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Abstract Description logics provide powerful languages for representing and rea-
soning about knowledge of static application domains. The main strength of de-
scription logics is that they offer considerable expressive power going far beyond
propositional logic, while reasoning is still decidable. There is a demand to bring
the power and character of description logics into the description and reasoning of
dynamic application domains which are characterized by actions. In this paper, based
on a combination of the propositional dynamic logic PDL, a family of description
logics and an action formalism constructed over description logics, we propose a
family of dynamic description logics DDL(X@) for representing and reasoning
about actions, where X represents well-studied description logics ranging from the
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ALCO to the ALCHOIQ , and X@ denotes the extension of X with the @ constructor.
The representation power of DDL(X@) is reflected in four aspects. Firstly, the static
knowledge of application domains is represented as RBoxes and acyclic TBoxes of
the description logic X. Secondly, the states of the world and the pre-conditions
of atomic actions are described by ABox assertions of the description logic X@,
and the post-conditions of atomic actions are described by primitive literals of X@.
Thirdly, starting with atomic actions and ABox assertions of X@, complex actions
are constructed with regular program constructors of PDL, so that various control
structures on actions such as the “Sequence”, “Choice”, “Any-Order”, “Iterate”, “If-
Then-Else”, “Repeat-While” and “Repeat-Until” can be represented. Finally, both
atomic actions and complex actions are used as modal operators for the construction
of formulas, so that many properties on actions can be explicitly stated by formulas. A
tableau-algorithm is provided for deciding the satisfiability of DDL(X@)-formulas;
based on this algorithm, reasoning tasks such as the realizability, executability and
projection of actions can be effectively carried out. As a result, DDL(X@) not
only offers considerable expressive power going beyond many action formalisms
which are propositional, but also provides decidable reasoning services for actions
described by it.

Keywords Description logic · Dynamic description logic · Action theory ·
Satisfiability-checking algorithm · Reasoning tasks

1 Introduction

Description logics (DLs) are well-known for representing and reasoning about
knowledge of static application domains. They are playing a central role in the
Semantic Web [5], serving as the basis of the W3C-recommended Web ontology
language OWL [21, 39]. The main strength of description logics is that they offer
considerable expressive power going far beyond propositional logic, while reasoning
is still decidable [3].

There is a natural trend to bring the power and character of DLs into the
description and reasoning of dynamic application domains which are characterized
by actions. The study of integrating DLs with action formalisms is driven by two
factors. One is the expressive gap between well-studied action formalisms: they are
either based on first- or higher-order logics and do not admit decidable reasoning,
like the Situation Calculus [28, 36] and the Fluent Calculus [40], or are decidable but
only propositional, like those based on propositional dynamic logics or propositional
temporal logics [6, 9, 16]. The other factor is the target of the semantic Web services
[29]: to enable automatic discovery, composition, invocation and interoperation of
Web services, by describing Web services’ capabilities and contents in an unambigu-
ous and computer-interpretable language; towards this target, an obvious concern is
to combine in some way the static knowledge provided by ontologies on the Semantic
Web with the dynamic descriptions of the computations provided by Web services
[7, 26].

An action formalism constructed over DLs of the ALCOIQ family was proposed by
Baader et al. [4]. In that formalism, acyclic TBoxes and ABoxes of DLs are used
to specify the domain constraints and the states of the world respectively. Each



A Family of Dynamic Description Logics 3

atomic action is described by a triple (pre, occ, post), where pre is a finite set of
ABox assertions for specifying the pre-conditions, occ is a finite set of occlusions for
indicating some primitive literals which might change arbitrarily as while as the action
is executed, and post is a finite set of conditional post-conditions of the form ϕ/ψ ,
where ϕ is an ABox assertion and ψ is a primitive literal. The semantics of atomic
actions is defined by means of transition relations on DL-interpretations, where each
transition relation is restricted by the minimal-change semantics. Taking each finite
sequence of atomic actions as a composite action, Baader et al. investigated the
executability problem and the projection problem of actions. It was shown that both
of these problems could be reduced to standard inference problems of description
logics and therefore were decidable still. Following Baader et al’s work, Liu et al.
[24] proposed an approach to incorporate general TBoxes into the action formalism;
Miličić [30, 31] investigated the planning problem and demonstrated that the plan
existent problem was still decidable.

With Baader et al.’s formalism, an atomic action (or a simple Web service) named
buyBooka,b might be described as a triple buyBooka,b = (pre, occ, post), where

– pre = {customer(a), book(b)},
– occ = { }, and
– post = {instore(b)/bought(a, b), instore(b)/¬instore(b)}.
This description states that the action buyBooka,b is applicable if a is a customer and
b is a book; moreover, if b is in store before executing the action, then the result
of the execution is that a has bought b and b is not in store any more. Concepts
occurring in this description could be further specified by concept definitions; for
example, the concept customer might be specified as follows:

customer ≡ person � ∃holds.creditCard

which states that each customer is a person holding a credit card.
Baader et al.’s formalisms [4, 24, 30] provide considerable expressive power

for describing actions and Web services; they also provide desirable computa-
tional properties such as decidability, soundness and completeness of deduction
procedures. However, a common limitation of them is that atomic actions can
only be organized as finite sequences; many complex control structures on actions,
such as the “Choice”, “Any-Order”, “Iterate”, “If-Then-Else”, “Repeat-While” and
“Repeat-Until” structures specified in the OWL-based Web service ontology OWL-
S [27], are not supported. Therefore, in order to describe and reason about complex
compositions of Web services [33], there is a demand to enhance Baader et al.’s
formalisms with more control structures.

In this paper, by embracing Baader et al.’s action formalisms into a dynamic logic,
we propose a family of dynamic description logics DDL(X@) for representing and
reasoning about actions, where X denotes the description logics ranging from the
ALCO to the ALCHOIQ , and X@ is an extension of X with the @ constructor [23].

The logic DDL(X@) can be treated as a combination of the propositional
dynamic logic PDL [14, 15, 35], the description logic X@, and the action formalism
proposed by Baader et al. [4]. Firstly, the syntax of roles, concepts, RBoxes, TBoxes
and ABoxes of DDL(X@) are the same with those of the description logic X@,
with the exception that the @ constructor is not allowed in TBoxes. Secondly, the
syntax of DDL(X@)-formulas is similar to the syntax of PDL-formulas, except that



4 L. Chang et al.

the propositions in PDL-formulas are replaced here by ABox assertions. Finally,
the syntax of actions is the same in both PDL and DDL(X@); however, each
atomic action in DDL(X@) will be further specified by a triple (pre, occ, post), thus
preserving Baader et al.’s action formalism. From the point of view of knowledge
reasoning, a feature of DDL(X@) is that many inference problems on actions
such as the realizability problem, the executability problem, and the projection
problem, can be reduced to the satisfiability problem which is equipped with tableau
decision algorithms. Therefore, DDL(X@) provides a family of powerful languages
for representing and reasoning about dynamic application domains.

It should be noted that the minimal description logic considered in DDL(X@) is
the logic ALCO@. The reason is that both the “nominals” and the “@” constructor are
needed in our algorithms for deciding the satisfiability of formulas. However, from
the point of view of knowledge representation, any sublanguage of the description
logic ALCHOIQ @, such as the ALC and the ALCO, can be used in DDL(X@) for the
description of static domain knowledge.

For the simplicity of presentation, when the logic DDL(X@) is presented for
the first time, each atomic action in it is just specified as a tuple (P, E), where P
is a finite set of ABox assertions for describing pre-conditions, and E is a finite set
of primitive literals for describing unconditional post-conditions. We will develop a
tableau algorithm for the logic in such a case, and then extend both the logic and the
reasoning mechanisms to support occlusions and conditional post-conditions in the
description of atomic actions.

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction to description logics used in DDL(X@). Section 3 presents the syntax
and semantics of DDL(X@), and gives an example to illustrate its expressive power.
In Section 4, reasoning tasks on the knowledge described by DDL(X@) are formally
defined; it is demonstrated that three primary reasoning tasks on actions can be
reduced to the satisfiability problem on formulas. Section 5 provides a tableau
algorithm for deciding the satisfiability of DDL(X@)-formulas; the termination,
soundness and completeness of this algorithm are proved, and the complexity
of it is investigated. In Section 6, both the logic DDL(X@) and the reasoning
mechanisms are extended to support occlusions and conditional post-conditions in
the description of atomic actions, so that the logic is compatible with Baader et al.’s
action formalism. Section 7 investigates the relationship between DDL(X@) and
some known formalisms, and Section 8 concludes the paper.

2 Description Logics

As a kind of languages for knowledge representation, the intuition of description
logics is to define concepts of a domain and then use these concepts to specify
properties of objects and individuals occurring in the domain. Primitive symbols of
description logics are a set NR of role names, a set NC of concept names, and a set
NI of individual names. Starting from these symbols, each description logic provides
a set of constructors to form roles and complex concepts.

ALC (Attributive Language with Complements) is one of the most influential
description logics [37]. It provides negation, conjunction, disjunction, existential
restriction and value restriction constructors for the construction of concepts. To
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meet the needs of applications that require more expressivity, various extensions
of ALC were proposed by adding constructors into it. The availability of additional
constructors is usually indicated by concatenating the corresponding letters [4]; for
example, H stands for role hierarchies, Q stands for number restrictions, I stands for
inverse roles, and O stands for nominals. In DDL(X@), a special constructor denoted
by “@” will be used; this constructor is known from hybrid logic [1, 23] and is slightly
non-standard in description logics.

Constructors used in the description logics ranging from ALC to ALCHOIQ @ are
listed in Table 1, where Ai ∈ NC, Ri ∈ NR, p ∈ NI , and n is a non-negative integer.

The semantics of concepts and roles constructed in description logics are defined
in terms of an interpretation I = (�I, ·I), where �I is a non-empty set composed
of individuals, and ·I is an interpretation function which maps each concept name
Ai ∈ NC to a set AI

i ⊆ �I , maps each role name Ri ∈ NR to a binary relation RI
i⊆ �I × �I , and maps each individual name pi ∈ NI to an individual pI

i ∈ �I . The
extension of ·I to arbitrary concepts and roles is inductively defined, as shown in the
forth column of Table 1.

If role hierarchies are supported by a description logic, then each role hierarchy is
also called a role inclusion axiom, and each finite set of role inclusion axioms is called
an RBox.

A concept def inition is an identity of the form A ≡ C, where A is a concept name
and C a concept. A TBox is a finite set of concept definitions with unique left-hand
sides [4]. A TBox is said to be acyclic if there are no cyclic dependencies between the
definitions. Every TBox mentioned in this paper is assumed to be acyclic.

An ABox assertion is of the form C(p), ¬C(p), R(p, q) or ¬R(p, q), where p, q ∈
NI , C is a concept, and R is a role. A finite set of ABox assertions is called an ABox.

Given an interpretation I = (�I, ·I), it is a model of an RBox R , denoted by I |=
R , iff RI ⊆ R′I for every role inclusion axiom R � R′ ∈ R ; it is a model of a TBox
T , denoted by I |= T , iff AI = CI for every concept definition A ≡ C ∈ T ; it is a
model of an ABox A , denoted by I |= A , iff pI ∈ CI (resp. pI /∈ CI , (pI, qI) ∈ RI , and
(pI, qI) /∈ RI) for every ABox assertion C(p) (resp. ¬C(p), R(p, q) and ¬R(p, q))
contained in A .

Various reasoning problems are considered for description logics. For the purpose
of this paper, we investigate the ABox consistency problem.

Table 1 Syntax and semantics of the DLs ranging from ALC to ALCHOIQ @

Constructor Syntax Semantics

ALC Concept name Ai AI
i ⊆ �I

Role name Ri RI
i ⊆ �I × �I

Negation ¬C �I\CI

Conjunction C � D CI ∩ DI

Disjunction C 
 D CI ∪ DI

Existential restriction ∃R.C {x ∈ �I | there is a y ∈ �I with (x, y) ∈ RI and y ∈ CI}
Value restriction ∀R.C {x ∈ �I | for all y ∈ �I : if (x, y) ∈ RI , then y ∈ CI}

H Role hierarchy R � R′ if (x, y) ∈ RI , then (x, y) ∈ R′I
O Nominal { p } { pI }
I Inverse role R− { (y, x) | (x, y) ∈ RI }
Q Qualified number ≥ nR.C { x ∈ �I | �{ y ∈ �I | (x, y) ∈ RI and y ∈ CI} ≥ n }

restriction ≤ nR.C { x ∈ �I | �{ y ∈ �I | (x, y) ∈ RI and y ∈ CI} ≤ n }
@ @ constructor @pC �I if pI ∈ CI , and ∅ otherwise.
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An ABox A is said to be consistent w.r.t. an RBox R and a TBox T iff there is an
interpretation I = (�I, ·I) such that I |= R , I |= T and I |= A .

It is known that the ABox consistency problem is PSPACE-complete for the
DLs ALC , ALCO, ALCQ and ALCOQ [4], is PSPACE-complete for both ALCHO and
ALCHOQ [32], is EXPTIME-complete for ALCOI [1], and is NEXPTIME-complete
for ALCOIQ [41]. Moreover, since this reasoning problem is EXPTIME-complete for
the DL SHOI and NEXPTIME-complete for SHOIQ [44], we have the result that it is
EXPTIME-complete for ALCHOI and NEXPTIME-complete for ALCHOIQ .

As mentioned in the introduction, the @ constructor will be used in our deciding
algorithms. Therefore, it is necessary to investigate the ABox consistency problem in
the case that the @ constructor is occurring in ABoxes but absent from TBoxes.

For any DL X ∈ {ALCO, ALCHO, ALCOI , ALCOQ , ALCHOI , ALCHOQ , ALCOIQ ,
ALCHOIQ }, if the @ constructor is absent from TBoxes, then the ABox consistency
problem of the DL X@ can be reduced to the ABox consistency problem of the logic
X. More precisely, for any ABox A of X@ and any RBox R and TBox T of X, we
can operate according to the following steps [25]:

1. Convert every concept occurring in A into its negation normal form (i.e., nega-
tion signs occur only in front of concept names or nominals); this conversion can
be done by pushing negations inwards according to the following equivalences:

¬¬C = C ¬(@pC) = @p¬C

¬(C � D) = ¬C 
 ¬D ¬(C 
 D) = ¬C � ¬D

¬(∃R.C) = ∀R.¬C ¬(∀R.C) = ∃R.¬C

¬(≤ nR.C) = ≥ (n + 1)R.C ¬(≥ (n + 1)R.C) = ≤ nR.C

¬(≥ 0R.C) = Ai � ¬Ai f or any Ai ∈ NC.

2. For every concept of the form @pC occurring in A , replace it by a concept
∃u.({p} � C), where u is any role name not occurring in R , T and A . Repeat this
process, until the @ constructor does not occur in A any more.

It is obvious that the above two steps can be done in polynomial time in the size
of A . Let A ′ be the resulting ABox. Then it is easy to see that A ′ is an ABox of the
DL X, and the size of A ′ is polynomial in the size of A . Furthermore, it can be proved
that A is consistent w.r.t. R and T iff A ′ is consistent w.r.t. R and T [25]. Therefore,
we get the following result:

Theorem 1 Let X ∈ {ALCO, ALCHO, ALCOI , ALCOQ , ALCHOI , ALCHOQ , ALCOIQ ,
ALCHOIQ }. For any ABox A of the logic X@, and any RBox R and TBox T of the
logic X, the complexity upper-bound for deciding the consistency of A w.r.t. R and T
is PSPACE if X ∈ {ALCO, ALCHO, ALCOQ , ALCHOQ }, is EXPTIME if X ∈ {ALCOI ,
ALCHOI }, and is NEXPTIME if X ∈ {ALCOIQ , ALCHOIQ }.

3 The Dynamic Description Logic DDL(X@)

In this section, we firstly present the syntax and semantics of DDL(X@), and then
introduce an example to illustrate its expressive power.
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3.1 Syntax of DDL(X@)

Primitive symbols of DDL(X@) are a set NI of individual names, a set NR of
role names, a set NC of concept names, and a set NA of action names. Starting
from these symbols, basic citizens of DDL(X@) such as roles, concepts, actions and
formulas, are inductively defined with the help of constructors coming from both the
description logic X@ and the propositional dynamic logic PDL.

Roles of DDL(X@) are defined by the same syntax rule of the roles of the DL X@.
For example, R is a role of the dynamic description logic DDL(ALCO@) if and only
if R ∈ NR. As another example, roles of DDL(ALCHOIQ @) are formed according to
the following syntax rule:

R ::= Ri | R−
i

where Ri ∈ NR. For the simplicity of presentation, if inverse roles are supported
by DDL(X@), then we introduce the function Inv presented in [22] to return the
inverse of a role, i.e., Inv(Ri) := R−

i and Inv(R−
i ) := Ri for any Ri ∈ NR.

In the case that role hierarchies are supported by X@, we call each role hierarchy
of the form R � R′ as a role inclusion axiom, and call each finite set of role inclusion
axioms as an RBox of DDL(X@).

Concepts of DDL(X@) are defined by the same syntax rule of the concepts of
the DL X@. For example, concepts of DDL(ALCO@) are formed according to the
following syntax rule:

C, C′ ::= Ai | ¬C | C 
 C′ | C � C′ | ∀R.C | ∃R.C | {p} | @pC

where Ai ∈ NC, p ∈ NI , and R is a role. As another example, concepts of
DDL(ALCHOIQ @) are formed according to the following syntax rule:

C, C′ ::= Ai | ¬C | C 
 C′ | C � C′ | ∀R.C

| ∃R.C | ≤ nR.C | ≥ nR.C | {p} | @pC

where Ai ∈ NC, p ∈ NI , R is a role, and n is a non-negative integer.
Concepts of the form � and ⊥ are introduced as abbreviations of C 
 ¬C and

C � ¬C respectively, where C is any concept.
A concept def inition is an identity of the form A ≡ C, where A is a concept name

and C is a concept of DDL(X@).
For each finite set T of concept definitions, if no concept name occurs on the left-

hand sides for more than once, and no @ constructor occurs on the right-hand sides,
then we call T a TBox of DDL(X@).

A TBox is said to be acyclic if there are no cyclic dependencies between the
definitions contained in it. In this paper, we assume that every TBox of DDL(X@)

is acyclic.
With respect to a TBox T , a concept name Ai ∈ NC is called defined if and only

if it occurs on the left-hand side of some concept definition contained in T , and is
called primitive otherwise.

For any concept C and any TBox T , we use CT to denote the expansion of C
w.r.t. T , and define it as the concept constructed as follows: for any concept name A
occurring in C, if it is defined by some concept definition A ≡ D ∈ T , then replace
each occurrence of A in C with D; repeat this process, until no defined concept names
occur in C.
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Formulas of DDL(X@) are formed according to the following syntax rule:

ϕ, ϕ′ ::= C(p) | R(p, q) | < π > ϕ | [π ]ϕ | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′

where p, q ∈ NI , C is a concept, R is a role, and π is an action. Formulas of the
form C(p), R(p, q), < π > ϕ, [π ]ϕ, ¬ϕ, ϕ ∨ ϕ′ and ϕ ∧ ϕ′ are respectively called
concept assertion, role assertion, diamond assertion, box assertion, negation formula,
disjunction formula, and conjunction formula.

Formulas of the form ϕ → ϕ′, ϕ ↔ ϕ′, true and f alse are introduced as abbrevia-
tions of ¬ϕ ∨ ϕ′, (¬ϕ ∨ ϕ′) ∧ (¬ϕ′ ∨ ϕ), �(p) and ⊥(p) respectively, where p is any
individual name.

Concept assertions, role assertions, negations of concept assertions, and negations
of role assertions are all called ABox assertions. A finite set of ABox assertions is
called an ABox of DDL(X@).

With respect to a TBox T , an ABox assertion is called a primitive literal if it is of
the form A(p), ¬A(p), R(p, q) or ¬R(p, q) with A a primitive concept name, R a
role and p, q ∈ NI .

For any ABox assertion ψ , we use ψ¬ to denote an ABox assertion which is
logically equivalent with ¬ψ , and define it as follows: if ψ is of the form C(p),
¬C(p), R(p, q) or ¬R(p, q), then ψ¬ is the ABox assertion ¬C(p), C(p), ¬R(p, q)

and R(p, q) respectively.
For any ABox A , we use A ¬ to denote the set { ψ¬ | ψ ∈ A }, and use Conj(A) to

denote the conjunction of all the ABox assertions contained in A .
For any ABox A and any RBox R , we use A∗

R to denote the closure of A w.r.t. R ,
and define it as the smallest set satisfying the following conditions:

– A ⊆ A∗
R ;

– if R(p, q) ∈ A∗
R , then Inv(R)(q, p) ∈ A∗

R ;
– if ¬R(p, q) ∈ A∗

R , then ¬Inv(R)(q, p) ∈ A∗
R ;

– if R(p, q) ∈ A∗
R and R � R′ ∈ R , then R′(p, q) ∈ A∗

R ; and
– if ¬R′(p, q) ∈ A∗

R and R � R′ ∈ R , then ¬R(p, q) ∈ A∗
R .

Actions of DDL(X@) are formed according to the following syntax rule:

π, π ′ ::= α | ϕ? | π ∪ π ′ | π;π ′ | π∗

where α ∈ NA, and ϕ is a formula. Actions of the form α, ϕ?, π ∪ π ′, π; π ′ and π∗
are respectively called atomic action, test action, choice action, sequential action and
iterated action.

With respect to a TBox T , an atomic action def inition of DDL(X@) is of the form
α ≡ (P, E), where

– α ∈ NA,
– P is a finite set of ABox assertions for describing the pre-conditions, and
– E is a finite set of primitive literals for describing the post-conditions.

For each finite set AC of atomic action definitions, if no action name occurs on the
left-hand sides for more than once, then we call AC an ActBox of DDL(X@).

With respect to an ActBox AC , an atomic action α is called defined if and only
if α occurs on the left-hand side of some atomic action definition contained in AC ;
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an action π (or a formula ϕ) is called defined if and only if all the atomic actions
occurring in π (resp. occurring in ϕ) are defined w.r.t. AC . In DDL(X@), we assume
that all the actions and formulas are defined w.r.t. some ActBox.

For any atomic action α, if it is defined w.r.t. some ActBox, then we use Preα

to denote the set of its pre-conditions, and use Effα to denote the set of its post-
conditions.

A knowledge base of DDL(X@) is of the form K = (R , T , AC , A), where R , T , AC

and A are respectively an RBox, a TBox, an ActBox and an ABox.

3.2 Semantics of DDL(X@)

The semantic model of DDL(X@) is a combination of the interpretation of descrip-
tion logics and the model of propositional dynamic logic.

A DDL(X@)-model is of the form M = (W, T, �, I), where,

– W is a non-empty finite set of states;
– T is a function which maps each action name α ∈ NA to a binary relation T(α) ⊆

W × W;
– � is a non-empty set of individuals; and
– I is a function which associates with each state w ∈ W a DL-interpretation

I(w) = < �, ·I(w) >, where the function ·I(w)

– maps each concept name Ai ∈ NC to a set AI(w)

i ⊆ �,
– maps each role name Ri ∈ NR to a binary relation RI(w)

i ⊆ � × �, and
– maps each individual name p ∈ NI to an individual pI(w) ∈ �, with the

constraints that pI(w) = pI(w′) for any state w′ ∈ W, and pI(w) �= qI(w) for
any individual name q which is different from p. Since interpretations of p
are the same in every state, the interpretation pI(w) is also represented as pI .

It should be noted that here we take the constant domain assumption [42] and
the unique name assumption [3]. Moreover, individual names contained in NI are
treated as rigid designators [42].

Given a model M = (W, T, �, I), the semantics of roles, concepts, formulas and
actions of DDL(X@) are defined inductively as follows.

Firstly, for any state w ∈ W, each role R is interpreted as a binary relation RI(w)

⊆ � × �, and each concept C is interpreted as a set CI(w) ⊆ �. The concrete
semantic definitions are similar to those of the description logic X@, except that
here each interpretation is associated with a state. For example, in the case that
X@ is the description logic ALCHOIQ @, the semantics of roles and concepts of
DDL(ALCHOIQ @) are defined inductively as follows:

1. (R−)I(w) = {(y, x) | (x, y) ∈ RI(w)};
2. (¬C)I(w) = �\CI(w);
3. (C 
 D)I(w) = CI(w) ∪ DI(w);
4. (C � D)I(w) = CI(w) ∩ DI(w);
5. (∀R.C)I(w) = { x ∈ � | for all y ∈ �: if (x, y) ∈ RI(w), then y ∈ CI(w)};
6. (∃R.C)I(w) = { x ∈ � | there is some y ∈ � such that (x, y) ∈ RI(w) and y ∈

CI(w)};
7. {p}I(w) = {pI};
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8. (≤ nS.C)I(w) = {x ∈ � | �{y ∈ � | (x, y) ∈ SI(w) and y ∈ CI(w)} ≤ n };
9. (≥ nS.C)I(w) = {x ∈ � | �{y ∈ � | (x, y) ∈ SI(w) and y ∈ CI(w)} ≥ n };

10. (@pC)I(w) = � if pI ∈ CI(w), and ∅ otherwise.

Secondly, for any state w ∈ W, the satisfaction-relation (M, w) |= ϕ (or simply
w |= ϕ if M is understood) for any formula ϕ is defined inductively as follows:

11. (M, w) |= C(p) iff pI ∈ CI(w);
12. (M, w) |= R(p, q) iff (pI, qI) ∈ RI(w);
13. (M, w) |=< π > ϕ iff some state w′ ∈ W exists with (w,w′) ∈ T(π) and

(M, w′) |= ϕ;
14. (M, w) |= [π ]ϕ iff for every state w′ ∈ W: if (w,w′) ∈ T(π) then (M, w′) |= ϕ;
15. (M, w) |= ¬ϕ iff it is not the case that (M, w) |= ϕ;
16. (M, w) |= ϕ ∨ ψ iff (M, w) |= ϕ or (M, w) |= ψ ;
17. (M, w) |= ϕ ∧ ψ iff (M, w) |= ϕ and (M, w) |= ψ .

Finally, each action π is interpreted as a binary relation T(π) ⊆ W × W according
to the following definitions:

18. T(ϕ?) = { (w,w) | w ∈ W and (M, w) |= ϕ };
19. T(π ∪ π ′) = T(π) ∪ T(π ′);
20. T(π;π ′) = {(w,w′) | there is some state u ∈ W with (w, u) ∈ T(π) and

(u, w′) ∈ T(π ′)};
21. T(π∗) = reflexive and transitive closure of T(π).

A model M satisf ies an RBox R , denoted by M |= R , if and only if RI(w) � R′I(w)

for every role inclusion axiom R � R′ ∈ R and every state w ∈ W.
A model M satisf ies a TBox T , denoted by M |= T , if and only if AI(w) = CI(w) for

every concept definition A ≡ C ∈ T and every state w ∈ W.
A state w of a model M satisf ies an ABox A , denoted by (M, w) |= A , if and only

if (M, w) |= ϕi for every ABox assertion ϕi ∈ A .
A feature of DDL(X@) is that each atomic action α is further specified by some

atomic action definition α ≡ (P, E), where P and E respectively describe the pre-
conditions and the post-conditions for the execution of α. We adopt the minimal-
change semantics used in [4] and define the semantics of atomic action definitions as
follows.

With respect to an RBox R and a TBox T , a model M = (W, T, �, I) satisf ies an
atomic action definition α ≡ (P, E), in symbols M |=R ,T α ≡ (P, E), if and only if
M |= R , M |= T , and

T(α) = { (w,w′) ∈ W × W| (M, w) |= P,

both A+ ∩ A− = ∅ and AI(w′) = (AI(w) ∪ A+) \ A− f or each

concept name A which is primitive w.r.t. T , and

both R+ ∩ R− = ∅ and RI(w′) = (RI(w) ∪ R+) \ R− f or each

role name R. },
where A+, A−, R+ and R− are some sets constructed as follows:

– A+ := { pI | A(p) ∈ E },
– A− := { pI | ¬A(p) ∈ E },
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– R+ := { (pI, qI) | R(p, q) ∈ E∗
R },

– R− := { (pI, qI) | ¬R(p, q) ∈ E∗
R }.

According to this definition, for any pair (w,w′) ∈ T(α), any primitive concept
name A, and any role name R, the interpretations AI(w) and AI(w′) should satisfy
that A+ ⊆ AI(w′), A− ∩ AI(w′) = ∅, and nothing else changes from AI(w) to AI(w′); the
interpretations RI(w) and RI(w′) should satisfy that R+ ⊆ RI(w′), R− ∩ RI(w′) = ∅, and
nothing else changes from RI(w) to RI(w′). Thus, T(α) enforces the minimal-change
semantics.

A model M satisf ies an ActBox AC w.r.t. an RBox R and a TBox T , in symbols
M |=R ,T AC , if and only if M |=R ,T α ≡ (P, E) for every atomic action definition
α ≡ (P, E) ∈ AC .

3.3 Example Description by DDL(X@)

As an example, consider a Web service system in which customers are able to
buy/return CDs and books online with credit cards [18]. In this section, we model
some high-level features of this system by DDL(ALCHOIQ @).

First of all, primitive symbols which will be used are listed as follows:

NC := { person, creditcard, cd, book, customer, V I PCust, captiousCust, instore };
NR := { boughtCD, boughtBook, bought, has, holds, returned };
NI := { Tom, Jack, Mastercard, Visa, KingLear, HarryPotter, GrimmsFairyTales,

BackStreetBoys, SchubertSymphonien };
NA := { buyCDTom,Bac, buyCDTom,Sch, buyCDJack,Bac, buyCDJack,Sch,

buyBookTom,Kin, buyBookTom,Har, buyBookTom,Gri,

buyBookJack,Kin, buyBookJack,Har, buyBookJack,Gri,

returnCDTom,Bac, returnCDTom,Sch, returnCDJack,Bac, returnCDJack,Sch,

returnBookTom,Kin, returnBookTom,Har, returnBookTom,Gri,

returnBookJack,Kin, returnBookJack,Har, returnBookJack,Gri,

orderBac, orderSch, orderKin, orderHar, orderGri }.
Starting from these primitive symbols, an RBox Rshop and a TBox Tshop are

constructed for describing the static domain knowledge. The RBox Rshop is composed
of the following role inclusion axiom:

bought � has

and the TBox Tshop is composed of the following concept definitions:

customer ≡ person � ∃holds.creditCard

V I PCust ≡ customer � ≥ 3 bought.(cd 
 book)

captiousCust ≡ customer � ≥ 2 returned.cd
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These definitions state that a customer is a person holding some credit card; a VIP
customer is a customer who has bought at least 3 CDs or books; and a captious
customer is a customer who has returned at least 2 CDs.

The knowledge on atomic Web services is described by an ActBox AC shop with five
groups of atomic action definitions.

Firstly, for describing the service that Tom buy the CD BackStreetBoys, an atomic
action named buyCDTom,Bac is specified as follows:

buyCDTom,Bac

≡ ( { customer(Tom), cd(BackStreetBoys), instore(BackStreetBoys) },
{ ¬instore(BackStreetBoys), bought(Tom, BackStreetBoys) } ).

According to this definition, the action buyCDTom,Bac is applicable if Tom is a
customer and BackStreetBoys is a CD in store; furthermore, if it is executed, then
the result is that Tom has bought BackStreetBoys and BackStreetBoys is not in store
any more. The atomic actions buyCDTom,Sch, buyCDJack,Bac and buyCDJack,Sch are
similarly defined in AC shop, respectively for describing the services that Tom buy the
CD SchubertSymphonien, Jack buy the CD BackStreetBoys, and Jack buy the CD
SchubertSymphonien.

Secondly, for describing the service that Tom buy the book KingLear, an atomic
action named buyBookTom,Kin is defined as follows:

buyBookTom,Kin

≡ ( { customer(Tom), book(KingLear), instore(KingLear) },
{ ¬instore(KingLear), bought(Tom, KingLear) } ).

The atomic actions buyBookTom,Har, buyBookTom,Gri, buyBookJack,Kin,
buyBookJack,Har and buyBookJack,Gri are similarly defined.

Thirdly, for describing the service that Tom return the CD BackStreetBoys, an
atomic action named returnCDTom,Bac is defined as follows:

returnCDTom,Bac

≡ ( { customer(Tom), cd(BackStreetBoys),

bought(Tom, BackStreetBoys),¬instore(BackStreetBoys) },
{ instore(BackStreetBoys), returned(Tom, BackStreetBoys),

¬has(Tom, BackStreetBoys) } ).

The atomic actions returnCDTom,Sch, returnCDJack,Bac and returnCDJack,Sch are
similarly defined.

Fourthly, for describing the service that Tom return the book KingLear, an atomic
action named returnBookTom,Kin is defined as follows:

returnBookTom,Kin

≡ ( { customer(Tom), book(KingLear), bought(Tom, KingLear),

¬instore(KingLear) },
{ instore(KingLear), returned(Tom, KingLear),¬has(Tom, KingLear) } ).
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The atomic actions returnBookTom,Har, returnBookTom,Gri, returnBookJack,Kin,
returnBookJack,Har and returnBookJack,Gri are similarly defined.

Finally, for describing the service that the Web service agent order the book
BackStreetBoys from the publisher, an atomic action named orderBac is defined as
follows:

orderBac

≡ ( { (book 
 cd)(BackStreetBoys),¬instore(BackStreetBoys) },
{ instore(BackStreetBoys) } ).

The atomic actions orderSch, orderHar, orderGri and orderKin are similarly defined.
The knowledge represented above can also be described with Baader et al.’s

formalisms [4, 24, 30].
From the point of view of knowledge representation, a primary feature of

DDL(X@) is that many complex actions (or composed Web services) can be further
specified.

For example, a composed Web service named buyBookHar might be repre-
sented as

buyBookTom,Har ∪ buyBookJack,Har

This service is useful for both Tom and Jack to buy the book HarryPott.
As another example, a composed Web service named V I PbuyTom,Har might be

represented as

V I PCust(Tom)? ; ( ( instore(HarryPott)? ; buyBookTom,Har )

∪ ( ¬instore(HarryPott)? ; orderHar ; buyBookTom,Har ) )

In this service, the test action “V I PCust(Tom)?” will be firstly executed to
check whether Tom is a VIP customer; if the result is true, then the action
“buyBookTom,Har” will be executed in the case that HarryPott is in store, and the
actions “orderHar” and “buyBookTom,Har” will be executed sequentially in the case
that HarryPott is not in store.

In fact, with the help of the sequence-, choice-, test- and iteration-constructors
on actions, the “Sequence”, “Choice”, “Any-Order”, “Iterate”, “If-Then-Else”,
“Repeat-While” and “Repeat-Until” control structures adopted by the Web service
ontology OWL-S [27] can be described in DDL(X@) according to the following
definitions:

sequence(π, π ′) � π ; π ′

choice(π, π ′) � π ∪ π ′

any − order(π, π ′) � (π ;π ′) ∪ (π ′; π)

i f ψ then π else π ′ � (ψ? ; π) ∪ ((¬ψ)? ; π ′)

iterate(π) � π∗

while ψ do π � (ψ? ; π)∗; (¬ψ)?

do π until ψ � π ; ((¬ψ)? ; π)∗; ψ?
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From the point of view of knowledge representation, the second feature of
DDL(X@) is that many properties on actions (or Web services) can be stated
explicitly by formulas.

On the one hand, necessary conditions for executing actions can be stated by
diamond assertions. For example, the following formula states that a necessary
condition for executing the action V I PbuyTom,Har is that Tom is a VIP customer
and HarryPott is a book:

< V I PbuyTom,Har > true → (V I PCust(Tom) ∧ book(HarryPott))

As another example, the following formula states that the action “buyCDTom,Bac”
and the action “buyCDJack,Bac” can never be executed sequentially:

¬ < buyCDTom,Bac; buyCDJack,Bac > true

On the other hand, results on the execution of actions can be stated with box
assertions. For example, the following formula states that Tom will have the book
HarryPott once the action V I PbuyTom,Har is executed:

[V I PbuyTom,Har]has(Tom, HarryPott)

As another example, the following formula states that if Tom ever returned some
CD, then he will become a captious customer once the action returnCDTom,Bac or
the action returnCDTom,Sch is executed:

(∃returned.CD)(Tom) → [returnCDTom,Bac ∪ returnCDTom,Sch]captiousCust(Tom)

As the last part of the Web service system, the current state is described by an
ABox Ashop with the following ABox assertions:

person(Tom), person(Jack), creditCard(Mastercard), creditCard(Visa),

book(HarryPotter), book(KingLear), book(GrimmsFairyTales),

cd(BackStreetBoys), cd(SchubertSymphonien),

holds(Tom, Mastercard), holds(Jack, Visa),

instore(KingLear), instore(GrimmsFairyTales),

instore(BackStreetBoys), ¬instore(HarryPotter).

In the next section, we will take the knowledge base Kshop = (Rshop, Tshop, AC shop,

Ashop) as an example for investigating the inference problems of DDL(X@).

4 Inference Problems in DDL(X@)

Inference problems in DDL(X@) are divided into two groups. One is composed of
those being studied in description logics, such as the consistency problem of ABoxes
and the satisfiability problem of concepts. The other group deals with actions and is
new introduced in DDL(X@).

Inference problems of the first group can also be redefined with DDL(X@)-
models. For example, the consistency of ABoxes can be defined as follows:
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Definition 1 An ABox A is consistent w.r.t. an RBox R and a TBox T if and only
if there are some model M = (W, T, �, I) and some state w ∈ W such that M |= R ,
M |= T and (M, w) |= A .

As another example, the satisfiability of concepts can be defined as follows:

Definition 2 A concept C is satisf iable w.r.t. an RBox R and a TBox T if and only
if there are some model M = (W, T, �, I) and some state w ∈ W such that M |= R ,
M |= T and CI(w) �= ∅.

It is obvious that the satisfiability problem of concepts can be reduced to the
consistency problem of ABoxes; i.e.,

Theorem 2 A concept C is satisfiable w.r.t. an RBox R and a TBox T if and only if
the ABox {C(p)} is consistent w.r.t. R and T , where p is an individual name does not
occur in C, R and T .

Since actions do not occur in concepts, ABoxes, RBoxes and TBoxes of
DDL(X@), the consistency problem of ABoxes as well as the satisfiability problem
of concepts can be decided with the help of standard reasoning mechanisms provided
by the description logic X@.

For the second group of inference problems, we firstly introduce the PE-
consistency problem of atomic action definitions.

Definition 3 An atomic action definition α ≡ (P, E) is PE-consistent w.r.t. an RBox
R and a TBox T if and only if both the ABox P and the ABox E are consistent w.r.t.
R and T .

Definition 4 An ActBox AC is PE-consistent w.r.t. an RBox R and a TBox T if and
only if every atomic action definition contained in AC is consistent w.r.t. R and T .

Given a knowledge base K = (R , T , AC , A) of DDL(X@), it should be guaranteed
that the ABox A is consistent w.r.t. R and T , and the ActBox AC is PE-consistent
w.r.t. R and T . This is the premise for investigating other inference problems
introduced in DDL(X@). As an example, for the knowledge base presented in
Section 3.3, it can be decided that Ashop is consistent w.r.t. Rshop and Tshop, and AC shop

is PE-consistent w.r.t. Rshop and Tshop.
The second inference problem introduced in DDL(X@) is the satisfiability/

validity problem of formulas.

Definition 5 A formula ϕ is satisf iable w.r.t. an RBox R , a TBox T and an ActBox
AC if and only if there is a model M = (W, T, �, I) and a state w ∈ W such that M |=
R , M |= T , M |=R ,T AC and (M, w) |= ϕ.

Definition 6 A formula ϕ is valid w.r.t. an RBox R , a TBox T and an ActBox AC if
and only if for any model M = (W, T, �, I) with M |= R , M |= T and M |=R ,T AC ,
we have (M, w) |= ϕ for every state w ∈ W.
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It is obvious that the validity problem can be reduced to the satisfiability prob-
lem; i.e.,

Theorem 3 A formula ϕ is valid w.r.t. R , T and AC if and only if the formula ¬ϕ is
unsatisf iable w.r.t. R , T and AC .

The third inference problem introduced in DDL(X@) is the consistency problem
(also called realizability problem [26]) of actions. Intuition of this inference problem
is to decide whether a given action makes sense with respect to the knowledge
specified by an RBox, a TBox and an ActBox. With DDL(X@)-models, it is formally
defined as follows:

Definition 7 An action π is consistent (also called realizable) w.r.t. an RBox R , a
TBox T and an ActBox AC if and only if there is a model M = (W, T, �, I) such that
M |= R , M |= T , M |=R ,T AC and T(π) �= ∅.

For example, considering the knowledge base presented in Section 3.3, the
following sequential action is realizable w.r.t. Rshop, Tshop and AC shop:

buyBookTom,Kin ; returnBookTom,Kin ; buyBookJack,Kin

However, the action

buyBookTom,Kin ; buyBookJack,Kin

is not realizable w.r.t. Rshop, Tshop and AC shop.
According to the definition, it is obvious that the realizability problem of actions

can be reduced to the satisfiability problem of formulas; i.e.:

Theorem 4 An action π is realizable w.r.t. R , T and AC if and only if the formula
< π > true is satisf iable w.r.t. R , T and AC .

The fourth inference problem introduced in DDL(X@) is the executability
problem of actions [4]. Intuition of this inference problem is to decide whether a
given action can be performed successfully starting from the states described by a
given ABox. In order to define this inference problem with DDL(X@)-models, we
introduce some notations.

Let R , T and AC be an RBox, a TBox and an ActBox respectively; let M =
(W, T, �, I) be a model with M |=R ,T AC . Then,

1. M is called complete w.r.t. the ActBox AC if and only if for any state w ∈ W and
any atomic action definition α ≡ (P, E) ∈ AC : if (M, w) |= P, then there must be
some state w′ ∈ W with (w,w′) ∈ T(α);

2. a state w′ ∈ W is called connected with a state w w.r.t. AC if and only if

– w′ and w are the same state, or
– there exist n (n ≥ 1) atomic actions α1, . . . , αn defined in AC and n − 1 states

w1, . . . , wn−1 ∈ W such that (w,w1) ∈ T(α1), (wi, wi+1) ∈ T(αi+1) for every
1 ≤ i ≤ n − 2, and (wn−1, w

′) ∈ T(αn);

3. M is called complete w.r.t. a state w and the ActBox AC if and only if for any state
w′ ∈ W and any atomic action definition α ≡ (P, E) ∈ AC : if (M, w′) |= P and w′
is connected with w w.r.t. AC , then there must be some state w′′ ∈ W such that
(w′, w′′) ∈ T(α).
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Based on these notations, the executability of actions is defined as follows:

Definition 8 An action π is executable on states described by an ABox A w.r.t. an
RBox R , a TBox T and an ActBox AC if and only if for any model M = (W, T, �, I)
and any state w ∈ W: if M |= R , M |= T , M |=R ,T AC , (M, w) |= A , and M is complete
w.r.t. w and AC , then there must be a state w′ ∈ W such that (w,w′) ∈ T(π).

The above definition is inspired by the PDL-based framework proposed by
De Giacomo et al. for reasoning about actions [9]. In De Giacomo et al’s framework,
the executability of an action π on the states described by a formula S0 is captured
by a logical implication of the form � |= S0 →< π > true, where � is a finite set
composed of precondition axioms, effect axioms and frame axioms, and the logical
implication � |= S0 →< π > true states that for any model M: if all the axioms
contained in � hold in every state of M, then the action π will be performed in every
state satisfying the formula S0.

In DDL(X@), based on the syntax and semantics of atomic action definitions, all
the knowledge described by effect axioms and frame axioms in De Giacomo et al’s
framework are captured here by an ActBox. Furthermore, for each precondition
axiom of the form < α > true ↔ Pre in De Giacomo et al’s framework (where α is an
atomic action and Pre is a formula), the knowledge described by the formula < α >

true → Pre is also captured by the ActBox; what is left to deal with is the knowledge
described by the formula Pre →< α > true, which states that the action α will be
performed whenever the precondition Pre is satisfied. Therefore, in DDL(X@), we
introduce the notation of complete model. Based on this notation and be similar with
that stated by De Giacomo et al’s formula, if an action π is executable on the states
described by an ABox A w.r.t. an RBox R , a TBox T and an ActBox AC , then we
can state that for any model M: if M |= R , M |= T , M |=R ,T AC , and M is complete
w.r.t. AC , then the action π will be performed in every state satisfying the ABox A .
Moreover, since here we only care about each state w which satisfies the ABox A ,
we can replace the premise “M is complete w.r.t. AC ” with a premise “M is complete
w.r.t. the state w and the ActBox AC ”, and then get Definition 8.

As an interesting example, for the knowledge base presented in Section 3.3, the
following choice action is executable on the states described by Ashop w.r.t. Rshop, Tshop

and AC shop:

buyCDTom,Sch ∪ orderSch

However, neither the action “buyCDTom,Sch” nor the action “orderSch” is executable
on the states described by Ashop.

With the following theorem, the executability problem of actions can be reduced
to the validity problem of formulas:

Theorem 5 An action π is executable on the states described by an ABox A w.r.t. an
RBox R , a TBox T and an ActBox AC if and only if the following formula is valid
w.r.t. R , T and AC :

[(α1 ∪ ... ∪ αn)
∗]	 → (Conj(A) →< π > true)

where α1, ..., αn are all the atomic actions def ined in AC , and 	 denotes the formula
(Conj(Preα1) →< α1 > true) ∧ ... ∧ (Conj(Preαn) →< αn > true).
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In this theorem, the formula [(α1 ∪ ... ∪ αn)
∗]	 is constructed to guarantee that for

any model M = (W, T,�, I) and any state w ∈ W with M |= R , M |= T and M |=R ,T

AC : (M, w) |= [(α1 ∪ ... ∪ αn)
∗]	 if and only if M is complete w.r.t. w and AC . Based

on this result, the correctness of Theorem 5 is an easy consequence of Definition 8.
If an action π is executable on the states described by an ABox A , then we

want to know whether applying it achieves some desired effect, i.e., whether some
formula which we want to make true really holds after performing the action. Such
an inference problem is called the projection problem [4, 36]. It is formally defined in
DDL(X@) as follows:

Definition 9 With respect to an RBox R , a TBox T and an ActBox AC , a formula ψ

is a consequence of applying an action π on the states described by an ABox A if and
only if for any model M = (W, T, �, I) and any states w,w′ ∈ W: if M |= R , M |= T ,
M |=R ,T AC , (M, w) |= A and (w,w′) ∈ T(π), then it must be (M, w′) |= ψ .

For example, considering the knowledge base presented in Section 3.3 again, the
formula “V I PCust(Tom)” is a consequence of applying the following sequential
action on the states described by Ashop:

buyCDTom,Bac ; buyBookTom,Gri ; buyBookTom,Kin

but it is not a consequence of applying a single action among buyCDTom,Bac,
buyBookTom,Gri and buyBookTom,Kin.

According to the definition, the projection problem of actions can also be reduced
to the validity problem of formulas; i.e.:

Theorem 6 A formula ψ is a consequence of applying an action π on the states
described by an ABox A w.r.t. R , T and AC if and only if the formula Conj(A) →
[π ]ψ is valid w.r.t. R , T and AC .

We conclude this section with the result that, in DDL(X@), the realizability
problem, the executability problem and the projection problem of actions can all
be reduced to the satisfiability problem of formulas.

5 A Satisfiability-Checking Algorithm for DDL(X@)-Formulas

Let R , T be an RBox and a TBox respectively; let AC be an ActBox which is PE-
consistent w.r.t. R and T ; and let φ be a DDL(X@)-formula which is defined w.r.t.
AC . In this section, we present an algorithm for deciding whether φ is satisfiable w.r.t.
R , T and AC .

For the ease of presentation, we firstly transform the formula φ into a normal form
nf (φ) according to the following steps:

1. Replace each occurrence of atomic actions with their definitions; i.e., for any
atomic action α occurring in φ, if it is defined by some atomic action definition
α ≡ (P, E) in AC , then replace each occurrence of α in φ by the pair (P, E). Let
φ′ be the resulted formula.
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2. Transform φ′ into an equivalent one in negation normal form (i.e., negation signs
occur only in front of concept assertions or role assertions), by pushing negations
inwards according to the following equivalences:

¬(< π > ϕ) = [π ]¬ϕ ¬([π ]ϕ) = < π > ¬ϕ ¬¬ϕ = ϕ

¬(ϕ ∧ ϕ′) = ¬ϕ ∨ ¬ϕ′ ¬(ϕ ∨ ϕ′) = ¬ϕ ∧ ¬ϕ′

In the rest of this paper, for each atomic action α defined by some atomic action
definition α ≡ (P, E) ∈ AC , we will use the pair (P, E) to denote the action α.

5.1 Algorithm Description

The algorithm presented here is in fact a combination of a tableau algorithm for the
propositional dynamic logic PDL [10, 35], the procedure investigated in Section 2 for
deciding the consistency of ABoxes of the description logic X@, and a modification
of the ABox updating algorithm proposed by Liu et al. [23].

The algorithm is based on the idea that φ is satisfiable w.r.t. R , T and AC if
and only if we can construct a DDL(X@)-model M = (W, T, �, I) and a state
w0 ∈ W such that M |= R , M |= T , M |=R ,T AC and (M, w0) |= φ. In order to denote
and manipulate the models and states explicitly in the algorithm, we introduce the
notations of prefixes, prefixed formulas, branches, and branch-model mappings.
Each prefix is introduced to denote some state of a model. Each prefixed formula
represents that the corresponding formula will hold on the state denoted by the
corresponding prefix. A branch is a set composed of prefixed formulas as well as
some auxiliary elements; by a branch-model mapping, each prefix occurring in the
branch is mapped to some state of a model. As a result, with these notations, the
process of constructing models for φ will be represented as a process of expanding
branches according to some tableau expansion rules.

Definition 10 A pref ix is of the form σ.ε with σ an action and ε a set of primitive
literals, and is constructed according to the following syntax rule:

σ.ε ::= (∅,∅).∅ | σ ; (P, E).(ε \ (E∗
R )¬) ∪ E∗

R

where (∅,∅) and (P, E) are atomic actions,1 σ ; (P, E) is a sequential action, and
(ε \ (E∗

R )¬) ∪ E∗
R is a set composed of primitive literals. We also use σ0.ε0 to denote

the prefix (∅,∅).∅ and call it the initial pref ix.
A pref ixed formula is a pair σ.ε : ϕ, where σ.ε is a prefix and ϕ is a formula.

In this definition, the prefixes are technically designed to guarantee that some
function ı can be constructed to map each prefix σ.ε to some state ı(σ.ε), satisfying
that:

– if the formula φ is satisfiable, then the initial prefix σ0.ε0 is mapped to some state
satisfying φ;

– the track of atomic actions executed from the state ı(σ0.ε0) to the state ı(σ.ε) is
recorded by the sequential action σ ; and

1Here (∅,∅) is a special atomic action introduced temporarily by the satisfiability-checking algorithm.
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– the accumulated post-conditions of the sequential action σ are captured by the
set ε, so that the state ı(σ.ε) can be treated as the result of performing a special
atomic action (∅, ε) on the state ı(σ0.ε0).

Definition 11 A branch B is a union of the following two sets:

– a set BPF of prefixed formulas, and
– a set BE of eventuality records, where each eventuality record is of the form X .=

< π∗ > ϕ, with X a character string and < π∗ > ϕ a formula.

For any branch B, we use IVB to denote the initial view of B and define it as
follows:

IVB � {ψ | σ0.ε0 : ψ ∈ B and ψ is an ABox assertion }.
Tableau expansion rules used in the algorithm are listed in Figs. 1, 2, 3, and 4.
Figure 1 presents tableau expansion rules on inverse roles, conjunction formulas

and disjunction formulas. They are straightforward according to the corresponding
semantic definitions.

Figure 2 presents tableau expansion rules for non-atomic actions. The ;[ ]-,
;<>-, ?[ ]-, ?<>-, ∪[ ]- and ∪<>-rules are straightforward according to the semantics
of sequential actions, test actions and choice actions. The ∗[ ]-, ∗<>- and X-rules are
designed for iterated actions; they are similar with the tableau rules introduced by
De Giacomo [10] for dealing with iterated eventualities in the propositional dynamic
logic. In our algorithm, if there is an iterated eventuality < π∗ > ϕ which is prefixed
by some prefix and is not tagged, then a new character string X will be introduced
by the ∗<>-rule to tag this formula. This tag will be carried along with < π∗ > ϕ as
while as this formula is propagated by the X-, ;<>-, ?<>-, ∪<>- and atom<>-rules,
until either some prefix σ ′.ε′ is reached with both σ ′.ε′ : X ∈ B and σ ′.ε′ : ϕ ∈ B, or
no more prefix can be introduced by the atom<>-rule.

Figure 3 presents tableau expansion rules for atomic actions. Both of these rules
are based on the intuition that two prefixes σ.ε and σ ′.ε′ denote the same state if and
only if ε = ε′; this intuition will be demonstrated in the next subsection by Corollary
3. Therefore, according to the atom<>-rule, if there is already some prefix σi.εi with
εi = (ε \ (E∗

R )¬) ∪ E∗
R , then the branch will be expanded directly with the set {σ.ε : φ

| φ ∈ P} ∪ {σi.εi : ϕ} ∪ {σi.εi : ψ | ψ ∈ εi}; otherwise, we should firstly introduce a new
prefix σ ′.ε′:=σ ; (P, E).(ε \ (E∗

R )¬) ∪ E∗
R before expanding the branch. Similarly, for

Fig. 1 Tableau expansion rules on inverse roles, conjunction formulas and disjunction formulas
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Fig. 2 Tableau expansion rules on non-atomic actions

the atom[ ]-rule, if some prefix σi.εi exists with εi = (ε \ (E∗
R )¬) ∪ E∗

R , then the branch
will be expanded to guarantee that either σi.εi : ϕ ∈ B or {σ.ε : φ¬ | φ ∈ P} ∩ B �= ∅.

Tableau expansion rules presented in Fig. 4 are based on the intuition that, due to
the minimal-change semantics of actions, the state denoted by the prefix σ.ε can be
treated as the result of executing a special atomic action (∅, ε) on the state denoted
by the initial prefix σ0.ε0. Therefore, for any ABox assertion ϕ prefixed by σ.ε, if ϕ /∈
ε, then an ABox assertion ϕ′ can be constructed to guarantee that ϕ holds on the state
denoted by σ.ε if and only if ϕ′ holds on the state denoted by σ0.ε0; as a result, we can

Fig. 3 Tableau expansion rules on atomic actions
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Fig. 4 Tableau expansion rules on ABox assertions

expand the branch with the prefixed formula σ0.ε0 : ϕ′. More precisely, if ϕ is of the
form R(p, q) or ¬R(p, q), then the corresponding ABox assertion ϕ′ is equal with
ϕ, and therefore the prefixed formula σ0.ε0 : ϕ will be incorporated into the branch
by the Backr-rule. However, if ϕ is of the form C(p) or ¬C(p), then we need to
construct some concept CRegress(ε,T ) before incorporating the prefixed formula σ0.ε0 :
CRegress(ε,T )(p) or σ0.ε0 : ¬CRegress(ε,T )(p) into the branch according to the Backc- or
Back¬c-rule, where the concept CRegress(ε,T ) should satisfy that (CRegress(ε,T ))I(w0) =
CI(w) for any two states w0 and w denoted by the prefixes σ0.ε0 and σ.ε respectively.

In order to construct such a concept, we adopt a process proposed by Liu et al. for
constructing updated concepts in their ABox updating algorithm [23], and modify it
to act as a regression operator. More precisely, for any prefix σ.ε and any concept C,
the concept CRegress(ε,T ) is constructed according to the following steps:

1. Construct the expansion CT of C w.r.t. T .
2. Let Ob j(ε) be a set composed of all the individual names occurring in ε. Return

the concept (CT )Regress(ε) which is defined inductively as follows:

– ARegress(ε) := A 

( ⊔

A(p)∈ε

{p}
)

�
(

�

¬A(p)∈ε

¬{p}
)

for any concept name A;

– {p}Regress(ε) := {p};
– (¬D)Regress(ε) := ¬DRegress(ε).
– (D 
 D′)Regress(ε) := DRegress(ε) 
 D′Regress(ε);
– (D � D′)Regress(ε) := DRegress(ε) � D′Regress(ε);

– (∀R.D)Regress(ε) :=
( ( ⊔

p∈Ob j(ε)
{p}

)

 ∀R.DRegress(ε)

)

�
( (

�

p∈Ob j(ε)
¬{p}

)

 ∀R.

( ( ⊔
q∈Ob j(ε)

{q}
)


 DRegress(ε)

) )

� �

p,q∈Ob j(ε),R(p,q)/∈ε,¬R(p,q)/∈ε

(¬{p} 
 ∀R.
(¬{q} 
 DRegress(ε)

))

� �

R(p,q)∈ε

(¬{p} 
 @q DRegress(ε)
)
;

– (∃R.D)Regress(ε) :=
( (

�

p∈Ob j(ε)
¬{p}

)
� ∃R.DRegress(ε)

)



( ( ⊔

p∈Ob j(ε)
{p}

)
� ∃R.

( (
�

q∈Ob j(ε)
¬{q}

)
� DRegress(ε)

) )
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 ⊔
p,q∈Ob j(ε),R(p,q)/∈ε,¬R(p,q)/∈ε

({p} � ∃R.
({q} � DRegress(ε)

))


 ⊔
R(p,q)∈ε

({p} � @q DRegress(ε)
)
;

– (≤ nR.D)Regress(ε) :=
((

�

p∈Ob j(ε)
¬{p}

)
� ( ≤ nR.DRegress(ε)

) )


 ⊔
p∈Ob j(ε)

(
{p} � ⊔

n1+n2+n3=n

(
≤ n1 R.

((
�

q∈Ob j(ε)
¬{q}

)

�DRegress(ε)

)

� ≤ n2 R.

(( ⊔
q∈Ob j(ε),R(p,q)/∈ε,¬R(p,q)/∈ε

{q}
)

�DRegress(ε)

)

� �

O⊆{q|R(p,q)∈ε},�O=n3+1

( ⊔
q∈O

¬@q DRegress(ε)

)))
,

where n1, n2, n3 are positive integers;

– (≥ nR.D)Regress(ε) :=
((

�

p∈Ob j(ε)
¬{p}

)
� ( ≥ nR.DRegress(ε)

) )


 ⊔
p∈Ob j(ε)

(
{p} � ⊔

n1+n2+n3=n

(
≥ n1 R.

((
�

q∈Ob j(ε)
¬{q}

)

�DRegress(ε)

)

� ≥ n2 R.

(( ⊔
q∈Ob j(ε),R(p,q)/∈ε,¬R(p,q)/∈ε

{q}
)

�DRegress(ε)

)

� ⊔
O⊆{q | R(p,q)∈ε},�O=n3

(
�

q∈O
@q DRegress(ε)

)))
,

where n1, n2, n3 are positive integers;
– (@p D)Regress(ε) := @p DRegress(ε).

The property for which the concept CRegress(ε,T ) is technically designed will be
stated and proved in Lemma 2 of the next subsection.

Definition 12 A branch B is contradictory if and only if there is some prefix σ.ε and
some formula ϕ such that both σ.ε : ϕ ∈ B and σ.ε : ¬ϕ ∈ B.

Definition 13 A branch B is completed if and only if it can not be expanded by any
tableau expansion rules presented in Figs. 1, 2, 3 and 4.
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Definition 14 An eventuality record X .=< π∗ > ϕ is fulf illed in a branch B if and
only if there is a prefix σ.ε such that both σ.ε : X ∈ B, and σ.ε : ϕ ∈ B.

Definition 15 A branch B is ignorable if and only if it is completed but contains some
eventuality record X .=< π∗ > ϕ which is not fulfilled.

We are now ready to finish the description of the satisf iability-checking algorithm:

Algorithm 1 The satisf iability of a formula φ w.r.t. an RBox R , a TBox T and an
ActBox AC is decided according to the following steps:

1. Construct a branch B := {σ0.ε0 : nf (φ)}.
2. If tableau expansion rules in Figs. 1, 2, 3 and 4 can be applied to B in such a way

that they yield a completed branch B ′, and

– B ′ is neither contradictory nor ignorable, and
– the initial view IVB ′ of B ′ is consistent w.r.t. R and T ,

then the algorithm returns “TRUE”, else returns “FALSE”.

In this algorithm, since the initial view IVB ′ is an ABox of the description logic
X@, and the @ constructor doesn’t occur in the TBox T , the consistency of IVB ′ w.r.t.
R and T can be decided with the reasoning mechanisms investigated in Section 2.

5.2 Termination and Correctness of the Algorithm

Some notations are necessary for demonstrating the termination of the algorithm.
Firstly, for any role, concept, formula, action, role inclusion axiom, concept

definition, atomic action definition, RBox, TBox, ABox or ActBox X, we use |X|
to denote the size of X and define it inductively as follows:

– |X| = 1 if X ∈ NR ∪ NC ∪ NI ∪ NA;
– |X| = |R| + 1 if X is a role of the form R−;
– |X| = |C| + 1 if X is a concept of the form ¬C;
– |X| = |p| if X is a concept of the form {p};
– |X| = |p| + |C| + 1 if X is a concept of the form @pC;
– |X| = |C| + |C′| + 1 if X is a concept of the form C 
 C′ or C � C′;
– |X| = |R| + |C| + 1 if X is a concept of the form ∀R.C or ∃R.C;
– |X| = n + |R| + |C| + 1 if X is a concept of the form ≤ nR.C or ≥ nR.C;2

– |X| = |C| + |p| if X is an ABox assertion of the form C(p);
– |X| = |R| + |p| + |q| if X is an ABox assertion of the form R(p, q);
– |X| = |ϕ| + 1 if X is a formula of the form ¬ϕ;
– |X| = |π | + |ϕ| + 1 if X is a formula of the form < π > ϕ or [π ]ϕ;
– |X| = |ϕ| + |ϕ′| + 1 if X is a formula of the form ϕ ∧ ϕ′ or ϕ ∨ ϕ′;
– |X| = |π | + |π ′| + 1 if X is an action of the form π ∪ π ′ or π; π ′;
– |X| = |ϕ| + 1 if X is an action of the form ϕ?;
– |X| = |π | + 1 if X is an action of the form π∗;

2Here the numbers inside qualified number restrictions are assumed to be written in unary [23].
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– |X| = |R| + |R′| + 1 if X is a role inclusion axiom of the form R � R′;
– |X| = |A| + |C| + 1 if X is a concept definition of the form A ≡ C;
– |X| = |α| +

∑
ϕ∈P

(|ϕ|) +
∑
φ∈E

(|φ|) + 1 if X is an atomic action definition α ≡ (P, E);

– |X| = ∑
x∈X

(|x|) if X is an ABox, RBox, TBox or ActBox.

Secondly, for any concept C, we use d(C) to denote the maximal nesting depth
of existential restrictions, value restrictions and quantified number restrictions in C,
and define it inductively as follows:

– d(C) = 0 if C ∈ NC or C is of the form {p};
– d(C) = d(C′) if C is of the form ¬C′ or @pC′;
– d(C) = max(d(C′), d(C′′)) if C is of the form C′ 
 C′′ or C′ � C′′;
– d(C) = d(C′) + 1 if C is of the form ∀R.C′, ∃R.C′, ≤ nR.C′ or ≥ nR.C′.

Thirdly, for any formula ϕ and any RBox R , we use clR (ϕ) to denote the relevant
sub-formulas of ϕ w.r.t. R , and define it as the smallest set satisfying the following
conditions:

– nf (ϕ) ∈ clR (ϕ);
– if ψ ∈ clR (ϕ) and ψ is not started with the negation sign, then ¬ψ ∈ clR (ϕ);
– if ¬ψ ∈ clR (ϕ), then ψ ∈ clR (ϕ);
– if R(p, q) ∈ clR (ϕ), then Inv(R)(q, p) ∈ clR (ϕ);
– if R(p, q) ∈ clR (ϕ) and R � R′ ∈ R , then R′(p, q) ∈ clR (ϕ);
– if ¬R′(p, q) ∈ clR (ϕ) and R � R′ ∈ R , then ¬R(p, q) ∈ clR (ϕ);
– if ψ ∈ clR (ϕ) and ψ is of the form ψ1 ∨ ψ2, ψ1 ∧ ψ2, < ψ1? > ψ2 or [ψ1?]ψ2, then

{ψ1, ψ2} ⊆ clR (ϕ);
– if < π1; π2 > ψ ∈ clR (ϕ), then < π1 >< π2 > ψ ∈ clR (ϕ);
– if [π1; π2]ψ ∈ clR (ϕ), then [π1][π2]ψ ∈ clR (ϕ);
– if < π1 ∪ π2 > ψ ∈ clR (ϕ), then {< π1 > ψ, < π2 > ψ} ⊆ clR (ϕ);
– if [π1 ∪ π2]ψ ∈ clR (ϕ), then {[π1]ψ, [π2]ψ} ⊆ clR (ϕ);
– if < π∗ > ψ ∈ clR (ϕ), then {ψ , < π >< π∗ > ψ} ⊆ clR (ϕ);
– if [π∗]ψ ∈ clR (ϕ), then {ψ , [π ][π∗]ψ} ⊆ clR (ϕ);
– if ψ ∈ clR (ϕ) and ψ is of the form < (P, E) > ψ1 or [(P, E)]ψ1, then P ∪ E∪ {ψ1}

⊆ clR (ϕ).

Fourthly, we use AssR (ϕ) to denote the set of all the ABox assertions contained
in clR (ϕ).

Finally, for any formula ϕ and any RBox R , we use AtomAct(ϕ) to denote the set
of all the atomic actions occurring in nf (ϕ), and use Ef fR (ϕ) to denote a set defined
as follows:

Ef fR (ϕ) � ∪
(P,E)∈AtomAct(ϕ)

E∗
R

where E∗
R is the closure of the ABox E w.r.t. the RBox R .

It is obvious that the cardinalities �clR (ϕ), �AssR (ϕ) and �Ef fR (ϕ) are all linearly
bounded by |nf (ϕ)| × |R |.

Now we are ready to demonstrate the termination of the algorithm.

Theorem 7 Algorithm 1 terminates.



26 L. Chang et al.

Proof Let f := |nf (φ)|, c:= �clR (φ), a:= �AssR (φ) and e:= �Ef fR (φ). Let m be the
maximal one among |ψ | for every ψ ∈ AssR (φ). Then, it is obvious that m ≤ f ; the
numbers c, a and e are all linearly bounded by f × |R |; and the number f is linearly
bounded by |φ| × |AC |. Furthermore, the following properties are straightforward for
the algorithm.

1. For each application of any tableau expansion rule on a branch B, the number
of possible expansions is finite, and the cardinality of the branch will be strictly
increased for every expansion.

2. According to the definition of the atom<>-rule, it must be ε ⊆ Ef fR (φ),
ε′ ⊆ Ef fR (φ) and ε �= ε′ for any prefixes σ.ε and σ ′.ε′ occurring in the branch;
therefore, the number of prefixes introduced during the execution of Algorithm
1 is bounded by 2e.

3. For each non-initial prefix σ.ε, the number of formulas prefixed by it is bounded
by c, and the number of ABox assertions prefixed by it is bounded by a.

4. The number of formulas prefixed by the initial prefix σ0.ε0 is bounded by c +
a × (2e − 1), where a × (2e − 1) is the number of ABox assertions which might
be introduced by applying the Backr-, Backc-, and Back¬c-rules.

5. For each prefixed formula σ0.ε0 : CRegress(ε,T )(p) (resp. σ0.ε0 : ¬CRegress(ε,T )(p))
introduced by applying the Backc-rule (resp. the Back¬c-rule), let CT be the
expansion of C w.r.t. T . Then it must be d(CT ) ≤ |C| + |T | and |CT | ≤ |C| ×
2q1(|T |) for some polynomial q1. Furthermore, according to the construction of
the concept (CT )Regress(ε), and be similar with the result presented in Theorem
36 of [25] for the ABox updating algorithm, we can find some polynomial q2

such that |(CT )Regress(ε)| ≤ |CT | × (q2(�Ob j(ε)))d(CT ). At the same time, since
ε ⊆ Ef fR (φ), the number �Ob j(ε) is linearly bounded by e. Therefore, to
sum up, we can find two polynomials q1 and q′

2 such that |CRegress(ε,T )(p)| =
|(CT )Regress(ε)(p)| ≤ |C| × 2q1(|T |) × (q′

2(e))
|C|+|T | ≤ m × 2q1(|T |) × (q′

2(e))
m+|T |.

Now, according to Properties 2, 3 and 4 listed above, for any branch generated
during the execution of Algorithm 1, the number of prefixed formulas contained in it
is bounded by (2e − 1) × c + ( c + a × (2e − 1) ). Therefore, together with Property
1, the number of branches which will be investigated by the algorithm is finite.

For each branch B investigated by the algorithm, the number of ABox assertions
contained in the initial view IVB is bounded by a + a × (2e − 1) = a × 2e. Therefore,
according to Property 5, we can find two polynomials p1 and p2 such that |IVB | ≤
(a × 2e) × (m × 2p1(|T |) × (p2(e))m+|T |). So, the consistency of IVB w.r.t. R and T can
be decided with terminable procedures provided by the description logic X@.

To sum up, the algorithm terminates. �


Furthermore, according to the above proof and based on the result presented in
Theorem 1, the following result is straightforward:

Corollary 1 For the family DDL(X@) of dynamic description logics, the complexity
upper-bound of Algorithm 1 is EXPSPACE if X ∈ {ALCO, ALCHO, ALCOQ , ALCHOQ },
and is N2EXPTIME if X ∈ {ALCOI , ALCHOI , ALCOIQ , ALCHOIQ }.

In order to demonstrate the correctness of the satisfiability-checking algorithm,
we introduce three notations in the following paragraphs.
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Firstly, we introduce branch-model mappings to act as bridges between branches
and models:

Definition 16 Let T , B and M = (W, T, �, I) be a TBox, a branch and a model
respectively. A branch-model mapping ı w.r.t. T , B and M is a function from prefixes
occurring in B to states of M, satisfying that for each pair of prefixes σ.ε and σ ′.ε′
occurring in B: if σ ′ = σ ; (P, E) and ε′ = (ε \ (E∗

R )¬) ∪ E∗
R , then:

– AI(ı(σ ′.ε′)) = (AI(ı(σ.ε)) ∪ { pI | A(p) ∈ E∗
R })\{ pI | ¬A(p) ∈ E∗

R } for each concept
name A which is primitive w.r.t. T , and

– RI(ı(σ ′.ε′)) = ( RI(ı(σ.ε)) ∪ { (pI, qI) | R(p, q) ∈ E∗
R } ) \ { (pI, qI) | ¬R(p, q) ∈ E∗

R }
for each role name R.

In this definition, it should be noted that the initial prefix σ0.ε0 is also mapped
to some state of M, although the concrete state denoted by ı(σ0.ε0) is not specified
here.

A branch-model mapping holds the following properties:

Lemma 1 Let T , B and M = (W, T, �, I) be a TBox, a branch and a model respec-
tively; let ı be a function from pref ixes occurring in B to states of M. Then, ı is a
branch-model mapping w.r.t. T , B and M if and only if the following statements hold
for each pref ix σ.ε occurring in B:

– AI(ı(σ.ε)) = (AI(ı(σ0.ε0)) ∪ { pI | A(p) ∈ ε } ) \ { pI | ¬A(p) ∈ ε } for each concept
name A which is primitive w.r.t. T , and

– RI(ı(σ.ε)) = (RI(ı(σ0.ε0)) ∪ { (pI, qI) | R(p, q) ∈ ε } ) \ { (pI, qI) | ¬R(p, q) ∈ ε } for
each role name R.

Proof (The Only-if direction) The proof is by induction on the construction of
prefixes. If σ.ε is the initial prefix σ0.ε0, then the result is straightforward since
ε = ε0 = ∅.

Assume the result hold for some prefix σ.ε. Let σ ′.ε′ be a prefix with σ ′ =
σ ; (P, E) and ε′ = (ε \ (E∗

R )¬) ∪ E∗
R . Then, for any concept name A which is

primitive w.r.t. T , we have

(
AI(ı(σ0.ε0)) ∪ {

pI |A(p) ∈ ε′} ) \ {
pI |¬A(p) ∈ ε′} (1)

=
(

AI(ı(σ0.ε0)) ∪
{

pI | A(p) ∈
(
ε\ (

E∗
R

)¬)
∪ E∗

R

} )

\
{

pI | ¬A(p) ∈
(
ε\ (

E∗
R

)¬)
∪ E∗

R

}
(2)

= [
AI(ı(σ0.ε0)) ∪ ({

pI | A(p) ∈ ε
}\{pI | A(p) ∈ (E∗

R )¬
}) ∪ {

pI | A(p) ∈ E∗
R

} ]

\
[ ({

pI |¬A(p) ∈ ε
} \

{
pI |¬A(p) ∈ (

E∗
R

)¬})
∪ {

pI |¬A(p) ∈ E∗
R

}]
(3)
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=
[ [

AI(ı(σ0.ε0)) ∪
(
{pI |A(p) ∈ ε}\

{
pI |A(p) ∈ (

E∗
R

)¬})
∪ {

pI |A(p) ∈ E∗
R

}]

\
({

pI | ¬A(p) ∈ ε
} \

{
pI | ¬A(p) ∈ (

E∗
R

)¬}) ]

\ {
pI | ¬A(p) ∈ E∗

R

}
(4)

=
[ [ (

AI(ı(σ0.ε0)) ∪
({

pI | A(p) ∈ ε
} \ {pI | A(p) ∈ (

E∗
R

)¬}
))

\
({

pI | ¬A(p) ∈ ε
} \

{
pI | ¬A(p) ∈ (

E∗
R

)¬}) ]
∪ {

pI | A(p) ∈ E∗
R

} ]

\ {
pI | ¬A(p) ∈ E∗

R

}
(5)

=
[ [ (

AI(ı(σ0.ε0)) ∪
({

pI | A(p) ∈ ε
} \

{
pI | A(p) ∈ (

E∗
R

)¬}))

\ {
pI | ¬A(p) ∈ ε

} ] ∪ {
pI | A(p) ∈ E∗

R

} ]
\ {

pI | ¬A(p) ∈ E∗
R

}
(6)

= [ [ (
AI(ı(σ0.ε0)) ∪ {

pI | A(p) ∈ ε
})

\ {
pI | ¬A(p) ∈ ε

} ] ∪ {
pI | A(p) ∈ E∗

R

} ]
\ {

pI | ¬A(p) ∈ E∗
R

}
(7)

= [
AI(ı(σ.ε)) ∪ {

pI | A(p) ∈ E∗
R

} ] \ {
pI | ¬A(p) ∈ E∗

R

}
(8)

= AI(ı(σ ′.ε′)) (9)

The transformation from set (2) to set (3) is based on the unique name assumption
on individual names, so that the set {pI | A(p) ∈ (ε\(E∗

R )¬) ∪ E∗
R } and the set

{pI | ¬A(p) ∈ (ε\(E∗
R )¬) ∪ E∗

R } can be replaced by ({pI | A(p) ∈ ε} \ {pI | A(p) ∈
(E∗

R )¬}) ∪ {pI | A(p) ∈ E∗
R } and ({pI | ¬A(p) ∈ ε} \ {pI | ¬A(p) ∈ (E∗

R )¬}) ∪
{pI | ¬A(p) ∈ E∗

R } respectively. The transformation from set (4) to set (5) is
based on the fact that the set {pI | A(p) ∈ E∗

R } and the set {pI | ¬A(p) ∈ ε}
\ {pI | ¬A(p) ∈ (E∗

R )¬} are disjoint, so that the order of the union operation and
the difference operation can be exchanged. The transformation from set (5) to
set (6) is based on the fact that the set {pI | ¬A(p) ∈ (E∗

R )¬} is equal with the
set {pI | A(p) ∈ E∗

R } which will be combined with (AI(ı(σ0.ε0)) ∪ ({pI | A(p) ∈ ε}
\ {pI | A(p) ∈ (E∗

R )¬})) \ ({pI | ¬A(p) ∈ ε} \ {pI | ¬A(p) ∈ (E∗
R )¬}), therefore

we can remove the set {pI | ¬A(p) ∈ (E∗
R )¬} from the expression ({pI | ¬A(p) ∈

ε} \ {pI | ¬A(p) ∈ (E∗
R )¬}). The transformation from set (6) to set (7) is based on

the fact that the set {pI | A(p) ∈ (E∗
R )¬} is equal with the set {pI | ¬A(p) ∈ E∗

R }
and consequently is disjoint with set (6); therefore, we can remove the set
{pI | A(p) ∈ (E∗

R )¬} from the expression ({pI | A(p) ∈ ε} \ {pI | A(p) ∈ (E∗
R )¬}).

The transformation from set (7) to set (8) is based on the inductive hypothesis, and
the transformation from set (8) to set (9) is based on the definition of branch-model
mappings.

For any role name R, it can be similarly demonstrated that (RI(ı(σ0.ε0)) ∪ {(pI, qI) |
R(p, q) ∈ ε′}) \ {(pI, qI) | ¬R(p, q) ∈ ε′} = RI(ı(σ ′.ε′)).
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(The If direction) Let σ.ε and σ ′.ε′ be a pair of prefixes occurring in B
with both σ ′ = σ ; (P, E) and ε′ = (ε \ (E∗

R )¬) ∪ E∗
R . Then, for any concept

name A which is primitive w.r.t. T , we have both AI(ı(σ.ε)) = (AI(ı(σ0.ε0)) ∪ {pI

| A(p) ∈ ε}) \ {pI | ¬A(p) ∈ ε} and AI(ı(σ ′.ε′)) = (AI(ı(σ0.ε0)) ∪ {pI | A(p) ∈ ε′})
\ {pI | ¬A(p) ∈ ε′}. At the same time, according to the transformation from
set (1) to set (7) presented above for the proof of the Only-if direction, we
have (AI(ı(σ0.ε0)) ∪ {pI | A(p) ∈ ε′}) \ {pI | ¬A(p) ∈ ε′} = [ [(AI(ı(σ0.ε0)) ∪ {pI |A(p) ∈
ε})\ {pI | ¬A(p) ∈ ε}] ∪ {pI | A(p) ∈ E∗

R } ] \ {pI | ¬A(p) ∈ E∗
R }. Therefore, we

have AI(ı(σ ′.ε′)) = ( AI(ı(σ.ε)) ∪ {pI | A(p) ∈ E∗
R } ) \ {pI | ¬A(p) ∈ E∗

R }.
For any role name R, it can be similarly demonstrated that RI(ı(σ ′.ε′)) = (RI(ı(σ.ε)) ∪

{(pI, qI) | R(p, q) ∈ E∗
R }) \ {(pI, qI) | ¬R(p, q) ∈ E∗

R }. �


Corollary 2 Let ı be a branch-model mapping w.r.t. a TBox T , a branch B and a
model M = (W, T, �, I). Then, for any pref ix σ.ε occurring in B and any primitive
literal ψ ∈ ε, it must be (M, ı(σ.ε)) |= ψ .

Proof If σ.ε is the initial prefix σ0.ε0, then the result is straightforward since ε =
ε0 = ∅.

Now, let σ.ε be a non-initial prefix. We demonstrate the result by investigating
the forms of every ψ ∈ ε. Firstly, suppose ψ is of the form A(p). Since every atomic
action definition is assumed to be PE-consistent w.r.t. R and T at the beginning of
Section 5, we have ¬A(p) /∈ ε according to the construction of prefixes. Therefore,
by Lemma 1 and based on the unique name assumption on individual names, we
have pI ∈ AI(ı(σ.ε)) and consequently (M, ı(σ.ε)) |= A(p). Secondly, suppose ψ is
of the form ¬A(p). Then, by Lemma 1, we have pI /∈ AI(ı(σ.ε)) and consequently
(M, ı(σ.ε)) |= ¬A(p). Finally, if ψ is of the form R(p, q) or ¬R(p, q), then the result
can be similarly demonstrated. �


The following corollary is an easy consequence of Lemma 1:

Corollary 3 Let ı be a branch-model mapping w.r.t. a TBox T , a branch B and a model
M; let M |= T ; let σ.ε and σ ′.ε′ be two pref ixes occurring in B. Then, ı(σ.ε) and ı(σ ′.ε′)
are the same state if ε = ε′.

With the help of branch-model mappings, we can present and demonstrate
the following property for the regression operator introduced in the satisfiability-
checking algorithm.

Lemma 2 Let CRegress(ε,T ) be a concept constructed by the regression operator in the
Backc- or Back¬c-rule; let M = (W, T,�, I) be a model with M |= T . Then, for any
branch-model mapping ı w.r.t. T , B and M, we have (CRegress(ε,T ))I(ı(σ0.ε0)) = CI(ı(σ.ε)).

Proof Let CT be the expansion of C w.r.t. T . According to the construction of
CRegress(ε,T ), we have (CRegress(ε,T ))I(ı(σ0.ε0)) = (CT

Regress(ε))I(ı(σ0.ε0)). Furthermore, since
M |= T , we have CT

I(ı(σ.ε)) = CI(ı(σ.ε)). Therefore, we just need to demonstrate
(CT

Regress(ε))I(ı(σ0.ε0)) = CT
I(ı(σ.ε)).
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In the following proof, we will use the result that for any individuals x, y ∈ � and
any role name R ∈ NR: the statement (x, y) ∈ RI(ı(σ.ε)) holds if and only if one of the
following statements holds:

– x /∈ ⋃
p∈Ob j(ε)

{pI} ∧ (x, y) ∈ RI(ı(σ0.ε0)),

– x ∈ ⋃
p∈Ob j(ε)

{pI} ∧ y /∈ ⋃
q∈Ob j(ε)

{qI} ∧ (x, y) ∈ RI(ı(σ0.ε0)),

– ∃p, q ∈ Ob j(ε). (x = pI ∧ y = qI ∧ ¬R(p, q) /∈ ε ∧ R(p, q) /∈ ε ∧ (x, y) ∈
RI(ı(σ0.ε0))),

– ∃p, q ∈ Ob j(ε). (x = pI ∧ y = qI ∧ R(p, q) ∈ ε).

This result is straightforward according to Lemma 1.
Now, we prove (CT

Regress(ε))I(ı(σ0.ε0)) = CT
I(ı(σ.ε)) by induction on the structure

of CT .

Case 1. CT is a concept name A. Then we have

(ARegress(ε))I(ı(σ0.ε0))

=
(

A 

( ⊔

A(p)∈ε

{p}
)

�
(

�

¬A(p)∈ε

¬{p}
) )I(ı(σ0.ε0))

= ( AI(ı(σ0.ε0)) ∪ {pI |A(p) ∈ ε} )\{pI |¬A(p) ∈ ε}.

Therefore, by Lemma 1, we have (ARegress(ε))I(ı(σ0.ε0)) = AI(ı(σ.ε)).

Case 2. C is of the form {p}, @p D, ¬D, D 
 D′ or D � D′. The result is straightfor-
ward.

Case 3. C is of the form ∀R.D. Then, for any individual x ∈ �, we have

x ∈ ((∀R.D)Regress(ε))I(ı(σ0.ε0))

iff x ∈
( ⊔

p∈Ob j(ε)
{p} 
 ∀R.DRegress(ε)

)I(ı(σ0.ε0))

∧ x ∈
(

�

p∈Ob j(ε)
¬{p} 
 ∀R.

( ⊔
q∈Ob j(ε′)

{q} 
 DRegress(ε)

))I(ı(σ0.ε0))

∧ x ∈ ⋂
p,q∈Ob j(ε),R(p,q)/∈ε,¬R(p,q)/∈ε

(¬{p} 
 ∀R.(¬{q} 
 DRegress(ε)))I(ı(σ0.ε0))

∧ x ∈ ⋂
R(p,q)∈ε

(¬{p} 
 @q DRegress(ε))I(ı(σ0.ε0))

iff ∀y.

( ( (
x /∈ ⋃

p∈Ob j(ε)
{pI} ∧ (x, y) ∈ RI(ı(σ0.ε0))

)
→ y ∈ (DRegress(ε))I(ı(σ0.ε0))

)

∧
( (

x ∈ ⋃
p∈Ob j(ε)

{pI} ∧ y /∈ ⋃
q∈Ob j(ε)

{qI} ∧ (x, y) ∈ RI(ı(σ0.ε0))

)
→ y ∈

(DRegress(ε))I(ı(σ0.ε0))

)

∧ ( ∃p, q ∈ Ob j(ε). (x = pI ∧ y = qI ∧ ¬R(p, q) /∈ ε ∧ R(p, q) /∈ ε ∧ (x, y) ∈
RI(ı(σ0.ε0)))

→ y ∈ (DRegress(ε))I(ı(σ0.ε0)) )
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∧ ( ∃p, q ∈ Ob j(ε). (x = pI ∧ y = qI ∧ R(p, q) ∈ ε) → y ∈
(DRegress(ε)I(ı(σ0.ε0))

) )

iff ∀y.( (x, y) ∈ RI(ı(σ.ε)) → y ∈ DI(ı(σ.ε)))

iff x ∈ (∀R.D)I(ı(σ.ε)).

Therefore, we have ((∀R.D)Regress(ε))I(ı(σ0.ε0)) = (∀R.D)I(ı(σ.ε)).

Case 4. C is of the form ∃R.D. The proof is similar with the preceding case.

Case 5. C is of the form ≤ nR.D. Then, for any individual x ∈ �, we have

x ∈ ((≤ nR.D)Regress(ε))I(ı(σ0.ε0))

iff x /∈ ⋃
p∈Ob j(ε)

{pI} ∧ �{y | (x, y) ∈ RI(ı(σ0.ε0)) ∧ y ∈ (DRegress(ε))I(ı(σ0.ε0)) } ≤ n

or

∃p ∈ Ob j(ε).
(

x = pI ∧ ∃n1, n2, n3 ≥ 0.

(
n1 + n2 + n3 = n

∧ �

{
y | (x, y) ∈ RI(ı(σ0.ε0)) ∧ y /∈ ⋃

q∈Ob j(ε)
{qI} ∧ y ∈ (DRegress(ε))I(ı(σ0.ε0))

}
≤ n1

∧ �

{
y | (x, y) ∈ RI(ı(σ0.ε0)) ∧ y ∈ ⋃

q∈Ob j(ε)∧R(p,q)/∈ε∧¬R(p,q)/∈ε

{qI} ∧ y ∈

(DRegress(ε))I(ı(σ0.ε0))

}

≤ n2

∧ �{q | R(p, q) ∈ ε ∧ qI ∈ (DRegress(ε))I(ı(σ0.ε0))} ≤ n3

))

iff x /∈ ⋃
p∈Ob j(ε)

{pI} ∧ �{y | (x, y) ∈ RI(ı(σ.ε)) ∧ y ∈ DI(ı(σ.ε)) } ≤ n

or

∃p ∈ Ob j(ε).
(

x = pI ∧ ∃n1, n2, n3 ≥ 0.

(
n1 + n2 + n3 = n

∧ �

{
y | y /∈ ⋃

q∈Ob j(ε)
{qI} ∧ (x, y) ∈ RI(ı(σ0.ε0)) ∧ y ∈ DI(ı(σ.ε))

}
≤ n1

∧ �

{
y | y ∈

( ⋃
q∈Ob j(ε)∧R(p,q)/∈ε∧¬R(p,q)/∈ε

{qI} ∧ (x, y) ∈ RI(ı(σ0.ε0)) ∧ y ∈

DI(ı(σ.ε))

)}
≤ n2

∧ �

{
y | y ∈ ⋃

R(p,q)∈ε

{qI} ∧ y ∈ DI(ı(σ.ε))

}
≤ n3

))

iff x /∈ ⋃
p∈Ob j(ε)

{pI} ∧ �{y | (x, y) ∈ RI(ı(σ.ε)) ∧ y ∈ DI(ı(σ.ε)) } ≤ n

or
x ∈ ⋃

p∈Ob j(ε)
{p} ∧ �{y | (x, y) ∈ RI(ı(σ.ε)) ∧ y ∈ DI(ı(σ.ε)) } ≤ n

iff x ∈ (≤ nR.D)I(ı(σ.ε)).

Therefore, we have ((≤ nR.D)Regress(ε))I(ı(σ0.ε0)) = (≤ nR.D)I(ı(σ.ε)).

Case 6. C is of the form ≥ nR.D. The proof is similar with the preceding case. �
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It should be noted that the proof of Lemma 2 is similar with the proof provided
by Liu et al. [25] for their ABox updating algorithm, since the regression operator
presented here is just a modification of Liu et al’s process for constructing updated
concepts.

The second notation introduced for demonstrating the correctness of Algorithm 1
is the satisfiability of branches.

Definition 17 Let R , T , B, and M be an RBox, a TBox, a branch and a model
respectively; let ı be a branch-model mapping w.r.t. T , B and M. Then, B is called
satisf ied by M and ı w.r.t. R and T , denoted by (M, ı) |=R ,T B, if and only if M |= R ,
M |= T and (M, ı(σ.ε)) |= ϕ for every σ.ε : ϕ ∈ B.

If there is a model M and a branch-model mapping ı with (M, ı) |=R ,T B, then we
say that the branch B is satisf iable w.r.t. both the RBox R and the TBox T , otherwise
we say that B is unsatisf iable w.r.t. R and T .

The third notation we will introduce is a partial order “�” on prefixes.

Definition 18 Based on the definition of prefixes, the partial order “�” on pref ixes
is defined inductively as follows:

– σ.ε � σ.ε,
– σ.ε � σ ; (P, E).(ε \ (E∗

R )¬) ∪ E∗
R ,

– if σ � σ ′ and σ ′ � σ ′′, then σ � σ ′′.

With the help of the above notations, we can demonstrate the following properties
for the satisfiability-checking algorithm.

Lemma 3 For any branch B constructed in Algorithm 1, if it is contradictory or its
initial view IVB is inconsistent w.r.t. R and T , then it is unsatisf iable w.r.t. R and T .

Proof According to Definition 12 and by the semantics of DDL(X@)-formulas, it is
immediate that every contradictory branch is unsatisfiable.

If IVB is inconsistent w.r.t. R and T , then the branch B0 := {σ0.ε0 : ϕ | ϕ ∈ IVB}
is unsatisfiable w.r.t. R and T . Since B0 ⊆ B, the branch B is unsatisfiable w.r.t. R
and T . �


Lemma 4 For each tableau expansion rule applied on some branch B, B is satisf iable
w.r.t. R and T if and only if this rule can be applied to B in such a way that it yields a
branch which is satisf iable w.r.t. R and T .

Proof (The If direction) The result is immediate since every new generated branch
subsumes the branch B.

(The Only-if direction) Suppose there is a model M = (W, T, �, I) and a branch-
model mapping ı such that (M, ı) |=R ,T B. We demonstrate the result by investigating
all the tableau expansion rules.
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If a tableau expansion rule listed in Fig. 1 or Fig. 2 is applied on B, then the result
is obvious according to the semantics of roles, formulas and actions of DDL(X@).

If the atom<>-rule is applied on B, then we have (M, ı(σ.ε)) |= < (P, E) > ϕ, and
therefore there is a state w′ ∈ W such that (ı(σ.ε), w′) ∈ T((P, E)), (M, w′) |= ϕ and
(M, ı(σ.ε)) |= φ for every φ ∈ P. There are two cases to be investigated.

– Suppose no prefix σi.εi occurring in B with εi = (ε \ (E∗
R )¬) ∪ E∗

R . Then, let σ ′.ε′
be the prefix introduced by applying the atom<>-rule and let B ′ be the resulted
branch. Let ı′ be a function constructed by extending the function ı with the map
ı′(σ ′.ε′) = w′. Then, based on Corollary 2, we have (M, ı′) |=R ,T B ′.

– Suppose there is a prefix σi.εi occurring in B with εi = (ε \ (E∗
R )¬) ∪ E∗

R . Then
we have ı(σi.εi) = w′ according to the definition of branch-model mappings and
the semantics of atomic action definitions. Therefore, based on Corollary 2, we
have (M, ı) |=R ,T B ′ for the resulted branch B ′.

If the atom[ ]-rule is applied on B, then we have (M, ı(σ.ε)) |= [(P, E)]ϕ, and
consequently there is not any state w′ ∈ W with both (ı(σ.ε), w′) ∈ T((P, E)) and
(M, w′) |= ¬ϕ. Let σi.εi be a prefix with εi = (ε \ (E∗

R )¬) ∪ E∗
R . Then, according to the

definition of branch-model mappings and the semantics of atomic action definitions,
we have either (M, ı(σi.εi)) |= ϕ or (M, ı(σ.ε)) |= φ¬ for some φ ∈ P. Therefore,
among all the possible expansions there must be a branch B ′ with (M, ı) |=R ,T B ′.

If the Backr-rule is applied on B, then we have (M, ı(σ.ε)) |= ϕ. Since ϕ /∈ ε and
ϕ is of the form R(p, q) or ¬R(p, q), by Lemma 1 and based on the unique name
assumption on individual names, we have (pI, qI) ∈ RI(ı(σ0.ε0)) if ϕ is of the form
R(p, q), and (pI, qI) /∈ RI(ı(σ0.ε0)) if ϕ is of the form ¬R(p, q). Therefore, we have
(M, ı(σ0.ε0)) |= ϕ and consequently (M, ı) |=R ,T B ′ for the resulted branch B ′.

If the Backc- or Back¬c-rule is applied on B, then, by Lemma 2, the result is
obvious. �


Lemma 5 For any completed branch B, if it is neither contradictory nor ignorable, and
its initial view IVB is consistent w.r.t. R and T , then B is satisf iable w.r.t. R and T .

Proof Since IVB is an ABox of the description logic X@ and is consistent w.r.t. R
and T , there must be an interpretation IIVB = (�IIVB , ·IIVB ) of X@ such that IIVB |= R ,
IIVB |= T and IIVB |= IVB .

Let B be the set of all the prefixes occurring in B; let NC, NR and NI respectively
be the sets of all the concept names, all the role names and all the individual
names occurring in B, R and T . Furthermore, let NC = NT

CP
∪ NT

CD
, where NT

CP
is

the set of primitive concept names w.r.t. T , and NT
CD

is the set of defined concept
names. Construct a DDL(X@)-model M = (W, T, �, I) and a function ı : B → W
according to the following steps.

1. Construct an interpretation I0 = (�I0 , ·I0) according to the following steps:

(a) set �I0 := �IIVB ;
(b) for each individual name p ∈ NI , if it is interpreted in IIVB , then set

pI0 := pIIVB , otherwise introduce an individual p̃, add p̃ to the set �I0 , and set
pI0 := p̃;

(c) for each concept name C ∈ NC, if it is interpreted in IIVB , then set CI0 :=
CIIVB , otherwise set CI0 := ∅;
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(d) for each role name R ∈ NR, if it is interpreted in IIVB , then set RI0 := RIIVB ,
otherwise set RI0 := ∅.

2. Set the domain � := �I0 .
3. Set pI := pI0 for each individual name p ∈ NI .
4. Introduce a state w0 and construct an interpretation I(w0) = (�, ·I(w0)) as fol-

lows:

– RI(w0) := RI0 for each role name R ∈ NR, and
– CI(w0) := CI0 for each concept name C ∈ NC.

Furthermore, set ı(σ0.ε0) := w0.
5. For each non-initial prefix σi.εi ∈ B , introduce a state wi and construct an

interpretation I(wi) = (�, ·I(wi)) as follows:

– RI(wi) := ( RI(w0) ∪ { (pI, qI) | R(p, q) ∈ εi } ) \ { (pI, qI) | ¬R(p, q) ∈ εi } for
each role name R ∈ NR.

– AI(wi) := ( AI(w0) ∪ { pI | A(p) ∈ εi} ) \ { pI | (¬A)(p) ∈ εi} for each primitive
concept name A ∈ NT

CP
, and

– AI(wi) := CI(wi) for each concept name A ∈ NT
CD

if A is defined by some
concept definition A ≡ C ∈ T .

Furthermore, set ı(σi.εi) := wi.

Firstly, by Lemma 1, it is obvious that ı is a branch-model mapping w.r.t. T , B
and M.

Secondly, according to the above construction, it is obvious that AI(w) = CI(w) for
any concept definition A ≡ C ∈ T and any state w ∈ W. Therefore, we have M |= T .

Thirdly, we demonstrate that M |= R . Let R � R′ be any role inclusion contained
in R ; let σ.ε be any prefix contained in B ; and let p, q be any individual names with
(pI, qI) ∈ RI(ı(σ.ε)). Then, by Lemma 1 and based on the unique name assumption on
individual names, we have ¬R(p, q) /∈ ε, and either (pI, qI) ∈ RI(ı(σ0.ε0)) or R(p, q)

∈ ε. Therefore, according to the construction of prefixes and based on the fact that
IIVB |= R , we have ¬R′(p, q) /∈ ε, and either (pI, qI) ∈ R′I(ı(σ0.ε0)) or R′(p, q) ∈ ε. So,
it must be (pI, qI) ∈ R′I(ı(σ.ε)).

Finally, we demonstrate that (M, ı(σ.ε)) |= ϕ for any prefixed formula σ.ε : ϕ ∈ B.
The proof is by induction on the structure of ϕ.

(Base case) ϕ is an ABox assertion. There are six cases to be investigated.

– σ.ε is the initial prefix σ0.ε0. Then we have ϕ ∈ IVB and consequently IIVB |= ϕ.
Therefore, according to the construction of M and ı, we have (M, ı(σ.ε)) |= ϕ.

– σ.ε is a non-initial prefix, and ϕ ∈ ε. Then, by Corollary 2, we have (M, ı(σ.ε)) |=
ϕ.

– σ.ε is a non-initial prefix, ϕ /∈ ε, and ϕ is of the form R(p, q). Then, we have
σ0.ε0 : R(p, q) ∈ B according to the Backr-rule; so, we have R(p, q) ∈ IVB and
consequently (pI, qI) ∈ RI(ı(σ0.ε0)). At the same time, it must be ¬R(p, q) /∈ ε;
otherwise, according to the atom< >-rule by which the prefix σ.ε is introduced,
we will get σ.ε : ¬R(p, q) ∈ B and make B a contradictory branch. Moreover, by
Lemma 1 and based on the unique name assumption on individual names, we
have RI(ı(σ.ε))= (RI(ı(σ0.ε0)) ∪ { (pI, qI) | R(p, q) ∈ ε}) \ { (pI, qI) | ¬R(p, q) ∈ ε },
no matter R is a role name or an inverse role. Therefore, we have (M, ı(σ.ε)) |=
R(p, q).
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– σ.ε is a non-initial prefix, ϕ /∈ ε, and ϕ is of the form ¬R(p, q). Then the result
can be demonstrated with a similar process of the preceding case.

– σ.ε is a non-initial prefix, ϕ /∈ ε, and ϕ is of the form C(p). Then, we have
σ0.ε0 : CRegress(ε,T )(p) ∈ B according to the Backc-rule; so, we have CRegress(ε,T )(p)

∈ IVB and consequently (M, ı(σ0.ε0)) |= CRegress(ε,T )(p). By Lemma 2, we have
(M, ı(σ.ε)) |= C(p).

– σ.ε is a non-initial prefix, ϕ /∈ ε, and ϕ is of the form ¬C(p). Then the result can
be demonstrated with a similar process of the preceding case.

(Inductive step) Since ϕ is a formula in negation normal form, we only need to
investigate the following cases.

Case 1. ϕ is of the form φ ∧ ψ or φ ∨ ψ . Then, since the branch is completed,
the result is straightforward according to the ∧-rule, the ∨-rule and the inductive
hypothesis.

Case 2. ϕ is of the form < π > φ. By induction on the structure of π , we demon-
strate that there is a state w′ ∈ W with both (ı(σ.ε), w′) ∈ T(π) and (M, w′) |= φ.

– π is an atomic action (P, E). Then, according to the atom<>-rule, we have
{σ.ε : ψi | ψi ∈ P} ⊆ B, and there must be a prefixed formula σi.εi : φ ∈ B with
εi = (ε\(E∗

R )¬) ∪ E∗
R . By the inductive hypothesis, we have (M, ı(σ.ε)) |= P and

(M, ı(σi.εi)) |= φ. Therefore, according to the construction of ı and the semantics
of atomic action definitions, we have (ı(σ.ε), ı(σi.εi)) ∈ T((P, E)).

– π is of the form π1; π2, ψ?, or π1 ∪ π2. Then the result is straightforward
according to the inductive hypothesis and the ;<>-, ?<>- and ∪<>-rules.

– π is of the form π∗
1 . Then, according to the ∗<>-rule, there must be a character

string X with both X .=< π∗
1 > φ ∈ B and σ.ε : X ∈ B. Let path(X, B) be the set

{σi.εi | σi.εi : X ∈ B}. It is immediate that path(X, B) is a finite set totally ordered
by the partial order “�”, and we have (ı(σ.ε), ı(σi.εi)) ∈ T(π∗

1 ) for every σi.εi ∈
path(X, B). At the same time, since B is not ignorable, there must be a prefix
σm.εm ∈ path(X, B) with σm.εm : φ ∈ B, and consequently (M, ı(σm.εm)) |= φ by
the inductive hypothesis.

Case 3. ϕ is of the form [π ]φ. By induction on the structure of π , we demonstrate
that no state w′ ∈ W exists with both (ı(σ.ε), w′) ∈ T(π) and (M, w′) |= ¬φ.

– π is an atomic action (P, E). Then, according to the atom[ ]-rule, we have
either {σ.ε : ψ¬ | ψ ∈ P} ∩ B �= ∅, or σi.εi : φ ∈ B for any prefix σi.εi with
εi = (ε\(E∗

R )¬) ∪ E∗
R . Therefore, by the inductive hypothesis, the construction

of M and the semantics of atomic action definitions, no state w′ ∈ W exists with
both (ı(σ.ε), w′) ∈ T((P, E)) and (M, w′) |= ¬φ.

– π is of the form π1; π2, ψ?, or π1 ∪ π2. Then the result is straightforward
according to the inductive hypothesis and the ;[ ]-, ?[ ]- and ∪[ ]-rules.

– π is of the form π∗
1 . Then, according to the ∗[ ]-rule, we have σ.ε : φ ∈ B and σ.ε :

[π1][π∗
1 ]φ ∈ B. For any positive integer n and any prefix σ ′.ε′ with (ı(σ.ε), ı(σ ′.ε′))

∈ (T(π1))
n, by double induction on n and on the structure of π1, we have σ ′.ε′ :

[π∗
1 ]φ ∈ B, σ ′.ε′ : [π1][π∗

1 ]φ ∈ B, σ ′.ε′ : φ ∈ B, and consequently (M, ı(σ ′.ε′)) |= φ

by the inductive hypothesis. Therefore, according to the construction of M, there
is not any state w′ ∈ W with both (ı(σ.ε), w′) ∈ T(π∗

1 ) and (M, w′) |= ¬φ.
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To sum up, we have (M, ı) |=R ,T B, and B is satisfiable w.r.t. R and T . �


Lemma 6 If the branch Binit = {σ0.ε0 : nf (φ)} constructed in the f irst step of Algorithm
1 is satisf iable w.r.t. R and T , then, among all the branches generated by applying
tableau expansion rules, there must be a completed branch which is not ignorable and
is satisf iable w.r.t. R and T .

Proof Suppose the contrary: Binit is satisfiable w.r.t. R and T , while every completed
and satisfiable branch generated by applying tableau expansion rules is ignorable.
It is worth noting that each branch can be ignorable due to a different unfulfilled
eventuality record; however, without loss of generality, here we just investigate one
of these unfulfilled eventuality record.

Let B ′ be a completed branch which is ignorable due to some eventuality record
X .= < π∗ > ϕ; let B ′ be satisfied by some model M = (W, T, �, I) and some branch-
model mapping ı w.r.t. R and T .

Let path(X, B ′) = {σ.ε | σ.ε : X ∈ B ′}. It is immediate that path(X, B ′) is a finite
set totally ordered by the relation “�”. Let all the elements of path(X, B ′) be σ1.ε1,
. . . , σm.εm, with σi.εi � σ j.ε j for every 1 ≤ i ≤ j ≤ m. Then it is immediate that σi.εi :
¬ϕ ∈ B ′ for every 1 ≤ i ≤ m; furthermore, for every 2 ≤ j ≤ m, the prefix σ j.ε j is
introduced by reducing the prefixed formula σ j−1.ε j−1 : X according to the X-rule as
well as the ;< >-, ?< >-, ∪< >- and atom< >-rules.

Let σM.εM be the maximum prefix among all the prefixes preceded by σm.εm;
i.e., let σ.ε � σM.εM for every prefix σ.ε with σm.εm � σ.ε. Furthermore, without
loss of generality, let σM be of the form σm; (P1, E1); . . . ; (Pk, Ek). Then, since
B ′ is completed, the atom<>-rule guarantees the existence of some prefixed for-
mula σM.εM : < (Pk+1, Ek+1) >< π ′ > X in B ′ with T((P1, E1); . . . ; (Pk, Ek); (Pk+1,
Ek+1); π ′) = T(π). At the same time, there must be some prefix σn.εn ∈ path(X, B ′)
and some prefix σN.εN occurring in B ′ such that σn.εn � σN.εN � σm.εm, εN = (εM \
(Ek+1

∗
R )¬) ∪ Ek+1

∗
R , and σN.εN :< π ′ > X ∈ B ′.

Since (M, ı) |=R ,T B ′ and σn.εn : X ∈ B ′, there must be an integer u as well as
u + 1 states wn, wn+1, . . . , wn+u ∈ W such that ı(σn.εn) = wn, (M, wn+u) |= ϕ, and
(wn+i, wn+1+i) ∈ T(π) for every 0 ≤ i < u.

Let’s first assume that u ≤ (m − n). Since σM.εM : < (Pk+1, Ek+1) >< π ′ > X ∈
B ′, we can remap the prefixes σn.εn, . . . , σm.εm so that ı(σn+i.εn+i) = wn+i for every
0 ≤ i ≤ m − n. Therefore, since (M, wn+u) |= ϕ, we have (M, ı(σn+u.εn+u)) |= ϕ. At
the same time, since σn+u.εn+u : ¬ϕ ∈ B ′ and (M, ı) |=R B ′, we have (M, ı(σn+u.εn+u))

|= ¬ϕ. Hence we get a contradiction.
Assume that u > (m − n). Since σM.εM : < (Pk+1, Ek+1) >< π ′ > X ∈ B ′, there

must be one (Pk+1, Ek+1)-step from the state ı(σM.εM) to the state ı(σN.εN), and
one π ′-step followed by u − (m − n) − 2 π -steps from the state ı(σN.εN) to the state
wn+u. Construct a new mapping j as follows: for every prefix σ.ε occurring in B ′, if
σ.ε � σN.εN or σ.ε is unrelated with σN.εN , then map this prefix in the same way
as ı does. By Lemma 4, there must be a completed branch B ′′ which is satisfied by
M and j ; furthermore, in this branch, the state j (σn.εn) fulfills the eventuality X in
u − (m − n) − 1 π -steps. Now, since u − (m − n) − 1 ≤ u, we can repeat the above
process until reach an u′ ≤ (m − n), getting a contradiction again. �
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We are now ready to demonstrate the correctness of the satisfiability-checking
algorithm.

Theorem 8 Algorithm 1 returns “TRUE” if and only if φ is satisf iable w.r.t. R , T
and AC .

Proof Let Binit = {σ0.ε0 : nf (φ)} be the branch constructed in the first step of
Algorithm 1.

(The If direction) If φ is satisfiable w.r.t. R , T and AC , then there is a model M =
(W, T, �, I) and a state w ∈ W such that M |= R , M |= T , M |=R ,T AC and (M, w) |=
φ. Furthermore, according to the construction of nf (φ), we have (M, w) |= nf (φ).

Construct a function ı as ı(σ0.ε0) = w. It is immediate that ı is a branch-model
mapping w.r.t. T , Binit and M, and we have (M, ı) |=R ,T Binit. Therefore, Binit is
satisfiable w.r.t. R and T . By Lemma 6, a completed branch B ′ which is not
ignorable and is satisfiable w.r.t. R and T will be generated by applying tableau
expansion rules. Furthermore, by Lemma 3, the branch B ′ is not contradictory, and
the initial view IV ′

B is consistent w.r.t. R and T . Therefore, the algorithm will return
“TRUE”.

(The Only-if direction) If the algorithm returns “TRUE”, then there must be a
completed branch B ′ which is neither contradictory nor ignorable, and its initial view
IVB ′ is consistent w.r.t. R and T . By Lemma 5, B ′ is satisfiable w.r.t. R and T , and
consequently the branch Binit is also satisfiable w.r.t. R and T by Lemma 4. So, there
must be a model M = (W, T, �, I) and a branch-model mapping ı such that M |= R ,
M |= T and (M, ı(σ0.ε0)) |= nf (φ). Since there is not any action name occurring in
nf (φ), we can modify the model M as follows: for every action name α defined by
some atomic action definition α ≡ (P, E) ∈ AC , set

T(α) := { (w,w′) ∈ W × W| (M, w) |= P,

AI(w′) = (AI(w) ∪ {pI |A(p) ∈ E∗
R }) \ {pI |(¬A)(p) ∈ E∗

R }
f or each concept name A which is primitive w.r.t. T , and

RI(w′) = (RI(w) ∪ {(pI, qI)|R(p, q) ∈ E∗
R }) \ {(pI, qI)|¬R(p, q) ∈ E∗

R }
f or each role name R. }.

Let M′ be the resulted model. Then it is immediate that M′ |= R , M′ |= T , M′ |=R ,T

AC , and (M′, ı(σ0.ε0)) |= φ. Therefore, φ is satisfiable w.r.t. R , T and AC . �


6 Extend Atomic Action Definitions of DDL(X@)

In order to be compatible with atomic actions described by Baader et al.’s formalism
[4], we extend atomic action definitions of DDL(X@) to include occlusions and
conditional post-conditions.

To be distinguished from atomic action definitions discussed in previous sections,
we call those extended by occlusions and conditional post-conditions as extended
atomic action definitions.
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With respect to a TBox T , an extended atomic action def inition of DDL(X@) is
of the form α ≡ (P, O, E), where

– α ∈ NA;
– P is a finite set of ABox assertions for describing the pre-conditions;
– O is a finite set of occlusions, where each occlusion is of the form A(p) or

R(p, q), with A a primitive concept name, R a role name, and p, q ∈ NI ; and
– E is a finite set of conditional post-conditions, where each conditional post-

condition is of the form ϕ/ψ with ϕ an ABox assertion and ψ a primitive literal.

In the above definition, the pre-conditions, occlusions and conditional post-
conditions are the same with those introduced by Baader et al. [4] for describing
atomic actions. The pre-conditions specify under which conditions the action is ap-
plicable. Each conditional post-condition ϕ/ψ says that, if ϕ is true before executing
the action, then ψ should be true after the execution. The occlusions indicate those
primitive literals that can change arbitrarily as while as the action is executed. With
DDL(X@)-models, the semantics of extended atomic action definitions is strictly
defined as follows.

With respect to an RBox R and a TBox T , a model M = (W, T, �, I) satisf ies an
extended atomic action definition α ≡ (P, O, E), in symbols M |=R ,T α ≡ (P, O, E),
if and only if M |= R , M |= T , and

T(α) = { (w,w′) ∈ W × W| (M, w) |= P,

both A+
w ∩ A−

w = ∅ and AI(w′) ∩ Iw
A = ((AI(w) ∪ A+

w) \ A−
w) ∩ Iw

A

f or each concept name A which is primitive w.r.t. T , and

both R+
w ∩ R−

w = ∅ and RI(w′) ∩ Iw
R = ((RI(w) ∪ R+

w) \ R−
w) ∩ Iw

R

f or each role name R. },
where, let Ew := { ψ | ϕ/ψ ∈ E and (M, w) |= ϕ }, then A+

w , A−
w , Iw

A, R+
w , R−

w and Iw
R

are some sets constructed as follows:

– A+
w := { pI | A(p) ∈ Ew },

– A−
w := { pI | ¬A(p) ∈ Ew },

– Iw
A := ( � \ { pI | A(p) ∈ O } ) ∪ A+

w ∪ A−
w ,

– R+
w := { (pI, qI) | R(p, q) ∈ Ew

∗
R },

– R−
w := { (pI, qI) | ¬R(p, q) ∈ Ew

∗
R },

– Iw
R := ( (� × �) \ { (pI, qI) | R(p, q) ∈ O } ) ∪ R+

w ∪ R−
w .

The above definition is compatible with the semantics of atomic action definitions.
According to this definition, for any pair (w,w′) ∈ T(α), any primitive concept name
A and any role name R, the interpretations AI(w) and AI(w′) should satisfy that A+

w ⊆
AI(w′), A−

w ∩ AI(w′) = ∅, and except these contained in {pI | A(p) ∈ O} might change
arbitrarily, nothing else changes from AI(w) to AI(w′); the interpretations RI(w) and
RI(w′) should satisfy that R+

w ⊆ RI(w′), R−
w ∩ RI(w′) = ∅, and except these contained in

{(pI, qI) | R(p, q) ∈ O} might change arbitrarily, nothing else changes from RI(w) to
RI(w′).

According to the definitions, the semantics of extended atomic action definitions
are similar to the semantics of atomic actions defined in Baader et al.’s formalism
[4], except that different DL-interpretations which are connected in [4] by the
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interpretations of atomic actions are compressed here into a single DDL(X@)-
model, and the condition (M, w) |= P is introduced here to state explicitly that the
pre-conditions should be satisfied.

As a result, atomic actions described by Baader et al.’s formalism can now be
represented in DDL(X@) with extended atomic action definitions. For example, the
atomic action buyBooka,b presented in Section 1 of this paper can also be repre-
sented as an extended atomic action definition. As another example, for the Web
service system discussed in Section 3.3, some Web service BuyBookNoti f iedTom,Kin

might be described by the following extended atomic action definition:

BuyBookNoti f iedTom,Kin

≡ ( { customer(Tom), book(KingLear) }, { },
{ instore(KingLear)/bought(Tom, KingLear),

instore(KingLear)/¬instore(KingLear),

instore(KingLear)/noti fy(Tom, NotifyOrderSucceed),

¬instore(KingLear)/noti fy(Tom, NotifyBookOutOf Stock) } )

where notify is a new introduced role name, and both NotifyOrderSucceed
and NotifyBookOutOfStock are new introduced individual names. Accord-
ing to this description, if the book KingLear is in store before executing
the action, then the formulas bought(Tom, KingLear), ¬instore(KingLear) and
noti fy(Tom, NotifyOrderSucceed) will be true after the execution; otherwise, the
formula noti fy(Tom, NotifyBookOutOf Stock) will be true after the execution,
which means that Tom is notified that the book is out of stock.

In DDL(X@), for each atomic action α defined by some extended atomic action
definition α ≡ (P, O, E), we will introduce a procedure Unf old(α) to unfold it into
some choice action α1 ∪ ... ∪ αn, where

– each αi (1 ≤ i ≤ n) is an atomic action defined by some atomic action definition;
and

– let AC be an ActBox in which every αi (1 ≤ i ≤ n) is defined, then it must be T(α)

= T(α1 ∪ ... ∪ αn) for any model M = (W, T, �, I) with M |= R , M |= T , M |=R ,T

α ≡ (P, O, E) and M |=R ,T AC .

Based on such a procedure, reasoning mechanisms presented in previous sections
can be easily extended to support extended atomic action definitions.

First of all, we present the procedure Unf old( ) and demonstrate some properties
for it.

Let α be an atomic action defined by some extended atomic action definition α ≡
(P, O, E) w.r.t. an RBox R and a TBox T ; let O = { φ1, ..., φm } and E = { ϕ1/ψ1, ...,
ϕk/ψk }. Then, the procedure Unf old(α) operates according to the following steps:

1. Construct two (initially empty) sets AC
′ and AC

′′ of atomic action definitions.
2. Construct an ABox Pcond := { ϕ | ϕ/ψ ∈ E }.
3. For each set Ai ⊆ Pcond ∪ {ϕ¬ | ϕ ∈ Pcond}, if either ϕ ∈ Ai or ϕ¬ ∈ Ai for every

ϕ ∈ Pcond, and the ABox Ai is consistent w.r.t. R and T , then:

(a) construct an atomic action definition βi ≡ (P ∪ Ai, {ψ | ϕ/ψ ∈ E and ϕ ∈
Ai}), and
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(b) put it into AC
′ if it is PE-consistent w.r.t. R and T .

4. For each atomic action definition βi ≡ (Pi, Ei) ∈ AC
′, do the following operations

sequentially:

(a) construct an ABox Oi := { φ | φ ∈ O, φ /∈ Ei
∗
R and φ¬ /∈ Ei

∗
R };

(b) for each set Oi, j ⊆ Oi ∪ {φ¬ | φ ∈ Oi}, if either φ ∈ Oi, j or φ¬ ∈ Oi, j for
every φ ∈ Oi, and the ABox Oi, j is consistent w.r.t. R and T , then :

i. construct an atomic action definition βi, j ≡ (Pi, Ei ∪ Oi, j), and
ii. put it into AC

′′ if it is PE-consistent w.r.t. R and T .

5. If the set AC
′′ is empty, then construct an atomic action definition β0 ≡

({ f alse},∅) and put it into AC
′′.

6. Let α1, ..., αn be all the atomic actions defined in AC
′′; construct a choice action

α1 ∪ ... ∪ αn and return it.

As an example, taking the atomic action BuyBookNoti f iedTom,Kin defined above
as input, the procedure Unf old(BuyBookNoti f iedTom,Kin) will return a choice
action of the form

BuyBookSucceedTom,Kin ∪ BuyBookFailedTom,Kin

where BuyBookSucceedTom,Kin and BuyBookFailedTom,Kin are two atomic actions
defined by the following atomic action definitions:

BuyBookSucceedTom,Kin

≡ ( { customer(Tom), book(KingLear), instore(KingLear) },
{ bought(Tom, KingLear),¬instore(KingLear),

noti fy(Tom, NotifyOrderSucceed) } )

BuyBookFailedTom,Kin

≡ ( { customer(Tom), book(KingLear),¬instore(KingLear) },
{ noti fy(Tom, NotifyBookOutOf Stock) } )

Lemma 7 For any atomic action α which is def ined by some extended atomic action
def inition α ≡ (P, O, E) w.r.t. an RBox R and a TBox T , the procedure Unf old(α)

terminates.

Proof Let m := �O and k := �E. Then, during the execution of the procedure
Unf old(α), we have �Pcond ≤ k, and consequently the number of atomic action
definitions put into AC

′ is bounded by 2k. At the same time, for each atomic action
definition αi ≡ (Pi, Ei) ∈ AC

′, we have �Oi ≤ m, and therefore the number of atomic
action definitions constructed for it is bounded by 2m. To sum up, the number of
atomic action definitions which will be generated and put into AC

′′ is bounded by 2k

× 2m. So, the procedure Unf old(α) terminates. �
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Lemma 8 Let α be an atomic action def ined by some extended atomic action
def inition α ≡ (P, O, E) w.r.t. an RBox R and a TBox T ; let α1 ∪ ... ∪ αn be the
action returned by the procedure Unf old(α); and let AC be an ActBox in which
each αi (1 ≤ i ≤ n) is def ined by some atomic action def inition. Then, for any model
M = (W, T, �, I) with M |= R , M |= T , M |=R ,T AC and M |=R ,T α ≡ (P, O, E), it
must be T(α1 ∪ ... ∪ αn) = T(α).

Proof For any states w,w′ ∈ W, we demonstrate that (w,w′) ∈ T(α1 ∪ ... ∪ αn) if and
only if (w,w′) ∈ T(α).

(The If direction) Let (w,w′) ∈ T(α). By the semantics of extended atomic action
definitions, we have (M, w) |= P, both A+

w ∩ A−
w = ∅ and AI(w′) ∩ Iw

A = ((AI(w) ∪
A+

w)\A−
w) ∩ Iw

A for each concept name A which is primitive w.r.t. T , and both
R+

w ∩ R−
w = ∅ and RI(w′) ∩ Iw

R = ((RI(w) ∪ R+
w)\R−

w) ∩ Iw
R for each role name R, where,

let Ew := {ψ | ϕ/ψ ∈ E and (M, w) |= ϕ}, then the sets A+
w , A−

w , Iw
A, R+

w , R−
w and Iw

R
are constructed as those listed in the semantic definition of extended atomic action
definitions.

Construct three ABoxes Pw, O′ and Ow as follows:

Pw := { ϕ | ϕ/ψ ∈ E and (M, w) |= ϕ } ∪ { ϕ¬ | ϕ/ψ ∈ E and (M, w) |= ¬ϕ };
O′ := { φ | φ ∈ O, φ /∈ Ew

∗
R and φ¬ /∈ Ew

∗
R }.

Ow := { φ | φ ∈ O′ and (M, w′) |= φ } ∪ { φ¬ | φ ∈ O′ and (M, w′) |= ¬φ }.
Then, according to the operations of the procedure Unf old(α), there must be some
atomic action αi (1 ≤ i ≤ n) such that Preαi = P ∪ Pw and Effαi = Ew ∪ Ow. In the
following paragraphs, we demonstrate (w,w′) ∈ T(αi) by the semantics of atomic
action definitions.

Firstly, it is obvious that (M, w) |= P ∪ Pw.
Secondly, for any concept name A which is primitive w.r.t. T , since {pI | A(p) ∈

Ew} ∩ {pI | ¬A(p) ∈ Ew} = A+
w ∩ A−

w = ∅, we have {pI | A(p) ∈ Ew ∪ Ow} ∩ {pI

| ¬A(p) ∈ Ew ∪ Ow} = ∅. In order to demonstrate AI(w′) = (AI(w) ∪ {pI | A(p) ∈
Ew ∪ Ow}) \ {pI | ¬A(p) ∈ Ew ∪ Ow}, there are two cases to be investigated for
each x ∈ �:

– x ∈ Iw
A. Then, since AI(w′) ∩ Iw

A = ((AI(w) ∪ A+
w) \ A−

w) ∩ Iw
A, we have x ∈ AI(w′)

if and only if x ∈ (AI(w)∪ { pI | A(p) ∈ Ew }) \ {pI | ¬A(p) ∈ Ew}. Now, we
demonstrate the equation from two directions.

– If x ∈ AI(w′), then we have x ∈ AI(w)∪ {pI | A(p) ∈ Ew} and x /∈ {pI |
¬A(p) ∈ Ew}. At the same time, it must be x /∈ {pI | ¬A(p) ∈ Ow}; oth-
erwise, according to the construction of the set Ow, we have x /∈ AI(w′) and
get a contradiction. Therefore, we have x ∈ (AI(w) ∪ {pI | A(p) ∈ Ew ∪ Ow}
) \ {pI | ¬A(p) ∈ Ew ∪ Ow}.

– If x ∈ (AI(w) ∪ {pI | A(p) ∈ Ew ∪ Ow} ) \ { pI | ¬A(p) ∈ Ew ∪ Ow}, then we
have x /∈ {pI | ¬A(p) ∈ Ew}, and either x ∈ AI(w) ∪ {pI | A(p) ∈ Ew} or x ∈
{pI | A(p) ∈ Ow}. In the case that x ∈ AI(w) ∪ {pI | A(p) ∈ Ew}, we have x ∈
(AI(w)∪ {pI | A(p) ∈ Ew}) \ {pI | ¬A(p) ∈ Ew} and therefore x ∈ AI(w′); in
the case that x ∈ {pI | A(p) ∈ Ow}, according to the construction of the set
Ow, we have also x ∈ AI(w′).
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– x /∈ Iw
A. Then, we have x ∈ {pI | A(p) ∈ O}, x /∈ {pI | A(p) ∈ Ew} and x /∈ {pI |

¬A(p) ∈ Ew}, and therefore there must be some individual name p0 such that
x = pI

0 and A(p0) ∈ O′. Now, we demonstrate the equation from two directions.

– If x ∈ AI(w′), then we have A(p0) ∈ Ow according to the construction of the
set Ow, and consequently x ∈ {pI | A(p) ∈ Ow}. At the same time, it must
be x /∈ {pI | ¬A(p) ∈ Ow}; otherwise, according to the construction of the
set Ow, we have x /∈ AI(w′) and get a contradiction. Therefore, we have x ∈
(AI(w) ∪ {pI | A(p) ∈ Ew ∪ Ow}) \ {pI | ¬A(p) ∈ Ew ∪ Ow}.

– If x ∈ (AI(w) ∪ {pI | A(p) ∈ Ew ∪ Ow}) \ {pI | ¬A(p) ∈ Ew ∪ Ow}, then we
have x /∈ {pI | ¬A(p) ∈ Ow} and consequently ¬A(p0) /∈ Ow. So, according
to the construction of the set Ow, we have A(p0) ∈ Ow and (M, w′) |= A(p0).
Therefore, we have x ∈ AI(w′).

Thirdly, be similar with the above demonstration on primitive concept names,
it can be proved that both {(pI, qI) | R(p, q) ∈ Effαi

∗
R } ∩ {(pI, qI) | ¬R(p, q) ∈

Effαi
∗
R } = ∅ and RI(w′) = (RI(w) ∪ {(pI, qI) | R(p, q) ∈ Effαi

∗
R }) \ {(pI, qI) | ¬R(p, q) ∈

Effαi
∗
R } for each role name R.

To sum up, we have (w,w′) ∈ T(αi) and consequently (w,w′) ∈ T(α1 ∪ ... ∪ αn).
(The Only-if direction) Let (w,w′) ∈ T(α1 ∪ ... ∪ αn). Then there must be some

atomic action αi (1 ≤ i ≤ n) with (w,w′) ∈ T(αi). Furthermore, during the execution
of the procedure Unf old(α), there must be some sets Pcond, Ai, Ei, Oi and Oi, j such
that:

– Pcond = {ϕ | ϕ/ψ ∈ E},
– Ai ⊆ Pcond ∪ {ϕ¬ | ϕ ∈ Pcond}, and it is either ϕ ∈ Ai or ϕ¬ ∈ Ai for every ϕ ∈ Pcond,
– Ei = {ψ | ϕ/ψ ∈ E and ϕ ∈ Ai },
– Oi = {φ | φ ∈ O, φ /∈ Ei

∗
R and φ¬ /∈ Ei

∗
R },

– Oi, j ⊆ Oi ∪ {φ¬ | φ ∈ Oi}, and it is either φ ∈ Oi, j or φ¬ ∈ Oi, j for every φ ∈ Oi,
– Preαi = P ∪ Ai, and Effαi = Ei ∪ Oi, j.

By the semantics of atomic action definitions, we have (M, w) |= P ∪ Ai, both {pI |
A(p) ∈ Ei ∪ Oi, j} ∩ {pI | ¬A(p) ∈ Ei ∪ Oi, j} = ∅ and AI(w′) = (AI(w) ∪ {pI | A(p) ∈
Ei ∪ Oi, j}) \ {pI | ¬A(p) ∈ Ei ∪ Oi, j} for each concept name A which is primitive
w.r.t. T , and both {(pI, qI) | R(p, q) ∈ Effαi

∗
R } ∩ {(pI, qI) | ¬R(p, q) ∈ Effαi

∗
R } = ∅

and RI(w′) = (RI(w) ∪ {(pI, qI) | R(p, q) ∈ Effαi
∗
R }) \ {(pI, qI) | ¬R(p, q) ∈ Effαi

∗
R } for

each role name R.
Let Ew := {ψ | ϕ/ψ ∈ E and (M, w) |= ϕ}. Then it is obvious that Ew = Ei. In the

following paragraphs, we demonstrate (w,w′) ∈ T(α) by the semantics of extended
atomic action definitions.

Firstly, it is straightforward that (M, w) |= P.
Secondly, let A be any concept name which is primitive w.r.t. T , and let

Iw
A := (�\ {pI | A(p) ∈ O}) ∪ {pI | A(p) ∈ Ew} ∪ {pI | ¬A(p) ∈ Ew}. Since {pI |

A(p) ∈ Ei ∪ Oi, j} ∩ {pI | ¬A(p) ∈ Ei ∪ Oi, j} = ∅, we have {pI | A(p) ∈ Ew} ∩ {pI |
¬A(p) ∈ Ew} = ∅. Now, we demonstrate the equation AI(w′) ∩ Iw

A = ((AI(w) ∪ {pI |
A(p) ∈ Ew}) \ {pI | ¬A(p) ∈ Ew}) ∩ Iw

A by investigating each individual x ∈ �:

– If x ∈ AI(w′) ∩ Iw
A, then we have both x ∈ AI(w′) and x ∈ Iw

A, and therefore x ∈
AI(w) ∪ {pI | A(p) ∈ Ei} ∪ {pI | A(p) ∈ Oi, j}, x /∈ {pI | ¬A(p) ∈ Ei}, and x /∈
{pI | ¬A(p) ∈ Oi, j}. Let’s assume that x /∈ AI(w) ∪ {pI | A(p) ∈ Ei}, then it must
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be x ∈ {pI | A(p) ∈ Oi, j}, and therefore we have x ∈ {pI | A(p) ∈ O} according
to the construction of the set Oi, j; at the same time, since x ∈ Iw

A and x /∈ {pI |
¬A(p) ∈ Ei}, we have x ∈ �\ {pI | A(p) ∈ O} and consequently x /∈ {pI | A(p) ∈
O}, and therefore get a contradiction. So, it must be x ∈ AI(w) ∪ {pI | A(p) ∈ Ei}.
Therefore, we have x ∈ ((AI(w) ∪ {pI | A(p) ∈ Ew}) \ {pI | ¬A(p) ∈ Ew}) ∩ Iw

A.
– If x ∈ ((AI(w) ∪ {pI | A(p) ∈ Ew}) \ {pI | ¬A(p) ∈ Ew}) ∩ Iw

A, then we have
x ∈ AI(w) ∪ {pI | A(p) ∈ Ew}, x /∈ {pI | ¬A(p) ∈ Ew} and x ∈ Iw

A. Let’s assume
that x ∈ {pI | ¬A(p) ∈ Oi, j}; then, according to the construction of the set Oi, j,
we have x ∈ {pI | A(p) ∈ O} and consequently x /∈ �\ {pI | A(p) ∈ O}; further-
more, since x ∈ Iw

A and x /∈ {pI | ¬A(p) ∈ Ew}, we have x ∈ {pI | A(p) ∈ Ew} and
consequently x ∈ {pI | ¬A(p) ∈ Oi, j} ∩ {pI | A(p) ∈ Ew}, which is contradictory
with the fact that {pI | A(p) ∈ Ei ∪ Oi, j} ∩ {pI | ¬A(p) ∈ Ei ∪ Oi, j} =
∅. So, it must be x /∈ {pI | ¬A(p) ∈ Oi, j}. Therefore, we have x ∈ (AI(w) ∪ {pI

| A(p) ∈ Ei ∪ Oi, j}) \ {pI | ¬A(p) ∈ Ei ∪ Oi, j} and consequently x ∈ AI(w′) ∩ Iw
A.

Thirdly, be similar with the above demonstration on primitive concept names, it
can be proved that both {(pI, qI) | R(p, q) ∈ Ew

∗
R } ∩ {(pI, qI) | ¬R(p, q) ∈ Ew

∗
R } =

∅ and RI(w′) ∩ Iw
R = ((RI(w) ∪ {(pI, qI) | R(p, q) ∈ Ew

∗
R }) \ {(pI, qI) | ¬R(p, q) ∈

Ew
∗
R }) ∩ Iw

R for each role name R, where Iw
R := ((� × �)\{(pI, qI) | R(p, q) ∈ O}) ∪

{(pI, qI) | R(p, q) ∈ Ew
∗
R } ∪ {(pI, qI) | ¬R(p, q) ∈ Ew

∗
R }.

To sum up, we have (w,w′) ∈ T(α). �


Lemma 9 Let α be an atomic action def ined by some extended atomic action
def inition α ≡ (P, O, E) w.r.t. an RBox R and a TBox T ; let α1 ∪ ... ∪ αn be the action
returned by the procedure Unf old(α); let AC be an ActBox in which each αi (1 ≤ i ≤ n)
is def ined by some atomic action def inition; and for each atomic action αi (1 ≤ i ≤ n),
let φi,1, ..., φi,ki be all the ABox assertions contained in Preαi . Then, for any model
M = (W, T, �, I) with M |= R , M |= T , M |=R ,T AC and M |=R ,T α ≡ (P, O, E), it
must be T(αi) = T( φi,1? ; ... ; φi,ki ? ; α ).

Proof For any states w,w′ ∈ W, we demonstrate that (w,w′) ∈ T(αi) if and only if
(w,w′) ∈ T(φi,1? ; ... ; φi,ki ? ; α).

(The If direction) Let (w,w′) ∈ T(φi,1? ; ... ; φi,ki ? ; α). Then we have (w,w) ∈
T(φi,1? ; ... ; φi,ki ?) and (w,w′) ∈ T(α). Therefore, we have (M, w) |= Conj(Preαi)

since Preαi = {φi,1, ..., φi,ki}. Furthermore, for any atomic action α j with 1 ≤ j ≤ n
and j �= i, by investigating the operations of the procedure Unf old(α), it is straight-
forward that the formula Conj(Preαi) ∧ Conj(Preα j) is unsatisfiable w.r.t. R and T ;
therefore, we have (M, w) |= ¬Conj(Preα j) and consequently (w,w′) /∈ T(α j). At the
same time, since (w,w′) ∈ T(α), we have (w,w′) ∈ T(α1 ∪ ... ∪ αn) by Lemma 8. So,
it must be (w,w′) ∈ T(αi).

(The Only-if direction) Let (w,w′) ∈ T(αi). Then, we have (w,w′) ∈ T(α1 ∪ ... ∪
αn), (M, w) |= Conj(Preαi) and consequently (w,w) ∈ T(φi,1? ; ... ; φi,ki ?). Therefore,
by Lemma 8, we have (w,w′) ∈ T(α) and consequently (w,w′) ∈ T(φi,1? ; ... ; φi,ki ? ;
α). �


Now, we can extend reasoning mechanisms discussed in previous sections to
support extended atomic action definitions.
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Firstly, we introduce the PE-consistency problem of extended atomic action
definitions.

Definition 19 An extended atomic action definition α ≡ (P, O, E) is PE-consistent
w.r.t. an RBox R and a TBox T if and only if there is a model M = (W, T, �, I)
and two states w,w′ ∈ W such that M |= R , M |= T , (M, w) |= P and (M, w′) |= {ψ |
ϕ/ψ ∈ E and (M, w) |= ϕ}.

With the help of the Unf old() procedure, the PE-consistency problem of extended
atomic action definitions can in fact be reduced to the PE-consistency problem of
atomic action definitions; i.e.:

Theorem 9 An extended atomic action def inition α ≡ (P, O, E) is PE-consistent
w.r.t. an RBox R and a TBox T if and only if the action returned by the procedure
Unf old(α) is not the atomic action β0 def ined by β0 ≡ ({ f alse},∅).

Secondly, we extend the ActBox of DDL(X@) to include extended atomic action
definitions; i.e., for each finite set AC of atomic action definitions and extended
atomic action definitions, if no action name occurs on the left-hand sides for more
than once, then call AC an ActBox of DDL(X@).

Correspondingly, the terms and notations related with ActBoxes should be ex-
tended. For example,

– an ActBox AC is called PE-consistent w.r.t. an RBox R and a TBox T if and only
if all the elements of AC are PE-consistent w.r.t. R and T ;

– an atomic action α is called defined in an ActBox AC if and only if α occurs on the
left-hand side of some element of AC .

Finally, by the following algorithm, we extend the satisfiability-checking algorithm
presented in Section 5 to support extended atomic action definitions.

Algorithm 2 Let AC be an ActBox which is PE-consistent w.r.t. an RBox R and a
TBox T . For any formula ϕ def ined w.r.t. AC , we decide whether it is satisf iable w.r.t.
R , T and AC according to the following steps:

1. Construct an (initially empty) set AC
′ of atomic action def initions.

2. Construct a formula ϕ′ := ϕ.
3. For every atomic action α occurring in ϕ′:

– if α is def ined by some atomic action def inition α ≡ (P, E) ∈ AC , then add
α ≡ (P, E) into the set AC

′;
– if α is def ined by some extended atomic action def inition α ≡ (P, O, E) ∈ AC ,

then do the following operations sequentially:

(a) call the procedure Unf old(α) and let β1 ∪ ... ∪ βn be the action returned
by it;

(b) add every atomic action def inition of βi (1 ≤ i ≤ n) into the set AC
′; and

(c) replace each occurrence of α in the formula ϕ′ by the action β1 ∪ ... ∪ βn.

4. If ϕ′ is satisf iable w.r.t. R , T and AC
′ according to Algorithm 1, then return

“TRUE”, else return “FALSE”.
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Based on Lemma 7 and Theorem 7, it is obvious that this algorithm terminates.
Furthermore, by Lemma 8, the following result is straightforward:

Theorem 10 Algorithm 2 returns “TRUE” if and only if the formula ϕ is satisf iable
w.r.t. R , T and AC .

In the following paragraphs, we investigate the complexity of Algorithm 2.
First of all, we extend the notation of size introduced in Section 5.2 to support

extended atomic action definitions; i.e., for each extended atomic action definition
α ≡ (P, O, E), its size is defined as |α ≡ (P, O, E)| = |α| +

∑
ϕ∈P

(|ϕ|) +
∑
φ∈O

(|φ|) +
∑

ϕ/ψ∈E
(|ϕ| + |ψ |) + 1.

Next, we investigate the complexity of the Unf old( ) procedure. Let α be an
atomic action defined by some extended atomic action definition α ≡ (P, O, E); and
let α1 ∪ ... ∪ αn be the action returned by the procedure Unf old(α). Then, according
to the proof of Lemma 7, it is obvious that the size |α1 ∪ ... ∪ αn| is linearly bounded
by |α| × 2�O × 2�E. Furthermore, based on the result presented in Theorem 1, it is
straightforward to show that, for the family DDL(X@) of dynamic description logics,
the complexity upper-bound of the Unf old( ) procedure is EXPTIME if X ∈ {ALCO,
ALCHO, ALCOQ , ALCHOQ , ALCOI , ALCHOI }, and is NEXPTIME if X ∈ {ALCOIQ ,
ALCHOIQ }.

Based on the above results, it is obvious that the complexity upper-bound of
Algorithm 2 is dependent on Step 4 of the algorithm.

Now, suppose Algorithm 1 is called by Step 4 to decide whether the formula ϕ′
is satisfiable w.r.t. R , T and AC

′. Let mO (resp. mE) be the maximal one among �O
(resp. �E) for every extended atomic action definition α ≡ (P, O, E) ∈ AC . Then, it
is obvious that the size |ϕ′| is linearly bounded by |ϕ| × 2mO × 2mE , and the size |AC

′|
is linearly bounded by |AC | × 2mO × 2mE . Therefore, it seems that the complexity of
Algorithm 2 will be increased exponentially. But in fact, it is not the case.

Let f := |nf (ϕ′)|, c:= �clR (ϕ′), a:= �AssR (ϕ′) and e:= �Ef fR (ϕ′), where the sets
clR (ϕ′), AssR (ϕ′) and Ef fR (ϕ′) are constructed according to the definitions presented
in Section 5.2. Let m be the maximal one among |ψ | for every ψ ∈ AssR (ϕ′). Then,
according to the proof of Theorem 7, the complexity of Algorithm 1 is determined by
the integers c, a, e and m, where the numbers c, a and e are linearly bounded by
f× |R |, and the number m is bounded by f . At the same time, the number f is
linearly bounded by |ϕ| × 2mO × 2mE × |AC |.

In Algorithm 2, the number c is still linearly bounded by f× |R | and consequently
linearly bounded by |ϕ| × 2mO × 2mE × |AC | × |R |. However, for the integers a, e
and m, we can find some better upper bounds for them, and the exponential increase
caused by the size of ϕ′ can be avoided.

Firstly, let α1, ..., αn be all the different atomic actions occurring in ϕ. For each αi

(1 ≤ i ≤ n), let E′
αi

:= Ei if αi is defined by some atomic action definition αi ≡ (Pi, Ei),
and let E′

αi
:= Oi ∪ {ψ | ϕ/ψ ∈ Ei} if αi is defined by some extended atomic action

definition αi ≡ (Pi, Oi, Ei). Based on these notations, construct a set Ef f ex
R (ϕ) as

follows:

Ef f ex
R (ϕ) := E′

α1

∗
R ∪ ... ∪ E′

αn

∗
R .
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Then, it is obvious that �Ef f ex
R (ϕ) is linearly bounded by |AC | × |R |. Furthermore,

we have Ef fR (ϕ′) ⊆ Ef f ex
R (ϕ). Therefore, the number e is linearly bounded by

|AC | × |R |.
Secondly, for any formula or action X, we use Assex(X) to denote an ABox

defined inductively as follows:

– Assex(X) = {X, X¬} if X is a concept assertion or a role assertion;
– Assex(X) = Assex(ψ) if X is a formula of the form ¬ψ ;
– Assex(X) = Assex(π) ∪ Assex(ψ) if X is a formula of the form < π > ψ or [π ]ψ ;
– Assex(X) = Assex(ψ1) ∪ Assex(ψ2) if X is a formula of the form ψ1 ∨ ψ2 or ψ1 ∧

ψ2;
– Assex(X) =

⋃
ϕ∈P

Assex(ϕ) ∪ ⋃
φ∈E

Assex(φ) if X is an atomic action defined by some

atomic action definition X ≡ (P, E);
– Assex(X) =

⋃
ϕ∈P

Assex(ϕ) ∪ ⋃
φ∈O

Assex(φ) ∪ ⋃
ϕ/ψ∈E

(Assex(ϕ) ∪ Assex(ψ)) if X is an

atomic action defined by some extended atomic action definition X ≡ (P, O, E);
– Assex(X) = Assex(ϕ) if X is an action of the form ϕ?;
– Assex(X) = Assex(π1) ∪ Assex(π2) if X is an action of the form π1 ∪ π2 or π1; π2;
– Assex(X) = Assex(π1) if X is an action of the form π∗

1 .

Furthermore, let Assex
R (X) be the closure of Assex(X) w.r.t. R . Then, it is obvious

that �Assex
R (ϕ) is linearly bounded by (|ϕ| + |AC |) × |R |. Furthermore, we have

AssR (ϕ′) ⊆ Assex
R (ϕ). Therefore, the number a is linearly bounded by

(|ϕ| + |AC |) × |R |.
Finally, Let mex be the maximal one among |ψ | for every ψ ∈ Assex

R (ϕ). Then, it
is obvious that m ≤ mex and mex is linearly bounded by |ϕ| + |AC |. Therefore, the
number m is linearly bounded by |ϕ| + |AC |.

According to the proof of Theorem 7, during the execution of Algorithm 1, the
number of branches which will be generated is finite. Furthermore, for each branch
B generated by the algorithm, the number of prefixed formulas contained in it is
bounded by (2e − 1) × c + ( c + a × (2e − 1) ); the number of elements contained
in the ABox IVB is bounded by a × 2e; and there exist some polynomials p1 and p2

such that |IVB | ≤ (a × 2e) × (m × 2p1(|T |) × (p2(e))m+|T |). Therefore, to sum up, we
can get the following result on the complexity upper-bounds of Algorithm 2.

Theorem 11 For the family DDL(X@) of dynamic description logics, the complexity
upper-bound of Algorithm 2 is EXPSPACE if X ∈ {ALCO, ALCHO, ALCOQ , ALCHOQ },
and is N2EXPTIME if X ∈ {ALCOI , ALCHOI , ALCOIQ , ALCHOIQ }.

We conclude this section with the result that both the domain constraints and the
actions described by Baader et al.’s formalism [4] are now supported by DDL(X@).

7 Related Works

We have proposed a family of dynamic description logics for representing and
reasoning about actions. Related works are organized as six groups.
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7.1 Representing and Reasoning About Actions with Description Logics

The idea of adopting description logics for representing and reasoning about actions
is not new. Two typical formalisms based on this idea are the RAT (Representation
of Actions using Terminological logics) system [20] and the CLASP (CLassification
of Scenarios and Plans) system [11]. In both systems, world states are represented
as concept expressions of description logics; atomic actions are described in the
STRIPS style [13] with pre-conditions, add-lists and delete-lists; and each finite
sequence of atomic actions is treated as a plan individual. Moreover, the CLASP
system introduces the notation of plan concepts. It defines each plan concept as a
triple composed of INITIAL state, GOAL state and PLAN-EXPRESSION, where
each PLAN-EXPRESSION is constructed from atomic actions with the help of the
SEQUENCE, LOOP, REPEAT, TEST, OR, and SUBPLAN constructors. Based on
standard reasoning mechanisms of description logics (and with the help of the finite
automaton theory), reasoning tasks on actions and plans can be effectively carried
out. A limitation of these two formalisms is that they work with the Closed World
Assumption (CWA), and therefore require complete knowledge about the problem
to be given.

Compared with the above systems, our formalism describes the world states and
the pre- and post-conditions of atomic actions with ABox assertions; therefore,
actions in our formalism are in fact represented “over” description logics. Moreover,
the Open World Assumption (OWA) adopted in description logics is preserved in
the satisfiability-checking algorithm of DDL(X@), so that all the reasoning tasks
introduced in our formalism can be carried out with incomplete knowledge about
the world.

7.2 Reasoning About Actions with Temporal Description Logics

Based on a combination of interval-based temporal logics and feature description
logics, Artale and Franconi [2] proposed a class of temporal description logics for
reasoning about actions. With these logics, not only the world states but also the
actions and the plans are represented as concepts. Each state describes a collection
of properties of the world holding at certain time; each action is represented through
temporal constraints on states, by describing what is true while the action itself is
occurring; and each plan is constructed by temporally relating actions and states.
Artale et al. provided sound and complete algorithms for deciding the subsumption
relationship between concepts. Based on these algorithms, many reasoning tasks on
actions and plans can be effectively carried out, such as deciding the subsumption
between plans and deciding the instance relationship between individual plans and
plan types.

Compared with Artale et al.’s formalisms, our work is characterized by integrating
dynamic logics with description logics. Therefore, on the one hand, many complex
temporal properties which are captured by Artale et al.’s formalisms can’t be
represented with our formalism; on the other hand, many complex control structures
on actions that are supported by our formalism can’t be described by Artale et al.’s
formalisms. Additionally, the reasoning tasks investigated by Artale et al. are the
action/plan taxonomy problem and the problem of recognizing plans with respect
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to plan descriptions; our formalism, however, focus on the realizability problem, the
executability problem and the projection problem of actions.

7.3 Action Formalisms Constructed Over Description Logics

A formalism in which actions are represented over description logics was firstly
proposed by Lutz and Sattler [26]. In their formalism, each action was described
as a triple consisting of a finite set of pre-conditions, a finite set of relaxations, and a
finite set of conditional post-conditions, where each condition was an ABox assertion
or an extended assertion of the form ∀C. Taking each finite sequence of actions as
a service, inference problems such as the realizability of services, the subsumption
between services and the projection problems were introduced. However, reasoning
mechanisms for these inference problems were not provided.

A realizable action formalism constructed over description logics was presented
by Baader et al. [4]. Based on this formalism, Liu et al. [24] investigated the
ramification problem induced by general concept inclusions in the case that general
TBoxes was incorporated; and Miličić [30] investigated the planning problem.

As discussed in the Introduction, a limitation of the above works is that they do
not support complex control structures of actions. This limitation is overcome in our
formalism by combining Baader et al.’s formalism with the propositional dynamic
logic PDL.

7.4 DL-Based Restrictions of Classical Action Formalisms

Inspired by Baader et al.’s action formalism, Gu and Soutchanski [19] proposed a
modified version of the Situation Calculus [36]. The modification is embodied in two
aspects. Firstly, the first-order logic used in the Situation Calculus is restricted to be
the C2 logic [17, 34], so that the executability problem and the projection problem on
actions are guaranteed to be decidable. Secondly, based on the fact that the C2 logic
and the description logic ALCQI (
,�, ¬, |, id) are equally expressive, the RBoxes and
TBoxes of description logics are included explicitly in the action theory of Situation
Calculus

With a similar motivation, Drescher and Thielscher [12] proposed to use ABoxes
of description logics as decidable state descriptions in the basic Fluent Calculus.

Both Gu et al.’s work [19] and Drescher et al.’s work [12] can be treated as DL-
based restrictions of classical action formalisms constructed over first- or higher-
order logics. However, our work can be viewed as a DL-based extension of the
action formalism constructed over propositional dynamic logics [9]. From the point of
knowledge representation and reasoning, a feature of DDL(X@) is that properties
on actions can be explicitly stated by formulas, and consequently many inference
problems on actions can be reduced to the satisfiability problem of DDL(X@)-
formulas.

7.5 Dynamic Extensions of Description Logics

A dynamic description logic named PDLC was constructed by Wolter et al. [43] as a
combination of the propositional dynamic logic PDL and the description logic ALC .
A feature of PDLC is that actions are used as model operators for constructing
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not only the formulas but also the concepts. Therefore, concepts with dynamic
meanings can be described by PDLC. For example, a concept Easy_cured_child can
be specified by the following concept definition:

Easy_cured_child ≡ Child ∧ ∃has.Angina

∧ < (give_honey ∪ give_aspirin)∗ > ¬∃has.Angina,

which refers to the children suffering from angina that can be cured by using honey
and aspirin [43]. Wolter et al. demonstrated that the logic PDLC was still decidable;
but the complexity of the decision problem and the development of efficient decision
algorithms were left as open problems.

Compared with Wolter et al’s work, the motivation of our work is to provide a
kind of action formalisms for describing and reasoning about actions. Therefore,
on the one hand, actions are not used as model operators for the construction
of DDL(X@)-concepts. On the other hand, an action formalism constructed over
description logics is incorporated in DDL(X@); with this action formalism, each
atomic action in DDL(X@) is further specified by an atomic action definition or
an extended atomic action definition, and is interpreted according to the minimal-
change semantics [8, 38].

7.6 Updating Description Logic ABoxes

Taking ABoxes of description logics as a tool for describing the state of affairs in an
application domain, Liu et al. [23] proposed a theory for updating ABoxes. In that
theory, the initial state of an application domain was described by an ABox A of
some description logic of the ALCQIO family; the update was specified by a restricted
ABox U which was composed of primitive literals; and the semantics of updating
A with U was defined according to the minimal-change semantics. Liu et al. firstly
demonstrated that both the nominals and the “@” constructor were necessary for
a description logic to represent the updated ABoxes. Then, based on a technically
designed procedure for constructing updated concept CU w.r.t. any concept C and
any update U, Liu et al. provided algorithms for computing updated ABoxes; the
complexity of these algorithms were also investigated.

In our formalism, the regression operator CRegress(ε,T ) presented in Section 5 is in
fact an inverse operator of Liu et al’s process for constructing the updated concept
C′U . For any prefix σ.ε introduced in our satisfiability-checking algorithm, the set
ε is used to record the accumulated post-conditions for the sequential action σ .
Therefore, the set ε in our regression operator can be treated as the update U in
Liu et al.’s theory; the concept C can be treated as an updated concept C′U for some
concept C′; and the target of the regression operator CRegress(ε,T ) is just to compute
the concept C′.

8 Conclusion

In this paper we constructed a family of dynamic description logics named
DDL(X@), where X represents well-studied description logics ranging from the
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ALCO to the ALCHOIQ , and X@ denotes the extension of X with the @ constructor.
As a combination of the description logic X@, the propositional dynamic logic
PDL and an action formalism proposed by Baader et al. [4], the logic DDL(X@)

offers considerable expressive power for the description of actions. We also de-
veloped a tableau algorithm for deciding the satisfiability of DDL(X@)-formulas.
Based on this algorithm, reasoning tasks on actions, such as the realizability prob-
lem, the executability problem and the projection problem, can all be effectively
carried out.

The logic DDL(X@) provides an approach to bring the power and character of
description logics into the description and reasoning of dynamic application domains.
One of our future work is to study the planning problem based on DDL(X@). An-
other work is to represent and reason about semantic Web services with DDL(X@).
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