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Abstract We present the method for automated generation of visually dynamic
presentations of plane geometry proofs based on the full-angle method. The proof
generated by the full-angle method is organized hierarchically, thus it is particularly
suitable for visual presentations. We also present the method for automated gener-
ation of visually dynamic presentation of proofs for the deductive database method
with an additional new visual feature: given a geometrical configuration or a diagram,
the final database (the fixpoint) in the deductive database method has numerous
geometric properties organized into a few categories. By clicking each category,
all properties of the configuration in this category are listed. And by clicking each
of these properties, the corresponding geometry elements in the diagram blink or
animate and, if needed, the proof of this property is generated.
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1 Introduction

In Part 1 of this series [1], we have proposed a new presentation of geometry theorem
proofs—visually dynamic presentation of proofs and presented our manual input
method for creating the proofs. Whereas the manual input method is valuable for
users to write and present proofs of geometry theorems with various dynamic visual
effects, the focus of our work in Part 2 and sequels to Part 2 of this series is automated
generation of visually dynamic presentations of proofs.

In Part 2, we will present the automated generation of visually dynamic presenta-
tion of proofs for the full-angle method and the deductive database method. These
two methods can generate proofs that are readable and diagram independent. Before
discussing full-angles, an exposition of unordered geometries in depth would be very
helpful for readers who encounter diagram independent proofs and full-angles for
the first time.

1.1 Algebraic Proofs in Ordered Geometries and Unordered Geometries

In 1978, Wen-Tsün Wu introduced an algebraic method for proving geometry
theorems of the equality type [2]. Hundreds of difficult theorems have been proved
by the computer programs based on this method.1 Inspired by the success of
Wu’s method, around 1985–1986, three groups were successful in applying another
algebraic method, the Gröbner basis method, to the same class of geometry theorems
that Wu’s method addresses [3–5].

The success of Wu’s method is his key insight into the differences between
unordered geometry and ordered geometry. For proving theorems in unordered
geometry, i.e., theorems of the equality type, the real closed field quantifier elim-
ination algorithms [6–8] are not needed. Instead, efficient algebraic methods for
polynomial equality can be used. These methods are for unordered geometries. Since
unordered geometry is new to novice, and some phenomena are new even to experts,
and it is vitally important for our automated method, some discussions on unordered
geometry in depth would be helpful. The novice can find supplement discussions in,
e.g., books [9] or [10].

1.2 Unordered Geometries and Diagram-Independent Proofs

It is a very common belief that the proofs taught in high school geometry are based
on the Euclidean axiom system and thus are rigorous. Actually the Euclidean axiom
system in common textbooks is very incomplete and the proofs are not rigorous as
they look to be. Here we cite a passage from the book [11]:

One of the main defects in the traditional Euclidean proof is its almost complete
disregard of such notions as the two sides of a line and the interior of an angle.
Without clarification of these ideas, absurd consequences result.

1For his pioneering work and outstanding contribution in geometry theorem proving, Wu received
the 1997 Herbrand Award in Automated Deduction.
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Traditionally one use the order relation to prove theorems of equality type. However,
the statements of these theorems do not involve the order relation. These geometry
theorems are in unordered geometry, whose proofs are immune of order relations.

First we will use three examples to explain these phenomena. The first example
shows the diagram-dependent nature of traditional proofs. The next two examples
show implicit facts or assumptions that are often used in the traditional proofs in
common geometry books.

Example 1 (The diagram-dependent nature in ordered geometry) Let points C and
D be the intersections of two circles (A) and (B), line HF be passing through C
and meeting circles (A) and (B) at H and F, and line GE be passing through D and
meeting circles (A) and (B) at G and E. Show that GH is parallel to EF.

Figure 1 shows four diagrams of this theorem. For each diagram, the traditional
proof is different. For example, in the left most diagram, we assume that points
G and C are on the opposite sides of line DH and points E and C are on the
opposite sides of line DF. These additional assumptions should be a part of the
hypotheses, although geometry textbooks do not include these hypotheses explicitly.
Authors generally use a diagram, such as the left most of Fig. 1, in addition to the
hypothesis text. This diagram is intended to give these additional order relation
assumptions. This common practice is generally accepted. The proof is complete with
these additional assumptions as a part of the hypotheses, but it might be diagram-
dependent (for a rigorous diagram independent proofs in unordered geometry see
Fig. 6).

However, there are other kinds of implicit assumptions which should be a part of
the proof, not a part of the hypotheses. Without proving these implicit assumptions
the proof is not rigorous and is incomplete. This is the kind of defect that the book
[11] refers to. Let us use the following two examples to illustrate our point of view.

Example 2 Let ABCD be a parallelogram, i.e., AB ‖ CD and BC ‖ AD, E be the
intersection of the two diagonals AC and BD. Show AE = CE (the left of Fig. 2).

The traditional proof of this theorem is first to prove �ACB ∼= �CAD (hence
AB = CD), then to prove �AEB ∼= �CED (hence AE = CE). In proving the
congruence of these triangles, we have repeatedly used the fact ∠BAC = ∠DCA.
This fact is quite evident because the two angles are a pair of the inner alternative
angles with respect to the parallel lines AB and CD. However, here we have
implicitly assumed the “trivial fact” that points D and B are on the opposite sides
of line AC. This “trivial fact” is harder to prove than the original statement.
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Fig. 1 A two circle theorem
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Fig. 2 Two examples

Example 3 (Simson’s theorem) Let E be a point on the circumscribed circle (D) of
a triangle ABC. From E three perpendiculars are drawn to the three sides AB, AC
and BC of �ABC. Let F, G and H be the three feet respectively. Show that points
F, G and H are collinear (the right of Fig. 2).

The proof in common textbooks is to prove ∠1 = ∠2; thus F, G and H are
collinear. However, here we have at least one implicit assumption that points H and
F are on the opposite sides of line AC. Without proving this assumption, the proof
is incomplete or not rigorous (see Fig. 9 for a rigorous diagram-independent proof of
this theorem.)

Now the question arises that do we have to use the order relation to prove these
theorems of the equality type? The answer is ‘no’, and is already in Wu’s algebraic
method itself that can prove theorems of the equality type without using the order
relation.

The proofs generated by Wu’s method are not synthetic proofs. Are there
synthetic proofs of theorems of the equality type without using the order relation
at all? The answer is ‘yes’ and is related to unordered geometries.

In Hilbert’s first 4 groups of axioms, Group 2 (axioms of order), is introduced
before Group 3 (axioms of congruency) which are dependent on the order relation.
The important notions, such as angles, etc., defined in Group 3, use the order relation.

Hilbert’s book itself and the development after it have indicated that it is possible
to introduce axioms of congruency before axioms of order. See Chapter V “Desar-
gues’ Theorem” and Chapter VI “Pascal’s Theorem” [12] or Wu’s book [10]. This is
unordered geometries, or unordered metric geometries. For this kind of geometries,
axioms of congruency need to be revised in a way that does not use the order relation.
Notions such as perpendicularity, angle (full-angle) or triangle congruency, etc., are
defined without using the order relation.

Whatever emphasis on the order-independent or the diagram-independent nature
of unordered geometry might not be enough partially because we are so accustomed
to the real plane geometry. The following example (Fig. 3a) given by A. Nevins [13]
was used by us ([14]: Example 6.4).
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Fig. 3 An example by Nevins

Example 4 Let ABCD be a trapezoid with AB ‖ DC, M and N be the midpoints
of its two diagonals, and E be the intersection of MN and BC. Show that E is the
midpoint of BC.

For a trapezoid in unordered geometry, the pair of two sides and the pair of two
diagonals are interchangeable. Thus for unordered geometry, Fig. 3a and b are two
different diagrams of the same theorem. The sum or difference of two segments
generally needs the order relation, as the following example illustrates.

Example 5 Let BD be the altitude on the side AC of an isosceles triangle ABC, E
be any point on the base side AB. From E draw two lines perpendicular to the two
sides with the feet F and G. Show that BD = EG + EF (Fig. 4a).

Because there is an addition of two segments in different orientations, the repre-
sentation of this theorem is beyond unordered geometry. Also the theorem implicitly
assumes that E is between A and B. In unordered geometry, we can prove a
weaker version using Wu’s method: one is the sum of the other two among the three
segments. See three diagrams in Fig. 4.

However, the addition of two orientated segments on the same line or on two
parallel lines is in affine geometry. In Fig. 3, we always have MN + NE = ME
and MN = 1/2(AB + CD), where AB, etc., are signed, oriented segments. These
equalities are valid for both Fig. 3a and b. A single synthetic proof without the order
relation of the unordered version of Example 5 is a very good challenging exercise
for full understanding of unordered geometries discussed in this section.
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Fig. 4 A theorem on isosceles triangles
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2 The Full-Angle Method

The definition of angles in common geometry textbooks uses the order relation. In
unordered geometries, we need to use a concept similar to angles that we will call
full-angles which do not involve the order relation. Since the goal of this paper is
the automated generation of visual presentation of proofs for the full-angle method
[15] and the deductive database method which uses full-angles [14], in this section
we will give a brief review of the basic concepts of full-angles and the full angle
method, so that the readers can understand this paper, and when needed, they can
resort to the original paper [15]. Section 2.1 presents the definition and the basic
properties of full-angles. While the properties listed here do not cover all properties
in our original paper [15], this section includes additional insights into full-angles
other than discussed in our original paper [15]. Section 2.2 discusses the full-angle
method briefly.

2.1 Full-Angles

R1. A full-angle is defined as an ordered pair of two lines u and v denoted by
∠[u, v].

R2. ∠[u, v] + ∠[v, u] = ∠[0] or ∠[u, v] = −∠[v, u].
R3. Constant full-angle ∠[u, u] is denoted by ∠[0]. We have ∠[0] + ∠[u, v] =

∠[u, v] + ∠[0] = ∠[u, v]. Also ∠[u, v] = ∠[0] iff u ‖ v.
R4. If u ⊥ v, then we define ∠[u, v] to be a constant full-angle ∠[1]. ∠[u, v] +

∠[u, v] = ∠[0], or ∠[1] + ∠[1] = ∠[0].
R5. For two full-angles ∠[u, v] and ∠[u1, v1], there are three lines l1, l2, and l3 such

that ∠[u, v] = ∠[l1, l2] and ∠[u1, v1] = ∠[l2, l3]. We define ∠[l1, l3] to be the
sum of ∠[u, v] and ∠[u1, v1], denoted by ∠[u, v] + ∠[u1, v1] = ∠[l1, l3].

Remark This definition of the two full-angle congruence follows the style of
Hilbert’s book [12]. More informally, two full-angles ∠[l, m] and ∠[u, v] are equal if
there exists a rotation K such that K(l) ‖ u and K(m) ‖ v. For the geometric meaning
of the addition of full-angles, let l, m, u, and v be four lines and K be a rotation such
that K(l) ‖ v. Then ∠[u, v] + ∠[l, m] = ∠[u, K(m)].

As a special case, ∠[u, l] + ∠[l, v] = ∠[u, v]. Thus the addition of two full-angles
does not use the order relation and is diagram-independent. The set of all full-angles
with the addition operator ‘+’, is an additive (Abelian) group.

The geometries with the definition of the addition of full-angles are Euclidean, as
opposed to non-Euclidean geometries. For example, the assertion that the sum of
three angles of a triangle ABC equals 180◦, which is equivalent to Euclidean fifth
hypothesis, can be expressed as

∠[CA, AB] + ∠[AB, BC] + ∠[BC, CA] = ∠[CA, CA] = ∠[0].
R6. If l ⊥ v, we have ∠[u, v] = ∠[u, l] + ∠[l, v] = ∠[u, l] + ∠[1].

Note that this rule is the combination of R4 and R5.

R7. If AB = AC, then ∠[AB, BC] = ∠[BC, CA].
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Fig. 5 The inscribed angle theorem

The full-angle method works particularly well for theorems involving circles and
angles.

Let A, B, C, and D be four non-collinear points.2 We use ∠[ABC] to denote the
full-angle ∠[AB, BC] and use ∠ABC to denote the traditional angle. In ordered
geometry, ∠[ABC] = ∠[DEF] if and only if ∠ABC = ∠DEF and the two angles
have the same orientation, or ∠ABC = 180◦ − ∠DEF and the two angles have the
opposite orientations.

R8. (The Inscribed Angle Theorem) Points A, B, C, and D are cyclic iff ∠[ABC] =
∠[ADC] (the left of Fig. 5.)

Applying this twice we can have a combined rule, say, ∠[BAC] = ∠[BDC] iff
∠[ABC] = ∠[ADC] (the right of Fig. 5), etc. Here the four points can be in any
order. These diagram-independent properties of full-angles make the proofs not only
much simpler and diagram-independent, but also rigorous.

2.2 An Overview of the Full-Angle Method

The full angle method uses a fix set of rules based on the full-angle definition and its
properties. The rules can be considered as lemmas or axioms of our system. The
independence of these rules is not our concern at all. Actually we have a set of
combined rules based on our basic rules. Our main concern, beside the consistency,
is how to select or combine these rules so that the system can effectively generate
short proofs.

In [15] we use 14 basic rules and 7 combined rules. We rewrite these rules in the
current system JGEX for generation of visually dynamic presentation of full-angle
proofs.

2Whenever we discuss a geometry theorem in this paper we assume certain non-degenerate con-
ditions to be valid which have been well discussed in [16] for a class of geometry statements of
constructive type. For example, in Simson’s theorem (Example 3) we need to add a condition among
others that line AB is non-isotropic. In the real plane, this is equivalent to A �= B.
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The full-angle method is a combination of the forward chaining followed by the
backward chaining. Beginning with the hypotheses of the theorem as the initial set of
properties (facts), we repeatedly apply these rules to this set of properties to get new
properties until no new properties can be added. The final set of properties is called
Geometry Information Bases (GIB) [15].

If the conclusion is in the GIB, then we prove the theorem. Otherwise we do a
backward chaining beginning from the conclusion, using the technique of elimination
of points or lines from the full-angles. For details see [15].

3 Automated Generation of Visually Dynamic Presentations of Proofs
for the Full-Angle Method

Before going into the detail of visually dynamic presentation of proofs for the
full-angle method, we need to further discuss the full angle method in Sections 3.1
to 3.4.

3.1 Hierarchical Structure of Full-Angle Proofs

For a relatively complicated proof, it is crucial that the proof be presented in a
hierarchical way. Automated generation of proofs with hierarchical structures is an
important topic in theorem proving in general. In some cases, it is closely related
to lemma applications in mathematical proofs (See Miquel’s theorem for n = 5 in
Example 12.)

If a machine-generated proof with hierarchical structures is printed in a paper,
then the presentation is static and the advantage is not so evident. However, if
the proof is represented with a tree in a computer display window as we shown in
examples of Section 3.5, the advantage is evident. Depending on options, the proof
can be presented with only main (top-level) steps so that the user can concentrate on
main steps, and when a particular step is needed for further investigation, the user
can expand the proof of this step to a subtree.

On one extreme end, the text pane displays a proof text only with the main proof
steps. On the other extreme end, the proof text is displayed in its full expansion,
including substeps of the main steps, and further substeps of each substep, etc.

Theoretically, the backward chaining gives a natural way to generate a proof with
hierarchical structures. We have tried this approach and the program generates a
proof tree. However, for relatively complicated proofs, this is not a natural way
for presenting proofs of geometry theorems similar to those presented in geometry
textbooks. In addition, some leafs are nested too unnecessarily deep and make the
proof hard to read. We need a better way to do this in addition to backward chaining.

In our full angle method, we achieve automated generation of proofs with hierar-
chical structures by a combination of the GIB, obtained by the forward chaining, and
the backward chaining. This provides a natural way to generate full-angle proofs with
hierarchical structures more similar to lemma applications: whenever a non-initial
property in the GIB is used in the backward chaining, the proof of this property can
be expanded with the forward chaining. This proof can be considered as a substep of
the main proof. If the proof of this property has sufficient number of steps, we can
consider this property and its proof as a lemma application.
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Let us use the full-angle proof of the Miquel theorem for n = 5 to see the proof
with hierarchical structures and instances of the lemma application.

Example 6 (Miquel’s Theorem for n = 5. See Example 12) The number of main
(top-level) steps of this proof is 12. The number of total steps is 46. In particular,
two main steps, Step 2 and Step 11, use a property that is actually Miquel’s theorem
for n = 4 found in the GIB with the forward chaining. We can expand its forward
chaining proof which consists of 19 steps. So Steps 2 and 11 can be considered as
applications of Miquel’s theorem for n = 4. See Fig. 11.

From the examples in Section 3.5, we can see that most main steps in the proofs
have a subtree. It is very convenient to expand or to shrink a proof subtree with
mouse clicks.

3.2 Automated Generation of Auxiliary Geometry Elements

One of the main features of the full-angle method is that auxiliary geometry elements
such as points, segments, angles, and circles are automatically added in some proof
steps, as these elements are required by the rules of the full-angle method in that
proof step [15, 18].

For example, in the proof of the Miquel theorem for n = 5 (Fig. 11), Step 2

∠[M2 M5 P5] = ∠[M2 P3 P5]

uses Rule 8, the full-angle version of the inscribed angle theorem (see R8 in
Section 2.1). This rule requires three segments P5 M5, M5 M2, M2 P3, and the 4-point
circle M5 P3 M2 P5. Thus three auxiliary segments and one circle are added in Step 2.
See the proof of this theorem in Fig. 11 for detail.

3.3 Automated Generation of Visual Effects for the Proof Text

When we step through the proof line by line, the auxiliary lines, segments, angles,
and circles required for the proof are added automatically, as these elements are
required by the rules of the full-angle method in that proof step [15, 18]. In geometry
textbooks, all these geometry elements are generally put in one diagram for the
proof. The diagram with all auxiliary elements is already somewhat cumbersome for
reading a proof of even a moderately complicated theorem.

With our dynamic presentation of proofs, when segments, angles, or circles are
needed in a proof step, they appear only when this step is clicked. When another
step is clicked, these auxiliary elements disappear.

Not only each line of the proof is clickable with expected dynamic visual effects,
but also some part of a proof line, e.g., ∠[ABC] in the line, is clickable with the
corresponding visual effects. In this way, the angles in the proofs text is related to the
visual effects in the diagram.
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JGEX also provides several other options for adding auxiliary elements
dynamically.

(1) Put all auxiliary elements in the final diagram for the proof when the number of
auxiliary elements is relatively small, say, is less than 6.

(2) When auxiliary elements are required in a step, they appear. Afterward, we
only keep those that the prover considers ‘essential’ for reading the proof.

3.4 Visualization of the Rule Applications

It is very crucial for the reader to understand the full-angle rules before going to the
detail proof text. However, the visualization of these rules is considered to be not
easy [17]. In JGEX, we provide a method to visualize these rules and believe that it
can help the reader a lot in understanding full-angle proofs.

When a full-angle rule is applied, it displays the text, e.g., ‘Rule 8’ in Fig. 9. By
clicking the text ‘Rule 8’, it creates another window to show the portion of diagram
where the rule is applied (see the right window of Fig. 9). In this way, we get rid of
the unnecessary elements while keep the key elements in the diagram so that the user
can understand the rule much easier. This method is especially useful for complicate
theorems such as the Miquel Theorem for n = 5 in Fig. 11.

In the popup window, all objects in the new window are mouse-sensitive just as
the main diagram pane. For example, we can drag a point in the new window to
change the shape of the diagram so that the rule application can be seen more clearly.
Also the point and angle labels are movable with the mouse. Moreover, whenever an
object is changed in this window with mouse, the corresponding object of the diagram
in the main pane is changed accordingly, and vice versa.

If we want to know further about the rule application, JGEX provides each rule
with an example to further explain it. For example, the left popup window of Fig. 9
shows the built-in example for Rule 8 (the inscribed angle theorem) of the full-angle
method. In this way, the rule application is vividly seen.

3.5 More Examples

We have tested JGEX with 110 theorems in the collection [18] and it took about 12
seconds to generate the proofs of all theorems on a Pentium IV 2.8G machine. We
choose to dump the screen, because this might be the best way to give some features
of visually dynamic presentation of proofs in a static piece of paper: the proof text
tree pane and the diagram pane are side by side and we can see whether a node in the
proof tree is expanded or not. More examples can be found on our webserver [19].

Example 7 The same as Example 1. Figure 6 is the proof of this theorem: the left
pane is for the proof text tree and the right pane is for the diagram.

The proof is organized into a hierarchical tree and currently the tree is in its full
expansion. There are two ways to see the visual effects. (1) One can click each line
of the proof tree and the corresponding visual effects will be shown in the diagram
in the right pane. Each geometry element in a proof line is generally clickable. For
example, ∠[GDC] in the highlighted line in Fig. 6 is clickable with its own visual
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Fig. 6 A two circle theorem

effects: the mark of ∠[GDC] is blinking. (2) One can step the proof line by line and
each line is highlighted with the same visual effects as if clicking the line itself.

Example 8 (The Orthocenter Theorem) The three altitudes of a triangle are concur-
rent. Let F be the intersection of the two altitudes BD and CE of triangle ABC.
Show that AF ⊥ BC.

The proof adds three auxiliary elements: one segment and two circles. Note that
the proof is diagram-independent, it is valid for acute triangles, as well as for obtuse
triangles. However, a right triangle is a degenerate case for this proof, although the
theorem is still valid.

The contents in the left text pane can be switched by clicking the menu items in
the bottom bar. When a theorem file is opened or a diagram is drawn, it contains the
text of the theorem and the menu item ‘Thm’ is highlighted. If a proof with the full-
angle method is generated, the pane contains the text of the proof tree and the menu
item ‘F’ is highlighted. We can switch back to the text of the theorem by clicking
‘Thm’. The menu item ‘D’ is for switching to the proof text with deductive database
method if it is already generated. ‘A’ is for switching proof text of the area method
(not implemented yet). ‘M’ is for the manual inputs. ‘Fix’ is to generate the contents
of the fixpoint in the pane.

Example 9 (The Nine Point Circle Theorem) In a triangle ABC, the feet of the three
altitudes, the midpoints of the three sides, and the midpoints from the three vertexes
to the orthocenter are on the same circle.
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Let F be the orthocenter of the triangle ABC (Fig. 7 of the preceding example).
Then A is the orthocenter of �FBC, B is the orthocenter of �F AC, and C is the
orthocenter of �F AB. Thus we only need to prove that the midpoints F, G, and E
of the three sides and the foot D of one altitude, AD, are on the same circle. Figure 8
is its proof. Here we choose the option of putting all auxiliary elements, one circle,
one segment and two angles, in the diagram.

In Fig. 8, the current step is highlighted which uses Rule 7. When this step is
clicked (hence is highlighted), there appears a green arrow to the right of ‘(rule 7)’.
By clicking this arrow, it creates another floating window showing the portion of the
diagram to which this Rule 7 is applied.

Here the proof consists of five main steps corresponding to the five equal signs
‘=’. Since we separate the application of the addition of two full-angles from the
combined rules as a new step, there are generally more steps in proofs generated by
JGEX than those in our previous publications [15, 18].

Example 10 (Simson’s Theorem) Let D be a point on the circumscribed circle (O)
of a triangle ABC. Let P, R, and Q be the feet of the three perpendicular lines from
point D to the three sides BC, AC, and AB, respectively. Show that P, R, and Q are
collinear.

The proof is given in Fig. 9. The left proof text pane contains the proof tree. There
are two auxiliary segments and two auxiliary circles added to the diagram.

Fig. 7 The orthocenter theorem
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Fig. 8 The nine point circle theorem

Fig. 9 Simson’s theorem
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Alternatively, we can start to prove ∠[ARQ] = ∠[BRP] similar to the traditional
proof in common geometry textbooks. However, here we are using full-angle rules
and thus the proof is rigorous—no additional assumptions of the order relation, such
as points D and P are on the opposite sides of line AC, are required.

The current step is highlighted that uses Rule 8. The floating window on the right
of the diagram shows that Rule 8 is the full-angle version of the inscribed angle
theorem (Fig. 9). The window on the right of the diagram shows the built-in example
for this theorem.

Example 11 (A Two Parallelogram Theorem) Let ABCD be a parallelogram, AH
and CG be perpendicular to the diagonal BD at feet H and G, BF and DE be
perpendicular to the diagonal AC at feet F and E. Show that HF ‖ EG (Fig. 10).

There are two auxiliary circles added. The segments HE and FG are added
by the user (the authors) to explain that the original problem is to prove that the
quadrilateral EGF H is a parallelogram. This is actually a hint for human to prove
the theorem: the traditional proof in the common geometry textbooks is to prove
that the two diagonal HG and EF bisect each other with the triangle congruence
method.

However, to understand this hint is hard for the computer program. Furthermore,
the computer program generally does not know to generalize from HF ‖ EG to
HE ‖ FG. So using the traditional method to prove this theorem with the computer
is expected to be hard.

Fig. 10 A two parallelogram theorem
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This is a pure line figure theorem and it is a surprise that the proof uses two
auxiliary circles.

For all examples so far, the sizes of the proof text pane and the diagram pane are
large enough to hold the text and the diagram. The next example shows that the sizes
of the panes are the most valuable computer resource, while the proof is generated
virtually with minimal CPU time. In that example, we have to choose the option to
use small fonts for the proof text. However, the two panes barely hold the proof text
and the diagram.

Example 12 (The Miquel Theorem for n = 5) Let P1, P2, P3, P4, and P5 be
five points. Let Q1 = P2 P5 ∩ P1 P3, Q2 = P1 P3 ∩ P2 P4, Q3 = P2 P4 ∩ P3 P5, Q4 =
P3 P5 ∩ P1 P4, and Q5 = P1 P4 ∩ P2 P5. Let the other intersections of the consecu-
tive circumscribed circles of triangles Q5 Q1 P1, Q1 Q2 P2, Q2 Q3 P3, Q3 Q4 P4, and
Q4 Q5 P5 be M1, M2, M3, M4, and M5 respectively. Show that points M1, M2, M3,
M4, and M5 are cyclic.

The 12 machine-generated main proof steps are shown in Fig. 11 with Step
2 being clicked (and thus is highlighted). It uses Rule 8 with the condition
cyclic(M5, P3, M2, P5) which is a fact found by the forward chaining, i.e., a fact in
the GIB. This fact is the Miquel theorem for n = 4. By clicking this step, circle
(M5, P3, M2, P5), together with three segments and two angle marks, appear and
blink (Fig. 11).

Fig. 11 The Miquel theorem for n = 5
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By clicking cyclic(M5, P3, M2, P5) with the right mouse button, a selection menu
is opened. By selecting “prove”, a proof of cyclic(M5, P3, M2, P5) with 19 steps is
expanded and inserted into the proof.

The Miquel theorem for n = 4 with the point labeling in this example states as
following: Let P5 Q1, P5 P3, P1 P3 and P1 Q4 be four lines that form four triangles
P1 Q1 Q5, P1 P3 Q4, P5 Q4 Q5, and P5 P3 Q1. Show that the circumscribed circles of the
four triangles intersect at the same point.

Likewise, Step 11 in the text pane of Fig. 11 is another instance of the Miquel
Theorem for n = 4: the fact cyclic(M3, P1, M1, Q2) is shown in the 4th line from the
bottom.

4 The Automated Generation of Visually Dynamic Presentations of Proofs
for the Deductive Database Method

4.1 An Overview of the Deductive Database Method

During 1994–1995, we used a general-purpose deductive database program based on
Prolog to experiment with the full-angle rules, and soon found that general-purpose
deductive databases had two major problems for our purpose: (1) infinite loops, e.g.,
coll(A, B, C) :– coll(B, A, C) :– coll(A, B, C) :– · · · ; (2) high inefficiency.

We then implemented our own structured database and a rule set R consisting 75
rules for full-angles, some of which are built-in into the structured database [14].

Given a geometry statement of the equality type, each hypothesis is considered as
a fact (a property). All hypotheses of the statement form the initial database D0 of
facts. Then we apply the rule set R to D0 to get new facts. We expand the database
D0 by adding the new facts to D0 to have the enlarged database D1. We repeat the
process for D1 to have an enlarged database D2. Since the number of points is finite,
the numbers of segments, of angles, of triangles, and of circles are also finite. This
process will finally terminate, i.e., there is k ≥ 0 such that Dk = Dk+1. Then we call
Dk the fixpoint of the given geometric configuration. This process can be expressed
by the following diagram:

D0
R⊂ D1

R⊂ · · · R⊂ · · · R⊂ Dk
R= Dk+1 (Fixpoint)

Since the rule set R and the structured database are built into the source code, the
prover is very efficient and the fixpoint can be generally reached within a fraction of
a second even for an antique Pentium machine. If the conclusion (a fact also) is in the
fixpoint, then we prove the statement to be true and the proof can be generated. The
visualization of the rule application for deductive database method is similar to the
rule application for the full-angle method, except that they have different rule sets.

As the full-angle method, the deductive database method also automatically adds
auxiliary segments, angles, and circles as the rule applications in the proof process
require. However, we generally do not add new points, e.g., by intersecting two lines.
In our deductive database method we add 18 rules for adding auxiliary points [14].
But we do not do this recursively, i.e., we will not add a new auxiliary point if this
point depends on an already added auxiliary point.
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4.2 Visualization of the Proof Generated by the Deductive Method

The deductive database is achieved by forward-chaining. However, a straightforward
print of the deduction steps is not easy to understand. We choose to construct the
proof from the conclusion to the hypotheses. Each step of the proof can be clicked to
see the corresponding visual effects. The effects for the deductive database method
are similar to those generated by the full-angle method.

Generally, it requires more steps for the deductive database method than those
for the full-angle method. There are three reasons for this phenomenon:

(1) The full-angle method uses the technique of elimination of points and lines
similar to the area method [21], thus the proof is more direct; (2) the full-angle
method uses combined rules, and each of the combined rule consists several rules
in the deductive database method; (3) the full-angle method uses facts found by the
forward chaining, i.e., in the GIB, and if the proofs of these facts are expanded, there
are more steps.

However, the deductive database method has its own advantage: (1) The proof
generated by the deductive database method is more similar to the traditional proof,
and thus easier to understand. (2) In comparison of the fixpoint with the GIB in
the full-angle method, the fixpoint in the deductive database method is structurally
organized and there are more rules in the rule set R. So the forward-chaining for
deductive database method is much more powerful and can be used to discover new
facts.

4.3 Visualization of the Deductive Database

Generally, the fixpoint has surprisingly rich amounts of information even for a very
simple configuration. We can classify the facts in the fixpoint into several categories
according to the geometric predicates: collinear, parallel, perpendicular, segment
equal, cyclic, (full) angle equal, triangle congruence, etc. By clicking each category,
all properties of the configuration in this category are listed. And by clicking each
of these properties, the corresponding geometry elements in the diagram blink or
animate and, if needed, the proof of this property is generated.

For example, one fact is circle(P3 P5 Q1 M2 M5) in Fig. 15. By clicking this fact, the
circle P3 P5 Q1 M2 M5 appears and blinks in the diagram. By clicking with left mouse
button, it creates another window for selecting which four points, since there are five
points and each time we can only prove four points being cyclic. After selecting the
four points, the prover generates the proof of this fact in the text pane with the menu
item ‘D’ highlighted. We can switch back to the content of the fixpoint by clicking
the menu item ‘Fix’.

Some of the facts in the fixpoint are really unexpected and visualizing them is
enjoyable. For example, in Fig. 8 (the nine point circle theorem), if we click the menu
item ‘Fix’, we find there are five groups of congruent triangles. One group has five
congruent triangles: actually we might expect there are only 4 congruent triangles
because the three midpoint connecting segments FE, EG, GF divides the triangle
ABC into four triangles �FEB, �GAE, �CGF, and �EFG. However, “−�GDE”
is another one!
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The minus sign ‘−’ before the triangle sign � means that the orientation of �GDE
is clockwise. The fact “�FEB ∼= �DGE” is not obvious and its proof takes 7 steps
with the deductive database method.

The visual effects are as follows: First �GAE is filled with a color and moves
on the fly, and drops in the position of �CGF. The �CGF is filled with another
color and moves ..., and so on. At the end, �EFG is filled with a different color and
moves on the fly with a flip or reflection (because it has the opposite orientation to
that of �GDE), and drops to the position of �GDE. Finally, all triangles appear
with different colors and we use the transparent technique to solve the problem of
overlap of triangles.

4.4 More Examples

We choose two examples: one for visually dynamic presentation of proofs with the
deductive database method and the other ones for visualization of the fixpoint.

Example 13 (A two Altitude Theorem) Let BE and CD be two altitudes of triangle
ABC and points G and F be the midpoints of BC and DE respectively. Show that
DE ⊥ FG.

Figure 12 is the proof of this theorem. Here we choose the option to put all
auxiliary elements, one circle and two segments, in the diagram.

Fig. 12 The proof of two altitude theorem
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The current step (Step 3) is highlighted and it uses the deductive database Rule
36. By clicking the green arrow to the right of “(r36)”, it creates a floating window to
show how this rule is applied. Rule 36 states that:

The hypotenuse of a right triangle is the diameter of the circumscribed circle
of the triangle, and the midpoint of the hypotenuse is the center of the circle.

This is an easy problem in junior high schools. However, to add the two auxiliary
segments and one auxiliary circle is hard for computer programs.

The input of the deductive database method does not have to have a conclusion:
we could input all conditions (hypotheses) of a geometry configuration and let the
program to find all facts (the fixpoint) with the method. The next three examples
show the fixpoints of three configurations.

Example 14 (The Orthocenter Configuration 1) Let A, B, and C be three points, CD
be perpendicular to AB at the foot D, BE be perpendicular to AC at the foot E, .

We can click the “Fix” menu item to switch the contents in the left pane to contain
the fixpoint (the final database). The pane now contains 5 icons corresponding to 5
categories of properties. By clicking each icon, e.g., the perpendicular lines icon, it
lists all facts of this property, i.e., all pairs of perpendicular lines. By clicking the left
button of the mouse, the two corresponding perpendicular lines, BC and AF, appear
and blink in the diagram. By clicking the right mouse button, it creates another menu

Fig. 13 The orthocenter configuration 2
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with two items “Prove” and “Prove in a New Window”. By choosing “Prove”, the
proof based on the deductive database method is generated in the left pane.

Note that there are three pairs of perpendicular lines. Two are a part of the
hypotheses, the third one, BC ⊥ AF, is the orthocenter theorem. By clicking this
property, two auxiliary red color lines appear and blink (Fig. 13).

Example 15 (The Orthocenter Configuration 2) Let CD and BE be two altitudes of
triangle ABC, F be the intersection of CD and BE, G be the intersection of AF
and BC.

The differences between this diagram and the diagram in the preceding example
are a new intersection point G of lines AF and BC. However, the properties in the
fixpoint are surprisingly richer, especially for equal angles (Fig. 14).

With 7 groups of equal full-angles, it is expected that there are lot of similar
triangles: there are 7 groups of similar triangles. Each group has four triangles. When
we click a fact of one of the 7 groups (not shown in the figure), the visual effects
are as following: beginning with one triangle moving on the fly, with a possible flip
(reflection) if the second triangle is in the orientation opposite to the first. At the
same time the triangle is dynamically scaled to the size of the second one and drops
into its position. Then repeat the second one, and so on. Finally, all triangles appear
and overlap with different transparent colors.

Fig. 14 The orthocenter configuration 2
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Fig. 15 The Miquel configuration with n = 5

Example 16 (The Miquel Configuration with n = 5) Let P1, P2, P3, P4, and P5 be
five points. Let Q1 = P2 P5 ∩ P1 P3, Q2 = P1 P3 ∩ P2 P4, Q3 = P2 P4 ∩ P3 P5, Q4 =
P3 P5 ∩ P1 P4, and Q5 = P1 P4 ∩ P2 P5. Let the other intersections of the consecu-
tive circumscribed circles of triangles Q5 Q1 P1, Q1 Q2 P2, Q2 Q3 P3, Q3 Q4 P4, and
Q4 Q5 P5 be M1, M2, M3, M4, and M5 respectively.

The fixpoint contains 11 circles: five are given in the hypotheses, one is the
original conclusion circle(M1 M2 M3 M4 M5) of Miquel’s theorem, the rest five 5-point
circles are new and are ‘discovered’ by the prover. By clicking one of the new facts
(highlighted in the text pane), circle(P3 P5 Q1 M2 M5), a circle with red dash-lines
shows and blinks in Fig. 15. The proof of this fact needs 6 steps with the deductive
database method.

Furthermore, if we allow to introduce new intersection points in the configuration,
then there are another 10 points that are on the circle M1 M2 M3 M4 M5, e.g., if we add
point N1 = P5 M4 ∩ P3 M3 in the input, then a fact circle(N1 M1 M2 M3 M4 M5) is in the
fixpoint.

The proof of the original conclusion, cyclic(M1, M2, M3, M4, M5), based on the
deductive database method consists of 21 steps.

5 Related Work

S. Wilson and J. Fleuriot [17] reported the success in implementing our full-angle
method [15]. Their program, Geometry Explorer (GE), has proved 100 out of 110
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theorems in our collection [18]. Geometry Explorer can create ‘purely diagrammatic
proofs’ for visualizing full-angle proofs. According to the authors, “... it is hard
to relate textual geometry facts to a separate diagram.” However, the internal
relationship of a clickable part of the proof text and its corresponding geometric
elements is the most important and distinctive feature of the visually dynamic
presentation of proofs in the work reported here.

The goals of GE and JGEX are very different. The goal of our work is to make it
easier for the user to read the proof of a geometry theorem with various dynamic
visual effects that the computer display and the mouse can offer. Whereas GE
emphasizes visualizing the full-angle method itself, such as visualizing the forward
chaining and backward chaining used in the full-angle method, and visualizing
multiple proofs generated by the full-angle method.

Also GE uses many essentially identical diagrams of the theorem on the computer
display for a proof, whereas we use a single, but dynamically changed diagram. The
duplication of the same diagram makes a proof harder to read, especially when the
reader is comparing the proof text with the diagram. For complicate proof trees,
dealing with a large number of nodes (hence a large number of essentially identical
diagrams) is unmanageable for both the program and the reader.

6 Conclusions and Future Work

In Part 1 of this series, we have proposed an entirely new presentation of proofs
in plane geometry—visually dynamic presentation of proofs. The focus of Part 2 is
the automation of these proofs as we have demonstrated: automated generation of
visually dynamic presentation of proofs for the full-angle method and for the deduc-
tive database method. The new feature of visualization of all rules and geometric
properties in the fixpoint is another addition to our method.

The system JGEX is an ongoing developing system: the current version is Beta
0.80 which is available on our server [19]. In addition, JGEX can be run online with
a large number of examples and the gif files of these examples saved by JGEX can
be seen in the collection [20] without Java.

Ongoing work and future work include:

6.1 Visual Dynamic Presentation of Proofs for the Area Method

The area method [21], is a combination of synthetic method with algebraic computa-
tion. For area method proofs with simple algebraic computations, the corresponding
visually dynamic presentation of proofs are expected to have impressive dynamic
visual effects. However, the area method sometimes generates relatively large
algebraic expressions. To make long algebraic expressions visually meaningful and
appealing is under investigation.

6.2 Visually Dynamic Presentation of Proofs for the Traditional Methods

So far the success in using the traditional methods for automated proving geometry
theorems is very limited. Currently we are working on this topic. Based on our
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experience with the full-angle method and on the new ideas we have worked out, we
believe that we can prove not only more theorems but also more difficult theorems
with computers.

Comparing with the full-angle method, angles used in the traditional methods are
more intuitive. For a full angle ∠[AB, CD], lines AB and CD even do not have to
be intersected. However, for a traditional angle, it always has a vertex and its interior
(and exterior). Thus a traditional proof would have a wider range of visual effects.

6.3 Adding Auxiliary Elements

For both full-angle method and deductive database method, an auxiliary segment
joining the two points or an auxiliary circle passing through four points is naturally
added if a rule requires so. However, we do not add a new point by intersecting two
lines.

For the deductive database method, based on the patterns of many examples, we
have 18 heuristic rules for adding new auxiliary points in our deductive database
method [14].

In our opinion, human traditional proofs of geometry theorems require enormous
amounts of human intelligence. Even more intelligence is required for adding
auxiliary elements. Thus heuristics for adding auxiliary elements are necessary. A
thorough investigation is being carried out and hundreds of theorems in our large
collection of books are the best guide to the traditional proof work.
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