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Abstract Since the 1980s, two approaches have been developed for analyzing secu-
rity protocols. One of the approaches relies on a computational model that considers
issues of complexity and probability. This approach captures a strong notion of
security, guaranteed against all probabilistic polynomial-time attacks. The other
approach relies on a symbolic model of protocol executions in which cryptographic
primitives are treated as black boxes. Since the seminal work of Dolev and Yao, it
has been realized that this latter approach enables significantly simpler and often
automated proofs. However, the guarantees that it offers with respect to the more
detailed computational models have been quite unclear. For more than 20 years
the two approaches have coexisted but evolved mostly independently. Recently,
significant research efforts attempt to develop paradigms for cryptographic systems
analysis that combines the best of both worlds. There are two broad directions that
have been followed. Computational soundness aims to establish sufficient conditions
under which results obtained using symbolic models imply security under computa-
tional models. The direct approach aims to apply the principles and the techniques
developed in the context of symbolic models directly to computational ones. In this
paper we survey existing results along both of these directions. Our goal is to provide
a rather complete summary that could act as a quick reference for researchers who
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want to contribute to the field, want to make use of existing results, or just want to
get a better picture of what results already exist.

Keywords Symbolic methods · Computational analysis · Cryptography ·
Security protocol

1 Introduction

Background Security protocols are short distributed programs designed to achieve
various security goals, such as data privacy and data authenticity, even when the
communication between parties takes place over channels controlled by an attacker.
Their ubiquitous presence in many important applications makes designing and
establishing the security of cryptographic protocols a very important research goal.
Two distinct approaches that have evolved starting with the early 1980s attempt to
ground security analysis of protocols on firm, rigorous mathematical foundations.
These two approaches are known as the computational (or the cryptographic) ap-
proach and the symbolic (or the Dolev–Yao, or the formal methods) approach. Each
approach relies on mathematical models for the executions of protocols/primitives in
adversarial environments, formally define security properties expected from crypto-
graphic systems, and develop methods for rigorously proving that given constructions
meet these requirements.

The central features of the computational approach are detailed, bit-level models
for system executions and a powerful adversary: security is assessed against arbitrary
probabilistic polynomial time machines. It is generally acknowledged that security
proofs in this model offer powerful security guarantees. A serious downside of this
approach however is that proofs for even moderately-sized protocols are usually
long, difficult, tedious, and highly error prone.

In contrast, symbolic methods employ a highly abstract view of the execution
where the messages exchanged by parties are symbolic terms. Furthermore, primi-
tives are assumed absolutely secure, which in turn leads to severe restrictions on
the power of the adversary. For instance, it is postulated the plaintext underlying a
ciphertext can only be recovered if the adversary has or can derive the appropriate
decryption key. The resulting models are considerably simpler than those of the com-
putational approach, proofs are therefore also simpler, and can sometimes benefit
from machine support. An important problem with this approach is that the high
level of abstraction renders unclear the security guarantees that this approach offers.

A recent synergy Due perhaps to the widely different set of tools and techniques,
the two approaches have coexisted and developed independently for many years.
The lack of interaction between the two communities also meant that the relation
between models, security results and guarantees using the two approaches was only
superficially understood. Abadi and Rogaway were the first to demonstrate that
establishing close relations between the models is not only possible, but also that
it holds significant promise. Through their work it became clear that it is possible to
employ the tools and methods specific to the symbolic approach to directly obtain
computational security guarantees. The crucial implication is that such guarantees
can be obtained without making use of the typical computational proofs. This
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realization motivated a significant amount of follow-up work. We now know of
several different approaches that leverage on technologies specific to the symbolic
approach to simplify, avoid, or simply improve the rigorousness of computational
proofs. The aim of this paper is to survey the plethora of papers that tackle this
problem and briefly summarize their contribution. We hope that this survey will help
researchers working in this field to get a better picture of all the different results. In
addition, this survey should act as a fast reference for those researchers who want to
enter the field or want to make use of existing results.

This survey Existing results that span the gap between computational and symbolic
security fall along two general directions. The first approach is known as the
“computational soundness” approach. Here, the idea is to show that under certain
conditions symbolic models are sound abstractions of cryptographic models, w.r.t.
certain security properties. The second direction is called the “direct approach”.
In this line of research symbolic methods are applied directly to computational
models. Although we survey both of these directions, we place more emphasis on
computational soundness. This line of research is the “older” of the two, and had
received significantly more attention. Next we describe the structure of our paper.

Computational soundness Research on computational soundness was initiated by
Abadi and Rogaway [8]. They considered the case of a passive adversary that
eavesdrops on communication between honest parties. The basic question that they
answer is under which conditions messages that are equivalent symbolically are also
equivalent computationally. The setting they consider only uses symmetric encryp-
tion. Follow-up work treats variations of this questions with respect to different
notions of symbolic equivalence, different sets of primitives, slightly more powerful
adversaries, and within the context of particular applications. We describe the results
for the passive adversary case in Section 2.

In Section 3 we survey results on computational soundness in the presence of
active adversaries. These are adversaries who have absolute control over the commu-
nication network, and who may actively interfere with the execution of the protocol.
There are two main approaches and a few variations and generalizations that we
discuss. All of these are based on faithfulness results that show deep connections
between computational and symbolic executions of protocols: essentially, assuming
appropriately strong secure implementations, the actions of a computational adver-
sary do not go beyond those of a symbolic one. One set of results that we describe
in Sections 3.1 and 3.2 are based on so-called trace mapping lemmas. Such lemmas
state that each computational execution trace is the image of a symbolic execution.
Using trace mapping, certain security properties proved using symbolic models find
immediate translation in computational ones. A recent result described in Section 3.3
goes even further: not only traces can be transferred but it is shown that whenever
two symbolic processes are observationally equivalent then the corresponding com-
putational processes are computationally indistinguishable. This extends the scope
of such results to an even larger set of security properties.

A second important direction uses the concept of simulatability. Roughly speak-
ing, in such settings security is defined by relating a real system with an idealized
version of the same system. The idea is to show that for any attack against the real
system there exists an analogous attack against the idealized one. Since the ideal
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system is secure by construction it follows that no attack is possible against the real
system. The desired connection between symbolic and computational models can
therefore be obtained by showing a simulatability relation between an idealized,
symbolic cryptographic system and a real, cryptographic implementation of such a

Table 1 Summary of the results of symbolic methods for computational security proofs

Security proof in symbolic models implies proof in computational ones
Passive adversary Active adversary

Soundness of pattern equivalence Soundness of trace-based properties
– Symmetric encryption [8] – Public key encryption [95]
– Completeness result [71, 93, 94] – with signatures [55, 72]
– Public key encryption [69, 70] – with hash functions [53, 73]
– Symmetric encryption with composed – Non-malleable commitment [62]

keys [84] – Zero-knowledge proofs [46]
– Handling key cycles [1, 79] Soundness of indistinguishability-based properties
– Key dependent message [20] – Nonce indistinguishability for public key
– Information-theoretic security [2] encryption and signatures [55]
– Hash functions [67] and – Nonce indistinguishability for public key

completeness [68] encryption and hash [53, 72]
– Modular exponentiation [28] and – Soundness of observational equivalence

bilinear pairings [76, 89] for symmetric encryption [54]
– Offline guessing attacks [3] A universally composable cryptographic library
– Cryptographically controlled access – Public key encryption and signatures [40]

to XML [11, 12] – MACs [41]
– Adaptive adversary [75] – Symmetric encryption [34]

Soundness of static equivalence –Nonce indistinguishability [36]
– Framework and application to ciphers, – Impossibility results for XOR [35]

lists and, xor [15, 16] and hash functions [42]
– Offline guessing attacks [10] – Key dependent message security [39]
– Formal indistinguishability relations [30] – Case studies of protocols
– Adaptive adversary [90] [13, 14, 18, 29, 32, 33, 37]

Soundness of secure information flow – Towards automated proofs
– Static analysis; symmetric encryption [78, 80] [23, 51, 82, 101–103]
– Type system; symmetric encryption

[50, 88, 100]
– Cryptographically masked flows [83]

Computational security proof using formal methods
Computationally sound proof systems Automated computational proofs

Protocol Composition Logic CryptoVerif
– Public key encryption [57] – Secrecy properties [25, 27]
– Key usability [59] – Correspondence assertions [26]
– Indistinguishability and key usability [96, 97] – Case study of Kerberos [22]
– Diffie-Hellman exponentiation [65, 66] Security of the primitives

Static analysis – Formalization the random oracle
– Symmetric encryption [81] model in Coq [17]
– with signatures [87] – Asymmetric encryption schemes [49]

Computationally sound implementations of high level languages
– Process calculus with signatures [5]
– Process calculus with secure channels [4]
– Language with information flow policies [61]
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system. In Section 3.4 we give some background regarding the general notion of
simulatability. Then, in Section 3.5, we describe how simulatability had been applied
in the context of a cryptographic library. In the same section we describe various
applications of the simulatable cryptographic library.

The direct approach In the remaining sections we describe a different direction
for getting “the best of both worlds”. These approaches aim at applying symbolic
techniques directly to obtain computational security guarantees, without making use
of abstract models.

One direction that we describe in Section 4 is to design logics with semantics given
in terms of computational models. Proofs can then be carried out using well-designed
proof rules which are shown to be computationally sound. Such a logic is obviously
not complete and there might be security properties which hold but cannot be proven
using the axioms of the logic. Nevertheless, the proof rules turn out to be powerful
enough to allow proofs of a large range of properties and protocols. In the same
section we describe work on a type system which ensures computational security.
Then, in Section 5 we discuss a second technique which consists in introducing sym-
bolic calculi that can be (provably) securely implemented at the cryptographic level.
These symbolic calculi do not make explicit use of cryptography but provide high-
level constructs such as confidential and authentic channels which are implemented
using a secure cryptographic protocol. Finally, in Section 6 we discuss work using
proof assistants for cryptographic proofs. We describe work that relies on the general
purpose proof assistant Coq which mainly checks the correctness of the proof as well
as work on the special purpose tool CryptoVerif which moreover achieves a high
level of automation. Concluding remarks can be found in Section 7.

The survey is summarized in Table 1. This table gives a convenient overview of
the paper with references to the results that are included in this survey.

2 Computational Soundness: the Passive Adversary Case

The most basic setting for computational soundness is that of passive adversaries
who can only observe the network traffic but cannot interfere with the execution of
the protocol. This is the setting considered in seminal result of Abadi and Rogaway
who were the first to show that links between symbolic and computational models
can be established [8, 9]. We give the details of their work in Section 2.1 and survey
the many extensions that followed in Section 2.2. We also discuss results regarding a
slightly more powerfull adaptive adversary who is allowed to adaptively choose the
sequence of symbolic terms.

2.1 The Abadi–Rogaway Result

The result of Abadi and Rogaway shows that if a symbolic notion of secrecy of
data that occurs in a message is satisfied, then a computational notion is also satis-
fied [8, 9]. Their result holds for a class of messages constructed as in the following
section.

Formal expressions and equivalence On the formal side, one considers a simple
grammar for expressions. The expressions consider two base types for keys and
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Booleans which are taken from two disjoint sets Keys and Bool. Keys and Booleans
can be paired and encrypted.

M, N ::= expressions
K key (K ∈ Keys)
i bit (i ∈ Bool)
〈M, N〉 pair
{M}K encryption (K ∈ Keys)

For example the formal expression 〈K1, {〈0, K2〉}K1〉 represents a pair: the first com-
ponent of this pair is the key K1, the second, the encryption with key K1 of the pair
consisting of the boolean constant 0 and the key K2.

Before defining the equivalence relation between terms we first need to define the
deducibility relation �. Intuitively, M � N, if the adversary can learn the expression
N from the expression M. Formally, � is the smallest relation, such that

M � M M � 0 M � 1
if M � N1 and M � N2 then M � 〈N1, N2〉
if M � 〈N1, N2〉 then M � N1 and M � N2

if M � {N}K and M � K then M � N
if M � N and M � K then M � {N}K

For example, if M = 〈K1, {〈0, K2〉}K1〉, then we have that M � K2. Moreover, M � 1,
as the constants 0 and 1 are always known to the attacker.

The equivalence relation between terms is based on the equality of the patterns
associated to each term. A pattern represents the adversary’s view of a term. Patterns
extend the grammar defining terms by the special symbol �. The pattern of a term
replaces encryptions for which the key cannot be deduced by �. This idea is formally
captured by the following function p. The function takes as arguments a term and a
set T of keys and is defined inductively as follows.

p(K, T) = K (K ∈ Keys)
p(i, T) = i (i ∈ Bool)

p(〈M, N〉, T) = 〈p(M, T), p(N, T)〉
p({M}K, T) =

{ {p(M, T)}K if K ∈ T
� else

The pattern of an expression M is defined by

pattern(M) = p(M, {K ∈ Keys | M � K}).
For instance pattern(〈K1, {〈0, {1}K2〉}K1〉) = 〈K1, {〈0,�〉}K1〉.

Furthermore, expressions M and N are formally indistinguishable, written M ≡ N
if and only if pattern(M) = pattern(N)σ , where σ is a bijective renaming of keys. For
example, we have that 0 �≡ 1, K0 ≡ K1, {0}K1 ≡ {1}K0 and 〈K0, K0〉 �≡ 〈K0, K1〉.

Computational setting and hypotheses on the implementation In the computational
setting, one reasons at the level of bitstrings and algorithms executed on Turing
Machines, rather than on abstract terms. Expressions are interpreted as bitstrings
by instantiating each of the symbolic operations (including the constants) via appro-
priate algorithms. In particular we assume a computational pairing function that
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takes as input two bitstrings m1 and m2 and outputs their concatenation 〈m1, m2〉. The
function is such that m1 and m2 are easily extractable from 〈m1, m2〉. Furthermore,
we use a concrete encryption scheme, which is a triple of polynomial time algorithms
K, E,D for key generation, encryption and decryption respectively. The key gen-
eration algorithm is parameterized by a security, or complexity parameter η ∈ 1∗.
Intuitively, η defines the key length. As expected we require that Dk(Ek(m, r)) = m
for any k ∈ K(η), message m, and random bitstring r (that represents the coins of the
probabilistic encryption algorithm).

The Abadi–Rogaway result relies on a security notion for encryption schemes
termed “type-0” in the original paper [8]. Here, we call schemes that satisfy this
notion, which we recall bellow, simply secure. Informally, secure schemes hide all
information about encrypted plaintexts (including their length) and hide all infor-
mation about the encryption key. This notion is significantly stronger than more
standard ones which allow for ciphertexts to reveal the length of the underlying
plaintext as well as partial information about the encryption key. The stronger
assumption is used for simplicity as the Abadi–Rogaway framework can be further
refined to only rely on the more standard notions.

An encryption scheme is secure if for any security parameter η and any probabilis-
tic polynomial time Turing machine A (the adversary) the advantage

Adv(A) = Pr
[
k, k′ R←− K(η) : AEk(·),Ek′ (·)(η) = 1

]
− Pr

[
k

R←− K(η) : AEk(0),Ek(0)(η) = 1
]

is a negligible function of η. Here, x
R←− D denotes the random sampling of an element

of distribution D and AO is the Turing Machine A that has access to a set of oracles
O. Intuitively, one requires that an adversary cannot distinguish the case where he
is given two encryption oracles encrypting with two different keys from the case
where he is given twice the same encryption oracle always encrypting the constant
bitstring representing 0 with the same key. Note that this security under this notion
implies that encryption needs to be randomized, so that an adversary does not see
identical answers when confronted with the second pair of (identical) oracles. In
[9], the authors provide constructions for such schemes from standard cryptographic
assumption.

A recurrent theme in computational soundness is that of acyclic expressions. The
reason is that an encryption scheme respecting the above security definition may be
insecure as soon as the adversary is given a key cycle. We say that a key K1 encrypts a
key K2 in a formal expression M if M contains a subexpression {N}K1 and K2 occurs
in N. In this way any expression M defines a binary relation encrypts on keys. We
say that an expression contains a key cycle if and only if the corresponding encrypts
relation is cyclic. For instance M1 = {K}K contains a key cycle as K encrypts K. In
M2 = {{K1}K2}K3 we have that K3 encrypts K1, K3 encrypts K2 and K2 encrypts
K1 and hence M2 does not contain any key cycle. In Abadi and Rogaway’s main
result, key cycles are therefore forbidden. Similar conditions can be found in most
soundness results. To better understand the problem of key cycles suppose that SE =
(KG, E,D) is a secure encryption scheme and let SE ′ = (KG ′, E ′,D′) be defined as
follows:

KG ′ = KG, E ′
k(m, r) =

{
Ek(m, r) if m �= k
〈const, k〉 if m = k

, D′
k(c) =

{
Dk(c) if c �= 〈const, k〉
k if c = 〈const, k〉
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where const is a constant such that for any key k, the concatenation const · k does
not belong to the set of possible ciphertexts obtained by E . Obviously, if the attacker
is given a key cycle of length 1, e.g., E ′

k(k, r), the attacker directly learns the key. It is
also easy to see that SE ′ is a secure encryption scheme as it behaves as SE in nearly
all cases (in the security experiment the adversary can make a query for encrypting
k with itself only with negligible probability).

The notion of computational indistinguishability requires that an adversary cannot
distinguish two (families of) distributions, with better than negligible probability. Let
D = {Dη} and D′ = {D′

η} be two families of probability distributions. D and D′ are
computationally indistinguishable, written D ≈ D′ if for any η and any probabilistic
polynomial time Turing machine A, the advantage

Adv(A) = Pr
[
x

R←− Dη : A(η, x) = 1
] − Pr

[
x

R←− D′
η : A(η, x) = 1

]

is a negligible function of η.

Interpretation of formal expressions and soundness result The Abadi–Rogaway
result links the notion of pattern equivalence on expressions defined in the previous
section with an appropriate notion of computational equivalence defined on distribu-
tions. These distributions are associated to expressions using the following algorithms
that convert formal expressions into bitstrings.

Bitstrings are tagged using types “key”, “bool”, “pair” and “ciphertext”. The
Initialize procedure uses K to generate actual keys for each of the key symbols
that occurs in M (that is for each key K ∈ Keys(M)). Then, then Convert procedure
implements encryption using algorithm E .

Initializeη(M)

for K ∈ Keys(M) do τ(K)
R←− K(η)

Convert(M)

if M = K (K ∈ Keys) then
return 〈τ(K),“key”〉

if M = b (b ∈ Bool) then
return 〈b,“bool”〉

if M = 〈M1, M2〉 then
return 〈〈Convert(M1), Convert(M2)〉, “pair”〉

if M = {M1}K then

x
R←− Convert(M1)

y
R←− Eτ(K)(x)

return 〈y, “ciphertext”〉

The Initialize and Convert procedures associate to a formal term M a family of
probability distributions [[M]] = {[[M]]η}.

Abadi and Rogaway’s main result is that for any formal expressions M and N
that do not contain key cycles, whenever the computational interpretation of the
terms uses a secure encryption scheme (as defined above), then M ≡ N implies that
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[[M]] ≈ [[N]]. In other words, they show that pattern-based equivalence is a sound
abstraction of cryptographic indistinguishability.

2.2 Extensions of the Abadi–Rogaway Result

The initial result of Abadi and Rogaway has given rise to many extensions. Some
of these extensions consider the question of completeness of their logic. Other
extensions consider different implementations of encryption (with variants of the
initial patterns) as well as other cryptographic primitives.

Completeness of the Abadi–Rogaway logic In [93, 94], Micciancio and Warinschi
show that the Abadi–Rogaway logic is not complete as presented in the original
paper. Here, by completeness we mean that M �≡ N implies that [[M]] �≈ [[N]], i.e.,
whenever two formal expressions are not equivalent, then the computational inter-
pretation of these two messages should be distinguishable. Micciancio and Warinschi
exhibit a counter-example by constructing a secure encryption scheme and two
symbolic expressions that are not symbolically equivalent, which yet give rise to
indistinguishable probability distribution ensembles.

They show that completeness can be recovered by implementing encryption with
a scheme that is authenticated. Informally, an encryption scheme is authenticated if
an adversary cannot produce a valid ciphertext different from ciphertexts honestly
produced by the parties that posses the encryption key. Gligor and Horvitz [71]
further refine this completeness result. They introduce a new security criterion for
encryption schemes, weak key-authenticity test for expressions (WKA-EXP), which
is strictly weaker than authenticated encryption. WKA-EXP is both sufficient and
necessary for completeness.

Public-key encryption In [69, 70], Herzog shows a similar result as Abadi and
Rogaway, but for public-key encryption. Patterns are generalized in the expected
way for expressions that use public-key encryption. The problem of key-cycles also
persists in this setting. To define a key-cycle of an expression M in the public-key
setting one constructs a graph GM: the set of vertices is the set of public/private
key pairs {(pub K1, privK1), . . . , (pub Kn, privKn)}; there exists an edge from
(pub Ki, privKi) to (pub Kj, privKj) if pub Ki encrypts privKj in M. M has no key-
cycle if GM is acyclic. Herzog presents a soundness theorem, similar to the one
of Abadi and Rogaway, whenever the encryption scheme used for the computa-
tional interpretation provides indistinguishability under chosen-ciphertext attacks
(IND-CCA2 security).

Composed keys In [84], Laud and Corin extend the original soundness theorem
to allow arbitrary expressions as keys. The tricky part is again to handle key-cycles
correctly. As arbitrary expressions are used in the position of keys, the definition
of what is a key cycle is not obvious. Rather than giving an explicit definition
of what is a key-cycle, the symbolic adversary is strengthened and the formal
equivalence relation directly captures key-cycles. More precisely, an expression is not
formally equivalent to its pattern whenever a “key-cycle” is present. For instance,
{〈K1, K2〉}〈K1,K2〉 �≡ � and 〈{K1}〈K1,K2〉, {K2}〈K1,K2〉〉 �≡ 〈�,�〉 while {K1}〈K1,K2〉 ≡ �,
because the second part of the key K2 does not occur anywhere else. The last
equivalence may seem surprising. In fact, the equivalence is an artefact of the
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particular cryptographic implementation of composed keys. Specifically, such keys
are derived using a hash function modeled as a random oracle, and in consequence is
completely random as long as a large enough part of it (in this case K2) is not known.

Handling key cycles Key cycles have gained a lot of attention in the context of
computational soundness. The reason is that there is an inherent difference between
their treatment in symbolic models (where such cycles do not cause any troubles)
and the computational model (where standard security definitions do not guarantee
security in presence of key-cycles.) There are two natural approaches to reconcile
this apparent difference.

One possibility is to strengthen the symbolic attacker. This is the direction
explored by Laud in [79]. The idea is to modify the symbolic deduction relation so
that whenever a key occurs in a key cycle then it becomes known to the attacker.
Laud shows an unconditional soundness theorem in the style of Abadi and Rogaway
(unconditional in the sense that formal expressions may contain key cycles).

The second possibility is to strengthen the computational notion as to guarantee
security even in the presence of key-cycles. This is the approach adopted in [1], Adão
et al. They consider a stronger security notion, called key-dependent message (KDM)
security which demands security even in the presence of such cycles. They show that
soundness holds in a public-key setting in the presence of key cycles when a KDM
secure encryption scheme is used for the computational interpretation of encryption.
They also prove a separation between standard security notions (IND-CCA2) and
KDM security and demonstrate that IND-CCA2 security is not sufficient to provide
soundness in the presence of key-cycles. Schemes secure under the KDM notion can
be easily constructed in the random oracle model, but schemes secure in the standard
model seem much harder to construct. Recently, Boneh et al. [20] demonstrated the
existence of an asymmetric encryption scheme secure under key dependent message
attacks in a restricted sense: their scheme does not permit the encryption of messages
that depend in arbitrary ways on the set of secret keys.

In most of the other approaches, one has to assume that key cycles cannot be
generated, even when the adversary interacts arbitrarily with the protocol. Whether
a key cycle can be generated is undecidable in the general case but it has been shown
to be NP-complete in the symbolic setting, for an active adversary and a bounded
number of sessions [56].

Partial information leakage and information theoretic security Adão et al. [2] con-
sider different computational implementations of the encryption function. In particu-
lar they show soundness and completeness when which-key and length-key revealing
encryption schemes are used. A which-key revealing encryption scheme allows the
adversary to detect when two ciphertexts have been encrypted with the same key.
At the symbolic level this is reflected by indexing the boxes with the encryption key,
yielding a more precise equivalence relation. For instance, pattern({0}K) = �K and
hence we have that 〈{0}K, {1}K〉 �≡ 〈{0}K, {1}K′ 〉. A length-key revealing encryption
scheme allows the attacker to learn the length of the plaintext. At the symbolic
level the boxes are indexed with the length of the plaintext to reflect this partial
information leakage.

The authors also consider the case where encryption is implemented by a one-
time pad. Whenever encryption keys are only used once they show that one obtains
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soundness and completeness with respect to an information-theoretic setting. In such
a setting the equivalence is the equality of the probability distributions rather than
indistinguishable by a polynomial-time bounded adversary.

Hash functions Garcia and van Rossum [67] extend the Abadi–Rogaway logic to
hash functions. Soundness theorems for hash functions are particularly tricky as in
the symbolic model, hash functions do not leak any partial information about the
hashed message. Typical computational security definitions for hash functions pro-
vide weaker guarantees, such as one-wayness. Garcia and van Rossum show a
soundness result when hash functions are implemented using oracle hashing. Oracle
hashing has been introduced by Canetti: it is a probabilistic hash function which
requires a verification algorithm to check whether a hash corresponds to a given
message. These are hash functions that do hide all partial information about the
message that is being hashed. In the journal version [68], they extend Micciancio
and Warinschi’s completeness result to hash functions in a similar way.

Modular exponentiation Bresson et al. [28] give an extension of the Abadi–
Rogaway logic with modular exponentiation. They show how to extend the notion
of patterns in order to capture the information that is leaked through exponentia-
tion, which are essentially linear dependencies between the various exponents. For
example, the symbolic secrecy notion captures the idea that an adversary can observe
that in the expression (gx, gy, g2x+y) the third term can be obtained by squaring the
first one and multiplying it with the second. Non-linear relations, as in the expression
(gx, gy, gx+xy), cannot be observed by the adversary. The soundness for the resulting
language relies on a generalization of the Diffie–Hellman assumption which in most
relevant cases is implied by the latter.

In the same vein than [28], Mazaré [76, 89] presents an extension the Abadi–
Rogaway logic with a bilinear pairing operation. Their soundness result assumes
the hardness of the bilinear decisional Diffie–Hellman problem and an IND-CPA
encryption scheme. The soundness result is illustrated on the Joux tripartite Diffie–
Hellman protocol, as well as the TAK-2 and TAK-3 protocols.

Of f line guessing attacks In security protocols passwords or other weak data are
often used as encryption keys. For such protocol an important security property
is resistance to offline guessing attacks. In such attacks an attacker first collects
(possibly by interacting with the protocol) some data. In a second phase, he guesses
a password out of a dictionary. If the attacker has a means to verify that his guess
was correct using the data he had gathered, then the protocol is subject to a guessing,
or dictionary attack. In [10], Abadi and Warinschi have shown soundness results for
protocols that use password encryptions. They define the computational security of
a password encryption primitive: for any two passwords, any polynomially bounded
adversary, that is given these two passwords and given access to an oracle, encrypting
samples drawn from a plaintext distribution, is not able to distinguish whether the
oracle uses the first or the second password for encryption. They also define formal
and computational security of expressions against offline guessing attacks in terms
of indistinguishability. Then for symmetric, asymmetric and password encryptions
with secure implementation they show two soundness theorems. The first one is
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an extension of the Abadi–Rogaway soundness theorem for indistinguishability.
The second theorem states that whenever a formal expression E hides passwords,
then its computational interpretation also hides passwords. These results hold for
IND-CPA secure symmetric and asymmetric schemes, and for password-based en-
cryption schemes that “securely” encrypt keys and ciphertexts of the symmetric and
asymmetric schemes. In addition, it only holds for expressions that do not contain
key cycles.

Cryptographically controlled access control to XML A compelling application of
computational soundness in a setting with only passive adversaries was given by
Abadi and Warinschi [11, 12]. The focus of that work is the security of a scheme
that uses encryption to enforce access control policies to XML documents. The
scheme, designed by Miklau and Suciu [92] explains how to obtain from a given XML
document and a given access policy a so-called protection: a partially encrypted XML
document which enforces the original access policy. The guarantees for the scheme
were rather informal.

Abadi and Warinschi formalize the scheme using a symbolic language for ex-
pressions that extends the one of Abadi and Rogaway with secret sharing schemes.
Then, they show that secrecy as demanded by the policy used to create a certain
protection on an XML document is satisfied in a symbolic sense: data that should be
secret according to the policy is symbolically secret in the expression that describes
the protection. It then follows using the computational soundness of the language
for expressions that the same data is also computationally secret. The soundness
results hold for implementations that use IND-CPA encryption schemes and n-out-
of-n secure secret sharing schemes.

Soundness against an adaptive adversary Micciancio and Panjwani [90] show a
soundness result for encryption and pairing in the presence of a slightly stronger,
adaptive adversary. Soundness is defined through the following experiment. An
adversary has access to a left-right oracle, which given on input two terms M1 and M2,
returns a sample of the computational interpretation of Mb , where b is the challenge
bit of the oracle. The adversary can interact with the oracle but is only allowed to
submit queries such that the sequence of queries (M1

1, M1
2), . . . , (M�

1, M�
2) sent to

the oracle is such that 〈M1
1, . . . , M�

1〉 is formally equivalent, i.e. has the same pattern
up to renaming, to 〈M1

2, . . . , M�
2〉. The adversary wins if he succeeds in outputting

b with non-negligible probability. Note that the oracle is stateful and implements
terms in a consistent way, i.e. if a key has been drawn in a previous query the same
value is reused in subsequent queries. An adaptive adversary is strictly stronger than
a purely passive one as he can choose his queries after having already obtained
the implementation of some terms. On the technical level, the fact of having an
adaptive adversary raises the problem of selective decommitment which is overcome
by imposing the following condition: if a key is used to encrypt a message it either
must have been sent previously in plaintext or it never appears in plaintext. The
usefulness of an adaptive adversary is illustrated by deriving computationally sound
symbolic model for the analysis of multicast key distribution protocols. In this model,
the adversary cannot directly interact with the protocol participants, but he can
influence the control flow.
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2.3 Soundness of Static Equivalence

Baudet, Cortier, and Kremer have considered a more general alternative to the
approach described in the previous sections. They develop a framework in which
symbolic secrecy is expressed in terms of static equivalence, a well-established
equivalence relation from cryptographic pi-calculi [15, 16]. This approach is more
general in that it does not depend on a particular set of primitives.

Abstract and computational algebras Independence from a particular primitives
is reflected in their use of an arbitrary abstract algebra to describe the messages
exchanged in a protocol. The algebra is defined over a many-sorted first-order
signature equipped with an equational theory. For instance, symmetric, deterministic
encryption is modeled by the theory Eenc generated by the classical equation
dec(enc(x, y), y) = x. Equality between two terms is generally interpreted modulo
the equational theory (denoted =E for an equational theory E). For example,
dec(enc(m, k), k) =Eenc m. Given an abstract signature a computational algebra A
is defined by associating to every sort s of the abstract algebra a set of bitstrings
[[s]]A ⊆ {0, 1}∗ with an efficient procedure for drawing random elements, and to every
function f a computational function [[ f ]]A. Given a symbolic term T, a distribution
[[T]]A is associated by drawing a random element of the corresponding sort for each
name and replacing each function symbol by its computational counterpart.

Security notions, soundness, and faithfulness The two security notions which are
considered are deducibility and static equivalence. Deducibility formalizes which
are the terms that an attacker can compute from a given sequence of terms. Static
equivalence models whether two sequences of terms can be distinguished. Both
deducibility and static equivalence are parameterized by an equational theory. In
this approach, static equivalence replaces the pattern-based formal equivalence.

To reason about the soundness of implementations Baudet et al. define soundness
for the three relations =E, �E and ≈E. Soundness of =E means that whenever
two terms are symbolically equal (modulo E), any sample drawn from the distri-
bution implementing those terms should be equal with overwhelming probability.
Soundness of =E is generally a hypothesis which reflects that the equational theory
is a reasonable abstraction of the primitives. Similarly, they define soundness for
deducibility and static equivalence. When a term is not deducible from a sequence
of terms, then an attacker given the distribution implementing the given sequence of
terms, should be able to output a sample of the distribution implementing the term
with only negligible property. When two sequences of terms are statically equivalent,
then the distributions associated to these sequences should be indistinguishable.

Faithfulness of those three relations on the other hand represents a strong version
of completeness. Whenever two terms are not equal, a term is deducible or two
sequences of terms are not statically equivalent, a computational adversary can show
this with overwhelming probability (rather than non-negligible probability which
would be completeness). Intuitively, when the relations are faithful, for any symbolic
attack there exists an efficient computational attack.

It is shown that for many theories ≈E-soundness implies all other notions of
soundness and faithfulness. This emphasizes the importance of ≈E-soundness.
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Examples: groups, XOR, ciphers and lists In [15, 16], Baudet et al. consider several
equational theories to illustrate their framework. First they show the ≈E-soundness
of an equational theory modeling groups implies the hardness of several classical
cryptographic problems: the discrete logarithm, computational Diffie–Hellman, de-
cisional Diffie–Hellman and RSA problems. Note that this is not a soundness result.
It shows that any candidate implementation for ≈E-soundness requires at least the
hardness of the usual cryptographic problems. Second, they show the unconditional
≈E-soundness of a theory of XOR. The soundness proof reflects the unconditional
security (in the information-theoretic sense) of the One-Time Pad. Finally, they show
≈E-soundness of a theory of ciphers and lists (ciphers are deterministic, length-
preserving, symmetric encryption schemes).

Soundness of of f line guessing attacks and static equivalence In [3], Abadi, Baudet
and Warinschi use the framework of [15, 16] to show ≈E-soundness for an equational
theory useful in the context of offline guessing attacks. This theory includes symmet-
ric, and asymmetric encryption as well as pairing. A consequence of this soundness
result is its applicability to defining and reasoning about off-line guessing attacks
in terms of static equivalence. The result is an intuitively appealing implication to
computational security against off-line attacks.

Static equivalence vs formal indistinguishability relations In [30], Bana, Mohassel
and Stegers argue that the notion of static equivalence is too coarse and not sound
for many interesting equational theories. They introduce a general notion of formal
indistinguishability relation. This highlights that soundness of static equivalence only
holds for a restricted set of well-formed frames (in the same vein Abadi and Rogaway
used restrictions to forbid key cycles). They illustrate the unsoundness of static
equivalence for modular exponentiation.

Adaptive soundness of static equivalence The analogue of [90], but for the setting
where pattern based equivalence is replaced with static equivalence, has been
provided by Kremer and Mazaré [75] who extend the framework of [15]. In this case,
adaptive soundness is defined through an experiment. The adversary interacts with
a left-right oracle, which given two symbolic terms, returns either a sample of the
concrete implementation of the first or the second term, according to the oracle’s
challenge bit. As in [90], the adversary is restricted to only provide queries such
that the left-hand terms and the right-hand terms form two statically equivalent
sequences, rather than pattern-equivalent sequences. They show adaptive soundness
of static equivalence for an equational theory modeling modular exponentiation
(for a class of well-formed frames, hence not contradicting [30] and under similar
assumptions as in [28]), as well as symmetric encryption with composed keys which
can be computed using modular exponentiation or exclusive or.

2.4 Computationally Secure Information Flow

A different kind of soundness results have been obtained in the area of information
flow. Informally, a program has secure information flow if the public outputs of the
program do not leak information about its confidential inputs. Classically, infor-
mation flow is defined as non-interference requiring that no information, in the
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information-theoretic sense, is leaked. In particular such a definition forbids publish-
ing the encryption of a confidential value. Allowing encrypted confidential values to
be published is generally referred to as cryptographic declassification.

Laud [78] pioneered the area of computationally secure information flow. He
proposes a computational definition of secure information flow in the presence of
a probabilistic polynomial time adversary. The programming language he considers
contains assignment, loops, conditional, sequential composition and application of
some operators. In particular the operators contain symmetric encryption and key
generation. Laud presents a static analysis which ensures computational secure
information flow assuming an implementation that uses a which-key and repetition-
concealing IND-CPA encryption scheme. Two limitations of the paper are that keys
can only be used at a key position, and not as data, as well as the fact that one must
be able to decide statically whenever two variables contain the same encryption key.
These two restrictions are relaxed in [80] by refining the static analysis.

In [88], Laud and Vene propose a computationally sound type system which
ensures secure information flow. A similar approach is given by Smith and
Alpízar [100]. A difference is that Smith and Alpízar allow an explicit decryption
operator (and hence require IND-CCA security to achieve soundness). However,
they do not manipulate keys, but only consider a single key which is used for
encryption and decryption, but never as plaintext. Courant, Ene and Lakhnech [50]
also design a cryptographically sound type system. The basic data contain constants
and uniformally sampled bitstrings. Operations include exclusive or and applications
of deterministic, length preserving encryption, i.e. ciphers. As Smith and Alpízar they
consider a single key which is only used for encryption and decryption. Due to the
deterministic nature of ciphers, which do not hide repetitions, subtle flows may still
arise. Courant et al. show cryptographic soundness of their typing system under the
hypothesis that encryption scheme respects the pseudo random permutation, PRP
for short, security notion. Moreover, the soundness result is shown in the concrete
(or exact) model, rather than being asymptotic.

An abstract model for reasoning about secure information flow is the frame-
work of Askarov, Hedin and Sabelfeld for dealing with cryptographically-masked
f lows [7]. Here, they consider an imperative language with encryption and decryption
operations which comes with a non-deterministic semantics, avoiding reasoning
about probabilities. In [83], Laud investigates the computational soundness of cryp-
tographically masked flows and identifies the necessary restrictions and crypto-
graphic assumptions. In particular, symmetric encryption needs to satisfy length- and
which-key concealing KDM, as well as a key-dependent message variant of plaintext
integrity. Laud also suggests a simpler but equivalent model with a completely deter-
ministic abstract semantics. The security definition in this model is based on Abadi
and Rogaway’s pattern equivalence. The soundness result directly follows from [1],
discussed earlier in this survey.

3 Computational Soundness: the Active Adversary Case

The focus of the previous section was on the case where the adversary only observe
the network traffic and tries to gain information about the secrets used in an exe-
cution. In this section we shift attention to the case of active adversaries, namely
adversaries that can interfere with the execution of protocols.
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As explained in the previous sections the main abstraction used by symbolic
models is to represent messages (that is bitstrings) by symbolic terms. A second
abstraction which is quite important for the active setting is given by how adversarial
capabilities are treated.

In symbolic models, the adversary can build new messages using an a priori
fixed set of symbolic inference rules. For example, he can get information from a
encrypted messages only if he has the appropriate decryption key. On the other hand,
in computational models the adversary is a probabilistic polynomial-time (p.p.t.
for short) Turing machine. This captures the idea that a potential adversary can
perform arbitrary computations while tampering with the protocol, provided it takes
a reasonable, that is polynomial, time. In particular, this assumption captures the
possibility that the adversary may try to guess secrets (e.g. keys). Note that in both
models it is assumed that the adversary has complete control of the network: he can
intercept, send and block messages. An additional gap between the symbolic and
the computational models is in how security properties are specified. For example,
secrecy is usually stated in symbolic models as a reachability property while in
computational models, it is formalized as the indistinguishability of adversary views.

In this section we survey three approaches developed to bridge the gap between
symbolic and computational models. Recall that the goal is to understand when
security proved using symbolic models implies meaningful security properties for
protocols with respect to computational ones. These approaches are the trace map-
ping approach, the process mapping approach, and the simulation based approach.

3.1 The Trace-Mapping Based Approach

Syntax Messages are modeled by a term algebra, given with sorts. For example,
the algebraic signature � may contain sorts Nonce, Label, Ciphertext, Signature,
and Pair for respectively nonces, labels, ciphertexts, signatures, and pair. Typical
operations are pairing 〈_, _〉, public key encryption {_}_

_, and signing [_]_
_. One

may already notice a difference with the passive case as described by Abadi and
Rogaway. Probabilistic primitives like encryption or signatures are now represented
with ternary symbols instead of binary symbols. The third argument explicitly models
the randomness used in these primitives and allows one for instance to capture the
fact that encrypting twice the same message m with the same key k yields different
ciphertexts represented by {k}r1

m and {k}r2
m. We may note that some works in the

passive setting, e.g. [3, 84], also explicit randomness in a similar way.
Protocols are specified using the algebra of terms constructed over the above

signature from a set X of sorted variables. The messages that are sent by participants
are specified using terms in T�(X), the free algebra generated by X over the signature
�. The individual behavior of each protocol participant is defined by a role describing
a sequence of message receptions/transmissions, and a k-party protocol is given by k
such roles.

It is worth emphasizing that the term algebra used in this setting is richer than
the algebra typically used in automatic tools for security protocols. One important
difference is that the latter typically omit the explicit randomness argument discussed
above. Furthermore, the model uses different symbolic operations for signature and
encryption. Quite often, the models for tools model signatures as encryptions with
the decryption key. Nevertheless, it can be shown that under certain conditions
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security with respect to the simpler models implies security with respect to the richer
models above [52].

Execution models Two types of executions are then defined for protocols: the sym-
bolic and the concrete ones. In both models, the adversary has a complete control
of the network: he can intercept, send and block messages. More precisely, the
adversary can interact with the protocol through three kinds of actions.

– corrupt(a1, . . . , al): the adversary can corrupt parties by outputting a set of
identities. He receives in return the secret keys corresponding to the identities.
It happens only once at the beginning of the execution.

– new(i, a1, . . . , ak): the adversary can initiate new sessions selecting the role i and
the instantiation a1, . . . , ak for the agents involved in that session.

– send(sid, m): the adversary can send a message m to a target session sid.

In the symbolic setting the honest parties and the adversary exchange elements
of a certain term algebra; the adversary can only send messages deducible from the
previously received messages following the rules described in Fig. 1. These rules cor-
respond to the standard Dolev–Yao model, except for the treatment of randomness
where we distinguish the randomness of the adversary (adv(i)) from the randomness
used by honest agents (ag(i)).

In the concrete execution model, the honest parties and the adversary are p.p.t.
Turing machines and the messages that are exchanged are bit-strings and depend on
a security parameter η (which is used, for example to determine the length of random
nonces). A PKI-like setting is assumed such that the public keys of parties (those
for encryption and signature verification) are accessible to all parties. Encryption
and signing are implemented with an encryption scheme and a digital signature
scheme respectively. Pairing is implemented by some standard (efficiently invertible)
encoding function. Each time a session is initialized, random values are generated for
the nonces of the session.

Trace mapping The trace mapping approach attempts to link directly concrete and
symbolic executions [95]. The idea is to show that any concrete trace is the image of

Fig. 1 Deduction rules for the formal adversary
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a symbolic trace (with overwhelming probability). The first result of this kind estab-
lishes such a statement for protocols that use random nonces, party identities, pairing,
and asymmetric encryption under the assumption that the encryption scheme satis-
fies indistinguishability under chosen ciphertext attacks (IND-CCA). We refer to a
property of this type as a mapping lemma. Informally, the mapping lemma implies
that all of the behaviors of concrete adversaries are captured by those of the symbolic
adversaries. For security properties where the symbolic and the computation for-
mulation are similar, the lemma implies immediately that symbolic security implies
computational security. Authentication and, more generally, trace properties are
examples of such properties. For security properties for which there is a mismatch
between the symbolic and the computational formulations, similar results do not
follow directly from the mapping lemma. A prominent example is secrecy which
symbolically is defined as a reachability property and computationally as an indis-
tinguishability property. Soundness for such notions may still hold, but needs to be
established thorough some other means.

3.2 Extensions

Signatures The mapping lemma has then been extended in a setting with signatures
and variables of sort ciphertext (to allow ciphertext forwarding) in [55], provided that
signatures are implemented using an existentially unforgeable scheme under chosen
message attacks. A similar result has been proved in [72] where public key can also be
sent in plaintext. They also propose a general criterion for reducing the correctness
of two cryptographic schemes to the correctness of each one. This is useful when
proving soundness of symbolic models when several primitives are used.

Hash functions The mapping lemma has then been extended in [53] (removing
signatures) to hash function implemented in the random oracle. A weaker criterion,
called HASH, for hash is proposed in [73]. It is shown that the mapping lemma
holds for hash functions satisfying this criteria and for asymmetric encryption
(implemented with an IND-CCA encryption scheme), provided that the protocol does
not have temporary secret (each atomic value is either initially known to the intruder
or will never be revealed). The HASH criterion can be realized in the random oracle.
However, it is not known whether an actual implementation realizes the HASH
criterion.

Non-Malleable Commitment Galindo et al. [62] have extended the mapping lemma
to commitment schemes. Commitment schemes are used in protocols like zero-
knowledge proofs or contract-signing. They consist of two phases: a first phase
(commitment) where the principal commits to a message without revealing any
information and a second phase (opening) where the principal reveals the message
and it is possible to verify that it corresponds to the value committed during the
previous phase. They abstract these primitives symbolically by introducing two
functional symbols:

com_(_) : Term× Label → Com

dec_(_) : Term× Label → Dec
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where Com and Dec are new sorts. The corresponding deduction rules are the two
following rules:

S � m

S � comr(m)

S � decr(m)

S � m

They show that the mapping lemma holds for asymmetric encryption and commit-
ment provided that encryption is IND-CCA and that commitment is non-malleable
against chosen commitment attacks (NMC-CCA). NMC-CCA is a definition of
security for commitment schemes that they introduce in order to prove the mapping
lemma. It intuitively means that an attacker cannot produce a commitment c2 related
to another commitment c1 = comr1(m1) (where m1 is chosen by the attacker) even
if it has access to an oracle that can open commitments. This security notion can
be realized: Galindo et al. propose a new commitment scheme that is NMC-CCA
secure.

Zero-knowledge proof A zero-knowledge proof is a message or a sequence of
messages that forms a proof of a statement x (e.g. “the message within the ciphertext
contains two identical nonces”) that does not reveal any information besides that x is
true. Zero-knowledge proofs can be used to prove various statements. Backes et al.
have introduced in [31] an abstraction of zero-knowledge proofs for symbolic models
by introducing a small logic. A Formula is a Boolean formula over atomic formula
ZKTerm defined by:

ZKTerm = ek(βi) | αi | βi | 〈ZKTerm,ZKTerm〉 | {ek(β j)}ρi
ZKTerm

The set of Term is enriched by a constructor ZKR
F (r, a, b) where F is a Formula

and x denotes x1, . . . , xn (where x is either r, a or b). Intuitively, R and r are the
randomness used in the formula, a represents the secret values and b the public
values. ZKR

F (r, a, b) is evaluated by replacing the αi by the ai, the βi by the bi and
the ρi by the ri.

Backes and Unruh extend the mapping lemma in [46] for this symbolic model of
(non-interactive) zero-knowledge proofs by introducing a new definition for security
of zero-knowledge proofs called symbolically-sound zero-knowledge proof system.
This definition is rather involved. It is assumed that zero-knowledge proof are based
on circuits and proofs that a particular circuit is satisfiable. Their new security
definition requires in particular:

– Extractability: out of a proof for a circuit C, it is possible to extract a witness, i.e.
a solution for C.

– Unpredictability: two independently produced proofs are different with over-
whelming probability.

– Extraction Zero-Knowledge: this property is designed to prevent an adversary
from building a valid proof out of previous proofs.

This definition can be realized by an existing zero-knowledge protocol defined by
Groth and Ostrovsky [64].

Linking cryptographic and symbolic secrecy In the symbolic model, secrecy is
naturally expressed as a trace property: a message is secret if it cannot be derived
by the adversary. In the computational model however, typical definitions are much
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stronger. It is usually required that an attacker is not only unable to obtain the secret,
but also any partial information about the secret (which is an indistinguishability
notion). Typically, secrecy of a nonce N in a protocol 
 is defined in cryptographic
models using an experiment Expsec_b

Exec
,A
(η) that we describe below. The experiment

is parameterized by a bit b and involves an adversary A. The input to the experiment
is a security parameter η. It starts by generating two random nonces n0 and n1

whose length depends on the security parameter. Then the adversary A interacts
with the protocol 
 where the nonce N has been instantiated by nb according to the
bit selection b. The adversary generates new sessions, sends messages and receives
messages to and from these sessions (as prescribed by the protocol). In the end,
the adversary is given n0 and n1 and outputs a guess d, which is the result of the
experiment. The nonce N is computationally secret in 
 if for every p.p.t. adversary
A its advantage

Pr
[
Expsec_1

Exec
,A
(η) = 1

]
− Pr

[
Expsec_0

Exec
,A
(η) = 1

]

is negligible.

Pairing and asymmetric encryption In [55], it is shown that, in a setting with asym-
metric encryption and pairing, whenever a nonce is deemed secret using symbolic
techniques, then the nonce is secret with respect to the stronger, computational
definition.

Hash functions In [73], soundness of symbolic secrecy is extended to hash functions
under the HASH criterion and for nonces that never appear under a hash function.
Transferring the usual symbolic secrecy definition to indistinguishability is indeed
not possible when the target secret value appears under a hash function since, unlike
ciphertexts, hashes have to be publicly verifiable, i.e., any third party can verify
if a value h is the hash value corresponding to a given message m. Assume, for
example, that in some protocol the hash h = h(s) of some secret s is sent in clear
over the network. Then, while virtually all symbolic models would conclude that s
remains secret (and this is also a naive assumption often made in practice), a trivial
attack works in computational models: given s, s′ and h, compare h with h(s) and
h(s′), and therefore recover s. Cortier et al. [53] propose a new symbolic definition
for nonce secrecy in protocols that use party identities, nonces, hash functions,
and public key encryption. The definition is based on the concept of patterns
presented in Section 2.1. They show that nonces that are secret according to their
symbolic criterion are also secret according to a standard computational definition
(indistinguishability). The result holds for protocols implemented with encryption
schemes that satisfy standard notions of security (IND-CCA), and for hash functions
modeled as random oracles. They also show decidability (NP-completeness) of the
symbolic secrecy criterion (w.r.t. a bounded number of sessions).

3.3 Soundness of Observational Equivalence

We have just seen that “computational secrecy” can be soundly abstracted by a trace
property in symbolic models, in a number of particular cases. It is not clear, however,
that such a property can be expressed as a trace property in general. More generally,
several security properties cannot be defined (or cannot be naturally defined) as trace
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properties such as e.g. anonymity, privacy related properties involved in electronic
voting protocols [60], or strong (also called “black-box”) simulatability [44, 77].
These security properties are usually formalized by indistinguishability properties.
There is a well-known similar notion in concurrency theory: observational equiva-
lence, introduced by Milner and Hoare in the early 80s. Two processes P and Q
are observationally equivalent, denoted by P ∼o Q, if for any process O (a symbolic
observer) the processes P‖O and Q‖O are equally able to emit on a given channel.
This means that O cannot observe any difference between P and Q. It is shown
in [54] that computational indistinguishability in presence of an active attacker is
implied by the observational equivalence of the corresponding symbolic processes,
in the case of IND-CCA-2 symmetric encryption.

3.4 The Simulation Based Approach

A different approach towards relating computational and symbolic executions of
protocols relies on the concept of simulatability. Roughly, security is defined by
requiring that a real system that supposedly implements some cryptographic system,
is as secure as an ideal version of the protocol/primitive (which typically is secure by
construction).

The concrete instance of such a simulation-based setting used in computational
soundness is that of reactive simulatability/universal composability, called RSIM/UC
in short [43, 47]. This setting relies on a general model for (polynomial-time) exe-
cutions of interactive asynchronous programs. Related models for such executions
have been defined elsewhere, with a similar goal in mind. These works include those
for a probabilistic polynomial time process calculus [85, 91, 98, 99], the model of
Canetti [47], more rigorously formalized and further refined using the framework of
Task Structured Probabilistic Input/Output Automata (Task PIOAs) [48].

The details of such models are outside the scope of this survey. We refer to the
work of Küsters et al. for a detailed analysis and comparison of the different existent
frameworks [74].

As sketched above, the definition of security involved an ideal system maintained
by a trusted host TH. The real system is given by a set of interactive machines Mi,
one for each user i. Both systems interact with an environment Env which should
be thought of as protocols (or users) that provide input/obtain output to/from
the system that is being analyzed. Furthermore, the interaction also involves an
adversary Adv. In the real world, the adversary interacts directly with the system
(i.e. it communicates directly with the machines M1, M2, . . . , Mn). In the ideal world,
the communication between the adversary and the trusted host is mediated by a
simulator Sim. The two different setups are described in Fig. 2.

We write (rather informally) TH | Sim | Adv | Env for the result of the execution
of the ideal system, i.e. for the output of the environment. Similarly, we write
(M1||M2|| . . . ||Mn) | Adv | Env for the result of the real execution.

We say that M1, M2, . . . , Mn RSIM/UC implements the system described by TH
and we write M1||M2|| . . . ||Mn ≤RSIM TH if there exists a simulator Sim (that medi-
ates the interaction between the adversary and the TH) such that no combination of
environment and adversary can determine whether the interaction takes place in the
ideal world, or in the real world:

(∃Sim)(∀Adv)(∀Env) (TH | Sim | Adv | Env) ∼= (M1||M2|| . . . ||Mn | Adv | Env)
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Fig. 2 The RSIM setting: in the ideal world the interaction is between a trusted host TH, an
adversary Adv, a simulator Sim, and environment Env. In the real world, the interaction is between
an actual implementation of the protocol by machines M1, M2, . . . , Mn, and environment Env and
an adversary Adv. The machines M1, M2, . . . , Mn RSIM/UC implement the system defined by TH, if
(∃Sim)(∀Adv)(∀Env) (TH | Sim | Adv | Env) ∼= (M1||M2|| . . . ||Mn | Adv | Env)

In the above, the notation ∼= represents some version of indistinguishability (i.e. per-
fect equality, statistical closeness, or computational indistinguishability of distribu-
tions). The above formulation of RSIM/UC corresponds to black-box reactive
simulatability but several other variants of this definition exist, changing for instance
the order of the quantifiers. More details and a comparison of the differents flavours
of this definition are given in [74].

Preservation of integrity properties The intuition behind the above definition is that
the protocol defined by machines M1, M2, . . . , Mn does not leak any more infor-
mation to an adversary than the ideal version defined by TH, and thus the former is
as secure as the latter. Usually, the security of the ideal system can be assessed by
simple inspection, or proved through some simple means, and the security of the real
implementation thus follows.

Importantly, security defined as above is composable: if M = M1||M2|| . . . ||Mn

is such that M ≤RSIM TH then M can be replaced in a system by the combination
TH | Sim without changing the behavior of the system. In particular, properties of
the ideal system should also be satisfied by the implementation [21].

3.5 A Composable Cryptographic Library

The framework for reactive simulatability sketched in the previous section has been
used by Backes, Pfitzmann, and Waidner to obtain computational soundness results.
They define an ideal cryptographic library Libideal which offers an interface through
which programs can manipulate data. Commands that can be passed to the library
include the ability to generate nonces and cryptographic keys, to encrypt and decrypt
messages, to generate and verify signatures etc. The internal workings of the library,
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i.e. the semantics of all of the commands is entirely deterministic, and is based on the
ideas behind Dolev–Yao models. Roughly speaking, Libideal maintains an internal
database of symbolic terms which the programs can manipulate via handles to these
terms which it obtains from the library. A party would be able to obtain the plaintext
in an encryption only if it has handles to both the term that represents the encryption
and to the appropriate decryption key. Importantly, since the final goal is to relate
Libideal with a real implementation, the library needs to keep track of all the various
pieces of information which real cryptographic primitives may leak. The reason is
that the environment would be able to tell the difference between the real and the
ideal executions by observing such leaks. Typical examples include the length of
encrypted plaintexts, as well as the length that corresponds to the ideal terms in a
real instantiation. In the context of the reactive simulatability setting presented in
the previous section, Libideal plays the role of the ideal system, i.e. that of TH.

To obtain computational soundness it is sufficient to exhibit a real implementa-
tion, i.e. a library Libreal implemented with actual cryptographic primitives, which
offers the same interface as Libideal such that Libreal ≤RSIM Libideal. In [40] Backes,
Pfitzmann, and Waidner exhibit an ideal, and a real library that are related as de-
scribed above. The cryptographic operations considered in [40] are nonce generation,
asymmetric encryption, and digital signatures. The main result is that Libreal ≤RSIM

Libideal provided that the digital signature scheme is memory-less (a signature does
not leak any information about previous signatures) and existentially unforgeable
under chosen message attack and the encryption scheme is IND-CCA secure.

Message authentication codes(MACs) The above result had been extended to a
library that includes message authentication codes [41]. The security condition under
which the desired result holds is that the MAC used in the implementation of the real
library is existentially unforgeable under chosen message attacks. In addition, given
a tag created by the MAC scheme, it must be possible to fully recover the message
to which it corresponds, and it must be possible to determine whether two tags have
been created under the same key or not, even if one does not posses the key. Finally,
the protocol where the MAC is used has to append a random nonce to the message
which is MACed.

Symmetric encryption Subsequent work introduced symmetric encryption among
the primitives that the simulatable cryptographic library offers [34]. A RSIM/UC
relation between the resulting ideal system and a concrete realization requires
several restrictions on the way the library is used by the surrounding protocol. We
only list some of them. First, they of course forbid encryption cycles by assuming
a key hierarchy based on the order in which keys are used for encryption for the
first time. Second, an important issue with symmetric encryption is the so-called
commitment problem which appears when a key is used for encryption and is later
revealed. Thus it is assumed here that keys are never revealed after being used.
Third, they assume authenticated encryption schemes (i.e. the adversary is not able
to compute a ciphertext that can be validly decrypted with an unknown specific key)
and they assume that ciphertexts are tagged with key identifiers.

Transferring secrecy properties via RSIM/UC As discussed in previous sections, in
symbolic models secrecy properties can be expressed as trace properties, while in
computational models they are not. Thus, transference of secrecy properties does
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not follow from the preservation theorems proved for integrity properties. The result
that symbolic secrecy implies computational secrecy for the cryptographic library
described above appears in [36]. The result holds for payload data, and for symmetric
keys (which had not been used for encryption or authentication), i.e. nonces. The
precise formulation of computational secrecy is indistinguishability based, and is
similar to the one for the trace mapping approach.

Impossibility of results of RSIM/UC soundness The strong relation imposed be-
tween the ideal and the real system by the RSIM/UC relation leads to several
impossibility results. In [35], Backes and Pfitzmann offer impossibility results for an
ideal library that contains a model for XOR. The results are rather general, in that
they are not for a fixed abstraction of XORs. Instead, they show that if such a library
is rich enough to allow the specification of some simple protocols where secrecy of
some piece of data is desired, then a RSIM/UC concrete realization would imply that
the library itself is not abstract: using the library one is able to compute concrete
cryptographic functions, e.g. signatures. To complement the impossibility results, the
authors show soundness for the case of passive adversaries.

A second impossibility result, reminiscent of the restrictions imposed for the case
of symmetric encryption, has been obtained for the case of hashes [42]. The authors
show several impossibility results for various restrictions on the class of protocols
that one is able to specify. The impossibility results hold for essentially all natural
abstractions of (one-way) hash functions.

One may note that these impossibility results are stated in the RSIM/UC model
and do not directly carry over to trace mapping results or soundness of observational
equivalence, even though no such soundness results for XOR are currently known.

Key Dependent Message security As observed as early as the initial work of Abadi
and Rogaway, settings where key-dependent encryption occur either in normal
executions of protocols, or due to the malicious activities of the adversary pose a real
problem to computational soundness, especially when encryption cycles occur. The
problem is that although such settings are smoothly treated via symbolic methods, in
computational models it may be the case that encryption breaks completely. Two
possible work-arounds the problem is to either prohibit the occurrence of such
situations (e.g. via syntactic restrictions on the protocols that are analyzed or via
checking symbolically that an adversary cannot obtain key cycles while interacting
with the protocols [56]) or to require that in computational settings encryption is
stronger and does not break even when used in such more esoteric ways.

The second approach has recently been taken by Backes, Pfitzmann, and Scedrov
[39]. They build on the work of Black, Rogaway, and Shrimpton [45] and put forth
a security notion for encryption that takes into account key-dependent message
attacks. They show that the notion can be achieved in the random oracle model,
and show that the notion is indeed sufficient to obtain soundness for the BPW
cryptographic library, even when encryption cycles occur.

Simulatability implies trace mapping The first work that investigates the relation
between the trace mapping approach and the one based on reactive simulatability is
by Backes, Dürmuth, and Küsters [19]. They show that if two systems are related in
the sense of the latter, then a relation in the sense of trace mapping also holds.
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Case studies The applicability of the above described cryptographic library has been
illustrated on a number of case studies. In [32, 33], Backes et al. give a cryptograph-
ically sound proof that the Needham–Schroeder protocol satisfies authentication
using the ideal library. More precisely, they show that an honest participant A only
successfully terminates a protocol with an honest participant B if B has indeed
started a protocol with A. Backes et al. have also analyzed the Otway-Rees pro-
tocol [13], which relies on symmetric encryption. Therefore the security proof also
needs to show the absence of the above discussed commitment problem. Moreover, a
confidentiality property of the established key is shown. The confidentiality property
shown here is not cryptographic key secrecy, but ensures that an adversary can never
obtain a handle to that key, which is close to deducibility in symbolic models.

In [37], the authors illustrate the use of their library for showing cryptographic
key secrecy, relying on their secrecy transferring result [36] described above. They
study the Yahalom protocol. The first remark is that cryptographic key secrecy, i.e.
indistinguishability of a real and a random key, is not guaranteed by the Yahalom
protocol as it ends with a key confirmation. A slightly simplified version, omitting
the last message, is then shown to guarantee key secrecy.

The approach is also illustrated on more complex protocols. In [18], a correctness
proof of an electronic payment protocol, a slight simplification of the 3KP protocol,
is given. In [29], a web service protocol, the WS-Reliable Messaging scenario is
analyzed and in [14] security proofs are given for the Kerberos 5 protocol.

The above discussed case studies rely on hand proofs, but it is argued that the
proofs in the ideal system are in the scope of existing automated tools.

3.6 Towards Automated Proofs of Simulatability

Several results study the automation of proof of simulatability in the context of
the simulatable cryptographic library of Backes, Pfitzmann and Waidner. Laud [82]
proposes a type system for checking secrecy of messages handled by protocols. He
defines a language for cryptographic protocols, similar to the spi-calculus [6] tailored
to the BPW cryptographic library for symmetric and asymmetric encryption. He pre-
sents a type system such that if a protocol types then it preserves the secrecy of
the messages given to it by the users. In [23], Backes and Laud propose a mecha-
nized approach (implemented as a tool) for proving secrecy of payloads data in cryp-
tographic protocols modeled in the framework of [82], for an unbounded number of
sessions using a typing system.

In [101–103], Sprenger et al. formalize the BPW model in the theorem prover
Isabelle/HOL for public-key encryption. Since this model is too complex to directly
analyze protocols, they propose several cryptographically sound abstractions of the
initial model, providing a proof of the soundness of the abstractions within the
Isabelle/HOL prover. As a case study, they show how the more abstract models can
be used for proving the security of the Needham–Schroeder–Lowe protocol [86].

Canetti and Herzog [51] define a mapping between protocols that use public key
encryption, in the UC-framework, and symbolic protocols such that the concrete
protocol realizes mutual authentication functionality if and only if its translation
fulfills the symbolic mutual authentication criteria. For the key exchange function-
ality, they propose a new symbolic criteria such that a concrete protocol realizes
the key exchange functionality if and only if its translation fulfills the new symbolic
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criteria. Then they apply an existing tool (ProVerif [24]) to verify whether or not the
key exchange criteria is satisfied by known protocols.

4 Computational Sound Proof Systems and Logics

The remainder of this survey is dedicated to direct approaches: research directions
that aim to use symbolic methods and techniques in computational models. The
idea is to entirely avoid the use of execution models à la Dolev–Yao and, instead,
reason directly about computational executions. Some of these methods are inspired
by and extend symbolic methods, so unavoidably they may look superficially quite
similar. For those methods for which this is the case, we briefly outline the underlying
symbolic one.

4.1 Computational Protocol Composition Logic

The Protocol Composition Logic, PCL for short, is a Floyd–Hoare like logic for
proving properties of security protocols in a compositional way. The underlying
execution uses the Dolev–Yao abstraction, so the logic does not fall in the category
of approaches treated in this section. However, the logic was the starting point for the
computational version that we describe in this section, and so it is useful to describe
it. The logic includes a modal operator ψ[P]Xϕ which intuitively means that if the
pre-condition ψ holds and participant X executes protocol actions P then the post-
condition ϕ will hold. Protocols are described using a simple calculus for specifying
roles. A role is a sequence of actions including new nonce generation, send, receive
and application of cryptographic functions. The logic comes with a number of axioms
and proof rules which implicitly assume the presence of a Dolev–Yao like active
adversary. As an example, the two proof rules

ϕ ϕ ⇒ ψ

ψ

ψ[P1]Xθ θ [P2]Xϕ

ψ[P1 P2]Xϕ

allow sequential composition, given that the post-condition of a first protocol implies
the pre-condition of a second protocol. The logic also allows assume-guarantee-
like parallel composition: provided that invariants of protocol P1 are preserved by
protocol P2 and vice-versa, properties are preserved by the parallel composition
of P1 and P2. One may note that composition is conditional (in the sense that
composition preserves a security property provided that the protocols preserve some
invariant, or the post-condition of one protocol implies the pre-condition of another
protocol) in PCL as opposed to the universal composability described in Section 3.4.
Giving a complete account of the logic is beyond the scope of this paper. A survey
on PCL and the numerous case studies carried out in this framework can be found
in [58].

In [57], Datta et al. define Computational PCL, CPCL for short, by giving a
computational semantics for a variant of PCL. The protocols are hence executed
in the presence of an arbitrary PPT adversary. In [57] the only cryptographic
primitive is asymmetric encryption and the logic is equipped with two new predicates,
Indist and Possess. Intuitively, Indist expresses that a nonce is computationally
indistinguishable from a random nonce, for an arbitrary active adversary that is
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allowed to interact with the protocol. Possess is used to model that a bitstring
corresponding to a given term cannot be built by the adversary using Dolev–Yao
deduction rules, i.e. it supposes a fixed algorithm for constructing this bitstring rather
than an arbitrary PPT algorithm. The main result of the paper is a soundness result
showing that if a formula can be deduced using the axioms and proof rules and if the
encryption scheme is IND-CCA-2 secure, then the formula holds with overwhelming
probability in the computational semantics, i.e. in the presence of an arbitrary PPT
adversary. The logic and soundness result has been substantially extended in the
following.

In [59] the logic is extended for proving the security of key exchange protocols. As
already noted, cryptographic key secrecy, stating that a key is indistinguishable from
a random key, is too strong if the protocol contains a key confirmation step or if the
key is to be used by another protocol. Therefore, a new, weaker security property
called key usability is presented. Intuitively, key usability holds if the established
key can be used safely afterwards. The definition is therefore parameterized by the
intended use of the key. More precisely, the property is formalized by an experiment
involving a two-stage adversary (Ae,Ac): in the first phase Ae interacts with the key
exchange protocol; in the second phase the adversary Ac receives state information
of Ae and plays a security game, e.g. IND-CPA. The definition is illustrated by
showing the security of the ISO-9798-3 key exchange protocol, followed by a secure
session using the exchanged key. The secure session requires the use of an IND-CPA
secure symmetric encryption key. The case study also required the extension of the
logic and soundness theorem to symmetric encryption, Diffie–Hellman exponentia-
tion and secure signature schemes, requiring respectively IND-CPA secure symmetric
encryption, the decisional Diffie–Hellman assumption and a CMA secure signature
scheme.

In [96], Roy et al. define a trace-based property, called secretive, which is suitable
for inductive and compositional proofs. This property guarantees a black-box reduc-
tion from attacks on the protocol to attacks on the underlying primitives. Moreover
this property implies computational secrecy properties (which is not a trace based
property) including key indistinguishability and key usability. The result is illustrated
by giving formal proofs of computational authentication and secrecy of Kerberos V5.
In [97], Roy et al. further refine the logic for studying Diffie–Hellman based key
exchange protocols. The techniques are illustrated on the initial authentication of
Kerberos V5 and IKEv2, which is the IPSEC key exchange standard.

Gupta and Shmatikov [65] also study a variant of PCL tailored to the analysis
of key exchange protocols. The fragment they consider only contains signatures
and a restricted form of Diffie–Hellman exponentiation, which requires the expo-
nentiations to be signed. The security property they consider differs from the work
discussed just above. Gupta and Shmatikov consider indistinguishability of the key
exchange protocol and an ideal key exchange functionality together with a simulator.
They define a symbolic criteria which under standard security definitions (DDH and
CMA) implies that for any computational adversary, there exists a simulator, such
that the transcripts of the adversary interacting with the real and the ideal system
are indistinguishable. The method is illustrated on the authenticated Diffie–Hellman
key exchange protocol. In [66], they refine their results to allow adaptive corruption
of long-term secrets (but not strong adaptive corruption which reveals the entire
internal state of corrupted participants, rather than just the long term secret).
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4.2 Static Analysis Techniques

In [81], Laud presents static analysis techniques which are computationally sound
for protocols that use symmetric encryption in order to show computational secrecy
properties. The protocols are described in a basic programming language which
allows sending and receiving messages and application of encryption and decryption
functions, manipulation of tuples, random number generation and equality testing.
The technique consists in a protocol transformation, which is correct in the sense
that an incorrect protocol is never transformed into a correct protocol. To achieve
correctness the symmetric encryption scheme is supposed to be IND-CCA and to
provide ciphertext integrity. The protocol transformation mainly consists in re-
moving unreachable code, replacing bitstrings by formal terms and encryptions by
encryptions of sequences of 0s. The resulting protocol can then be analyzed using
symbolic information flow techniques. These results have been further extended
in [87] to protocols that use digital signatures.

5 Computationally Sound Implementation of Higher Level Symbolic Constructs

The work that we discuss in this section is conceptually close to computational
soundness. All of these papers relate abstract symbolic languages and their concrete
implementation in such a way that reasoning at the abstract layer yields meaningful
results about the actual implementation. Unlike the papers discussed in previous
sections, the abstract languages that are considered do not deal with cryptographic
primitives explicitly, but use constructs or concepts that are security related. Cryptog-
raphy is then used to ensure that the implementation reflects the security concerns
captured at the higher level of abstraction.

Secure channels Adaõ and Fournet [5] introduce a process calculus-based language
which has, as part of the core set of operations, built-in constructs that allow
parties to (1) make use of certificates issued by authorities and (2) communicate
on authenticated channels. At this level of abstraction, the use of cryptography is
transparent, and the desired security properties of these constructs are captured by
their semantics. In the next step the authors give an implementation of the two
high-level constructs described above; both implementations are based on digital
signatures and are rather straightforward. The authors prove a soundness result that
relate the two levels of abstraction provided that the digital signature scheme used
in the implementation is universally unforgeable under chosen-message attacks [63]
and that the semantics of the abstract level is preserved by the implementation. It is
worth noting that the paper only studies authentication, and is not concerned with
secrecy properties.

Abadi et al. [4] define a process calculus which allows parties to create and use
secure (that is, secret and authenticated) channels. The desired intuitive security
properties are captured via the semantics that they attach to processes specified in
this language. A standard notion of secrecy can be defined at this level, and a type
system is used to reason about it. Next, the authors describe a lower-level language
where cryptography occurs as part of the core operations that can be performed
and give a distributed implementation for the abstract processes. Interestingly, the
implementation and the results of the paper rely on a previous computational
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soundness result. Indeed, the low-level implementation language is essentially the
one introduced by Laud [82], which we discuss in Section 3.6. Recall that programs
written in this language that are typable preserve the secrecy of the messages sent by
the honest parties. The result of Abadi, Corin, and Fournet build on the above. They
prove that a typable process is translated into a typable program. It then follows,
by Laud’s soundness result [82], that data which is secret at the abstract level is also
secret at the level of the concrete implementation (according to a computational
notion of secrecy).

Information f low Fournet and Rezk [61] investigate the use of cryptography for
enforcing secure information flow for both confidentiality and integrity. In more
details their result is as follows. They first give a simple programming language
with an associated language for specifying information flow policies. Satisfaction of
such policies can be checked using a type system that they also design. Next, they
give a lower-level implementation language which includes encryption and digital
signing as part of the primitives that can be used. The type system is such that
programs that type-check do not have undesired information flow, computationally.
The main result of the paper uses a typed translation of abstract programs to concrete
ones. They show that if the source program is typable then its translation is also
typable. They conclude that the implementation satisfies non-interference against
probabilistic polynomial time adversaries.

6 The Direct Approach: Formal Cryptographic Proofs

Bruno Blanchet [25, 27] has designed a mechanized prover, named CryptoVerif,
for security properties of cryptographic protocols. In contrast to most previous
approaches, the tool does not rely on soundness results for symbolic model but
directly automate the proofs made in cryptography, based on sequences of games.
The security property of protocol is specified as a game and is step by step reduced to
the game defining the security of the cryptographic primitives. CryptoVerif handles
shared-key and public-key encryption, signatures, message authentication codes, and
hash functions. It provides a general strategy for transforming games. In case the
strategy fails, it is possible to use an interactive mode where the user specifies by hand
which transformation should be used. The first version of CryptoVerif [25, 27] was
designed for secrecy property. It has then been extended for proving correspondence
assertions [26]. Correspondence assertions are useful for specify properties like
authentication. The tool has been tested on several protocols from the literature
(e.g. Otway-Rees, Needham–Schroeder shared-key, Denning–Sacco public-key). It
has been recently used to analyze Kerberos 5, a full industrial protocol [22]. The
CryptoVerif tool can also be used not only to automate security proofs of protocols
but also to automate security proofs of cryptographic primitives, reducing their se-
curity to standard cryptographic assumptions [38]. To illustrate their technique, they
show in particular that the Full-Domain Hash signature scheme enjoys unforgeability
under chosen-message attacks (UF-CMA) under the assumption of (trapdoor) one-
wayness of some permutations.

There have also been symbolic proofs of security for cryptographic primitives. In
[17] Barthe et al. formalize the random oracle model and the generic model in the
proof assistant COQ. This formalization is used by Tarento [104] to machine-check
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a security proof of signature schemes against forgery attacks for arbitrary generic
adversaries. In the same vein, Courant et al. [49] present an (incomplete) automated
procedure for analyzing generic asymmetric encryption schemes in the random
oracle model. More precisely, they define a programming language to specify
generic encryption algorithms, i.e. encryption algorithms that rely on generic one-
way functions and hash functions. On top of this language they define a Hoare
logic to establish invariants that allow the proof of IND-CPA security. They also
present a syntactic condition which guarantees plaintext-awareness, which together
with IND-CPA security implies IND-CCA-2 security. Although not complete the
tool has been successfully applied to the construction of Bellare–Rogaway 1993, of
Pointcheval at PKC’2000 and REACT.

7 Conclusion

In this paper we survey existing results that aim to bridge the gap between the two
approaches used in security analysis. The direct approach is rather recent and work
in this direction is in full swing. Currently, existent formalisms can tackle various
game transformation based proofs. Two important directions that need to still be
explored are game-based transformations based on rewinding (e.g. the techniques
used in proving Schnorr signature schemes) and those based on hybrid arguments,
where the number of hybrids depends on the security parameter.

On the computational soundness side, there are also many questions still open.
First, several primitives appear to be difficult to abstract (soundly) in symbolic
models. An important example is that of hash functions. In symbolic models hash
functions are usually represented by a free symbol (usually denoted by h). This for-
malization seems to account for very strong security properties that cryptographic
hash functions do not necessarily have. Another example is that of symmetric
encryption where symbolic models do not seem to capture accurately the associated
cryptographic behaviors.

Finally, most soundness results require strong security assumptions on the prim-
itives (e.g. IND-CCA-2 encryption in the active case), and this may seem to be un-
avoidable. Indeed, it has been shown that weaker but still standard assumptions may
indeed compromise security [105]. Nevertheless, in practice it is not always possible
to use strong secure primitives due to legacy or efficiency reasons. For example, one
might need to use deterministic encryption, in which case the encryption scheme
cannot be IND-CCA or even IND-CPA. It would be particularly interesting to see if
it is possible to obtain computational soundness for weaker security assumptions on
the implementation of the primitives.
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