
J Autom Reasoning (2011) 46:43–80
DOI 10.1007/s10817-010-9168-z

ABox Abduction in the Description Logic ALC

Szymon Klarman · Ulle Endriss · Stefan Schlobach

Received: 6 July 2009 / Accepted: 4 February 2010 / Published online: 23 February 2010
© Springer Science+Business Media B.V. 2010

Abstract Due to the growing popularity of Description Logics-based knowledge
representation systems, predominantly in the context of Semantic Web applications,
there is a rising demand for tools offering non-standard reasoning services. One
particularly interesting form of reasoning, both from the user as well as the ontology
engineering perspective, is abduction. In this paper we introduce two novel reasoning
calculi for solving ABox abduction problems in the Description Logic ALC, i.e. prob-
lems of finding minimal sets of ABox axioms, which when added to the knowledge
base enforce entailment of a requested set of assertions. The algorithms are based
on regular connection tableaux and resolution with set-of-support and are proven to
be sound and complete. We elaborate on a number of technical issues involved and
discuss some practical aspects of reasoning with the methods.

Keywords Description logic · Abduction · Non-standard reasoning services ·
Semantic tableaux · Resolution

1 Introduction

In recent decades abduction has gained considerable attention in such fields as logic,
artificial intelligence and philosophy of science. It has been widely recognized that

S. Klarman (B) · S. Schlobach
Department of Computer Science, Vrije Universiteit Amsterdam,
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
e-mail: sklarman@few.vu.nl

S. Schlobach
e-mail: schlobac@few.vu.nl

U. Endriss
Institute for Logic, Language and Computation, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, The Netherlands
e-mail: ulle.endriss@uva.nl

44 S. Klarman et al.

the style of reasoning, usually illustrated as an inference from puzzling observations
to explanatory hypotheses, is in fact inherent in a vast majority of problem solving
and knowledge acquisition tasks. The scope of applications is immense and varies
from scientific discovery, over medical and engineering diagnosis, design problems,
planning, language and multimedia interpretation, to example generation in tutoring
systems. In the face of such a widespread and diverse application interest much
research has been devoted to gaining a better understanding of the theoretical
foundations of abductive reasoning [1, 16, 40] and to developing computational
frameworks for abduction, mainly in the context of logic programming [14, 27],
but also with certain insightful proposals founded on the standard logical calculi,
such as semantic tableaux [1, 32, 33] or resolution [11, 36], targeted at reasoning in
propositional, first-order and several modal logics.

A new, challenging area for exploring the potential of abductive reasoning, which
we aim to address in this paper, is Description Logic (DL) [3]. DL has become
a leading paradigm of logic-based knowledge representation, a status that has
been acknowledged in the course of standardization efforts for the Semantic Web,
embracing DLs as the logical underpinning of the Web Ontology Language [26].1

Due to the growing popularity of the formalism, there has been an ever rising
demand for efficient tools providing different reasoning services for DL knowledge
bases. Whereas highly optimized deductive reasoning algorithms for expressive DLs
abound and are readily available [20, 24, 29, 35], the advances on non-standard types
of inference—in particular abduction—are still very limited, though the need for
them is obvious.

In their programmatic paper, Elsenbroich et al. [13] advocate initiating research
on abduction in the context of DL ontologies, supporting their case with several
application scenarios. For instance, the user of a medical ontology, covering de-
scriptions of health disorders and their symptoms, should appreciate the possibility
of querying the knowledge base for a short list of plausible diagnoses based on
a patient’s medical record. Ontology engineers, on the other hand, can benefit
from having tool support for identifying minimal sets of axioms that should be
inserted into a knowledge base for a certain entailment to hold [6]. Practically every
research community interested in applying DL/Semantic Web technologies to their
specific domains, such as e-Science, medical informatics, law and AI, computational
linguistics or computer-supported engineering and design, can easily extend the list
of feasible use cases for abduction over ontologies.

In this paper we study ABox abduction in DL, i.e. the type of abductive inference
constitutive for problems of finding all minimal sets of ABox axioms, such that added
to the knowledge base each of them triggers entailment of the initially specified set
of ABox assertions. We propose a computational framework for solving this kind of
problems in the DL ALC, and argue for its adequacy and universal character that
can facilitate extensions to more expressive DLs. Our work, being to the best of our
knowledge a so far unique attempt of addressing such a form of reasoning, is thus
the first step towards the creation of practical abductive reasoners for the family of
DL languages.

1See http://www.w3.org/TR/owl-features/ and http://www.w3.org/TR/owl2-profiles/.

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-profiles/

ABox Abduction in the Description Logic ALC 45

Example For a motivating illustration of the problem, which will serve as the
running example in the remainder of the paper, consider a simple knowledge base
(Fig. 1) defined by the terminology T (TBox) and the two assertions given in A
(ABox). The terminology states that every individual who is an optimist or who is a
nihilist owning a dog is happy, whereas every individual who watches only comedies
is an optimist. Moreover, it is known that John is a nihilist and Snoopy a dog. Given
this background one might want to find out what kind of facts, i.e. what ABox
assertions, should be true in the described world for John to be naturally considered
a happy individual, or more formally, for the assertion Happy(John) to be derivable
from the knowledge base. Clearly, there are several alternatives. For instance,
one can conjecture that John is an optimist, which automatically renders him an
instance of happy individuals. Another, more specific guess is that John watches only
comedies, as then he is obviously an optimist, and thus a happy individual. Also, since
Nihilist(John) is already in the knowledge base, the requested statement is entailed
by assuming that John owns a dog, or in particular, that John owns Snoopy, who is
already known to be a dog.

In the presented example, the background knowledge together with the query
Happy(John) form an ABox abduction problem, whereas the briefly listed alter-
natives constitute its solutions. Arguably, reasoning tasks of this sort comprise an
essential share of all abduction problems in DL, in particular the majority of cases of
potential attractiveness for end-user applications.

In this paper we introduce a framework for solving ABox abduction problems
in the DL ALC. As its central part we define two reasoning calculi, based on
refinements of two well-known automated theorem proving techniques: regular
connection tableaux and resolution with set-of-support. Both proof methods, enjoy-
ing the benefits of connection-driven decision procedures for satisfiability, in the
sense originally formulated by Bibel [7], exhibit a goal-oriented behavior in solving
abductive problems. Roughly, the approach allows for conducting the search only
among those formulas that have good chances of contributing to the abductive
solution, discarding possibly large parts of the knowledge base that are irrelevant
for the problem. Next to the calculi, we define a special clausal transformation of DL
axioms, which uses the techniques of flattening and Skolemization of formulas under
standard translation, and finally we specify a procedure of reconstructing abductive
solutions from the parts of the proofs generated by the calculi. The whole method is
proven sound and complete.

The presentation of the work is organized as follows. In the next section we set out
the formal framework for ABox abduction in ALC, introducing basic notions and
discussing the requirements for the procedure. We also review other work related to
the problem. In Section 3 we provide a detailed account of our approach, describing
the transformation of DL formulas, the two calculi and the method of reconstructing
solutions. Section 4 contains the proofs of some logical properties of the framework,

Fig. 1 Happy John ABox
abduction problem

46 S. Klarman et al.

notably soundness and completeness, and addresses additional constraints typically
applied for restricting the space of abductive solutions. Finally, we conclude the
paper with a summary and a discussion of the results.

2 Problem Definition

DLs are a family of logical languages intended particularly for representing knowl-
edge about a domain of application. With their rich means of expressiveness and
epistemically motivated clustering of knowledge bases into the terminological and
factual layer, DLs provide a wide range of interesting contexts for investigating
and applying forms of abductive reasoning. ABox abduction, for the first time
formally identified in [13], comes here as conceptually the simplest, nevertheless
computationally very demanding type of abduction, which requires reasoning over
both layers of the knowledge base. In this section we introduce the preliminary
notions and discuss the background necessary for explaining and justifying our
approach to solving ABox abduction problems.

2.1 Preliminaries

A signature of a DL language L consists of a set of individual names NI , a set
of concept names NC and a set of simple roles NR [4]. The semantics is given
by an interpretation I = (�I, ·I), where �I is a non-empty domain of individuals
and ·I is an interpretation function defining the meaning of the vocabulary by
mapping every individual name to an individual from �I , every concept name to
a subset of individuals, and every role name to a set of pairs of individuals from the
domain. By default, we also treat � (top concept) and ⊥ (bottom concept), where
�I = �I , ⊥I = ∅, as fixed symbols in the language. The remainder of the semantics
is defined inductively on the construction rules for complex expressions available
in the given language. In the following, we will consider only languages including
concept constructors presented in Table 1.

A DL knowledge base K = (T ,A) consists of a TBox T and an ABox A.
The TBox is a formal representation of the terminological part of the knowledge
base, establishing relationships between concepts and roles. We allow the liberal
representation of general TBoxes, based on general concept inclusions (GCIs), that
is, axioms of the type C � D, where C and D are arbitrary concept descriptions. In
this case C is said to be a subconcept of D. The equivalence of concepts, denoted
as C ≡ D, is an abbreviation for two GCIs holding between C and D and vice versa.
The ABox of a knowledge base consists of a set of assertions about individuals, of the

Table 1 The syntax and
semantics of complex concept
constructors

Constructor Syntax Semantics

Concept negation ¬C �I \ CI

Concept intersection C � D CI ∩ DI

Concept union C 	 D CI ∪ DI

Existential restriction ∃r.C {x | ∃y(〈x, y〉 ∈ rI ∧ y ∈ CI)}
Universal restriction ∀r.C {x | ∀y(〈x, y〉 ∈ rI → y ∈ CI)}
Nominal {a} {aI }

ABox Abduction in the Description Logic ALC 47

Table 2 Semantics of DL
axioms

Axiom Semantics

C � D CI ⊆ DI

C ≡ D CI = DI

C(a) aI ∈ CI

r(a, b) 〈aI , bI 〉 ∈ rI

form C(a) or r(a, b), where a, b are names of individuals, C is a concept description,
and r is a role. The former states that a is an instance of C, whereas the latter
expresses that individual a is related to b via role r.

The semantics of TBox and ABox axioms is defined in a standard way, presented
in Table 2. An interpretation ·I satisf ies an axiom if and only if the semantics of the
axiom is respected under ·I . An interpretation is a model of a knowledge base when
it satisfies all its axioms. Finally, we say that a knowledge base is satisf iable if and
only if it has at least one model. Else, the knowledge base is unsatisf iable.

2.2 ABox Abduction Problems and Solutions

The following two definitions introduce the central notions of ABox abduction
problem and solution to such a problem.

Definition 1 (ABox abduction problem) Let LK and LQ be DLs, K = (T ,A) a
knowledge base in LK and � a set of ABox assertions in LQ, denoted as the
abductive query. We call the tuple 〈K, �〉 an ABox abduction problem i ff K � �

and K ∪ � � ⊥.

Definition 2 (ABox abduction solution) Let LS be a DL and A a set of ABox
assertions in LS. A is a (plain) solution to abductive problem 〈K, �〉 i ff K ∪ A � �.
Moreover, we call A:

1. consistent i ff K ∪ A � ⊥.
2. relevant i ff A � �.
3. minimal i ff there is no solution B to 〈K, �〉 that is minimal with respect to A. We

say that B is minimal with respect to A iff there exists a renaming ρ : N�
I(B) �→

N�
I(A), where N�

I(B) and N�
I(A) are the sets of individual names from A and B

that do not occur in K, such that A � ρB, but for every renaming � : N�
I(A) �→

N�
I(B) it holds that B � �A.

ABox abduction, in the above sense, is the problem of finding a set of assertions A
that, when added to the knowledge base K, triggers entailment of a desired set of
ABox axioms �, which otherwise does not follow from K. The notion of entailment
and its symbol |= are understood here simply as the classical consequence relation,
meaning that A entails B (A |= B) if every model of A is at the same time a model
of B. We generalize the definition proposed in [13] by allowing multiple assertions
as elements of an abductive query, interpreting them as implicitly connected by
conjunction. We also adopt a purely logical perspective on abductive reasoning, and
depart from the traditional, philosophically influenced nomenclature, which silently
implies the existence of an explanatory or causal relationship between the premise
and a conclusion of the inference. Instead of explanandum and explanans, common
in the literature, e.g. Elsenbroich [12], we use the neutral notions of the query and

48 S. Klarman et al.

Table 3 Concept constructors in the DLs ALC and ALE
ALC : � | ⊥ | A | ¬C | C � D | C 	 D | ∀r.C | ∃r.C
ALE : � | ⊥ | A | ¬A | C � D | ∀r.C | ∃r.C

a solution to the problem.2 The only constitutive feature of an abductive problem
in this setting is, therefore, indetermination of the truth value of the query given the
background knowledge, whereas that of a solution is its potential of forcing this value
to true when coupled with the knowledge base.

Since the space of abductive solutions can be in principle infinite, it is common
to employ additional constraints to narrow it down, at least by excluding obviously
unacceptable solutions, and even further, to a fragment of a higher pragmatic value
from the application perspective. The choices proposed here, widely approved in the
studies on the subject, e.g. Aliseda [1], Paul [36], should be to our opinion the least
controversial, as they embrace arguably the most intuitive and universal criteria used
in all applications of abductive reasoning.

– The consistency requirement discards solutions inconsistent with the knowledge
base. For instance, if ¬Optimist(John) followed from the knowledge base, in the
introductory example, then Optimist(John) would not be a consistent solution
to the problem. Obviously, it is not rational to conjuncture something that is
necessarily false.

– The relevance condition filters out those solutions that entail the query without
any contribution of the background knowledge. Such outcomes trivialize the
problem instead of really solving it, as it is the case, for example, with solution
Happy(John) to the happy John problem.

– The requirement for minimality or simplicity of abduced hypotheses is often a
subject of debate in the literature, and in fact, several different, incompatible
criteria have been proposed. Since it is not our intention to favor any particular
view on abduction, we refrain from adjudicating between the proposals, and
instead abide by the weakest and most fundamental notion of minimal solutions
in the analytical sense of Quine’s prime implicants [37]. The minimality criterion
in this meaning ensures that solutions do not contain superfluous information,
i.e. that one does not abduce more than is necessary. Clearly, there is no point in
conjecturing that (Optimist � Nihilist)(John) if Optimist(John) alone is already
sufficient to solve the problem. Naturally, one can easily plug in a stronger notion
of minimality on top of this one.

We will further address the problem of selection criteria, including the computational
aspects of their verification, in Sections 4.2 and 4.3.

In this paper we restrict our attention to ABox abduction problems, the knowl-
edge bases of which are expressed in ALC, the basic attributive language with
complex concept negation, which is the most prominent fragment of DL, covering
an essential part of expressive means available in DLs. The syntax of the queries and
abductive solutions is restricted to the conjunctive variant of ALC, namely ALE . The
syntax of the two languages is recapped in Table 3. Noticeably, in ALE the union

2The variability of the abductive context has been recently highlighted also by Gabbay and
Woods [19].

ABox Abduction in the Description Logic ALC 49

constructor is prohibited and use of negation is reserved only for atomic concepts.
No new expressive means with respect to ALC are introduced.

The syntactic restriction that we use is typically applied in the context of ab-
duction, e.g. Aliseda [1], Elsenbroich [12], for obtaining fine-grained and inter-
esting problems and solutions. For instance, the assertion (Optimist 	 ∀watches.
Comedy)(John) would not be a legal ALE solution to the happy John problem,
although it does solve the problem in the ALC language. Still, among ALE solutions
one can find separately all the disjuncts comprising this assertion, i.e. Optimist(John)
and ∀watches.Comedy(John), which in most cases is exactly what one seeks through
abductive reasoning: a list of alternative ways the world should be for the query
to hold. Given such knowledge it follows analytically that also the disjunctions
of these alternatives solve the problem. There are, however, also other types of
disjunctive solutions that cannot be reconstructed in a similar manner. For instance if
∀watches.(Comedy 	 Musical)(John) was a valid ALC solution to the problem, then
only ∀watches.Comedy(John) and ∀watches.Musical(John) would be retrieved in
ALE , where the union of the two (∀watches.Comedy 	 ∀watches.Musical)(John) is
obviously not equivalent to the original ALC assertion. Admittedly, in such cases the
disjunctive solutions are simply lost and unrecoverable.

2.3 Related Work

A discussion on the place for abduction in the context of DLs has been initiated by
Elsenbroich et al. [13], who introduced a broad classification of the relevant types
of abductive problems, coined some of the basic terminology, provided a number
of use case scenarios, and finally outlined a far-reaching research programme on
the subject. The call for tool support for abductive reasoning required in ontology
engineering has been repeated also by Bada et al. [6].

Before that abduction in DL has been studied only by Colucci et al. [10], who
proposed a tableaux-based algorithm for concept abduction, the problem of finding
all subconcepts of a given concept, in order to support so-called matchmaking tasks.
Also some attention has been given by Espinosa et al. [15], reported by Möller
and Neumann [34], to the problem of facilitating interpretation of visual data using
ontologies with DL rules. There, the authors discuss a simple inference mechanism
for ABox abduction over the rule bodies, which suggests ways of enhancing the
conceptualization of the data. Admittedly, the approach taken in both cases is quite
narrowly scoped. The first one, although essentially based on similar principles
as ours, is limited to unfoldable, acyclic terminologies in the DL ALN . Potential
extensions towards more expressive DLs, in particular ones offering at least all
boolean operations in concept descriptions, do not seem trivial and would definitely
require significant revisions in the employed calculus. Moreover, the approach is
unsuitable for harder reasoning tasks, such as ABox abduction, considered in this
paper. The second framework, presented by Espinosa et al., does not in fact involve
genuine abductive reasoning for DL, but merely abduction over rules accompanying
DL ontologies. Thus the style of inference used there falls much closer to the
paradigm of abductive logic programming, whereas DL reasoning occurs only in the
most standard form, as a support for deductive parts of the process. Both methods
are therefore of a little help for the goal of this work, which is to propose a universal
framework for ABox abduction in DL. Even though our focus is on the DL ALC,

50 S. Klarman et al.

we want the approach to be generic, so that lifting it to more expressive extensions
of ALC is possible.

Other loosely related work includes results on the computational complexity
of concept abduction in DL EL, obtained by Bienvenu [8], and some proposals
concerning other reasoning tasks, which reveal some affinity with the abductive style
of inference. The latter include the work of Schlobach et al. [39] on debugging
incoherent terminologies, where the problem is to find a minimally unsatisfiable
subset of TBox axioms, and the proposals of Kalyanpur et al. [28], and later Horridge
et al. [23], on finding justifications, i.e. minimal sets of axioms of an ontology
that make a particular entailment of the ontology hold. Both tasks can be seen
as borderline cases of abduction, where the query (the bottom concept in the
former problem, and the specified entailment in the latter) already follows from
the knowledge base, but still one has to check why it is the case, i.e. which subset
of the ontology exactly guarantees the entailment. Regardless of this similarity, the
formal properties of both problems permit a much simpler computational treatment,
based on looking up into the inference graph generated by a standard DL reasoner,
or even using the reasoner as a black-box. Hence, the solutions discussed by the
cited authors bare no significant overlap with ours, which conversely, rest on deep
adaptations of the standard automated reasoning techniques. On a different note, the
works on justifications offer some interesting procedural explications of the notion
of precision, which is closely related to our notion of minimality, but which in this
paper is provided only with a semantic interpretation.

From the logical perspective, an important contribution has been delivered by
Mayer and Pirri [32, 33] and Aliseda-Llera [1], who laid down foundations for
universal tableaux-based algorithms for abduction in propositional, modal logics
(MLs) and first-order logic (FOL). Prior to these, quite different approaches to
abduction in logic, built on linear resolution, have been investigated by Cox and
Pietrzykowski [11] and employed in several applications. The main idea, promoted
by these authors, of grounding abductive reasoning on the standard refutation proof
systems has largely shaped the conceptual basis of the framework presented here,
although a shift towards DLs presents a number of technical challenges not occurring
in the case of logics addressed in the cited works. Moreover, we account for a goal-
oriented style of reasoning, which was also not considered by the others. Such an
approach to abduction in logic has only been studied by Elsenbroich [12], but rather
than building on standard calculi, this work is based on the goal-directed approach
to deduction of Gabbay and Olivetti [17, 18], and as such remains hardly comparable
to ours. Likewise, goal-oriented abduction in the context of logic programming, as
discussed e.g. by Kakas et al. [27], is incommensurable with the algorithms discussed
here due to the fundamental discrepancy between the properties of the underlying
formalisms.

2.4 Requirements

Based on a number of insights coming from the literature on abduction, DLs,
and automated reasoning techniques, we have identified the following high-level
requirements as the guiding principles for constructing the framework for ABox
abduction.

ABox Abduction in the Description Logic ALC 51

– Universality and f lexibility: The framework should be universal enough to be
able to accommodate different expressive extensions of DL, thus enabling
relatively uniform treatment of all DLs. Further, as signaled in Section 2.1, it
should not incorporate any selection criteria for delimiting the scope of solutions,
apart from ones that are supported by a firm epistemological justification, such
as consistency, relevance and minimality in the sense defined above. Finally, it
should not be confined to a particular search strategy, e.g. depth-first or breadth-
first, leaving the issue open to customization. At the same time it has to be
sufficiently flexible to allow tuning the solving strategy with respect to different
dimensions. Preferably, one should be able to model within the framework
a specific interpretation of the notion of best hypothesis, which is central to
abduction, and adjust the balance of completeness/efficiency trade-off, inherent
in abductive reasoning, according to the requirements of concrete application
scenarios.

– Utilization of standard reasoning methods: Given the state-of-the-art advance-
ments in the field of automated reasoning, especially concerning FOL, MLs
and DLs, it is highly desirable to build the framework on reasoning calculi
that offer good chances for integration with existing reasoners, thus facilitating
reuse of well-developed and broadly applied methodologies and transfer of
verified optimization techniques. In particular, since current DL reasoners are
based almost exclusively on semantic tableaux [20, 24, 35] and resolution [29],
the choice of refinements of these techniques as the foundation for abductive
reasoning tools for DL knowledge bases seems most natural and promising.

– Goal-orientedness: Considering the issues of efficiency and basic principles of
intelligent problem solving, ideally, the algorithm should exhibit a goal-oriented
behavior. The reasoning should start from the abductive query as the goal to
be explained and conduct a form of backward-chaining search for solutions
through the formulas in the knowledge base. Consequently, the employed proof
strategies should allow for a selective use of the background knowledge, such
that those parts of the knowledge base that cannot contribute to solving the
problem are not considered and thus do not introduce extra computational
burden for reasoning. As will be pointed out in the beginning of the next section,
one way of achieving goal-orientedness in this sense is employing connection-
driven proof strategies [30].

The framework for ABox abduction, presented in the subsequent sections, uses a
connection-based variant of semantic tableaux and a refinement of the resolution
calculus. It involves standard transformation techniques for DL axioms, which can
embed almost all expressive means of DLs, and finally, it does not depend on any
selection criteria apart from those discussed in Definition 2. All known optimizations,
search strategies, heuristics or other augmentations, which can be easily implemented
in the calculi, are not intrinsic to the framework, and left merely as options. Our
belief is that such a setting guarantees, to a sufficient extent, satisfaction of the
requirements.

3 Computing Solutions

In this section we present the computational framework for solving ABox abduction
problems in the DL ALC. We start with a general overview of the approach,

52 S. Klarman et al.

indicating its formal and conceptual foundations, and provide an outline of its
structure. In the subsequent parts we proceed with presenting the details. We close
the section with an example of solving an ABox abduction problem in the framework.

3.1 Roadmap: A High-level Overview

The reasoning mechanism constitutive to our approach to solving ABox abduction
problems rests on two observations concerning the model-theoretic and proof-
theoretic aspects of abductive inference, respectively.

On the model-theoretic side, solving an abduction problem can be seen as finding
a formula that is unsatisfiable in all those models of the knowledge base in which the
abductive query is not satisfied, therefore a formula that can eliminate all unintended
models of the background knowledge. To solve a problem, one requires an overview
of those models, or at least of their parts, in order to decide which formulas
can succeed in eliminating them. This observation, endorsed by several authors
[1, 11, 32, 33] and followed here, can be exploited within standard refutation
proof systems such as resolution and semantic tableaux, which given the negated
abductive query along with the knowledge base as input, provide a necessary insight
into the structure of all the unintended models. In this context, recall that open
branches in a tableau tree can be associated with possible models of the input, while
resolvents in a resolution proof represent constraints that have to be satisfied in every
such model.

From the proof-theoretic perspective, as shown elsewhere [30], the goal-oriented
strategy of solving abduction problems, so typically employed by human reasoners,
in which one sets the abductive query as the goal and moves backwards through the
constraints of the knowledge base, setting intermediate goals, in order to identify
consecutive, more indirect solutions, can be formally reinterpreted in terms of
connection proof methods, in the sense originating from the works of Bibel [7] and
Andrews [2]. These techniques, giving rise to a family of decision procedures for
satisfiability in a number of logics, make central use of the notion of connection, i.e.
an occurrence of complementary literals in two formulas in clausal form. Following
the path of connections, one can easily identify all fragments of the knowledge base
that are semantically interrelated, and so can be potentially relevant for solving a
given abductive problem.

Our framework for ABox abduction incorporates features of both FOL and
ML reasoning techniques. Thus we rely heavily on the well-known correspondence
results between DL and the multi-modal logic Kn [38], and further, through the so-
called standard translation, to FOL [9]. The proof system is based on the methods of
regular connection tableaux [21] and resolution with set-of-support [31], both sound
and complete reasoning calculi for FOL, and both hinging on connection-driven
proof strategies.

Let us now roughly describe the procedure for solving an ABox abduction
problem 〈K, �〉. Given the input transformed into FOL, we attempt to construct a
refutation proof for K � �. For this we use either of the two calculi, hence initiating
the proof with ¬� and trying to show that K ∪ ¬� � ⊥. Notice that the proof
succeeds if it is possible to close all branches of the tableau tree or derive an empty
resolvent, respectively. At each stage of the construction of the proof it is possible
to force its completion by adding a suitable conjunctive formula A, which either

ABox Abduction in the Description Logic ALC 53

closes all open branches or contradicts some resolvent. Such a formula will be a plain
solution to the translated problem 〈K, �〉, as obviously it follows that K ∪ A � �.
After transforming A from FOL back to DL, for which one has to account for an
underlying relational structure of an essentially modal character, we obtain a set
of ABox assertions that solve the original problem. The following sections address
particular aspects of the framework.

1. In Section 3.2 we present the transformation of DL formulas into a clausal form,
which uses the standard translation to FOL, but at the same time also encodes
the modal structure of the formulas.

2. In Section 3.3 we elaborate on the two reasoning calculi, providing details of the
proof construction rules.

3. Section 3.4 accounts for the aspects of bookkeeping of the relational structure
underlying the proofs. To this end we introduce the notion of an abductive graph.
Further, we define the conditions under which reverse transformation from FOL
to the DL ALE is possible.

4. Section 3.5 describes the procedure of reverse transformation, i.e. of retrieving
solutions from a proof. This defines our target notion of a �ABox-solution to an
ABox abduction problem.

The procedure �ABox described in this section computes plain solutions to an ABox
abduction problem. How to extend the basic method to also account for consistency,
relevance and minimality will be discussed in Sections 4.2 and 4.3.

3.2 Transformation

A complete transformation of DL formulas into the representation required by the
abductive procedure comprises translation into Negation Normal Form of TBox
axioms and concept descriptions in ABox assertions, followed by a reduction to
Conjunctive Normal Form and f lattening of the clauses, i.e. extraction of nested
concept descriptions from quantification restrictions. Finally, all the clauses are
Skolemized, while their modal structure is recorded in a way which enables a faithful
reconstruction of the Kripke models underlying the abductive proofs. Overall, we
obtain an equisatisf iable and structure-preserving transformation of the input DL
formulas. The entire transformation procedure is summarized in Table 7, while in
the following paragraphs we discuss its particular fragments.

We start by extending the signature of the language with a set Fsko = { f1, f2, . . .}
of Skolem functions and a set P = {P1, P2, . . .} containing non-DL predicates,
possibly of different arity. We also assume there is an infinite set Var = {x1, x2, . . .}
of variables. We refer generically to any term, a variable or a Skolem term, using
letters t, t1, t2, . . ., and write t = t1, . . . , tn to denote their sequence. We use ·� to mark
introduction of new symbols: x� a new variable, f � a new function and P� a new non-
DL predicate. Arbitrary predicates, DL or non-DL, are denoted by capital letters
L, L1, L2, We assume that in such contexts ¬Li stands for the complement of
Li. Below we present an outline of the three stages of transformation, marked by
τ¬, τ� and τ x

t , for NNF, CNF (involving flattening) and Skolemization, respectively.
The layering of the process is rather schematic, as in practice it should be much more
efficient to interleave the transformation steps belonging to different stages.

54 S. Klarman et al.

Table 4 Negation normal
form transformation

τ¬(¬¬C) = τ¬(C) τ¬(¬(C 	 D)) = τ¬(¬C) � τ¬(¬D)

τ¬(¬A) = ¬A τ¬(¬(C � D)) = τ¬(¬C) 	 τ¬(¬D)

τ¬(A) = A τ¬(¬∀r.C) = ∃r.τ¬(¬C)

τ¬(¬⊥) = ¬⊥ τ¬(¬∃r.C) = ∀r.τ¬(¬C)

τ¬(⊥) = ⊥ τ¬(C 	 D) = τ¬(C) 	 τ¬(D)

τ¬(�) = ¬⊥ τ¬(C � D) = τ¬(C) � τ¬(D)

τ¬(¬�) = ⊥ τ¬(∀r.C) = ∀r.τ¬(C)

τ¬(∃r.C) = ∃r.τ¬(C)

The NNF and CNF transformations of ALC concept descriptions, presented in
Tables 4 and 5, are standard and do not require any comments. The flattening
technique, included in Table 5, is also a relatively common practice, used for
instance in [41] and [23]. Under flattening the qualifying concept descriptions in the
quantification restrictions are replaced with new predicate symbols, which are then
related to the descriptions by means of separate GCIs. Such an approach is desirable
for facilitating connection-driven construction of proofs, as given a flattened formula
one obtains a direct access to all its literals at any depth. Figure 2 presents a small
example of the transformation.

The transformation of a concept description through τ¬ and τ� results in a set of
unions. With every such union C = C1 	 . . . 	 Cn we associate the clause comprising
all its disjuncts Cl = {C1, . . . , Cn}. Within any set of such clauses � we distinguish the
subset of their roots R(�), i.e. all those clauses that do not contain a literal ¬Pi for
any Pi ∈ P, and the remaining subset of the non-root clauses nR(�).

Finally, all clauses are translated to FOL, as presented in Table 6, by means of the
transformation τ x

t , where the subscript contains a single term and the superscript a
possibly empty sequence of variables. The translation function takes as the input a
clause Cl ∈ � along with the set of all non-root clauses nR(�). All quantification
restrictions in the clause are replaced with the corresponding FOL expressions
according to the standard translation, while the predicates are suitably Skolemized.
During this process the modal structure of every clause, originally encoded in its
quantification restrictions, is extracted and recorded as the so-called modal core μ of
the clause, i.e. the graph describing role relationships between the terms occurring
in the Skolemized clause. The modal cores of clauses are used later in the process
of finding well-formed ABox solutions to abduction problems. The output of the
transformation includes therefore a set of Skolemized clauses (so-called τ -clauses),
each one accompanied by its modal core. Observe, that in order to Skolemize
flattened formulas in a satisfiability preserving manner, the non-DL predicates
have to be used for carrying over all universally bound variables into separated
subformulas. The sequences of these variables are noted down as the superscripts of
the transformation function. This way all Skolem functions that might possibly occur
on the deeper levels of the nestings, obtain appropriate arguments. Since non-DL

Table 5 Conjunctive normal
form transformation with
flattening of the axioms

τ�(
⊔

1≤i≤n Ci) = ⊔
1≤i≤n Ci, for Ci ∈ {L,∀r.P, ∃r.P}

τ�(B 	 (C 	 D) 	 E) = τ�(B 	 C 	 D 	 E)

τ�(B 	 (C � D) 	 E) = τ�(B 	 C 	 E), τ�(B 	 D 	 E)

τ�(B 	 ∀r.C 	 D) = τ�(B 	 ∀r.P� 	 D), τ�(¬P� 	 C)

τ�(B 	 ∃r.C 	 D) = τ�(B 	 ∃r.P� 	 D), τ�(¬P� 	 C)

ABox Abduction in the Description Logic ALC 55

Fig. 2 Happy John problem: NNF and CNF transformations and flattening

predicates uniquely identify the points of split, it is guaranteed that the connection
can be established only in the original place and that all variables originally shared
between a sub- and their superformulas will be fine-tuned by unification. An example
of Skolemized clauses along with their modal cores is given in Figure 3.

Table 7 presents the complete procedure for computing the τ -transformation of
the formulas that comprise the input of an ABox abduction problem, i.e. a knowledge
base, consisting of TBox and ABox axioms, and the negated query. The latter
case requires a slightly more elaborate approach, as the assertions in the query
are implicitly connected by conjunction. The negation of the query is, therefore,
equivalent to the disjunction of the negations of those assertions, which has to be
properly reflected in defining the resulting root clauses and their modal cores.

As a final remark concerning transformation, we note that in practice it is not
necessary to thoroughly pre-process the knowledge base via all the translation rules
defined above. Since the proof procedures used in the framework are connection-
driven it is possible to benefit from their specific character also on the level of
transformation, rendering it equally goal-oriented. Notice that, having a formula
translated into NNF, one can easily answer whether it is relevant for a given part of
the proof. Given such knowledge, the remainder of the transformation of the formula
can be deferred until a particular connection is actually requested.

3.3 Tableaux and Resolution-Based Abduction

Semantic tableaux [21] and resolution [5] are the two best known and most com-
monly used automated reasoning methods for FOL, with a plethora of refinements,

Table 6 Skolemization and the modal core

τ x
x ({A} ∪ Cl) = {A(x)} ∪ τ x

x (Cl) μ := μ(Cl)
τ x

x ({¬A} ∪ Cl) = {¬A(x)} ∪ τ x
x (Cl) μ := μ(Cl)

τ x
x ({∀r.Pi} ∪ Cl) = {¬r(x, x�), Pi(x, x�)} ∪ τ x

x (Cl), μ := {r(x, x�)} ∪ μ(Cl)
{¬Pi(x, x�)} ∪ τ

x,x�

x� (Cl′) μ := μ(Cl′)
for every {¬Pi} ∪ Cl′ ∈ nR(�)

τ x
x ({∃r.Pi} ∪ Cl) = {r(x, f �(x)} ∪ τ x

x (Cl), μ := {r(x, f �(x))} ∪ μ(Cl)
{Pi(x)} ∪ τ x

x (Cl), μ := {r(x, f �(x))} ∪ μ(Cl)
{¬Pi(x)} ∪ τ x

f �(x)
(Cl′) μ := μ(Cl′)

for every {¬Pi} ∪ Cl′ ∈ nR(�)

56 S. Klarman et al.

Fig. 3 Happy John problem: Skolemization and the modal core

optimization techniques and extensions to other logics available. In the following
we explain the procedure of solving abductive problems based on application of
two variants of the calculi: regular connection tableaux and resolution with set-of-

Table 7 Complete τ -transformation procedure

Axiom transformation COMPUTE τ(ϕ):

IF ϕ = C ≡ D
THEN OUTPUT τ(ϕ) = τ(C � D) ∪ τ(D � C)

IF ϕ = C � D
THEN � := τ� ◦ τ¬(¬C 	 D)

OUTPUT τ(ϕ) = {τ x�

x� (Cl) | Cl ∈ R(�)}
IF ϕ = C(a)

THEN � := τ� ◦ τ¬(C)

OUTPUT τ(ϕ) = {τa(Cl) | Cl ∈ R(�)}
IF ϕ = r(a, b)

THEN μ({r(a, b)}) = {r(a, b)}
OUTPUT τ(ϕ) = {{r(a, b)}}
IF ϕ = ¬r(a, b)

THEN μ({¬r(a, b)}) = {r(a, b)}
OUTPUT τ(ϕ) = {{¬r(a, b)}}

Knowledge base transformation COMPUTE τ(K), for K = (T ,A):

OUTPUT τ(K) = {τ(ϕ) | ϕ ∈ T ∪ A}
Negated query transformation COMPUTE τ(¬�), for � = {ϕ1, . . . , ϕn}:

� := R(τ (¬ϕ1)) × . . . × R(τ (¬ϕn)), where:
¬ϕ = ¬r(a, b) if f ϕ = r(a, b); ¬ϕ = ¬C(a) if f ϕ = C(a)

R(τ (¬�)) := {⋃1≤i≤n Cli | 〈Cl1, . . . , Cln〉 ∈ �}
μ(

⋃
1≤i≤n Cli) := ⋃

1≤i≤n μ(Cli)
nR(τ (¬�)) := ⋃

ϕ∈� nR(τ (¬ϕ))

OUTPUT τ(¬�) = R(τ (¬�)) ∪ nR(τ (¬�))

ABox Abduction in the Description Logic ALC 57

Table 8 Regular connection tableau rules

{L1, . . . , Ln} ∈ K L1

.

.

.
.
.
.

.

.

.

¬L ¬L2 ⊥
L1 | . . . | Ln × ×

β − rule Branch closure

i ff there exists an MGU σ of L and Li for some i ff there exists an MGU σ of L1

1 ≤ i ≤ n, and σ is applied to the whole tableau; and L2 and σ is applied to the
for no 1 ≤ i ≤ n there is Li on the branch above. whole tableau.

support. Our approach diverges from similar proposals presented in the literature
[1, 11, 32, 33], which differently, refer to the standard tableau and linear resolution
in addressing abductive inference. We assume acquaintance with the basics of both
calculi and only briefly characterize them below in order to introduce the respective
refinements.

A clause tableau is a labeled tree, whose nodes are literals and whose root contains
a set of clauses. The tree is developed by consecutive applications of the beta
expansion rule to the clauses. Each clause can be expanded only once on a branch.
Whenever a branch contains complementary literals or the symbol ⊥, the closure
rule can be applied. A tableau is saturated if no more expansion steps are possible. A
tree T is a tableau refutation proof of � from K, denoted as K � �, if the root of T
contains K ∪ ¬� and all branches of T are closed. A regular connection tableau is a
clause tableau, whose construction is restricted by the following conditions:

– Connectedness: A clause can be expanded on a branch only if it contains a literal
that is complementary to the literal in the current leaf.

– Regularity: A clause can be expanded on a branch only if it does not contain a
literal that already occurs on the branch.

Table 8 summarizes the inference rules applicable in regular connection tableaux.
The resolution method is based on repetitive application of two inference rules—

binary resolution and factoring—to a set of clauses. On every application of a rule, a
new clause, a resolvent or a factor, is generated and added to the set of all clauses. A
resolution deduction of � from a set of clauses K, denoted as K � �, is a derivation
of an empty clause from K ∪ ¬� by means of the rules. The inference halts when
none of the rules can be applied anymore. In such a case it is said that the resulting
set of clauses is saturated. A resolution deduction of � from K is a deduction with
set-of-support S ⊆ K if every resolvent has at least one parent that is (a factor of) a
resolvent or (a factor of) a member of S. Table 9 presents the two inference rules
used in resolution with set-of-support.3

In case of both methods we shall assume that the selection procedure for inference
steps is fair, i.e. that no clause that can be potentially used in the proof is persistently

3Note that derivation of Cl from Cl ∪ {⊥}, included in Table 9, should be seen as a special case of an
application of the binary resolution rule. Since by definition ⊥ = L ∧ ¬L it follows that Cl ∪ {⊥} can
be replaced in S with clauses Cl ∪ {L} and Cl ∪ {¬L}, which can be subsequently resolved against
each other, resulting in clause Cl.

58 S. Klarman et al.

Table 9 Resolution with set-of-support rules

Cl1 ∪ {L1} ∈ K Cl2 ∪ {¬L2} ∈ S
σ(Cl1 ∪ Cl2) ∈ S

Cl ∪ {⊥} ∈ S
Cl ∈ S

Cl ∪ {L1, L2} ∈ S
σ(Cl ∪ {L1}) ∈ S

Binary resolution Factoring

i ff there exists an MGU σ of L1 and L2.

omitted. We also require that all variables in a clause included to the proof are
consistently renamed, in order to avoid unintended interactions with already used
variables. Under certain conditions concerning the choice of the first clause to be
expanded on the tableau and the choice of the set-of-support for resolution, which
we highlight in Section 4, the calculi are sound and complete for FOL [21, 31]. As
for now, let us take it for granted that in the context of abduction the choice of the
negated abductive query as the initial clause or the set-of-support is sufficient to
satisfy these conditions.

Both reasoning methods share some important formal similarities. First, they em-
ploy a connection-driven proof strategy, which means that a clause can be included
in a proof, constructed by any of the methods, only if it can be connected to it. More
specifically, a clause Cl ∪ {L1(t1)} can be connected to an abductive proof through a
literal L2(t2) occurring in that proof either as the leaf of an open branch or a literal
in a resolvent only if there exists an MGU σ of L1(t1) and ¬L2(t2). As mentioned
in the opening of this section, the proofs constructed according to such a strategy
are typically structured in a more intuitive manner and involve less redundancy, in
the sense of employing inference steps over clauses that are semantically irrelevant
for the goal to be proved, and as such do not contribute to the proof. Second, both
calculi are refutation proof systems. To prove that a certain conclusion is entailed
by a set of premises one proves that the union of the premises and the negated
conclusion is unsatisfiable. This characteristic makes both calculi especially attractive
for abductive applications, allowing to identify all possible solutions of an abductive
problem by attempting to construct a refutation proof for the negated abductive
query, given the knowledge base.

Let us refer to a sample ABox abduction problem 〈K, �〉. Consider a borderline
case when the query actually follows from the knowledge base. In such a situation
there has to exist a refutation proof for K � �, i.e. a closed tableau tree or a
resolution deduction of an empty clause, initiated by ¬�, with K as the set of
premises. Naturally, both calculi operate only on FOL clauses, therefore the input
has to be provided under the τ -transformation. The critical point here is to carefully
select the initial clause for the tableau and the set-of-support in the resolution proof.
In the latter case we will use R(τ (¬�)), i.e. the set of all root clauses obtained through
transformation of the negated query, as defined in Table 7. In the tableau setting, we
will be initiating alternative proofs with consecutive clauses from that set. If the proof
τ(K) ∪ τ(¬�) � ⊥ succeeds we clearly do not deal with a genuine abductive problem,
as no additional formula is needed to entail the query. Otherwise, we can identify
such formulas by analyzing the structure of possible partial proofs constructed by
either of the calculi. Observe, that at every stage of a proof it is possible to construct
a formula A that forces its completion by simply closing all open branches of the
tableau or enabling derivation of an empty clause via resolution. The simplest way of
constructing A is to pick literals that are unifiable with the complements of the leaves

ABox Abduction in the Description Logic ALC 59

of open branches of the tableau, or with the complements of the literals comprising
any of the resolvents, and connect them with the conjunction symbol. Such a formula
would obviously complete the proofs of the query, and thus it could be seen as
a solution to the translated problem 〈K, �〉, as obviously τ(K) ∪ A ∪ τ(¬�) � ⊥
and therefore K ∪ A � �. Since both calculi are sound and complete for FOL it is
guaranteed that every such solution will be found at some point, provided it satisfies
certain syntactic and semantic requirements. Eventually, we will be interested only
in the formulas that can be translated back to the DL ALE , so at this stage we call A
only a FOL base of a solution to the original problem 〈K, �〉. The following definition
gives the formal account of this notion.

Definition 3 (FOL-base of solution) Let 〈K, �〉 be an ABox abduction problem. A
set of literals AFOL is a FOL-base of a solution to 〈K, �〉 if f either of the following
conditions holds:

1. (tableau): There exists a regular connection tableau T such that:

(a) the root of T contains all and only the clauses τ(K) ∪ τ(¬�),
(b) T was initiated by expansion of some clause Clinit ∈ R(τ (¬�)),
(c) AFOL = {¬L(t) | L(t) ∈ Cl}, where Cl is the set of the leaves of all the open

branches of T.

2. (resolution): There exists a sequence of resolution inference steps, with the
resulting set of resolvents R, where:

(a) the initial set of clauses comprised all and only τ(K) ∪ τ(¬�),
(b) R(τ (¬�)) was the set-of-support for that sequence,
(b) AFOL = {¬L(t) | L(t) ∈ Cl}, where Cl is a resolvent in R.

As will be shown in Section 4 both conditions in fact coincide, hence both reason-
ing methods can be used interchangeably in the framework for ABox abduction.

3.4 Abductive Proof Constraints

In the context of FOL abduction one would typically apply reverse Skolemization [32]
to the FOL-base retrieved from the proof in order to obtain an adequately quantified
FOL formula solving the problem. Under this technique all free variables in a FOL-
base get bound by existential quantifiers, whereas all Skolem terms are replaced
by universally quantified variables. Thus the resulting formula can be immediately
unified with the literals in the FOL-base and consequently force completion of the
abductive proof.

Modal logics require a more sophisticated approach. The possibility of binding
variables is limited to the use of modal operators, which allow to express statements
concerning only the objects in the domain accessible from other objects through
particular relations. For a sound reconstruction of an abductive solution from a
modal proof one has to take into account the entire chain of relations and modalities
that led to a particular term occurring in the proof [33]. This characteristic applies
also to DLs and is handled in the framework for ABox abduction by means of
abductive graphs, which encode the relational structure underlying the proof of each
FOL-base.

60 S. Klarman et al.

An abductive graph is a tuple G = (V, E), whose vertices are terms (variables,
individual names, Skolem terms) and edges are labeled with role names. With every
abductive proof and its FOL-base we associate a single graph, which describes the
relationships between all the terms occurring in the proof. The modal meaning of
the terms is implied by their syntax: variables represent individuals bound by some
universal restriction, Skolem terms, by existential restrictions, while individual names
stand for individuals that were not originally bound in the used clauses. The graph
is initiated at the start of the proof, by including all role assertions occurring in the
ABox of the problem, and later it evolves along the construction of the proof. On
each inference step it is extended with new edges and vertices present in the modal
core (Section 3.2) of the connected clause, under the substitution applied to the proof
at that step. We formalize the notion of abductive graph by the following inductive
definition.

Definition 4 (Abductive graph) Let 〈K, �〉 be an ABox abduction problem and
AFOL a FOL-base obtained in an abductive proof for 〈K, �〉.
1. If AFOL is derived from a clause Cl, such that Cl is the initial clause expanded on

the tableau or one of the clauses in the initial set-of-support, then G = (V, E) is
the abductive graph associated with the proof of AFOL iff V = {a, b | r(a, b) ∈
E} and E = {r(a, b) | r(a, b) ∈ A} ∪ μ(Cl), where A is the ABox in K.

2. If AFOL is obtained by connecting a clause Cl to an abductive proof involving
application of an MGU σ , and G ′ = (V ′, E′) is the abductive graph associated
with that proof, then G = (V, E) is the abductive graph associated with the proof
of AFOL iff V = {a, b | r(a, b) ∈ E} and E = σ E′ ∪ σμ(Cl).

The abductive graphs, along with the associated FOL-bases, enable a sound
reconstruction of ABox assertions from abductive proofs. Roughly, we will apply
a reverse relational Skolemization, thus reversing the effects of Skolemization in a
similar way as in the FOL case, but instead of quantified FOL formulas we derive
ALE assertions involving nested quantification restrictions over the role chains
encoded in the graph. The expressive power of ALE delimits the scope of graphs that
can be submitted to such a procedure. The notion of ALE-admissible graph reflects
these limitations.

Definition 5 (ALE-admissible graph) Graph G = (V, E) associated with the FOL-
base AFOL is ALE–admissible i ff the following requirements are satisfied:

1. for every Skolem term t1 ∈ V there is a unique t2 ∈ V and r, such that r(t2, t1) ∈ E,
2. for every Skolem term t ∈ V, t can be only succeeded by a tree-shaped subgraph

in G, which does not contain individual names from NI .

The rationale behind the restrictions is rather obvious. DL formulas, like their
modal counterparts, have the tree model property. Since after reverse relational
Skolemization, Skolem terms can only stand at a position quantified by a universal
restriction, all their successors have to be ordered in a way that can be captured by a
complex concept assertion. Such an ordering has to give rise to a tree-shaped model.
Moreover, every such model requires a single root, hence the single predecessor
requirement. Finally there are no expressive means in ALE for ensuring that

ABox Abduction in the Description Logic ALC 61

particular individuals belong to these models, hence no names from NI can occur
in such subgraphs. On the contrary to Skolem terms, relationships between named
individuals and variables, which can be always replaced by new individual names
in the process of reverse Skolemization, can take structures of arbitrary shapes,
expressible via ABox assertions of the form r(t1, t2). Figure 4 presents an example
of an ALE–admissible graph that could be associated with some abductive proof.

Apart from discarding clauses associated with non-admissible graphs, we will also
place restrictions on the FOL-bases, which are similarly inexpressible in ALE .

Definition 6 (ALE-admissible base) Let AFOL be a FOL-base obtained in an abduc-
tive proof for an ABox abduction problem. AFOL is ALE-admissible i ff it contains
none of the following literals:

1. Pi(x) or ¬Pi(x) for any Pi ∈ P,
2. r(t1, fi(t2)) for any fi ∈ F and any r.

The first condition acknowledges impossibility of including non-DL predicates
into DL assertions. The second one discards clauses that contain r(t1, fi(t2)), a
construct inexpressible in the DL ALE after reverse Skolemization. In fact the FOL-
bases obtained through the procedure will only contain elements of the form:

1. A(t) or ¬A(t), where A ∈ NC and t is an individual name, Skolem term, or a
variable;

2. r(t1, t2), where r ∈ NR and t2 is an individual name or a variable;
3. ¬r(t1, t2), where r ∈ NR and t2 is a Skolem term.

3.5 Solution Retrieval

We can now describe the procedure of retrieving a set of ALE ABox assertions
from a FOL-base and the associated abductive graph. The idea is to first address

Fig. 4 An ALE–admissible graph associated with an abductive proof: every Skolem vertex has
exactly one predecessor and can be only succeeded by a tree-shaped subgraph containing no
individual names

62 S. Klarman et al.

all tree-shaped subgraphs of the abductive graph that are rooted at Skolem terms.
Proceeding bottom-up, we fold the relevant assertions from the FOL-base into
nested concept descriptions. Next, we consider the remaining parts of the graph
and the assertions applicable to them, and render them into DL axioms accordingly.
To avoid syntactic ambiguity we will be referring only to the solutions in a certain
normalized form. To this end we define a satisfiability preserving transformation π ,
presented in Table 10, which removes redundancy from ALE concept descriptions.
For any concept description C in ALE , we write π(C) to refer to a concept equivalent
to C, whose all subconcepts are closed under π . Further, if A is a set of ABox
assertions in ALE , we will call A non-redundant if and only if for all concept
assertions C(a) ∈ A it holds that C = π(C), and there is not more than one concept
assertion in A per individual name.

The following definition introduces the notion of a �ABox-solution to an ABox
abduction problem.

Definition 7 (�ABox-solution) Let 〈K, �〉 be an ABox abduction problem, AFOL

an ALE-admissible FOL-base obtained in an abductive proof for 〈K, �〉, and G =
(V, E) an ALE-admissible abductive graph associated with AFOL. A non-redundant
set of assertions A is a �ABox-solution to 〈K, �〉 i ff it is semantically equivalent to
a set of assertions A′ (i.e. A � A′ and A′ � A) generated according to the following
procedure:

1. A′ := AFOL

2. For every term t ∈ V with no successors in G, if it is a Skolem term or has a
Skolem predecessor, get r(t′, t) from E and begin:

(a) If t is a variable then add ∃r.
�{C | C(t) ∈ A′}(t′) to A′ and remove every

C(t). In case there are no C(t) ∈ A′ add ∃r.�(t′). Remove r(t′, t) from A′.
(b) If t is a Skolem term then add ∀r.

�{C | C(t) ∈ A′}(t′) to A′ and remove
every C(t). In case there are no C(t) ∈ A′ but there is ¬r(t′, t) ∈ A′ then
add ∀r.⊥(t′). Remove ¬r(t′, t) from A′.

(c) Remove t from V and r(t′, t) from E.

3. For every (remaining) term t ∈ V with no successors in G, begin:

(b) If t is an individual name then for every C(t) ∈ A′ choose one option:

– leave it unmodified

Table 10 Redundancy
elimination from concept
descriptions in ALE

π(∀r.�) = �
π(C � �) = C

π(C � ¬C) = ⊥
π(∃r.⊥) = ⊥

π(C � ⊥) = ⊥
π(C � C) = C

π(∀r.C � ∀r.D) = ∀r.(C � D)

π(∃r.C � ∃r.(C � D)) = ∃r.(C � D)

π(∃r.C � ∀r.⊥) = ⊥
π(∃r.� � ∃r.C) = ∃r.C

ABox Abduction in the Description Logic ALC 63

OR

– if there is r(t′, t) ∈ E add (∀r.C)(t′) to A′ and remove C(t). If t′ is a
variable then instantiate it with a new individual name.

(b) If t is a variable then choose one option:

– instantiate t with a new individual name and consider it according to
the previous rule

OR

– if t has a unique immediate predecessor in G and r(t′, t) ∈ E then add
∃r.

�{C | C(t) ∈ A′}(t′) to A′ and remove every C(t). In case there are
no C(t) ∈ A′ add (∃r.�)(t′). Remove r(t′, t) from A′.

(c) Remove t from V and every r(t′, t) from E.

Provided the requirements for admissibility of the FOL-base and its graph are
satisfied, the procedure returns a proper set of ALE ABox assertions A′. Let us
shortly comment on the consecutive steps of the retrieval procedure. Initially (1) A′
contains only concept and role literals. Note, that the former might be used only in
simple concept assertions or as the qualifying concepts in quantification restrictions,
whereas the latter, either in role assertions or implicitly in existential restrictions
(positive role literals) or in the universal restrictions of the form ∀r.⊥ (negative role
literals). First (2) we consider the tree-shaped subgraphs rooted at Skolem terms in
G. We start with their leaves and move node by node up the trees. Assertions over
variables are converted into existential restrictions on their respective predecessors
(2a), while assertions over Skolem terms are translated into universal restrictions
(2b). Once all Skolem terms are removed from the graph we consider the remaining
individual names and variables, similarly, starting from the leaves of the graph and
proceeding upwards (3). For every individual name t and every assertion C(t) one
can choose between a solution, which uses C(t) directly or another one, in which
C(t) is replaced with (∀r.C)(t′), provided t′ is an r-predecessor of t in G (3a). For
every variable term t one has an option of treating it as a new “abduced” individual
(3b’), or by considering it, like before (2a), as an individual entailed by an existential
restriction placed on the predecessor of t, provided there exists a unique one (3b”).

3.6 Example

To illustrate how ABox abduction problems can be solved in the framework dis-
cussed in this section we will now present a small example of using the approach
in handling the happy John problem 〈K, {Happy(John)}〉. Recall the content of the
problem’s knowledge base given in the introductory section and its transformation
outlined in Section 3.2. For parsimony, we will compute parts of solutions using
different calculi, though obviously both of them generate the same answers.

Figure 5 presents a regular connection tableau tree for the translated problem.
Every subtree of the tableau with the root containing the clauses of the knowledge
base and the negated query is a partial refutation proof for the query. The leaves
of these subtrees surrounded by boxes form FOL-bases for proper ABox solutions,
listed further in Table 11.

64 S. Klarman et al.

Fig. 5 Happy John problem:
tableaux proofs

The resolution proofs for the query are included in Fig. 6. Again, the resolvents
printed in boxes give rise to FOL-bases of �ABox-solutions to the problem.

Finally, Table 11 gives a detailed account of all the �ABox-solutions to the problem
found within the presented scope of computation. Every solution is derived from its
respective FOL-base and the associated abductive graph. Observe the evolution of
the graphs in the course of construction of the proofs. For instance, in the steps from
2. to 3. (tableau) and from 1. to 4. (resolution) the graphs are extended with two
new vertices and an edge, after connecting a clause with non-empty modal core. In
the step from 5. to 6. the substitution applied to the resolvent is used also over the
associated graph.

Table 11 Happy John problem: solutions

FOL-base Abductive graph Solution

1. {Happy(John)} {Happy(John)}
2. {Optimist(John)} {Optimist(John)}

3. {Comedy(f1(John))} •
John

watches
�� •

f1(John)
{∀watches.Comedy(John)}

4.
{Nihilist(John),

owns(John, x2), Dog(x2)} •
John

owns
�� •

x2

{Nihilist(John),
∃owns.Dog(John)}

5. {owns(John, x2), Dog(x2)} •
John

owns
�� •

x2

{∃owns.Dog(John)}

6. {owns(John,Snoopy)} •
John

owns
�� •

Snoopy
{owns(John,Snoopy)}

ABox Abduction in the Description Logic ALC 65

Fig. 6 Happy John problem: resolution proofs

Clearly, all the generated sets of ABox assertions are plain solutions to the
problem 〈K, {Happy(John)}〉, although some of them might not be minimal, e.g.
4., relevant, e.g. 1., or consistent. In order to verify satisfaction of those criteria an
additional post-processing is required. In Sections 4.2 and 4.3 we will devise a simple
verification strategy, based on the use of a standard DL reasoner, as well as discuss
some computational limitations to the problem of verifying minimality. Before that,
in Section 4.1, we will show that the procedure of finding �ABox-solutions is correct.

4 Correctness and Selection Criteria

In this section we elaborate on basic formal properties of the introduced procedure.
First, we prove its soundness and completeness with respect to the semantics of plain
solutions to ABox abduction problems, as specified in Definition 2. Following this,
we address the task of applying additional selection criteria to the generated sets of
plain solutions, and further, the problem of correctness and termination of reasoning
under the criteria. We consider two cases: a general one (Section 4.2), involving no
syntactic constraints on the knowledge bases, and the case of acyclic terminologies
(Section 4.3), for which stronger results can be obtained.

4.1 Soundness and Completeness

Below, we formally argue for adequacy of the procedure for solving ABox abduction
problems. In Theorem 3 we claim that every solution that is found by the procedure
is indeed a plain solution to the input problem. Conversely, Theorem 4 ensures that
if A is a consistent and minimal solution to a given problem, then A will be found via
�ABox in a finite number of steps.

We start by recapping the results of soundness and completeness of the two calculi
discussed in the paper.

66 S. Klarman et al.

Theorem 1 (Regular connection tableaux: completeness [21, Thm. 4.14], [22, Thm.
3]) If a f inite ground clause set S is unsatisf iable then there is a regular connection
tableau proof for S, in which a relevant clause4 Cl ∈ S is the f irst to which a beta rule
is applied.

Proposition 1 (Regular connection tableaux: soundness) If there exists a regular
connection tableau proof for a set of ground clauses S then S is unsatisf iable.

Proof The proposition follows immediately from soundness of the standard semantic
tableaux calculus [21, Thm 3.12] and by observing that every regular connection
tableau proof is in fact a standard tableau proof. �	

Theorem 2 (Resolution with set-of-support: completeness [31, Thm. 3.2.2.]) If S is
an unsatisf iable set of ground clauses and T ⊆ S such that S \ T is satisf iable then
there exists a resolution refutation of S with set-of-support T.

Proposition 2 (Resolution with set-of-support: soundness) If there exists a resolution
refutation of a set of ground clauses S with set-of-support T ⊆ S then S is unsatisf iable.

Proof The proposition follows immediately from soundness of the standard resolu-
tion method [31] and by observing that every resolution with set-of-support proof is
in fact a resolution proof. �	

To simplify the layout of the following arguments we will entirely adopt the FOL
perspective on the procedure and the involved DL formulas. In order to do so,
we must acknowledge that due to the specific character of the employed calculi
(Section 3.3), the τ -transformation (Section 3.2), and the admissibility conditions
(Section 3.4), reasoning in the framework can be seen as standard translation-based
theorem proving for ALC and ALE , where the input is reduced to Skolem Normal
Form, i.e. Conjunctive Normal Form of Skolemized formulas. Notice, that for any
DL axiom ϕ, the set of clauses τ(ϕ) closed under connection steps through the non-
DL predicates, i.e. the set of all clauses that can be possibly constructed by pasting
back each non-root clause to its original position marked by a non-DL predicate, is
in fact equivalent to the set SNF(st(ϕ)), where st(ϕ) denotes the standard translation
of ϕ. In the remainder of this section, unless specified otherwise, we will hence
assume that all considered DL formulas are simply sets of Skolemized FOL clauses
constructed exactly in such a way. In particular, for any ABox abduction problem
〈K, �〉 and a solution A, we will assume the following abbreviations hold:

K := SNF(st(K))

¬� := SNF(¬∧
st(�))

A := SNF(st(A))

Given the above conventions observe the following.

4A clause is relevant in S iff it belongs to a minimally unsatisfiable subset of S. See Definition 8
below.

ABox Abduction in the Description Logic ALC 67

Proposition 3 Let A be a set of ABox assertions in the DL ALE with the signature
(NI, NC, NR). Then:

1. Every clause Cl ∈ A must be of the form Cl = ⋃
0≤i≤n{¬ri(ti, ti′)} ∪ {L(t)}, where

ri ∈ NR, for all 1 ≤ i ≤ n, and L ∈ {A,¬A, r,⊥,�} for some A ∈ NC or r ∈ NR.
2. For every clause Cl∃r = ⋃

0≤i≤n{¬ri(ti, ti′)} ∪ {r(tn′ , tn′′)} ∈ A, where tn′′ is a Skolem
term, there exists at least one clause Cl∃.C ∈ A, such that Cl∃r \ {r(tn′ , tn′′)} ⊆ Cl∃.C

and L(tn′′ , t) ∈ Cl∃.C.

Proof 1) The claim follows immediately from the analysis of the syntax of ABox
assertions in ALE . Notice that under the standard translation of such axioms the
disjunction connective occurs only between negated role atom and the (translated)
qualifying concept of every universal restriction. After distributing conjunction
over disjunction and splitting the conjuncts we obtain a set of clauses of the form
presented. 2) Whenever tn′′ is a Skolem term then the literal r(tn′ , tn′′) in Cl∃r must
originate from an existential restriction. But then there has to also exist at least
one more clause Cl∃.C containing the term tn′′ , which had to occur in the qualifying
concept used in the same restriction. By the style of the standard translation and the
SNF transformation, one can see that this clause has to contain Cl∃r \ {r(tn′ , tn′′)} as
its proper subset. �	

The proof of soundness is relatively simple. We demonstrate that if a �ABox-
solution A to 〈K, �〉 is added to the abductive proof from which it had been retrieved,
the proof has a continuation that succeeds, thus guaranteeing that K ∪ A � �.

Theorem 3 (�ABox: soundness) If A is a �ABox-solution to the ABox abduction
problem 〈K, �〉 then A is a plain solution to 〈K, �〉.
Proof Let 〈K, �〉 be an Abox abduction problem and A a �ABox-solution to it. To
demonstrate that A is a plain solution to 〈K, �〉 we have to show that K ∪ A � �

(Definition 2). We rest on the soundness of regular connection tableaux and res-
olution with set-of-support (Propositions 1 and 2) and show there is a refutation
proof for K ∪ A ∪ ¬� constructed with either of the calculi. Recall the form of
clauses in A from Proposition 3. Also, note that FOL-base AFOL of A must have
contained all concept and positive role literals occurring in those clauses (except
for �), plus the negative role literals preceding ⊥, modulo reverse Skolemization
of the terms involved (Definitions 3 and 7). Focus on the abductive proof from which
A was retrieved, add A to the set of premises and continue the proof. Consider
one of the concept literals C(s) ∈ AFOL (analogical argument will hold also for
positive and negative role literals). Clearly there must be a clause in A, which
contains the corresponding literal. Let Cl = {¬r1(t1, t1′), . . . , ¬rn(tn, tn′), C(t)} be that
clause (where we allow the set of negative role literals to be empty). Connect Cl
to the corresponding leaf on the tableau or to the respective resolvent via C(t).
Unification is naturally possible due to the style of reverse Skolemization involved
in the reconstruction of A from AFOL. In particular, one of the following must be
the case:

1. s is a variable: Then t must be a Skolem term or an individual name.
2. s is an individual name: Then t must be a variable or an individual name such

that s = t.
3. s is a Skolem term: Then t must be a variable.

68 S. Klarman et al.

After including Cl in the proof, the connecting literal on the tableau or in the resol-
vent is replaced by the sequence of literals {¬r1(t1, t1′),¬r2(t2, t2′), . . . ,¬rn(tn, tn′)}.
Notice, that every occurrence of such a literal was originally motivated by the
presence of a corresponding edge in the abductive graph associated with the FOL-
base of A (Definition 4). Note also that for every 1 ≤ i ≤ n, term ti′ is a variable.
Consider the last literal ¬rn(tn, tn′). Clearly there must be an edge rn(sn, sn′) in the
graph such that sn′ is an individual name or a Skolem term, or otherwise tn′ would not
have been reversely Skolemized into a variable. Consider the following cases:

1. sn and sn′ are individual names: Then one of the following has to hold:

– There is a role assertion rn(sn, sn′) in the ABox, included in the graph by
default. Then rn(sn, sn′) can be used as a connection to ¬rn(sn, sn′).

– There is a role assertion rn(sn, sn′) in AFOL, and consequently in A. Then
rn(sn, sn′) can be used as a connection to ¬rn(sn, sn′).

2. sn′ is a Skolem term: Then there must be a clause Cl′ used in the same proof,
whose modal core contains rn(sn, sn′). Consider this clause. Notice that by the
definition of the τ -transformation (Table 6) either Cl′ contains r(sn, sn′) (since
sn′ is a Skolem term it has to originate from some existential restriction), or
there is another clause that contains rn(sn, sn′), whose remaining literals belong
to Cl′. In either case it is possible to use such clause in the proof, connecting
it to ¬rn(tn, tn′). Again unification is possible due to soundness of reverse
Skolemization. From that point on construction of the proof should mimic the
inference steps that were used in the context of Cl′ in the same proof. Eventually,
all literals from the connected clause must obtain the same connections as the
ones from Cl′ and so this fragment of the proof, started with ¬rn(tn, tn′), succeeds.

Repeat the argument for all remaining negative role literals and for all clauses in
A. Clearly the refutation proof has to succeed, resulting in a closed tableau tree or
an empty resolvent, which shows that indeed K ∪ A � �. �	

The completeness result, presented in Theorem 4, holds under an additional
restriction, which reveals a certain limitation of the procedure. Namely, any con-
sistent and minimal solution A to a problem 〈K, �〉 is guaranteed to be found,
only if every subconcept C occurring in the assertions from A, such that C �= ⊥, is
satisfiable with respect to K, i.e. for which there exists a model of the knowledge
base I = (�I, ·I) such that CI �= ∅. Consider for instance the problem 〈K, �〉,
where K = {C � B � ¬B, ∀r.(D � ¬D) � A} and � = {A(a)}. The procedure will
return solution ∀r.⊥(a), but will fail to output ∀r.C(a), even though it clearly solves
the problem, as K |= C � ⊥. Nevertheless, the connectedness requirement makes
it impossible to use the clauses from C � B � ¬B for solving the problem, as they
could not be connected to the proof starting from ¬A(a). As the use of unsatisfiable
concepts other than ⊥ is practically always unintended in applications of Description
Logics, we believe that this limitation does not diminish the pragmatic value of the
procedure.

The proof of the result is more involved than that of soundness and requires addi-
tional formal machinery, which we now introduce. First, we assume that solutions to
ABox abduction problems, which are under consideration in this section, are always
non-redundant in the sense defined in Section 3.5. For any non-redundant set of

ABox Abduction in the Description Logic ALC 69

assertions A under SNF transformation, we define an operation A\� = {Cl ∈ A |
�(t),¬⊥(t) �∈ Cl}, i.e. an operation of removing from A all clauses containing the
literal �(t) or ¬⊥(t) for any term t. Now we note a simple observation.

Proposition 4 Let A be a consistent solution to an ABox abduction problem 〈K, �〉.
Any solution B to 〈K, �〉 such that B\� ⊂ A\� is minimal with respect to A.

Proof Observe that once all clauses containing symbol � are removed from A, then
any proper subset A′ ⊂ A\� is deductively weaker than A\�, i.e. A′ �|= A\�. Any
solution B, such that B\� ⊂ A\�, must be therefore deductively weaker from A and
therefore, by Definition 2, minimal with respect to A. �	

Let us recall the notion of minimal unsatisf iability and present three lemmas,
building upon it, which will play a pivotal role in the following part.

Definition 8 (Minimal unsatisfiability) A set of clauses is minimally unsatisfiable
(MU) if it is unsatisfiable and each of its proper subsets is satisfiable. A clause is
relevant in a set of clauses S if it belongs to a MU subset of S.

Lemma 1 Let S be a MU set of ground clauses, A ⊆ S a set of unit clauses, and Cl any
clause in S \ A. The following claims hold:

1. There exists a regular connection tableau tree initiated with beta expansion of Cl,
whose root is S \ A, such that {¬L | {L} ∈ A} is the set of the leaves of its open
branches.

2. There exists a sequence of resolution inference steps from S \ A with set-of-support
{Cl} resulting in the clause {¬L | {L} ∈ A}.

Proof

1. Since Cl is relevant in S, it follows from Theorem 1 that there exists a closed
tableau initiated with Cl, whose root contains S. Notice that if you remove any
unit clause from A the proof cannot succeed, or else S would not be MU. Hence
every clause from A contains a literal complementary to the leaf on (at least) one
of the closed branches. Now if A is removed from the root we get a tableau, for
which {¬L | {L} ∈ A} is the set of the leaves of its open branches.

2. Since S \ {Cl} is satisfiable, it follows from Theorem 2 that there has to be a
resolution refutation of S with set-of-support {Cl}. Assume now that A is not
present in S. We prove the claim of the lemma by induction on the cardinality
of A.
Consider |A| = 0. Then {¬L | {L} ∈ A} is an empty clause. Clearly, derivation of
such a clause in the specified setting is guaranteed by Theorem 2.
Assume that for some k and any A, such that |A| = k, the clause Cl⋃ ¬A =
{¬L | {L} ∈ A} is derivable. Consider |A| = k + 1 and let A = B ∪ {{L′}}, such
that |B| = k. Assume {L′} is added to the set of premises. By inductive assump-
tion it follows that the clause Cl⋃ ¬B = {¬L | {L} ∈ B} is now derivable. We
argue that there exists a derivation of Cl⋃¬B in which the last inference step

70 S. Klarman et al.

is resolution of {L′} against {¬L′} ∪ Cl⋃ ¬B. First, note that {L′} is necessary
for deriving Cl⋃¬B or otherwise S would not have been MU at the first place.
Therefore there has to be a clause Cl′ ∪ {¬L′} against which {L′} has to be
resolved, such that either Cl′ = Cl⋃¬B, which would prove the point, or Cl′ is
further resolved against other clauses. But in the latter case it is possible to defer
resolution of {L′} until Cl′ is first resolved. Switch the sequence of resolution
steps in such a derivation and repeat the argument. Since derivation of Cl⋃ ¬B

has to be finite, it follows that at some point one has to arrive at a sequence in
which {¬L′} ∪ Cl⋃¬B appears as the last clause to be resolved. But then there
also exists a derivation of Cl⋃ ¬A, which is equivalent to {¬L′} ∪ Cl⋃¬B. �	

Lemma 2 [31, Lemma 2.3.2] Let S be a MU set of clauses, let Cl′ be a subset of clause
Cl ∈ S, and let S′ = (S \ {Cl}) ∪ {Cl′}; i.e. replace Cl in S with Cl′. Then every MU
subset of S′ contains Cl′.

Lemma 3 (MU set under a solution) Let A be a consistent and minimal solution to
an ABox abduction problem 〈K, �〉, such that except for ⊥ all subconcepts occurring
in the assertions from A are satisf iable with respect to K. There exists a f inite MU set
S = K ∪ A\� ∪ Q, where K ⊆ K and Q �= ∅ ⊆ ¬�, a ground substitution σ and a MU
set of ground clauses σ S, call it a MU set under A, which contains at least one instance
of every clause from S.

Proof By Definition 2 it holds that K ∪ A � �, hence the set
 = K ∪ A ∪ ¬� is
unsatisfiable. By Herbrand’s theorem
 is unsatisfiable i ff there exists a finite set
of ground instances of
 which is unsatisfiable. Thus there must exist a ground
substitution σ whose application to the instances of the clauses of
 results in
such a set. Naturally this set must have a MU subset σ S. First we show that
σ A\� ⊆ σ S. Recall from Proposition 3 two types of clauses that can occur in σ A\�:
Cl1 = ⋃

0≤i≤n{¬ri(ti, ti′)} ∪ {C(t)} and Cl2 = ⋃
0≤i≤n{¬ri(ti, ti′)} ∪ {r(tn′ , tn′′)}. Suppose

for some clause Cl1 ∈ σ A\� it holds that Cl1 �∈ S. This would mean that one can
construct a solution B which differs from A only in that C(t) is replaced with �(t)
in Cl1. But then, by Proposition 4, it would follow that B is minimal with respect to
A, which contradicts the assumed minimality of A. Suppose the same holds for some
clause of type Cl2. One of the following has to be the case: a) if tn′′ is not a Skolem
term or there is no clause Cl∃.C

2 ∈ σ S, where Cl∃.C
2 is defined as in Proposition 3,

then a solution minimal with respect to A can be constructed, which contradicts the
assumption; b) (else) if tn′′ is a Skolem term and there is a clause Cl∃.C

2 ∈ S, then
A contains unsatisfiable subconcepts different from ⊥, which is also not true by
assumption. Observe that the literal r(tn′ , tn′′) does not occur in σ S, and hence, neither
does ¬r(tn′ , tn′′). Moreover, there cannot be any other term t′ nor role r′ ∈ NR such
that r′(t′, tn′′) is in σ S, as every Skolem term is introduced by a unique existential
restriction. Since tn′′ has no predecessors in σ S, it follows that neither tn′′ nor any
of its successors in σ S can occur in σ Q. Replace Cl∃.C

2 in σ S with ClC
2 = Cl∃.C

2 \ Cl2

(clauses corresponding to the qualifying concept C), and focus on the resulting MU
set (Lemma 2). Repeat for every Cl∃.C

2 ∈ σ S. Eventually no clauses from σ Q can
be present in the resulting MU set. Since all clauses ClC

2 that remain in the set are
rooted at tn′′ , it is possible to render them back into ALE , as a concept description
C, which is clearly unsatisfiable with respect to K. Hence σ S = σ K ∪ σ A\� ∪ σ Q,

ABox Abduction in the Description Logic ALC 71

where σ K ⊆ σK and σ Q ⊆ σ¬�. Moreover, σK ∪ σ A is satisfiable (by consistency
of A), hence σ Q �= ∅. Therefore S = K ∪ A\� ∪ Q. �	

Finally, we demonstrate the proof of the main result. We first argue that for any
solution one can find the corresponding FOL-base and its abductive graph and then
we show that the solution retrieval method presented in Definition 7 effectively
reconstructs the solution given such input.

Theorem 4 (�ABox: completeness) If A is a consistent and minimal solution to the
ABox abduction problem 〈K, �〉, such that except for ⊥ all subconcepts occurring in
the assertions from A are satisf iable with respect to K, then A is a �ABox-solution to
〈K, �〉.

Proof Let A be a consistent and minimal solution to the ABox abduction problem
〈K, �〉. Consider a ground substitution σ and a MU set σ S under A (Lemma 3),
where σ A\� ⊆ σ S is a set of clauses containing at least one ground instance of every
clause from A\� and σ Q ⊆ σ S is a set of ground instances of ¬�. Obviously, there
has to exist a refutation proof for σ S, constructed with either of the calculi, initiated
by some clause from σ Q. Given that, we show that there exists an abduction proof
for 〈K, �〉, which is associated with the FOL-base AFOL and the graph G, such that
σG is the graph associated with the refutation proof of σ S, and [σ A\�] = σ AFOL,
where [σ A\�] is the set of unit clauses obtained by pruning clauses from σ A\�.

1. Finding AFOL: Take a non-unit clause Cl = ⋃
0≤i≤n{¬ri(ti, ti′)} ∪ {L(t)} ∈ σ A\�

and consider two cases: 1) L(t) = ⊥(tn′): Since we assume A is non-redundant
there has to exist ¬r(tn, tn′) ∈ Cl (Table 10). Replace Cl in σ S with the unit clause
Cl′ = {¬ri(tn, tn′)}; 2) L(t) �= ⊥(tn′): Replace Cl in σ S with the unit clause Cl′ =
{L(t)}. From Lemma 2 it follows that Cl′ has to belong to every MU subset of the
resulting set of clauses. Repeat the procedure for every non-unit clause in σ A\�.
We now show that:

(*) after the operation there exists a MU subset [σ S], which contains all unit
clauses [σ A\�] (both originally unit and those obtained by pruning), and at
least one clause Clinit ∈ σ Q.

The argument rests on induction over pruning steps. First, note that only the
literals of the form ⊥(t) and ¬r(t1, t2) are being left out. The former case is
straightforward: if Cl ∪ {⊥(t)} is replaced with Cl in a MU set, then the set still
remains MU. For the latter case consider a clause Cl, where ¬r(t1, t2) ∈ Cl is the
leftmost occurrence of a negative role literal that is to be pruned:

(a) if t2 is an individual name then the only clause that can possibly fall out from
the original MU set after the pruning is a role assertion r(t1, t2) from the
knowledge base. Note, that r(t1, t2) cannot be an assertion in A, as then it
would be possible to construct a solution minimal with respect to A, which
contradicts the assumption. Also there are no assertions of the form r(t1, t2)
in σ Q. Repeat the step for all clauses in σ A\� and all leftmost occurrences

72 S. Klarman et al.

of such literals. Observe that at some point all the remaining negative role
literals will not contain any more individual names.

(b) if t2 is a Skolem term then the only clause that can possibly fall out from
the original MU set after the pruning is some clause Cl∃r

1 such that r(t1, t2) ∈
Cl∃r

1 . Consider the possible origin of that clause:

– Cl∃r
1 ∈ σ K: then the claim holds.

– Cl∃r
1 ∈ σ Q: then one of the two must be true:

– there has to be a clause Cl∃.C
1 ∈ σ Q, which remains in the MU set.

– there is no Cl∃.C
1 ∈ σ Q, because Cl∃.C

1 = (Cl∃r
1 \ {r(t1, t2)}) ∪ {�(t2)}.

But in such case the clause Cl∃r
1 will not be removed in the first

place, or else it would mean that A contains unsatisfiable subcon-
cepts different from ⊥. Since t2 would not have a predecessor in
the resulting MU set and it would not occur in σ¬�, it follows that
the clause Cl \ {¬r(t1, t2)} would have to correspond to a concept
unsatisfiable with respect to K. If that concept was ⊥, then in fact
Cl would not be pruned from {¬r(t1, t2)}, else the concept would
have to be different from ⊥ which contradicts the assumption.

– Cl∃r
1 ∈ σ A\�: this is not possible, or else a solution minimal with respect

to A could be constructed. Let Cl′ and Cl′1
∃r denote the clauses Cl

and Cl∃r
1 , respectively, before the pruning. Replace Cl′ with (Cl′1

∃r \
{r(t1, t2)}) ∪ (Cl \ {¬r(t1, t2)}) in A and observe that the resulting set of
assertions also solves the problem, but it is deductively weaker from
the original one.

By the inductive hypothesis we arrive at the initial claim (*). By Lemma 1 it
follows that given the set [σ S] it is possible to find {L | L ∈ [σ A\�]} using any of
the two calculi, provided the proof is initiated by Clinit (this condition is clearly
satisfied in our setting, as we expect that gradually every clause from ¬� will be
used as an initial clause for abductive proofs). Note, that in the actual abductive
proof not all terms in the literals from [σ A\�] will be ground. Hence one obtains
a FOL-base AFOL unifiable with [σ A\�].

2. Finding G: Among the proofs for AFOL there has to exist at least one which
is associated with a graph G, which is unifiable with σG by a substitution that
subsumes the one unifying AFOL with [σ A\�]. Consider a proof for AFOL, such
that it would succeed provided that A was added to the set of formulas available
in the proof. Given the assumed properties of A, it follows that every literal
occurring in each clause from A\� has to obtain a connection in the proof,
where the connecting literal has to originate from a clause not in A\�. Thus,
in particular, for every positive role literal occurring in A there must exist a
complementary one, unifiable with it, already in the proof; for every negative
one, there has to exist a complementary one, unifiable with it, which is either
already in the proof, or it occurs in some clause Cl∃r, such that Cl∃.C is already in
the proof. In either case the modal cores of the clauses included already in the
proof form the graph G, which after completion of the proof becomes grounded
with the same substitution that unifies AFOL with [σ A\�].

ABox Abduction in the Description Logic ALC 73

Finally, we can argue that given this input, the solution retrieval method outputs
A′, such that it is semantically equivalent to the non-redundant �ABox-solution A.
Take a unit clause {L(t)} ∈ A and consider two cases:

1. L(t) = C(t): Note that t is an individual name. There must exist a corresponding
literal C(t′) ∈ AFOL, such that t′ = t or t′ is a variable. We retrieve C(t).

2. L(t) = r(t1, t2): Note that t1 and t2 are individual names. There must exist a
corresponding literal r(t′1, t′2) ∈ AFOL, such that t′1 = t1 or t′1 is a variable and
t′2 = t2 or t′2 is a variable. We retrieve r(t1, t2).

Take a non-unit clause Cl = ⋃
0≤i≤n{¬ri(ti, ti′)} ∪ {L(t)} ∈ A and consider the

following cases:

1. L(t) = ⊥(tn′): Note that tn′ must be a variable. There must exist a corre-
sponding literal ¬rn(t1, t2) ∈ AFOL and rn(t1, t2) ∈ G, such that t2 is a Skolem
term, and there is no C(t2) ∈ AFOL. We retrieve ∀r.⊥(t1), which translates to
{¬rn(t1, tn′),⊥(tn′)}, and add it to AFOL.

2. L(t) = C(tn′) and tn′ is a variable: There must exist a corresponding literal C(t2) ∈
AFOL and rn(t1, t2) ∈ G, such that t2 is a Skolem term or an individual name.
We retrieve ∀r.

�{C | C(t2) ∈ AFOL}(t1), which for each C translates to a clause
{¬rn(t1, tn′), C(tn′)}, and add it to AFOL.

3. L(t) = C(t), C �= � and t is a Skolem term: There must exist a corresponding
literal C(t2) ∈ AFOL, rn(t1, t2) ∈ AFOL and rn(t1, t2) ∈ G, such that t2 is a variable.
We retrieve ∃r.

�{C | C(t2) ∈ AFOL}(t1), which for each C translates to clauses
{rn(t1, t)}, {C(t)}, and add it to AFOL.

4. L(t) = �(t): Note that t is a Skolem term: There must exist rn(t1, t2) ∈ AFOL and
rn(t1, t2) ∈ G, such that t2 is a variable and no C(t2) ∈ AFOL. We retrieve ∃r.�(t1),
which translates to clauses {rn(t1, t)}, {�(t)}, and add it to AFOL.

5. L(t) = r(t1, t2): Note that t2 is a Skolem term, hence there must be another clause
Cl ∪ {C(t2)} in A and one of the two cases above must hold.

On each retrieval step consecutive literals from the clauses obtain appropriate
interpretation. By applying the inductive hypothesis we conclude that A′, equivalent
to the solution A, will be appropriately reconstructed by the retrieval procedure. �	

4.2 Selection Criteria. Correctness in the General Case

Every computed �ABox-solution can be verified against the additional selection
criteria imposed on the solution space of an abduction problem, among others
relevance, consistency and minimality, all presented in Definition 2. For this purpose
it is possible to use the services of standard reasoning tools for DLs. In the following
we propose one such approach based on checking consistency of the ABox with
respect to the TBox. For a proper representation of the queries it is necessary to
shift to a more expressive DL ALCO, which additionally to ALC allows nominals,
i.e. concept constructors of the form {a}, where a ∈ NI is a specified individual
name. The expressiveness of ALCO enables rendering ALE ABox assertions into
equisatisfiable TBox axioms, where every concept assertion C(a) is translated into

74 S. Klarman et al.

{a} � C, while every role assertion r(a, b) into {a} � ∃r.{b}. By employing this
technique one can easily map the complement of a set of ABox axioms � into the
corresponding TBox expression:

¬� := � �
⊔

C(a)∈�

(¬{a} 	 ¬C) 	
⊔

r(a,b)∈�

(¬{a} 	 ∀r.¬{b}) (1)

Table 12 outlines the decision procedures for satisfaction of the particular criteria
by a solution A to an ABox abduction problem 〈K, �〉, where K = (T ,A).

Observe that whereas relevance and consistency can be unconditionally decided
for any solution, minimality checking remains in the worst case a semi-decidable
procedure, guaranteed to output the answer in finite time only if the answer is
negative. The consequence follows from the fact that in order to verify minimality,
the solution has to be compared with every other solution to the same problem, of
which there can be infinitely many. Consider for instance an extension of the happy
John problem, in which we include an additional TBox axiom ∀hasFriend.Happy �
Happy, stating that an individual is happy if all his friends are happy. In such a

Table 12 Decision procedures for selection criteria via standard reasoning services in ALCO
Relevance ABox := A

TBox := ¬�

IF ABox consistent with respect to TBox
THEN OUTPUT A is relevant
ELSE OUTPUT A is not relevant

Consistency ABox := A ∪ A
TBox := T

IF ABox consistent with respect to TBox
THEN OUTPUT A is consistent
ELSE OUTPUT A is not consistent

Minimality FOR every solution B:
FOR every renaming ρ : N�

I (B) �→ N�
I (A):

ABox := A
TBox := ¬ρB

IF ABox inconsistent with respect to TBox
THEN FOR every renaming � : N�

I (A) �→ N�
I (B):

ABox := B
TBox := ¬�A

IF ABox inconsistent with respect to TBox
THEN GO TO (∗)
REPEAT
OUTPUT A is not minimal

(B is minimal with respect to A)
TERMINATE

REPEAT
(∗) REPEAT

OUTPUT A is minimal

ABox Abduction in the Description Logic ALC 75

scenario all the following assertions are minimal and consistent solutions to the
problem:

(∀hasFriend.Happy)(John)
(∀hasFriend.(∀hasFriend.Happy))(John)

(∀hasFriend.(∀hasFriend.(∀hasFriend.Happy)))(John)
. . .

Clearly, the sequence of solutions above, generated due to repeated use of the
additional TBox axiom in the abductive procedure, is infinite. In such cases if a
solution A is not minimal, it can be at most guaranteed that a solution minimal
with respect to it will be found at some point (Theorem 4), and thus will allow for
removing A from the set of minimal solutions to the problem. Since the procedure
does not terminate, however, the positive answer regarding minimality of A cannot
be in principle obtained.

One way of dealing with this inconvenience is to suitably relax the requirement
for minimality. A relatively weaker notion, whose verification is decidable even for
infinite solution spaces, is that of local minimality. This criterion shares with the origi-
nal one exactly the same conceptual foundation of preference for prime implicants of
a formula, and presents a high pragmatic value from the user perspective in typical
application scenarios. It is weaker in the sense of only approximating the proper
minimality in a gradual, controllable manner over the progress of computation.
Roughly, we delimit the allowed distance of the entailed and abduced individuals
from the known ones in abductive proofs, by some arbitrarily fixed bound.

Definition 9 (Local minimality) A solution A to abductive problem 〈K, �〉 is locally
minimal if there exists a natural number n for which A is an n-locally minimal
solution. A is n-locally minimal i ff

1. there exists a MU set σ S under A (see Lemma 3) such that for every term tk
occurring in σ S there exists a sequence r1(t0, t1), . . . , r(tk−2, tk−1), rk(tk−1, tk) of
positive role occurrences in σ S, such that k ≤ n and t0 ∈ NI .

2. there is no other solution B to 〈K, �〉 for which the above condition is satisfied
and B is minimal with respect to A.

More indirectly, the definition implies that in order to find an n-locally minimal
solution it is enough to consider possible models of K ∪ ¬� only to the depth
bounded by n. What further follows, is that the set of locally minimal solutions
coincides with the set of minimal solutions in the limit of computation (for n → ∞).
Given above formulation we can easily show that the following claim holds.

Proposition 5 (n-local minimality completeness) For any n ∈ N, if A is a plain, n-
locally minimal and consistent solution to ABox abduction problem 〈K, �〉 then A is
an �ABox-solution to 〈K, �〉. Furthermore, n-local minimality of A can be decided in
a f inite number of steps.

Proof First note, that since we require that there exists a MU set under A then
by Theorem 4 A can be found as one of the �ABox-solutions to 〈K, �〉. In order
to decide n-local minimality of A we constrain the search for solutions by blocking
connection steps that involve clauses introducing new terms, whose distance from the

76 S. Klarman et al.

individual names in the abductive graph of the proof is greater than n. Notice, that the
abductive graph of a proof for A corresponds to the set of positive role occurrences
in the MU set under A, modulo substitution of ground terms for the variables in
the graph. Given a finite number of clauses and finite number of individual names,
clearly there can be only a finite number of connection-driven proofs for a given
abduction problem, whose abductive graph satisfies the constraint. Hence, if there
exist an n-locally minimal solution to the problem it has to be found among one of
these proofs and all non-minimal solutions can be eliminated via pairwise entailment
checks. �	

4.3 Correctness for Acyclic Terminologies

Alternatively to introducing a weaker notion of minimality, one can try to ensure
termination by identifying a restricted form of TBoxes, which cannot result in the
construction of infinite abductive proofs. The standard distinction, used in similar
contexts, between cyclic and acyclic terminologies [4] allows for eliminating TBoxes
involving certain forms of definitional loops. Since these categories, however, do not
apply to general TBoxes, which are considered in this paper, we propose a new notion
of acyclicity scoped particularly for reasoning in connection-driven proof systems,
such as discussed here.

A clause Cl is directly connectible to Cl′ if there exists a connection between Cl and
Cl′. We define the relation connectible as the transitive closure of directly connectible
and say that a terminology T under τ -transformation is connection acyclic if for every
non-DL predicate P ∈ P occurring in T and every two clauses Cl, Cl′ ∈ T such that
P(x) ∈ Cl and ¬P(x) ∈ Cl′, the clauses are connectible only through P. Otherwise
we call T connection cyclic.

If the requirement of connection acyclicity of the TBox is satisfied it is possible to
guarantee termination of reasoning for any ABox abduction problem.

Proposition 6 (Termination for acyclic TBoxes) Let 〈K, �〉 be an ABox abduction
problem, with K = (T ,A), where T is a connection acyclic terminology. The proce-
dure of solving 〈K, �〉 via �ABox terminates in a f inite number of steps.

Proof Recall that occurrences of non-DL predicates in the clauses under τ -
transformation mark the original positions of the quantification restrictions in the
DL axioms. The connection acyclicity condition prohibits generation of infinite
chains of terms (Skolem terms and variables) by cyclic reuse of clauses. Given a
finite number of clauses and named individuals it is impossible to infinitely expand
tableau branches or create infinite sequences of resolution inference steps. Thus the
reasoning terminates in finite time. �	

As a consequence, for ABox abduction problems based on connection acyclic
terminologies it is possible to decide the strong notion of minimality for every
computed solution.

Also, as pointed out in [30], given the acyclicity condition is satisfied it is possible
to engage more sophisticated goal-oriented reasoning methods for checking consis-
tency of abductive solutions. Such techniques, based on the same connection-driven
calculi as the abductive reasoning itself, do not require a computationally expensive

ABox Abduction in the Description Logic ALC 77

consistency checking of the whole knowledge base for deciding consistency of a single
solution with respect to that base. Instead they are meant precisely for verifying
whether a newly generated solution does not trigger inconsistency in the otherwise
consistent knowledge base.

5 Conclusions

ABox abduction is a particularly interesting form of abductive reasoning over DL
ontologies. It is constitutive for problems of identifying minimal sets of ABox axioms
that, if added to the knowledge base, trigger entailment of a requested set of
assertions. Possible application scenarios for this inference service are numerous and
the need for a practical tool support in dealing with abductive tasks, especially in the
context of OWL applications, has increasingly been reported [6, 13]. Nevertheless,
the amount of work addressing the problem that has been so far undertaken is very
limited.

In this paper we have introduced a formal computational framework for ABox
abduction in the DL ALC. The employed reasoning mechanism rests on regular
connection tableaux and resolution with set-of-support, refinements of two well-
known and commonly applied automated theorem proving techniques. Essentially,
an ABox abduction problem is reduced to the task of constructing a refutation proof,
with either of the two methods, for the complement of the abductive query, given the
background knowledge base. Any set of assertions that can force completion of such
a proof is a solution to the original problem. Along with the algorithms, we have
developed a special satisfiability- and structure-preserving clausal transformation for
DL axioms, and a method for retrieving well-formed ALE ABox assertions from
abductive proofs. Finally, we have discussed the possibility of using standard DL
reasoning services for applying selection criteria on the generated sets of solutions,
and considered the special case of infinite solution spaces. The whole procedure has
been proven sound and complete for solving ABox abduction problems in ALC.

The framework has a universal and flexible character, encouraging customization
towards specific use cases. The transformation procedure allows general and cyclic
TBoxes and easily covers all expressive means available in ALC. Consequently,
abductive reasoning is not dependent on a particular syntactic structure of the input.
Also, we have not committed ourselves to any specific solving heuristics or arbi-
trary preference criteria over potential solutions, except for the most fundamental
constraints such as consistency, relevance and minimality. Due to the connection-
driven proof strategy, inherent to both of the calculi employed, the framework
exhibits a goal-oriented behavior on the search level, enabling a more efficient
and focused form of computation. Moreover, it is guaranteed to provide interesting
results even for problems with an infinite number of solutions. Another strong
feature is the structural modularity of the approach, which allows for considering
different phases of solving a problem independently from the others, and handling
them be means of the most suitable tools. For instance, it can be reasonable to
use separate algorithms for finding solutions and for their post-processing, de-
pending on the average performance of particular computation techniques on the
respective tasks.

78 S. Klarman et al.

In order to foster the progress towards designing practical abductive DL reason-
ers, the work on the framework should be advanced at least on three levels. First,
it is necessary to systematically extend the approach to other DLs, especially to
ones being of a special application interest, such as highly expressive DLs underlying
OWL languages, i.e. SHOIN , SROIQ [25] and their specific fragments underpin-
ning different profiles of OWL. A shift towards more expressive languages should
require extra transformation rules, covering additional constructors in DL axioms,
and will have to involve revisions at least in the definitions of an admissible abductive
graph, admissible FOL-base, and the procedure of extracting ABox assertions from
an abductive proof. In all these cases increased expressivity permits more structural
possibilities that should be accounted for in the procedure. Second, it is desirable
to tighten the links between the proposed procedures and existing DL reasoning
tools, in order to enable a convenient integration of ABox abduction in larger
reasoning and knowledge representation infrastructures, as well as to save on the
effort of reinventing well-developed optimization techniques for reasoning with DLs.
A promising way of aligning the proposed approach with mainstream reasoning
methods in DL, which we want to investigate in the future, is by incorporating
the connectedness requirement into standard tableau-based reasoners. A successful
integration is obviously not a straightforward prospect, as the presented procedure
requires an extensive support for FOL features, predominantly Skolemization, that
are not present in the standard DL reasoners. However, it is likely that even without
them connectedness could be to some extent approximated in such calculi, for
instance by expanding in the tableau only those axioms in NNF that contain concept
names complementary to the ones present anywhere on the considered branch. Such
a strategy would lead to a noticeable loss in the goal-directedness of the procedure,
but in return it would not introduce a need for a fundamental reconstruction of the
reasoning paradigm. Finally, the framework should be accompanied by a menu of
optional extensions and plugins, such as additional selection strategies, the possibility
of marking abducibles, or the integration of efficient search heuristics, for which
appropriate formal foundations will have to be developed.

Acknowledgements We would like to thank two anonymous reviewers of the Journal of Automated
Reasoning for their helpful comments.

References

1. Aliseda-Llera, A.: Seeking Explanations: Abduction in Logic, Philosophy of Science and
Artificial Intelligence. PhD thesis, ILLC Disertation Series, University of Amsterdam
(1997)

2. Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193–214 (1981)
3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-

scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

4. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D., McGuinness, D.L.,
Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook: Theory, Implementa-
tion, and Applications, pp. 47–100. Cambridge University Press (2003)

5. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 1–82. Elsevier Science Publishers B.V. (2001)

6. Bada, M., Mungall, C., Hunter, L.: A call for an abductive reasoning feature in OWL-reasoning
tools toward ontology quality control. In: Proceedings of the 5th International Workshop OWL:
Experiences and Directions 2008 (OWLED’08 Karlsruhe) (2008)

ABox Abduction in the Description Logic ALC 79

7. Bibel, W.: On matrices with connections. J. ACM 28(4), 633–645 (1981)
8. Bienvenu, M.: Complexity of abduction in the EL family of lightweight description logics. In:

Proceedings of KR2008, 11th International Conference on Principles of Knowledge Representa-
tion and Reasoning (2008)

9. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Blackburn, P., van
Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1–82. Elsevier (2006)

10. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A uniform tableaux-based
approach to concept abduction and contraction in ALN. In: Proceedings of the 2004 International
Workshop on Description Logics (DL2004) (2004)

11. Cox, P.T., Pietrzykowski, T.: Causes for events: their computation and applications. In: Proceed-
ings of the 8th International Conference on Automated Deduction, pp. 608–621 (1986)

12. Elsenbroich, C.: Instinct for Detection. PhD thesis, Department of Computer Science, King’s
College London (2005)

13. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies. In: Grau,
B.C., Hitzler, P., Shankey, C., Wallace, E. (eds.) Proceedings of the OWLED’06 workshop on
OWL: Experiences and Directions 2006, vol. 216 (2006)

14. Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof procedure for
abductive logic programming with constraints. In: Alferes, J.J., Leite, J. (eds.) Proceedings of the
9th European Conference on Logics in Artificial Intelligence (JELIA-2004). LNAI, vol. 3229,
pp. 31–43. Springer-Verlag (2004)

15. Espinosa Peraldi, S., Kaya, A., Melzer, S., Möller, R., Wessel, M.: Multimedia interpretation as
abduction. In: International Workshop on Description Logics (DL-2007) (2007)

16. Flach, P., Kakas, A. (eds.): Abduction and Induction: Essays on their relation and integration.
Kluwer Academic Publishers (2000)

17. Gabbay, D.M.: Elementary Logics: A Procedural Perspective. Prentice Hall Europe, UK (1998)
18. Gabbay, D.M., Olivetti, N.: Goal-directed proof theory. Applied Logic Series, vol. 21. Kluwer

Academic Publishers (2000)
19. Gabbay, D.M., Woods, J.: Advice on abductive logic. Log. J. IGPL 14(2), 182–219 (2006)
20. Haarslev, V., Möller, R.: RACER system description. In: Goré, R., Leitsch, A., Nipkow, T.

(eds.) International Joint Conference on Automated Reasoning, IJCAR’2001, pp. 701–705
(2001)

21. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of
Automated Reasoning, pp. 101–178. Elsevier Science Publishers B.V. (2001)

22. Hähnle, R., Murray, N., Rosenthal, E.: Linearity and regularity with negation normal form.
Theor. Comp. Sci. 328(4), 325–354 (2004)

23. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: The Interna-
tional Semantic Web Conference 2008 (ISWC 08) (2008)

24. Horrocks, I.: The FaCT system. In: de Swart, H. (ed.) Proceedings of the 2nd Int. Conf. on Ana-
lytic Tableaux and Related Methods (TABLEAUX’98). Lecture Notes in Artificial Intelligence,
vol. 1397, pp. 307–312. Springer (1998)

25. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceedings of the
Tenth International Conference on Principles of Knowledge Representation and Reasoning,
pp. 57–67 (2006)

26. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)

27. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–
770 (1992)

28. Kalyanpur, A., Parsia, B., Grau, B.C.: Beyond asserted axioms: Fine-grain justifications for
OWL-DL entailments. In: Proceedings of the International Workshop on Description Logics
DL’06, (2006)

29. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. J. Autom. Reason.
40(2–3), 89–116 (2008)

30. Klarman, S.: ABox Abduction in Description Logic. Master’s thesis, ILLC, University of
Amsterdam. http://www.illc.uva.nl/Publications/ResearchReports/MoL-2008-03.text.pdf (2008)

31. Loveland, D.W.: Automated theorem proving: a logical basis. Fundamental Studies in Computer
Science, vol. 6. North-Holland Publishing (1978)

32. Mayer, M.C., Pirri, F.: First order abduction via tableau and sequent calculi. Bull. IGPL 1(1),
99–117 (1993)

33. Mayer, M.C., Pirri, F. Propositional abduction in modal logic. Journal of the Interest Group in
Pure and Applied Logics 3(6), 907–919 (1995)

http://www.illc.uva.nl/Publications/ResearchReports/MoL-2008-03.text.pdf

80 S. Klarman et al.

34. Möller, R., Neumann, B.: Ontology-based reasoning techniques for multimedia interpretation
and retrieval. In: Kompatsiaris, Y., Hobson, P. (eds.) Semantic Multimedia and Ontologies:
Theory and Applications. Springer (2008)

35. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using hyper-
tableaux. In: Pfenning, F. (ed.) Proceedings of the 21st Conference on Automated Deduction
(CADE-21), vol. 4603, pp. 67–83 (2007)

36. Paul G.: Approaches to abductive reasoning: an overview. Artif. Intell. Rev. 7(2), 109–152 (1993)
37. Quine, W.V.O.: On cores and prime implicants of truth functions. Am. Math. Mon. 66(9), 755–

760 (1959)
38. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceed-

ings of IJCAI-91, 12th International Joint Conference on Artificial Intelligence, pp. 466–471.
Sidney, AU (1991)

39. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies. J.
Autom. Reason. 33(3), 317–349 (2007)

40. Schurz, G.: Models of Abductive Reasoning. TPD Preprint 1, University of Düsseldorf (2002)
41. Tammet, T.: Resolution Methods for Decision Problems and Finite-Model Building. PhD thesis,

Göteborg University (1992)

	ABox Abduction in the Description Logic ALC
	Abstract
	Introduction
	Problem Definition
	Preliminaries
	ABox Abduction Problems and Solutions
	Related Work
	Requirements

	Computing Solutions
	Roadmap: A High-level Overview
	Transformation
	Tableaux and Resolution-Based Abduction
	Abductive Proof Constraints
	Solution Retrieval
	Example

	Correctness and Selection Criteria
	Soundness and Completeness
	Selection Criteria. Correctness in the General Case
	Correctness for Acyclic Terminologies

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

