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Abstract There are two approaches to formalizing the syntax of typed object lan-
guages in a proof assistant or programming language. The extrinsic approach is to
first define a type that encodes untyped object expressions and then make a separate
definition of typing judgements over the untyped terms. The intrinsic approach is
to make a single definition that captures well-typed object expressions, so ill-typed
expressions cannot even be expressed. Intrinsic encodings are attractive and natu-
rally enforce the requirement that metalanguage operations on object expressions,
such as substitution, respect object types. The price is that the metalanguage types of
intrinsic encodings and operations involve non-trivial dependency, adding significant
complexity. This paper describes intrinsic-style formalizations of both simply-typed
and polymorphic languages, and basic syntactic operations thereon, in the Coq proof
assistant. The Coq types encoding object-level variables (de Bruijn indices) and
terms are indexed by both type and typing environment. One key construction is the
boot-strapping of definitions and lemmas about the action of substitutions in terms of
similar ones for a simpler notion of renamings. In the simply-typed case, this yields
definitions that are free of any use of type equality coercions. In the polymorphic
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case, some substitution operations do still require type coercions, which we at least
partially tame by uniform use of heterogeneous equality.

Keywords The Coq proof assistant · de Bruijn indices · Typed object languages

1 Introduction

When encoding a typed object language in a proof assistant or programming lan-
guage it is common to first define a datatype representing the abstract syntax of
object-level expressions, and then make a separate inductive definition of typing
judgements, relating expressions to types and type environments. This approach
is sometimes referred to as extrinsic, and informally equated with Curry’s view of
types as a posteriori specifications concerning the form or behaviour of the raw
untyped expressions. If, as is often the case, one is really only interested in statements
about well-typed terms, an attractive alternative is the more Church-style1 intrinsic
approach, which builds the type rules into the definition of the abstract syntax right
from the start, so all terms are well-typed ‘by construction’. Intrinsic encodings reflect
object-level types in metalanguage types, and can naturally and compactly enforce
the requirement that operations over object language terms, such as substitution,
should respect object-level types. In the extrinsic approach, definitions and lemmas
become hedged with extra preconditions that not only add clutter but, when one
works with them, have to be repeatedly and explicitly fulfilled—work that can largely
be done by the metalanguage type system in an intrinsic encoding.

The price for working with intrinsic encodings is that they require more sophis-
ticated metalanguage types to express the stronger invariants that one is now en-
forcing on object language expressions. In the functional programming community,
‘strongly typed’ encodings are a popular motivating example for generalized alge-
braic datatypes (GADTs) [10, 24, 27], and similar techniques can also be applied in
modern object oriented languages [19]. In the type theory and automated reasoning
community, such ‘internal’ representations have been described by a number of
authors [1, 2, 8, 12, 13, 16, 23]. So the idea is well-known, and it is intuitively clear that
dependently-typed calculi such as CiC have the power to express intrinsic encodings
of, for example, simply typed languages. But in practice, however, the pain of actually
working with ‘very’ dependent types in systems like Coq seems to have led most
programming language researchers to use extrinsic encodings in their mechanized
formalizations. A note by Sozeau [26] presents an intrinsic treatment of simple types
and substitutions, but requires many awkward equality coercions.

This paper is a tutorial account of one way of working with intrinsic encodings
in Coq, intended to show programming language metatheorists that this really is
a viable option, rather than at telling hard-core type-theorists something new. We
make no great claims of originality: most of the basic ideas are drawn from papers by
Goguen and McKinna [15], Altenkirch and Reus [2] and Adams [1], and a note on

1The identification of the two encoding styles with the Church/Curry positions is rather imprecise.
In particular, it is common to work with extrinsic contextual typing judgements over a Church-style
datatype for syntax, in which binders are annotated with types.
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Fig. 1 The simply-typed lambda calculus with naturals

representing simply typed terms and substitutions in Epigram by the fourth author
[21].

However, we give what we believe to be the first intrinsic treatment of simply-
typed terms and substitutions in Coq that is entirely free of coercions. We show
how some features added in Coq 8.2 by Sozeau, notably the dependendent
destruction and Program tactics, help when working with non-trivial dependen-
cies. We show how the technique extends to richer simply-typed constructs, such as
pattern matching, and then apply it to give an intrinsic encoding of a second-order
polymorphic language.

The encodings presented here have been successfully used in Coq formalizations
of non-trivial results about programming languages. We have formalized the domain-
theoretic semantics of the simply-typed language and proved its soundness and
adequacy [5], and subsequently used that semantics to formulate and prove results
on compiler correctness [3]. The encoding of the polymorphic language has also been
used as the basis of a formalization of compiler correctness [4].

The Coq code described here is available from the authors’ web pages.

2 A Simply-typed Language

We start with a small simply-typed language with a base type of natural numbers. For
presentational purposes, we omit general recursion as this will let us present a simple
set-theoretic denotational semantics later on.

In the first part of the paper, we will present the complete Coq code for the simply-
typed language, albeit not in a strict lexically-scoped order. The following prologue
sets up the options and imports from the Coq library that we will use:
Require Import List.
Require Import Program.
Require Import FunctionalExtensionality.
Require Import EqNat.
Set Implicit Arguments.

The Coq type Ty defines the types of the object language, with base type NAT and
arrow type constructor ARR. Since we are using de Bruijn indices, an object level type
environment is encoded as a list of types:
Inductive Ty := NAT | ARR (ty1 ty2 : Ty).
Definition Env := list Ty.

Figure 1 presents typing rules for our (entirely standard) object language in the
conventional way, using named binders.
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An extrinsic approach to encoding this language would be to define an abstract
syntax for expressions, using one’s favourite method for representing binding, and
then separately to give a typing relation over that syntax. Instead, we take an intrinsic
approach, combining syntax and typing, by indexing the types of variables Var and
expressions Exp by the environment E and type t for which they are well-typed:

Inductive Var : Env → Ty → Type :=
| ZVAR : ∀ E t, Var (t::E) t
| SVAR : ∀ E t t’, Var E t → Var (t’::E) t.

Inductive Exp E : Ty → Type :=
| VAR : ∀ t, Var E t → Exp E t
| CONST: nat → Exp E NAT
| SUCC : Exp E NAT → Exp E NAT
| PRED : Exp E NAT → Exp E NAT
| IFZ : ∀ t, Exp E NAT → Exp E t → Exp E t → Exp E t
| APP : ∀ t1 t2, Exp E (ARR t1 t2) → Exp E t1 → Exp E t2
| LAM : ∀ t1 t2, Exp (t1 :: E) t2 → Exp E (ARR t1 t2).

An element of Var E t is essentially a derivation establishing that the type t is at
some position in the list E. We count from the left, so the constructor ZVAR witnesses
that t is at the zeroth position in an environment of the form t::E, whilst SVAR
takes a proof that t is at some position n in the list E and produces a proof that t is
at position n + 1 in t’::E. (Note that the type of ZVAR builds in weakening.)

Now the typing rules for expressions are directly encoded in the types of the
corresponding constructors of Exp. For example, the application constructor, APP,
takes two expressions as arguments, one of arrow type ARR t1 t2 and the other of
type t1, yielding an expression of type t2. The function constructor LAM takes an
expression typed as t2 under an environment extended with the argument of type
t1 and produces an expression of function type ARR t1 t2.

The inductive types Var and Exp are indexed by a (value) t:Ty that is allowed to
vary in the result types of the different constructors. In the functional programming
community, datatypes whose (type) indices vary in this way are known as General-
ized Algebraic Datatypes (GADTs). Indeed, a typed term representation similar to
the above can be found in the standard test suite for the ghc compiler. For the Exp
type, we have made the environment E into a parameter; note that this is scoped over
all the constructors and remains the same in the return type of every constructor,
though it does vary in the arguments to constructors, in a way that a functional
programmer would call non-regular or nested [6].

Definitions and statements involving strongly-typed terms are beautifully concise.
For example, here is a complete definition of the “call-by-value” evaluation relation
for closed expressions of type t:

Inductive Ev : ∀ t, Exp nil t → Exp nil t → Prop :=
| EvCONST : ∀ n, Ev (CONST _ n) (CONST _ n)
| EvLAM : ∀ t1 t2 (e:Exp [t1] t2), Ev (LAM e) (LAM e)
| EvSUCC : ∀ e n, Ev e (CONST _ n) → Ev (SUCC e) (CONST _ (n+1))
| EvPRED : ∀ e n, Ev e (CONST _ n) → Ev (PRED e) (CONST _ (n-1))
| EvIFZTHEN : ∀ t1 e (e1 e2:Exp nil t1) v,

Ev e (CONST _ 0) → Ev e1 v → Ev (IFZ e e1 e2) v
| EvIFZELSE : ∀ t1 e (e1 e2:Exp nil t1) v n,

Ev e (CONST _ (S n)) → Ev e2 v → Ev (IFZ e e1 e2) v
| EvAPP : ∀ t1 t2 e v w (e1 : Exp nil (ARR t1 t2)) e2,

Ev e1 (LAM e) → Ev e2 w → Ev (STmExp {| w |} e) v →
Ev (APP e1 e2) v.
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Fig. 2 Evaluation relation

Figure 2 presents essentially the same relation in more conventional form using
named binders and type-free syntax. Again, the Coq encoding is a fairly direct
translation of the conventional rules, but because we work with a strongly-typed
representation, the fact that the definition of Ev typechecks in Coq gives us a proof
that our evaluation relation preserves types almost for free, alongside its definition.2

Consider the most complex constructor EvAPP: it states that if an expression e1
evaluates to a lambda expression LAM e, and e2 evaluates to w, and e with its only
free variable replaced by w evaluates to v, then APP e1 e2 evalutes to v. However,
we have presented our definitions out of order: neither the notation {| w |}, which
is intended to denote a substitution mapping the zero’th variable in the environment
to w, nor the function STmExp, which applies a substitution to an expression, have
yet been defined. How to define and work with strongly typed substitutions will be
explained in the next couple of sections.

3 Substitutions

We represent typed substitutions by functions that map variables typed in an envi-
ronment E to expressions typed in an environment E’, written Sub E E’:

Definition Sub E E’ := ∀ t, Var E t → Exp E’ t.

The list-style notation {| e0 ;. . .; en−1 |} represents the substitution which
takes variables numbered 0 to n − 1 to expressions e0 to en−1. The substitution
is built up using the identity substitution idSub and an operator consSub which
extends a substitution on the zero’th variable. Operations hdSub and tlSub can
be used to decompose a substitution into the image of the zero’th variable and the
remainder of the substitution.

Definition idSub {E} : Sub E E := @VAR E.

Program Definition consSub {E E’ t} (e:Exp E’ t) (s:Sub E E’)
: Sub (t::E) E’ :=
fun t’ (v:Var (t::E) t’) ⇒
match v with
| ZVAR _ _ ⇒ e
| SVAR _ _ _ v’ ⇒ s _ v’
end.

2Though one might reasonably object that the strongly-typed evaluation relation obscures the fact
that evaluation does not depend on typing, of course.
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Notation "{| e ; .. ; f |}" := (consSub e .. (consSub f idSub) ..).

Definition tlSub {E E’ t} (s:Sub (t::E) E’) : Sub E E’ :=
fun t’ v ⇒ s t’ (SVAR t v).

Definition hdSub {E E’ t} (s:Sub (t::E) E’) : Exp E’ t :=
s t (ZVAR _ _).

Notice here the use of Sozeau’s Program tactic [25], supporting GADT-style
pattern matching in Coq. Looking at the first branch of the match in the
definition of consSub, we see that the declared type of e is Exp E’ t whereas
the type of the whole match expression is supposed to be Exp E’ t’. But if
v : Var (t::E) t’ matches ZVAR _ _ we must have t=t’. The Program
tactic generates and exploits this equation, producing a slightly more complex CiC
term ‘behind the scenes’. (McBride [20] explains this transformation in more detail.)

Now let us write the function that applies a substitution to an expression:

Fixpoint STmExp E E’ t (s:Sub E E’) (e:Exp E t) :=
match e with
| VAR _ v ⇒ s _ v
| CONST n ⇒ CONST _ n
| SUCC e ⇒ SUCC (STmExp s e)
| PRED e ⇒ PRED (STmExp s e)
| IFZ _ e e1 e2 ⇒ IFZ (STmExp s e) (STmExp s e1) (STmExp s e2)
| APP _ _ e1 e2 ⇒ APP (STmExp s e1) (STmExp s e2)
| LAM _ _ e ⇒ LAM (STmExp (STmL s) e)
end.

In the variable case we apply the substitution, and in most of the other cases
we just do the obvious homomorphic thing. The interesting case is that for the
LAM constructor, in which we have to apply the substitution under a binder. We
want (indeed, the type system tells us we need) a function STmL that will lift the
substitution to work over expressions in an extended environment. So let us define
STmL:

Program Definition
STmL {E E’} t (s:Sub E E’) : Sub (t::E) (t::E’) :=
fun t’ v ⇒
match v with
| ZVAR _ _ ⇒ VAR (ZVAR _ _)
| SVAR _ _ _ v’ ⇒ ShTmExp t (s _ v’)
end.

So far, so good, but we have now discovered that we have to be able to reinterpret
(or ‘transport’) the expressions returned by our original substitution to work in
the larger environment; hence we have postulated a shift operation ShTmExp of
type Exp E t’ → Exp (t::E) t’. Intuitively, the shift just increments all the
(term) variables in the expression. In Haskell with GADTs, we could implement
this operation simply by applying a trivial substitution to the expression, using
STmExp (fun t v ⇒ SVAR t’ v). But this mutual recursion between substitu-
tion and shifting is not structurally recursive, and is therefore unacceptable in Coq.
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One might now define ShTmExp directly, rather than in terms of substitutions.
Because shifting itself has to be able to go under binders, one soon realizes that the
type has to be generalized, but one can then easily define a shift function with type

∀ E E’ t’ t, Exp (E++E’) t → Exp (E++[t’]++E’) t

Unfortunately, working with that definition in Coq quickly becomes difficult. The
problem is then properties of shifting have to be proved by induction over an
argument expression of arbitrary type Exp E t. This involves recasting statements
of the form

∀ E E’ t (e:Exp (E++E’) t), ...

into the form

∀ E0 t (e:Exp E0 t) E E’, E0=E++E’ → ...

which requires passing in a proof of the equality. Sozeau’s Coq formalization of
the simply-typed lambda calculus uses this technique, but then requires the use of
eq_rect cast operations, and many lemmas that simply push the coercions around
in a manner that quickly becomes no fun at all.

4 Renamings

A better way of defining shifting is to observe [1] that a shift is an instance of a special,
restricted kind of substitution: a renaming; that is, a map from variables to variables:

Definition Ren E E’ := ∀ t, Var E t → Var E’ t.

It is easy to define lifting for renamings, without running into issues with recursion:

Program Definition RTmL {E E’ t}
(r : Ren E E’) : Ren (t::E) (t::E’) := fun t’ v ⇒
match v with
| ZVAR _ _ ⇒ ZVAR _ _
| SVAR _ _ _ v’ ⇒ SVAR _ (r _ v’)
end.

Applying a renaming to an expression is straightforward:

Fixpoint RTmExp E E’ t (r:Ren E E’) (e:Exp E t) :=
match e with
| VAR _ v ⇒ VAR (r _ v)
| CONST n ⇒ CONST _ n
| SUCC e ⇒ SUCC (RTmExp r e)
| PRED e ⇒ PRED (RTmExp r e)
| IFZ _ e e1 e2 ⇒ IFZ (RTmExp r e) (RTmExp r e1) (RTmExp r e2)
| APP _ _ e1 e2 ⇒ APP (RTmExp r e1) (RTmExp r e2)
| LAM _ _ e ⇒ LAM (RTmExp (RTmL r) e)
end.

And we can now define our shifting operation ShTmExp by applying a trivial
renaming:

Definition ShTmExp E t t’ : Exp E t → Exp (t’::E) t
:= RTmExp (fun _ v ⇒ SVAR _ v).

In order to make any use of these definitions, we have to prove a standard
collection of lemmas about composing substitutions and so on. So as to fit the
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complete development of the theory of our simple language in the paper, and because
it is instructive in itself, we first define a couple of custom tactics for rewriting:

Ltac Rewrites E :=
(intros; simpl; try rewrite E;
repeat (match goal with | [H:context[_=_] |- _] ⇒

rewrite H end);
auto).

Ltac ExtVar :=
match goal with

[ |- ?X = ?Y ] ⇒
(apply (@functional_extensionality_dep _ _ X Y) ;
let t := fresh "t" in intro t;
apply functional_extensionality;
let v := fresh "v" in intro v;
dependent destruction v; auto)

end.

The Rewrites tactical applies the rewrite rule passed as argument, and then applies
any equations that have been introduced as hypotheses, typically through induction.
The ExtVar tactic applies extensionality for renamings or substitutions, introducing
a type t and variable v : Var _ t into the context and then doing inversion on v
by dependent destruction, which (as with Program) takes care of generalizing
the goal by the equalities generated by matching on v.

Using these tactics, we prove that lifting the identity gives the identity on the
extended context, and hence that the action of the identity is the identity on terms:

Lemma LiftIdSub : ∀ E t, STmL (@idSub E) = @idSub (t::E).
Proof. intros. ExtVar. Qed.

Lemma ActIdSub : ∀ E t (e : Exp E t), STmExp idSub e = e.
Proof. induction e; Rewrites LiftIdSub. Qed.

The main downside of defining shift in terms of renaming is that we have defined
everything twice: once for renaming, and once for substitution. And we now have
four notions of composition:

Definition RcR {E E’ E’’} (r : Ren E’ E’’) (r’ : Ren E E’) :=
(fun t v ⇒ r t (r’ t v)) : Ren E E’’.

Definition ScR {E E’ E’’} (s : Sub E’ E’’) (r : Ren E E’) :=
(fun t v ⇒ s t (r t v)) : Sub E E’’.

Definition RcS {E E’ E’’} (r : Ren E’ E’’) (s : Sub E E’) :=
(fun t v ⇒ RTmExp r (s t v)) : Sub E E’’.

Definition ScS {E E’ E’’} (s : Sub E’ E’’) (s’ : Sub E E’) :=
(fun t v ⇒ STmExp s (s’ t v)) : Sub E E’’.

For each notion of composition we prove that lifting is preserved and that the action
of a composition is a composition of actions. These lemmas must be proved in order,
with each building on the previous:

Lemma LiftRcR : ∀ E E’ E’’ t (r:Ren E’ E’’) (r’:Ren E E’),
RTmL (t:=t) (RcR r r’) = RcR (RTmL r) (RTmL r’).

Proof. intros. ExtVar. Qed.

Lemma ActRcR : ∀ E t (e:Exp E t) E’ E’’ (r:Ren E’ E’’) (r’:Ren E E’),
RTmExp (RcR r r’) e = RTmExp r (RTmExp r’ e).

Proof. induction e; Rewrites LiftRcR. Qed.

Lemma LiftScR : ∀ E E’ E’’ t (s:Sub E’ E’’) (r:Ren E E’),
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STmL (t:=t) (ScR s r) = ScR (STmL s) (RTmL r).
Proof. intros. ExtVar. Qed.

Lemma ActScR : ∀ E t (e:Exp E t) E’ E’’ (s:Sub E’ E’’) (r:Ren E E’),
STmExp (ScR s r) e = STmExp s (RTmExp r e).

Proof. induction e; Rewrites LiftScR. Qed.

Lemma LiftRcS : ∀ E E’ E’’ t (r:Ren E’ E’’) (s:Sub E E’),
STmL (t:=t) (RcS r s) = RcS (RTmL r) (STmL s).

Proof. intros. ExtVar. unfold RcS. simpl.
unfold ShTmExp. rewrite <- 2 ActRcR. auto. Qed.

Lemma ActRcS : ∀ E t (e:Exp E t) E’ E’’ (r:Ren E’ E’’) (s:Sub E E’),
STmExp (RcS r s) e = RTmExp r (STmExp s e).

Proof. induction e; Rewrites LiftRcS. Qed.

Lemma LiftScS : ∀ E E’ E’’ t (s:Sub E’ E’’) (s’:Sub E E’),
STmL (t:=t) (ScS s s’) = ScS (STmL s) (STmL s’).

Proof. intros. ExtVar. simpl. unfold ScS. simpl.
unfold ShTmExp. rewrite <- ActRcS. rewrite <- ActScR. auto. Qed.

Lemma ActScS : ∀ E t (e:Exp E t) E’ E’’ (s:Sub E’ E’’) (s’:Sub E E’),
STmExp (ScS s s’) e = STmExp s (STmExp s’ e).

Proof. induction e; Rewrites LiftScS. Qed.

5 Example

Our experience with strong typing of terms is that the pain is worth it. Just as
with typeful programming, typeful proving provides a framework for getting the
definitions right and, generally speaking, the proofs then follow smoothly.

Type-indexed terms fit very well with typed-indexed semantics. To illustrate, we
now describe how to give a set-theoretic denotational semantics to our simple lan-
guage. The formalization of a slightly more sophisticated domain-theoretic semantics
for a language with recursion [5] follows just the same pattern, but working with
a total language allows us here to focus on the type structure, without dragging in
extraneous definitions concerning cpos and continuous functions.

We interpret NAT as Coq’s nat type, ARR as Coq’s → , and environments as
iterated product:

Fixpoint SemTy t :=
match t with
| NAT ⇒ nat
| ARR t1 t2 ⇒ SemTy t1 → SemTy t2
end.

Fixpoint SemEnv E :=
match E with
| nil ⇒ unit
| t :: E ⇒ prodT (SemTy t) (SemEnv E)
end.

It is then straightforward to give a meaning to variables of type Var E t and
(open) expressions of type Exp E t as functions of type SemEnv E → SemTy t:

Fixpoint SemVar E t (v:Var E t) : SemEnv E → SemTy t :=
match v with
| ZVAR _ _ ⇒ fun se ⇒ fst se
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| SVAR _ _ _ v ⇒ fun se ⇒ SemVar v (snd se)
end.

Fixpoint SemExp E t (e:Exp E t) : SemEnv E → SemTy t :=
match e with
| VAR _ v ⇒ SemVar v
| CONST n ⇒ fun se ⇒ n
| SUCC e ⇒ fun se ⇒ SemExp e se + 1
| PRED e ⇒ fun se ⇒ SemExp e se - 1
| IFZ _ e e1 e2 ⇒ fun se ⇒ if beq_nat (SemExp e se) 0

then SemExp e1 se else SemExp e2 se
| APP _ _ e1 e2 ⇒ fun se ⇒ SemExp e1 se (SemExp e2 se)
| LAM _ _ e ⇒ fun se ⇒ fun x ⇒ SemExp e (x,se)
end.

Notice how natural these definitions are: the typed de Bruijn representation for
variables fits perfectly with the use of pairing to extend environments.

In order to prove that the semantics is sound, we first need to prove a lemma
showing that the semantics commutes with substitution. As with the syntactic proofs
concerning composition, this lemma must be boot-strapped from an analogous
lemma concerning renaming, as follows:

Fixpoint SemSub E E’ : Sub E’ E → SemEnv E → SemEnv E’ :=
match E’ with
| nil ⇒ fun s se ⇒ tt
| _ :: _ ⇒ fun s se ⇒ (SemExp (hdSub s) se, SemSub (tlSub s) se)
end.

Fixpoint SemRen E E’ : Ren E’ E → SemEnv E → SemEnv E’ :=
match E’ with
| nil ⇒ fun r se ⇒ tt
| _ :: _ ⇒ fun r se ⇒ (SemVar (hdRen r) se, SemRen (tlRen r) se)
end.

Lemma SemRenComm :
∀ E t (e : Exp E t) E’ (r : Ren E E’),
∀ se, SemExp e (SemRen r se) = SemExp (RTmExp r e) se.

Lemma SemSubComm :
∀ E t (e : Exp E t) E’ (s : Sub E E’),
∀ se, SemExp e (SemSub s se) = SemExp (STmExp s e) se.

We can now prove soundness: if an expression e evaluates to a value v then the
denotation of e is the denotation of v. The above lemma is used in the crucial EvAPP
case in the proof.

Theorem Soundness :
∀ t (e : Exp nil t) v, Ev e v → SemExp e = SemExp v.

The semantics is also adequate: if the denotation of a closed expression e of base
type is n, then e evaluates to CONST _ n. To prove adequacy, we use the standard
method of defining a logical relation between syntax and semantics.
Definition evAndRel R t (e:Exp nil t) (d:SemTy t) :=

∃ v, Ev e v ∧ R t v d.

Fixpoint rel t : Exp nil t → SemTy t → Prop :=
match t with
| NAT ⇒ fun v n ⇒ v = CONST _ n
| ARR t1 t2 ⇒ fun v f ⇒ ∃ e, v = LAM e

∧ ∀ x w, @rel t1 w x →
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@evAndRel rel t2 (STmExp {|w|} e) (f x)
end.

This is extended to environments:
Fixpoint relEnv E : Sub E nil → SemEnv E → Prop :=
match E with
| nil ⇒ fun s se ⇒ True
| t :: E ⇒ fun s se ⇒
@rel t (hdSub s) (fst se) ∧ @relEnv E (tlSub s) (snd se)

end.

Then we can prove a fundamental theorem and adequacy is a corollary:
Theorem FundamentalTheorem :

∀ E t e se s, @relEnv E s se →
@evAndRel rel t (STmExp s e) (SemExp e se).

Corollary Adequacy :
∀ (e : Exp nil NAT) n, SemExp e tt = n → Ev e (CONST _ n).

The whole development, including syntax and semantics, is roughly 200 lines of
definition and 120 lines of proof.

6 Extensions

The approach extends easily to more complex uses of variable binding. For example,
here is a constructor for recursive functions, which might be written rec f (x : t1) :
t2 = e in more conventional notation.

Inductive Exp E : Ty → Type :=
...

| REC : ∀ t1 t2, Exp (t1::ARR t1 t2::E) t2 → Exp E (ARR t1 t2).

It is also straightforward to model SML-style pattern matching. Assuming type
constructors PROD and SUM for products and sums, we can define SML-style pattern
expressions of type Pat E t where t is the type of the whole pattern and E lists the
types of variables mentioned in the pattern, reading from left to right.

Inductive Pat : Env → Ty → Type :=
| PPAIR : ∀ E1 E2 t1 t2, Pat E1 t1 → Pat E2 t2 →

Pat (E1++E2) (PROD t1 t2)
| PVAR : ∀ t, Pat [t] t
| PWILD : ∀ t, Pat [] t
| PFAIL : ∀ t, Pat [] t
| PAS : ∀ E t, Pat E t → Pat (t::E) t
| PINL : ∀ E t1 t2, Pat E t1 → Pat E (SUM t1 t2)
| PINR : ∀ E t1 t2, Pat E t2 → Pat E (SUM t1 t2).

We can then use pattern expressions in a ‘let’ construct, as follows:

Inductive Exp E : Ty → Type :=
...

| LETPAT : ∀ E’ t1 t2, Exp E t1 → Pat E’ t1 → Exp (E’++E) t2 →
Exp E t2.



152 N. Benton et al.

7 Abstracting Maps

For languages larger than Exp, the necessity to do so many things twice, once
for renamings, and once for substitutions, becomes somewhat painful. At least
some cutting-and-pasting of definitions and proofs can be avoided by observing the
commonality between renaming and substitution, abstracting both notions into a
single Map type that is parameterized on the type constructor used to construct its
target, namely Var (for renamings) or Exp (for substitutions).

Section MAPS.
Variable P : Env → Ty → Type.
Definition Map E E’ := ∀ t, Var E t → P E’ t.
Definition tlMap {E E’ t} (m:Map (t::E) E’) : Map E E’ :=
fun t’ v ⇒ m t’ (SVAR t v).

Definition hdMap {E E’ t} (m:Map (t::E) E’) : P E’ t :=
m t (ZVAR _ _).

Program Definition consMap {E E’ t} (p:P E’ t) (m:Map E E’)
: Map (t::E) E’ :=
fun t’ (var:Var (t::E) t’) ⇒
match var with
| ZVAR _ _ ⇒ p
| SVAR _ _ _ var’ ⇒ m _ var’
end.

We then package up the fundamental operations used in lifting and the action of a
map on an expression:

Record MapOps := mkOps
{
vr : ∀ E t, Var E t → P E t;
vl : ∀ E t, P E t → Exp E t;
wk : ∀ E t t’, P E t → P (t’ :: E) t

}.

Here vr is the embedding of a variable into the target type, namely the identity
for renamings, and the Var constructor for expressions. The vl is an embedding
into Exp, namely the Var constructor for variables, and the identity for expressions.
Finally wk is the operation that maps into a weaker context, namely SVAR for
variables, and ShTmExp (shift) for expressions. We can then define ‘generic’ lifting
and application functions, given a package ops of type MapOps P.

Variable ops : MapOps.
Definition shiftMap {E E’} t (m:Map E E’) : Map E (t::E’) :=
fun vt v ⇒ wk ops t (m vt v).

Definition MTmL E E’ t (m:Map E E’) : Map (t::E) (t::E’) :=
consMap (vr ops (ZVAR E’ t)) (shiftMap t m).

Fixpoint MTmExp E E’ t (m:Map E E’) (e:Exp E t) :=
match e with
| VAR _ v ⇒ vl ops (m _ v)
| CONST n ⇒ CONST _ n
| SUCC e ⇒ SUCC (MTmExp m e)
| PRED e ⇒ PRED (MTmExp m e)
| IFZ _ e e1 e2 ⇒ IFZ (MTmExp m e) (MTmExp m e1) (MTmExp m e2)
| APP _ _ e1 e2 ⇒ APP (MTmExp m e1) (MTmExp m e2)
| LAM _ _ e ⇒ LAM (MTmExp (MTmL m) e)
end.
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Notice how this time we have defined the MTmL lifting operation in terms of
consMap; we could have done something similar earlier for renamings and substi-
tutions.

The instantiation to give operations on renamings and substitutions is straightfor-
ward:

Definition Ren := Map Var.
Definition RMapOps := mkOps Var (fun _ _ v ⇒ v) VAR (@SVAR).
Definition RTmExp := MTmExp RMapOps.
Definition RTmL := MTmL RMapOps.

Definition Sub := Map Exp.
Definition ShTmExp E t t’ : Exp E t → Exp (t’::E) t
:= RTmExp (fun _ v ⇒ SVAR _ v).
Definition SMapOps := mkOps Exp VAR (fun _ _ v ⇒ v) ShTmExp.
Definition STmExp := MTmExp SMapOps.
Definition STmL := MTmL SMapOps.

The composition lemmas one then proves are essentially the same as before, and
these are easily dispatched tactically; the main advantage of the map abstraction here
is in avoiding repeated definitions. One might also usefully parameterize MTmExp by
a monad, to support generic effectful traversals.

In applications such as our semantic soundness result, we have a degree of proof
duplication too: we needed to prove both SemRenComm and SemSubComm. But here,
too, it is possible to abstract out the commonality in a generic SemMapComm lemma:

Variable P : Env → Ty → Type.
Variable ops : MapOps P.
Variable Sem : ∀ E t, P E t → SemEnv E → SemTy t.
Variable SemVl : ∀ E t (v:P E t), Sem v = SemExp (vl ops _ _ v).
Variable SemVr : ∀ E t se, Sem (vr ops (ZVAR E t)) se = fst se.
Variable SemWk : ∀ E t (v:P E t) t’ se,
Sem (wk ops _ _ t’ v) se = Sem v (snd se).

Fixpoint SemMap E E’ : Map P E’ E → SemEnv E → SemEnv E’ :=
match E’ with
| nil ⇒ fun m se ⇒ tt
| _ ⇒ fun m se ⇒ (Sem (hdMap m) se, SemMap (tlMap m) se)
end.

Lemma SemMapComm :
∀ E t (e : Exp E t) E’ (m : Map P E E’),
∀ se, SemExp e (SemMap m se) = SemExp (MTmExp ops m e) se.

We’ve parameterized on P and ops, as with the definitions of syntax, but also
on Sem, which we later instantiate to SemVar and SemExp, and on three simple
properties of Sem that describe its interaction with the vl, vr and wk operations
from ops. The proof of SemMapComm makes use of these properties.

The proof of SemRenComm is then just an easy special case of SemMapComm,
the three proof obligations being discharged by auto. The proof of SemSubComm
requires non-trivial reasoning only to discharge the SemWk property, and of course
makes use of SemRenComm.
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8 Polymorphism

We now turn to applying the same basic ideas to an intrinsic encoding of the
second order polymorphic lambda calculus, System F. We will use the renamings and
substitutions idea for both types and terms. There is a mild combinatorial explosion
in the number of forms of application and composition (e.g. the action of a type
substitution on a term renaming) but, fortunately, not all combinations show up in
establishing the lemmas that clients need.

Types now contain type variables, represented again by de Bruijn indices. A type
variable context is represented simply by its length, a natural number u saying how
many type variables are available. We then define Coq types for well-formed type
variables and types in context:

Inductive TyVar : nat → Type :=
| ZTYVAR : ∀ u, TyVar (S u)
| STYVAR : ∀ u, TyVar u → TyVar (S u).

Inductive Ty u : Type :=
| TYVAR : TyVar u → Ty u
| ARR : Ty u → Ty u → Ty u
| ALL : Ty (S u) → Ty u.

Type renamings and substitutions are defined as follows:

Definition RenT u w := TyVar u → TyVar w.
Definition SubT u w := TyVar u → Ty w.

Lifting of renamings and the action of a renaming on a type are given by

Program Definition RTyL u w (r:RenT u w) : RenT (S u) (S w) :=
fun var ⇒
match var with
| ZTYVAR _ ⇒ (ZTYVAR _)
| STYVAR _ var’ ⇒ STYVAR (r var’)
end.

Fixpoint RTyT u w (r:RenT u w) (t:Ty u) : Ty w :=
match t with
| TYVAR v ⇒ TYVAR (r v)
| ARR t1 t2 ⇒ ARR (RTyT r t1) (RTyT r t2)
| ALL t ⇒ ALL (RTyT (RTyL r) t)
end.

and again, shifting is defined as a special renaming, which is in turn used to define
the action of a substitution on a type:

Definition ShTyT u : Ty u → Ty (S u) := RTyT (@STYVAR _).

Program Definition STyL u w (s:SubT u w) : SubT (S u) (S w) :=
fun v ⇒
match v with
| ZTYVAR _ ⇒ TYVAR (ZTYVAR _)
| STYVAR _ v’ ⇒ ShTyT (s v’)
end.

Fixpoint STyT u w (s:SubT u w) (t:Ty u) : Ty w :=
match t with
| TYVAR v ⇒ s v
| ARR t1 t2 ⇒ ARR (STyT s t1) (STyT s t2)
| ALL t ⇒ ALL (STyT (STyL s) t)
end.
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Following the pattern we used earlier for simply typed terms, we now define nota-
tions for particular type substitutions (we use [| t1;...;tn |]), composition of
type renamings and type substitutions, and prove appropriate lemmas.

We are now ready to introduce strongly polymorphically typed terms. A well-
formed term variable environment in a type variable context with u free variables
is represented, again using de Bruijn indices, as a list of u-types, and the action of
type substitutions on term environments is just given by mapping:

Definition Env u := list (Ty u).

Fixpoint STyE u w (sub: SubT u w) (env: Env u) : Env w :=
match env with
| nil ⇒ nil
| T::TS ⇒ STyT sub T :: STyE sub TS

end.

Next we define a type for typed variables in a given term and type variable context:

Inductive Var u : Env u → Ty u → Type :=
| ZVAR : ∀ env ty, Var (ty :: env) ty
| SVAR : ∀ env ty’ ty, Var env ty → Var (ty’ :: env) ty.

For convenience, we re-express type shifting as a substitution:

Definition shSubT u : SubT u (S u) := fun v ⇒ TYVAR (STYVAR v).
Implicit Arguments shSubT [].

and the definition of terms is then a pleasingly direct translation of the ‘normal’
typing rules for the polymorphic lambda calculus:

Inductive Exp u (E:Env u) : Ty u → Type :=
| VAR : ∀ t, Var E t → Exp E t
| LAM : ∀ t1 t2, Exp (t1 :: E) t2 → Exp E (ARR t1 t2)
| APP : ∀ t1 t2, Exp E (ARR t1 t2) → Exp E t1 → Exp E t2
| TAPP : ∀ t, Exp E (ALL t) → ∀ t’:Ty u, Exp E (STyT [| t’ |] t)
| TABS : ∀ t, Exp (u:=S u) (STyE (shSubT _) E) t → Exp E (ALL t).

Again, no proofs of equalities are passed as arguments to any of the constructors;
everything is built up by inductive definitions. Note how type substitution shows up
in the type of the TAPP constructor, and how the environment is shifted in the type
of the argument to TABS.

The broad pattern of the formalization of operations on the polymorphic language
follows that of the simply-typed case. We have type renamings and type substitutions,
and term renamings and term substitutions. We choose to abstract the two kinds
of traversals over terms into a more general notion of mapping, along the lines
described in Section 7, with an extra operation component to account for the action
of type substitutions.

Working with the polymorphic encoding is qualitatively more tricky than was the
case for the simply-typed language, however. Although the definitions of polymor-
phic types and terms are simple and elegant, we have this time not managed to avoid
explicit uses of type equalities when we come to define functions working over that
syntax. Here, for example, is the definition of the action of type substitutions on
terms:

Fixpoint STyExp u w (s:SubT u w) (E:Env u) t (e:Exp E t)
: Exp (STyE s E) (STyT s t) :=
match e with
| VAR _ v ⇒ VAR (STyVar s v)
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| APP _ _ e1 e2 ⇒ APP (STyExp s e1) (STyExp s e2)
| LAM _ _ e ⇒ LAM (STyExp s e)
| TAPP _ e t’ ⇒ cast (STyExp_cast1 _ _ _ _)

(TAPP (STyExp s e) (STyT s t’))
| TABS _ e ⇒ TABS (cast (STyExp_cast2 _ _ _)

(STyExp (STyL s) e))
end.

Observe that we have been forced to make explicit applications of cast, the obvi-
ous operation of type ∀ A B : Type, A = B → A → B, to make this definition
typecheck. The two type equalities passed to cast are

Lemma STyExp_cast1 : ∀ u w (sub: SubT u w) (env: Env u)
(ty : Ty (S u)) (ty’ : Ty u),

@eq Type
(Exp (STyE sub env) (STyT [| STyT sub ty’ |] (STyT (STyL sub) ty)))
(Exp (STyE sub env) (STyT sub (STyT [| ty’ |] ty))).

Lemma STyExp_cast2 : ∀ u w (sub:SubT u w) (env:Env u) (ty:Ty (S u)),
@eq Type
(Exp (STyE (STyL sub) (STyE (shSubT u) env)) (STyT (STyL sub) ty))
(Exp (STyE (shSubT _) (STyE sub env)) (STyT (STyL sub) ty)).

which establish (with a one-line proof in each case) that the inferred and declared
types are actually equal in the STyExp clauses for type application and type
abstraction, respectively.

Where Coq definitions can easily be rephrased in a way that avoids the necessity to
do this kind of casting, they usually should be. When they cannot, however, we have
sometimes found ourselves overwhelmed by the complexities of trying to do more-
or-less ad hoc, on the fly dependent rewrites with various forms of proof irrelevance
(be they axiomatic or proved). Our formalization of polymorphic lambda calculus
makes more disciplined and stylised use of the weapon of heterogeneous equality
[20], which turns out to be more effective than aimless slashing.

We prove lemmas that all our definitions are congruences with respect to JMeq in
their non-trivially dependent arguments, and Leibniz equality in the others. These
lemmas are tedious to state but essentially just boilerplate: some simple custom
tactics prove them immediately, and there seems no reason why they should not be
generated automatically. Here is an example:

Lemma APP_JMcong: ∀ u (env env’: Env u) ty1 ty2 ty1’ ty2’
(v1 :Exp env (ARR ty1 ty2)) (v2 : Exp env ty1)
(v1’:Exp env’ (ARR ty1’ ty2’)) (v2’: Exp env’ ty1’),

JMeq v1 v1’ → JMeq v2 v2’ → ty1 = ty1’ → ty2 = ty2’ → env = env’
→ JMeq (APP v1 v2) (APP v1’ v2’).

Proof. intros. JMsubst. reflexivity. Qed.

Now those standard lemmas about renamings and substitutions that would not
otherwise typecheck can be expressed using JMeq. For example, the lemma that the
action on expressions of the composition of two type substitutions is the composition
of the actions looks like this:

Lemma STyExp_ss: ∀ u env ty (exp: Exp env ty) v w
(sub2:SubT v w) (sub1:SubT u v),

JMeq (STyExp sub2 (STyExp sub1 exp))
(STyExp (sub2 @ss@ sub1) exp).

where @ss@ is notation for the composition of type substitutions. The proofs
of these lemmas are straightforward inductions, essentially just as before, except
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for the application of the appropriate (boilerplate) congruence property for each
constructor. In the cases where the type of the constructor involves a cast, however,
we can now easily ‘absorb’ the specific cast appearing in the type into the more
uniform and generic JMeq judgement that we are trying to prove using some simple
lemmas such as the following, which removes a cast from the left hand side of
the goal:

Lemma cast_elim_cong : ∀ (A B C:Type) (pf: A = C) (a:A) (b:B),
JMeq a b → JMeq (cast pf a) b.

Some of the lemmas whose proofs make use of heterogeneous equality internally
only mention Leibniz equality in their statements, but this is not the case for all
the lemmas that one needs in applications. So the uses of JMeq do ‘leak out’ of
the syntax module into clients, rather than being encapsulated as one might hope.
In our work on compiler correctness for a polymorphic language [4], for example,
the definitions of logical relations between high-level and low-level programs do
explicitly involve heterogeneous equality. However, working with JMeq uniformly,
and from the start, does seem to us to work well, especially compared to pushing
particular type equalities around. The basic definitions and lemmas concerning types,
terms, renamings and substitutions for System F come in at around 910 lines of Coq,
which does not seem completely unreasonable.

9 Discussion

We have explained how to define and work with strongly-typed term representations
of both simply-typed and polymorphic languages in Coq. The key ideas include the
bootstrapping of definitions and lemmas about substitutions in terms of their coun-
terparts for the simpler notion of renamings, and the uniform use of heterogeneous
equality in the case of quantified types.

We have used intrinsically typed representations like these in formalizing and
proving some non-trivial results about the semantics and compilation of typed
languages. Our experience has been that the initial complexity over an extrinsic
representation really does pay off—one gets all the stuff to do with the static type
system out of the way in the beginning and then when it comes to doing interesting
things with those terms, the type system becomes a useful form of scaffolding, with
the metalanguage type checker helping ensure that definitions and lemmas make
sense, rather than a constant nagging extra obligation.

The use of coercions and JMeq in the formalization of the polymorphic language is
still slightly inconvenient. The second author has recently designed and implemented
a Coq library, Heq [18], for working with a heterogeneous equality, ==, based on
equality of dependent pairs. Heq supports convenient rewriting with heterogeneous
equalities and the manipulation of coercions, and provides ==-aware versions of
tactics such as subst. Using Heq, the formalization of the basic theory of System
F drops to only 610 lines of Coq; a strong normalization proof [14] is formalized in
another 470 lines.

It is possible to work with encodings that are ‘partially’ intrinsic. Some researchers
have used syntax definitions that are well-scoped (i.e. whose types express an upper
bound on their free de Bruijn indices) by construction, but are still actually typed by
an extrinsic typing relation [1, 7, 17]. This seems particularly natural if one is trying
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to formalize type theory within type theory, as it is common to treat dependency by
working with ‘pre-terms’ in the first instance. At the other end of the complexity
spectrum, however, several researchers have recently presented entirely intrinsic
formulations of dependently-typed languages [9, 13, 22].

There are a number of possible variations on the techniques we have used here.
One possibility is to re-examine the ‘Haskell-style’ definition of shifting in terms of
substitution. Although this is not structurally recursive, one could define it in Coq
using well-founded induction, but we have not yet investigated how easy such a
definition would be to work with. One can also represent intrinsically typed syntax in
Coq using various kinds of higher-order abstract syntax. This style is already common
in Twelf, and Chlipala [11], for example, has done similar things in Coq.
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