yet, adorn it by the empty set (of
labels)

• add the principal concept ∃Ri.Ci that corresponds to the child wi to the set
of labels adorning the edge (v, wi).

– If the rule applied to v is an or-rule then v is an or-node, else v is an and-node.
This information about which rule is applied to v is recorded for later use.

– If no rule is applicable to v then v is an end node as well as an and-node.

Remark 3.2 Note that:

– Each non-end node is “expanded” exactly once, using one rule, so expansion
continues until no further node expansion is possible.

– The strategy for choosing which node to expand next is totally arbitrary.
– The graph is constructed using global caching and its nodes have unique labels.
– The strategy for rule applications (via the “Rule Application Strategy” given

above) is the standard one whereby we “saturate” a node whose label is free
of obvious contradictions by applying the (�) and (�) rules as much as possible,
and then apply the transitional (∃) rule to realise existential concepts (but not
necessarily in a depth-first manner).

– Nodes expanded by applying a non-branching static rule can be treated either
as or-nodes or as and-nodes so we choose to treat them as or-nodes (and this
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assumption is used in the proofs). Thus applying the (�) rule to a node causes
the node to become an or-node (which might seem counter-intuitive).

– An edge can be labelled with a set of concepts.

A marking of an and-or graph G is a subgraph Gc of G such that:

– the root of G is the root of Gc

– if a node v of Gc is an or-node of G then some edge (v,w) of G is an edge of Gc

– if a node v of Gc is an and-node of G then every edge (v,w) of G is an edge of Gc

– if (v,w) is an edge of Gc then v and w are nodes of Gc.

A marking Gc of an and-or graph G for (T , X) is consistent if it does not contain
any node with label {⊥}. Informally, the existence of a consistent marking flags that
the and-or tableau G is “open” while the absence of a consistent marking flags that
the and-or tableau G is “closed”. The most important point is that we need to explore
only one and-or tableau.

Example 3.3 In Fig. 1 we present an and-or graph for (T , X), where

T = {A  B � C} ≡ {¬A � (B � C)}
X = { (∃R.A � ∃R.(A � ¬B)) � (∃R.A � ∃R.(A � ¬C)) }.

The node (7) is used by 4 parents; the nodes (8) and (18) are used by 2 parents. As
the graph does not have any consistent marking, by Theorem 3.5 given and proved
later in this paper, X is unsatisfiable w.r.t. T . Note that the (⊥0) rule can be applied
to node (11) with label {⊥} in Fig. 1, which is why there is a dashed edge from (11) to
itself.

Example 3.4 Figures 2 and 3 show an application of our method to the example used
by Haarslev and Möller in [20] to point out that caching in their framework must be
done carefully. Our method requires no such care.

Haarslev and Möller [20, page 59] consider the satisfiability of the concept
E wrt the TBox {C  (∃R.D) � (∃S.F) � (∀S.(¬F � A)), D  (∃R.C), E  (∃R.C) �
(∃R.D)}. Their tableau derivation involves the steps

1. {i0 : E}
2. {i0 : E, i0 : ∃R.C} or {i0 : E, i0 : ∃R.D}
3. {i1 : C}
4. {i1 : C, i1 : ∃R.D, i1 : ∃S.F, i1 : ∀S.(¬F � A)}
5. {i2 : D}
6. {i2 : D, i2 : ∃R.C}
7. {i3 : C}
8. {i4 : F, i4 : ¬F, i4 : A}
9. {i5 : D}

At line 7, further expansion of i3 : C is blocked by the presence of i1 : C at line 3
and the concept D in {i2 : D} is cached incorrectly as a satisfiable concept. We
therefore return to line 4 and expand the ∃S.F to give line 8 above. Since line 8 is
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Fig. 1 An and-or graph
for (T , X), where T = {A 
B � C} ≡ {¬A � (B � C)}
and X consists of the only
concept
(∃R.A � ∃R.(A � ¬B)) �
(∃R.A � ∃R.(A � ¬C)).
Principal concepts are marked
with superscript ∗. Nodes
are numbered when created
but expanded using depth-first
search. Dashed arrows
are cache hits. The graph
has no consistent marking

clearly a clash, we then backtrack to line 2 and explore the alternative of the “or” by
expanding ∃R.D to obtain line 9 above. Since D has been cached as satisfiable, this
leads to an incorrect classification of E as a satisfiable concept.

To reduce the number of nodes to fit Fig. 2 onto one page, we assume that
conjunctions are flattened automatically, that ∀ is distributed over � automatically,
that an implicit modus ponens rule is used to obtain (∃R.C) � (∃R.D) from {E, E 
(∃R.C) � (∃R.D)}, that we can derive ⊥ from ∃S.F and ∀S.¬F, and that disjunctions
are subsumed by either of their disjuncts and hence deleted. The resulting and-or
graph has no consistent marking, and so our tableau method gives the correct answer
“unsatisfiable”.
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Fig. 2 An and-or graph for
(T , {E}). Principal concepts
are marked with superscript ∗.
Nodes are numbered when
created but expanded using
depth-first search: 1:(2,3),
2:(4,5), 4:(6,7), 6:8, 8:9, 9, 7:10,
10:(11,12), 11:(13,14), 13:8,
14:8, 12:9, 5:8, 3:9. Dashed
arrows are cache hits. The
graph does not have any
consistent marking. See the
main text for an explanation
of implicit optimisations used
to reduce the number of nodes
to make the example fit on
one page

Although technically correct, Fig. 2 does not adequately highlight the nub of the
issue since it is difficult to compare it directly with the process followed by Haarslev
and Möller [20, page 59]. We therefore present another view of the same example in
Fig. 3 in which we use absorption and lazy-unfolding, as also used by Haarslev and
Möller [20], to apply modus ponens on only the relevant parts of the TBox. We also
decompose a conjunction into its conjuncts in one step and mimic their derivation as
much as possible.

Thus, for example, node (4) in Fig. 3 is obtained from node (3) in one step by using
a modus ponens (unfolding) step on C and C  (∃R.D) � (∃S.F) � (∀S.(¬F � A)),
and then decomposing the right hand side of the inclusion into its three conjuncts
(∃R.D), (∃S.F) and (∀S.(¬F � A)). The crucial step is the one where our procedure
finds node (3) as a cache hit proxy for the R-child of node (6), but our procedure
does not mistakenly mark (5) as satisfiable. Consequently, when node (2’) also hits
the cached node (5), it does not mistakenly mark itself as satisfiable. Ultimately this
leads to the correct answer “unsatisfiable” since the resulting and-or graph has no
consistent marking.

For readers who may not be interested in the detailed proofs, we now state the
soundness and completeness theorem for CALC.
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Fig. 3 An and-or graph for (T , {E}). Principal concepts are marked with superscript ∗ and dashed
arrows are cache hits. Nodes are numbered to match our explanation of Haarslev and Möller [20]
in the main text so there is no node (7) since our procedure finds it as the existing node (3). As
explained in the text, we use absorption and lazy unfolding to apply modus ponens in one step on
only the relevant parts of the TBox to make the example fit on one page. The graph does not have
any consistent marking

Theorem 3.5 (Soundness and Completeness of CALC) Let T be a TBox in NNF, X
be a f inite set of concepts in NNF, and G be an and-or graph for (T , X). Then X is
satisf iable w.r.t. T if f G has a consistent marking.

The proofs of this theorem are in the next section.

4 Soundness and Completeness of CALC

In this section we prove the soundness and completeness of CALC with respect to the
Kripke semantics of ALC. Intuitively, soundness of a calculus states that the calculus
gives correct positive answers while completeness states that it gives correct negative
answers. One of the most confusing differences between the modal and description
logic tableau viewpoints is that these notions are interchanged when moving from
one viewpoint to the other. We therefore first explain the differences that give rise
to this confusion.

In modal tableaux, a closed or-tableau for {¬C} w.r.t. global assumptions T is
viewed as a proof of C from global assumptions T . So soundness can be stated
as: if there is a closed or-tableau for X w.r.t. global-assumptions T then X is
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unsatisfiable w.r.t. global-assumptions T . To compare it with the notion of soundness
from description logic tableaux we can rewrite it as:

Modal Tableaux Soundness If X is satisfiable w.r.t. the TBox T then every or-
tableau for X w.r.t. T is open.

In description logic tableaux, an open and-tableau for X w.r.t. a TBox T is viewed
as a model of T which satisfies X. Thus soundness becomes:

Description Logic Tableaux Soundness If some and-tableau for X w.r.t. T is open
then X is satisfiable w.r.t. TBox T .

At first sight, these two statements of soundness are not actually exact converses
of each other since the first contains “every” while the second contains “some”. They
are however exact converses once we take into account the differences between or-
tableaux and and-tableaux as explained in Section 1. The primary reason why so
much confusion arises is that each community uses “tableau” in stating soundness,
without adding whether they mean or-tableau or and-tableau.

Which viewpoint should we take with and-or graphs? As we shall see, our
procedure tests whether a given set X is satisfiable w.r.t. a TBox T , so in keeping with
the principle that soundness should state that the procedure gives correct positive
answers, we could use the description logic viewpoint. On the other hand, as we shall
see, the fundamental principle is that unsatisfiability ultimately arises from some
node label containing a pair A,¬A or ⊥, while satisfiability can result from the
“failure to be unsatisfiable”. Thus we could also take the modal tableau viewpoint,
which is exactly what we do with one proviso: since we only ever have to consider one
and-or tableau, the notions of “every tableau” (and “some tableau”) are replaced by
any one “and-or graph G”.

Lemma 4.1 (Soundness of CALC) Let T be a TBox in NNF, X be a f inite set of
concepts in NNF, and G be an and-or graph for (T , X). If X is satisf iable w.r.t. T
then G has a consistent marking.

Proof Let the root r of G be the root of Gc. Clearly, as X is assumed to be satisfiable
w.r.t. T and the label of the root r of G is X ∪ T , the label of the root r of Gc cannot
contain ⊥, nor a contradictory pair {A,¬A}. Moreover, it is easy to check that each
of our or-rules creates at least one satisfiable child from a satisfiable parent, and
all children of the and-rule are satisfiable if the parent is satisfiable. Thus, starting
with r, a node w ∈ G not containing ⊥ is always available to us as required to
construct Gc. ��

We prove completeness of CALC via model graphs. The technique has previously
been used in [10, 27, 39] for other traditional modal tableau calculi. A model graph is
a tuple 〈�, C, E〉, where:

– � is a finite set
– C is a function that maps each element of � to a set of concepts
– E is a function that maps each role name to a binary relation on �.
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A model graph 〈�, C,E〉 is saturated if every x ∈ � satisfies:

(1) if C � D ∈ C(x) then {C, D} ⊆ C(x)

(2) if C � D ∈ C(x) then C ∈ C(x) or D ∈ C(x)

(3) if ∀R.C ∈ C(x) and (x, y) ∈ E(R) then C ∈ C(y)

(4) if ∃R.C ∈ C(x) then there exists y ∈ � s.t. (x, y) ∈ E(R) and C ∈ C(y).

A saturated model graph 〈�, C, E〉 is consistent if no x ∈ � has a C(x) containing
⊥ or containing a pair A, ¬A for some atomic concept A.

Given a model graph M = 〈�, C,E〉, the interpretation corresponding to M is the
interpretation I = 〈�, ·I〉 where AI = {x ∈ � | A ∈ C(x)} for every concept name
A, and RI = E(R) for every role name R.

Lemma 4.2 If I is the interpretation corresponding to a consistent saturated model
graph 〈�, C, E〉, then for every x ∈ � and C ∈ C(x) we have x ∈ CI .

Proof By induction on the structure of C. ��

Let G be an and-or graph for (T , X) with a consistent marking Gc and let v be a
node of Gc. A saturation path of v w.r.t. Gc is a finite sequence v0 = v, v1, . . . , vk of
nodes of Gc, with k ≥ 0, such that, for every 0 ≤ i < k, vi is an or-node and (vi, vi+1)

is an edge of Gc, and vk is an and-node.
Under this definition, if k = 0 then there are no i such that 0 ≤ i < k, and v0 must

be an and-node. That is, every and-node has exactly one saturation path of length 1
with k = 0. Moreover, every or-node of Gc has at least one saturation path because
the rules (�) and (�) reduce a concept to simpler ones so that “saturation” eventually
leads to a node vk whose label contains no concept with a top-level constructor of �
or �. Thus vk in G is “completed” in that no static rules are applicable to its label,
and if the label contains no existential concepts, then no rule is applicable at all. In
both case, vk is an and-node as required.

Lemma 4.3 Let v0, v1, . . . , vk be a saturation path of v0 w.r.t. a consistent marking Gc

of G. Then

1. all concepts of the form A, ¬A, ∀R.C and ∃R.C of the label of each vi are in the
label of vk;

2. the label of each vi, 0 ≤ i ≤ k, cannot contain ⊥, nor contain a pair A, ¬A;
3. the set formed by taking the union of the labels of v0, v1, · · · , vk cannot contain a

contradictory pair A,¬A, nor contain ⊥.

Proof Part 1 holds because the static rules do not affect concepts of these forms.
Part 2 holds because each node v of Gc comes from G, and in G, a node v whose
label contains a complimentary pair A, ¬A, or contains ⊥, has to be an or-node via
the rules (⊥0) or (⊥), whose only child is labelled with {⊥}, meaning that v cannot
be part of a consistent marking Gc of G. For part 3, to appear in the union, each
offending concept A, ¬A or ⊥ has to appear in the label of some vi, 0 ≤ i ≤ k, which
rules out ⊥ by Part 2. For A, ¬A, they must then both appear in vk by Part 1, which
contradicts Part 2. ��
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Lemma 4.4 (Completeness of CALC) Let T be a TBox in NNF, X be a f inite set of
concepts in NNF, and G be an and-or graph for (T , X). If G has a consistent marking
Gc then X is satisf iable w.r.t. T .

Proof We construct a model graph M = 〈�, C,E〉 from Gc as given below. During
construction, each node of � is marked either as unresolved or as resolved and f is
constructed to map each node of M to an and-node of Gc. Nodes of M are denoted
by x, y, τ , nodes of G are denoted by u, v, w, and C(x) denotes the label of x (in M),
while L(u) denotes the label of u (in G):

1. Let v0 be the root of Gc and let v0, . . . , vk be a saturation path of v0 w.r.t. Gc.
Create a new node (name) τ , set � := {τ }, set C(τ ) := ⋃k

i=0 L(vi), mark τ as
unresolved, and set f (τ ) := vk. For each role name R, set E(R) := ∅.

2. While � contains unresolved nodes, pick an unresolved node x ∈ � and do:

(a) For every concept ∃R.C ∈ C(x) do:

i. Let u := f (x).
ii. Let w0 be the node such that (u, w0) is an edge of Gc with label

containing ∃R.C.
iii. Let w0, . . . , wh be a saturation path of w0 w.r.t. Gc,

and let Y := ⋃h
i=0 L(wi).

iv. If no y ∈ � has C(y) = Y then add a new node y to �, set C(y) := Y,
mark y as unresolved, and set f (y) := wh.

v. Add the pair (x, y) to E(R).

(b) Mark x as resolved.

Remark 4.5 Note that:

1. At Step 2(a)i, ∃R.C ∈ C(x) belongs to L(u) :

– for the case x = τ and u = vk, this follows from Lemma 4.3(1)
– for the other case, see item 3 of this remark.

2. At Step 2(a)ii, w0 is unique and C ∈ L(w0).
3. At Step 2(a)iv, intuitively, y is the result of sticking together the nodes w0, . . . , wh

of a saturation path of Gc. Once again, every ∃R.C ∈ C(y) belongs to L(wh) by
Lemma 4.3(1).

The above construction terminates and results in a finite model graph because: for
every x, x′ ∈ �, x �= x′ implies C(x) �= C(x′), and for every x ∈ �, C(x) is the set of all
subconcepts occurring in (T , X).

We show that M satisfies all Conditions (1)–(4) of being a saturated model graph.
M satisfies Conditions (1) and (2) because at Step 1 (of the construction of M), the
sequence v0, . . . , vk is a saturation path w.r.t. Gc of v0, and at Step 2a, the sequence
w0, . . . , wh is a saturation path w.r.t. Gc of w0. That is, in each case, the saturation
path is from the original G obtained by applying the rules for (�) and (�) repeatedly,
and these rules ensure that the union of the labels of this saturation path in M satisfies
Conditions (1) and (2) of a saturated model graph. M satisfies Condition (4) because
at Step 2a, C belongs to the label of w0 and hence also to C(y). For Condition (3),
assume x ∈ �, ∀R.D ∈ C(x), and (x, y) ∈ E(R). We show that D ∈ C(y). Consider
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Step 2a at which the pair (x, y) is added to E(R). Because ∀R.D ∈ C(x) and C(x) is
the union of the labels of nodes of a saturation path that ends at u, by Lemma 4.3(1),
we have that ∀R.D ∈ L(u). By the tableau rule (∃), it follows that D ∈ L(w0) and
hence also in C(y) ⊇ L(w0).

The label of each node of � is formed by taking the union of the labels of some
saturation path w.r.t. a consistent marking Gc. By Lemma 4.3(3), such a union cannot
contain a complimentary pair A, ¬A, nor contain ⊥. Therefore M is a consistent
saturated model graph.

By the definition of and-or graphs for (T , X) and the construction of M, we
have that X ⊆ C(τ ), and for all x ∈ � we have T ⊆ C(x). Hence, by Lemma 4.2, the
interpretation corresponding to M is a model of T that satisfies X. ��

5 A Simple ExpTime Decision Procedure for ALC

Let T be a TBox in NNF and X be a finite set of concepts in NNF. We claim that
Algorithm 1 given below is an ExpTime (complexity-optimal) algorithm for checking
satisfiability of X w.r.t. T . In the algorithm, a node u is a parent of v and v is a child
of u iff the edge (u, v) is in G. Optimizations for the algorithm will be discussed in
the next section. To prove our claim we need some definitions and two lemmata.

By sc(C) we denote the set of all subconcepts of C, including C. For a set X of
concepts, define

sc(X) = {D | D ∈ sc(C) for some C ∈ X} .

Define the length of a concept to be the number of its symbols, and the size of a
finite set of concepts to be the sum of the lengths of its elements.

Lemma 5.1 Let T be a TBox in NNF, X be a f inite set of concepts in NNF, n be the
size of T ∪ X, and G be an and-or graph for (T , X). Then G has 2O(n) nodes and
the label of each node of G is a subset of sc(T ∪ X), which consists of at most O(n)

concepts.
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Proof The label of each node of G is a subset of sc(T ∪ X) and therefore consists of
at most O(n) concepts. Since the labels of nodes are unique, G has 2O(n) nodes. ��

Lemma 5.2 Algorithm 1 terminates and computes the set UnsatNodes in 2O(n) steps
where n is the size of T ∪ X.

Proof Lemma 5.1 guarantees that the and-or graph G can be built in 2O(n) steps since
it contains 2O(n) nodes. Every node put into U is also put into UnsatNodes, but once
a node is in UnsatNodes, it never leaves UnsatNodes and cannot be put back into
U . Each iteration of the “while” removes one member of U . Since the number of
nodes in G is 2O(n), this means that after at most 2O(n) iterations, U must become
empty. Each iteration is done in 2O(n) steps. Hence the algorithm terminates after
2O(n) steps. ��

Theorem 5.3 Algorithm 1 is an ExpTime (complexity-optimal) decision procedure for
checking satisf iability of X w.r.t. T .

Proof Let G be the and-or graph with root v0 constructed by Algorithm 1 for (T , X)

and let UnsatNodes f be the final value of the set UnsatNodes.
Suppose that Algorithm 1 returns true for (T , X). Then we must have v0 /∈

UnsatNodes f . We show that G has a consistent marking, which, by Theorem 3.5,
implies that X is satisfiable w.r.t. T .

We construct a consistent marking Gc of G as follows. We initialize Gc with the
node v0. Repeatedly, for every node v ∈ Gc, we add w ∈ G and the edge (v,w) from
G to Gc if w is a child of v in G and w �∈ UnsatNodes f .

Observe that, for every node u �∈ UnsatNodes f of G:

– If u is an and-node then no child of u belongs to UnsatNodes f . For a con-
tradiction, suppose that a child v of u belongs to UnsatNodes f . When v was
put into UnsatNodes, it was put into U too. The main “while” loop terminates
only when U is empty so consider the moment when v was removed from
U (at step 6 of Algorithm 1). At that time: u was a parent of v since G
was built at step 1 of Algorithm 1; u /∈ UnsatNodes since UnsatNodes never
shrinks and we already have u /∈ UnsatNodes f ; and u was an and-node. Hence
u was added to UnsatNodes (at step 11 of Algorithm 1) and must end up in
UnsatNodes f since UnsatNodes never shrinks. This contradicts the assumption
that u /∈ UnsatNodes f .

– If u is an or-node then at least one child of u does not belong to UnsatNodes f . For
a contradiction, suppose that all children of u belong to UnsatNodes f . Since u is
an or-node, it must have at least one child. Since UnsatNodes never shrinks, there
is a moment when all children of u belong to UnsatNodes. The main “while”
loop terminates only when U is empty so consider the moment when a child v

of u was removed from U (at step 6 of Algorithm 1) and all children of u had
been added to UnsatNodes. At that time: u was a parent of v since G was built
at step 1 of Algorithm 1; u /∈ UnsatNodes since UnsatNodes never shrinks and
we already have u /∈ UnsatNodes f ; and u was an or-node. Hence u was added
to UnsatNodes (at step 11 of Algorithm 1) and ends up in UnsatNodes f . This
contradicts the assumption that u /∈ UnsatNodes f .
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Hence Gc is a marking of G. It is a consistent marking since the only possible node
with a label {⊥} is v⊥ ∈ UnsatNodes f and hence v⊥ is not in Gc.

Next, suppose that Algorithm 1 returns false for (T , X). We have that v0 ∈
UnsatNodes f . We show that X is unsatisfiable w.r.t. T .

For each u ∈ UnsatNodes f , let unsat-timestamp(v) be the iteration number of the
main “while” loop at which u was added to UnsatNodes. Observe that, by steps 8–11
of Algorithm 1, for every u ∈ UnsatNodes f :

– if u is an or-node and u �= v⊥ then every child v of u belongs to UnsatNodes f and
has unsat-timestamp(v) < unsat-timestamp(u)

– if u is an and-node then u has a child v ∈ UnsatNodes f with
unsat-timestamp(v) < unsat-timestamp(u).

It follows that if G has a consistent marking Gc then starting from v0 we can construct
an infinite path of nodes from Gc consisting of nodes in UnsatNodes f such that
every node has a greater unsat-timestamp than the next node on the path. This is
impossible because values of unsat-timestamp are natural numbers. Therefore G
does not have any consistent marking and, by Theorem 3.5, it follows that X is
unsatisfiable w.r.t. T .

We have proved that Algorithm 1 is a decision procedure for checking satisfiability
of X w.r.t. T . By Lemma 5.1, the algorithm runs in 2O(n) steps. ��

Algorithm 1 is essentially a sound, complete and ExpTime (complexity-optimal)
Pratt-like method for testing ALC-satisfiability which incorporates global caching
directly into its definition rather than leaving it as an afterthought with no proof. But
it suffers from the problem that we first construct a full and-or graph and then make
multiple passes to decide satisfiability. That is, its worst-case behaviour is also its
best-case behaviour. In the next section we give an ExpTime (complexity-optimal)
algorithm which also incorporates global caching in its definition, and which can
often avoid this undesirable behaviour.

6 On-the-Fly Propagation of Satisfiability and Unsatisfiability

In this section we optimize Algorithm 1 by incorporating a basic kind of on-the-
fly backward propagation of satisfiability of unsatisfiability through the and-or
graph. Observe that Algorithm 1 first constructs an and-or graph and then checks
whether the graph contains a consistent marking. To speed up the performance
these two tasks can be done concurrently. For this we update the set UnsatNodes
mentioned in the algorithm and check the condition v0 ∈ UnsatNodes “on-the-fly”
during the construction of G. This is the basic kind of backward propagation of unsat
(unsatisfiability w.r.t. the TBox). We can propagate sat (satisfiability w.r.t. the TBox)
in the dual way: end nodes with a label different from {⊥} receive status sat; if a child
of an or-node has status sat then the node receives status sat; if all children of an
and-node have status sat then the node receives status sat.

Algorithm 2 (given on page 21) realizes the above mentioned idea. It builds
an and-or graph using a set V of nodes and a set E of ordered pairs of
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edges. Each node of V carries a finite set of concepts as a label, a status from
{unexpanded, expanded, sat, unsat}, and an and-or type from {and-node, or-node}
in the case the status differs from unexpanded.
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Lemma 6.1 Algorithm 2 terminates in 2O(n) steps where n is the size of T ∪ X.

Proof First, note that update-status(v) runs in linear time in the number of
children of v. As the graph contains at most 2O(n) nodes by Lemma 5.1, a call of
update-status runs in 2O(n) steps.

Consider a call propagate-status(v). Without counting time spent for recur-
sive calls of propagate-status (at line 5), the number of executed steps is linear
with respect to the number of steps needed for updating the status of all parents
of v, and is thus of rank 2O(n). For any node, the procedure propagate-status
is called at most once when the status of the node is changed from unexpanded or
expanded to sat or unsat (at lines 8 or 28 of Algorithm 2 or at line 5 of procedure
propagate-status). Here, note that once the status of a node is sat or unsat,
it will never change. Hence the total number of steps executed for all calls of
propagate-status in Algorithm 2 is of rank 2O(n) × 2O(n), which is also 2O(n) (with
another constant for O).

The additional cost of expanding a node v in Algorithm 2 is the cost of possible
calls of update-status(v) and propagate-status(v). Hence, expanding a node
can be done in 2O(n) steps. As the graph contains only 2O(n) nodes, the algorithm
terminates in 2O(n) × 2O(n), i.e. 2O(n), steps. ��

Theorem 6.2 Algorithm 2 is an ExpTime (complexity-optimal) decision procedure for
checking satisf iability of X w.r.t. T .

Proof Let G be the possibly partial and-or graph constructed by Algorithm 2 for
(T , X) and let the map status be the one constructed for G by Algorithm 2. In this
proof, “satisfiability” and “unsatisfiability” are understood as w.r.t. T .

Case Algorithm 2 returns false. We have that status(v0) = unsat. We proceed directly
by induction on the temporal order in which the nodes of G get status unsat. The first
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such node is always the node with label {⊥}, at Step 2 of procedure update-status,
and this label is clearly unsatisfiable.

Observe that for every node v of G with status(v) = unsat:

– if v is an or-node and the label of v is not {⊥} then every child u of v gets
status(u) = unsat before v does (by Step 6 of procedure update-status)

– if v is an and-node then v has a child u which gets status(u) = unsat before v does
(by step 13 of procedure update-status).

Moreover, it is easy to check that each of our or-rules creates at least one
satisfiable child (label) from a satisfiable parent (label), and all children (labels) of
the and-rule are satisfiable if the parent (label) is satisfiable. Each such child u of a
v with status(v) = unsat falls under the induction hypothesis, meaning that its label
must be unsatisfiable. Thus the label of each such v is unsatisfiable. Since v0 with
label X ∪ T is such a v, it follows that X is unsatisfiable w.r.t. T .

Case Algorithm 2 returns true because status(v0) = sat. Observe that, for every node
v of G with status(v) = sat, we have that:

– either no rule is applicable to v and v is an and-node (by step 6 of Algorithm 2)
– or v is an or-node and some child u gets the status sat (by step 8 of procedure

update-status) before v does
– or v is an and-node and each child u of v gets the status sat (by step 11 of

procedure update-status) before v does.

The (labels of the) nodes to which no rule is applicable are clearly satisfiable since
such labels cannot contain ⊥, and consist only of atomic concepts and negated atomic
concepts, with no contradictory pair {A,¬A}. These are the base cases so let us
exclude these nodes from further consideration and proceed directly by induction
on the temporal order in which the remaining nodes of G which get status sat do
so. Each of these remaining nodes v must be either an and-node or an or-node as
outlined above. Thus each child u of v with status(u) = sat is either covered by the
base case, or falls under the induction hypothesis, meaning that the label of u must
be satisfiable.

It is easy to check that for each of our or-rules, the parent (label) is satisfiable
if at least one child (label) is satisfiable, and the parent (label) of our and-rule is
satisfiable if all its children (labels) are satisfiable. Thus the label of each such v

(with status(v) = sat) is satisfiable. Since v0 with label X ∪ T is such a v, it follows
that X is satisfiable w.r.t. T .

Case Algorithm 2 returns true because status(v0) = expanded. Since status(v0) /∈
{sat, unsat} then G is actually a (full) and-or graph and every node of G has a status
expanded, sat or unsat.

We construct a consistent marking Gc of G as follows. We initialize Gc with the
node v0 ∈ G and repeatedly, for every node v of Gc, we add w ∈ G and the edge
(v,w) ∈ G to Gc if w is a child of v with status(w) �= unsat. Observe that, for every
node v of G with status(v) �= unsat:

– If v is an and-node then all children of v also have a status different from unsat.
For a contradiction, suppose that a child u of v has status unsat. When the
status of u was changed from expanded to unsat by calling update-status(u)
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(at line 27 of Algorithm 2 or at line 3 of procedure propagate-status), the
subsequent call to procedure propagate-status(u) (at line 28 of Algorithm 2
or at line 5 of procedure propagate-status, respectively) would have set
status(v) to unsat, contradicting the assumption that status(v) �= unsat.

– If v is an or-node then at least one child of v has a status different from unsat.
For a contradiction, suppose that all children of v have status unsat. Since v is
an or-node, it must have at least one child, and some child u must be the last
child to get the status unsat. When the status of u was changed from expanded
to unsat by calling update-status(u) (at line 27 of Algorithm 2 or at line 3
of procedure propagate-status), all other children of v already had status
unsat. The subsequent call to propagate-status(u) (at line 28 of Algorithm 2
or at line 5 of procedure propagate-status, respectively), must have changed
status(v) to unsat, which contradicts the assumption that status(v) �= unsat.

It follows that Gc is a marking of G. Clearly, the node with label {⊥}, if it exists in G,
has status unsat and does not belong to Gc. Therefore Gc is a consistent marking of
G. By Theorem 3.5, it follows that X is satisfiable w.r.t. T .

We have shown that if status(v0) ∈ {sat, expanded} then X is satisfiable w.r.t.
T . That is, if the algorithm returns true then X is satisfiable w.r.t. T . We have
also shown that if status(v0) = unsat then X is unsatisfiable w.r.t. T . That is, if
the algorithm returns false then X is unsatisfiable w.r.t. T . Thus, Algorithm 2 is
a decision procedure for checking satisfiability of X w.r.t. T . By Lemma 6.1, the
algorithm runs in 2O(n) steps. ��

7 Further Possible Optimisations

We now discuss some further possible optimizations without proving their
correctness.

Algorithm 2 adopts a very basic type of backward propagation of sat and unsat
through the and-or graph. Other kinds of propagation can also be applied, including
global subset-checking of unsat (see, e.g., [7, 14, 28]), local subset-checking of unsat
and local superset-checking of sat for parent nodes and sibling nodes [28]. To
maximize propagation of unsat, when a node v gets status unsat, one can try to
identify a minimal inconsistent subset of the label of v called an unsat-core of v.
Computation of unsat-cores can also be done by backward propagation [14, 28].
In our experience, propagation of sat and unsat when used together with cutoffs
usually reduces the search space significantly. The general idea of cutoffs is that a
node should be expanded only when it may affect the status of the root of the and-or
graph [14]. See [28] for a specific heuristic used for doing cutoffs.

Treating axioms of the TBox as concepts representing global assumptions is not
efficient because it generates too many expansions with or-branching. A solution
for this problem is to use “absorption” techniques. A basic kind of absorption is
“lazy unfolding” for acyclic TBoxes.4 For the case when the TBox is acyclic and

4If A is defined by A = C or A  C, and B occurs in C, then A directly depends on B. Let “depend”
be the transitive closure of “directly depend”. If in a TBox T no atomic concept depends on itself,
then T is acyclic. For simplicity, we assume that each atomic concept is defined at most once.
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consists of only concept definitions of the form A = C, by using lazy unfolding, A is
treated as a reference to C and will be “unfolded” only when necessary. For the case
when the TBox is acyclic and also contains concept inclusions of the form A  C,
a simple solution can be adopted: treat A  C as A = (C � A′) for a new atomic
concept A′. For the case when the TBox is cyclic, one can try to divide the TBox
into two parts T1 and T2, where T1 is a maximal acyclic sub-TBox “not depending”
on the concepts defined in T2, then one can apply the mentioned replacing and lazy
unfolding techniques for T1.

Also note that various search strategies can be used for expanding the and-or
graph, including depth-first search and heuristic search [14, 28].

For further optimisation techniques for tableau methods, see [7, 14, 22, 28].

8 Comparisons With Other Work

In [6], Ding and Haarslev studied tableau caching for description logics with inverse
and transitive roles. As expected, caching improves the performance for these
description logics. The authors gave some sufficient conditions that guarantee sound-
ness of caching. When used for ALC, those conditions are too restrictive, while we do
not require any condition for soundness of caching. Our global caching method can
be adapted in a sound way for description logics with inverse [18, 30] and transitive
roles [13, 31].

Recall that the algorithm given by Donini and Massacci [7] permanently caches
“all and only unsatisf iable sets of concepts” and temporarily caches visited nodes on
the current branch, even though this means that “many potentially satisf iable sets of
concepts are discarded when passing from a branch to another branch” [7, Page 126].
This is usually known as “mixed caching”.

To illustrate the difference between mixed caching and global caching, consider
the TBox T = {A  C
} and suppose D⊥

1 , . . . , D⊥
k , D
, C
 are complex concepts

not containing A which are independent of each other. Suppose it is easy to show
that each of D⊥

1 , . . . , D⊥
k is unsatisfiable w.r.t. the TBox T , and also easy to show that

D
 is satisfiable w.r.t. T , but that it is very costly to show that C
 is satisfiable w.r.t.
T . Now suppose we have to check the satisfiability w.r.t. T of the concept below:

(∃R.A � ∃R.D⊥
1 ) � . . . � (∃R.A � ∃R.D⊥

k ) � D


A costly node with label {A, C
} is explored (and declared to be sat) by our
algorithm only once, while it is explored by the algorithm of Donini and Massacci
k times.

More generally, take

T ′ = {A  (∃R.A′ � ∃R.D′⊥
1 ) � . . . � (∃R.A′ � ∃R.D′⊥

k ) � D′
, A′  C′
}
and assume that: D′⊥

1 , . . . , D′⊥
k , D′
, C′
 do not contain A and are independent from

each other and independent from A′; and it is easy to show that each of D′⊥
1 , . . . , D′⊥

k
are unsatisfiable and D′
 is satisfiable w.r.t. T ′; but it is very costly to show that C′

is satisfiable w.r.t. T ′. Now the algorithm of Donini and Massacci explores the costly
node k2 times, while our algorithm explores it only once. Clearly this example can be
generalised further to make the difference even worse for mixed caching.



ExpTime Tableaux for ALC Using Sound Global Caching 379

If we compare the DFS algorithm of Donini and Massacci using mixed caching
and without any optimisations with a DFS version of our algorithm, then it is easy
to see that our algorithm never explores more nodes since global caching subsumes
mixed caching.

Of course, there is no such thing as a free lunch: our method may require
significantly more memory than traditional methods based upon runs since each
new run can reclaim the memory used by the previous runs. Efficient memory
management like the one used in [28] is therefore necessary for global caching. More
advanced methods of memory management can also be developed.

Recent experimental results by Goré and Postniece also show that global caching
is indeed competitive with mixed caching for ALC [16].

9 Conclusions

We have shown that global caching can indeed be formalised in the description of
tableau algorithms in a sound and easy-to-implement manner to give an ExpTime
(complexity-optimal) algorithm for checking satisfiability w.r.t. a TBox in ALC.
Furthermore, our method is not restricted to depth-first search, can be implemented
with various optimisation techniques [28], extends easily to tableau calculi for many
other logics [8, 11, 13, 15, 17–19, 29–37], in particular, for dealing with inverse roles
or converse modal operators without using cuts [18, 19, 29–31] and for checking
consistency of an ABox w.r.t. a TBox [30–32, 35–37]. It gives a general method
for obtaining ExpTime (complexity-optimal) tableau algorithms when complexity-
suboptimality is caused by exploring the same node on multiple branches.

Acknowledgements We thank three anonymous reviewers for pointing out many improvements to
the initial version of this paper.
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