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Abstract Description logics provide powerful languages for representing and rea-
soning about knowledge of static application domains. The main strength of de-
scription logics is that they offer considerable expressive power going far beyond
propositional logic, while reasoning is still decidable. There is a demand to bring
the power and character of description logics into the description and reasoning of
dynamic application domains which are characterized by actions. In this paper, based
on a combination of the propositional dynamic logic PDL, a family of description
logics and an action formalism constructed over description logics, we propose a
family of dynamic description logics DDL(X®) for representing and reasoning
about actions, where X represents well-studied description logics ranging from the
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2 L. Chang et al.

ALCO to the 4LCHOIQ, and X © denotes the extension of X with the @ constructor.
The representation power of DD L(X©) is reflected in four aspects. Firstly, the static
knowledge of application domains is represented as RBoxes and acyclic TBoxes of
the description logic X. Secondly, the states of the world and the pre-conditions
of atomic actions are described by ABox assertions of the description logic X,
and the post-conditions of atomic actions are described by primitive literals of X©.
Thirdly, starting with atomic actions and ABox assertions of X®, complex actions
are constructed with regular program constructors of PDL, so that various control
structures on actions such as the “Sequence”, “Choice”, “Any-Order”, “Iterate”, “If-
Then-Else”, “Repeat-While” and “Repeat-Until” can be represented. Finally, both
atomic actions and complex actions are used as modal operators for the construction
of formulas, so that many properties on actions can be explicitly stated by formulas. A
tableau-algorithm is provided for deciding the satisfiability of DD L(X®)-formulas;
based on this algorithm, reasoning tasks such as the realizability, executability and
projection of actions can be effectively carried out. As a result, DDL(X®) not
only offers considerable expressive power going beyond many action formalisms
which are propositional, but also provides decidable reasoning services for actions
described by it.

Keywords Description logic - Dynamic description logic - Action theory -
Satisfiability-checking algorithm - Reasoning tasks

1 Introduction

Description logics (DLs) are well-known for representing and reasoning about
knowledge of static application domains. They are playing a central role in the
Semantic Web [5], serving as the basis of the W3C-recommended Web ontology
language OWL [21, 39]. The main strength of description logics is that they offer
considerable expressive power going far beyond propositional logic, while reasoning
is still decidable [3].

There is a natural trend to bring the power and character of DLs into the
description and reasoning of dynamic application domains which are characterized
by actions. The study of integrating DLs with action formalisms is driven by two
factors. One is the expressive gap between well-studied action formalisms: they are
either based on first- or higher-order logics and do not admit decidable reasoning,
like the Situation Calculus [28, 36] and the Fluent Calculus [40], or are decidable but
only propositional, like those based on propositional dynamic logics or propositional
temporal logics [6, 9, 16]. The other factor is the target of the semantic Web services
[29]: to enable automatic discovery, composition, invocation and interoperation of
Web services, by describing Web services’ capabilities and contents in an unambigu-
ous and computer-interpretable language; towards this target, an obvious concern is
to combine in some way the static knowledge provided by ontologies on the Semantic
Web with the dynamic descriptions of the computations provided by Web services
[7,26].

An action formalism constructed over DLs of the 2£c01Q family was proposed by
Baader et al. [4]. In that formalism, acyclic TBoxes and ABoxes of DLs are used
to specify the domain constraints and the states of the world respectively. Each
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A Family of Dynamic Description Logics 3

atomic action is described by a triple (pre, occ, post), where pre is a finite set of
ABox assertions for specifying the pre-conditions, occ is a finite set of occlusions for
indicating some primitive literals which might change arbitrarily as while as the action
is executed, and post is a finite set of conditional post-conditions of the form ¢/,
where ¢ is an ABox assertion and  is a primitive literal. The semantics of atomic
actions is defined by means of transition relations on DL-interpretations, where each
transition relation is restricted by the minimal-change semantics. Taking each finite
sequence of atomic actions as a composite action, Baader et al. investigated the
executability problem and the projection problem of actions. It was shown that both
of these problems could be reduced to standard inference problems of description
logics and therefore were decidable still. Following Baader et al’s work, Liu et al.
[24] proposed an approach to incorporate general TBoxes into the action formalism;
Milici¢ [30, 31] investigated the planning problem and demonstrated that the plan
existent problem was still decidable.

With Baader et al.’s formalism, an atomic action (or a simple Web service) named
buyBook, , might be described as a triple buy Book, , = (pre, occ, post), where

—  pre = {customer(a), book(b)},
— occ={},and
—  post = {instore(b)/bought(a, b), instore(b)/—instore(b)}.

This description states that the action buy Book, j is applicable if a is a customer and
b is a book; moreover, if b is in store before executing the action, then the result
of the execution is that @ has bought b and b is not in store any more. Concepts
occurring in this description could be further specified by concept definitions; for
example, the concept customer might be specified as follows:

customer = person N Fholds.creditCard

which states that each customer is a person holding a credit card.

Baader et al.’s formalisms [4, 24, 30] provide considerable expressive power
for describing actions and Web services; they also provide desirable computa-
tional properties such as decidability, soundness and completeness of deduction
procedures. However, a common limitation of them is that atomic actions can
only be organized as finite sequences; many complex control structures on actions,
such as the “Choice”, “Any-Order”, “Iterate”, “If-Then-Else”, “Repeat-While” and
“Repeat-Until” structures specified in the OWL-based Web service ontology OWL-
S [27], are not supported. Therefore, in order to describe and reason about complex
compositions of Web services [33], there is a demand to enhance Baader et al.’s
formalisms with more control structures.

In this paper, by embracing Baader et al.’s action formalisms into a dynamic logic,
we propose a family of dynamic description logics DD L(X®) for representing and
reasoning about actions, where X denotes the description logics ranging from the
A4LCO to the ALCHOIQ, and X © is an extension of X with the @ constructor [23].

The logic DDL(X®) can be treated as a combination of the propositional
dynamic logic PDL [14, 15, 35], the description logic X©, and the action formalism
proposed by Baader et al. [4]. Firstly, the syntax of roles, concepts, RBoxes, TBoxes
and ABoxes of DDL(X®) are the same with those of the description logic X,
with the exception that the @ constructor is not allowed in TBoxes. Secondly, the
syntax of DD L(X®)-formulas is similar to the syntax of PDL-formulas, except that
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4 L. Chang et al.

the propositions in PDL-formulas are replaced here by ABox assertions. Finally,
the syntax of actions is the same in both PDL and DDL(X®); however, each
atomic action in D D L(X®) will be further specified by a triple (pre, occ, post), thus
preserving Baader et al.’s action formalism. From the point of view of knowledge
reasoning, a feature of DDL(X®) is that many inference problems on actions
such as the realizability problem, the executability problem, and the projection
problem, can be reduced to the satisfiability problem which is equipped with tableau
decision algorithms. Therefore, DD L(X®) provides a family of powerful languages
for representing and reasoning about dynamic application domains.

It should be noted that the minimal description logic considered in DD L(X®) is
the logic 2£c0°. The reason is that both the “nominals” and the “@” constructor are
needed in our algorithms for deciding the satisfiability of formulas. However, from
the point of view of knowledge representation, any sublanguage of the description
logic 4LcH0IQ®, such as the 4£¢ and the 4£C0, can be used in DD L(X®) for the
description of static domain knowledge.

For the simplicity of presentation, when the logic DDL(X®) is presented for
the first time, each atomic action in it is just specified as a tuple (P, E), where P
is a finite set of ABox assertions for describing pre-conditions, and E is a finite set
of primitive literals for describing unconditional post-conditions. We will develop a
tableau algorithm for the logic in such a case, and then extend both the logic and the
reasoning mechanisms to support occlusions and conditional post-conditions in the
description of atomic actions.

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction to description logics used in DD L(X®). Section 3 presents the syntax
and semantics of DD L(X®), and gives an example to illustrate its expressive power.
In Section 4, reasoning tasks on the knowledge described by DD L(X®) are formally
defined; it is demonstrated that three primary reasoning tasks on actions can be
reduced to the satisfiability problem on formulas. Section 5 provides a tableau
algorithm for deciding the satisfiability of DD L(X®)-formulas; the termination,
soundness and completeness of this algorithm are proved, and the complexity
of it is investigated. In Section 6, both the logic DDL(X®) and the reasoning
mechanisms are extended to support occlusions and conditional post-conditions in
the description of atomic actions, so that the logic is compatible with Baader et al.’s
action formalism. Section 7 investigates the relationship between DDL(X®) and
some known formalisms, and Section 8 concludes the paper.

2 Description Logics

As a kind of languages for knowledge representation, the intuition of description
logics is to define concepts of a domain and then use these concepts to specify
properties of objects and individuals occurring in the domain. Primitive symbols of
description logics are a set Ng of role names, a set N¢ of concept names, and a set
Nj of individual names. Starting from these symbols, each description logic provides
a set of constructors to form roles and complex concepts.

acc (Attributive Language with Complements) is one of the most influential
description logics [37]. It provides negation, conjunction, disjunction, existential
restriction and value restriction constructors for the construction of concepts. To
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A Family of Dynamic Description Logics 5

meet the needs of applications that require more expressivity, various extensions
of 4L¢C were proposed by adding constructors into it. The availability of additional
constructors is usually indicated by concatenating the corresponding letters [4]; for
example, # stands for role hierarchies, Q stands for number restrictions, 7 stands for
inverse roles, and O stands for nominals. In DD L(X®), a special constructor denoted
by “@” will be used; this constructor is known from hybrid logic [1, 23] and is slightly
non-standard in description logics.

Constructors used in the description logics ranging from ALC to ALCHOIQ® are
listed in Table 1, where A; € N¢, R; € Ng, p € Ny, and n is a non-negative integer.

The semantics of concepts and roles constructed in description logics are defined
in terms of an interpretation I = (A’,.7), where A’ is a non-empty set composed
of individuals, and -/ is an interpretation function which maps each concept name
A; € N¢ to a set Ai’ c Al maps each role name R; € Ny to a binary relation Ri’
C Al x A, and maps each individual name p; € N; to an individual p! € A’. The
extension of -/ to arbitrary concepts and roles is inductively defined, as shown in the
forth column of Table 1.

If role hierarchies are supported by a description logic, then each role hierarchy is
also called a role inclusion axiom, and each finite set of role inclusion axioms is called
an RBox.

A concept definition is an identity of the form A = C, where A is a concept name
and C a concept. A TBox is a finite set of concept definitions with unique left-hand
sides [4]. A TBox is said to be acyclic if there are no cyclic dependencies between the
definitions. Every TBox mentioned in this paper is assumed to be acyclic.

An ABox assertion is of the form C(p), =C(p), R(p, q) or =R(p, q), where p, q €
Ni, Cis aconcept, and R is arole. A finite set of ABox assertions is called an ABox.

Given an interpretation I = (A’, -1), it is a model of an RBox %, denoted by I =
R, iff RT € R for every role inclusion axiom R C R’ € R; it is a model of a TBox
T, denoted by I |= 7, iff Al = C’ for every concept definition A =C € T;itis a
model of an ABox 4, denoted by I = 4,iff p! € C! (resp. p! ¢ C, (p’,q") € R!,and
(p',q") ¢ R") for every ABox assertion C(p) (resp. ~C(p), R(p, q) and —=R(p, q))
contained in 4.

Various reasoning problems are considered for description logics. For the purpose
of this paper, we investigate the ABox consistency problem.

Table 1 Syntax and semantics of the DLs ranging from AL to ALCHOIQ®

Constructor Syntax Semantics
4cc  Concept name Aj Al.l c Al
Role name R; RiI c Al x Al
Negation -C ANC!
Conjunction cnD cl'np!
Disjunction CubD clup!
Existential restriction  3R.C {x e Al | thereisa y € Al with (x, y) € R' and y € C'}
Value restriction VR.C {x e Al |forall y € Al:if (x,y) € R!, then y € C'}
H Role hierarchy RC R if (x, y) € R!, then (x, y) € R
0 Nominal {p} {p'}
I Inverse role R~ {(r.x)| (x,y) € R}
Q Qualified number >nR.C {xeal|g y € Al (x, y) € R! and y € chy>ny
restriction <nR.C {(xeAl|g{yeA!|(x,y)eRl andye Cl}<n}
@ @ constructor @,C Alif p! e C!, and ¥ otherwise.
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6 L. Chang et al.

An ABox 4 is said to be consistent w.r.t. an RBox ® and a TBox 7 iff there is an
interpretation I = (A!, ysuchthat I =%, [ =7 and I = 4.

It is known that the ABox consistency problem is PSPACE-complete for the
DLs 4crc, 4£c0, 4Lc0Q and 4Lc0Q [4], is PSPACE-complete for both 4£C#H0 and
ALcHoQ, [32], is EXPTIME-complete for A2¢0rI [1], and is NEXPTIME-complete
for ALc01Q [41]. Moreover, since this reasoning problem is EXPTIME-complete for
the DL s#0I and NEXPTIME-complete for S#0IQ [44], we have the result that it is
EXPTIME-complete for 2.c#H0I and NEXPTIME-complete for 2LCHOIQ.

As mentioned in the introduction, the @ constructor will be used in our deciding
algorithms. Therefore, it is necessary to investigate the ABox consistency problem in
the case that the @ constructor is occurring in ABoxes but absent from TBoxes.

For any DL X e {4£c0, ALCHO, ALCOI, ALCOQ, ALCHOI, ALCHOQ, ALCOIQ,
ALCHOIQY, if the @ constructor is absent from TBoxes, then the ABox consistency
problem of the DL X ® can be reduced to the ABox consistency problem of the logic
X. More precisely, for any ABox 4 of X® and any RBox ® and TBox T of X, we
can operate according to the following steps [25]:

1. Convert every concept occurring in 4 into its negation normal form (i.e., nega-
tion signs occur only in front of concept names or nominals); this conversion can
be done by pushing negations inwards according to the following equivalences:

-—=C = C -(@,C) = @,—-C
—-(CnD) = =Cu-—-D —-(CuD) = =-Cn=-D
-@3R.C) = VR~C —(VR.C) = 3R~C

—(<nR.C) = >(n+ DHR.C =(>(n+1)R.C) =<nR.C

—(>0R.C) = A;n—A; forany A; € N¢.

2. For every concept of the form @,C occurring in 4, replace it by a concept
Ju.({p} 1 C), where u is any role name not occurring in X, 7 and 4. Repeat this
process, until the @ constructor does not occur in 4 any more.

It is obvious that the above two steps can be done in polynomial time in the size
of 4. Let 4’ be the resulting ABox. Then it is easy to see that 4’ is an ABox of the
DL X, and the size of 4’ is polynomial in the size of 4. Furthermore, it can be proved
that 4 is consistent w.r.t. ® and 7 iff 4’ is consistent w.r.t. ® and 7 [25]. Therefore,
we get the following result:

Theorem 1 Let X € {4LCO, ALCHO, ALCOI, ALCOQ, ALCHOI, ALCHOQ, ALCOIQ,
4LCcHOIQ). For any ABox 4 of the logic X©, and any RBox R and TBox T of the
logic X, the complexity upper-bound for deciding the consistency of A w.r.t. R and T
is PSPACE if X € {4LCO, ALCHO, ALCOQ, ALCHOQY), is EXPTIME if X € {4LCOI,
ALcHor), and is NEXPTIME if X € {4LC01Q, ALCHOIQ).

3 The Dynamic Description Logic DDL(X®)

In this section, we firstly present the syntax and semantics of DDL(X®), and then
introduce an example to illustrate its expressive power.
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A Family of Dynamic Description Logics 7

3.1 Syntax of DDL(X®)

Primitive symbols of DDL(X®) are a set N; of individual names, a set Ny of
role names, a set N¢ of concept names, and a set N4 of action names. Starting
from these symbols, basic citizens of DD L(X®) such as roles, concepts, actions and
formulas, are inductively defined with the help of constructors coming from both the
description logic X© and the propositional dynamic logic PDL.

Roles of DD L(X®) are defined by the same syntax rule of the roles of the DL X©.
For example, R is a role of the dynamic description logic D D L(4£c0®) if and only
if R € Ng. As another example, roles of DD L(A4LcHOIQ®) are formed according to
the following syntax rule:

R = R | R

L

where R; € Ng. For the simplicity of presentation, if inverse roles are supported
by DDL(X®), then we introduce the function Inv presented in [22] to return the
inverse of arole, i.e., Inv(R;) := R; and Inv(R;) := R; for any R; € Ng.

In the case that role hierarchies are supported by X©, we call each role hierarchy
of the form R C R’ as a role inclusion axiom, and call each finite set of role inclusion
axioms as an RBox of DDL(X®).

Concepts of DDL(X®) are defined by the same syntax rule of the concepts of
the DL X®. For example, concepts of DD L(A£C0®) are formed according to the
following syntax rule:

C,.C = A; | -C | CuC | CnC | VR.C | 3R.C | {p} | @,C

where A; € N¢, pe N;, and R is a role. As another example, concepts of
DD L(accHo1Q®) are formed according to the following syntax rule:

C,C == A | =-C|Cul | CnC | YR.C
| 3RC | =nRC | =nR.C | {p} | @,C

where A; € N¢, p € Ny, Ris arole, and n is a non-negative integer.

Concepts of the form T and L are introduced as abbreviations of C L —=C and
C i —C respectively, where C is any concept.

A concept definition is an identity of the form A = C, where A is a concept name
and C is a concept of DDL(X®).

For each finite set 7 of concept definitions, if no concept name occurs on the left-
hand sides for more than once, and no @ constructor occurs on the right-hand sides,
then we call 7 a TBox of DDL(X®).

A TBox is said to be acyclic if there are no cyclic dependencies between the
definitions contained in it. In this paper, we assume that every TBox of DD L(X®)
is acyclic.

With respect to a TBox 7, a concept name A; € Nc is called defined if and only
if it occurs on the left-hand side of some concept definition contained in 7, and is
called primitive otherwise.

For any concept C and any TBox 7, we use Cr to denote the expansion of C
w.r.t. T, and define it as the concept constructed as follows: for any concept name A
occurring in C, if it is defined by some concept definition A = D € 7, then replace
each occurrence of A in C with D; repeat this process, until no defined concept names
occur in C.
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8 L. Chang et al.

Formulas of DD L(X®) are formed according to the following syntax rule:

0.9 u= Cp) | R(p.q) | <m>¢ |l | —p | oVve' | ong

where p,q € Ny, C is a concept, R is a role, and 7 is an action. Formulas of the
form C(p), R(p,q), <7 > ¢, [7]p, =, ¢ V¢ and ¢ A ¢' are respectively called
concept assertion, role assertion, diamond assertion, box assertion, negation formula,
disjunction formula, and conjunction formula.

Formulas of the form ¢ — ¢', ¢ <> ¢/, true and false are introduced as abbrevia-
tions of —¢ V ¢, (—p V ¢') A (—¢’ V @), T(p) and L(p) respectively, where p is any
individual name.

Concept assertions, role assertions, negations of concept assertions, and negations
of role assertions are all called ABox assertions. A finite set of ABox assertions is
called an ABox of DDL(X®).

With respect to a TBox 7, an ABox assertion is called a primitive literal if it is of
the form A(p), ~A(p), R(p, q) or =R(p, q) with A a primitive concept name, R a
role and p,q € Nj.

For any ABox assertion ¥/, we use ¥~ to denote an ABox assertion which is
logically equivalent with —y, and define it as follows: if ¢ is of the form C(p),
—C(p), R(p, q) or =R(p, q), then ¢~ is the ABox assertion =C(p), C(p), ~R(p, q)
and R(p, q) respectively.

For any ABox 4, we use 4~ to denote the set { ¥~ | ¥ € 4 }, and use Conj(4) to
denote the conjunction of all the ABox assertions contained in 4.

For any ABox 4 and any RBox R, we use Az to denote the closure of 4 w.r.t. R,
and define it as the smallest set satisfying the following conditions:

- AC A,

- it R(p, q) € Az, then Inv(R)(q, p) € Az;

- i =R(p, q) € A, then ~Inv(R)(q, p) € Ag;

- if R(p,q) € 43 and RT R € ®,then R'(p,q) € Ay and
- if=R'(p,q) € 23 and RC R’ € %, then = R(p, q) € 75.

Actions of DDL(X®) are formed according to the following syntax rule:

a,n = o | @? | nUR | ;7 | w¥
where @ € N4, and ¢ is a formula. Actions of the form «, ¢?, 7 Un’, 7; 7’ and *
are respectively called atomic action, test action, choice action, sequential action and
iterated action.

With respect to a TBox T, an atomic action definition of DD L(X®) is of the form
o = (P, E), where

- a€eN As
— Pis afinite set of ABox assertions for describing the pre-conditions, and
— Eis afinite set of primitive literals for describing the post-conditions.

For each finite set 4, of atomic action definitions, if no action name occurs on the
left-hand sides for more than once, then we call 4, an ActBox of DDL(X®).

With respect to an ActBox 4., an atomic action « is called defined if and only
if o occurs on the left-hand side of some atomic action definition contained in A4.;
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A Family of Dynamic Description Logics 9

an action 7 (or a formula ¢) is called defined if and only if all the atomic actions
occurring in 7 (resp. occurring in ¢) are defined w.r.t. 4-. In DD L(X®), we assume
that all the actions and formulas are defined w.r.t. some ActBox.

For any atomic action «, if it is defined w.r.t. some ActBox, then we use Pre,
to denote the set of its pre-conditions, and use Eff, to denote the set of its post-
conditions.

A knowledge base of DD L(X®) is of the form K = (%, T, 4, 4), where R, T, 4,
and 4 are respectively an RBox, a TBox, an ActBox and an ABox.

3.2 Semantics of DDL(X®)

The semantic model of DD L(X®) is a combination of the interpretation of descrip-
tion logics and the model of propositional dynamic logic.
A DDL(X®)-model is of the form M = (W, T, A, I), where,

— W s a non-empty finite set of states;

— T is afunction which maps each action name o € N4 to a binary relation 7(«) C
W x W,

— Ais anon-empty set of individuals; and

— I is a function which associates with each state w € W a DL-interpretation
I(w) = < A, 1™ > where the function -/®)

— maps each concept name A; € N¢ to a set Al-l(“’) CA,

— maps each role name R; € Ng to a binary relation Ri[(w) C A x A, and

— maps each individual name p € N; to an individual p’™ e A, with the
constraints that p/™ = p/™) for any state w’ € W, and p’/™ # ¢'®™ for
any individual name ¢ which is different from p. Since interpretations of p
are the same in every state, the interpretation p’® is also represented as p’.

It should be noted that here we take the constant domain assumption [42] and
the unique name assumption [3]. Moreover, individual names contained in N; are
treated as rigid designators [42].

Given a model M = (W, T, A, I), the semantics of roles, concepts, formulas and
actions of DD L(X®) are defined inductively as follows.

Firstly, for any state w € W, each role R is interpreted as a binary relation R/
C A x A, and each concept C is interpreted as a set C!™ c A. The concrete
semantic definitions are similar to those of the description logic X©, except that
here each interpretation is associated with a state. For example, in the case that
X@ is the description logic ALcHOIQ®, the semantics of roles and concepts of
DD L(ALcH01Q®) are defined inductively as follows:

(R = {(y,0) | (x,y) € R'™};

(_|C)I(w) — A\Cl(w);

(Cu D)I®) = ¢l y plw,

(Cn D)l = Clw) A plw,

YR.O)'™W ={xe Alforally € A:if (x, y) € RI™ then y e CI™};
(AR.C)!™ = { x € A | there is some y € A such that (x,y) € RI®™ and y
Cley;

7. {p}'™ ={p};

SAIAIE Il
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10 L. Chang et al.

8. (=nS.O)™W=(xeA|tlyeA|(x,y)eS®™andyeC™}<n};
9. >nS.O™W=(xeAltlyeA|(x,y)eS®andyeCI™}>n};
10. (@,0)!™ = A'if p! € C!™, and ¢ otherwise.

Secondly, for any state w € W, the satisfaction-relation (M, w) = ¢ (or simply
w E ¢ if M is understood) for any formula ¢ is defined inductively as follows:

11. (M,w) = C(p) iff p! e CI™;

12. (M, w) = R(p, q) iff (p’,q") € R'™;

13. (M, w) =< m > ¢ iff some state w’ € W exists with (w,w’) € T(xr) and
(M, w) &= ¢;

14. (M, w) E [r]e iff for every state w’ € W:if (w, w’) € T(rr) then (M, w') = ¢;

15. (M, w) | —¢ iff it is not the case that (M, w) = ¢;

16. (M, w) =@ vy iff (M, w) E=¢or (M, w) = v;

17. (M, w) = Ay iff (M, w) | ¢ and (M, w) = .

Finally, each action 7 is interpreted as a binary relation 7'(x) € W x W according
to the following definitions:

18. T ={(w,w) | we Wand (M,w) =¢ };

19. TarUn)y=T@@)U T,

20. T(m;n') ={(w,w’) | there is some state u e W with (w,u) € T(r) and
(u,w") e T(x")}

21. T(z*) = reflexive and transitive closure of 7'(r).

A model M satisfies an RBox %, denoted by M (= %, if and only if R'™ = R/
for every role inclusion axiom R E R’ € £ and every state w € W.

A model M satisfies a TBox 7T, denoted by M = 7, if and only if A’™ = C'™ for
every concept definition A = C € 7 and every state w € W.

A state w of a model M satisfies an ABox 4, denoted by (M, w) = 4, if and only
if (M, w) [ ¢; for every ABox assertion ¢; € 4.

A feature of DDL(X®) is that each atomic action « is further specified by some
atomic action definition o = (P, E), where P and E respectively describe the pre-
conditions and the post-conditions for the execution of «. We adopt the minimal-
change semantics used in [4] and define the semantics of atomic action definitions as
follows.

With respect to an RBox ® and a TBox 7, a model M = (W, T, A, I) satisfies an
atomic action definition o = (P, E), in symbols M = 7+ « = (P, E), if and only if
ME®R,ME=T,and

T ={(w,w)eWxW| (M,w) = P,
both A*N A~ =@and A"™) = (A'™ U A*)\ A~ for each
concept name A which is primitive w.r.t. T, and
both R"N R~ =@and R'™ = (R'™ UR")\ R~ for each
role name R. },
where A", A=, RT and R~ are some sets constructed as follows:

- AT={p'|A(p e E},
- AT =({p'|-A(p) € E},
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A Family of Dynamic Description Logics 11

- R :={(".q) I R(p.q € E}},
- R :={(".q")|-R(p.q) € E} }.

According to this definition, for any pair (w, w’) € T(«), any primitive concept
name A, and any role name R, the interpretations A/® and A’™" should satisfy
that A* € AT™) A= N A'™) = ¢, and nothing else changes from A/™ to A’™"; the
interpretations R/™ and R’™" should satisfy that R* € R'™), R~ N R'™) = ¢, and
nothing else changes from R/®™ to R!™". Thus, T(«) enforces the minimal-change
semantics.

A model M satisfies an ActBox 4, w.r.t. an RBox % and a TBox 7, in symbols
M =x 1 A, if and only if M =4 ¢ o = (P, E) for every atomic action definition
o= (P, E) € /qc.

3.3 Example Description by DD L(X®)

As an example, consider a Web service system in which customers are able to
buy/return CDs and books online with credit cards [18]. In this section, we model
some high-level features of this system by DD L(ALcH01Q®).

First of all, primitive symbols which will be used are listed as follows:

Nc¢ := { person, creditcard, cd, book, customer, VI PCust, captiousCust, instore };

Ng := { boughtCD, bought Book, bought, has, holds, returned },

N :={ Tom, Jack, Mastercard, Visa, King Lear, Harry Potter, Grimms FairyTales,
BackStreet Boys, Schub ertSymphonien };

Ny = { buyCDrom Bac, buyCD1om schs buyC D jack, Bacs buyC D jack,schs
buyBookrom kin, buy Bookrom, tar, bty Bookrom. Gri,
buy Book jack, kin, by Book juck, Har, buy Book jack,Gri,
returnC D 1om. Bac, 1eturnC D rom. sch, returnC D jack. ac, returnC D jack sch,
return Bookom, kin, return Book o, tar, return Book rom. Gri,
return Book jyck. kin, return Book juck, rar, return Book juck Gri,

order e, orders.y,, orderg;,, order g, orderc,; }.

Starting from these primitive symbols, an RBox Ky, and a TBox Zy,, are
constructed for describing the static domain knowledge. The RBox Ky, is composed
of the following role inclusion axiom:

bought © has
and the TBox 7y, is composed of the following concept definitions:

customer = person 1 3Jholds.creditCard

VIPCust

customer 11 > 3 bought.(cd U book)

captiousCust = customer 1M > 2 returned.cd
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12 L. Chang et al.

These definitions state that a customer is a person holding some credit card; a VIP
customer is a customer who has bought at least 3 CDs or books; and a captious
customer is a customer who has returned at least 2 CDs.

The knowledge on atomic Web services is described by an ActBox Ac,,, with five
groups of atomic action definitions.

Firstly, for describing the service that Tom buy the CD BackStreetBoys, an atomic
action named b uyC Do, pac 1s specified as follows:

b MyCD Tom, Bac
= ({ customer(Tom), cd(BackStreet Boys), instore(BackStreet Boys) },
{ —instore(BackStreet Boys), b ought(Tom, BackStreet Boys) } ).

According to this definition, the action buyCDrym s is applicable if Tom is a
customer and BackStreetBoys is a CD in store; furthermore, if it is executed, then
the result is that Tom has bought BackStreetBoys and BackStreetBoys is not in store
any more. The atomic actions buyCD 1o, sch, buyCD juck, Bac a0d buyC D jqck sch are
similarly defined in 4¢y,,, respectively for describing the services that Tom buy the
CD SchubertSymphonien, Jack buy the CD BackStreetBoys, and Jack buy the CD
SchubertSymphonien.

Secondly, for describing the service that Tom buy the book KinglLear, an atomic
action named b uy Book . kin 1s defined as follows:

b uy BOOkTom,Kin
= ({ customer(Tom), book(KingLear), instore(King Lear) },
{ —instore(King Lear), bought(Tom, KingLear) } ).

The atomic actions buyBookrom tars buyBookrom cri,  buyBook juck kin,
buy Book jaci. t1ar and buy Book jacr. Gri are similarly defined.

Thirdly, for describing the service that Tom return the CD BackStreetBoys, an
atomic action named returnC Dy, pac is defined as follows:

returnC D 1o Bac
= ({ customer(Tom), cd(BackStreet Boys),
bought(Tom, BackStreet Boys), —instore(BackStreet Boys) },
{ instore(BackStreet Boys), returned(Tom, BackStreet Boys),
—has(Tom, BackStreet Boys) } ).

The atomic actions returnCD 1o, sch, returnCD jaex pac and returnCD juex scn are
similarly defined.

Fourthly, for describing the service that Tom return the book KingLear, an atomic
action named return Bookrom, kin is defined as follows:

return Bookrom. kin
= ({ customer(Tom), book(KingLear), bought(Tom, King Lear),
—instore(KingLear) },

{ instore(King Lear), returned(Tom, King Lear), —has(Tom, KingLear) } ).
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A Family of Dynamic Description Logics 13

The atomic actions returnBookrom tar, returnBookrem cri, returnBook juck kin,
return Book juck, prqr and return Book juck Gy are similarly defined.

Finally, for describing the service that the Web service agent order the book
BackStreetBoys from the publisher, an atomic action named order ,. is defined as
follows:

order pae
= ({ (book u cd)(BackStreet Boys), —instore(BackStreet Boys) },
{ instore(BackStreet Boys) } ).

The atomic actions order s, order g, orderg,; and orderg;, are similarly defined.

The knowledge represented above can also be described with Baader et al.’s
formalisms [4, 24, 30].

From the point of view of knowledge representation, a primary feature of
DDL(X®) is that many complex actions (or composed Web services) can be further
specified.

For example, a composed Web service named buyBooky, might be repre-
sented as

b uyBOOkTom,Har ) b uy BOOk]ack,Har

This service is useful for both Tom and Jack to buy the book Harry Pott.
As another example, a composed Web service named VIPbuyrom, g.r might be
represented as

VIPCust(Tom)? ; ( ( instore(Harry Pott)? ; buyBookrom, tar )

U ( —instore(Harry Pott)? ; ordery, ; buyBookrom, tar ) )

In this service, the test action “VIPCust(Tom)?” will be firstly executed to
check whether Tom is a VIP customer; if the result is true, then the action
“buyBookrem na” Will be executed in the case that Harry Pott is in store, and the
actions “order ., and “buyBookr,m. na” Will be executed sequentially in the case
that Harry Pott is not in store.

In fact, with the help of the sequence-, choice-, test- and iteration-constructors
on actions, the “Sequence”, “Choice”, “Any-Order”, “Iterate”, “If-Then-Else”,
“Repeat-While” and “Repeat-Until” control structures adopted by the Web service
ontology OWL-S [27] can be described in DD L(X®) according to the following
definitions:

/ A )
sequence(mr, ') = mw;mw
A

choice(m, ') Tunr’

L

any — order(w, 7t") (m;7)YU &' m)

if Y thenmelsenr’ & (Y?;m)U((—y)? ;7))

1>

*

iterate(m) T
while y domr & (Y?;7)*: (—)?
dow until y £ 75 ((=y)?;7)" ¥?
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14 L. Chang et al.

From the point of view of knowledge representation, the second feature of
DDL(X®) is that many properties on actions (or Web services) can be stated
explicitly by formulas.

On the one hand, necessary conditions for executing actions can be stated by
diamond assertions. For example, the following formula states that a necessary
condition for executing the action VIPbuyrom mar is that Tom is a VIP customer
and HarryPott is a book:

< VIPbuyrom, tar > true — (VIPCust(Tom) A book(Harry Pott))

As another example, the following formula states that the action “buyCDrom pac”
and the action “buyCD s,k pq.” can never be executed sequentially:

= < buyCDrom, Bac; buyCDJack,Bac > frue

On the other hand, results on the execution of actions can be stated with box
assertions. For example, the following formula states that Tom will have the book
HarryPott once the action VIPbuyrom, ar is executed:

[VIPbuyrom, tarlhas(Tom, Harry Pott)

As another example, the following formula states that if Tom ever returned some
CD, then he will become a captious customer once the action returnC Dy, e OF
the action returnC Doy, scn 1 executed:

(Freturned.C D)(Tom) — [returnC D1y, pac U returnC Doy, scnlcaptiousCust (T om)

As the last part of the Web service system, the current state is described by an
ABox A4, with the following ABox assertions:

person(Tom), person(Jack), creditCard(Mastercard), creditCard(Visa),
book(Harry Potter), book(KingLear), book(GrimmsFairyTales),
cd(BackStreet Boys), cd(Schub ertSymphonien),

holds(Tom, Mastercard), holds(Jack, Visa),

instore(King Lear), instore(GrimmsFairyTales),

instore(BackStreet Boys), —instore(Harry Potter).

In the next section, we will take the knowledge base Kuop = (Rshop» Thops Acshops
Ashop) as an example for investigating the inference problems of DDL(X®).

4 Inference Problems in D DL(X9)

Inference problems in DD L(X®) are divided into two groups. One is composed of
those being studied in description logics, such as the consistency problem of ABoxes
and the satisfiability problem of concepts. The other group deals with actions and is
new introduced in DD L(X®).

Inference problems of the first group can also be redefined with DDL(X®)-
models. For example, the consistency of ABoxes can be defined as follows:

@ Springer



A Family of Dynamic Description Logics 15

Definition 1 An ABox 4 is consistent w.r.t. an RBox % and a TBox 7 if and only
if there are some model M = (W, T, A, I) and some state w € W such that M = R,
M =T and (M, w) = 4.

As another example, the satisfiability of concepts can be defined as follows:

Definition 2 A concept C is satisfiable w.r.t. an RBox ® and a TBox 7 if and only
if there are some model M = (W, T, A, I) and some state w € W such that M = R,
M =T and C'™ £ ¢,

It is obvious that the satisfiability problem of concepts can be reduced to the
consistency problem of ABoxes; i.e.,

Theorem 2 A concept C is satisfiable w.r.t. an RBox R and a TBox T if and only if
the ABox {C(p)} is consistent w.r.t. R and T, where p is an individual name does not
occurin C, R and 7.

Since actions do not occur in concepts, ABoxes, RBoxes and TBoxes of
DDL(X®), the consistency problem of ABoxes as well as the satisfiability problem
of concepts can be decided with the help of standard reasoning mechanisms provided
by the description logic X©.

For the second group of inference problems, we firstly introduce the PE-
consistency problem of atomic action definitions.

Definition 3 An atomic action definition o = (P, E) is PE-consistent w.r.t. an RBox
K and a TBox 7 if and only if both the ABox P and the ABox E are consistent w.r.t.
® and T.

Definition 4 An ActBox 4. is PE-consistent w.r.t. an RBox ® and a TBox 7 if and
only if every atomic action definition contained in 4. is consistent w.r.t. ® and 7.

Given a knowledge base K = (R, T, 4, 4) of DD L(X®), it should be guaranteed
that the ABox 4 is consistent w.r.t. ® and 7, and the ActBox 4, is PE-consistent
w.r.t. £ and 7. This is the premise for investigating other inference problems
introduced in DDL(X®). As an example, for the knowledge base presented in
Section 3.3, it can be decided that Ay, is consistent w.r.t. Ksuop and Tipep, and Aegop
is PE-consistent w.r.t. Kspop and Zjgp-

The second inference problem introduced in DDL(X®) is the satisfiability/
validity problem of formulas.

Definition 5 A formula ¢ is satisfiable w.r.t. an RBox %, a TBox 7 and an ActBox
4. if and only if there is amodel M = (W, T, A, I) and a state w € W such that M
R, M ': T7 M ':R.'f ’qf and (M7 w) }: .

Definition 6 A formula ¢ is valid w.r.t. an RBox ®, a TBox 7 and an ActBox 4. if
and only if for any model M = (W, T, A, I) with M =R, M =T and M =4 ¢ A,
we have (M, w) = ¢ for every state w € W.
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16 L. Chang et al.

It is obvious that the validity problem can be reduced to the satisfiability prob-
lem;i.e.,

Theorem 3 A formula ¢ is valid w.r.t. R, T and A if and only if the formula —¢ is
unsatisfiable w.r.t. R, T and A.

The third inference problem introduced in DD L(X®) is the consistency problem
(also called realizability problem [26]) of actions. Intuition of this inference problem
is to decide whether a given action makes sense with respect to the knowledge
specified by an RBox, a TBox and an ActBox. With D D L(X ®)-models, it is formally
defined as follows:

Definition 7 An action 7 is consistent (also called realizable) w.r.t. an RBox %, a
TBox 7 and an ActBox 4. if and only if there is a model M = (W, T, A, I) such that
MER, MET, MEgs Acand T(w) # 0.

For example, considering the knowledge base presented in Section 3.3, the
following sequential action is realizable w.r.t. Rsnop, Tnop aNd Acgnop:

buyBookrom kin ; return Bookrom kin ; by Book jack kin
However, the action
buyBooktom kin ; buyBook jack Kin

is not realizable W.r.t. Rsnop, Tsnop and Acgpgp.
According to the definition, it is obvious that the realizability problem of actions
can be reduced to the satisfiability problem of formulas; i.e.:

Theorem 4 An action n is realizable w.r.t. R, T and A; if and only if the formula
< 7 > true is satisfiable w.r.t. R, T and 4.

The fourth inference problem introduced in DDL(X®) is the executability
problem of actions [4]. Intuition of this inference problem is to decide whether a
given action can be performed successfully starting from the states described by a
given ABox. In order to define this inference problem with DD L(X®)-models, we
introduce some notations.

Let ®, 7 and 4, be an RBox, a TBox and an ActBox respectively; let M =
(W, T, A, I) be amodel with M =4 ¢ 4.. Then,

1. M is called complete w.r.t. the ActBox A4, if and only if for any state w € W and
any atomic action definition o = (P, E) € 4.: if (M, w) |= P, then there must be
some state w’ € W with (w, w’) € T(x);

2. astate w’ € Wis called connected with a state w w.r.t. 4. if and only if

— w’ and w are the same state, or

— there exist n (n > 1) atomic actions «y, ..., «, defined in 4, and n — 1 states
wy, ..., Wy—1 € W such that (w, w;) € T(a)), (wi, wit1) € T(eiyy) for every
1<i<n-2and (w,—1, w") € T(ay);

3. Mis called complete w.r.t. a state w and the ActBox 4. if and only if for any state
w’ € W and any atomic action definition « = (P, E) € 4.:if (M, w') &= P and w’
is connected with w w.r.t. 4., then there must be some state w” € W such that
w',w") € T(a).

@ Springer



A Family of Dynamic Description Logics 17

Based on these notations, the executability of actions is defined as follows:

Definition 8 An action n is executable on states described by an ABox 4 w.r.t. an
RBox ®,a TBox 7 and an ActBox 4. if and only if for any model M = (W, T, A, I)
andanystatew e W:if M ER, M =T, M =4 .+ Ac, (M, w) = 4, and M is complete
w.r.t. w and 4., then there must be a state w’ € W such that (w, w’) € T(x).

The above definition is inspired by the PDL-based framework proposed by
De Giacomo et al. for reasoning about actions [9]. In De Giacomo et al’s framework,
the executability of an action 7 on the states described by a formula S is captured
by a logical implication of the form I' = Sy — < n > true, where I' is a finite set
composed of precondition axioms, effect axioms and frame axioms, and the logical
implication ' = Sy —< 7 > true states that for any model M: if all the axioms
contained in I hold in every state of M, then the action = will be performed in every
state satisfying the formula ;.

In DDL(X®), based on the syntax and semantics of atomic action definitions, all
the knowledge described by effect axioms and frame axioms in De Giacomo et al’s
framework are captured here by an ActBox. Furthermore, for each precondition
axiom of the form < « > frue <> Pre in De Giacomo et al’s framework (where « is an
atomic action and Pre is a formula), the knowledge described by the formula < o >
true — Pre is also captured by the ActBox; what is left to deal with is the knowledge
described by the formula Pre —< « > true, which states that the action « will be
performed whenever the precondition Pre is satisfied. Therefore, in DDL(X®), we
introduce the notation of complete model. Based on this notation and be similar with
that stated by De Giacomo et al’s formula, if an action x is executable on the states
described by an ABox 4 w.r.t. an RBox ®, a TBox 7 and an ActBox 4., then we
can state that for any model M:if M =R, M =T, M =« ¢ 4c, and M is complete
w.r.t. 4., then the action 7 will be performed in every state satisfying the ABox 4.
Moreover, since here we only care about each state w which satisfies the ABox 4,
we can replace the premise “M is complete w.r.t. 4-” with a premise “ M is complete
w.r.t. the state w and the ActBox 4., and then get Definition 8.

As an interesting example, for the knowledge base presented in Section 3.3, the
following choice action is executable on the states described by Ag,op W.I.t. Riop, Tihop
and Acgpop:

buyCDrom.scn U orderse

However, neither the action “buyC Do, s nor the action “orders.,” is executable
on the states described by A, .

With the following theorem, the executability problem of actions can be reduced
to the validity problem of formulas:

Theorem 5 An action w is executable on the states described by an ABox A w.r.t. an
RBox R, a TBox T and an ActBox A if and only if the following formula is valid
w.r.t. R, T and A;:

[(¢) U...Ua,)*ITT — (Conj(a) —< 7 > true)
where ay, ..., oy, are all the atomic actions defined in A, and T1 denotes the formula

(Conj(Prey,) — < aj > true) A ... A (Conj(Pre,,) — < o), > true).
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18 L. Chang et al.

In this theorem, the formula [(¢; U ... U ;) *]T1 is constructed to guarantee that for
any model M = (W, T, A, I) and any state w e Wwith M =R, M =7 and M |=4 +
Ar: (M, w) = [(og U ... Ua,)*]IT if and only if M is complete w.r.t. w and 4.. Based
on this result, the correctness of Theorem 5 is an easy consequence of Definition 8.

If an action 7 is executable on the states described by an ABox 4, then we
want to know whether applying it achieves some desired effect, i.e., whether some
formula which we want to make true really holds after performing the action. Such
an inference problem is called the projection problem [4,36]. It is formally defined in
DDL(X®) as follows:

Definition 9 With respect to an RBox ®, a TBox 7 and an ActBox 4., a formula
is a consequence of applying an action w on the states described by an ABox 4 if and
only if for any model M = (W, T, A, I) and any statesw, w' € W:if M =R, M =T,
M =7 Ac, (M, w) = 4 and (w, w') € T(x), then it must be (M, w') = .

For example, considering the knowledge base presented in Section 3.3 again, the
formula “VIPCust(Tom)” is a consequence of applying the following sequential
action on the states described by 4g.p:

buyCD71om, ac ; buyBookrom,Gri i buyBooktom, kin

but it is not a consequence of applying a single action among buyCDrom Bac,
buyBookrem, cri and buy Bookrom kin-

According to the definition, the projection problem of actions can also be reduced
to the validity problem of formulas; i.e.:

Theorem 6 A formula  is a consequence of applying an action © on the states
described by an ABox A w.r.t. R, T and A4, if and only if the formula Conj(a) —
[l is valid w.r.t. R, T and A.

We conclude this section with the result that, in DDL(X®), the realizability
problem, the executability problem and the projection problem of actions can all
be reduced to the satisfiability problem of formulas.

5 A Satisfiability-Checking Algorithm for D DL(X®)-Formulas

Let ®, 7 be an RBox and a TBox respectively; let 4. be an ActBox which is PE-
consistent w.r.t. ® and 7; and let ¢ be a DD L(X®)-formula which is defined w.r.t.
4. In this section, we present an algorithm for deciding whether ¢ is satisfiable w.r.t.
R, T and 4.

For the ease of presentation, we firstly transform the formula ¢ into a normal form
nf(¢) according to the following steps:

1. Replace each occurrence of atomic actions with their definitions; i.e., for any
atomic action « occurring in ¢, if it is defined by some atomic action definition
o = (P, E) in 4., then replace each occurrence of « in ¢ by the pair (P, E). Let
¢’ be the resulted formula.
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2. Transform ¢’ into an equivalent one in negation normal form (i.e., negation signs
occur only in front of concept assertions or role assertions), by pushing negations
inwards according to the following equivalences:

(<> @) = [7]-e =([rlp) =<m>—gp Y =@
—(pAg) = gV -y —(pVve) = —pA—g

In the rest of this paper, for each atomic action « defined by some atomic action
definition a« = (P, E) € 4., we will use the pair (P, E) to denote the action «.

5.1 Algorithm Description

The algorithm presented here is in fact a combination of a tableau algorithm for the
propositional dynamic logic PDL [10, 35], the procedure investigated in Section 2 for
deciding the consistency of ABoxes of the description logic X©, and a modification
of the ABox updating algorithm proposed by Liu et al. [23].

The algorithm is based on the idea that ¢ is satisfiable w.r.t. ®, 7 and 4. if
and only if we can construct a DDL(X®)-model M= (W, T,A,I) and a state
wo € Wsuchthat M =R, M =7, M =« + 4. and (M, wy) = ¢. In order to denote
and manipulate the models and states explicitly in the algorithm, we introduce the
notations of prefixes, prefixed formulas, branches, and branch-model mappings.
Each prefix is introduced to denote some state of a model. Each prefixed formula
represents that the corresponding formula will hold on the state denoted by the
corresponding prefix. A branch is a set composed of prefixed formulas as well as
some auxiliary elements; by a branch-model mapping, each prefix occurring in the
branch is mapped to some state of a model. As a result, with these notations, the
process of constructing models for ¢ will be represented as a process of expanding
branches according to some tableau expansion rules.

Definition 10 A prefix is of the form o.¢ with ¢ an action and ¢ a set of primitive
literals, and is constructed according to the following syntax rule:

oe = @B,NDD | o;(P,E).(e\ (Ej{)ﬁ) U Efj{

where (@, #) and (P, E) are atomic actions,' o; (P, E) is a sequential action, and
(e \ (ER)U ER is a set composed of primitive literals. We also use oy.gy to denote
the prefix (@, ¥).0 and call it the initial prefix.

A prefixed formula is a pair o.¢ : ¢, where o.¢ is a prefix and ¢ is a formula.

In this definition, the prefixes are technically designed to guarantee that some
function 1 can be constructed to map each prefix o.¢ to some state i(o.€), satisfying
that:

— if the formula ¢ is satisfiable, then the initial prefix oy.&( is mapped to some state
satisfying ¢;

— the track of atomic actions executed from the state 1(0y.g9) to the state 1(o.€) is
recorded by the sequential action ¢; and

'Here (#, #) is a special atomic action introduced temporarily by the satisfiability-checking algorithm.
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— the accumulated post-conditions of the sequential action ¢ are captured by the
set g, so that the state i(o.¢) can be treated as the result of performing a special
atomic action (¥, €) on the state 1(oy.5p).

Definition 11 A branch B is a union of the following two sets:

— aset Bpr of prefixed formulas, and
— aset Bg of eventuality records, where each eventuality record is of the form X =
< * > ¢, with X a character string and < 7* > ¢ a formula.

For any branch B, we use IV to denote the initial view of B and define it as
follows:

IVg 2 (| 0o.60: Y € Band  is an ABox assertion ).

Tableau expansion rules used in the algorithm are listed in Figs. 1, 2, 3, and 4.

Figure 1 presents tableau expansion rules on inverse roles, conjunction formulas
and disjunction formulas. They are straightforward according to the corresponding
semantic definitions.

Figure 2 presents tableau expansion rules for non-atomic actions. The ;j;-,
i<>= 1= ?<=-, Upp- and U_. -rules are straightforward according to the semantics
of sequential actions, test actions and choice actions. The (-, *...- and X-rules are
designed for iterated actions; they are similar with the tableau rules introduced by
De Giacomo [10] for dealing with iterated eventualities in the propositional dynamic
logic. In our algorithm, if there is an iterated eventuality < 7* > ¢ which is prefixed
by some prefix and is not tagged, then a new character string X will be introduced
by the *_. -rule to tag this formula. This tag will be carried along with < 7* > ¢ as
while as this formula is propagated by the X-, ;_.-, ?7_.-, U_.- and atom_. -rules,
until either some prefix o’.¢" is reached with both ¢’.¢’ : X € Band o’.¢’ : ¢ € B, or
no more prefix can be introduced by the atom . -rule.

Figure 3 presents tableau expansion rules for atomic actions. Both of these rules
are based on the intuition that two prefixes o.¢ and o’.¢’ denote the same state if and
only if & = ¢’; this intuition will be demonstrated in the next subsection by Corollary
3. Therefore, according to the atom _. -rule, if there is already some prefix o;.e; with
g = (¢ \ (E})7) U E%, then the branch will be expanded directly with the set {o.c : ¢
| ¢ € PYU{o,.6 : ¢} Uloj.g ¢ | ¥ € g}; otherwise, we should firstly introduce a new
prefix o’.e":=0; (P, E).(e \ (E%)7) U E} before expanding the branch. Similarly, for

—r~-rule: If o.e : =R(p,q) € B, and o.¢ : =Inv(R)(q, p) ¢ B,

then set B:= B U {o.€ : =Inv(R)(q, p)}.

r~-rule: Ifo.e : R(p,q) € B,and o.€ : Inv(R)(q, p) & B,
then set B:= B U {o.€ : Inv(R)(q, p)}.

A-rule: Ifoe: oAy eBand{oe:p,oe:y} LB,
then set B:= BU {o.€: p,0.€ : Y}

V-rule: Ifoe:pVvyeBand{oe:p,0e:y}NB=0,
then set B:= B U {0.€ : ¢} for some ¢ € {¢,y}.

Fig. 1 Tableau expansion rules on inverse roles, conjunction formulas and disjunction formulas
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;[ 1-rule:

s<s-rule:

1 -rule:

?.s-rule:

Up j-rule:

Ucs-rule:

*[ 1-rule:

# s -rule:

X-rule:

Ifoe:[r;mle e B,and o.¢: [m][m2]p ¢ B,

then set B:= B U {o.€ : [n1][m2]¢}.

Ifoe:<mim>¢peB,ando.e:<m ><m >¢p¢ B,

then set B:= BU {0.€ :< ) >< mp > ¢}.

Ifoe: [Y?eeB,and {o.e: ~,0e: 9} NB=0,

then set B:= B U {0.€ : ¢} for some ¢ € {—y, ¢}.
Ifoe:<y?>¢peB,and{oce:y,06: ¢} LB,

then set B:= BU {o.€ : Y, 0. : ¢}.

Ifoe:[m Umlp € B,and {o.€: [n1]p, o€ : [m]p} £ B,

then set B:= BU {0.¢ : [m1]p, o.€ : [m2]e}.
Ifoe:<mUm>¢peB,and{oec:<m >¢,0:<m>¢plNB=0,
then set B:= B U {o.¢ : ¢} for some y € {< 1| > ¢, <71 > ¢}.

Ifoe: [n*lpe B, and{o.c: ¢, 0.¢: [n][n"]p} ¢ B,

then set B:= BU {o.€ : ¢,0.€ : [x][7"]p}.

Ifoe:<n*>¢eB, and

there is no character string X with X =<7* >pe Bando.c: X € B,

then introduce a new character string X, and set B:= BU{X =< 7" > ¢, 0.e : X}.
foe: XeBwithX=<n">peB,and{oe:¢p,0e:<n>XINB=0,
then set B:= BU {o.e : ¢}, orset B:= BU {o.e: —p,0.€ :< 71> X}.

Fig. 2 Tableau expansion rules on non-atomic actions

the atom-rule, if some prefix o;.¢; exists with g; = (¢ \ (E%)7) U E%, then the branch
will be expanded to guarantee that either o;.6; : ¢ € Bor{o.e : ¢7 | p € P} N B # (.
Tableau expansion rules presented in Fig. 4 are based on the intuition that, due to
the minimal-change semantics of actions, the state denoted by the prefix o.¢ can be
treated as the result of executing a special atomic action (¥, ¢) on the state denoted
by the initial prefix oy.g9. Therefore, for any ABox assertion ¢ prefixed by o.¢, if ¢ ¢
¢, then an ABox assertion ¢’ can be constructed to guarantee that ¢ holds on the state
denoted by o.¢ if and only if ¢’ holds on the state denoted by oy.£o; as a result, we can

atom-rule: Ifoe:<(PE)>¢eB,andif {o.e: ¢ | ¢ € P} £ B or no prefix o;.g; exists with both

gi=(e\(Ep)")UEgand o6 : g € B,

then: if there is no prefix o.&; with &; = (£ \ (Ex)™) U Eg,
then introduce a prefix o’.&":=07; (P, E).(e \ (E)”) U E, and
set B.=BU{oe:d|pePlU{o’.e :plU{o’.e :ylyeg),
else find a prefix o.&; with &; = (e \ (Eg)”) U Eg and
set B:=BU{oe:¢|pePlU{oie :ptUloie Y|y e gl

atomy j-rule: Ifoe:[(PE)peB, {oe: ¢ | ¢ PN B=0,and there is a prefix o;.¢; with both

gi=(e\(Ep)")UEgandoigi ¢ ¢ B,
then set B:= B U {0j.€; : ¢}, or set B:= BU {0.¢ : ¢} for some ¢ € P.

Fig. 3 Tableau expansion rules on atomic actions
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BBack,-rule: If o.e : ¢ € B, ¢ is an ABox assertion of the form R(p, q) or =R(p, q), ¢ ¢ €, and 0o.&0 : ¢ ¢ B,
then set B:= B U {0¢.€0 : ¢}.

Back.-rule: If o.e : ¢ € B, ¢ is an ABox assertion of the form C(p), ¢ & €, and og.g¢ : CResessE&T (p) ¢ B,
then set B:= B U {o.gp : CRegress@&T(p)).

IBack-.-rule: If o.e : ¢ € B, ¢ is an ABox assertion of the form =C(p), ¢ ¢ &, and 07.€p : ﬂCReg’”"'(‘””T)(p) ¢ B,
then set B:= B U {og.50 : ~CRegress&T (py).

Fig. 4 Tableau expansion rules on ABox assertions

expand the branch with the prefixed formula oy.& : ¢’. More precisely, if ¢ is of the
form R(p, q) or =R(p, q), then the corresponding ABox assertion ¢’ is equal with
@, and therefore the prefixed formula oy.g : ¢ will be incorporated into the branch
by the Back,-rule. However, if ¢ is of the form C(p) or —=C(p), then we need to
construct some concept CRe¢7¢5¢7) before incorporating the prefixed formula oy.gq :
CRegress.T) (p) or ag.89 : =~CRe"¢5T)(p) into the branch according to the Back,- or
Back_.-rule, where the concept CRes7esT) should satisfy that (CResressET)yIwo) —
C’™ for any two states wy and w denoted by the prefixes o9.&9 and 0. respectively.

In order to construct such a concept, we adopt a process proposed by Liu et al. for
constructing updated concepts in their ABox updating algorithm [23], and modify it
to act as a regression operator. More precisely, for any prefix o.¢ and any concept C,
the concept CRegess(T) ig constructed according to the following steps:

1. Construct the expansion C; of C w.r.t. 7.
2. Let Obj(e) be a set composed of all the individual names occurring in ¢. Return
the concept (C)Re8e55() which is defined inductively as follows:

- ARegresse) .— A ( L {p}> ! ( M —|{p}) for any concept name A;

A(p)ee —A(p)ee

- {p)ReEre© = (p};
_ (_|D)Regress(e) = _|DRegress(a).

_ 7\ Regress(e) .__ Regress(e) /Regress(e).
(Du D) =D uD :

_ 7\ Regress(e) .__ Regress(e) /Regress(¢) .
(DN D) =D nD :

_ (VR'D)Regress(s) = ( < |_| {P}) L VR'DRegress(s) )

peObj(e)

m ( < |—| —'{p}> UVR. ( < U {q}) U DRegrexs(s)> )
peObj(e) qeObj(e)

i [ (={p} UVR.(={g} u DRegress(e)))

p.qe0bj(e), R(p.q)¢e.~R(p.q)¢e
n [_] (_|{p} U @qDRegress(s));
R(p.q)ee

- (3R~D)Regress(s) = < ( |_| —.{p}> M ElR.DRegm”(g))

pe0bj(e)

L ( ( U {p}) m E|R.< ( |_| —.{q}) n DRegress(a)) )
peObj(e) qeObj(e)
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- L ({P} n HR.({q} M DRegress(g)))
p.qeObj(e), R(p.q)¢e.~R(p.q)¢e

L U ({p} n @qDRegress(s));
R(p.q)ee

— (S nR.D)Resres) .= (( |—| —'{p}) m ( < nR.DRegress(s)) >

pe0bj(e)

v U <{p}ﬂ L (SmR.<( [ ﬂ{q}>
peObj(e) ni+ny+n3=n qeO0bj(e)

=l DRegress(g) )

n< an.(( L {q}>
qeO0bj(e),R(p,q)¢e,~R(p,q)¢e

I—lDRegrexs(s) )

n I_I < |_| ﬂ@qDRegress(e)>>>7
OC{q|R(p.q)ee},£O=n3+1 \ge O

where ni, ny, n3 are positive integers;

~ (= nRDRw) = (( M ~{p}) n(= nR.DReg’“S(e))>

peObje)

o g (g (zar(( 0 )
peObj(e) ni+ny+n3=n qeObj(e)

=l DRegress(s) )

n=>n, R.(( L {q})
qeO0bj(e),R(p,q)¢e,~R(p,q)¢e

I—lDRegress(z;‘) )

n I_I ( I—l @qDRegress(s)>>>’
Oc<{q | R(p.q)eet,10=n3; \qeO

where ny, n,, ns are positive integers;
_ (@pD) Regress(e) = @pDRegress(s).

The property for which the concept CRe7¢57) s technically designed will be
stated and proved in Lemma 2 of the next subsection.

Definition 12 A branch B is contradictory if and only if there is some prefix o.¢ and
some formula ¢ such that botho.c : ¢ € Band o.c : —¢ € B.

Definition 13 A branch B is completed if and only if it can not be expanded by any
tableau expansion rules presented in Figs. 1, 2, 3 and 4.
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Definition 14 An eventuality record X =< 7* > ¢ is fulfilled in a branch 3 if and
only if there is a prefix o.¢ such that both o.e : X € B,and o.¢ : ¢ € B.

Definition 15 A branch B is ignorable if and only if it is completed but contains some
eventuality record X =< n* > ¢ which is not fulfilled.

We are now ready to finish the description of the satisfiability-checking algorithm:

Algorithm 1 The satisfiability of a formula ¢ w.r.t. an RBox ®, a TBox T and an
ActBox A is decided according to the following steps:

1. Construct a branch B := {0y.g¢ : nf(¢)}.
2. Iftableau expansion rules in Figs. 1, 2, 3 and 4 can be applied to B in such a way
that they yield a completed branch B, and

— B is neither contradictory nor ignorable, and
—  the initial view IV y of B is consistent w.r.t. R and T,

then the algorithm returns “TRUE”, else returns “FALSE”.

In this algorithm, since the initial view IV is an ABox of the description logic
X @, and the @ constructor doesn’t occur in the TBox 7', the consistency of IV w.r.t.
K and 7 can be decided with the reasoning mechanisms investigated in Section 2.

5.2 Termination and Correctness of the Algorithm

Some notations are necessary for demonstrating the termination of the algorithm.

Firstly, for any role, concept, formula, action, role inclusion axiom, concept
definition, atomic action definition, RBox, TBox, ABox or ActBox X, we use | X|
to denote the size of X and define it inductively as follows:

- |X|=1if X e NfNUNcUN;UNy,;

— |X|=|R|+1if X isarole of the form R~;

- |X|=|C|+1if X is a concept of the form —=C;

— |X|=|p|if X is a concept of the form {p};

- |X|=|pl+|C|]+1if X is a concept of the form @ ,C;

- |X]=|C|+|C'| +1if X is a concept of the form Cu C or Cn C’;
- |X|=|R|+|C|]+1if X is a concept of the form VR.C or 3R.C;

— |X|=n+|R|+|C|+1if X is a concept of the form < nR.C or > nR.C;?
— |X|=|C|+|plif X is an ABox assertion of the form C(p);

- |X|=|R| +|p| +lq|if X is an ABox assertion of the form R(p, q);
- | X|=|¢|+ 1if X is a formula of the form —¢;

- | X|=|m|+ ||+ 1if X is a formula of the form < 7 > ¢ or [7]yp;
- |XI=lel+l¢'| +1if X is a formula of the form ¢ A ¢’ or ¢ V ¢;

— | X|=|n|+|x'| + 1if X is an action of the form = Ux’ or 7; n';

— | X|=|¢|+1if X is an action of the form ¢?;

— | X|=|n|+1if X is an action of the form 7*;

2Here the numbers inside qualified number restrictions are assumed to be written in unary [23].
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— |X|=|R|+|R| +1if X is arole inclusion axiom of the form RC R’;
- |X|=|A|+|C| +1if X is a concept definition of the form A = C;
- X =lel+ > (el + > (¢ + 1if X is an atomic action definition & = (P, E);

geP peE

- |X]= Y (Ix]) if X is an ABox, RBox, TBox or ActBox.
xeX

Secondly, for any concept C, we use d(C) to denote the maximal nesting depth
of existential restrictions, value restrictions and quantified number restrictions in C,
and define it inductively as follows:

— d(C)=0if C € N¢ or Cis of the form {p};

- d(C)=d(C) if Cis of the form =C' or @ ,(";

- d(C) =max(d(C"),d(C")) if Cis of the form C'uC” or C'1 C”;

- d(C)=d(C") +1if Cisof the form VR.C',3R.C', <nR.C' or > nR.C'.

Thirdly, for any formula ¢ and any RBox R, we use clg (¢) to denote the relevant
sub-formulas of ¢ w.r.t. ®, and define it as the smallest set satisfying the following
conditions:

- nf(p) €cg(p);

— if ¢ € clg (¢) and ¥ is not started with the negation sign, then =y € clg (¢);

- if =y € cg (@), then ¥ € clgx (¢);

- if R(p, @) € clg(¢), then Inv(R)(q, p) € clg(¢);

- ifR(p,q) eclg(¢) and RC R € R, then R'(p, q) € clx(¢);

- if=R'(p,q) eclg(¢) and RC R € R, then ~R(p, q) € clg(p);

— if ¥ € clg(¢) and ¢ is of the form ¥y V Yo, Y1 A Y2, < Y127 > 95 or [ ?]92, then
{¥1, ¥2} S clg(9);

- if<m;m >y ecg(p), then < 7 >< m > ¥ € clg(¢);

- if [m; m]y¥ € clg(¢), then [][m2]Y € clg (¢);

- if<mUm >y ecg(p),then {<m > ¢, <m > ¥} Cclg(e);

- if [m Umly € cg(p), then {[m1]¥, [m]¥} C clx(9);

- if<n* >y ecg(p), then{y, < ><n* > ¥} C clx(p);

— il [7¥]Y € clg (@), then {¢, [7][7*]¥} C clz(9);

— ify eclg(¢)and ¢ is of the form < (P, E) > y, or [(P, E)]y, then PU EU {y}
< clg (¢)-

Fourthly, we use Assg (¢) to denote the set of all the ABox assertions contained
in clg (¢).

Finally, for any formula ¢ and any RBox R, we use Atom Act(yp) to denote the set
of all the atomic actions occurring in nf(¢), and use Effx (¢) to denote a set defined
as follows:

A £3
Effx(e) = (P,E)eALtJomAcz(ga) Ex
where E7 is the closure of the ABox E w.r.t. the RBox .

It is obvious that the cardinalities ficlg (¢), §Assg (p) and £ Effx (¢) are all linearly
bounded by |nf(¢)| x |R].

Now we are ready to demonstrate the termination of the algorithm.

Theorem 7 Algorithm 1 terminates.
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Proof Let fi= |nf($)|, c:= tclg (¢p), a:= 1 Assg (¢p) and e:= tEffg (¢). Let m be the
maximal one among || for every € Assg (¢). Then, it is obvious that m < f; the
numbers c, a and e are all linearly bounded by f x |®|; and the number f is linearly
bounded by |¢| x |4.|. Furthermore, the following properties are straightforward for
the algorithm.

1. For each application of any tableau expansion rule on a branch B, the number
of possible expansions is finite, and the cardinality of the branch will be strictly
increased for every expansion.

2. According to the definition of the atom_.-rule, it must be ¢ C Effz(¢),
¢’ € Effg(¢) and ¢ # ¢ for any prefixes o.¢ and ¢’.¢’ occurring in the branch;
therefore, the number of prefixes introduced during the execution of Algorithm
1 is bounded by 2°.

3. For each non-initial prefix o.¢, the number of formulas prefixed by it is bounded
by ¢, and the number of ABox assertions prefixed by it is bounded by a.

4. The number of formulas prefixed by the initial prefix oy.¢y is bounded by ¢ +
a x (2° — 1), where a x (2° — 1) is the number of ABox assertions which might
be introduced by applying the Back,-, Back.-, and Back_.-rules.

5. For each prefixed formula oy.5 : CRe8"5ET) (p) (resp. og.eq : ~CRe8esED (py)
introduced by applying the Back.-rule (resp. the Back_.-rule), let C; be the
expansion of C w.r.t. 7. Then it must be d(Cr) < |C|+ |T| and |Cr| < |C| %
241U7D for some polynomial g;. Furthermore, according to the construction of
the concept (C7)Re8es5(®) and be similar with the result presented in Theorem
36 of [25] for the ABox updating algorithm, we can find some polynomial g,
such that [(Cy)Reees@)| < |Cr| x (g2(20b j(£)))¥Cr). At the same time, since
e C Effg(¢), the number §Obj(e) is linearly bounded by e. Therefore, to
sum up, we can find two polynomials g; and ¢, such that | CRegress(e. D) (py| =
[(Cr)ReEres@ (p)| < |C| x 201070 5 (g (e)) THITT < m > 201070 5 (g (e))™ 171,

Now, according to Properties 2, 3 and 4 listed above, for any branch generated
during the execution of Algorithm 1, the number of prefixed formulas contained in it
is bounded by (2° — 1) x ¢ + (¢ + a x (2° — 1) ). Therefore, together with Property
1, the number of branches which will be investigated by the algorithm is finite.

For each branch B investigated by the algorithm, the number of ABox assertions
contained in the initial view IV is bounded by a + a x (2° — 1) = a x 2°. Therefore,
according to Property 5, we can find two polynomials p; and p; such that [IV3] <
(a x 2°) x (m x 2P'0TD x (p,(e))™*17). So, the consistency of IV, w.r.t. ® and 7 can
be decided with terminable procedures provided by the description logic X©.

To sum up, the algorithm terminates. O

Furthermore, according to the above proof and based on the result presented in
Theorem 1, the following result is straightforward:

Corollary 1 For the family DD L(X®) of dynamic description logics, the complexity
upper-bound of Algorithm 1 is EXPSPACE if X € {4LCO, ALCHO, ALCOQ, ALLCHOQ),
and is N2EXPTIME if X € {4LCOI, ALCHOI, ALCOIQ, ALCHOIQ).

In order to demonstrate the correctness of the satisfiability-checking algorithm,
we introduce three notations in the following paragraphs.
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Firstly, we introduce branch-model mappings to act as bridges between branches
and models:

Definition 16 Let 7, 8 and M = (W, T, A, I) be a TBox, a branch and a model
respectively. A branch-model mapping 1 w.r.t. T, B and M is a function from prefixes
occurring in B to states of M, satisfying that for each pair of prefixes o.¢ and ¢'.¢’
occurring in B:if o’ = o; (P, E) and ¢’ = (¢ \ (E%)7) U E%, then:

- AN = (Al g pl| A(p) € Ef D\{ p' | ~A(p) € Ej } for each concept
name A which is primitive w.r.t. 7, and

- RN = (RICCD U (p! g") | R(p. @) € Ex D\ (P, q") | ~R(p,9) € E})
for each role name R.

In this definition, it should be noted that the initial prefix oy.g( is also mapped
to some state of M, although the concrete state denoted by 1(oy.£9) is not specified
here.

A branch-model mapping holds the following properties:

Lemmal Let T, Band M = (W, T, A, I) be a TBox, a branch and a model respec-
tively; let 1 be a function from prefixes occurring in B to states of M. Then, 1 is a
branch-model mapping w.r.t. T, B and M if and only if the following statements hold
for each prefix o.e occurring in B:

- Altee) — (gl Yy { pl'| A(p) ee})\{ p'| =A(p) € ¢} for each concept
name A which is primitive w.r.t. T, and

- RO = (RN U {(p!q") | R(p,q) e D\ L (P gD [ ~R(p, @) € ¢} for
each role name R.

Proof (The Only-if direction) The proof is by induction on the construction of
prefixes. If o.¢ is the initial prefix oy.g9, then the result is straightforward since
e=¢g =10.

Assume the result hold for some prefix o.c. Let o’.¢’ be a prefix with o' =
o; (P, E) and ¢ = (¢ \ (E%)7)U E%. Then, for any concept name A which is
primitive w.r.t. 7, we have

(Al g {p|A(p) e e’} )\ {p'I=A(p) € &'} @
- (,41('("0-80” U {pl | A(p) € (5\ (Eji)ﬂ) Y Eji})
VP I =Ap) e (a\ (E)7) U B (2)

=[ Aty ({p" | A(p) e e\ [{p" | A(p) € (ER)"})U{p' | A(p) € E} ]

V[P mam e\ pmAam e @) ulpimam e )] )
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=[[are U (p'1ap) e en{p'1ap) € (E) ") U p/14p) € Ey)]

(I 1~a@ e\ p 1-amp e (B)7)) |

\ {p' 1 -Ap) € By} )
= [[ (a0 ({p" 1 A €} \ 101 A) € (E5)))

\ ({1 e b\ {p 1-am e (B)7)) | U 10/ 1A € B3}

\ {p" 1 ~Ap) € Ey) 5)
= [[ (a0 ({p'1ap e e} [p'1am € (B3)7]))

\{p' 1A eet ] U {p'I A € B3} ]

\ {p' I —Ap) € E5} (6)
=[[ (A" U p"| A(p) € ¢})

\{p'1-Ap est U {p'I Ap) € B} ]

\ {p' | ~A(p) € E}} (7)
=[ AP U p" 1 Ap) € ERF]N P 1 -AWp) € By} ®)
— Al(z((r/.e’)) (9)

The transformation from set (2) to set (3) is based on the unique name assumption
on individual names, so that the set {p’ | A(p) € (e\(ERT U ER} and the set
{p" | =A(p) € (6\(E})™) U E}} can be replaced by ({p’ | A(p) € e} \ {p' | A(p) €
(Ep)"HUlp' | A(p) e Ex}  and  ((p' | —A(p) €e}\ {p' | ~A(p) € (ER)"H U
(pl| —A(p) € E%} respectively. The transformation from set (4) to set (5) is
based on the fact that the set {p’| A(p) € E;} and the set {p’ | —A(p) € &}
\{pl| -A(p) € (E%)") are disjoint, so that the order of the union operation and
the difference operation can be exchanged. The transformation from set (5) to
set (6) is based on the fact that the set {p’ | —A(p) € (E%)7} is equal with the
set {p’| A(p) € E}} which will be combined with (A/“<)u ({p’| A(p) € ¢}
\{p I A(p) e (Ex)™H) \ (p" | =A(p) e e} \ (p' | —A(p) € (ER)7)), therefore
we can remove the set {p! | =A(p) € (E%)"} from the expression ({p! | ~A(p) €
e\ {p' | —A(p) € (E%)™})- The transformation from set (6) to set (7) is based on
the fact that the set {p’ | A(p) € (E})”} is equal with the set {p’ | =A(p) € E}}
and consequently is disjoint with set (6); therefore, we can remove the set
{p" | A(p) € (ER)7} from the expression ({p | A(p) € e}\ {p’ | A(p) € (ER)7D.
The transformation from set (7) to set (8) is based on the inductive hypothesis, and
the transformation from set (8) to set (9) is based on the definition of branch-model
mappings.

For any role name R, it can be similarly demonstrated that (R¢©0) U {(p!, g') |
R(p.q) € &P\ {(p'.q") | =R(p.q) € &'} = RI"D),
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(The If direction) Let o.e and o'.¢’ be a pair of prefixes occurring in 3
with both o’ = o; (P, E) and ¢ = (¢\ (E})")U E;. Then, for any concept
name A which is primitive w.r.t. 7, we have both A/ = (Alt@-20) y {p!
| A(p) € e) \ {p' | ~A(p) e e} and AT = (Al U (ph | A(p) € €'}
\ {p! | ~A(p) € ¢'}. At the same time, according to the transformation from
set (1) to set (7) presented above for the proof of the Only-if direction, we
have (A"¢@«D U {p!| A(p) e &N\ (p' | —A(p) € &'} = [ [(AT=) U {p'|A(p) €
eD\ {p' | —A(p) e}l U {p' | A(p) € Ex} 1\ {p" | ~A(p) € E}}. Therefore, we
have A'0@) = (ATu@) U {pl'| A(p) € Ex}) \{p' | ~A(p) € E}}.

For any role name R, it can be similarly demonstrated that R/ = (RI®@-2) y
{(P".q" | R(p.q) € ExP\{(p".q") | =R(p,q) € E}}. o

Corollary 2 Let 1 be a branch-model mapping w.r.t. a TBox T, a branch B and a
model M = (W, T, A, I). Then, for any prefix o.e occurring in B and any primitive
literal r € ¢, it must be (M, 1(0.€)) = .

Proof If o.¢ is the initial prefix oy.g9, then the result is straightforward since ¢ =
&y = @.

Now, let o.¢ be a non-initial prefix. We demonstrate the result by investigating
the forms of every ¢ € ¢. Firstly, suppose v is of the form A(p). Since every atomic
action definition is assumed to be PE-consistent w.r.t. ® and 7 at the beginning of
Section 5, we have —A(p) ¢ ¢ according to the construction of prefixes. Therefore,
by Lemma 1 and based on the unique name assumption on individual names, we
have p’ € A'®@®) and consequently (M, i(0.¢)) = A(p). Secondly, suppose ¥ is
of the form —A(p). Then, by Lemma 1, we have p’ ¢ A/¢“®) and consequently
(M, 1(0.€)) = —~A(p). Finally, if ¢ is of the form R(p, q) or =R(p, q), then the result
can be similarly demonstrated. O

The following corollary is an easy consequence of Lemma 1:

Corollary 3 Let 1 be a branch-model mapping w.r.t. a TBox T, a branch B and a model
M; let M =T, let 0.€ and o' .¢’ be two prefixes occurring in B. Then, 1(c.€) and 1(c”.€")
are the same state if ¢ = ¢'.

With the help of branch-model mappings, we can present and demonstrate
the following property for the regression operator introduced in the satisfiability-
checking algorithm.

Lemma 2 Let CRegesseT) be g concept constructed by the regression operator in the
Back,- or Back_.-rule; let M = (W, T, A, I) be a model with M = T. Then, for any
branch-model mapping 1 w.r.t. T, B and M, we have (CRegres@1)1(00.20) — Cluoe)),

Proof Let Cs be the expansion of C w.r.t. 7. According to the construction of
CRegress(a,'T)’ we have (CRegress(s,‘T))[(t(u(].a(])) — (CTREE’“S(S))1(1(00.80)). Furthermore, since

M = T, we have C,/4®) = C!®@9) Therefore, we just need to demonstrate
(CTRegress(S))I(z(ao.so)) — C'rl(t(u.s)).
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In the following proof, we will use the result that for any individuals x, y € A and
any role name R € Np: the statement (x, y) € R/““#) holds if and only if one of the
following statements holds:

- x¢ U {(p'} A (x,y) € RIMo0-20)

peObj(e)
- xe U phaye U gV Axy) e RIU),
peObj(e) qeObj(e)
- 3p,qeObjie). x=p" A y=q" A =R(p,q) ¢ A R(p,q) ¢ A (x,)) €
RI(@0-£0)y

- 3p,qe Obje). x=p' Ay=q' AR(p,q) €e).

This result is straightforward according to Lemma 1.
Now, we prove (CqRe€es@ylawoe) — €, 0@ by induction on the structure
of Cq’.

Case 1. Cgis aconcept name A. Then we have

(A Regress(e) ) 1(1(09.20))

1(1(09.€0))
=(AU< U{m)ﬂ( [ ﬁ@O)
A(p)ee —A(p)ee
= (Al Y {pl|A(p) € e})\({p'|-A(p) € &}.

Therefore, by Lemma 1, we have (A Resress@)I0(0o-e0) — gl@oe)

Case2. Cisof the form {p}, @,D,—=D, D11 D" or D D'. The result is straightfor-
ward.

Case 3. C is of the form VR.D. Then, for any individual x € A, we have
x e ((VRD) Regress(a))l(z(og.s(,))

1(1(09.€0))
iff X € ( U {ptu VR.DReg'ess(€)>
pe0bj(e)

1(t(00-20))
AXE ( |—] —{p}u VR.( U {q}u DRegress(s)))

pe0bj(e) qeObj(e’)
AXE ﬂ (_|{p} U VR(—l{q} L DRegress(s)))1(1(01)451)))
P.qe0bj(e), R(p,q)¢e,~R(p.q)¢e
AXE ﬂ (—.{p} L @qDR98’€SS(8))1(1(00~€0))
R(p.q)ee

lff vy< < (x ¢ U {pl} A (x’ y) c Rl(l(au.so))> -y c (DRegress(s))l(t(uo.eo)) )

peObj(e)

A ((xe U @} A ye U @) A (x,y)eR’(’("O‘sO”) > ye

peObj(e) qeObj(e)

(DRegress(s))I(l(Uo»So)) )
A(3p,q € Obj). (x=p' Ay=q' A=R(p,q) ¢ £ ANR(p,q) g & A (x,y) €
Rl(l(ao-eo)))
—>ye (DRegress(s))I(l(Uo-So)) )
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1 I

A (3p,qe ObjE). (x=p A y=gq A R(p,gpee) — ye

(D Regress(s) 1(1(00-£0))

iff  Vy.((x,y) € RICD — y e DIt
iff xe (YR.D)/twe),

Therefore, we have ((VR.D)Regress@))I o)) — (y R D)T0(0-£)
Case 4. C s of the form 3R.D. The proof is similar with the preceding case.

Case 5. Cis of the form < nR.D. Then, for any individual x € A, we have

X € ((€ nR.D)Resress(e))Iw(ov-20))
iff xe U (P AR | y) € RICC) Ay e (DReres@) 6o y <
peObj(e)
or
dp e Obj(e).(x =p/ Adny,ny,n3 > 0,(,1] fm4ns=n
A ﬁ{y | (x,y) € R!@00.€0)) A yé U {ql} AYyE€ (DRegresx(g))[(l(go'go)) } <n
qe0bj(e)

A n{y | (x,y) € RIW02) Ay e U "y ~ ye
qe0bj(e)AR(p.q)¢en—R(p.q)¢e

(D Regress(©)) Ia(on.£0)) }
=np
NG| R(p, @) € e A qh € (DREres©)Itovel} <y
ifft x¢ U {phnrtlyl .y e ROV Aye D@D ) <n

pe0bj(e)
or

dp e Obj(a).(x:p’/\Elnl,nz,m 20.<n1 +nmt+ny3=n

A ﬁ{y lyeg U (g} A(xy) e RIWwe) Ay e D”’(”))} <n
qe0b j(e)

A ri{y | ye ( U {g"} A (x,y) € RItos) A ye
qeObj(e)AR(p,q)¢en—R(p,q)¢e

Dl(z(rr.s))) <n

Aﬁ{ylye U {q’}AyeD’(’("”)}Sns))

R(p.q)ee
iff x¢ U {phatlyl(xy e RICD Aye DDy <p
peObj(e)
or
xe U (ptAatlyl(x,y) e RICEN Ay e DIy <p
peO0bj(e)

iff xe(<nR.D)ID,

Therefore, we have ((< nR.D)Regress))10(00.20)) — (< pR. D)@

Case 6. C s of the form > nR.D. The proof is similar with the preceding case. O
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It should be noted that the proof of Lemma 2 is similar with the proof provided
by Liu et al. [25] for their ABox updating algorithm, since the regression operator
presented here is just a modification of Liu et al’s process for constructing updated
concepts.

The second notation introduced for demonstrating the correctness of Algorithm 1
is the satisfiability of branches.

Definition 17 Let ®, 7, 8, and M be an RBox, a TBox, a branch and a model
respectively; let 1 be a branch-model mapping w.r.t. 7, 8 and M. Then, B is called
satisfied by M and 1 w.r.t. ® and 7, denoted by (M, 1) =4 7 B, if and only if M = R,
M =T and (M, 1(0.€)) = ¢ foreveryo.c : ¢ € B.

If there is a model M and a branch-model mapping : with (M, 1) =4 + B, then we
say that the branch 3 is satisfiable w.r.t. both the RBox ®_and the TBox T, otherwise
we say that B is unsatisfiable w.r.t. ® and T .

The third notation we will introduce is a partial order “<” on prefixes.

Definition 18 Based on the definition of prefixes, the partial order “<” on prefixes
is defined inductively as follows:

- o.e=<o0sg,
- o0e=x0;(P E)(e\(E})T)UEE,
- ifo<o’ando’ <0o”, theno <o”.

With the help of the above notations, we can demonstrate the following properties
for the satisfiability-checking algorithm.

Lemma 3 For any branch B constructed in Algorithm 1, if it is contradictory or its
initial view 1V 3 is inconsistent w.r.t. ® and T, then it is unsatisfiable w.r.t. ® and T.

Proof According to Definition 12 and by the semantics of DD L(X®)-formulas, it is
immediate that every contradictory branch is unsatisfiable.

If IV is inconsistent w.r.t. ® and 7, then the branch By := {0p.60 : ¢ | ¢ € [V}
is unsatisfiable w.r.t. ® and 7. Since B, C B, the branch B is unsatisfiable w.r.t. ®
and 7. u]

Lemma 4 For each tableau expansion rule applied on some branch B, B is satisfiable
w.r.t. R and T if and only if this rule can be applied to B in such a way that it yields a
branch which is satisfiable w.r.t. ® and T.

Proof (The If direction) The result is immediate since every new generated branch
subsumes the branch 3.

(The Only-if direction) Suppose there is a model M = (W, T, A, I) and a branch-
model mapping 1 such that (M, 1) =4 + B. We demonstrate the result by investigating
all the tableau expansion rules.
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If a tableau expansion rule listed in Fig. 1 or Fig. 2 is applied on 3, then the result
is obvious according to the semantics of roles, formulas and actions of D DL(X®).

If the atom . -rule is applied on B, then we have (M, 1(0.¢)) E < (P, E) > ¢, and
therefore there is a state w’ € W such that (1(o.¢), w’) € T((P, E)), (M, w') &= ¢ and
(M, 1(0.¢)) = ¢ for every ¢ € P. There are two cases to be investigated.

— Suppose no prefix o;.¢; occurring in B with &; = (¢ \ (Ex)7) U E;. Then, let o’.&’
be the prefix introduced by applying the atom _. -rule and let B’ be the resulted
branch. Let 7/ be a function constructed by extending the function : with the map
'(0'.¢") =w'. Then, based on Corollary 2, we have (M,1) =¢ + B

— Suppose there is a prefix o;.¢; occurring in B with ¢; = (¢ \ (E%)7) U E%. Then
we have 1(0;.¢;) = w’ according to the definition of branch-model mappings and
the semantics of atomic action definitions. Therefore, based on Corollary 2, we
have (M, 1) =4, B for the resulted branch 3.

If the atom|;-rule is applied on B, then we have (M, 1(c.¢)) = [(P, E)]lg, and
consequently there is not any state w’ € W with both (i(c.¢), w') € T((P, E)) and
(M, w") E —¢. Leto;.¢; be a prefix with ¢; = (¢ \ (£%)7) U E%. Then, according to the
definition of branch-model mappings and the semantics of atomic action definitions,
we have either (M, 1(0;.€;)) E ¢ or (M, 1(0.¢)) = ¢~ for some ¢ € P. Therefore,
among all the possible expansions there must be a branch 8’ with (M, 1) =4 .+ B'.

If the Back,-rule is applied on B, then we have (M, 1(o.€)) = ¢. Since ¢ ¢ ¢ and
¢ is of the form R(p, q) or =R(p, q), by Lemma 1 and based on the unique name
assumption on individual names, we have (p’, g’) € R!®@%)) if ¢ is of the form
R(p,q), and (p’, q") ¢ RI®@-2) if ¢ is of the form —R(p, q). Therefore, we have
(M, 1(0¢.€0)) = ¢ and consequently (M, 1) =4 .+ B’ for the resulted branch B8’

If the Back.- or Back_.-rule is applied on B, then, by Lemma 2, the result is
obvious. O

Lemma 5 For any completed branch B, if it is neither contradictory nor ignorable, and
its initial view 1V 3 is consistent w.r.t. R and T, then B is satisfiable w.r.t. R and T.

Proof Since IV is an ABox of the description logic X @ and is consistent w.r.t. ®
and T, there must be an interpretation I7y, = (A7s, .1vs) of X@ such that Iy, = R,
IIVQ{ ': T and I]V% I: IVQ;

Let X2 be the set of all the prefixes occurring in B; let N¢, Ng and N; respectively
be the sets of all the concept names, all the role names and all the individual
names occurring in 8, ® and 7. Furthermore, let N¢ = ng U Ngl), where ng is
the set of primitive concept names w.r.t. 7, and N"CfD is the set of defined concept
names. Construct a DDL(X®)-model M = (W, T, A, I) and a function:: X% — W
according to the following steps.

1. Construct an interpretation I = (A", .%0) according to the following steps:

(a) set Alo:= Alvs;

(b) for each individual name p € Ny, if it is interpreted in I;y,, then set
plo = pvs otherwise introduce an individual p, add p to the set A’, and set
ph=p;

(c) for each concept name C € N, if it is interpreted in /;y,, then set Ch =
C!vs | otherwise set Clo := @;
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(d) for each role name R € Nk, if it is interpreted in /;y,, then set R0 := RIvs |
otherwise set R :=¢.

2. Set the domain A := A,

Set p! := p’ for each individual name p € N;.

4. Introduce a state wy and construct an interpretation I(wg) = (A, -/ as fol-
lows:

w

RI(wo) .= R for each role name R € N, and
C!0) .= Ch for each concept name C € Nc.

Furthermore, set 1(09.50) := wy.
5. For each non-initial prefix o;.6; € %%, introduce a state w; and construct an
interpretation I(w;) = (A, -/®)) as follows:

- R = (R"™U{(p"q") | R(p,q) € e: )\ {(p'.q") | =R(p, q) € & } for
each role name R € Ng.

- Al = Al Y pl| A(p) € })\ { p! | (=A)(p) € g;} for each primitive
concept name A € N{. , and

- Al .= C') for each concept name A € N if A is defined by some
concept definition A = C e 7.

Furthermore, set 1(0;.5;) := w;.

Firstly, by Lemma 1, it is obvious that 1 is a branch-model mapping w.r.t. 7, B
and M.

Secondly, according to the above construction, it is obvious that A’™ = C'™ for
any concept definition A = C € 7 and any state w € W. Therefore, we have M = 7.

Thirdly, we demonstrate that M = ®. Let R E R’ be any role inclusion contained
in ®; let 0.¢ be any prefix contained in $%; and let p, ¢ be any individual names with
(p',q") € R'“@#) Then, by Lemma 1 and based on the unique name assumption on
individual names, we have =R(p, q) ¢ ¢, and either (p’, g/) € RI@©0) or R(p, q)
€ ¢. Therefore, according to the construction of prefixes and based on the fact that
Iy, = R, we have =R'(p, q) ¢ ¢, and either (p’, q’) € R0 or R'(p, q) € ¢. So,
it must be (p’, q') € R0,

Finally, we demonstrate that (M, 1(c.€)) = ¢ for any prefixed formula o.¢ : ¢ € B.
The proof is by induction on the structure of ¢.

(Base case) ¢ is an ABox assertion. There are six cases to be investigated.

— o.¢ is the initial prefix oy.g9. Then we have ¢ € IV and consequently Iy, = ¢.
Therefore, according to the construction of M and i, we have (M, 1(0.€)) = ¢.

— o0.¢is a non-initial prefix, and ¢ € ¢. Then, by Corollary 2, we have (M, 1(o.¢)) =
®.

— o0.¢ is a non-initial prefix, ¢ ¢ ¢, and ¢ is of the form R(p, q). Then, we have
00.80 : R(p, q) € B according to the Back,-rule; so, we have R(p, q) € IV and
consequently (p’, g’) € R0 At the same time, it must be =R(p, q) ¢ ¢;
otherwise, according to the atom_ . -rule by which the prefix o.¢ is introduced,
we will get 0.6 : =R(p, q) € B and make B a contradictory branch. Moreover, by
Lemma 1 and based on the unique name assumption on individual names, we
have R/“@)= (RItCoc) U { (p! ¢y | R(p,q) e N\ { (p'.q") | ~R(p.q) € ¢},
no matter R is a role name or an inverse role. Therefore, we have (M, 1(0.¢)) =
R(p. q).
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— o0.¢ is a non-initial prefix, ¢ ¢ ¢, and ¢ is of the form —R(p, ¢q). Then the result
can be demonstrated with a similar process of the preceding case.

— o.¢ is a non-initial prefix, ¢ ¢ ¢, and ¢ is of the form C(p). Then, we have
00.8 : CRegressT)(py € B according to the Back.-rule; so, we have CRegresse D (p)
€ IV and consequently (M, 1(cy.50)) = CReseseD (p). By Lemma 2, we have
(M, 1(0.¢)) = C(p).

— o0.¢ is a non-initial prefix, ¢ ¢ ¢, and ¢ is of the form —C(p). Then the result can
be demonstrated with a similar process of the preceding case.

(Inductive step) Since ¢ is a formula in negation normal form, we only need to
investigate the following cases.

Case 1. ¢ is of the form ¢ A or ¢ v . Then, since the branch is completed,
the result is straightforward according to the A-rule, the v-rule and the inductive
hypothesis.

Case 2. ¢ is of the form < 7 > ¢. By induction on the structure of =, we demon-
strate that there is a state w’ € W with both (i(c.¢), w’) € T(x) and (M, w') = ¢.

— 1w is an atomic action (P, E). Then, according to the atom_.-rule, we have
{o.e : ¢¥; | ¥; € P} C B, and there must be a prefixed formula o;.¢; : ¢ € B with
ei = (e\(E})7) U E%. By the inductive hypothesis, we have (M, i(0.¢)) = P and
(M, 1(0;.€))) = ¢. Therefore, according to the construction of z and the semantics
of atomic action definitions, we have (1(o.¢), i1(0;.€;)) € T((P, E)).

— m is of the form my; m,, ¥?, or my Um,. Then the result is straightforward
according to the inductive hypothesis and the ; _.-, ?_.- and U_. -rules.

— v is of the form 7. Then, according to the *_. -rule, there must be a character
string X with both X =<7} > ¢ € Band 0.6 : X € B. Let path(X, B) be the set
{0i.€i | 0;.6; : X € B}. Itis immediate that path(X, B) is a finite set totally ordered
by the partial order “<”, and we have (1(0.¢), 1(0;.€;)) € T(r{) for every o;.¢; €
path(X, B). At the same time, since B is not ignorable, there must be a prefix
Om-Em € path(X, B) with o,,.¢,, : ¢ € B, and consequently (M, 1(o,,-m)) = ¢ by
the inductive hypothesis.

Case 3. ¢ is of the form [7]¢. By induction on the structure of 7, we demonstrate
that no state w’ € W exists with both (i1(0.¢), w') € T () and (M, w') &= —¢.

— o is an atomic action (P, E). Then, according to the atomy-rule, we have
either {o.e: ¢y~ | v € P} N B # O, or o,.¢; : ¢ € B for any prefix o;.; with
e = (e\(E})7) U E;. Therefore, by the inductive hypothesis, the construction
of M and the semantics of atomic action definitions, no state w’ € W exists with
both (i(c.¢), w’) € T((P, E)) and (M, w') & —¢.

— g is of the form my;m,, ¥?, or 7 Um,. Then the result is straightforward
according to the inductive hypothesis and the ;;-, ?}- and U} ;-rules.

— v is of the form s§. Then, according to the x;-rule, we have 0.6 : ¢ € Band o.¢ :
[711[7{]¢ € B. For any positive integer n and any prefix o’.¢” with (i(c.¢), (0" .€"))
€ (T'(;r1))", by double induction on n and on the structure of 7, we have o’.¢’ :
[7{1p € B, o' .¢" : [m]1[n{1p € B,o'.¢' : ¢ € B, and consequently (M, 1(c".€")) = ¢
by the inductive hypothesis. Therefore, according to the construction of M, there
is not any state w’ € W with both (i(c.¢), w') € T(w{) and (M, w') = —¢.
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To sum up, we have (M, 1) =4 7 B, and B is satisfiable w.r.t. ® and 7. O

Lemma 6 [fthe branch B, = {09.€o : nf(¢)} constructed in the first step of Algorithm
1 is satisfiable w.r.t. R and T, then, among all the branches generated by applying
tableau expansion rules, there must be a completed branch which is not ignorable and
is satisfiable w.r.t. ® and T.

Proof Suppose the contrary: B, is satisfiable w.r.t. ® and 7, while every completed
and satisfiable branch generated by applying tableau expansion rules is ignorable.
It is worth noting that each branch can be ignorable due to a different unfulfilled
eventuality record; however, without loss of generality, here we just investigate one
of these unfulfilled eventuality record.

Let B’ be a completed branch which is ignorable due to some eventuality record
X = < * > @;let B be satisfied by some model M = (W, T, A, I) and some branch-
model mapping : w.r.t. ® and 7.

Let path(X, B') = {0.¢ | 0.¢ : X € B'}. It is immediate that path(X, B) is a finite
set totally ordered by the relation “<”. Let all the elements of path(X, B) be o0,.¢;,
ooy Om-Em, With 0;.6; < 0j.¢ for every 1 <i < j < m. Then it is immediate that o;.¢; :
—¢ € B for every 1 <i < m; furthermore, for every 2 < j < m, the prefix o;.¢; is
introduced by reducing the prefixed formula o;_;.¢,_; : X according to the X-rule as
well asthe ;. .-, 7. .-, U_ .- and atom_ - -rules.

Let oy be the maximum prefix among all the prefixes preceded by o,.6,;
ie., let 0.6 <X op.ey for every prefix o.e with o0,,.¢, < o.e. Furthermore, without
loss of generality, let o) be of the form o,,; (P, E1);...; (Pk, Ex). Then, since
B’ is completed, the atom_. -rule guarantees the existence of some prefixed for-
mula oy.ep : < (Pryt, Exg1) >< ' > X in 8 with T((Py, Ev); . ..; (Pk, Er); (Pryt,
Ej1); ') = T(r). At the same time, there must be some prefix o,.¢, € path(X, B)
and some prefix oy.ey occurring in B’ such that o,,.6, < on.eN X Op.Em, N = (e \
(Ex+17)7) U Eky1 3, and oy.ey i< 7 >Xe?B.

Since (M, 1) =4+ B and o0,.¢, : X € B, there must be an integer u as well as
u+ 1 states wy, Wyig, ..., Wy, € W such that i(o,.€,) = w,, (M, w,1,) = ¢, and
(Wnti, Wnt14i) € T(w) forevery 0 <i < u.

Let’s first assume that u < (m — n). Since op.ep : < (Pry1, Exr1) ><7n’ > X €
B', we can remap the prefixes 0,.¢,, ..., Opy.&m SO that 1(o,1;.€44i) = wyy; for every
0 <i < m — n. Therefore, since (M, w,+,) = ¢, we have (M, 1(0,14.€n+u)) = ¢. At
the same time, since 0,4,.6n4y : —¢ € B and (M, 1) =4 B, we have (M, 1(0,14-Entu))
E= —¢. Hence we get a contradiction.

Assume that u > (m — n). Since op.6p 0 < (Pry1, Exy1) >< 7’ > X € B, there
must be one (Pyi1, Ext1)-step from the state i1(op.epy) to the state i(oy.en), and
one 7’-step followed by u — (m — n) — 2 w-steps from the state i(on.ey) to the state
wy4,. Construct a new mapping ; as follows: for every prefix o.¢ occurring in B, if
0.6 X on.ey or o.¢ is unrelated with oy.ey, then map this prefix in the same way
as ¢ does. By Lemma 4, there must be a completed branch 8” which is satisfied by
M and j; furthermore, in this branch, the state j(o,.¢,) fulfills the eventuality X in
u— (m—n) — 1 w-steps. Now, since u — (m —n) — 1 < u, we can repeat the above
process until reach an «’ < (m — n), getting a contradiction again. O
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We are now ready to demonstrate the correctness of the satisfiability-checking
algorithm.

Theorem 8 Algorithm 1 returns “TRUE” if and only if ¢ is satisfiable w.r.t. R, T
and 4.

Proof Let By = {o0.60 : nf(¢)} be the branch constructed in the first step of
Algorithm 1.

(The If direction) 1f ¢ is satisfiable w.r.t. ®, 7 and 4., then there is a model M =
(W, T,A,I)and astate w € Wsuchthat M =R, M =7, M =¢ + Ac and (M, w) =
¢. Furthermore, according to the construction of nf(¢), we have (M, w) &= nf(¢).

Construct a function 1 as 1(0g.69) = w. It is immediate that : is a branch-model
mapping w.r.t. 7, By, and M, and we have (M,1) =g .7 Bini- Therefore, By, is
satisfiable w.r.t. ® and 7. By Lemma 6, a completed branch #’ which is not
ignorable and is satisfiable w.r.t. ® and 7 will be generated by applying tableau
expansion rules. Furthermore, by Lemma 3, the branch #' is not contradictory, and
the initial view IV is consistent w.r.t. ® and 7. Therefore, the algorithm will return
“TRUE”.

(The Only-if direction) If the algorithm returns “TRUE”, then there must be a
completed branch 3’ which is neither contradictory nor ignorable, and its initial view
IV is consistent w.r.t. ® and 7. By Lemma 5, #' is satisfiable w.r.t. ® and 7, and
consequently the branch B, is also satisfiable w.r.t. ® and 7 by Lemma 4. So, there
must be amodel M = (W, T, A, I) and a branch-model mapping ¢ such that M = %,
M = T and (M, 1(0g.g0)) = nf(¢). Since there is not any action name occurring in
nf(¢), we can modify the model M as follows: for every action name « defined by
some atomic action definition « = (P, E) € 4., set

T):={(w,w)eWxW|(M,w) = P,
AT = (AT Up!|A(p) € Ex D\ {p'I(=A)(p) € E} }
for each concept name A which is primitive w.r.t. T, and
R = (R'™ U{(p".¢"IR(p. ) € ExD \ (", qDI~R(p.q) € E}}
for each role name R. }.

Let M’ be the resulted model. Then it is immediate that M' = R, M' =T, M’ Ex ¢
A, and (M, 1(09.€0)) = ¢. Therefore, ¢ is satisfiable w.r.t. ®, 7 and 4. O

6 Extend Atomic Action Definitions of DDL(X®)

In order to be compatible with atomic actions described by Baader et al.’s formalism
[4], we extend atomic action definitions of DDL(X®) to include occlusions and
conditional post-conditions.

To be distinguished from atomic action definitions discussed in previous sections,
we call those extended by occlusions and conditional post-conditions as extended
atomic action definitions.
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With respect to a TBox 7, an extended atomic action definition of DDL(X®) is
of the form o = (P, O, E), where

- o€ NA;

—  Pis afinite set of ABox assertions for describing the pre-conditions;

— O is a finite set of occlusions, where each occlusion is of the form A(p) or
R(p, q), with A a primitive concept name, R a role name, and p, g € Ny; and

— FE is a finite set of conditional post-conditions, where each conditional post-
condition is of the form ¢ /¢ with ¢ an ABox assertion and v a primitive literal.

In the above definition, the pre-conditions, occlusions and conditional post-
conditions are the same with those introduced by Baader et al. [4] for describing
atomic actions. The pre-conditions specify under which conditions the action is ap-
plicable. Each conditional post-condition ¢/ says that, if ¢ is true before executing
the action, then v should be true after the execution. The occlusions indicate those
primitive literals that can change arbitrarily as while as the action is executed. With
DDL(X®)-models, the semantics of extended atomic action definitions is strictly
defined as follows.

With respect to an RBox ® and a TBox 7, a model M = (W, T, A, I) satisfies an
extended atomic action definition « = (P, O, E), in symbols M =¢ + « = (P, O, E),
ifandonlyif M =R, M = T, and

T() ={(w,w)eWx W (M, uw) kP,
both At N A, =@and A" N4 = (AI™UA)\ A)NTY
for each concept name A which is primitive w.r.t. T, and

both R; N R, =Wand R'™ NIy = (RI™URH\ RN IY

w w

for each role name R. },

where, let E,, :={ ¢ | ¢/¢ € E and (M, w) = ¢ }, then A}, A,, I, R}, R, and I}
are some sets constructed as follows:

- Al={(p'IA(p) € E, )},

- A,={p'|-A(p) € E,},

- I4=(A\{p'|A(peO})HUATUA,,

- RI={(" ¢ Rp.@ e E},

- R,={(®"q")I-R(p.q) € Ev} }.

- Tp=((Ax M)\ gD R(p.q) € O})URSUR,,.

The above definition is compatible with the semantics of atomic action definitions.
According to this definition, for any pair (w, w’) € T(«), any primitive concept name
A and any role name R, the interpretations A’™ and A/™" should satisfy that A}, C
Al A= N A1) = ¢ and except these contained in {p | A(p) € O} might change
arbitrarily, nothing else changes from A/™ to A/™"); the interpretations R'™ and
R'™" should satisfy that R}, € R'™), R N R'™) = ¢, and except these contained in
{(p",q") | R(p, q) € O} might change arbitrarily, nothing else changes from R/™ to
RIW),

According to the definitions, the semantics of extended atomic action definitions
are similar to the semantics of atomic actions defined in Baader et al.’s formalism
[4], except that different DL-interpretations which are connected in [4] by the
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interpretations of atomic actions are compressed here into a single DDL(X®)-
model, and the condition (M, w) = P is introduced here to state explicitly that the
pre-conditions should be satisfied.

As a result, atomic actions described by Baader et al.’s formalism can now be
represented in DD L(X®) with extended atomic action definitions. For example, the
atomic action buyBook,, presented in Section 1 of this paper can also be repre-
sented as an extended atomic action definition. As another example, for the Web
service system discussed in Section 3.3, some Web service BuyBookNotifiedrom. kin
might be described by the following extended atomic action definition:

BuyBookNotifiedrom. kin
= ({ customer(Tom), book(KingLear)}, {},
{ instore(King Lear)/bought(Tom, King Lear),
instore(King Lear)/—instore(King Lear),
instore(King Lear)/notify(Tom, NotifyOrderSucceed),
—instore(King Lear)/notify(Tom, Notify BookOutO f Stock) } )

where notify is a new introduced role name, and both NotifyOrderSucceed
and NotifyBookOutOfStock are new introduced individual names. Accord-
ing to this description, if the book KingLear is in store before executing
the action, then the formulas bought(Tom, KingLear), —instore(KingLear) and
notify(Tom, NotifyOrderSucceed) will be true after the execution; otherwise, the
formula notify(Tom, Notify BookOutO fStock) will be true after the execution,
which means that Tom is notified that the book is out of stock.

In DDL(X®), for each atomic action « defined by some extended atomic action
definition « = (P, O, E), we will introduce a procedure Unfold(«) to unfold it into
some choice action «; U ... U «,,, where

— eacho; (1 <i < n)is an atomic action defined by some atomic action definition;
and

— let 4. be an ActBox in which every «; (1 < i < n) is defined, then it must be T («)
=T(1U...Ua,) foranymodel M = (W, T, A, Dwith MR, M =T, M = ¢
a=(P,0,E)and M |=¢ + 4.

Based on such a procedure, reasoning mechanisms presented in previous sections
can be easily extended to support extended atomic action definitions.

First of all, we present the procedure Unfold() and demonstrate some properties
for it.

Let o be an atomic action defined by some extended atomic action definition o =
(P, O, E) w.r.t. an RBox ® and a TBox 7T;let O = { ¢y, ..., ¢, } and E = { 1/ V1, ...,
@i/ Vr }. Then, the procedure Unfold(«) operates according to the following steps:

1. Construct two (initially empty) sets 4. and 4.” of atomic action definitions.

2. Construct an ABox Peong :={¢ | ¢/¥ € E }.

3. For each set 4 € Peona U {9~ | ¢ € Peonal, if either ¢ € 4, or ¢~ € 3; for every
¢ € Pcona, and the ABox 4; is consistent w.r.t. ® and 7, then:

(a) construct an atomic action definition 8; = (PU 4, {¢ | ¢/¢ € E and ¢ €
4;}), and
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(b) putitinto 4/ if it is PE-consistent w.r.t. ® and 7.

4. For each atomic action definition 8; = (P;, E;) € 4./, do the following operations
sequentially:

(a) constructan ABox O;:={¢ |p € O,¢ ¢ E; zand o™ ¢ E; % 1
(b) foreachset O;; € O; U{¢p~ | ¢ € Oy}, if either ¢ € O;j or ¢~ € O, ; for
every ¢ € O;, and the ABox O, is consistent w.r.t. ® and 7, then :

i. construct an atomic action definition g; j = (P;, E; U O, ;), and
ii. putitinto 4.” if it is PE-consistent w.r.t. ® and 7.

5. If the set 4. is empty, then construct an atomic action definition By =
({ false}, #) and put it into 4.".

6. Let «y, ..., o, be all the atomic actions defined in 4.”; construct a choice action
o) U...U o, and return it.

As an example, taking the atomic action BuyBookNotifiedrom, kin defined above
as input, the procedure Unfold(BuyBookNotifiedrom kin) Will return a choice
action of the form

BuyBookSucceedrom kin U BuyBook Failedrom kin

where BuyBookSucceedrom, kin and Buy Book Failedr,,, kin are two atomic actions
defined by the following atomic action definitions:

BuyBookSucceedrom, kin
= ({ customer(Tom), book(KingLear), instore(KingLear) },
{ bought(Tom, KingLear), —instore(King Lear),
notify(Tom, NotifyOrderSucceed) } )
BuyBook Failedr,m kin

({ customer(Tom), book(King Lear), —instore(King Lear) },
{ notify(Tom, Notify BookOutO f Stock) } )

Lemma 7 For any atomic action o which is defined by some extended atomic action
definition « = (P, O, E) w.r.t. an RBox R and a TBox T, the procedure Unfold(x)
terminates.

Proof Let m:=40 and k := gE. Then, during the execution of the procedure
Unfold(x), we have #P.nq < k, and consequently the number of atomic action
definitions put into 4.’ is bounded by 2. At the same time, for each atomic action
definition o; = (P;, E;) € 4./, we have #0; < m, and therefore the number of atomic
action definitions constructed for it is bounded by 2. To sum up, the number of
atomic action definitions which will be generated and put into 4.” is bounded by 2*
x 2. So, the procedure Unfold(x) terminates. O
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Lemma 8 Let o be an atomic action defined by some extended atomic action
definition a« = (P, O, E) w.r.t. an RBox R and a TBox T; let «; U ... U o, be the
action returned by the procedure Unfold(«), and let 4- be an ActBox in which
each o; (1 <i < n) is defined by some atomic action definition. Then, for any model
M=W, T,A,hH)withM=R, MET, M Exq A4 and M =4 s « = (P, O, E), it
must be T(a; U ...Ua,) = T(x).

Proof For any states w, w’ € W, we demonstrate that (w, w’) € T(«; U ... U,) if and
only if (w, w') € T(«).

(The If direction) Let (w, w') € T(«). By the semantics of extended atomic action
definitions, we have (M, w) = P, both AL N A, =@ and A/ N 1Y = (AI™ U
ADN\A,) N IY for each concept name A which is primitive w.r.t. 7, and both
R{N R, =@and RI™ N 1% =((R'™ U RE)\R,) N I% for each role name R, where,
let E, :={¢ | ¢/¥ € E and (M, w) = ¢}, then the sets A}, A, I, R}, R, and I}
are constructed as those listed in the semantic definition of extended atomic action
definitions.

Construct three ABoxes P,,, O’ and O,, as follows:

Py, = {gle/y e Eand (M,w) =9} U (¢~ | ¢/ € Eand (M, w) = —¢};
O = 1{¢ldpecO0,¢¢E,;and¢™ ¢ E, ).
Oy = {¢lpecO0and M,w) ¢} U{¢"|¢e O and (M v = —¢}.

Then, according to the operations of the procedure Unfold(«), there must be some
atomic action ¢; (1 <i < n) such that Pre,, = PU P,, and Eff, = E,, U O,,. In the
following paragraphs, we demonstrate (w, w’) € T(;) by the semantics of atomic
action definitions.

Firstly, it is obvious that (M, w) = PU P,,.

Secondly, for any concept name A which is primitive w.r.t. 7, since {p’ | A(p) €
E,} N {p' | =A(p) € E,} = Aj N A, =0, we have {p' | A(p) € E,UO,} N {p'
| =A(p) € E, U O,} = #. In order to demonstrate A/™) = (A/™ U {p! | A(p)
E, U0\ {p' | —A(p) € E, U O,)}, there are two cases to be investigated for
each x € A:

—  x e I% Then,since A/ N I1% = ((AI™ U Af) \ A;) N 1%, we have x € AT®)
if and only if x € (A'™U { p' | A(p) € E, D\ {p' | —A(p) € E,}. Now, we
demonstrate the equation from two directions.

- If xe A'™) then we have x € A/®™U {p! | A(p) € E,} and x ¢ {p’ |
—A(p) € E,}. At the same time, it must be x ¢ {p’ | =A(p) € O,}; oth-
erwise, according to the construction of the set O,,, we have x ¢ A/®" and
get a contradiction. Therefore, we have x € (A'™ U {p! | A(p) € E, U O,}
Y\ {p' | =A(p) € E, U O,)}.

- IfxeA'™uU{p'| A(p) € E,UO)\{p'|-A(p) € E, U O,}, then we
have x ¢ {p! | =A(p) € E,}, and either x ¢ A’™ U {p! | A(p) € E,}orx e
{p' | A(p) € O,). In the case that x € AT™ U {p! | A(p) € E,,}, we have x €
(AU {p! | A(p) € ELD) \ {p' | =A(p) € E,} and therefore x € A/®);in
the case that x € {p’ | A(p) € O,}, according to the construction of the set
O,,, we have also x € A1,

@ Springer



42 L. Chang et al.

— x ¢ I%. Then, we have x € {p’ | A(p) € O}, x ¢ {p' | A(p) € E,,} and x ¢ {p" |
—A(p) € E,}, and therefore there must be some individual name p, such that
x = pl and A(py) € O'. Now, we demonstrate the equation from two directions.

— Ifxe A'™) then we have A( po) € O, according to the construction of the
set O, and consequently x € {p’ | A(p) € O,). At the same time, it must
be x ¢ {p’ | ~A(p) € O,}; otherwise, according to the construction of the
set O,, we have x ¢ A' @) and get a contradiction. Therefore, we have x €
(Al(w) U {pl | A(P) € E, U0} \ {pl | _‘A(P) € E, U Oy}

- Ifxe (A"™U{p’| A(p) € E, UO,N\{p' | ~A(p) € E, U O,}, then we
have x ¢ {p’ | =A(p) € O, )} and consequently =A(pg) ¢ O,. So, according
to the construction of the set O,,, we have A(py) € O,, and (M, w’) = A(po)-
Therefore, we have x € A/®),

Thirdly, be similar with the above demonstration on primitive concept names,
it can be proved that both {(p’,q") | R(p.q) € Eff,;} N {(p'.q") | =R(p.q) €
Eff, ) =@ and R'™ = (R'™ U {(p",q") | R(p.q) € Eff,; D\ {(p".q") | =R(p.q) €
Eff, ;) for each role name R.

To sum up, we have (w, w’) € T(¢;) and consequently (w, w’) € T(o; U ... U ay).

(The Only-if direction) Let (w, w’) € T(; U...Ua,). Then there must be some
atomic action ¢; (1 < i < n) with (w, w’) € T(«;). Furthermore, during the execution
of the procedure Unfold(a), there must be some sets Pconq, 4, E;, O; and O; j such
that:

- Peona=1{¢l@/¥ € E},

- A C PoonaU{e~ | ¢ € Peona}, anditiseither ¢ € 4, 0r ¢~ € 4 forevery ¢ € Popa,
- E={ylg/yeEandype 7}

- O0i={¢|pc0,9¢E}and¢™ ¢ E; 3},

- 0;;C0;U{¢p" | ¢ € O;},anditis eitherp € O; jor ¢~ € O, ;for every ¢ € O;,
- Pre, =PU2Zg,andEff, = E;U O, ;.

By the semantics of atomic action definitions, we have (M, w) = P U 4;, both {p’ |
A(p) € E;U O} N {p' | =A(p) € E;U O;j} =@ and A'™) = (A'™ U {p" | A(p) €
E;UO; )\ {(p! | —A(p) € E;U 0;,j} for each concept name A which is primitive
w.r.t. 7, and both {(p’, ¢") | R(p,q) € Eff, 3} N {(p'.q") | =R(p.q) € Eff,,};} =
and R'™) = (R'™ U {(p’, q") | R(p. q) € Eff, ;D\ {(p. ¢") | =R(p. q) € Eff,}} for
each role name R.

Let E, :={¢¥ | ¢/¥ € E and (M, w) = ¢}. Then it is obvious that E,, = E;. In the
following paragraphs, we demonstrate (w, w’) € T(«) by the semantics of extended
atomic action definitions.

Firstly, it is straightforward that (M, w) = P.

Secondly, let A be any concept name which is primitive w.r.t. 7, and let
I = (A\ {p" | A(p) € O} U {p’ | A(p) € E,} U {p’' | ~A(p) € E,}. Since {p’ |
A(p) € E;U O} N {p'| =A(p) € E;U O;} =9, we have {p | A(p) € E,} N {p" |
—-A(p) € E,} = ¥. Now, we demonstrate the equation A/™" N % = (A'™ U {p! |
A(p) € ELD\{p'|=A(p) € E,D) N I'; by investigating each individual x € A:

— Ifxe A'™) N 1%, then we have both x € A’™" and x € I%, and therefore x €

A U pl| A(p) € E} U {p' | A(p)e O}, x ¢ {p' | ~A(p) € E;}, and x ¢
{p' | =A(p) € O;;}. Let’s assume that x ¢ A/™ U {p! | A(p) € E;}, then it must
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be x € {p’ | A(p) € O, }, and therefore we have x € {p’ | A(p) € O} according
to the construction of the set O; ;; at the same time, since x € '} and x ¢ { pl
—A(p) € E;},we have x € A\ {p’ | A(p) € O} and consequently x ¢ {p’ | A(p) €
0}, and therefore get a contradiction. So, it must be x € A'™ U {p! | A(p) € E}}.
Therefore, we have x € ((A/™ U {p!| A(p) € E,}) \ {p' | —A(p) € E,}) N IY.
- Ifxe ((A"™ u {p! | A(p)e E,D\{p' | =A(p) € E,}) N I%, then we have
xe Al U {pl| A(p) € E,}, x ¢ {p! | =A(p) € E,} and x € I%. Let’s assume
that x € {p! | —A(p) € O j}; then, according to the construction of the set O, ;,
we have x € {p’ | A(p) € O} and consequently x ¢ A\ {p’ | A(p) € O}; further-
more, since x € [% and x ¢ {p’ | ~A(p) € E,}, wehavex € {p’ | A(p) € E,}and
consequently x € {p’ | =A(p) € O;;} N {p’ | A(p) € E,}, which is contradictory
with the fact that {p’ | A(p)e E; U O;;} N {p' | —A(p)e E; U O;;} =
@. So, it must be x ¢ {p’ | =A(p) € O, ;}. Therefore, we have x € (A/™ U {p!
| A(p) € E;U O; ;)\ {p! | =A(p) € E; U O; ;} and consequently x € AT®) 0 1%,

Thirdly, be similar with the above demonstration on primitive concept names, it
can be proved that both {(p, ¢") | R(p.q) € Eu3} N {(p".q") | ~R(p.q) € Ey3} =
@ and R'™ N Iy = (R'™ U {(p',q") | R(p,q) € Ewi) \ {(p'.q") | =R(p.q) €
E,3}) N I} for each role name R, where I := ((A x AM)\{(p’.q¢") | R(p.q) € OH U

{(p'.a) | R(p.q) € Eu3}U{(p".q") | ~R(p.q) € Euy)}.
To sum up, we have (w, w’) € T(). O

Lemma9 Let o be an atomic action defined by some extended atomic action
definition a = (P, O, E) w.r.t. an RBox R and a TBox T; let ) U ... U ,, be the action
returned by the procedure Unfold(a); let A- be an ActBox in which each o; (1 <i < n)
is defined by some atomic action definition; and for each atomic action o; (1 <i < n),
let i1, ..., ik, be all the ABox assertions contained in Pre,,. Then, for any model
M=W, T, A, DHwithM=R M=T, M =g s Ac and M =4 s « = (P, O, E), it
must be T (o) = T(¢i1?; ... dig,? 5 ).

Proof For any states w, w’ € W, we demonstrate that (w, w’) € T(«;) if and only if
(w, w) e T($i1?; ... 5 dix,? 5 ).

(The If direction) Let (w, w’) € T(¢i1?; ... ; ¢ir,? ; «). Then we have (w, w) €
T($ir?; ... 5 dix,?) and (w, w’) € T(a). Therefore, we have (M, w) = Conj(Pre,,)
since Pre,, = {¢;1, ..., $ir,}. Furthermore, for any atomic action «; with 1 < j<n

and j # i, by investigating the operations of the procedure Unfold(), it is straight-
forward that the formula Conj(Pre,,) A Conj(Pre,,) is unsatisfiable w.r.t. ® and 7;
therefore, we have (M, w) = —Conj(Pre,;) and consequently (w, w') ¢ T(a)). At the
same time, since (w, w’) € T(«), we have (w, w’) € T(x; U ... Ua,) by Lemma 8. So,
it must be (w, w’) € T(«;).

(The Only-if direction) Let (w, w') € T(¢;). Then, we have (w, w’) € T(a; U ...U
ay), (M, w) = Conj(Pre,,) and consequently (w, w) € T(¢;1?; ... ; ¢ix?). Therefore,
by Lemma 8, we have (w, w’) € T(«) and consequently (w, w’) € T(¢i1?; ... ; ¢ix?
o). O

Now, we can extend reasoning mechanisms discussed in previous sections to
support extended atomic action definitions.
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Firstly, we introduce the PE-consistency problem of extended atomic action
definitions.

Definition 19 An extended atomic action definition « = (P, O, E) is PE-consistent
w.r.t. an RBox ® and a TBox 7 if and only if there is a model M = (W, T, A, I)
and two states w, w' € Wsuchthat M =R, M =7, (M, w) = Pand (M, w') = {V |
@/ € Eand (M, w) | ¢}.

With the help of the Unfold() procedure, the PE-consistency problem of extended
atomic action definitions can in fact be reduced to the PE-consistency problem of
atomic action definitions; i.e.:

Theorem 9 An extended atomic action definition o = (P, O, E) is PE-consistent
w.r.t. an RBox R and a TBox T if and only if the action returned by the procedure
Unfold(a) is not the atomic action By defined by By = ({ false}, ?).

Secondly, we extend the ActBox of DD L(X®) to include extended atomic action
definitions; i.e., for each finite set 4, of atomic action definitions and extended
atomic action definitions, if no action name occurs on the left-hand sides for more
than once, then call 4, an ActBox of DDL(X®).

Correspondingly, the terms and notations related with ActBoxes should be ex-
tended. For example,

— an ActBox 4 is called PE-consistent w.r.t. an RBox ® and a TBox 7 if and only
if all the elements of 4, are PE-consistent w.r.t. ® and T

— an atomic action « is called defined in an ActBox 4. if and only if « occurs on the
left-hand side of some element of 4.

Finally, by the following algorithm, we extend the satisfiability-checking algorithm
presented in Section 5 to support extended atomic action definitions.

Algorithm 2 Let 4. be an ActBox which is PE-consistent w.r.t. an RBox R and a
TBox T. For any formula ¢ defined w.r.t. 4., we decide whether it is satisfiable w.r.t.
R, T and A, according to the following steps:

1. Construct an (initially empty) set A;' of atomic action definitions.
2. Construct a formula ¢’ := .
3. For every atomic action o occurring in ¢':

— if a is defined by some atomic action definition o = (P, E) € 4., then add
o = (P, E) into the set A;/;

— ifais defined by some extended atomic action definition o« = (P, O, E) € 4,
then do the following operations sequentially:
(a) call the procedure Unfold(a) and let By U ... U B, be the action returned

by it;

(b) add every atomic action definition of B; (1 < i < n) into the set 4;'; and
(c) replace each occurrence of a in the formula ¢’ by the action 8, U ... U B,,.

4. If ¢’ is satisfiable w.r.t. R, T and A according to Algorithm 1, then return
“TRUE”, else return “FALSE”.
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Based on Lemma 7 and Theorem 7, it is obvious that this algorithm terminates.
Furthermore, by Lemma 8, the following result is straightforward:

Theorem 10 Algorithm 2 returns “TRUE” if and only if the formula ¢ is satisfiable
w.r.t. R, T and 4.

In the following paragraphs, we investigate the complexity of Algorithm 2.

First of all, we extend the notation of size introduced in Section 5.2 to support
extended atomic action definitions; i.e., for each extended atomic action definition
a= (P, 0, E), its size is defined as @« = (P, O, E)| = |«| + Z (e + X (oD +

geP pe0
> (el + 1y +1.
¢/YveE
Next, we investigate the complexity of the Unfold() procedure. Let « be an

atomic action defined by some extended atomic action definition « = (P, O, E); and
let o; U ... U @, be the action returned by the procedure Unfold(«). Then, according
to the proof of Lemma 7, it is obvious that the size |o; U ... U | is linearly bounded
by |a| x 270 x 2°E. Furthermore, based on the result presented in Theorem 1, it is
straightforward to show that, for the family DD L(X®) of dynamic description logics,
the complexity upper-bound of the Unfold() procedure is EXPTIME if X € {4LcO,
ALCHO, ALLCOQ, ALCHOQ, ALCOI, ALCcHOIY, and is NEXPTIME if X e {4.c01Q,
ALCHOIQ).

Based on the above results, it is obvious that the complexity upper-bound of
Algorithm 2 is dependent on Step 4 of the algorithm.

Now, suppose Algorithm 1 is called by Step 4 to decide whether the formula ¢’
is satisfiable w.r.t. ®, 7 and 4,'. Let mo (resp. mg) be the maximal one among #O
(resp. #E) for every extended atomic action definition « = (P, O, E) € 4.. Then, it
is obvious that the size |¢'| is linearly bounded by |¢| x 2™ x 2™E and the size |4//|
is linearly bounded by |4.| x 2”0 x 2™, Therefore, it seems that the complexity of
Algorithm 2 will be increased exponentially. But in fact, it is not the case.

Let fi= |nf(¢)|, ci= fclg (¢'), a:= $Assg (¢’) and e:= §Effs(¢), where the sets
clz (¢'), Assg (¢") and Effg (¢) are constructed according to the definitions presented
in Section 5.2. Let m be the maximal one among || for every ¥ € Assg(¢’). Then,
according to the proof of Theorem 7, the complexity of Algorithm 1 is determined by
the integers c, a, e and m, where the numbers c, a and e are linearly bounded by
fx |R|, and the number m is bounded by f. At the same time, the number f is
linearly bounded by || x 20 x 2™ x | 4.|.

In Algorithm 2, the number c is still linearly bounded by fx |® | and consequently
linearly bounded by |¢p| x 20 x 2" x |4.| x |R|. However, for the integers a, e
and m, we can find some better upper bounds for them, and the exponential increase
caused by the size of ¢’ can be avoided.

Firstly, let oy, ..., &, be all the different atomic actions occurring in ¢. For each ¢;
(1 <i<n),let E/ := E; if o;; is defined by some atomic action definition ¢; = (P}, E)),
and let E, := O; u {¥ | ¢/¥ € E;} if o; is defined by some extended atomic action
deflnmon al = (P;, O, E;). Based on these notations, construct a set Effz*(¢) as
follows:

Effgi(9) = E,, U..UE,".
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Then, it is obvious that 1 Effz*(¢) is linearly bounded by |4.| x |R|. Furthermore,
we have Effx(¢") € Effi*(p). Therefore, the number e is linearly bounded by
1| X |R).

Secondly, for any formula or action X, we use Ass**(X) to denote an ABox
defined inductively as follows:

—  Ass(X) ={X, X"} if X is a concept assertion or a role assertion;
- Ass®(X) = Ass“(y) if X is a formula of the form —;
- Ass®(X) = Ass® () U Ass“ () if X is a formula of the form < 7 > ¢ or [7]y;
- Ass?(X) = Ass® (Y1) U Ass“(yr,) if X is a formula of the form vy Vv ¥, or ¥ A
Y25
- Ass™(X) = | Ass“(p) U |J Ass®(¢) if X is an atomic action defined by some
epP peE
atomic actioﬁl definition X = (P, E);
- Ass™(X) = | Ass™(p) U | Ass™ (@) U | (Ass™(p) U Ass®™(y)) if X is an
peP $eO @/YveE
atomic action defined by some extended atomic action definition X = (P, O, E);
- Ass?(X) = Ass®(¢) if X is an action of the form ¢?;
- Ass™(X) = Ass® () U Ass®*(m,) if X is an action of the form 7y U , or 7y; mo;
- Ass®(X) = Ass“ () if X is an action of the form 7.

Furthermore, let Ass% (X) be the closure of Ass®*(X) w.r.t. ®. Then, it is obvious
that #Ass% () is linearly bounded by (|| + |4c|) x |R|. Furthermore, we have
Assg(¢') S Assi(p). Therefore, the number a is linearly bounded by
(el + 14ch x |R].

Finally, Let m** be the maximal one among || for every ¥ € Assg (). Then, it
is obvious that m < m® and m*® is linearly bounded by |¢p| + |4.|. Therefore, the
number m is linearly bounded by |¢| + |4.|.

According to the proof of Theorem 7, during the execution of Algorithm 1, the
number of branches which will be generated is finite. Furthermore, for each branch
B generated by the algorithm, the number of prefixed formulas contained in it is
bounded by (2 — 1) x ¢ + (¢ + a x (2° — 1) ); the number of elements contained
in the ABox IV is bounded by a x 2¢; and there exist some polynomials p; and p,
such that |1V < (a x 2¢) x (m x 2PUTD x (p,(e))™+71). Therefore, to sum up, we
can get the following result on the complexity upper-bounds of Algorithm 2.

Theorem 11 For the family DD L(X®) of dynamic description logics, the complexity
upper-bound of Algorithm 2 is EXPSPACE if X € {4LCO, ALCHO, ALCOQ, ALLCHOQ),
and is N2EXPTIME if X € {4ALCOI, ALCHOI, ALCOIQ, ALCHOIQ).

We conclude this section with the result that both the domain constraints and the
actions described by Baader et al.’s formalism [4] are now supported by DD L(X®).

7 Related Works

We have proposed a family of dynamic description logics for representing and
reasoning about actions. Related works are organized as six groups.
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7.1 Representing and Reasoning About Actions with Description Logics

The idea of adopting description logics for representing and reasoning about actions
is not new. Two typical formalisms based on this idea are the RAT (Representation
of Actions using Terminological logics) system [20] and the CLASP (CLassification
of Scenarios and Plans) system [11]. In both systems, world states are represented
as concept expressions of description logics; atomic actions are described in the
STRIPS style [13] with pre-conditions, add-lists and delete-lists; and each finite
sequence of atomic actions is treated as a plan individual. Moreover, the CLASP
system introduces the notation of plan concepts. It defines each plan concept as a
triple composed of INITIAL state, GOAL state and PLAN-EXPRESSION, where
each PLAN-EXPRESSION is constructed from atomic actions with the help of the
SEQUENCE, LOOP, REPEAT, TEST, OR, and SUBPLAN constructors. Based on
standard reasoning mechanisms of description logics (and with the help of the finite
automaton theory), reasoning tasks on actions and plans can be effectively carried
out. A limitation of these two formalisms is that they work with the Closed World
Assumption (CWA), and therefore require complete knowledge about the problem
to be given.

Compared with the above systems, our formalism describes the world states and
the pre- and post-conditions of atomic actions with ABox assertions; therefore,
actions in our formalism are in fact represented “over” description logics. Moreover,
the Open World Assumption (OWA) adopted in description logics is preserved in
the satisfiability-checking algorithm of DDL(X®), so that all the reasoning tasks
introduced in our formalism can be carried out with incomplete knowledge about
the world.

7.2 Reasoning About Actions with Temporal Description Logics

Based on a combination of interval-based temporal logics and feature description
logics, Artale and Franconi [2] proposed a class of temporal description logics for
reasoning about actions. With these logics, not only the world states but also the
actions and the plans are represented as concepts. Each state describes a collection
of properties of the world holding at certain time; each action is represented through
temporal constraints on states, by describing what is true while the action itself is
occurring; and each plan is constructed by temporally relating actions and states.
Artale et al. provided sound and complete algorithms for deciding the subsumption
relationship between concepts. Based on these algorithms, many reasoning tasks on
actions and plans can be effectively carried out, such as deciding the subsumption
between plans and deciding the instance relationship between individual plans and
plan types.

Compared with Artale et al.’s formalisms, our work is characterized by integrating
dynamic logics with description logics. Therefore, on the one hand, many complex
temporal properties which are captured by Artale et al.’s formalisms can’t be
represented with our formalism; on the other hand, many complex control structures
on actions that are supported by our formalism can’t be described by Artale et al.’s
formalisms. Additionally, the reasoning tasks investigated by Artale et al. are the
action/plan taxonomy problem and the problem of recognizing plans with respect
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to plan descriptions; our formalism, however, focus on the realizability problem, the
executability problem and the projection problem of actions.

7.3 Action Formalisms Constructed Over Description Logics

A formalism in which actions are represented over description logics was firstly
proposed by Lutz and Sattler [26]. In their formalism, each action was described
as a triple consisting of a finite set of pre-conditions, a finite set of relaxations, and a
finite set of conditional post-conditions, where each condition was an ABox assertion
or an extended assertion of the form VC. Taking each finite sequence of actions as
a service, inference problems such as the realizability of services, the subsumption
between services and the projection problems were introduced. However, reasoning
mechanisms for these inference problems were not provided.

A realizable action formalism constructed over description logics was presented
by Baader et al. [4]. Based on this formalism, Liu et al. [24] investigated the
ramification problem induced by general concept inclusions in the case that general
TBoxes was incorporated; and Mili¢i¢ [30] investigated the planning problem.

As discussed in the Introduction, a limitation of the above works is that they do
not support complex control structures of actions. This limitation is overcome in our
formalism by combining Baader et al.’s formalism with the propositional dynamic
logic PD L.

7.4 DL-Based Restrictions of Classical Action Formalisms

Inspired by Baader et al.’s action formalism, Gu and Soutchanski [19] proposed a
modified version of the Situation Calculus [36]. The modification is embodied in two
aspects. Firstly, the first-order logic used in the Situation Calculus is restricted to be
the C? logic [17, 34], so that the executability problem and the projection problem on
actions are guaranteed to be decidable. Secondly, based on the fact that the C? logic
and the description logic 4LcQI(U, M, —, |, id) are equally expressive, the RBoxes and
TBoxes of description logics are included explicitly in the action theory of Situation
Calculus

With a similar motivation, Drescher and Thielscher [12] proposed to use ABoxes
of description logics as decidable state descriptions in the basic Fluent Calculus.

Both Gu et al.’s work [19] and Drescher et al.’s work [12] can be treated as DL-
based restrictions of classical action formalisms constructed over first- or higher-
order logics. However, our work can be viewed as a DL-based extension of the
action formalism constructed over propositional dynamic logics [9]. From the point of
knowledge representation and reasoning, a feature of DD L(X®) is that properties
on actions can be explicitly stated by formulas, and consequently many inference
problems on actions can be reduced to the satisfiability problem of DDL(X®)-
formulas.

7.5 Dynamic Extensions of Description Logics
A dynamic description logic named P D LC was constructed by Wolter et al. [43] as a

combination of the propositional dynamic logic PD L and the description logic 4LC.
A feature of PDLC is that actions are used as model operators for constructing
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not only the formulas but also the concepts. Therefore, concepts with dynamic
meanings can be described by PD LC. For example, a concept Easy_cured_child can
be specified by the following concept definition:

Easy_cured_child = Child A 3has. Angina

A < (give_honey U give_aspirin)* > —3has. Angina,

which refers to the children suffering from angina that can be cured by using honey
and aspirin [43]. Wolter et al. demonstrated that the logic PD LC was still decidable;
but the complexity of the decision problem and the development of efficient decision
algorithms were left as open problems.

Compared with Wolter et al’s work, the motivation of our work is to provide a
kind of action formalisms for describing and reasoning about actions. Therefore,
on the one hand, actions are not used as model operators for the construction
of DDL(X®)-concepts. On the other hand, an action formalism constructed over
description logics is incorporated in DDL(X®); with this action formalism, each
atomic action in DDL(X®) is further specified by an atomic action definition or
an extended atomic action definition, and is interpreted according to the minimal-
change semantics [8, 38].

7.6 Updating Description Logic ABoxes

Taking ABoxes of description logics as a tool for describing the state of affairs in an
application domain, Liu et al. [23] proposed a theory for updating ABoxes. In that
theory, the initial state of an application domain was described by an ABox 4 of
some description logic of the ALCQJO family; the update was specified by a restricted
ABox ¢ which was composed of primitive literals; and the semantics of updating
4 with U was defined according to the minimal-change semantics. Liu et al. firstly
demonstrated that both the nominals and the “@” constructor were necessary for
a description logic to represent the updated ABoxes. Then, based on a technically
designed procedure for constructing updated concept C¥ w.r.t. any concept C and
any update ¥, Liu et al. provided algorithms for computing updated ABoxes; the
complexity of these algorithms were also investigated.

In our formalism, the regression operator CRes"¢ss@7) presented in Section 5 is in
fact an inverse operator of Liu et al’s process for constructing the updated concept
C'". For any prefix o.¢ introduced in our satisfiability-checking algorithm, the set
¢ is used to record the accumulated post-conditions for the sequential action o.
Therefore, the set ¢ in our regression operator can be treated as the update U in
Liu et al.’s theory; the concept C can be treated as an updated concept C' for some
concept C’; and the target of the regression operator CRe&es¢T) ig just to compute
the concept C'.

8 Conclusion

In this paper we constructed a family of dynamic description logics named
DDL(X®), where X represents well-studied description logics ranging from the
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ALCO to the 4LCHOIQ, and X © denotes the extension of X with the @ constructor.
As a combination of the description logic X©, the propositional dynamic logic
PDL and an action formalism proposed by Baader et al. [4], the logic DDL(X®)
offers considerable expressive power for the description of actions. We also de-
veloped a tableau algorithm for deciding the satisfiability of DD L(X®)-formulas.
Based on this algorithm, reasoning tasks on actions, such as the realizability prob-
lem, the executability problem and the projection problem, can all be effectively
carried out.

The logic DD L(X®) provides an approach to bring the power and character of
description logics into the description and reasoning of dynamic application domains.
One of our future work is to study the planning problem based on DD L(X®). An-
other work is to represent and reason about semantic Web services with DD L(X®).

Acknowledgements The authors are very grateful to anonymous reviewers for their helpful
comments and suggestions during the preparation of this paper.
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