
J Autom Reasoning (2011) 47:451–479
DOI 10.1007/s10817-011-9233-2

Analytic Tableaux for Higher-Order Logic with Choice

Julian Backes · Chad Edward Brown

Received: 9 June 2011 / Accepted: 15 June 2011 / Published online: 9 July 2011
© Springer Science+Business Media B.V. 2011

Abstract While many higher-order interactive theorem provers include a choice
operator, higher-order automated theorem provers so far have not. In order to
support automated reasoning in the presence of a choice operator, we present a
cut-free ground tableau calculus for Church’s simple type theory with choice. The
tableau calculus is designed with automated search in mind. In particular, the rules
only operate on the top level structure of formulas. Additionally, we restrict the
instantiation terms for quantifiers to a universe that depends on the current branch.
At base types the universe of instantiations is finite. Both of these restrictions are
intended to minimize the number of rules a corresponding search procedure is
obligated to consider. We prove completeness of the tableau calculus relative to
Henkin models.

Keywords Higher-order logic · Simple type theory · Tableaux · Completeness ·
Axiom of choice · Choice operators · Henkin models

1 Introduction

Interactive theorem provers based on classical higher-order logic (e.g., Isabelle-
HOL [26], HOL88 [17], HOL-light [18], ProofPower [22] and HOL4 [28]) build
in the axiom of choice by including a form of Hilbert’s ε binder and appropriate

J. Backes · C. E. Brown (B)
Saarland University, Saarbrücken, Germany
e-mail: cebrown@ps.uni-saarland.de

J. Backes
e-mail: julianbackes@gmail.com

452 J. Backes, C.E. Brown

rules. Church’s formulation of the simple theory of types [15] included a selection
operator (called ι) and an axiom of choice for this operator at each type. Henkin
defined a general notion of a model of Church’s type theory with choice and proved
completeness [19]. A higher-order version of the TPTP has been under development
the past few years [32]. In 2009 it was decided that Henkin models with choice would
be the default semantics of the higher-order TPTP.

Automated theorem provers for classical higher-order logic (e.g., TPS [4] and
LEO-II [10]) do not currently build in the axiom of choice. Completeness of such
calculi is judged with respect to a variant of Henkin’s models without choice [3, 9]. As
Miller argues [23] Skolemization is unsound with respect to Henkin models without
choice but is incomplete with respect to Henkin models with choice. For example,
Skolemization makes the formula (∀x∃y.rxy) → ∃ f∀x.rx(f x) easy to prove, but
Skolemization does not help one prove ∃c∀px.px → p(cp). Miller gives a restriction
which makes Skolemization sound with respect to Henkin models without choice.

What would be involved in adding support for choice? Assume a new logical
constant εσ of type (σ → o) → σ at each type σ is added to the syntax. We need new
rules corresponding to this constant. The fundamental property εσ should satisfy is
expressed by the formula

∀pσ→oxσ .px → p(εσ p) (1)

One option is to take a formula s we wish to prove and instead prove (1)→ s using a
cut-free proof calculus for higher-order logic without choice (e.g., the calculi in [11]
and [14]). The first problem with this option is that (1) only expresses the axiom
of choice at a single type σ . We could overcome this in principle by systematically
considering (1σ1) ∧ · · · ∧ (1σn) → s. for any finite set {σ1, . . . , σn} of types. The second
problem with this option is more serious. Even adding a single instance of (1) at
any type σ allows one to simulate cut in the calculus (see Example 7.3 of [8]).
This naïve idea for a cut-free calculus is doomed. As argued in [8] it is a general
phenomenon that higher-order hypotheses destroy cut-freeness of a calculus. This
phenomenon motivates trying to build the assumptions into the calculus in a cut-free
(but complete) way.

Our purpose in this paper is to give a complete analytic tableau calculus for
higher-order logic with choice that forms a basis for automated reasoning in the
logic. Mints [24] has given a sequent calculus for relational higher-order logic with
an ε-operator and proves cut-elimination. Mints’ calculus does not include arbitrary
function types and the corresponding simply typed λ-terms. We adapt Mints’ rules for
a simply typed formulation in the style of Church. We obtain tighter restrictions on
when Mints’ main choice rule (the ε-rule) needs to be applied. Furthermore, we show
we can omit Mints’ ε-extensionality rule altogether. These results are important for
automated reasoning because these two rules would be highly branching in practice.
In addition to including cut-free rules for the ε-operator, we give strong restrictions
on the instantiation of universal quantifiers over base types analogous to those
reported in [12].

In Section 2 we give a quick presentation of the syntax and semantics of simple
type theory with choice. In Section 3 we present the tableau calculus. In Section 4 we
define the notion of an evident set and prove that every evident set has a Henkin
model. We define a notion of abstract consistency in Section 5. In Section 6 we
prove completeness as well as compactness and the existence of countable models.

Analytic Tableaux for Higher-Order Logic with Choice 453

In Section 7 we extend the calculus to include an if-then-else operator. We discuss
related work and conclude in Sections 8 and 9.

This article is an expanded version of [6].

2 Preliminaries

We start by giving the syntax for simple type theory with a choice operator in the
style of Church [15]. Types (σ , τ , μ) are given inductively by the base type o (of truth
values), ι (of individuals) and σ → τ (of functions from σ to τ). For brevity, we will
omit the arrow and write στ for σ → τ . Omitted parenthesis in types associate to the
right: στμ means σ(τμ). The results in the paper generalize to the case where there
are arbitrarily many base types of individuals. We use β to range over the base types
o and ι.

For each type σ we assume a countably infinite set Vσ of variables of type σ .
For each type σ we have logical constants =σ of type σσo, ∀σ of type (σo)o and
εσ (the choice operator) of type (σo)σ . Furthermore, we have logical constants for
disjunction ∨ of type ooo, negation ¬ of type oo, false ⊥ of type o and for a default
individual ∗ of type ι. (The default individual is included only to act as an instantiation
when no other instantiation of type ι is allowed by our calculus.) We use x, y to range
over variables and c to range over logical constants. A name is either a variable or a
logical constant. We use ν to range over names. Variables x and choice operators εσ

are called decomposable names. We use w to range over decomposable names. Let
Wσ be the set of decomposable names w of type σ .

The family of sets 	σ of terms of type σ are inductively defined. If ν is a name of
type σ , then ν ∈ 	σ . If t ∈ 	στ and s ∈ 	σ , then we have an application term ts ∈ 	τ .
If x ∈ Vσ and t ∈ 	τ , then we have an abstraction term λx.s ∈ 	στ . A formula is a
term s ∈ 	o.

Application associates to the left, so that stu means (st)u, with the exception that
¬tu always means ¬(tu). We use
 as notation for ¬⊥. We use infix notation and
write s =σ t (or s = t) for =σ st and write s ∨ t for ∨st. (Note that if s and t are different
terms of type σ , then s = t is a different term than t = s.) We write s �=σ t (or s �= t)
for ¬(s =σ t). We also use binder notation to write ∀x.s for ∀σ λx.s and write εx.s
for εσ λx.s. We write s → t, s ∧ t and ∃x.s as shorthands for ¬s ∨ t, ¬(¬s ∨ ¬t) and
¬∀x.¬s, respectively.

The set V t of free variables of t is defined as usual. For a set of variables X we
write 	X

σ for the set of all terms t ∈ 	σ such that V t ⊆ X. Also, for a set A of terms,
V A is

⋃{V s|s ∈ A}.
To describe our tableau calculus and to reason about it we will need to be able

to refer to certain shallow occurrences of subterms within terms. For example, the
choice rule may be applicable in the presence of a formula ειι px �=ι y (where p ∈
V(ιι)o and x, y ∈ Vι) because the subterm ειι p occurs as a subterm in a special position.
To describe such positions, we define two notions of contexts (terms with holes).

An elimination context (E) is a term with a hole []σ defined inductively as follows
(see [25]). []σ is an elimination context of type σ . If E is an elimination context of
type τμ and s ∈ 	τ then E s is an elimination context of type μ.

Let E be an elimination context of type σ which has a hole of type τ . We can apply
E to a term t ∈ 	τ to get a term of type σ : [][t] = t and (E s)[t] = E [t] s.

454 J. Backes, C.E. Brown

An accessibility context (C) is a term with a hole []σ of the form E , ¬E , E �=ι s or
s �=ι E where E is an elimination context. We can apply an accessibility context C
with a hole of type σ to a term t ∈ 	σ to get a term of type o in the obvious way. A
term s is accessible in a set A of formulas if there is an accessibility context C such
that C [s] ∈ A.

Let A be a set of formulas. A term s is discriminating in A if there is a term
t such that s �=ι t ∈ A or t �=ι s ∈ A. A discriminant
 of A is a maximal set of
discriminating terms such that there are no s, t ∈
 with s �=ι t ∈ A. (Discriminants
first appeared in [13].) Discriminating terms will be used to instantiate quantifiers
over type ι, and discriminants will be used to interpret the type ι. Note that if there
are no discriminating terms in A, then ∅ is the unique discriminant of A. Note also
that s is accessible in A if and only if there is an elimination context E such that
E [s] ∈ A, ¬E [s] ∈ A or E [s] is discriminating in A.

We prove that compatible sets of discriminating terms can be collected into a
common discriminant. This fact will be used more than once. This is the first of
several places in the paper where we use the axiom of choice at the meta-level. In
this particular case, we could use an enumeration of terms to avoid using the axiom
of choice since we assumed the set V of variables is countably infinite.

Proposition 1 Let A be a set of formulas and C be a set of terms that are discriminating
in A. Suppose s �= t /∈ A for every s, t ∈ C. There is some discriminant
 of A such that
C ⊆
.

Proof Let P be the set of all sets D such that

1. C ⊆ D,
2. every term in D is discriminating in A, and
3. s �= t /∈ A for every s, t ∈ D.

Note that P is partially ordered by ⊆. For any totally ordered subset Q ⊆ P, C ∪(⋃
Q

)
is an upper bound of Q in P. By Zorn’s Lemma, there is some maximal
 ∈ P.

This
 is a discriminant of A such that C ⊆
. ��

We consider a simple example application of Proposition 1. Suppose x1, x2, . . . and
y1, y2, . . . are enumerations of distinct variables of type ι. Let A = {x1 �= y1, x2 �=
y2, . . .}. Let C be a subset of {x1, x2, . . .} ∪ {y1, y2, . . .} such that for each i either xi /∈
C or yi /∈ C. By Proposition 1 there is a discriminant
 of A extending C.

Proposition 2 For every set A of formulas, there is a discriminant
 of A.

Proof We obtain
 by applying Proposition 1 with C = ∅. ��

We now turn to a brief description of the semantics. Our notion of an interpreta-
tion is essentially that given by Henkin [19]. A frame D is a typed family of nonempty
sets such that Do = {0, 1} and Dστ is a set of total functions from Dσ to Dτ . Do is the
set of booleans 0 (false) and 1 (true). An assignment into a frame D is a function I
that maps every name ν of type σ to an element of Dσ . We use I x

a to denote the
assignment that is like I but maps the variable x to a.

Analytic Tableaux for Higher-Order Logic with Choice 455

For each logical constant c of type σ we define a corresponding property Lc(a) of
elements a ∈ Dσ in Table 1. Essentially Lc(a) holds if and only if a is an appropriate
interpretation of c. An assignment I into D is logical if Lc(I c) holds for each logical
constant c. A logical assignment I must map ⊥ to 0, ¬ to the negation function, and
so on. There is no restriction on the value of I ∗ in Dι. The most interesting case to
consider is the choice operator εσ . For an assignment to be logical, I εσ must be a
function � in D(σo)σ such that f (�(f)) = 1 for every f ∈ Dσo except when f is the
constant 0 function. We call such a � a choice function. There may be many different
choice functions in D(σo)σ . (Of course, there may also be no choice function.)

We now turn to the interpretation of all typed terms. To do this we use induction
on terms to lift each assignment I to a partial function Î on terms:

Î (ν) := I (ν)

Î (st) := f a if Î s = f and Î t = a
Î (λx.s) := f if λx.s ∈ 	στ , f ∈ Dστ and ∀a ∈ Dσ : Î x

a s = f a

Note that Î (st) is undefined if either Î s or Î t is undefined. Similarly, Î (λx.s) is
undefined if either Î x

a s is undefined for some a ∈ Dσ or if the appropriate function
f : Dσ → Dτ is not in Dστ . If Î is a total function, then we say I is an interpretation.

We record the following useful fact which can be proven by an easy induction on
terms.

Proposition 3 Let D be a frame and s ∈ 	σ be a term. If I and J are assignments
into D such that I c = J c for every logical constant c and I x = J x for every x ∈
V s, then either s /∈ Dom (Î) and s /∈ Dom (Ĵ) or s ∈ Dom (Î), s ∈ Dom (Ĵ) and
Î s = Ĵ s.

A (Henkin) model (D,I) is a frame D and a logical interpretation I into D . We
say that a model (D,I) satisf ies a formula s if and only if Î (s) = 1. A formula is
satisf iable if and only if there is a model (D,I) such that Î (s) = 1. We say a model
(D,I) is countable if Dσ is at most countable for every type σ . Note that even if Dσ

is finite for every σ , the union
⋃

σ Dσ will be countably infinite. Hence (D,I) is a
countable model if and only if

⋃
σ Dσ is countably infinite.

We say (D,I) is a model of a set of formulas A if Î (s) = 1 for every s ∈ A. A
set A of formulas is satisf iable if there is a model of A.

We assume a type preserving and total normalization operator [·] from terms to
terms. A term is normal if and only if [s] = s. A set of terms is normal if every

Table 1 Properties of values of logical constants

Prop. Where Holds For all

L∗(a) a ∈ Dι always
L⊥(a) a ∈ Do when a = 0
L¬(n) n ∈ Doo when na = 1 if and only if a = 0 a ∈ Do

L∨(d) d ∈ Dooo when dab = 1 if and only if a = 1 or b = 1 a, b ∈ Do

L∀σ (p) p ∈ D(σo)o when pf = 1 if and only if ∀a ∈ Dσ fa = 1 f ∈ Dσo

L=σ (q) q ∈ Dσσo when qab = 1 if and only if a = b a, b ∈ Dσ

Lεσ (�) � ∈ D(σo)σ when f (�f) = 1 if and only if ∃a ∈ Dσ f a = 1 f ∈ Dσo

456 J. Backes, C.E. Brown

element of this set is normal. Instead of committing to a specific operator such as
β-normalization or βη-normalization, we require the following properties:

N1 [[s]] = [s]
N2 [[s]t] = [st]
N3 [νs1 . . . sn] = ν[s1] . . . [sn] if νs1 . . . sn ∈ 	β for some base type β and n ≥ 0

N4 Î [s] = Î s for every model (D,I)

N5 V [s] ⊆ V s

Note that by N5 we know [s] ∈ 	X
σ whenever s ∈ 	X

σ .
A substitution is a type preserving partial function from variables to terms. If θ is

a substitution, x is a variable, and s is a term that has the same type as x, we write θ x
s

for the substitution that agrees everywhere with θ except on x where it yields s. For
each substitution θ we assume there is a type preserving total function θ̂ from terms
to terms such that the following properties hold:

S1 θ̂x = θx for every x ∈ Dom θ

S2 θ̂ (st) = (θ̂s)(θ̂ t)
S3 [(θ̂(λx.s))t] = [θ̂ x

t s]
S4 [θ̂s] = [s] if θx = x for every x ∈ Dom θ ∩ V s
S5 [θ̂ [s]] = [θ̂s]

The following two propositions demonstrate that abstract normalization and substi-
tution satisfy two properties one would expect. The empty set ∅ is the substitution
that is undefined on every variable.

Proposition 4 [[λx.s]t] = [∅̂x
t s]

Proof [[λx.s]t] S4= [[∅̂(λx.s)]t] N2= [(∅̂(λx.s))t] S3= [∅̂x
t s]. ��

Proposition 5 Let s ∈ 	στ , x ∈ Vσ and t ∈ 	σ . If x /∈ V s and x /∈ V [sx], then [sx] =
[st].

Proof [sx] N1= [[sx]] S4= [∅̂x
t [sx]] S5= [∅̂x

t (sx)] S2= [∅̂x
t (s)∅̂x

t (x)] S1= [∅̂x
t (s)t] N2= [[∅̂x

t (s)]t] S4=
[[s]t] N2= [st]. ��

For each set A of formulas and type σ we define a nonempty set U A
σ ⊆ 	σ as

follows.

– Let U A
o = {⊥,
}.

– Let U A
ι be the set of discriminating terms in A if there is some discriminating

term in A and {∗} otherwise.
– Let U A

στ = {[s]|s ∈ 	στ ,V s ⊆ V A}.

When trying to refute a set A of formulas, all our instantiations of type σ will come
from the universe U A

σ . When the set A is clear in context, we write Uσ .

Analytic Tableaux for Higher-Order Logic with Choice 457

3 Tableau Calculus

We now introduce a tableau calculus and define a notion of refutability. A branch is
a finite set of normal formulas. A step is an n + 1-tuple 〈A, A1, . . . , An〉 of branches
where n ≥ 1, ⊥ /∈ A and A ⊂ Ai for each i ∈ {1, . . . , n}. The branch A is the head
of the step 〈A, A1, . . . , An〉 and each Ai is an alternative. A rule is a set of steps,
and is usually indicated by a schema. For example, the schema for Tbe given in
Fig. 1 indicates the set of steps 〈A, A1, A2〉 where (s �=o t) ∈ A, ⊥ /∈ A, {s,¬t} �⊆ A,
{¬s, t} �⊆ A, A1 = A ∪ {s,¬t} and A2 = A ∪ {¬s, t}. We say a rule applies to a branch
A if some step in the rule has A as its head. A tableau calculus is also a set of steps.
Let T be the tableau calculus given as the union of the rules in Fig. 1.

In the rules Tmat (the mating rule) and Tdec (the decomposition rule) we assume
n ≥ 1 and w is a decomposable name (a variable or a choice operator). In the rule T∀
the instantiation term t must belong to the set U A

σ where A is the head of the step.
In the rule T¬∀ the variable x must be fresh in the sense that it is not in V A where
A is the head of the step. We restrict the T¬∀ to apply only in the case where there
is no decomposable name w ∈ Wσ such that ¬[sw] is in the head A. In the context
of an automated prover, this restriction implies there is no need to apply the T¬∀
rule to a formula ¬∀s more than once. For example, if x and w are variables of type
o, then T¬∀ does not apply to the branch {¬w, ¬∀x.x}. Without the restriction, we
could continue to apply T¬∀ to add new formulas ¬w2, ¬w3,

We explain the choice rule Tε. Whenever we must consider εs, either s corre-
sponds to the empty set and hence ∀x.¬(sx) holds, or s represents a set containing
at least one element and s(εs) holds. Note that we obtain a complete calculus even
though we only apply the choice rule when εs occurs on the branch in the form C [εs]
for some accessibility context C . That is, the choice rule only applies using εs when
the branch contains a formula of the form εst1 · · · tn, ¬(εst1 · · · tn), (εst1 · · · tn) �=ι u or
u �=ι (εst1 · · · tn). This is a tighter restriction than the one given for the choice rule
in [24].

The set of refutable branches is defined inductively as follows. If ⊥ ∈ A, then A
is refutable. If 〈A, A1, . . . , An〉 is a step in T and every alternative Ai is refutable,
then A is refutable.

Proposition 6 (Soundness) If A is refutable, then A is unsatisf iable.

Fig. 1 Tableau rules defining the tableau calculus T

458 J. Backes, C.E. Brown

Proof It is enough to check for each step 〈A, A1, · · · , An〉 in T that if A is
satisfiable, then Ai is satisfiable for some i ∈ {1, . . . , n}. Each case is easy. For
the steps involving the normalization operator, property N4 is used. For T¬∀ use
Proposition 3. ��

Example 1 Let p ∈ Vιo. For this example, assume p and λx.¬px are normal. We
refute the set {p(εx.¬px),¬p(εp)} using the rules Tmat, Tε, T∀ and T¬. Note that
T∀ is used with the instantiation term εx.¬px which is a discriminating term when
(εx.¬px) �= εp is on the branch.

p(εx.¬px)

¬p(εp)

(εx.¬px) �= εp
∀x.¬px

¬p(εx.¬px)

⊥
p(εp)

⊥

4 Evident Sets and Model Existence

Let E be a set of normal formulas. We say E is evident if it satisfies the conditions
in Fig. 2. We call these conditions evidence conditions. The evidence conditions are
similar to conditions considered by Hintikka [20] in the context of predicate logic.
For this reason, sets satisfying such conditions are sometimes called “Hintikka sets”
(cf. [9]). Hintikka called such sets “model sets” in [20] because in predicate logic
(without equality) each such set induces a model in a very natural way. In this

Fig. 2 Evidence conditions

Analytic Tableaux for Higher-Order Logic with Choice 459

section we will prove that each evident set E induces a Henkin model of E, though
the construction in our higher-order setting is more involved than in the first-order
setting.

Before continuing, we consider an additional property which an evident set might
satisfy. We say E is complete if for every formula s such that V s ⊆ V E either s ∈ E
or ¬s ∈ E. With the exception of the restriction of the free variables in s to those
occurring free in E, the property was called “saturation” in [9] (cf. Definition 6.24)
and [8]. The terminology changed to “complete” in [14]. It will turn out that if E is
complete, then the model we construct will interpret each type as a set that is at most
countable.

Most of the evidence conditions in Fig. 2 correspond directly to a tableau rule in
Fig. 1. On the other hand, the conditions Efe, Efq and Eε are formulated in a slightly
different way than the corresponding tableau rules Tfe, Tfq and Tε. The tableau
rules are formulated in a way that makes proof search more practical while the
evidence conditions are formulated in a way that will ease the model construction.
The next proposition demonstrates that these three evidence conditions could also
be formulated differently. Later we will use the proposition to help prove certain sets
are evident.

Proposition 7 Let E be a set of normal formulas satisfying E∀ and E¬∀.

1. For s, t ∈ 	στ and x ∈ Vσ \ (V s ∪ V t), if ¬[∀x.sx =τ tx] is in E, then [sw] �= [tw]
is in E for some decomposable name w ∈ Wσ .

2. For s, t ∈ 	στ and x ∈ Vσ \ (V s ∪ V t), if [∀x.sx =τ tx] is in E, then [su] = [tu] is
in E for every u ∈ U E

σ .
3. For s ∈ 	στ and x ∈ Vσ \ V s, if [∀x.¬sx] is in E, then ¬[st] is in E for every t ∈

U E
σ .

Proof We prove only the first fact. The proofs of other two are similar. Assume
s, t ∈ 	στ , x ∈ Vσ \ (V s ∪ V t) and ¬[∀x.sx =τ tx] ∈ E. By N3 and E¬∀ we know
¬[[λx.sx =τ tx]w] is in E for some w ∈ Wσ . By Proposition 4, S1, S2, S4 and N3
we know [[λx.sx =τ tx]w] is the same as [sw] =τ [tw]. Thus [sw] �=τ [tw] is in E as
desired. ��

Let E be an evident set and let X be the set V E of free variables in E. In the rest
of this section we will construct a model of E. The construction is similar to the ones
in [14] except for complications that arise from the inclusion of a choice operator and
from instantiation restrictions.

We next define a binary relation �σ between terms s ∈ 	X
σ and values a ∈ Dσ .

When the relation s �σ a holds we say s can be a or a is a possible value of s. A relation
similar to � was defined independently by Takahashi [33] and Prawitz [27] in order
to prove cut-elimination for a higher-order calculus. (The phrase possible value was
used by Prawitz [27].) Such a relation can also be found in [24] and [14]. An important
difference between � as defined here and the analogous relations defined in earlier
works is that the present � only relates terms in 	X to values. That is, we restrict our
attention to terms that contain free variables from the set X, i.e., the variables free
in E. This modification is necessary to obtain completeness in the presence of our
restriction on instantiations.

460 J. Backes, C.E. Brown

We define �σ by induction on types. For each σ , let Dσ be the range of �σ , i.e., the
set of all a such that there is some s ∈ 	X

σ with s �σ a.

– s �o 0 if s ∈ 	X
o and [s] /∈ E.

– s �o 1 if s ∈ 	X
o and ¬[s] /∈ E.

– s �ι
 if s ∈ 	X
ι ,
 is a discriminant (of E), and either [s] is not a discriminating

term or [s] ∈
.
– s �στ f if s ∈ 	X

στ , f : Dσ → Dτ and st �τ f a whenever t �σ a.

Clearly we have �σ ⊆ 	X
σ × Dσ . Also, by the definition of D for every a ∈ Dσ there

is some s ∈ 	X
σ such that s �σ a. For any set T ⊆ 	X

σ we write T � a if s � a for every
s ∈ T.

Note that if s ∈ 	X , then [s] ∈ 	X by N5. Thus, it makes sense to ask in what
circumstances [s] � a holds for such s. The following lemma answers this question.

Lemma 1 For all types σ , terms s ∈ 	X
σ and values a ∈ Dσ , s � a if and only if [s] � a.

Proof This follows by an easy induction on types σ using N1, N2 and N5. The proof
is essentially the same as that of Proposition 3.1 in [14]. ��

The next proposition records a number of useful facts about � and D . In particular,
D is a frame and for every value a ∈ Dσ there is some t ∈ U E

σ with possible value a.
We need such a result to prove completeness since instantiations are restricted to
terms in U E

σ .

Proposition 8
1. ⊥ � 0 and
 � 1. In particular, Do = {0, 1}.
2. For every discriminant
, there is a term t ∈ U E

ι with possible value
. In
particular, Dι is the set of all discriminants.

3. For all types σ and a ∈ Dσ there is a term t ∈ U E
σ such that t � a.

4. If t �μ b and x ∈ Vτ \ V t, then λx.t � Kb where Kb : Dτ → Dμ is the constant b
function.

5. For all types σ , Dσ is nonempty.
6. D is a frame.

Proof

1. By E⊥ and E¬¬ we know ⊥ /∈ E and ¬¬⊥ /∈ E. By N3 [⊥] is ⊥ and [¬⊥] is ¬⊥.
Hence ⊥ � 0 and ¬⊥ � 1.

2. Let
 be a discriminant. If there are no discriminating terms, then ∗ is in U E
ι and

∗ �
. Suppose there is a discriminating term s. By E�= we know s �=ι s is not in
E. Since ∅ ⊂ {s} and
 is maximal, we know
 must not be empty. Let t ∈
 be
given. Clearly t ∈ U E

ι and t �
.
3. By case analysis on σ . The cases for base types follow directly from Proposition

8(1) and (2). Let σ be τμ and f ∈ Dτμ be given. By definition there is some
s ∈ 	X

τμ such that s � f . Since X is V E, [s] ∈ U E
τμ. By Lemma 1 [s] � f and we

are done.
4. Assume λx.t � Kb . By Lemma 1 [λx.t] � Kb . We know that there is a term s ∈

	X
τ and a value a ∈ Dτ such that s � a but [λx.t]s � Kb a. By the definition of Kb

Analytic Tableaux for Higher-Order Logic with Choice 461

and by Lemma 1 [[λx.t]s] � b . We β-reduce according to Proposition 4 and use
S4 and Lemma 1 to get t � b . This is a contradiction.

5. By induction on σ . The case for type o follows directly from Proposition 8(1). The
case for type ι follows from Propositions 8(2) and 2. Let σ be τμ. By induction
there is some b ∈ Dμ. By definition there is some t ∈ 	X

μ such that t � b . Let
Kb : Dτ → Dμ be the constant b function and let x be a variable not in V t. By
Proposition 8(4) λx.t � Kb . By the definition of � we know Kb ∈ Dσ .

6. Dσ is nonempty for all σ by Proposition 8(5). Do = {0, 1} by Proposition 8(1).
Dτμ only contains total functions from Dτ to Dμ for all μ and τ by the definition
of �. ��

The evident set E insists some terms must be interpreted differently. We use this
information to define a relation �. For s, t ∈ 	X

σ we say s�t holds if either s �= t or t �= s
is in E. We record a simple and useful fact.

Lemma 2 For any variable x ∈ Vσ , [λx.⊥]�[λx.⊥] does not hold.

Proof Assume [λx.⊥]�[λx.⊥] holds. There is some w ∈ Wτ such that
[(λx.⊥)w]�[(λx.⊥)w] by Efe and N2. We know [(λx.⊥)w] is ⊥ by Proposition 4, S4
and N3. Hence ⊥�⊥. This contradicts Ebe and E⊥. ��

We now turn to a notion of compatibility of terms.

Definition 1 For each type σ we define when two terms s, t ∈ 	X
σ are compatible

(written s ‖ t) by induction on types.

σ = o: s ‖ t if {[s],¬[t]} �⊆ E and {¬[s], [t]} �⊆ E.
σ = ι: s ‖ t if [s]�[t] does not hold.
σ = τμ: s ‖ t if for all u, v ∈ 	X

τ u ‖ v implies su ‖ tv.

We say a set T ⊆ 	X
σ is compatible if s ‖ t for all s, t ∈ T.

The next lemma provides relationships between compatibility of terms and the
presence of disequations in E. Note that part 2 of the lemma implies εσ ‖ εσ for
every type σ and x ‖ x for every variable x ∈ X. The lemma is the same as Lemma
6.5 in [14] except for the restriction of free variables to X and the inclusion of εσ in
part (2). The free variable restriction does cause a slight complication in the proof
since the decomposable name w in the condition Efe may be a variable not in X.

Lemma 3 For all types σ we have the following:

1. For all s, t ∈ 	X
σ , if [s]�[t], then s ∦ t.

2. For all ws1 · · · sn, wt1, · · · tn ∈ 	X
σ where n ≥ 0 and w is a decomposable name,

either ws1 · · · sn ‖ wt1, · · · tn or there is some i ∈ {1, . . . , n} such that [si]�[ti].

Proof By mutual induction on σ . The base cases for Lemma 3(1) follow from Ebe

and the definition of compatibility. The base cases for Lemma 3(2) follow from N3,
Emat and Edec since w is decomposable. The case for Lemma 3(2) when σ is τμ easily
follows from the inductive hypotheses for Lemma 3(1) at τ and for Lemma 3(2) at μ.

462 J. Backes, C.E. Brown

The only complicated case is proving Lemma 3(1) when σ is τμ. Assume s ‖ t
and [s]�[t] both hold. By Efe and N2 [sw]�[tw] for some decomposable w ∈ Wτ . If
w ∈ X or w is a choice operator, then w ‖τ w by inductive hypothesis (2) and so sw ‖μ

tw, contradicting inductive hypothesis (1). Otherwise, w ∈ V \ X. In particular, w /∈
V s ∪ V t ∪ V [sw] ∪ V [tw]. By Proposition 5 we know [sw] is [s(εw.⊥)] and [tw] is
[t(εw.⊥)]. By inductive hypothesis (2) and Lemma 2 we know εw.⊥ ‖ εw.⊥. Hence
s(εw.⊥) ‖ t(εw.⊥), contradicting the inductive hypothesis (1). ��

The next lemma relates compatibility to �. This lemma is very similar to Lemma
7.3 in [14]. Fortunately, the restriction of free variables to X does not cause
complications in the proof. The axiom of choice is used twice in this proof: once
directly and once indirectly via Proposition 1.

Lemma 4 For all sets T ⊆ 	X
σ , T is compatible if and only if there is a value a ∈ Dσ

such that T � a.

Proof The proof is by induction on σ . Note that if T is empty then T � a for all
a ∈ Dσ . (By Proposition 8(5) there is some a ∈ Dσ .) In the cases below, we assume T
is nonempty.

– σ = ι, ⇒. Let T be compatible. By Proposition 1 there exists a discriminant a
that extends { [t] discriminating | t ∈ T }. The claim follows since T � a.

– σ = ι, ⇐. Suppose T � a and T is not compatible. Then there are terms s, t ∈ T
such that ([s]�=[t]) ∈ E. Thus [s] and [t] cannot be both in a. This contradicts
s, t ∈ T � a since [s] and [t] are discriminating.

– σ = o, ⇒. By contraposition. Suppose T � 0 and T � 1. Then there are terms
s, t ∈ T such that [s],¬[t] ∈ E. Thus s ∦ t. Hence T is not compatible.

– σ = o, ⇐. By contraposition. Suppose s ∦o t for s, t ∈ T. Then [s], ¬[t] ∈ E
without loss of generality. Hence s � 0 and t � 1. Thus T � 0 and T � 1.

– σ = τμ, ⇒. Let T be compatible. We define Ta := { ts | t ∈ T, s �τ a } for every
value a ∈ Dτ and show that Ta is compatible. Let t1, t2 ∈ T and s1, s2 �τ a. It
suffices to show t1s1 ‖ t2s2. By the inductive hypothesis s1 ‖τ s2. Since T is
compatible, t1 ‖ t2. Hence t1s1 ‖ t2s2. By the inductive hypothesis we now know
that for every a ∈ Dτ there is a b ∈ Dμ such that Ta �μ b . By the axiom of choice,
there is a function f ∈ Dσ such that Ta �μ f a for every a ∈ Dτ . Thus T �σ f .

– σ = τμ, ⇐. Let T �σ f and s, t ∈ T. We will prove s ‖σ t. Let u, v ∈ 	X
τ be such

that u ‖τ v. It suffices to prove su ‖μ tv. By the inductive hypothesis u, v �τ a for
some value a. Hence su, tv �μ f a. Thus su ‖μ tv by the inductive hypothesis. ��

We now turn to the interpretation of the choice operators. We use a construction
similar to that of Mints [24] adapted to our setting.

Let f ∈ Dσo be a function and w ∈ W(σo)σ be a decomposable name. We write
f ∝ ws (read f chooses ws) when s � f and w[s] is accessible in E. Let f w := {ws ∈
	X

σ | f ∝ ws}.

Lemma 5 For all f ∈ Dσo and w ∈ W(σo)σ ∩ 	X
(σo)σ , there is some a ∈ Dσ such that

f w � a.

Analytic Tableaux for Higher-Order Logic with Choice 463

Proof We show that f w is compatible. Lemma 4 gives us the claim. Let ws, wt ∈ f w.
By the definition of ∝, s, t � f and so s ‖ t by Lemma 4. By Lemma 3(2) w ‖ w and so
ws ‖ wt. ��

For each type σ we will now obtain a function �σ : Dσo → Dσ that will serve as
the interpretation of the choice operator εσ . For each σ we choose �σ such that

�σ f =
{

some b such that f b = 1 if f εσ is empty and such a b exists.
some a such that f εσ � a.

The existence of an a in the second case follows from Lemma 5. Note that the second
case includes the case in which f is the constant 0 function. In particular, if f is the
constant 0 function and f εσ is empty, then �σ f can be any a ∈ Dσ . The next three
lemmas verify that �σ can act as the interpretation of εσ .

Lemma 6 Let ν be a name, νt1 . . . tn ∈ 	X
σ and a ∈ Dσ . If νt1 . . . tn � a, then

ν[t1] . . . [tn] is accessible in E.

Proof We prove this by induction on σ .

– σ = o: Let a = 0. By the definition of �o and N3, ν[t1] . . . [tn] ∈ E. Let a = 1.
Then, again by the definition of �o and N3, ¬ν[t1] . . . [tn] ∈ E.

– σ = ι: By the definition of �ι and N3, we know that ν[t1] . . . [tn] is discriminating
and hence accessible.

– σ = μτ : By the definition of �σ , we know that there is some term u ∈ 	X
μ

and some value b ∈ Dμ such that u � b but νt1 . . . tnu � ab . By the inductive
hypothesis, we know that ν[t1] . . . [tn][u] is accessible in E. Hence, ν[t1] . . . [tn]
is accessible. ��

Lemma 7 For any type σ we have εσ � �σ .

Proof Assume ε � �. Then, there are s, f such that s � f but εs � �f . By Lemma 6
ε[s] is accessible in E. Hence εs ∈ f εσ . There is some a such that �f = a and f εσ � a.
Thus εs � a, a contradiction. ��

Lemma 8 Lεσ
(�σ) holds. That is, � as given above is a choice function.

Proof Let f ∈ Dσo be a function and b ∈ Dσ be such that f b = 1. Suppose f (�f) =
0. Then f εσ must be nonempty (by the definition of �f). Choose some εs ∈ f εσ . By
Eε there are two possibilities:

1. [s(εs)] ∈ E: In this case s(εs) � 0. On the other hand, s � f and ε � � (by
Lemma 7) and so s(εs) � f (�f). This contradicts our assumption that f (�f) = 0.

2. ¬[st] ∈ E for every t ∈ U E
σ : By Proposition 8(3) there is some term t′ ∈ U E

σ such
that t′ � b . Hence ¬[st′] ∈ E. By the definition of �o, st′ � 1. On the other hand,
we know st′ � f b since s � f and t′ � b , contradicting the assumption that f b = 1.

��

The next lemma will ensure we can correctly interpret equality.

464 J. Backes, C.E. Brown

Lemma 9 If s �σ a, t �σ b and s = t is in E, then a = b.

Proof By contradiction and induction on σ . Assume s �σ a, t �σ b , (s=t) ∈ E, and
a �= b . Case analysis.

σ = o. By Ebq either s, t ∈ E or ¬s,¬t ∈ E. Hence a and b are either both 1 or
both 0. Contradiction.

σ = ι. Since a �= b , there must be discriminating terms of type ι. Since the
discriminant a is maximal there is some u ∈ a \ b . Since b is also maximal, b ∪ {u}
is not a discriminant. Hence there is some v ∈ b such that u�v. Since (s=t) ∈ E, we
know by N3 that s and t are normal. By Econ we know either s�u or t�v. If s�u, then s is
discriminating and so s ∈ a, contradicting that a is a discriminant with u ∈ a. Likewise,
if t�v, then t ∈ b , contradicting v ∈ b .

σ = τμ. Since a �= b , there is some d ∈ Dτ such that ad �= bd. By Proposition 8(3)
there is some term u ∈ U E

τ such that u �τ d. Hence su � ad and tu � bd. By Lemma 1
[su] �μ ad and [tu] �μ bd. By Efq the equation [su] = [tu] is in E, contradicting the
inductive hypothesis. ��

The next lemma will ensure we can correctly interpret universal quantifiers.

Lemma 10 Let s ∈ 	X
σo be given. Let f ∈ Dσo be such that f b = 1 for all b ∈ Dσ . If

s � f , then ∀σ s � 1.

Proof Assume s � f and ∀σ s � 1. Hence ¬[∀σ s] ∈ E. By N3, E¬∀ and N2 there is
some w ∈ Wσ such that ¬[sw] is in E. If w ∈ X or w is a choice operator, then we
obtain a contradiction using Lemma 3(2) and Lemma 4. Otherwise, w ∈ V \ X. In
particular, w /∈ V s ∪ V [sw]. By Proposition 5 [sw] must be the same as [s(εw.⊥)]. By
Lemma 2 and Lemma 3(2) we know εx.⊥ ‖ εx.⊥. By Lemma 4 there is some b ∈ Dσ

such that εx.⊥ � b . Thus s(εx.⊥) � f b = 1, contradicting that ¬[s(εx.⊥)] is in E. ��

We now prove we can interpret every logical constant appropriately.

Proposition 9 For each logical constant c of type σ there is some a ∈ Dσ such that
Lc(a) and c � a.

Proof If c is a choice operator εσ , then we know εσ � �σ and Lεσ
(�σ) by Lemmas 7

and 8. We know ⊥ � 0 by Proposition 8(1). If ∗ is not discriminating, then ∗ �
 for
all
 ∈ Dι. If ∗ is discriminating, then ∗ �
 for some
 ∈ Dι where ∗ ∈
. Now,
let n : Do → Do be the negation function and d : Do → Do → Do be the disjunction
function. For each σ let pσ : Dσo → Do be the function such that pσ f = 1 if and only
if f is the constant 1 function. For each σ let qσ : Dσ → Dσ → Do be the function
such that qσ ab = 1 if and only if a = b . Each of the following statements is easily
verified making extensive use of Lemma 1.

1. For all s ∈ 	X
o and a ∈ Do, if s � a, then ¬s � na. (Use N3 and E¬¬.)

2. ¬ � n. In particular, n ∈ Doo and so L¬(n). (Use definition of � and (1).)
3. For all s, t ∈ 	X

o and a, b ∈ Do, if s � a and t � b , then s ∨ t � dab . (Use N3, E∨
and E¬∨.)

4. For all s ∈ 	X
o and a ∈ Do, if s � a, then (∨s) � da and da ∈ Doo. (Use (3) and

the definitions of � and Doo.)

Analytic Tableaux for Higher-Order Logic with Choice 465

5. d : Do → Doo. (Use (4).)
6. ∨ � d. In particular, d ∈ Dooo and so L∨(d). (Use (4) and the definitions of � and

Doo.)
7. For all s ∈ 	X

σo and f ∈ Dσo, if s � f , then ∀σ s � pσ f . (Use Lemma 10 if f is the
constant 1 function. Otherwise, use Proposition 8(3) and E∀.)

8. ∀σ � pσ . In particular, pσ ∈ D(σo)o and so L∀σ
(pσ). (Use (7) and the definitions

of � and D(σo)o.)
9. For all s, t ∈ 	X

σ and a, b ∈ Dσ , if s � a and t � b , then s =σ t � qσ ab . (Use N3,
Lemmas 4, 3(1), and 9.)

10. For all s ∈ 	X
σ and a ∈ Dσ , if s � a, then (=σ s) � qσ a and qσ a ∈ Dσo. (Use (9)

and the definitions of � and Dσo.)
11. qσ : Dσ → Dσo. (Use (10).)
12. =σ �qσ . In particular, qσ ∈ Dσσo and so L=σ

(qσ). (Use (11) and the definitions
of � and Dσσo.) ��

We say an assignment I into D is admissible if c � I c for all logical constants c.

Lemma 11 Let s be a term, θ be a substitution and I be an admissible assignment into
D . Suppose for every x ∈ V s, x ∈ Dom θ and θx � I x. Then s ∈ Dom Î and θ̂s � Î s.

Proof By induction on s. If s is a variable x, then x ∈ Dom θ and θx � I x by
assumption and so θ̂s � Î s by S1. If s is a logical constant c, then θ̂s � Î s by
admissibility of I , S4 and Lemma 1. The case where s is an application term
follows from the inductive hypotheses, S2 and the definitions of Î and �. Finally,
suppose s is of the form λx.t where x ∈ Vσ and t ∈ 	τ . Let u �σ a be given. We prove
(θ̂(λx.t))u � (Î (λx.t))a. Applying the inductive hypothesis to t with θ x

u and I x
a , we

have that t ∈ Dom θ̂ x
u and θ̂ x

ut � Î x
a t. By S3 [(θ̂ (λx.t))u] is [θ̂ x

ut]. Two applications of
Lemma 1 complete the proof. ��

Using the tools above, we can obtain a logical, admissible interpretation. We prove
this fact in a slightly more general form than we need here. The extra strength will
be useful in a later section. Recall that X is V E.

Lemma 12 Let θ0 be a substitution and I0 be an assignment such that θ0x � I0x for
every x ∈ Dom θ0. There is a substitution θ and a logical, admissible interpretation I
such that θ̂s � Î s for all s ∈ 	σ and θx = θ0x and I x = I0x for every x ∈ Dom θ0.

Proof We define an assignment I as follows. For each logical constant c we can
choose I c such that c � I c and Lc(I c) by Proposition 9. This ensures we will have a
logical, admissible assignment. For each variable x ∈ Dom θ0 let θx := θ0x and I x :=
I0x. For each variable x ∈ Vσ \ (Dom θ0 ∪ X) we take θx := εσ y.⊥ ∈ 	X

σ and I x :=
�σ K0 where K0 is the constant 0 function. By Lemma 7 and Proposition 8 we know
that εσ y.⊥ � �K0 and hence θx � I x for every variable x. By Lemma 11 we know
every s ∈ Dom Î and θ̂s � Î s for every term s. In particular, I is an interpretation.

��

Now we can prove the model existence theorem for evident sets.

466 J. Backes, C.E. Brown

Theorem 1 (Model Existence) Every evident set E has a model (D,I). Furthermore,
we have the following:

1. If E is f inite, then Dσ is f inite for all types σ .
2. If E is complete, then (D,I) is a countable model.

Proof Let E be an evident set and X be V E. Take � and D as defined in this
section. We start by defining an assignment I0 and a substitution θ0. We define
θ0x := x for every x ∈ X. Note that Dom θ0 = X. For each variable x ∈ X we know
x ‖ x by Lemma 3(2) and so we can use Lemma 4 to choose I0x such that x � I0x.
For variables x ∈ Vσ \ X take I0x ∈ Dσ arbitrarily, using Proposition 8(5). Using
Lemma 12 we obtain a substitution θ and a logical, admissible interpretation I such
that θ̂s � Î s for all s ∈ 	σ and θx = x for all x ∈ X. For every s ∈ 	X

σ by S4 we know
[θ̂s] = [s] and so s � Î s by Lemma 1. Note that (D,I) is a model. For any s ∈ E, we
know s �o Î s and s � 0, and so Î s = 1. Hence (D,I) is a model of E.

1. Assume E is finite. There are only finitely many discriminants of E. Hence Dι is
finite. The fact that each Dσ is finite follows from an easy induction on types.

2. Since the set 	X
σ is countable, it is enough to give a surjective function from 	X

σ

onto Dσ . We will prove that �σ is such a surjective function. For every s ∈ 	X
σ

we know s � Î s, so that �σ is total. To prove �σ is functional, suppose s ∈ 	X
σ ,

s � a and s � b . Note that [s = s] is [s] = [s] by N3 and that V [s] ⊆ V E by N5.
Since we already know E is satisfiable, [s] �= [s] is not in E. Since E is complete,
[s] = [s] must be in E. Hence a = b by Lemmas 1 and 9. Finally, �σ is surjective
by the definition of Dσ . ��

We can now prove that if the tableau calculus T cannot make progress on a
branch, then this branch is satisfiable and in fact has a model with finitely many
individuals.

Corollary 1 Let A be a branch. Suppose ⊥ /∈ A and A is not the head of any step in
the calculus T . Then A is evident and there is a model (D,I) of A where Dσ is f inite
for each type σ .

Proof By Theorem 1, it suffices to prove A is evident. The evidence condition E⊥
follows from the assumption that ⊥ /∈ A. The conditions E¬ and E�= follow from ⊥ /∈
A and the assumption that the rules T¬ and T �= do not apply to A. Except for Efe, Efq

and Eε, the remaining evidence conditions follow immediately from the assumption
that the corresponding rule does not apply. After we know E∀ and E¬∀ hold for A, we
can conclude that Efe, Efq and Eε hold for A using Proposition 7 and the assumption
that the corresponding rule does not apply. ��

Example 2 Let p ∈ Vιo and q ∈ Vo. For this example assume [s] = s for all βη-normal
forms s. We prove ∀oq.ειo p �= ειox.q is satisfiable. Consider the partial tableau shown
in Fig. 3. Let A be the branch ending with ∀x.¬⊥. It is easy to check that no more
rules apply to A. In particular, consider the rule Tε. There are three accessible terms
to consider: εp, εx.⊥ and εx.
. The rule does not apply with εp since p(εp) is on
the branch. The rule does not apply with εx.⊥ since ∀x.¬⊥ is on the branch. The rule

Analytic Tableaux for Higher-Order Logic with Choice 467

Fig. 3 A tableau with an
evident branch

does not apply with εx.
 since
 (the normal form of (λx.
)(εx.
)) is on the branch.
By Corollary 1 the branch A is satisfiable.

5 Abstract Consistency and Completeness

We now lift the model existence theorem for evident sets to a model existence
theorem for abstractly consistent sets. This will allow us to prove completeness of the
tableau calculus T . The use of abstract consistency to prove completeness was first
used by Smullyan [29, 30] and later used by several authors in various higher-order
settings [2, 9, 14, 21]. To prove completeness of the tableau calculus, it is enough to
consider branches (finite sets of normal formulas) as in [6]. To obtain a more general
result which will imply compactness and the existence of countable models, we also
consider sets A of normal formulas which may be infinite.

A set � of sets of normal formulas is an abstract consistency class if it satisfies the
conditions in Fig. 4 for every A ∈ �. We say � is complete if for every A ∈ � and
every formula s ∈ 	V A

o either A ∪ {s} ∈ � or A ∪ {¬s} ∈ �. As with evident sets, this
property (without the restriction on free variables of s) was called “saturation” in
earlier work [8, 9]. A strong connection between admissibility of cut in a sequent
calculus and the existence of complete abstract consistency classes was shown in
Theorems 3.5 and 3.8 in [8]. Indeed, Smullyan discusses the property in [30] and
calls it the cut condition.

In Lemma 14 we will prove that every member of an abstract consistency class can
be extended to an evident set. In order to verify the E∀ condition we will need the
following lemma relating universes for different sets of formulas.

Lemma 13 Let A be a nonempty set of sets of normal formulas and let E be
⋃

A .
Suppose for every f inite set B ⊆ E there is some A ∈ A such that B ⊆ A. Then for
every t ∈ U E

σ there is some A ∈ A such that t ∈ U A
σ .

468 J. Backes, C.E. Brown

Fig. 4 Abstract consistency conditions (must hold for every A ∈ �)

Proof Let t ∈ U E
σ be given. If σ is o, then choose A ∈ A and note U A

o = {⊥, ¬⊥} =
U E

o .
Suppose σ is ι. First assume E has no discriminating terms. In this case t must be

∗. We choose A ∈ A and note that t ∈ U A
σ since A also has no discriminating terms.

Next assume E has discriminating terms. In this case t is a discriminating term of E.
There is some s such that t �= s or s �= t is in E. There is some A ∈ A such that t �= s
or s �= t is in A. Clearly t ∈ U A

ι as desired.
Finally suppose σ is τμ. Let X be V E. We know t is normal and in 	X

σ . For each
x ∈ V t, choose some sx ∈ E such that x ∈ V sx. Since the set {sx|x ∈ V t} is finite, there
is some A ∈ A such that sx ∈ A for every x ∈ V t. Hence V t ⊆ V A and so t is in U A

σ .
��

We can now prove the desired extension lemma.

Lemma 14 (Extension Lemma) Let � be an abstract consistency class and A ∈ �.
There is an evident set E such that A ⊆ E. Furthermore, if � is complete, then E is
complete.

Analytic Tableaux for Higher-Order Logic with Choice 469

Proof Let u0, u1, . . . be an enumeration of all normal formulas. We will construct a
sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of branches such that every An ∈ �. Let A0 := A.
We define An+1 by cases. If there is no B ∈ � such that An ∪ {un} ⊆ B, then let
An+1 := An. Otherwise, choose some B ∈ � such that An ∪ {un} ⊆ B. We consider
six subcases.

1. If un is of the form ¬∀σ s, then choose An+1 to be B ∪ {¬[sw]} ∈ � for some
decomposable w ∈ Wσ . This is possible since � satisfies C¬∀.

2. If un is of the form s �=στ t, then choose An+1 to be B ∪ {¬[∀x.sx =τ tx]} ∈ � for
some x ∈ Vσ \ ([s] ∪ [t]). This is possible by Cfe.

3. If un is of the form s =στ t, then choose An+1 to be B ∪ {[∀x.sx =τ tx]} ∈ � for
some x ∈ Vσ \ ([s] ∪ [t]). This is possible by Cfq.

4. Suppose un is of the form E1[εσ s] �=ι E2[ετ t] for elimination contexts E1 and E2.
We define An+1 according to the first of the following possibilities that applies.

(a) Let An+1 be B ∪ {[s(εs)], [t(εt)]} if it is in �.
(b) Let An+1 be B ∪ {[∀x.¬sx], [t(εt)]} if it is in �.
(c) Let An+1 be B ∪ {[s(εs)], [∀y.¬ty]} if it is in �.
(d) Let An+1 be B ∪ {[∀x.¬sx], [∀y.¬ty]} if it is in �.

Applying Cε twice, we know one of the four possibilities above must hold.
5. Suppose un is of the form C [εσ s] where C is an accessibility context, but the

previous case does not apply. (Since the previous case does not apply, the
accessibility context C is uniquely determined.) By Cε either B ∪ {[s(εs)]} is in �

or there is some x ∈ Vσ \ V s such that B ∪ {[∀x.¬sx]} is in �. If B ∪ {[s(εs)]} is in
�, then let An+1 be B ∪ {[s(εs)]}. Otherwise, choose An+1 to be B ∪ [∀x.¬sx] ∈ �

for some x ∈ Vσ \ V s.
6. If no previous case applies, then let An+1 be B.

Let E :=
⋃

n∈N

An. We prove E satisfies the evidence conditions.

E⊥ If ⊥ is in E, then ⊥ is in An for some n, contradicting C⊥.
E¬ Assume s and ¬s are both in E. Let r be such that {s,¬s} ⊆ Ar. This

contradicts C¬.
E�= Assume s �=ι s is in E. There is some r such that s �= s is in Ar, contradicting

C�=.
E¬¬ Assume ¬¬s is in E. Let n be such that un = s. Let r ≥ n be such that ¬¬s is in

Ar. By C¬¬, Ar ∪ {s} ∈ �. Since An ∪ {s} ⊆ Ar ∪ {s}, we have s ∈ An+1 ⊆ E.
E∨ Assume s ∨ t is in E. Let n, m be such that un = s and um = t. Let r ≥ n, m be

such that s ∨ t is in Ar. By C∨, Ar ∪ {s} ∈ � or Ar ∪ {t} ∈ �. In the first case,
An ∪ {s} ⊆ Ar ∪ {s} ∈ �, and so s ∈ An+1 ⊆ E. In the second case, Am ∪ {t} ⊆
Ar ∪ {t} ∈ �, and so t ∈ Am+1 ⊆ E. Hence either s or t is in E.

E¬∨ Assume ¬(s ∨ t) is in E. Let n, m be such that un = ¬s and um = ¬t. Let r ≥
n, m be such that ¬(s ∨ t) is in Ar. By C¬∨, Ar ∪ {¬s,¬t} ∈ � and so ¬s and ¬t
are in E.

E∀ Assume ∀σ s is in E. Let t ∈ U E
σ be a normal term. Let n be such that un = [st].

By Lemma 13 (taking A to be {Ar|r ≥ n and ∀σ s ∈ Ar}) there is some r ≥ n
such that t ∈ U Ar

σ and ∀σ s is in Ar. By C∀, Ar ∪ {[st]} is in �. Since An ∪ {un} ⊆
Ar ∪ {[st]}, we have [st] = un ∈ An+1 ⊆ E.

470 J. Backes, C.E. Brown

E¬∀ Assume ¬∀σ s is in E. Let n be such that un = ¬∀s. Let r ≥ n be such that ¬∀s
is in Ar. This Ar witnesses that there is some B ∈ � such that An ∪ {un} ⊆ B.
By definition ¬[sw] ∈ An+1 ⊆ E for some w ∈ Wσ .

Emat Assume xs1 . . . sn and ¬xt1 . . . tn are in E where n ≥ 1. For each i ∈ {1, . . . , n},
let mi be such that umi is si �= ti. Let r ≥ m1, . . . , mn be such that xs1 . . . sn and
¬xt1 . . . tn are in Ar. By Cmat there is some i ∈ {1, . . . , n} such that Ar ∪ {si �=
ti} ∈ �. Since Ami ∪ {si �= ti} ⊆ Ar ∪ {si �= ti}, we have (si �= ti) ∈ Ami+1 ⊆ E.

Edec Similar to Emat.
Econ Assume s =ι t and u �=ι v are in E. Let n, m, j, k be such that un is s �= u, um is

t �= u, u j is s �= v and uk is t �= v. Let r ≥ n, m, j, k be such that s =ι t and u �=ι v

are in Ar. By Ccon either Ar ∪ {s �= u, t �= u} or Ar ∪ {s �= v, t �= v} is in �. If
Ar ∪ {s �= u, t �= u} is in �, then s �= u and t �= u are in E. If Ar ∪ {s �= v, t �= v}
is in �, then s �= v and t �= v are in E.

Ebe Assume s �=o t is in E. Let n, m, j, k be such that un = s, um = t, u j = ¬s and
uk = ¬t. Let r ≥ n, m, j, k be such that s �=o t is in Ar. By Cbe either Ar ∪ {s,¬t}
or Ar ∪ {¬s, t} is in �. If Ar ∪ {s,¬t} is in �, then s and ¬t are in E. If Ar ∪
{¬s, t} is in �, then ¬s and t are in E.

Ebq Similar to Ebe.
Efe Assume s �=στ t is in E. Let n be such that un is s �=στ t. Let r ≥ n be such

that un is in Ar. Since An ∪ {un} ⊆ Ar, by the definition of An+1 there is some
x ∈ Vσ \ (V s ∪ V t) such that [¬∀x.sx =τ tx] is in An+1 and hence in E. By
Proposition 7(1) there is some w ∈ Wσ such that [sw] �=τ [tw] is in E.

Efq Assume s =στ t is in E and let u ∈ U E
σ be given. Let n be such that un is s =στ

t. Let r ≥ n be such that un is in Ar. This Ar witnesses that there is some
B ∈ � such that An ∪ {un} ⊆ B. By the definition of An+1 we know there is
some x ∈ Vσ \ (V s ∪ V t) such that [∀x.sx =τ tx] is in An+1 and hence in E. By
Proposition 7(2) we know [su] �=τ [tu] is in E.

Eε Assume εσ s is accessible in E. Then there is some accessibility context C such
that C [εσ s] is in E. Let n be such that un is C [εσ s]. Let r ≥ n be such that
un is in Ar. By the definition of An+1 either [s(εs)] is in An+1 or [∀x.¬(sx)]
is in An+1 for some x ∈ Vσ \ V s. In the first case we are done. In the second
case let x ∈ Vσ \ V s be such that [∀x.¬(sx)] is in E. Let t ∈ U E

σ be given. By
Proposition 7(3) we know ¬[st] is in E.

It remains to show that E is complete if � is complete. Let � be complete and s be a
normal formula such that V s ⊆ V E. Since V s is a finite set, there is some k such that
V s ⊆ V (Ak). Let m, n be such that um = s and un = ¬s. Consider r ≥ m, n, k. Since
� is complete, Ar ∪ {s} is in � or Ar ∪ {¬s} is in �. If Ar ∪ {s} is in �, then s ∈ E. If
Ar ∪ {¬s} is in �, then ¬s ∈ E. ��

Using the extension lemma we can lift the model existence theorem for evident
sets to a model existence theorem for abstract consistency classes.

Theorem 2 (Model Existence) Let � be an abstract consistency class. Every A ∈ � is
satisf iable. If � is complete, then every A ∈ � has a countable model.

Proof Let A ∈ � be given. By Lemma 14 there is an evident set E such that A ⊆
E such that E is complete if � is complete. We finish the proof with an appeal to
Theorem 1. ��

Analytic Tableaux for Higher-Order Logic with Choice 471

6 Completeness, Compactness and Countable Models

We can now prove completeness of the tableau calculus T . Let �T be the set of all
branches A which are not refutable. We will first prove �T is an abstract consistency
class and then use Model Existence to prove completeness.

Lemma 15 �T is an abstract consistency class.

Proof It is easy to check each condition in Fig. 4 using the corresponding tableau
rule in T . For example, we check Cε. Suppose A ∈ �T , εσ s is accessible in A, A ∪
{[s(εs)]} is not in �T and A ∪ {[∀x.¬(sx)]} is not in �T for every x ∈ Vσ \ V s. Choose
some x ∈ Vσ \ V s. We know A ∪ {[s(εs)]} and A ∪ {[∀x.¬(sx)]} are refutable. Hence
A is refutable using Cε, contradicting A ∈ �T . ��

Completeness now follows directly from Lemma 15 and Theorem 2.

Theorem 3 (Completeness) Let A be a branch. If A is unsatisf iable, then A is
refutable.

We can also apply Theorem 2 to prove a combined form of the compactness
theorem and the (downward) Löwenheim–Skolem theorem. Such a combination was
proven for first-order logic in an analogous way in [29].

A set A of normal formulas is suf f iciently pure if for each type σ the set Vσ \ V A
is infinite. In other words, A is sufficiently pure if there are infinitely many variables
(of each type) that are not free in (any formula in) A.

Let �C be the set of all sufficiently pure sets A of normal formulas such that every
finite subset of A is satisfiable. The following lemma helps verify �C is an abstract
consistency class (cf. Lemma 10.1 in [14]).

Lemma 16 Let A ∈ �C. If B1, . . . , Bn are branches such that A ∪ Bi /∈ �C for all i ∈
{1, . . . , n}, then there is some f inite A′ ⊆ A such that A′ ∪ Bi is unsatisf iable for all
i ∈ {1, . . . , n}.

Proof Consider (C1 ∪ · · · ∪ Cn) ∩ A where each Ci is an unsatisfiable finite subset of
A ∪ Bi. ��

Lemma 17 �C is a complete abstract consistency class.

Proof Most of the proof is the same as the proof of Lemma 10.2 in [14]. We show a
two representative cases and leave the rest to the reader.

C¬∀ Suppose ¬∀σ s is in A ∈ �C. Since A is sufficiently pure, there is some variable
x ∈ Vσ \ V A. Note that x is decomposable. Assume A ∪ {¬[sx]} /∈ �C. By
Lemma 16 there is some finite A′ ⊆ A such that A′ ∪ {¬[sx]} is unsatisfiable.
On the other hand, A′ ∪ {¬∀σ s} has a model (D,I) since it is a finite subset
of A. By L∀σ

(I (∀σ)) and L¬(I ¬) there is some a ∈ Dσ such that Î sa = 0.
We will prove (D,I x

a) is a model of A′ ∪ {¬[sx]}, giving a contradiction. By

472 J. Backes, C.E. Brown

Proposition 3 we know (D,I x
a) is a model of A′ and that Î x

a(s) = Î (s).
Hence Î x

a(sx) = 0. By N4 and L¬(I ¬) we are done.
Cε Suppose εσ s is accessible in A ∈ �C. Choose some x ∈ Vσ \ V s. Assume

neither A ∪ {[s(εs)]} nor A ∪ {[∀x.¬(sx)]} is in �C. By Lemma 16 there is some
finite A′ such that A′ ∪ {[s(εs)]} and A′ ∪ {[∀x.¬(sx)]} are unsatisfiable. As a
finite subset of A, A′ has some model (D,I). By N4 and Lεσ

(I (εσ)), we
must either have Î [s(εs)] = 1 (contradicting unsatisfiability of A′ ∪ {[s(εs)]})
or for every a ∈ Dσ such that Î sa = 0. In the latter case, it is easy to
prove Î [∀x.¬(sx)] = 1 (contradicting unsatisfiability of A′ ∪ {[∀x.¬(sx)]})
using L∀σ

(I (∀σ)), L¬(I ¬) and Proposition 3. ��

Theorem 4 (Compactness, Countable Models) Let A be a set of formulas such that
every f inite subset of A is satisf iable. Then A has a countable model.

We delay the proof. Note that if A is sufficiently pure, then we know there is a
countable model of A by Lemma 17 and Theorem 2. In the remainder of this section
we elaborate how to reduce the general case to the case in which A is sufficiently
pure. A simple idea is to rename the variables free in A until it is sufficiently
pure. We can rename the variables in such a way using an infinite substitution. The
following lemma relates substitutions and interpretations and will be useful to prove
Theorem 4.

Lemma 18 Let D be a frame, s ∈ 	σ be a term, θ be a substitution, I be an
interpretation into D and J be an assignment into D . Suppose I c = J c for
every logical constant c and Î (θ̂x) = J x for every x ∈ V s. Then s ∈ Dom Ĵ and
Î (θ̂s) = Ĵ s.

Proof By induction on s. The base cases follow by assumption. If s is tu, then we
compute

Î (θ̂(tu))
S2= (Î (θ̂ t))(Î (θ̂u))

IH= (Ĵ t)(Ĵ u) = Ĵ (tu).

Finally, suppose s is λy.u of type τμ. We must prove (λy.u) ∈ Dom Ĵ and
Î (θ̂(λy.u)) = Ĵ (λy.u). Let a ∈ Dτ be given. Let z ∈ Vτ be a variable such that
z /∈ θ̂ (λy.u) and z /∈ V (θ̂x) for each x ∈ V (u) \ {y}. By Proposition 3 and our choice
of z we know

Î z
a (θ̂(λy.u)) = Î (θ̂(λy.u)) and Î z

a (θ̂x) = Î (θ̂x) for all x ∈ V (u) \ {y}
We can apply the inductive hypothesis with θ

y
z , I z

a and J y
a since Î z

a (θ̂
y
z y) = a =

J y
a y and

Î z
a (θ̂

y
z x) = Î z

a (θ̂x) = Î (θ̂x) = J x = J y
a x

for each x ∈ V u \ {y}. Hence u ∈ Dom Ĵ y
a and

Î (θ̂(λy.u))a = Î z
a (θ̂(λy.u))a = Î z

a (θ̂(λy.u)z)
N4,S3= Î z

a (θ̂
y
zu)

IH= Ĵ y
a (u)

Generalizing over a, we know (λy.u) ∈ Dom Ĵ and Î (θ̂(λy.u))a = Ĵ (λy.u)a. ��

Analytic Tableaux for Higher-Order Logic with Choice 473

Proof (Theorem 4) Since there are infinitely many variables of each type, we can
find an infinite, injective substitution θ (with Dom θ = V) such that θ̂ A is sufficiently
pure (where θ̂ A := {θ̂s|s ∈ A}). Since θ is injective, there is a substitution ψ such
that ψ(θx) = x for all x ∈ V . Every finite subset of θ̂ A is of the form θ̂ B for some
finite subset B of A. Let such a finite subset B be given. By assumption B has a
model (D,J). Let I c := J c for each logical constant c and I x := Ĵ (ψ̂x) for
each variable x. By Lemma 18 with the ψ as the substitution and with the roles of
I and J reversed, we can conclude that I is an interpretation. Note that for each
variable x we have I (θx) = J (ψ(θx)) = J x. Let θ̂s ∈ θ̂ B be given. By Lemma 18
with θ , we know Î (θ̂s) = Ĵ s = 1. Hence (D,I) is a model of θ̂ B and so θ̂ A is in
�C.

By Theorem 2 there is a countable model (D,I) of θ̂ A. Let J c := I c for each
logical constant c and J x := Î (θ̂x) for each variable x. By Lemma 18 we know
J is an interpretation and for each s ∈ A we know Ĵ s = Î (θ̂s) = 1. Therefore,
(D,J) is a countable model of A. ��

7 Including If-Then-Else

We now extend the calculus to include an if-then-else operator ifσ of type oσσσ for
each type σ . This operator should satisfy the following formula:

∀xσ yσ .(ifσ
xy = x) ∧ (ifσ ⊥xy = y) (2)

A simple way to obtain such an if-then-else operator is to consider ifσ to be shorthand
for the term λpxy.εσ z.p ∧ z = x ∨ ¬p ∧ z = y and then reason using the tableau
calculus T .

An alternative is to consider each ifσ as a variable and include formulas of the
form (2) on the branch to refute. The main problem with this approach is that the
instantiation rule T∀ applies to such formulas. Suppose σ is ιo and ∀xιo yιo.(ifιo
xy =
x) ∧ (ifιo⊥xy = y) is on the branch A we wish to refute. Let s be a normal formula
only using variables in V A and choose some z ∈ Vι \ V A. Since [λz.s] ∈ U A

ιo we can
apply T∀ twice with [λz.s], followed by T¬∨ and T¬¬, to obtain ifιo
[λz.s][λz.s] =ιo

[λz.s] on the branch. Choose some t ∈ U A
ι . By Proposition 4 and S4 we know

[[λz.s]t] = s. Applying Tfq and then T∀ with t we have ifιo
[λz.s][λz.s]t =o s on the
branch. After applying Tbe we see that we have reduced the problem of refuting A
to the problem of refuting two branches extending A, one containing s and the other
containing ¬s. That is, we have used the formula (2) at type ιo to simulate application
of a cut rule with a formula s.

There are many examples of higher-order assumptions that allow one to simulate
cut (see [8]). In such cases, one must somehow build the assumptions into the calculus
itself in order to remain cut-free. In fact, this was one of the motivations for building
the choice operator into the calculus T .

With the above discussion in mind, we now give a tableau calculus T if extending
T to include a rule for an if-then-else operator. We also prove its completeness.

474 J. Backes, C.E. Brown

7.1 Tableau Calculus and Evidence

For each type σ choose a variable ifσ ∈ Voσσσ . Note that there are infinitely many
variables in Vσ that are not chosen. From now on, when we speak of a variable being
fresh we will also assume it is not one of the variables ifσ . Let T if be the set of formulas
of the form of (2) for each type σ . That is, T if := {∀xσ yσ .(ifσ
xy = x) ∧ (ifσ ⊥xy =
y)|σ type}.

A model (D,I) is a T if-model if it is a model of T if. Suppose (D,I) is a T if-
model. Each I ifσ must be a function I ∈ Doσσσ such that I1b 1b 0 = b 1 and I0b 1b 0 =
b 0 for every b 1, b 0 ∈ Dσ . We call such an I an if-then-else function. Note that there
is at most one if-then-else function in Doσσσ . Conversely, we know a model (D,I)

is a T if-model if every I ifσ is an if-then-else function.
We define a tableau calculus T if by taking the union of T and the following rule:

Tif
C [ifσ stu]

s, [C [t]] | ¬s, [C [u]] C accessibility context

We say a set E is T if-evident if it is evident and satisfies the following additional
evidence condition:

Eif If C [if s t u] is in E and C is an accessibility context, then s and [C [t]] are in E
or ¬s and [C [u]] are in E.

7.2 Model Existence

We prove that every T if-evident set E has a T if-model. Let E be T if-evident and X
be V E. Let ‖, �, D and �σ be defined as in Section 4. The construction of a model is
similar to the one in Section 4 except that we must choose the interpretations of the
variables ifσ to obtain a T if-model. Two lemmas suffice for this purpose.

Lemma 19 For each type σ there is a term s ∈ 	∅
oσσσ and an if-then-else function I ∈

Doσσσ such that s � I.

Proof By Lemma 12 (with the empty substitution and an arbitrary assignment) there
is a substitution θ and a logical, admissible interpretation I such that θ̂s � Î s for all
s ∈ 	τ . For each s ∈ 	∅

τ , [θ̂s] = [s] by S4 and so s � Î s by Lemma 1. Choose distinct
variables x ∈ Vo, y0, y1, z ∈ Vσ . Let s ∈ 	∅

oσσσ be λxy1 y0.εσ z.x ∧ z = y1 ∨ ¬x ∧ z =
y0 and let I be Î s. Clearly, s � I. We need only check that I is an if-then-else
function.

Let b 1, b 0 ∈ Dσ be given. It is easy to check that for each i ∈ {0, 1} and b ∈ Dσ

Î x,y1,y0

i,b 1,b 0
(λz.x ∧ z = y1 ∨ ¬x ∧ z = y0)b = 1 if and only if b = bi.

Thus Iib 1b 0 = �σ (Î x,y1,y0

i,b 1,b 0
(λz.x ∧ z = y1 ∨ ¬x ∧ z = y0)) = bi. ��

Lemma 20 If ifσ ∈ X, then there is an if-then-else function I ∈ Doσσσ such that ifσ � I.

Analytic Tableaux for Higher-Order Logic with Choice 475

Proof By Lemma 19 there is an if-then-else function I ∈ Doσσσ . We need only check
that ifσ � I. Assume not. There must be terms s, t, u, v1, · · · , vn ∈ 	X and values
a, b , c, d1, . . . , dn such that ifσ stuv1 · · · vn �β Iabcd1 · · · dn (for a base type β), s � a,
t � b , u � c, v1 � d1, . . ., vn � dn. We also have tv1 · · · vn �β bd1 · · · dn and uv1 · · · vn �β

cd1 · · · dn. We can split into three cases: Either (1) β = o and Iabcd1 · · · dn = 0, or
(2) β = o and Iabcd1 · · · dn = 1, or (3) β = ι and Iabcd1 · · · dn is a discriminant not
containing the discriminating term ifσ [s][t][u][v1] · · · [vn]. In each case we can apply
Eif with an appropriately chosen context C and split into two subcases based on
whether [s] and C [[[t][v1] · · · [vn]]] are in E or ¬[s] and C [[[u][v1] · · · [vn]]] are in
E. In each subcase one can determine whether a is 0 or 1 and hence whether Iabc
is b or c. It is straightforward, though tedious, to check that each subcase yields a
contradiction. ��

Theorem 5 (Model Existence for T if) Every T if-evident set E has a T if-model.

Proof We first define a substitution θ0 with Dom θ0 = X ∪ V T and an assignment
I0. For each x ∈ X \ V T, let θ0x := x and I0x be such that x � I0x, which is possible
by Lemmas 3(2) and 4. For each ifσ ∈ X ∩ V T, let θ0ifσ := ifσ and I0ifσ be the if-
then-else function I ∈ Doσσσ where ifσ � I, which is possible by Lemma 20. For each
ifσ ∈ V T \ X, let θ0ifσ be s ∈ 	∅

oσσσ ⊆ 	X
oσσσ and I0ifσ be the if-then-else function

I ∈ Doσσσ where s � I, which is possible by Lemma 19. By Lemma 12 there is a
substitution θ and a logical, admissible interpretation I such that θ̂s � Î s for all
s ∈ 	σ , θx = θ0x and I x = I0x for all x ∈ X ∪ V T. In particular, θx = x for all
x ∈ X. The fact that (D,I) is a model of E follows as in the proof of Theorem 1.
Since I ifσ = I0ifσ is an if-then-else function for every σ , we know (D,I) is a T if-
model. ��

7.3 Completeness

A set � of sets of normal formulas is a T if-abstract consistency class if it is an abstract
consistency class and satisfies the following condition:

Cif If C [if s t u] is in A and C is an accessibility context, then A ∪ {s, [C [t]]} is in �

or A ∪ {¬s, [C [u]]} is in �.

Lemma 21 (Extension Lemma for T if) Let � be a T if-abstract consistency class and
A ∈ �. There is an T if-evident set E such that A ⊆ E.

Proof Recall the construction of E given in the proof of Lemma 14. We have an
enumeration u0, u1, . . . of all normal formulas and define a sequence of An ∈ � such
that A = A0 ⊆ A1 ⊆ A2 ⊆ · · · and then define E to be

⋃
n An. We already know

E is evident from Lemma 14. We need only check that Eif holds. Suppose C is an
accessibility context and C [if s t u] is in E. Choose n, m, j, k such that un is s, um is ¬s,
u j is [C [t]] and uk is [C [u]]. Let r ≥ n, m, j, k be such that C [if s t u] is in Ar. By Cif

either Ar ∪ {un, u j} or Ar ∪ {um, uk} is in �. Hence either un and u j are in E or um

and uk are in E, as desired. ��

Theorem 6 (Completeness of T if) Let A be a branch. If A is T if-unsatisf iable, then
A is T if-refutable.

476 J. Backes, C.E. Brown

Proof Let �T if be the set of all branches which are not T if-refutable. As with
Lemma 15, it is easy to check that �T if is a T if-abstract consistency class. Assume
A is not T if-refutable. By Lemma 21 there is a T if-evident set E such that A ⊆ E.
By Theorem 5 there is a T if-model of E. Hence A is T if-satisfiable. ��

8 Related Work

This work is an extension of two lines of research. First, we have extended the tableau
calculus of Brown and Smolka [14] to support a choice operator and an if-then-
else operator at every type. Second, we have obtained tighter restrictions on the
instantiations of quantifiers than were available before.

In [12] Brown and Smolka give a complete tableau calculus for a first-order
subsystem (EFO) of higher-order logic. Quantifiers are only allowed at type ι there
and the instantiations are restricted to discriminating terms. We have maintained
this restriction on instantiations for quantifiers at type ι. In addition we have proven
that it is enough to instantiate quantifiers at type o with the two terms ⊥ and
. As
for quantifiers at function types, we have proven that these instantiations need not
consider variables that do not already occur free on the branch.

Mints gives sequent rules for choice in [24]. The choice rule given in this paper
is similar to Mints’ ε-rule. Our proof of Henkin-completeness was constructed by
adapting the relevant parts of Mints’ cut-elimination proof [24] to our setting. We
briefly sketch a comparison between our rules and the rules of Mints.

Translating into our language, Mints’ ε-rule could be represented as

(Mints’ ε) [¬(st)] | [s(εs)] εs occurs on the branch

By εs occurs on the branch we simply mean that εs appears as any subterm where
none of the free variables of s are captured by a λ-binder. Note that this rule
could apply more often than our Tε rule. Our Tε rule cannot be applied until εs
appears on the branch in one of the forms εst1 · · · tn, ¬(εst1 · · · tn), (εst1 · · · tn) �=ι u or
u �=ι (εst1 · · · tn). Furthermore, in Mints’ system the ε-rule would need to be applied
for each new instantiation term t. In practice this could lead to the need to refute
branches with [s(εs)] multiple times. We have avoided this by using the quantified
formula [∀x.¬(sx)] on the left branch.

Mints also includes an ε-extensionality rule in [24]. In our context, his rule could
be realized as

(Mints’ ext ε)
s �= t | (εs) = (εt)

εσ s and εσ t occur on the branch

In words, whenever εσ s and εσ t both occur on the branch, we must consider the case
where s and t are different, and the case where εs and εt are the same. This rule
could be highly branching in practice. When n different terms of the form εs occur
on the branch, then the rule must be applied n2−n

2 times. Furthermore, it has the
disadvantage that it adds a positive equation to the branch. If σ is a function type,
this will lead to the need to perform instantiations. We were able to omit such a rule
entirely from our system and still prove completeness. It seems that Mints needed
such a rule because the extensionality rule in [24] is not liberal enough. Translated

Analytic Tableaux for Higher-Order Logic with Choice 477

into our context, the extensionality rule in [24] includes the rule

(Special Case of Mints’ extensionality)
εss1 . . . sn , ¬εst1 . . . tn
s1 �= t1 | · · · | sn �= tn

n ≥ 1

This corresponds to our mating rule, except that we have liberalized the rule to
include the case when the corresponding first arguments of ε are different.

(Special Case of Tmat)
εs1 . . . sn , ¬εt1 . . . tn
s1 �= t1 | · · · | sn �= tn

n ≥ 1

Combinations of λ-calculus and if-then-else operators have been considered
before. Beeson [7] considered the unification problem for λ-calculus with a (slightly
different) if-then-else operator. Altenkirch and Uustalu [1] study the simply typed
λ-calculus with if-then-else as the elimination construct for the two element type.

The first author has considered choice operators, description operators and if-
then-else operators in his Master’s thesis [5]. Similar rules (using restrictions to
accessible terms) can be used to incorporate description operators and a similar
model construction (using discriminants and possible values) can be used to prove
completeness.

9 Conclusion

We have presented a cut-free tableau calculus for Church’s simple type theory with
a choice operator. The calculus is designed with automated proof search in mind.
In particular, only accessible terms on the branch need to be considered in order to
apply a rule. Furthermore, instantiation terms are restricted according to the type
and the formulas on the branch. At type o only instantiations corresponding to true
and false are considered. At the base type ι only discriminating terms on the branch
need to be considered (except when there are no discriminating terms in which case a
default element can be used). Note that this means only finitely many instantiations
at type ι need to be considered at each stage of the search. At function types, the
set of instantiations is infinite, but we have at least proven that we do not need to
consider instantiations with free variables that do not occur on the current branch.
We have also given an extension of the calculus to include if-then-else operators.

The second author has implemented a higher-order automated theorem prover,
Satallax, based on the ground calculus in this paper. Satallax encodes tableau steps of
the ground calculus as propositional clauses and uses the SAT-solver MiniSat [16] to
decide if there is a refutation using the steps considered so far. Satallax competed in
the higher-order division of the CASC system competition [31]. Out of 200 problems,
LEO-II [10] solved 125, Satallax solved 120, Isabelle [26] solved 101 and TPS [4]
solved 80.

References

1. Altenkirch, T., Uustalu, T.: Normalization by evaluation for λ→2. In: Kameyama, Y., Stuckey,
P.J. (eds.) Functional and Logic Programming, 7th International Symposium, FLOPS 2004,
Proceedings. LNCS, vol. 2998, pp. 260–275. Springer (2004)

478 J. Backes, C.E. Brown

2. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36, 414–432 (1971)
3. Andrews, P.B.: General models and extensionality. J. Symb. Log. 37, 395–397 (1972)
4. Andrews, P.B., Brown, C.E.: TPS: a hybrid automatic-interactive system for developing proofs.

J. Appl. Logic 4(4), 367–395 (2006)
5. Backes, J.: Tableaux for higher-order logic with if-then-else, description and choice. Master’s

thesis, Universität des Saarlandes (2010)
6. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. In: Giesl, J.,

Hähnle, R. (eds.) Automated Reasoning: 5th International Joint Conference, IJCAR 2010,
Proceedings. LNCS/LNAI, vol. 6173, pp. 76–90. Springer (2010)

7. Beeson, M.: Unification in lambda-calculi with if-then-else. In: Kirchner, C., Kirchner, H. (eds.)
Proceedings of the 15th International Conference on Automated Deduction. LNAI, vol. 1421,
pp. 103–118. Springer, Lindau, Germany (1998)

8. Benzmueller, C., Brown, C.E., Kohlhase, M.: Cut-simulation and impredicativity. LMCS 5(1:6),
1–21 (2009)

9. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extensionality. J. Symb.
Log. 69, 1027–1088 (2004)

10. Benzmüller, C., Theiss, F., Paulson, L., Fietzke, A.: LEO-II — a cooperative automatic theorem
prover for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Fourth
International Joint Conference on Automated Reasoning, IJCAR’08. LNAI, vol. 5195. Springer
(2008)

11. Brown, C.E.: Automated Reasoning in Higher-Order Logic: Set Comprehension and Extension-
ality in Church’s Type Theory. College Publications (2007)

12. Brown, C.E., Smolka, G.: Extended first-order logic. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) Theorem Proving in Higher Order Logics, 22nd International Conference,
TPHOLs 2009, Proceedings. LNCS, vol. 5674, pp. 164–179. Springer (2009)

13. Brown, C.E., Smolka, G.: Terminating tableaux for the basic fragment of simple type theory.
In: Giese, M., Waaler, A. (eds.) Automated Reasoning with Analytic Tableaux and Related
Methods: 18th International Conference, TABLEAUX 2009, Proceedings. LNCS/LNAI, vol.
5607, pp. 138–151. Springer (2009)

14. Brown, C.E., Smolka, G.: Analytic tableaux for simple type theory and its first-order fragment.
LMCS 6(2), 1–33 (2010)

15. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)
16. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)

Theory and Applications of Satisfiability Testing, LNCS, vol. 2919, pp. 333–336. Springer,
Berlin/Heidelberg (2004)

17. Gordon, M., Melham, T.: Introduction to HOL: A Theorem-Proving Environment for Higher-
Order Logic. Cambridge University Press (1993)

18. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) Proceedings
of the First International Conference on Formal Methods in Computer-Aided Design (FM-
CAD’96), LNCS, vol. 1166, pp. 265–269. Springer (1996)

19. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15, 81–91 (1950)
20. Hintikka, K.J.J.: Form and content in quantification theory. Two papers on symbolic logic. Acta

Philos. Fenn. 8, 7–55 (1955)
21. Huet, G.P.: Constrained resolution: a complete method for higher order logic. PhD thesis, Case

Western Reserve University (1972)
22. King, D.J., Arthan, R.D.: Development of practical verification tools. ICL Systems J. 11(1) (1996)
23. Miller, D.A.: A compact representation of proofs. Stud. Log. 46(4), 347–370 (1987)
24. Mints, G.: Cut-elimination for simple type theory with an axiom of choice. J. Symb. Log. 64(2),

479–485 (1999)
25. Mitchell, J.C., Hoang, M., Howard, B.T.: Labeling techniques and typed fixed-point operators.

In: Higher Order Operational Techniques in Semantics, pp. 137–174. Cambridge University
Press, New York (1998)

26. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — a proof assistant for higher-order logic.
LNCS, vol. 2283. Springer (2002)

27. Prawitz, D.: Hauptsatz for higher order logic. J. Symb. Log. 33, 452–457 (1968)
28. Slind, K., Norrish, M.: A brief overview of HOL4. In: Proceedings of the 21st International

Conference on Theorem Proving in Higher Order Logics. LNCS, vol. 5170, pp. 28–32. Springer,
Berlin, Heidelberg (2008)

29. Smullyan, R.M.: A unifying principle in quantification theory. Proc. Natl. Acad. Sci. U.S.A. 49,
828–832 (1963)

Analytic Tableaux for Higher-Order Logic with Choice 479

30. Smullyan, R.M.: First-Order Logic. Springer (1968)
31. Sutcliffe, G.: The 5th IJCAR automated theorem proving system competition - CASC-J5. AI

Commun. 24(1), 75–89 (2011)
32. Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the development of automated

theorem proving for higher-order logic. In: Schmidt, R.A. (ed.) Automated Deduction - CADE-
22. 22nd International Conference on Automated Deduction, Proceedings. LNCS, vol. 5663, pp.
116–130. Springer (2009)

33. Takahashi, M.: Simple type theory of gentzen style with the inference of extensionality. Proc.
Jpn. Acad. 44(2), 43–45 (1968)

	Analytic Tableaux for Higher-Order Logic with Choice
	Abstract
	Introduction
	Preliminaries
	Tableau Calculus
	Evident Sets and Model Existence
	Abstract Consistency and Completeness
	Completeness, Compactness and Countable Models
	Including If-Then-Else
	Tableau Calculus and Evidence
	Model Existence
	Completeness

	Related Work
	Conclusion
	References

