
J Autom Reasoning (2010) 45:397–414
DOI 10.1007/s10817-010-9172-3

Using Bounded Model Checking for Coverage Analysis
of Safety-Critical Software in an Industrial Setting

Damiano Angeletti · Enrico Giunchiglia ·
Massimo Narizzano · Alessandra Puddu ·
Salvatore Sabina

Received: 12 October 2008 / Accepted: 30 March 2010 / Published online: 29 April 2010
© Springer Science+Business Media B.V. 2010

Abstract Testing and Bounded Model Checking (BMC) are two techniques used
in Software Verification for bug-hunting. They are expression of two different
philosophies: testing is used on the compiled code and it is more suited to find
errors in common behaviors, while BMC is used on the source code to find errors
in uncommon behaviors of the system. Nowadays, testing is by far the most used
technique for software verification in industry: it is easy to use and even when no
error is found, it can release a set of tests certifying the (partial) correctness of
the compiled system. In the case of safety critical software, in order to increase
the confidence of the correctness of the compiled system, it is often required that
the provided set of tests covers 100% of the code. This requirement, however,
substantially increases the costs associated to the testing phase, since it often involves
the manual generation of tests. In this paper we show how BMC can be productively
applied to the Software Verification process in industry. In particular, we show
how to productively use a Bounded Model Checker for C programs (CBMC) as
an automatic test generator for the Coverage Analysis of Safety Critical Software.

Partially supported by a Ph.D. grant (2007–2009) financed by Ansaldo STS.

D. Angeletti · S. Sabina
Ansaldo STS, Via Paolo Mantovani, 3-16151 Genova, Italy

D. Angeletti
e-mail: damiano.angeletti@ansaldo-sts.com

S. Sabina
e-mail: salvatore.sabina@ansaldo-sts.com

E. Giunchiglia · M. Narizzano (B) · A. Puddu
DIST, Università di Genova, Viale Causa, 13-16145 Genova, Italy
e-mail: massimo.narizzano@unige.it

E. Giunchiglia
e-mail: enrico.giunchiglia@unige.it

A. Puddu
e-mail: alessandra.puddu@unige.it

398 D. Angeletti et al.

In particular, we experimented CBMC on a subset of the modules of the European
Train Control System (ETCS) of the European Rail Traffic Management System
(ERTMS) source code, an industrial system for the control of the traffic railway,
provided by Ansaldo STS. The Code of the ERTMS/ETCS, with thousands of lines,
has been used as trial application with CBMC obtaining a set of tests satisfying the
target 100% code coverage, requested by the CENELEC EN50128 guidelines for
software development of safety critical systems. The use of CBMC for test generation
led to a dramatic increase in the productivity of the entire Software Development
process by substantially reducing the costs of the testing phase. To the best of our
knowledge, this is the first time that BMC techniques have been used in an industrial
setting for automatically generating tests achieving full coverage of Safety-Critical
Software. The positive results demonstrate the maturity of Bounded Model Checking
techniques for automatic test generation in industry.

Keywords Automatic test generation · Testing · Bounded model checking

1 Introduction

The importance of software verification, i.e. ensuring that a developed software does
not contain errors, is well known, in particularly in the field of safety-critical systems
where a failure can have catastrophic consequences. Testing and Bounded Model
Checking (BMC), are two techniques used in Software Verification for bug-hunting.
They are expression of two different philosophies: testing is done on the compiled
code and it is more suited to find errors in common behaviors, while BMC is done
on the source code and it is more suited to find errors in uncommon behaviors of
the system. BMC has been successfully used in the last decade to formally verify
finite state systems, such as sequential circuits and protocols, see e.g. [2]. It was
originally proposed by [3] as a complementary technique to OBDD-based model
checking. The key idea of BMC is to first build a propositional formula whose
models correspond to program traces (of bounded length) that violate some given
properties, and then check the resulting formula for satisfiability. In [10] it has been
showed how this technique can be productively used in industry and since then
many hardware companies, like Intel and IBM, started to introduce BMC in the
quality assurance process. Recently BMC has been also applied to the Software
Verification. In particular, in [7] the authors built a robust Bounded Model Checker,
called CBMC, for ANSI-C and C++ programs. CBMC allows verifying array bounds,
pointer safety, exceptions and user-specified assertions. Despite these works, testing
remains by far the most used technique for software verification in industry: it is easy
to use and even when no error is found, it can release a set of tests certifying the
(partial) correctness of the compiled system. In the case of safety critical software, in
order to increase the confidence in the correctness of the compiled system, it is often
required that the set of tests covers 100% of the code. This requirement, however,
can substantially increase the costs associated to testing: given a set of tests T (either
automatically or manually generated), if T fails to cover a portion P of the system
under test, a new set of tests T ′ has to be devised in order to cover P and, often, these
new tests are manually generated by domain experts.

Using Bounded Model Checking for Coverage Analysis 399

In this paper we show how BMC can be successfully applied to the Software
Verification process in industry. In particular, we experimented CBMC on some
of the modules of the ERTMS/ETCS [18] source code provided by Ansaldo STS.
ERTMS is an initiative from the European Community to create a unique signaling
standard as a cornerstone for the achievement of the interoperability of the trans-
European rail network. Ansaldo STS, an industry leader in Europe in the railway
sector, provided its implementation of the ERTMS/ETCS, which consists of thou-
sands of standard ANSI-C lines of code. In the field of railway signalling systems,
the CENELEC EN50128 [15] guidelines for software development recommend the
use of formal methods if possible, and testing with a 100% of coverage otherwise. In
this paper we used CBMC for the automatic generation of a test set obtaining the
target 100% code coverage, requested by the CENELEC guidelines. To the best of
our knowledge, this is the first time that CBMC has been used for automatic test
generation and coverage analysis of Safety-Critical Software in an industrial setting.
By comparing with the efforts associated to the manual generation of the tests, we
show that the use of CBMC leads to a dramatic increase in the productivity of the
entire Software Development process by substantially reducing the efforts associated
to the testing phase. These results demonstrate the maturity of the Bounded Model
Checking technique for automatic test generation in industry. The paper is structured
as follows. First, in Section 2, we review the basics of BMC in Software Verification:
this will give us the opportunity to present also the main ideas behind CBMC.
Then, in Section 3, we show how it is possible to use CBMC also for automatically
generating tests, while in Section 4 we describe (1) Ansaldo STS methodology based
on the manual construction and solution of a set of constraints, (2) our proposal to
automatize the process based on CBMC, and (3) the results of the evaluation of our
proposal on the ERTMS/ETCS case study. We end the paper with some conclusions
and the related work (Section 5).

2 Bounded Model Checking for Software Verification

For sake of simplicity, we consider programs written in the subset of ANSI-C
language consisting of if-statements, assignments, assertions, labels and goto state-
ments. We do not loose in generality making this restriction, since it is always
possible to convert an ANSI-C program into an equivalent one having only these
statements [7]. Figure 1 left, shows an example of code satisfying the restriction,
where a, max and g are input variables, i.e. variables appearing as input parameters
or variables that are not defined but used in the body of the program/function
under test.

The Software Verification process consists of verifying whether the given program
satisfies a given property. In SAT-based Bounded Model Checking [3] given a
program, the property, and an additional parameter k representing the bound, the
verification is done translating both the program and the property into a Boolean
formula in Conjunctive Normal Form (CNF) and giving the result to a SAT solver
like chaff [24] or MiniSat [17]: if the SAT solver determines that the formula
is unsatisfiable then the property holds for the given bound (which can then be
incremented), otherwise the property does not hold and a counterexample (extracted
from the model computed by the SAT solver) is returned.

400 D. Angeletti et al.

The conversion from a C program into a CNF consists of three steps:

1. Each function call is replaced by its body;
2. Each loop is unwound, i.e. the body has to be duplicated k times, where k is the

bound (goto are unwound in a similar way). Notice that each copy of the body
is guarded by an if statement that uses the same condition of the loop. Figure 1
center, shows the unwound code for k = 1 of the code on the left: the body of the
while (lines 2–9 left) is replicated once (lines 2–9 center), the while statement is
deleted and an if statement is added as a guard (line 1 center).

3. The program and the property are rewritten into an equivalent program in Single
Static Assignment (SSA) form [11], which is an intermediate representation
where each variable is assigned exactly once. In such intermediate representa-
tion, each variable x in the original program is split into versions—indicated by
the original name with a subscript, e.g., x1, x2, . . .—each representing a possible
value of x during the execution of the program. For instance, looking at Fig. 1
center,

(a) We replace the occurrence of r at line 0 with r0, and similarly for the
definitions of r at lines 6 and 8; and

(b) The only not trivial task is to determine which among r0, r1 and r2 should be
used in place of r at the right hand side of line 10: to this end, variables r3

and r4 are added and properly set.

Figure 1 right, represents the SSA form of the program in Fig. 1 left, with k = 1. If we
interpret the assignment symbol in the SSA as equality, we obtain an equational
formula corresponding to the original program with k = 1. Given the formula C
corresponding to the program (for a given k) and a formula P in the language of
C representing the property to verify, the formula C ∧ ¬P is

1. First converted into a propositional one by representing each variable as a bit-
vector of fixed size and the operations as bit-vector operations (see [8] for
details),

Fig. 1 Example of SSA transformation; Left: A generic function written in a subset of the ANSI-C;
Center: Unwinding with k = 1; Right: SSA form transformation of the program on the left

Using Bounded Model Checking for Coverage Analysis 401

2. And then into Conjunctive Normal Form (CNF) using well known conversion
methods (see, e.g., [26]).

BMC for Software Verification, as described above, was first successfully pro-
posed in a tool called CBMC: a Bounded Model Checker for C programs [7].
CBMC takes as input a C program and it allows to check safety properties such as
the correctness of pointer constructs, array bounds, and user-provided assertions.
In order to show how CBMC works, consider the example in Fig. 1. Fixing k = 1
and running CBMC, first the program in Fig. 1 center, and then the formula in
Fig. 1 right are produced. Assuming that the property to verify is that a division
by zero will never occur—represented by the assert(a �= 0) at line 5 in Fig. 1 left—
CBMC will determine that the property holds for k = 1. However, for k = 2, CBMC
will determine an assignment to the input variables—e.g., 〈g, max, a〉 = 〈1, 2,−1〉—
violating the property, i.e., causing a division by 0.

The abilities to express properties as assertions, and to return an assignment to
the input variables falsifying the property are the key points of the methodology
presented in this paper.

3 Bounded Model Checking for Test Generation

Testing a (piece of) code means generating a set of tests that, when used as input to
the program will either find a bug or make the programmer somehow more confident
that the code does not present errors. A test is an assignment to the input variables
of the program. So, for instance, given the program in Fig. 2, the set X of input
variables is {g, max, a} and a test t maps g,max and a to their respective domains,
e.g., t(g, max, a) = 〈0, 1, 0〉. The most used technique for automatic test generation is
random testing [20]: for each input variable an admissible random value is generated
and then the compiled code is run on the test. This operation is repeated until either
an error is found or enough tests have been tried. Random Testing is automatic and
simple to apply. However, it does not ensure an high coverage of the code, and it
has been shown that it has quite low chances to determine faults revealed by a small
percentage of the program input (called semantically small faults in [25]). Consider
for example the following piece of code:

0 ...
1 if a == 0 then
2 block1

3 else
4 block2

5 ...

where it is assumed that a is an integer input variable not set in the lines executed
before line 1.

The probability of exercising block1 is in the order of 1
n , where n is the maximum

allowed value for integers, which depends on the particular architecture in use. So,
for instance, if integer are represented with 64 bits, the probability of randomly
generating a test exercising (and thus possibly finding a possible fault in) block1 is

1
264 . In these cases, random testing is of little utility and, in practice, tests exercising

402 D. Angeletti et al.

these blocks are manually generated by domain experts, with an implied associated
cost.

On the other hand, tests covering these blocks can be automatically generated by
CBMC by simply inserting an assert(0) at the beginning of the block to be covered,
and running CBMC on the resulting code. In the case of the example in Fig. 2, putting
an assert(0) between b 3 and s4 and running CBMC on the instrumented code, an
error trace is returned, corresponding to the test t(g, max, a) = 〈0, 1, 0〉.

4 Using Bounded Model Checking for Coverage Analysis of Safety-Critical
Software in an Industrial Setting

The CENELEC EN50128 [15] is an European standard for the development of
Railway applications. It concentrates on the methods which need to be used in
order to provide software meeting the demands for safety integrity. The European
standards have identified techniques and measures for 5 Levels of software Safety
Integrity (SIL) where 0 is the minimum level and 4 the highest level. The railway
system requires SIL 4, meaning that the produced set of tests has to cover 100% of
the code.

Consider a program C. In order to precisely define the notion of code coverage,
we associate to C its control flow graph. The control f low graph of C is a graph
representation of all paths that might be traversed by C during its execution. Each
node in the graph represents a basic block, i.e., a piece of code without any jumps
or jump targets; jump targets start a block and jumps end a block. Directed edges
are used to represent jumps in the control flow. We also use two specially designated
blocks: the entry block, through which control enters into the flow graph, and the
exit block, through which all the control flow leaves. Figure 2 right shows the control
flow graph associated to the function at the left. In the figure,

Fig. 2 An example of function (left) and its control flow graph (right)

Using Bounded Model Checking for Coverage Analysis 403

1. Each node is labeled with a number and, for sake of clarity, is also annotated
with the statements in the basic block it represents;

2. Each edge from b s to b t is possibly annotated with the condition that has to be
satisfied in order to go from block b s to block b t;

3. Node 0 and node 6 represent the entry and exit block respectively.

In the following, we will not distinguish between a node in the control flow graph and
the corresponding basic block in the program.

Consider a program C with input X and control flow graph G.
A path is a sequence n1, n2, . . . , nm of nodes such that n1 and nm are the start and

exit nodes of G respectively, and for all i with 1 ≤ i < m, 〈ni, ni+1〉 is an edge of G.
A path is feasible if there exists an assignment to the program’s input X for which
the path is traversed during the program execution, otherwise the path is unfeasible.
The set of statements SC of C is the set containing all the statements of C. In the
same way, given the restriction on the syntax that we have, we can simply define the
set of decisions (or branches) BC of C as the set consisting of the conditions in the
if statements of C and of their negation. For example, considering the program in
Fig. 2,

SC = {s0, s1, s2, s3, s4, s5, s6, s7}; BC = {b 0, b 1, b 2, b 3, b 4, b 5}.
For a test t it is possible to define St (resp. Bt) as the set of statements executed

(resp. decisions satisfied) during the execution of the test t. For a set T = {t1, ..., tn}
of tests, we define the set of statements (resp. decisions) executed by T as:

ST =
n⋃

i=1
Sti (resp. BT =

n⋃

i=1
Bti)

For a set T of tests, the percentage of statements covered by T is:

scT = |ST |
|SC| × 100,

while the percentage of decisions covered by T is:

bcT = |BT |
|BC| × 100.

For example, considering Fig. 2, given the set of tests T = {t1, t2}, with
t1(g, max, a) = 〈0, 1, 0〉 and t2(g, max, a) = 〈0, 2, 0〉, t1 and t2 traverse the following
set of statements and decisions:

St1 = {s0, s1, s4, s5, s6, s7}; Bt1 = {b 0, b 3, b 1};
St2 = {s0, s1, s2, s3, s4, s5, s6, s7}; Bt2 = {b 0, b 3, b 2, b 4, b 1};

and then

ST = {s0, s1, s2, s3, s4, s5, s6, s7}; BT = {b 0, b 3, b 2, b 4, b 1}.
Thus,

scT = 8
8

∗ 100 = 100%; bcT = 5
6

∗ 100 = 83.34%.

404 D. Angeletti et al.

In order to get the 100% of decision coverage required by the CENELEC EN50128,
we have to extend the set T of tests, e.g. with t3(g, max, a) = 〈0, 2,−1〉 that covers
the decision predicate b 5.

4.1 Test Generation via Path Predicate Construction in Ansaldo STS

As discussed in Section 3 random test generation often does not exercise each part
of the code, i.e. it can not guarantee a 100% statement or decision coverage. In order
to cover a specific path p, the standard approach followed in Ansaldo STS, is the
generation of the path predicate associated to p, which is a system of conditions that
the input variables should satisfy in order to traverse p. To understand how the path
predicate is constructed, consider the path p = {0, 1, 3, 5, 6} in the control flow graph
of Fig. 2 right. This path traverses the decision predicates {b 0, b 3, b 1}: indeed the
path predicate associated to p is not the conjunction of the decisions in the path, i.e.

((i < max) ∧ (i ≤ 0) ∧ (i ≥ max)). (1)

In fact, (1):

– Is not a function of only input variables; and
– Does not have a solution, which would imply that p is unfeasible.

However, p can be traversed by t(g, max, a) = 〈0, 1, 0〉. Indeed, while constructing
the path predicate we ignored the execution of the statements in between the
decisions, and this is the reason for the inconsistent result. Figure 3 shows the
construction of the path predicate taking into account the statements in the path.
Starting from the Fig. 3 left, for each line we report the line number (starting from
0), the statements and decisions traversed along the path, from the initial node to the
end node. Then, starting from the bottom of the sequence, we delete each assignment
var = lhs and we substitute all the occurrences of var with lhs in the decisions below
the deleted assignment, see, e.g., [16]. So, looking at Fig. 3 left, we start deleting
line 7, without substitutions, and then line 5, substituting i in line 6 with i + 1: the
result of these two operations is shown in Fig. 3 center, while the final result of the
entire process is in Fig. 3 right, corresponding to the path predicate:

(0 < max) ∧ (0 ≤ 0) ∧ (1 ≥ max).

Fig. 3 Example of path predicate construction

Using Bounded Model Checking for Coverage Analysis 405

The above formula is satisfied, e.g., by the test t(g, max, a) = 〈0, 1, 0〉, which indeed
exercises the path p = {0, 1, 3, 5, 6}.

In Ansaldo STS, the test generation process includes the construction of the path
predicate and its solution. In more details, Ansaldo STS test generation process
consists of two main steps:

– Test generation: a test is created by setting the input variables and it is added to
the set of tests, initially empty. For the generation of the new test, a decision
that has to be covered is individuated and a path predicate, associated to a path
containing the decision, is manually constructed and solved. Solving the path
predicate will give a test ensuring the execution of the decision. This new test
is added to the set of tests.

– Decision coverage computation: the goal of the test-set generated is to cover
the 100% of the decisions of the function under test. Ansaldo STS uses a tool
called Cantata, see IPL: Cantata++, that calculates the percentage of decisions
covered by a set of tests: if it returns 100%, then the testing generation phase ends.
Otherwise, the entire process is repeated. Cantata, other then the percentage of
decisions covered, also returns the decisions which are not covered by the test-set
(if any), and these decisions are the ones considered in the previous step for the
generation of new tests.

Notice that the construction of the path predicate and the computation of one
solution is manually done in Ansaldo STS. Indeed, in the literature there are works
showing that these two steps can be automatized at least to some extent (see for
example [14, 19, 23, 30]) and that the difficult step is the solution of the derived
equations, which may contain arbitrary operators and which may be non linear [9].
It is indeed an open question whether these approaches can be productively used in
an industrial setting like Ansaldo STS.

It is however clear that the test generation process is very expensive for Ansaldo
STS: Ansaldo STS has estimated that the manual generation of a single test requires
f ifteen minutes on average by a domain expert.

4.2 Test Generation via CBMC

In this section we show how the process in Section 4.1 can be fully automatized using
CBMC. As we have already said in Section 3, assuming we want to generate a test
covering a given block of the function under test, the basic and simple idea is to add
an assert(0) in the block and then run CBMC. There are however a few subtleties that
need to be addressed in order to make such simple idea productive. The methodology
we used is presented in Fig. 4, which consists of three main steps:

1. Code Instrumentation: Consider a function f . In order to use CBMC for gener-
ating tests for f , CBMC requires (1) the existence of a function main invoking f ,
and (2) that at each function called by f is completely defined. For our goals,
the main function, beside invoking f , has also to set the input values as to
model possible user inputs. To this end, we use CBMC nondeterministic choice
functions which have the prefix nondet_: for example, the function notdet_int (see
Fig. 5 left) returns an arbitrary integer. The same functions are used as stubs for
the functions called by f and of which we do not have a definition. Consider now
the task to generate a test set for f covering all the decisions of f . The simple idea

406 D. Angeletti et al.

Fig. 4 Testing process with CBMC

to insert all the assert(0) together, one per block, and then run CBMC does not
work: during the generation phase CBMC will stop at the first assertion which
gets violated. An alternative is to insert an assert(0) at a time generating one file
for each assertion introduced. However, in this way many files will be generated,
one for each test, causing difficulties in the management of the test cases. A
better solution is to have an assert(0) inserted in each block and condition the
executability of each assert(0) to the value of an input parameter of CBMC. For

Fig. 5 An example of instrumented function

Using Bounded Model Checking for Coverage Analysis 407

this task we use CBMC ability to handle conditionals, i.e., #ifdef s. Thus, if n is
the number of decisions, we introduce n macros like:

#ifdef ASSERT_i
assert(0)
#endif

with i = 1, . . . , n. Figure 5 presents the instrumented version of the code in Fig. 2.
In Fig. 5 right, we write ASSERT_i as an abbreviation of the corresponding
conditional macro.

2. Test Generation. Given the instrumented code, CBMC is run n times, one for
each i = 1, . . . , n, with the following command line

CBMC -D ASSERT_i f ile.c–unwind k–no-unwinding-assertions

where

(a) D ASSERT_i causes the inclusion of an assert(0) in the i-th branch,
(b) File.c is the name of the file with the function to test,
(c) Unwind k fixes the unwinding bound to k: initially k is fixed to 1 and is

incremented after each iteration (see Fig. 4), and
(d) No-unwinding-assertions option prevents CBMC from including assertions

checking the non existence of inputs causing the execution of loops for more
than k times: CBMC, in the presence of multiple assertions, will try to violate
an arbitrary one, and we want CBMC to focus on violating the assertion we
added, corresponding to a test case for the i-th branch.

From each run returning an assertion violation, a counter-example is produced
from which a test is extracted.

3. Coverage Analysis. It can be the case that a run of CBMC fails to generate a
test in the previous step. In this case, if CBMC did not exit abnormally (e.g.,
because of memory out of the SAT solver), this implies that the corresponding
decision cannot be covered with the given bound k. For example, considering
the program in Fig. 2 with k set to 1, then the statements s2, s3 and s4 can not be
covered. To check if we get the desired 100% decision coverage with the test set
T so far generated, a coverage analysis process with Cantata is performed: if the
percentage of decisions covered by T is less than 100% then k is incremented
and the testing generation phase can be executed again; otherwise the process
stops.

Each block is completely automatic. Of course, the entire process has to be moni-
tored, e.g., in order not to loop forever in the case of a program with an unfeasible
block.

4.3 Experimenting with the ERTMS

Nowadays trains are equipped with up to six different extremely costly navigational
systems. A train crossing from one European country to another must switch the
operating standards as it crosses the border. The ERTMS [18] is an EU “major
European industrial project” to enhance cross-border interoperability and signalling

408 D. Angeletti et al.

procurement by creating a single Europe-wide standard for railway signalling.
ERTMS has two basic components:

– ETCS, the European Train Control System, transmits speed information to the
train driver and it monitors constantly the driver’s compliance with the speed
information;

– GSM-R is the radio system, based on the standard GSM, used to exchange voice
and data information between the track and the train.

Ansaldo STS, as a partner of the European project, produces the European Vital
Computer (EVC) software, a fail-safe system which supervises and controls the
speed profiles using the information received from the in-track balises transmitted
to the train. Following the CENELEC standards, Ansaldo STS needs to provide
a certificate of the integrity level required, i.e., it has to provide a set of tests
covering 100% of the decisions. In order to simplify the readability, the Ansaldo
STS implementation of the EVC is developed into different modules of fixed size. In
our experimental analysis we took five interconnected modules of the EVC and we
applied the automatic test generation methodology discussed in the previous section.

Figure 6 left, presents the five modules under test and their interconnections, while
the figure on the right presents a call graph of one of the functions under test. In the
call graph there is an arrow between the generic functions fi and f j if in fi there is
a function call to f j. The function without any input connections, like the function
in the first box on the left, represents the function under test and the functions
in a grey box are defined in the same module of the function under test, whereas
functions in a white box are defined in other modules. The five modules under
test contain 74 different functions presenting no recursive calls, and the maximum
number of possible iterations of each loop is known a priori. For industrial copyright
purposes, we omit each module’s name, substituting them with mi, i = 1, . . . , 5. The
five modules contain more than 10,000 lines of code, while the entire EVC project
contains more than 100,000 lines of code. Table 1 shows the results of the automatic
test generation on the five modules of the EVC. In the table,

1. Column “Mod” reports the name of the module;
2. Column “#f” shows the number of functions of each module;
3. In column “CBMC” we report the number of tests (subcolumn “#t”) generated

by CBMC according to the methodology described in the previous section, and
the time (all the times are in minutes) needed to generate them (subcolumn
“#m”);

4. Column “Ansaldo STS” shows the number of tests manually generated by
domain experts (subcolumn “#t”) and an estimation of the time needed to
generate them (subcolumn “#m”);

5. Column “Parasoft 50” (resp. “Parasoft 100”, resp. “Parasoft 300”) shows the
results for Parasoft C++ Test 6.5 (Parasoft in short from now on) when set to
automatically generate 50 (resp. 100, resp. 300) tests per function. As before, we
show the number of generated tests (subcolumn “#t”), an estimation of the time
needed to generate them (subcolumn “#m”), and the percentage of the decisions
covered by the test set (subcolumn “#C”).

Before going to the results, a few remarks are in order. First, for CBMC and
Ansaldo STS we do not report the decision coverage obtained because all the test

Using Bounded Model Checking for Coverage Analysis 409

Fig. 6 Connection between the five modules under test of the ERTMS (left); a call graph of a
function of one of the modules (right)

sets reach the target 100%. Second, as we said, the tests are automatically generated
in the case of CBMC and Parasoft, and manually generated in the case of Ansaldo
STS: thus, the subcolumn “#m” simply answers to the question “how much time
is needed to generated the tests” and does not take into account the diversity of
resources used by the two (automatic vs manual) approaches. Third, for Ansaldo
STS and Parasoft, we said that the reported timings are estimates. For Ansaldo STS,
we recall that Ansaldo STS estimates that each manually generated test requires an
average of 15 min: thus, the result is simply obtained by multiplying the number of
tests per 15. In the case of Parasoft, we are in the presence of an integrated tool
running on Windows for which it is difficult to get accurate timings. Finally, given
that Parasoft may select some values for input variables at random, we run Parasoft
five times on each module, and we show the results for the run giving the highest
decision coverage.

Considering the data in the table, we can see that for each module the number of
tests automatically generated by CBMC is close to the double of the number of tests

Table 1 Experimental analysis on the five modules of the EVC

Mod #f CBMC Ansaldo STS Parasoft 50 Parasoft 100 Parasoft 300

#t #m #t #m #t %C #m #t %C #m #t %C #m

m1 19 148 20 64 960 806 82 6 1,606 81 10 4,806 81 22
m2 8 47 24 26 390 400 87 5 800 85 7 2,400 87 18
m3 13 193 104 80 1,200 516 81 6 1,016 83 10 3,016 87 22
m4 18 184 22 110 1,650 900 66 4 1,800 70 6 5,304 76 18
m5 16 185 28 105 1,575 800 69 6 1,600 74 9 4,800 83 18
Total 74 757 198 385 5,775 3,422 27 6,822 42 20,326 98

410 D. Angeletti et al.

manually generated by Ansaldo STS. On the other hand, the time spent to manually
generate the tests is more than an order of magnitude higher than the time required
by CBMC: it is also clear that the resources involved in the process (domain experts
for manual generation and computers for the automatic generation) have different
costs. Looking at the totals in the last line, we can see that CBMC will generate 757
tests in less than 4 h, while the test manually generated are only 385, but the time
spent is almost 100 h.

The opposite holds if we compare CBMC with Parasoft 50|100|300: CBMC
generates less tests but in more time than Parasoft. Here however the main result
is that Parasoft never reaches the target 100% coverage and, looking at the results,
it seems likely that even (reasonably) increasing the number of tests which are
generated per function, full decision coverage won’t be reached, at least for the
first two modules. About Parasoft, notice the apparently contradictory result that
for the first module we get an higher coverage when generating 50 tests per function,
than when considering 100 or even 300 tests per function: this is not surprising if
we take into account that in Parasoft generation process, there is a certain degree of
randomness and it is possible to get (by chance, as—we suspect—in this case) a higher
coverage by generating less tests. Also notice that the number of tests reported—e.g.,
for Parasoft 50—is not always equal to the number of functions times 50. Indeed, for
some functions, Parasoft may generate less tests than 50 and obtain full coverage.
This is the case, e.g., for three functions in the first module which take in input a
pointer and whose body contains only two decisions, corresponding to a test checking
if the input pointer is null or not: for these functions, Parasoft generates just two tests,
one being the null pointer.

Summing up, given the target to get full decision coverage, the methodology we
proposed based on CBMC appears to be far more productive than the manual gen-
eration by domain experts. Parasoft and, more in general, automatic test generation
methods using random testing, fail to get full decision coverage on our benchmarks
and thus cannot productively be used, even when coupled with manual generation
by domain experts. To substantiate this claim, consider Table 2 showing the results
of the different systems on nine functions of the EVC.

In Table 2, (sub-)columns’ names have the same meaning as in Table 1: the two
newly introduced labels “Fun” and “#s” stand for the function name (each of the
form f j,mi , where mi is the name of the module where the function is defined) and
for the number of seconds taken to generate the tests, respectively. As it can be
observed, Parasoft always fails to cover all the decisions of each function, and the

Table 2 Experimental analysis
on some functions of the EVC

Fun CBMC Ansaldo STS Parasoft 300

#t #s #t #s %C

f1,m1 27 202 7 6,300 92%
f1,m3 35 576 14 12,600 86%
f2,m3 38 367 15 13,500 84%
f1,m4 12 66 9 8,100 90%
f2,m4 29 223 18 16,200 89%
f3,m4 21 125 12 10,800 89%
f4,m4 29 271 14 12,600 67%
f1,m5 17 161 10 9,000 75%

Using Bounded Model Checking for Coverage Analysis 411

manual generation of a single test (estimated in 900 s as usual) is going to cost more
than the time taken by CBMC to generate all the tests. It worths remarking that, as
before, for each function we run Parasoft five times and show the results for the run
obtaining the highest decision coverage.

It can be argued that the tests generated by CBMC are just skeletons, i.e., some
values for the input variables. The real tests, i.e. the ones containing the drivers
and stubs for the concrete execution, are not provided by CBMC. Ansaldo STS has
developed a completely automatic process to obtain the real tests from the skeletons,
and the time needed by this process is insignificant with respect to the time spent for
the generation.

Summing up, these results clearly indicate that the methodology proposed based
on CBMC leads to a dramatic increase in the productivity of the entire Software
Development process by substantially reducing the efforts associated to the testing
phase.

5 Conclusions and Related Work

In this paper we have shown how BMC can be successfully applied to the Software
Verification process in industry. In particular, we have shown how CBMC can be
successfully used for the automatic generation of a set of tests covering the 100%
of decisions as required by the CENELEC EN50128 guidelines. Our experiments
report that the use of CBMC led to a dramatic increase in the productivity of the
entire Software Development process, by substantially reducing the time spent, and
consequently, the costs of the testing phase. To the best of our knowledge, this is
the first time that BMC techniques have been used in an industrial setting for au-
tomatically generating tests achieving full coverage of Safety-Critical Software. The
positive results demonstrate the maturity of Bounded Model Checking techniques
for automatic test generation in industry.

The use of BMC for automatic test generation is not new in the field of verification
of circuits and microprocessor design [6, 31]. Nevertheless, as far as we know, this is
the first time that BMC has been applied in the field of coverage analysis of safety
critical software.

Pex [12, 28] is a tool for Automatic Test generation, developed at Microsoft
Research, which helps developers to write PUTs (Parameterized Unit Tests) [29]
in .NET language. For each PUT, Pex uses dynamic test-generation techniques to
compute a set of input values that exercises all the statements and assertions in
the program. The main difference between Pex and our approach is that Pex is not
completely automatic (PUTs are written by hand) and does not guarantee the 100%
of decision coverage. As a side remark, Pex is designed for the .NET framework, and
uses a constraint solver as main engine, called Z3 [13].

Another approach that uses symbolic execution is DART (Directed Automated
Random Testing) [20]. DART is a tool to automatically test the software that
combines (1) automatic interface extraction, (2) random test generation, and (3)
dynamic analysis during the execution of the random test, in order to systematically
drive the generation of the new tests along alternative program paths. It differs from
our approach since (1) it works on programs that compile; (2) it does not guarantee
100% coverage, and (3) it uses constraint solving techniques to find alternative paths.

412 D. Angeletti et al.

Symbolic execution is also used in Concolic Testing [27], where symbolic exe-
cution is combined together with the concrete execution to automatically generate
test inputs. In particular, during the execution of an either randomly or manually
generated test, all the decision constraints resolved are collected to form a path
constraint. Then, one of the decision constraints is negated to form a new path
constraint that is passed to a constraint solver (symbolic execution). If the constraint
solver returns a new assignment to the input variables, a new path constraint is
generated, otherwise if the path constraint can not be solved, one or more decisions
are substituted by their concrete values computed during the concrete execution.
The method differs from our approach in many ways, e.g., it makes an essential use
of concrete executions. Further, it does not guarantee the target 100% coverage.

Another approach, similar to Concolic Testing and DART/Pex is presented in
a tool called KLEE [5]. KLEE explores a path along the control flow graph of
the program, collecting its path constraint. Then the path constraint is passed to
a constraint solver that returns an assignment to the input variables, if any, which
makes true the path constraint. KLEE will continue until all the statements of
the program are covered by the set of tests computed. KLEE has been used to
determine high coverage tests for several complex programs, but it has not been
used in a productive industrial environment. Further, KLEE aims to statement
coverage, while our goal is decision coverage. Finally, KLEE, like previous already
mentioned approaches, use constraint solving techniques, while our approach is
based on bounded model checking and SAT.

A more similar approach using Bounded Model Checking as symbolic executor
is presented in TestEra [22], a tool for automatic test generation for Java Programs.
Given a method in Java (source code or bytecode), a formal specification of the pre-
and post-conditions of the method and a bound limit on the size of the test cases
to be generated, TestEra automatically generates all nonisomorphic test inputs up
to the given bound. Specifications are first order logic formulae, and as enabling
technology, TestEra uses the Alloy [21] tool set, which provides an automatic SAT-
based tool for analyzing first-order logic formulae. TestEra is not fully automatic
requiring a very skilled tester for writing pre- and post-conditions of each function
(first-order logic formulae) and it does not guarantee the target 100% decision
coverage.

There are also a few works using Bounded Model Checking for automatic gener-
ator tests for software analysis [1, 4]. However, these approaches are not completely
automatic and have a different focus: in [4] and [1] the goal of the generated tests
is to satisfy a given property of the program under test and not to obtain a 100%
decision coverage.

References

1. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating Tests from
Counterexamples. In: ICSE, pp. 326–335. IEEE Computer Society (2004)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv.
Comput. 58, 118–149 (2003)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, R. (ed.) TACAS. Lecture Notes in Computer Science, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

Using Bounded Model Checking for Coverage Analysis 413

4. Black, P.E., Ammann, P., Ding, W., N. I. of Standards, T. (U.S.): Model checkers in software
testing. U.S. Dept. of Commerce, Technology Administration, National Institute of Standards
and Technology, Gaithersburg (2002)

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Draves, R., van Renesse, R. (eds.) OSDI, pp.
209–224. USENIX Association (2008)

6. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical approach to coverage in
model checking. In: Berry, G., Comon, H., Finkel, A. (eds.) Computer aided verification. 13th
international conference, CAV 2001, Paris, France, 18–22 July 2001, Proceedings. Lecture Notes
in Computer Science, vol. 2102, pp. 66–78. Springer, Heidelberg (2001)

7. Clarke, E.M., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and Complexity of
Bounded Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI. Lecture Notes in Computer
Science, vol. 2937, pp. 85–96. Springer (2004)

8. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog programs using
bounded model checking. In: DAC, pp. 368–371. ACM (2003)

9. Cooper, D.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D.
(eds) Machine Intelligence, vol. 7. Edinburgh University Press, Edinburgh (1972)

10. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits of
bounded model checking at an industrial setting. In: Berry, G., Comon, H., Finkel, A. (eds.)
Computer aided verification. 13th international conference, CAV 2001, Paris, France, 18–22
July 2001, Proceedings. Lecture Notes in Computer Science, vol. 2102, pp. 436–453. Springer,
Heidelberg (2001)

11. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static
single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst.
13(4), 451–490 (1991)

12. de Halleux, J., Tillmann, N.: Parameterized unit testing with Pex. In: Beckert, B., Hähnle, R.
(eds.) Tests and proofs, second international conference, TAP 2008, Prato, Italy, 9–11 April
2008. Proceedings. In: Lecture Notes in Computer Science, vol. 4966, pp. 171–181. Springer,
Heidelberg (2008)

13. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R. Rehof, J. (eds.)
TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

14. Deason, W.H., Brown, D.B., Chang, K.-H., Cross, J.H.: A rule-based software test data genera-
tor. IEEE Trans. Knowl. Data Eng. 3(1), 108–117 (1991)

15. EC: European committee for electrotechnical standardization. In: Railway Applications—
Communication, Signalling and Processing Systems - Software for Railway Control and Pro-
tection Systems (2008)

16. Edvardsson, J.: A survey on automatic test data generation. In: Proceedings of the Second
Conference on Computer Science and Engineering in Linkö. pp. 21–28 (1999)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT.
Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer, Heidelberg (2003)

18. ERTMS: The official Website: http://www.ertms.com/
19. Ferguson, R., Korel, B.: The chaining approach for software test data generation. ACM Trans.

Softw. Eng. Methodol. 5(1), 63–86 (1996)
20. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: Sarkar, V.,

Hall, M.W. (eds.) PLDI, pp. 213–223. ACM (2005)
21. Jackson, D., Shlyakhter, I., Sridharan, M.: A micromodularity mechanism. In: ESEC/SIGSOFT

FSE, pp. 62–73 (2001)
22. Khurshid, S., Marinov, D.: TestEra: specification-based testing of java programs using SAT.

Autom. Softw. Eng. 11(4), 403–434 (2004)
23. Meudec, C.: ATGen: automatic test data generation using constraint logic programming and

symbolic execution. Softw. Test., Verif. Reliab. 11(2), 81–96 (2001)
24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient

SAT solver. In: DAC, pp. 530–535. ACM (2001)
25. Offutt, A.J., Hayes, J.H.: A semantic model of program faults. In: ISSTA, pp. 195–200 (1996)
26. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput.

2(3), 293–304 (1986)
27. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Proceedings of

the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 263–272 (2005)

http://www.ertms.com/

414 D. Angeletti et al.

28. Tillmann, N., de Halleux, J.: Pex-White box test generation for .NET. In: Beckert, B., Hähnle,
R. (eds.) Tests and proofs, second international conference, TAP 2008, Prato, Italy, 9–11 April
2008. Proceedings. In: Lecture Notes in Computer Science, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

29. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of the 10th European Soft-
ware Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 253–262 (2005)

30. Tracey, N., Clark, J.A., Mander, K.: Automated program flaw finding using simulated annealing.
In: ISSTA, pp. 73–81 (1998)

31. Vedula, V.M., Abraham, J.A., Ambler, T.P., Aziz, A., Chase, C.M., Tupuri, R.S., Vedula, M.A.,
Tech, B.: HDL slicing for verification and test (2003)

	Using Bounded Model Checking for Coverage Analysis of Safety-Critical Software in an Industrial Setting
	Abstract
	Introduction
	Bounded Model Checking for Software Verification
	Bounded Model Checking for Test Generation
	Using Bounded Model Checking for Coverage Analysis of Safety-Critical Software in an Industrial Setting
	Test Generation via Path Predicate Construction in Ansaldo STS
	Test Generation via CBMC
	Experimenting with the ERTMS

	Conclusions and Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

