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Abstract In this article, we show that the extension of the resolution proof sys-
tem to deduction modulo is equivalent to the cut-free fragment of the sequent
calculus modulo. The result is obtained through a syntactic translation, without
using any cut-elimination procedure. Additionally, we show Skolem theorem and
inversion/focusing results. Thanks to the expressiveness of deduction modulo, all
these results also apply to the cases of higher-order resolution, Peano’s arithmetic
and Gentzen’s LK.

Keywords Classical sequent calculus · Cut-free · Cut rule · Deduction modulo ·
ENAR · Resolution · Rewriting · Skolemization · Skolem theorem

1 Introduction

The resolution method [18, 33, 36, 37] is, with tableaux, one of the best practical ways
to perform automatic proof search [3, 37, 38]. For this reason resolution has been
extended to many formalisms [1] and in our particular case, to deduction modulo
[10], which subsumes the higher-order logic [15], Zermelo’s set theory [11], Peano’s
arithmetic [16] or Pure Type Systems [8] cases.

Deduction modulo is a formalism that integrates computation and deduction, via
rewrite rules embedded in, usually, first-order logic deduction rules. This framework
is flexible, as the choice of the set of rewrite rules is not constrained, and expressive,
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for instance all the theories aforementioned have a formulation in a first-order
setting. Deduction modulo also allows a unified treatment from a theoretical point of
view (no more axioms and axiomatic cuts) and from a practical one : the resolution
method of [10] presented here, as well as the tableau methods of [4, 5], apply to any
set of rewrite rules. The main novelty of deduction modulo is the ability to rewrite
atomic propositions:

x ∗ y = 0 −→ x = 0 ∨ y = 0

This gives to deduction modulo much of its character, and this is the reason
for its expressiveness. The drawback is that the theoretical properties of deduction
modulo, such as cut elimination, proof normalization or cut-free completeness are
more difficult to prove, or even do not hold, as it could be the case for some particular
rewrite systems [15, 22].

1.1 Proof Systems Modulo

A natural deduction modulo [15], a sequent calculus modulo [10], or even a tableau
method modulo [4, 5, 7], may be defined in a natural way, in intuitionistic or
classical settings. In Section 2 below we present the version of classical sequent
calculus we will use. Defining a resolution method modulo is unfortunately not as
straightforward, in particular because resolution works with sets of clauses, and de-
fining a rewrite relation on clauses is a difficult task. This work has been done in [10].

The resolution method in deduction modulo, Extended Narrowing And Resolu-
tion (from now ENAR), involves two rules. The first is an extension of the resolution
rule: we add unification constraints on the propositions we resolve. The ability to
rewrite atomic propositions into non atomic ones accounts for another rule: extended
narrowing.

In this article, we are interested in the equivalence between ENAR and sequent
calculus modulo: since there are two systems, one must show that they prove the
same formulas. This could be done through soundness and completeness of both
proof systems with respect to a given semantic, for instance Stuber [41] presents a
completeness theorem of ENAR with a positivity condition on the rewrite system.
However, this kind of analysis always requires some condition on the rewrite system,
at least for ENAR, as discussed below.

We prefer to explore a syntactical proof of equivalence between both systems.
Completeness of ENAR with respect to the cut-free fragment of sequent calculus
modulo has been proved in [10], as well as soundness, under the hypothesis that cut
is admissible. Therefore, if the cut rule is redundant or eliminable, which is a key
assumption in [10], ENAR is sound and complete. The main goal of this article is
to refine this result and to prove soundness with respect to the cut-free fragment of
sequent calculus.

1.2 Resolution and Cut-free Sequent Calculus

A link between the cut-free fragment of sequent calculus and resolution is strongly
suggested by the fact that both system are necessarily consistent: by a simple case
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analysis of the applicable rules, one can see that this is impossible to find a derivation
of the empty sequent � in the cut-free sequent calculus. Similarly, starting from an
empty set of clauses, we cannot derive the contradiction (empty clause).

Therefore, proving soundness and completeness of ENAR with respect to sequent
calculus with cuts automatically entails that the sequent calculus modulo is consistent.
This last assertion is a strong theoretical commitment, almost as strong as the cut-
elimination theorem, and requires specific assumptions in deduction modulo, since
many rewrite systems, even confluent and terminating ones, are inconsistent or do
not have the cut elimination property [15, 23].

To avoid such theoretical issues, one can either assume the cut rule to be
eliminable, as it is done in [10], or show soundness and completeness with respect
to cut-free sequent calculus, a point left open in [10], which is the approach chosen
here. It will turn out that cut-free sequent calculus and resolution modulo match
exactly, even when the corresponding sequent calculus modulo does not enjoy the
cut-elimination property, which justifies the title of this article.

Similar works have been done for the inverse method [14, 29, 31, 32], a forward-
chaining method that extends to many non-classical sequent calculi, such as the in-
tuitionistic, modal or linear ones. The inverse method has close links with resolution
[12, 44]. The link with cut-free sequent calculus is made easier by the absence of
Skolemization and clausal transformation [31, 32] (see Section 4 below) and when it
is performed, then soundness is not considered [44] or leads to proofs with cuts [13].

Sometimes resolution methods are referred to as “proofs by cut”. In the light of
the results obtained here, this appellation can be claimed to be very confusing and
misleading. This is due to the fact that the resolution rule looks as follows:

¬P, Γ ′ Γ, P
Γ, Γ ′

or using a separator (let us call it �) to separate atoms from negated atoms in a clause
(positive and negative literals, see Section 4) and making negated atoms appearing
on the right hand side, without the now irrelevant ¬ sign:

Γ � P, Δ Γ ′, P � Δ′

Γ, Γ ′ � Δ,Δ′

which is the exact shape of a cut rule. But it does not have the same status as a
sequent-calculus cut. Indeed a proof search in sequent calculus is backward-chaining,
so a cut rule (as any other rule) has to be read bottom-up: we search a derivation
of some sequent Γ � Δ and for this, we introduce a new formula A, and search
derivations of the sequents Γ � A, Δ and Γ, A � Δ.

On the contrary a resolution step has to be read top-down, which is the exact
opposite since resolution is a forward-chaining method. Resolution never introduces
new formulas: on the contrary, it eliminates some. We first have the two clauses Γ �
A,Δ and Γ ′, A � Δ′ and we eliminate A to generate Γ, Γ ′ � Δ,Δ′ that we add to
our set of clauses to continue the proof search.

Here is a concrete and simple example of the algorithm given in this article. Let
us assume we have no rewrite rules for now, so that the modulo part plays no role
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and we work in usual resolution and sequent calculus. Starting with the set of clauses
{A}, {¬A, B}, {¬B} we can build the following resolution derivation:

B, ¬A A
B ¬B

�
that uses two resolution steps. With the standard notations (Section 4 below), this
derivation can also be written as:

{A}1, {¬A, B}1, {¬B}2 ↪→1 {B}2 ↪→2 �
Transforming step by step this resolution derivation, starting from the right

(resolution step number 2), we first get the following cut-free derivation in sequent
calculus:

Axiom
A,¬A ∨ B, B � B ¬-l

A, ¬A ∨ B, ¬B, B �
then, the translation of the first resolution step will eliminate B in this derivation
by defining it as the resolvent of A and ¬A ∨ B. The result of the transformation
will be:

Axiom
A � A, B ¬-l

A, ¬A � B
Axiom

A, B � B ∨-l
A,¬A ∨ B � B ¬-l

A, ¬A ∨ B, ¬B �
which is a cut-free derivation. Moreover, each resolution steps is reflected by an
axiom rule, that is, in a sense made precise by Linear Logic [20], the dual of a
cut rule.

1.3 Outline of this Article

In the next section we formally introduce the rewrite rules that we allow in deduction
modulo and the associated sequent calculus. The version we use is a modified version
of the usual and original sequent calculus modulo [9, 10], that is why we then show
that it is equivalent, under the assumption that the rewrite system is confluent.

In the following Section 3 we prove important syntactical properties of invertibility
and focusing in the sequent calculus modulo, following similar properties holding in
the usual sequent calculus.

We present in Section 4 an intermediate system between sequent calculus modulo
and ENAR, EIR (standing for Extended Identical Resolution). It is introduced in
[10] and proved there sound and complete with respect to ENAR. Note that both
ENAR and EIR reduce to usual resolution when the set of rewrite rules is empty.

Sections 5 and 6 present technical material to conveniently handle clauses in
the cut-free sequent calculus. Then, Section 7 shows how to simulate clausal form
transformation into cut-free sequent calculus, which seems to be a new result, and
Section 8 how to simulate resolution steps. Thanks to the version of sequent calculus
used here and the results proved in the sections before, those four sections are quite
independent from the rewriting part of deduction modulo and can then be read
separately.
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2 Sequent Calculus Modulo

2.1 Language and Rewriting Relation

We assume that the reader is familiar with the notion of first-order language
and formula. y or t will be used as a shorthand for some y1, ..., yn and t1, ..., tm
respectively, always clear from the context. The connectors we consider here are ∧
(conjunction), ∨ (disjunction), ¬ (negation), ⇒ (implication) and the quantifiers are
∀ (universal) and ∃ (existential) ; some of them are redundant, as usual in classical
logic. Atomic predicates of the language will be denoted P, Q, ... while A, B, ... will
designate compound formulas. For more details, see for instance [40, 43, 45].

The rewrite rules allowed in deduction modulo are of two kinds: on terms and,
more important, on (atomic) formulas. For instance, a rewrite rule such as P −→
B ⇒ P is allowed. This kind of rewrite rule is the core feature of deduction modulo
and is the source of its high potentialities.

Definition 1 A term (resp. propositional) rewrite rule is a pair l −→ r of terms (resp.
formulas such that l is atomic), such that the variables of r appear in l. An equational
axiom is a pair l = r of terms.

Definition 2 Let R be a set of propositional rewrite rules and E a set of term rewrite
rules and equational axioms. A formula A R-rewrites (resp. E-rewrites) in one step
to A′ if and only if: A|ω = σ(l) and A′ = A[σ(r)]ω for a rule l −→ r ∈ R (resp. E),
an occurrence ω in A and some unifier σ . The application of σ to r, which can be
compound, is made capture-avoiding. We write A −→R A′ (resp. A −→E A′), and
−→∗

R (resp. −→∗
E) for its reflexive, transitive closure. ≡E is the congruence generated

by the rewrite rules and the equational axioms of E .
A formula A RE-rewrites in one step to A′ if and only if it exists a proposition B

such that the three following conditions are fulfilled: A ≡E B, B −→R B′ and B′ ≡E
A′. This is noted A −→ B, the reflexive transitive closure of this relation is noted
−→∗, and if A ≡E A′ we also write A −→∗ A′. ≡ is the congruence generated
by RE .

We write Γ ≡ Γ ′ (resp. Γ −→∗ Γ ′ for two sets of formulas Γ, Γ ′) if and only if
Γ = A1, ..., An and Γ ′ = A′

1, ..., A′
n and for any i Ai ≡ A′

i (resp. Ai −→∗ A′
i).

Note that propositional rewrite rules are oriented in the −→∗ relation, while term
rewrite rules (in E) are not. This can be changed, by defining E to contain only the
equational axioms, pushing term rewrite rules into R. Here we stick to the original
formulation [10].

Definition 3 (Confluence) A rewrite system RE is said to be confluent if and only if
for any formulas A ≡ B, it exists a formula C such that A −→∗ C and B −→∗ C.

In the remainder of the article, we will not suppose that the considered rewrite
system is confluent. This assumption is not needed, although we have to assume this
if we want to extend our results to ENAR (Theorem 3.1 of [10]) and to usual sequent
calculus.



250 O. Hermant

2.2 The Sequent Calculus

Figure 1 presents the version of sequent calculus modulo we use. It has some special
features, but it is equivalent (see below and [22]) to any other formulation, provided
the rewrite system is confluent.

We assume familiarity with at least one version of the classical sequent calculus
[19, 42], so that we only briefly recall definitions. A sequent is a pair of multisets (or-
der does not matter, repetition allowed) of formulas. A proof in the sequent calculus
is called a derivation; it is a tree formed by a finite number of nodes, such that every
node is one of the rules of Fig. 1. A branch linking two nodes has a unique label, being
the corresponding premise/conclusion of the rule; in particular the leaves must be
axioms. The formula being decomposed is called the principal formula. The height of
a derivation is the depth of the associated tree. For more details see for instance [40].

As for non-standard features, note that the rules axiom, weakening, conversion
involve atomic formulas (and for some, empty contexts). This will be a crucial
property when reasoning by induction over derivations, since we need any non
atomic formula to be properly broken down, in order, first, to avoid some long
case distinction, and second, to be able to ensure properties on the height of the
derivations. We do not allow the cut rule, which is a critical feature. Moreover, unlike
the usual presentation of mixed deduction and rewrite rules as, for instance:

Axiom, if A ≡ B
A � B

Fig. 1 Sequent calculus
modulo
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we prefer first, to separate rewrite steps from deduction steps and second, to make
an orientation of the rewrite rules so that we only allow upward rewriting, and not
equivalence. Two formulas A ≡E B fit this pattern, as upward rewriting has to be
understood on the propositional rules of R and modulo E (Definition 2).

The conversion rules are rules we should be careful with: they change the nature
of formulas (from atomic to non atomic). So for our purpose it is useful to separate
structural decomposition of formula from calculations (rewriting), as it is done also
in EIR (Section 4).

The benefits we reap from this are twofold: we are closer to what happens in
EIR and most of the lemmas and propositions in this article have shapes and proofs
quite independent from deduction modulo concerns. We only have to consider two
additional rules and sometimes even this is not necessary, furthermore other rules are
exactly the rules of usual sequent calculus. Of course, from many other standpoints,
the sequent calculus of Fig. 1 is not well-suited and it should be considered as an
intermediate system, in the same way EIR (Section 4) is an intermediate system
between ENAR and sequent calculus.

For a simple example, consider the language where terms are formed with a
constant, 0 and s, a unary function symbol, s, and where predicates are Even, Odd
both binary and 
, nullary. Consider the following rewrite system:


 −→ ¬⊥
Even(0) −→ 


Even(s(x)) −→ Odd(x)

Odd(s(x)) −→ Even(x)

First, one can build the following derivation:

⊥-r⊥ � ¬-r� ¬⊥ conv-r� 

This is an encoding of the 
-r rule as a non-primitive rule (
 is not a logical

constant, as in [10]). Then, we can build the following proof that 4 is even:

...

� 

� Even(s(s(s(s(0)))))

which is a four-lines derivation, that one could compare with a derivation of the
corresponding sequent in usual sequent calculus:

∀x(Even(s(x)) ⇒ Odd(x)),∀x(Odd(s(x)) ⇒ Even(x)), Even(0) � Even(s(s(s(s(0)))))

Of course, on such a simple example, there is many optimizations of the sequent-
calculus proof search since we have only Horn Clauses [35].

We are able to derive the more usual rules of Fig. 2, where the atomicity condition
on A is dropped. The dashed line means that there is a means to convert a derivation
of one sequent into another one, in the sequent calculus presented in Fig. 1. In
particular, one see that rewriting only atomic formulas is as powerful as rewriting
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Fig. 2 Admissible rules of
sequent calculus modulo

any formulas (under the rather weak hypothesis of confluence). As a convention, we
will use a dashed line to denote an admissible rule, and a double line
to denote a repetition of rules. Below are the proofs of admissibility.

Lemma 1 (Admissible rules) Let Γ,Δ be sets of formulas, A, B be formulas.

1. if we have a derivation of Γ � Δ then we can build a derivation of Γ, A � Δ

(respectively Γ � A, Δ).
2. we can prove the sequents Γ, A � A, Δ and Γ,⊥ � Δ.
3. if A −→∗ B and if we have a derivation of Γ, B � Δ (respectively Γ � B, Δ) then

we can build a derivation of Γ, A � Δ (respectively Γ � A,Δ).
4. if RE is confluent, if A ≡ B and if we have a derivation of Γ, B � Δ (respectively

Γ � B, Δ) then we can build a derivation of Γ, A � Δ (respectively Γ � A, Δ).

Proof We prove each point separately and in the order they are stated. The first
point is proved by induction on the structure of A. If A is atomic then the derivation
is obtained by a direct application of the weakening rule of Fig. 1. Otherwise, if
A = B ∧ C, then by induction hypothesis, we have a derivation of Γ, B � Δ, and
by induction hypothesis again, a derivation of Γ, B, C � Δ. We apply an ∧-l rule and
obtain the desired derivation. To obtain a derivation of Γ � A,Δ we apply the ∧-r
rule to the derivations of Γ � B, Δ and Γ � C, Δ obtained by induction hypothesis.
All the other cases are similar.

The second point is proved in two steps. First, we show that A � A has a
derivation by induction on the structure of A. If A is atomic then the derivation
is a direct application of the axiom rule of Fig. 1. Otherwise, if A = B ∧ C, we build
the following derivation:

B � Bweak-l
B, C � B

C � C
weak-l

B, C � C ∧-r
B, C � B ∧ C ∧-l

B ∧ C � B ∧ C

using the first point and induction hypothesis to get derivations of B � B and C �
C. Once A � A is proved, we add the contexts Γ,Δ by repeated weakening, again
applying the first point by induction on the cardinality of Γ,Δ.

The third point is proved by generalizing slightly: we show that if Γ −→∗ Γ ′,
Δ −→∗ Δ′ and Γ ′ � Δ′ has a derivation, then Γ � Δ has a derivation. It is shown
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by induction on the derivation of Γ ′ � Δ′. If the last rule is a structural rule on A′,
then we apply induction hypothesis and contract (or weaken) on A. If the last rule is
an axiom, then we have to show A1 � A2 with A1 −→∗ A′ and A2 −→∗ A′. Since A1

and A2 are atomic (A′ is atomic) we can use conv-l and conv-r on them to turn them
both into A′. If the last rule is a conversion rule on A′ −→∗ A′′, then A −→∗ A′′ and
we apply induction hypothesis.

Otherwise, if the last rule is ∧-l on A′ = A′
1 ∧ A′

2 and if A is atomic, then rewrite it
to A′

1 ∧ A′
2. If A is not atomic, skip this step, since A has to be of the shape A1 ∧ A2

with A1 −→∗ A′
1 and A2 −→∗ A′

2, due to the definition of the rewrite relation −→∗.
By induction hypothesis, we have a derivation of Γ, A1, A2 � Δ, to which we apply
the ∧-l rule. All the other remaining cases are dealt with identically.

The last point is also a consequence of a slightly generalized result: we build a
derivation of the sequent Γ � Δ, assuming that we have a derivation of Γ ′ � Δ′,
with Γ ≡ Γ ′ and Δ ≡ Δ′. This proof is done by induction over the structure of
the derivation of Γ ′ � Δ′, and heavily uses the confluence of the rewrite system.
If the last rule is a contraction or weakening rule, we apply induction hypothesis
and the same rule. If the last rule is a conversion rule, we apply induction hypothesis.
If the last rule is an axiom, then we must show A1 � A2 knowing that A1 ≡ A′ ≡ A2.
Let B such that A1 −→∗ B and A2 −→∗ B. It exists by confluence and we have a
derivation of B � B from the second point. From the third point, we also can build a
derivation of A1 � A2.

Otherwise, if the last rule is ∧-l on A′ = A′
1 ∧ A′

2 and A is atomic, we rewrite it
to B1 ∧ B2 obtained by confluence. If A is not atomic, we skip this step, since A
has to be of the shape A1 ∧ A2 with A1 ≡ A′

1 and A2 ≡ A′
2, due to the definition

of the rewrite relation −→∗. By induction hypothesis, we have a derivation of
Γ, A1, A2 � Δ, to which we apply the ∧-l rule. All the other remaining cases are
treated identically. �

Proposition 1 (Proof system equivalence) Let Γ,Δ be two sets of formulas and RE
be a confluent rewrite system. Let Γ ′ ≡ Γ and Δ′ ≡ Δ be two sets of formulas. Then:

– if there is a cut-free derivation π of the sequent Γ � Δ in the system of [10], then
there is a derivation π ′ of the same sequent in the system of Fig. 1.

– if there is a derivation π of the sequent Γ ′ � Δ′ in the system of Fig. 1, then there
is a cut-free derivation π ′ of the sequent Γ � Δ in the system of [10].

Proof See [10], page 41, for a presentation of the sequent calculus used there. For the
first statement, we show that every rule of the sequent calculus of [10] is admissible,
using Lemma 1 (and thus confluence). For instance:

Γ, A, B � Δ∧-l, C ≡ A ∧ B
Γ, C � Δ

is replaced by
Γ, A, B � Δ ∧-l
Γ, A ∧ B � Δ

conv-l, C ≡ A ∧ B
Γ, C � Δ

Conversely, we cannot directly show that the two conversion rules of Fig. 1 are
admissible in the system of [10], so we build π ′ by induction on the structure of π ,



254 O. Hermant

which is straightforward and does not involve confluence. Let us work out some key
cases:

– if the rule is a conversion rule, then we apply induction hypothesis.
– if the rule is a ∧-l, then we have a derivation of the sequent Γ ′, A′, B′ � Δ′ and

by induction hypothesis, a derivation of the sequent Γ, A′, B′ � Δ to which we
can apply a ∧-l rule to form the corresponding C ≡ A′ ∧ B′.

– all the other cases are dealt with in the exact same way. �

2.3 Some Syntactic Precision

Definition 4 (Replacement in a derivation) Let Γ,Δ be sets of formulas, and π be
a derivation of Γ � Δ. Let c be a constant and t be a ground term. We define the
replacement of c by t in π by induction over π as:

– if no formula of Γ,Δ contains c, then leave π unchanged.
– otherwise, replace c by t in all the derivations of the premises (the immediate

subproofs of π), and substitute c by t in all the formulas of Γ,Δ.

So, if the sequent at the root of a subproof π ′ of π does not mention c, the
substitution is not carried out further by a replacement: the syntax allows to introduce
again c as a fresh constant with an ∃-l or a ∀-r rule, and those instances of c should
not be replaced.

Lemma 2 Let Γ,Δ be sets of formulas. Let π be a derivation of the sequent Γ � Δ,
and let c be a constant, t be a ground term. Let π ′ the replacement of c by t in π .

If t does no contain constants introduced by ∃-l or ∀-r rules, π ′ is a derivation of
{t/c}Γ � {t/c}Δ. Otherwise the statement also holds, up to a preliminary replacement
of these constants by new fresh ones in the corresponding subproofs of π .

Proof By induction over the structure of π . The proof of the second claim uses the
first to show that renaming fresh constants in the subproofs of π is legal. �

3 Inversion and Focusing in Sequent Calculus Modulo

In this section, we show some important syntactical results on the order in which we
can apply rules in sequent calculus modulo. Those results are extensions to deduction
modulo and to our particular needs of similar results for sequent calculus [26]. They
answer to the following question: given a provable sequent Γ � Δ, can a derivation
begin with a logical rule with principal formula some chosen A? Logical rules can be
classified in two groups, synchronous (or positive) and asynchronous (or negative),
such that:

– asynchronous rules can be applied at any moment,
– synchronous rules can be delayed and grouped until we come across in π an

asynchronous logical rule on the formula we are breaking down.

This is a focusing result, as it can exist in Linear [2] or in Intuitionistic Logic
[25, 27, 35]. Similar specialized calculus with a stoup formula also exist for Classical
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Logic [21]. The only minor improvements we need are statements about the height
and/or the number of contractions present in the resulting derivation π ′. The
asynchronous, or invertible, rules are ∨-l, ∧-l, ⇒-l, ¬-l, ∨-r, ∧-r, ⇒-r, ¬-r, ∃-l and ∀-r
whereas the synchronous rules are ∀-l and ∃-r. By extension, a compound formula
A is synchronous (resp. asynchronous) in a sequent Γ � Δ when A is a universal
quantification and A ∈ Γ , or an existential quantification and A ∈ Δ (resp. all the
other cases).

Conversion rules have no definitive status in this regard since they apply only to
atoms. What one could say is that, under the hypothesis of confluence of the rewrite
system, if A ≡ B are two compound formulas then they share the same structure and
therefore the same synchronicity. This is not useful here, thanks to the definition of
sequent calculus modulo of Fig. 1, but this could refine a little bit the results presented
in this section.

To be more precise, every non-quantifier logical rule is both synchronous and
asynchronous in the classical case. Only Linear Logic [2, 20] has a sharp distinction
between synchronous and asynchronous rules. Here, we are only interested in the
asynchronous nature of those rules.

At first sight, conversion rules also have this double characteristic. Things get more
complicated in the absence of confluence: application of a rewrite rule may be a real
choice point.

Building an efficient proof search system in deduction modulo and reducing
nondeterministic choices as much as possible is beyond the scope of this article.
So we do not optimize the sequent calculus to behave differently on asynchronous
(applied eagerly, without contraction) and on synchronous rules (applied to a single
formula until it becomes asynchronous, and at choice points to which we may want to
backtrack), as it is done for instance in [35]. Also, we do not try to embed contraction
into logical rules to get a contraction-free system or to get only asynchronous
rules [6].

All those changes over, and improvements on, sequent calculus are extremely
interesting to study and possible in deduction modulo as well. Here it would not
be beneficial: links between resolution and sequent calculus would interfere with
constraints on the proof system. Even in the case of a contraction-free system,
proofs would not be simplified. That is why we stick to the presentation of Fig. 1,
that we claim optimal for our needs, and leave outside the scope of this article an
extensive study of such optimized systems, to which the results shown in the next two
subsections could however lead.

3.1 Inversion of Rules

Invertibility of logical rules has been studied by Kleene in the classical sequent
calculus [26], we extend it here to deduction modulo. A rule r is said to be invertible if
each premise is derivable from a proof of the conclusion. That is, whenever a sequent
is provable, the premises obtained by applying r to this sequents are provable as
well: applying r does not change the property “provable/unprovable” of a sequent.
Otherwise stated, if we have, in a derivation of Γ � Δ, a rule r on a formula A, we
can permute r to the bottom, until we come across the root of the derivation or a
logical rule on A, if A appears only as a subformula of some formula of Γ,Δ.
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In this article, we look at this lemma from the first point of view: given a derivation
of a sequent Γ � Δ containing a compound formula A, we can build a derivation of
the premises given by the application to Γ � Δ of a logical rule with A as principal
formula.

Lemma 3 (Kleene) Let Γ,Δ be sets of formulas and A, B be formulas. If we have a
derivation π of height h of a sequent:

– Γ, A ∨ B � Δ,
– Γ, A ∧ B � Δ,
– Γ,¬A � Δ,
– Γ, A ⇒ B � Δ,
– Γ, ∃xA � Δ,
– Γ � A ∨ B, Δ,
– Γ � A ∧ B, Δ,
– Γ � ¬A, Δ,
– Γ � A ⇒ B, Δ,
– Γ � ∀xA, Δ,

then we can respectively construct derivations of:

– Γ, A � Δ and Γ, B � Δ,
– Γ, A, B � Δ,
– Γ � A,Δ,
– Γ, B � Δ and Γ � A,Δ,
– Γ, {c/x}A � Δ for any fresh constant c,
– Γ � A, B, Δ,
– Γ � A,Δ and Γ � B, Δ,
– Γ, A � Δ,
– Γ, A � B, Δ,
– Γ � {c/x}A,Δ for any fresh constant c,

Moreover the obtained derivations have a height at most h − 1.

Proof All proofs are similar and by induction over h. We work out the ∨-left case
and point out the places where the proof for other cases differs significantly. This
happens only for the quantifier cases.

h cannot be equal to 0 since the last rule cannot be an axiom (A ∨ B is not atomic).
We now distinguish cases, according to the last rule of π . Suppose this is a rule r
applied to a formula of Γ or Δ. We apply induction hypothesis to the premises, and
apply rule r to the derivations obtained. For instance, if the rule is ∧-left:

π ′
Γ, C, D, A ∨ B � Δ ∧-l

Γ, C ∧ D, A ∨ B � Δ

Then, by induction hypothesis we get derivations of the sequents:

π ′
1

Γ, C, D, A � Δ

π ′
2

Γ, C, D, B � Δ
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We use ∧-left to obtain derivations of the sequents:

Γ, C ∧ D, A � Δ Γ, C ∧ D, B � Δ

We check that the statement on height holds.
In the ∃-left case, we constrain the induction hypothesis to be applied with the

same fresh constant c in the case where two premises appear. Also, a small easily-
resolved subtlety arises if r is a quantifier rule. Let c be a fresh constant for the
sequent Γ,∀yC, ∃xA � Δ: the term t introduced by a ∀-l rule may contain c. So, in
the derivation of the premise Γ, {t/x}C, ∃xA � Δ, we fist replace (in the sense of
Definition 4) c by d. We get a derivation of Γ, {t′/x}C, ∃xA � Δ, where t′ = {d/c}t, to
which we apply induction hypothesis and then a ∀-l rule. The treatment is similar for
the three other rules.

Now, for the base cases. If the last rule of π is an ∨-left rule with principal formula
A ∨ B:

π1

Γ, A � Δ

π2

Γ, B � Δ ∨-left
Γ, A ∨ B � Δ

The premises are derivations of what we want (up to replacement of a fresh constant
by another in the ∃-l rule on ∃xA case), and fit the conditions.

The last case is a contraction rule:
π ′

Γ, A ∨ B, A ∨ B � Δ
contr-l

Γ, A ∨ B � Δ

Then, we apply the induction hypothesis once, and get two derivations of the
sequents Γ, A, A ∨ B � Δ and Γ, B, A ∨ B � Δ of height at most h − 2. This allows
us to apply once again the induction hypothesis, to get derivations of the sequents
Γ, A, A � Δ and Γ, B, B � Δ of height at most h − 3. We get four derivations,
but keep only the two that we need. Applying a contraction rule to both of those
derivations, we get derivations of the sequents Γ, A � Δ and Γ, B � Δ of height at
most h − 2.

In the ∃xA case, we want to contract a sequent of the shape Γ, {c/x}A, {d/x}A �
Δ, for some fresh constant d. Before that, we have to replace d by c. �

Remark 1 Lemma 2 allows to strengthen easily Lemma 3: from a derivation of the
sequent Γ, ∃xA � Δ one can construct a derivation of Γ, {t/x}A � Δ for any term t.

3.2 Focusing Synchronous Rules

Lemma 3 above defines the asynchronous rules and formulas. In sequent calculus,
the only pure synchronous rules are ∀-left and ∃-right, that are not invertible. For
instance, there is an easy two-step derivation of the sequent ∀xP � ∀xP but we
cannot find a term t such that the sequent {t/x}P � ∀xP has a derivation, because
of the freshness condition on the ∀-r rule.

In some versions of the sequent calculus, integrating the contraction rules to the
∀-l and ∃-r rules [6], allows those rules to be invertible as well, and the derivation
to begin with a ∀-l rule. However, it does not solve the instantiation problem, since
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translated into the version of sequent calculus of Fig. 1 the derivation above would
be turned into:

{c/x}P � {c/x}P
weak-l{c/x}P, {t/x}P � {c/x}P ∀-l∀xP, {t/x}P � {c/x}P ∀-r∀xP, {t/x}P � ∀xP ∀-l∀xP,∀xP � ∀xP

contr-l∀xP � ∀xP

t being a dummy term that does not contain c. In fact, this kind of systems does not
permute the ∀-left rule downwards. It is impossible and it is unfortunately what we
need here since we will soon need to instantiate universally quantified formulas on
the left to a specific term. The technique used here is to permute them upward, as far
as we can.

Definition 5 (Focused ∀-l rules) Let π be a derivation in sequent calculus. We say
that π has its ∀-l rules focused (in short, “π is focused”) if and only if for every ∀-l
rule in π on a formula ∀xA, the rule applied on the premiss is a rule on (the newly
introduced instance of) A that is not the contraction.

Below are two examples: the left derivation is focused, while the right one is not.

ax
P � P, Q

ax
Q � P, Q∨-l

P ∨ Q � P, Q∀-l ∀u(P ∨ Q) � P, Q∀-l ∀z∀u(P ∨ Q) � P, Q∨-r ∀z∀u(P ∨ Q) � P ∨ Q∃-l ∃y∀z∀u(P ∨ Q) � P ∨ Q∀-l ∀x∃y∀z∀u(P ∨ Q) � P ∨ Q

ax
P(x, y) � P(x, y) ∀-l∀yP(x, y) � P(x, y) ∀-r∀yP(x, y) � ∀yP(x, y) ∀-l∀x∀yP(x, y) � ∀yP(x, y) ∀-r∀x∀yP(x, y) � ∀x∀yP(x, y)

Note that we can transform the right derivation into a focused derivation of the
same sequent. This is the topic of the remainder of the section.

Lemma 4 (Generalization) Let π be a derivation of the sequent Γ, {t/x}A � Δ.
Assume that π is focused. Then, we can construct a focused derivation π ′ of the sequent
Γ,∀xA � Δ such that π ′ possesses the same number of contraction rules as π .

Moreover, letting r be the last rule of π , if r is a rule on A (not contraction) then the
last rules of π ′ are ∀-l on ∀xA and r, otherwise the last rule of π ′ is also r.

The derivation π ′ will have almost the same shape as π , but we will make the
additional rule ∀-l percolate upward. The height might grow, since we add a rule.

Proof By induction over the ordered pair 〈C(π), h(π)〉 where h is the height of π

and C the number of contractions contained in π . This is the reason for adding a
contraction hypothesis in the statement of the lemma. As this type of induction will
appear repeatedly in the following proofs, we shall detail it here. An alternative is
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to introduce an arbitrary number of copies ∀xA, . . . ,∀xA in the statement of the
lemma [22]. In this case, the proof works by induction over the height only.

If the last rule r of π is a rule on Γ or Δ, then we apply induction hypothesis to the
derivation(s) of the premise(s) (of lower height), and recombine with r the focused
derivation(s) obtained to get a derivation of Γ,∀xA � Δ. Freshness of constants is
preserved, in the ∀-r and ∃-l cases.

Additionally, if r is ∀-l on some formula B ∈ Γ , then the last rule of the derivation
of the sequent Γ, B, {t/x}A � Δ is a rule r′ on B (not contraction) since π is focused.
After the application of induction hypothesis, the last rule of the derivation of
Γ, B, ∀xA � Δ is the same rule r′ on B. Hence we can safely add a ∀-l rule on B,
and this derivation π ′ is focused. This shows the necessity of each hypothesis in
the statement of the lemma. If r is not a ∀-l rule, then showing that π ′ is focused
is straightforward.

Otherwise, the last rule r of π is a rule on A:

– if it is a contraction, we have a derivation π1 of the sequent Γ, {t/x}A, {t/x}A � Δ

with C(π1) = C(π) − 1 contractions. We apply induction hypothesis, and get
a derivation of Γ,∀xA, {t/x}A � Δ with C(π1) = C(π) − 1 contractions. We
apply induction hypothesis once more, get a derivation of Γ,∀xA,∀xA � Δ with
C(π1) = C(π) − 1 contractions, and we contract on ∀xA.

– for any other rule, we add a ∀-l rule. We just check that the ∀-l rules remain
focused. For instance, if it is a ∀-l rule on A, π ′ is:

π ∀-l
Γ, {t/x}∀yA � Δ ∀-l
Γ,∀x∀yA � Δ

and π ′ is focused, since π is. If the rule is not ∀-l, the argument is the same.

The number of contractions of the obtained derivation is left as it was, because we
do not introduce new ones. �

Lemma 5 (Regrouping) Let Γ,Δ be sets of formulas. Let π be a derivation of the
sequent Γ � Δ. Then we can build a focused derivation π ′ of the same sequent,
containing the same number of contractions as π .

Proof By induction over the height of π , considering the last rule r of π :

– if r is not ∀-l, then we apply induction hypothesis on the derivation(s) of the
premise(s), and then r to the derivation(s) obtained.

– if r is ∀-l on a formula ∀xA ∈ Γ , then we have a smaller derivation π1 of
Γ, {t/x}A � Δ. We apply induction hypothesis to π1, obtain a derivation π ′

1 of
the same sequent with the ∀-l rules focused, and apply Lemma 4. �

There exists similar results for the other asynchronous rules, constraining them to
be focused all together. Lemma 12 can for instance be used (with an empty set of
variable J) as an equivalent of Lemma 4 and thus as a basis to focus the ∨-l rule.
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4 Resolution Modulo

The resolution method is a refutation methods starting with a set of clauses. A clause
is a set of (labelled) literals, i.e. of atoms and negated atoms, potentially containing
free variables. The empty clause (contradiction) is denoted �.

Every formula should be labelled with a set of variable names, called the free
variables, a superset of its actual free variables. We use the labels to perform
Skolemization, and labels are generated by the clausal form transformation, see
Fig. 3. This additional step is required because we are in deduction modulo and
rewrite rules interfere with variables [10]. Labels have to be considered during
substitution and E-equivalence:

Definition 6 Let θ be a substitution and Pl a labelled formula. (Pl)θ is (Pθ)l′ , where
l′ is the set of the free variables of lθ .

Let Ql′ be another formula. Pl ≡E Ql′ if and only if P ≡E Q and l = l′.

Given a statement Γ � Δ (expressed as in the sequent calculus) to prove, the first
task is to transform Γ,¬Δ into a set of clauses, cl(Γ,¬Δ), its clausal (normal) form.
Here and later, we use the following conventions: ¬Δ represents the set of formulas
{¬A | A ∈ Δ}, ψ represents a set of labelled formulas (understood as a disjunction),
ψ ∪ {Pl} is abbreviated to ψ, Pl and Φ is a set of set of formulas (understood as a
conjunction). Φ ∪ {ψ} is abbreviated as Φ | ψ . If ψ contains only labelled literals it is
then a clause. If Ψ contains only clauses, it is in clausal form.

The transformation starts with Φ = {A1} | · · · | {An} | {B1} | · · · | {Bm} where
Γ = A1, · · · , An and ¬Δ = {B1, · · · , Bm}, since Γ,¬Δ has to be understood as a
conjunction of formulas. The transformation defined by the rule of Fig. 3 transforms
step by step a set of set of formulas Φ into a set of set of formulas Φ ′, noted Φ �Φ ′.
This process is terminating and confluent (proviso a variable and Skolem function
renaming), it is standard at the exception of the labels and performs at the same time
skolemization, clausification and translation to negation normal form.

The resolution method is a proof by contradiction method. Derivation of new
clauses is done along the ENAR rules [10] (Definition 2.6, page 46). Instead of
ENAR, more suited for automated deduction, we use an intermediate system, called
EIR (standing for Extended Identical Resolution), introduced in [10]. It is sound
and complete with respect to ENAR (Proposition 5.1 and 5.2 of [10]). So, any result
holding for EIR also holds for ENAR. Moreover, without rewrite rule, EIR, ENAR
and resolution [36] collapse.

Fig. 3 Clausal form transformation rules
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EIR is technically more convenient to our aim since “logical” inference rules
are not yet mixed with “rewrite” inference rules and we do not have unification
constraints. All this makes EIR closer to sequent calculus than ENAR.

Inference rules of EIR are presented in Fig. 4, U refers to a clause, P to a literal
and ψ to a set of formulas. Some precisions about labels follow.

1. in the Instantiation rule, replace, in all labels, x by the free variables appearing
in t.

2. in the Conversion rule, labels are the same, according to Definition 6.
3. in the Identical Resolution rule, labels l1 and l2 need not to be the same, although

P and ¬P need to be the same.
4. in the Reduction rule, the label of ψ are the same than those of U and the label

of U ′ is naturally computed.

Definition 7 (Deduction sequence) Let RE be a rewrite system. Let K be a set of
clauses and let U, U1, . . . , Un be clauses. K , U1, . . . , Un is a deduction sequence if
and only if for any p ≤ n, U p is inferred from clauses in K , U1, ..., U p−1 using one of
the inference rules of Fig. 4. If there is a sequence starting from K and ending with
U , we abbreviate it as:

K ↪→RE U

Revisiting the example rewriting system of Section 2.2, we can try to show the
formula ∀x(Even(x) ⇒ Odd(s(x))). The clausal form of the negation of this formula
is Even(c)|¬Odd(s(c)) with c a fresh Skolem symbol.

¬Even(c) (byReduction)

� (byIdenticalResolution)

We now show the formula ∃xOdd(x). The clausal form of its negation is ¬Odd(x),
that we first instantiate (for instance to s(0)) and then reduce directly to the empty
clause. As an exercise the reader can also try to show the formula Even(s(s(s(s(0))))),
to compare to the derivation of the same statement in Section 2.2.

In [10], completeness and soundness of EIR is proved with respect to sequent cal-
culus modulo, under the assumption of cut elimination. The following completeness
theorem (Proposition 4.2) is then proved:

Theorem 1 (Completeness of EIR [10]) Let RE be a rewrite system. Let Γ,Δ

be sets of formulas. If we have a cut-free derivation of the sequent Γ � Δ, then
cl(Γ,¬Δ) ↪→RE �.

Fig. 4 Inference rules of EIR
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But the soundness theorem is not the exact converse of this. Given a deduction
sequence cl(Γ,¬Δ) ↪→RE �, it is transformed by Proposition 4.1 into a derivation
of Γ � Δ with cuts. Of course, all those statements are equivalent when the cut-
elimination theorem holds, which is assumed in [10]. We prove a more accurate
version, which is the exact converse of Theorem 1.

Theorem 2 ((Cut-free) Soundness of EIR) Let RE be a rewrite system. Let Γ,Δ be
sets of formulas. If cl(Γ,¬Δ) ↪→RE � then we can build a cut-free derivation of the
sequent Γ � Δ.

From this, we will know that, even in the case where cut elimination fails, as might
happen in some cases of deduction modulo, resolution and cut-free sequent calculus
prove the same statements.

Since EIR is searching for a contradiction (from Γ,¬Δ we derive ⊥) and sequent
calculus is searching for a direct proof, it should not be surprising that Theorem 2
above emulates EIR rules in sequent calculus backward, starting from the—trivial—
derivation of ⊥ � and transforming it into a derivation of Γ,¬Δ �.

5 From Clauses to Formulas

We already know how to transform formulas into a set of clauses. Here, we perform
the reverse operation:

Definition 8 Let ψ = {Al1
1 , . . . , Aln

n } be a (labelled) set of formulas. Let I an ordered
set of n indexes. Let l = l1 ∪ . . . ∪ ln. We define the four following notations:

∨

i∈I

Ai = Ai1 ∨ (Ai2 ∨ (. . . ∨ Ain) . . .)
∨

ψ =
∨

i∈{1...n}
Ai

∀lxA = ∀x1 . . .∀xm A ψ = ∀lx
∨

ψ

where {x1, . . . , xm} = l and l is ordered by a fixed (e.g. alphabetic) order on variable
names. If n = 0 then we let

∨
i∈I Ai = ⊥.

Since a clause is a set of labelled propositions, and since labels are sets, the order
in the clauses (and in the labels) is not defined and does not matter. We will see that
we can reflect those properties in sequent calculus, as long as we are not interested in
the height of the derivations. So in Definition 8 above the order of parentheses and
the order of quantification will not matter either. Unfortunately, we cannot safely
assume this right now: we are forbidden to use the cut rule, and this is the usual way
to prove associativity and commutativity. The rest of the section is devoted to that
matter, and the order on I and on l is of course relevant for that purpose, until the
end of the section.
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5.1 ∨ is Associative-commutative and ⊥ is Neutral

Lemma 6 (Permutations of ∨) Let σ be a n-permutation, and A1, . . . , An be formu-
las. If we have a derivation π of the sequent Γ, A1 ∨ (A2 ∨ (. . . ∨ An) . . .) � Δ then we
can construct a derivation of the sequent Γ, Aσ(1) ∨ (Aσ(2) ∨ (. . . ∨ Aσ(n)) . . .) � Δ.

Proof An informal argument would be: apply Kleene Lemma 3 n − 1 times and
recombine the n derivations obtained in the order required by the permutation σ .
Formally, the proof is carried out by induction over n, left to the reader. �

Remark 2 Applying Lemma 6 might cause derivation height to increase up to n − 2.

As a result of Lemma 6, ∨ is clearly commutative, since it also turns a derivation
of Γ, A ∨ B � Δ into a derivation of Γ, B ∨ A � Δ. In this case, derivation height
can even be preserved since we only need to switch some right and left premises.

Lemma 7 (Neutrality of ⊥) Let Γ,Δ be two sets of formulas, A be a formula. We
have a derivation π of Γ, A ∨ ⊥ � Δ if and only if we have a derivation π ′ of Γ, A � Δ.

Proof Constructing π ′ by an easy induction on π for the direct way. For the reverse
way, we build the following derivation:

Γ, A � Δ Γ,⊥ � Δ

Γ, A ∨ ⊥ � Δ

�

5.2 Quantification Order Does not Matter

Lemma 8 (Permuting quantifications) Let Γ,Δ be sets of formulas and A be a
formula. Let σ be a n-permutation. If we have a derivation π of the sequent
Γ,∀x1 . . .∀xn A � Δ then we can build a derivation π ′ of the sequent Γ,∀xσ(1) . . .

∀xσ(n) A � Δ containing the same number of contractions as π .

Proof From Lemma 5, we assume that π is focused. This ensures that all the ∀-l rules
on ∀x1 . . .∀xn A are applied at the same time, and preserves C(π). Then we proceed
by induction over the ordered pair 〈C(π), h(π)〉, making cases. If the last rule r of π

is:

– a rule on a formula of Γ or Δ. We apply the induction hypothesis to the given
premise(s) and then r to the derivation(s) obtained.

– a contraction on ∀x1 . . .∀xn A. Then, we have a derivation π1 of the sequent:

Γ,∀x1 . . .∀xn A,∀x1 . . .∀xn A � Δ

we can apply induction hypothesis twice, since the number of contractions
decreases by 1, while the height might increase. We obtain a derivation of:

Γ,∀xσ(1) . . . ∀xσ(n) A,∀xσ(1) . . . ∀xσ(n) A � Δ

that we can contract.
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– a ∀-l rule on ∀x1 . . .∀xn A. Then, since π is focused, and since no other rule (but
contraction) can apply—remember that axiom, conversion, and weakening rules
are atomic—π has the following shape:

π1

Γ, θ A � Δ ∀-l
Γ,∀x1 . . .∀xn A � Δ

where θ is some substitution. Then, it is sufficient to rearrange the quantifications
in the order required by the permutation σ , to get π ′.

– no other rule can apply to ∀x1 . . .∀xn A.

�

So, the order of quantifications and of disjunctions is not important in Definition 8,
unless we care about derivation size.

6 More on Quantification

In this section, we move towards a treatment of quantification and sets of variables
(labels) closer to what happens during clausal transformation and resolution steps.
Lemmas 9 and 11 are extensions to deduction modulo of some miniscoping (or
antiprenexing) results [34].

As for existential quantification, we deal with Skolemization. Regarding universal
quantification, we deal with its scope. This will be important when a free variable is
member of only one part of a formula: we eagerly unite sets of labels in Definition 8
and we have to be able to specialize universal quantifications again.

6.1 Existential Quantifications

Lemma 9 (Specializing existential quantifiers) Let Γ,Δ be sets of formulas, A be a
formula and B a formula where x is not free. Then the sequent Γ, (∃xA) ∨ B � Δ has
a derivation if and only if the sequent Γ, ∃x(A ∨ B) � Δ has a derivation.

Proof Given a derivation of Γ, (∃xA) ∨ B � Δ, we apply Kleene Lemma 3 to get
derivations of the sequents:

Γ, {c/x}A � Δ Γ, B � Δ

c being fresh for the left sequent and chosen fresh for B. We apply first an ∨-l rule,
and then an ∃-l rule to get a derivation of Γ, ∃x(A ∨ B) � Δ.

Conversely, given a derivation of the former sequent, we apply Kleene Lemma 3
to get derivations of the same two sequents as above, that we recombine with first an
∃-l and then an ∨-l rule. �

6.2 Universal Quantification

Lemma 10 (Pruning) Let Γ,Δ be sets of formulas, A be a formula and l be its free
variables. Let l′ be a superset of l. If we have a derivation π of the sequent Γ,∀l′ xA � Δ

then we have a shorter derivation of the sequent Γ,∀lxA � Δ.
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Proof We refer to Definition 8 to explain the notations used here. The proof is
performed by induction over π , removing all the unnecessary (not substituting
anything) ∀-l rules on A: since on every path from the root of π to the leaves (axioms)
those rules are present, the height decreases. �

Lemma 11 (Specializing universal quantifiers) Let Γ,Δ be sets of formulas, A, B be
formulas and I, J be sets of variables. Assume that no y is free in A for any variable
y ∈ J. Then we have a derivation π1 of the sequent:

Γ,∀Ix∀Jy(A ∨ B), . . . ,∀Ix∀Jy(A ∨ B) � Δ

if and only if we have a derivation π2 of the sequent:

Γ,∀Ix(A ∨ ∀JyB), . . . ,∀Ix(A ∨ ∀JyB) � Δ

Remark 3 In this lemma, we cannot easily control the number of contractions or
the height of the derivations, especially for the reverse way. That is why we are
considering multiple copies of the formula.

Proof For the direct way, we proceed by induction over the structure of π1 that we
assume focused by Lemma 5. If the last rule of π1 is a rule r on a formula of Γ,Δ,
or a contraction on ∀Ix∀Jy(A ∨ B), then we apply the induction hypothesis to the
derivation(s) of the premise(s), and apply r to the derivation(s) obtained.

Otherwise the last rule must be ∀-l on some ∀Ix∀Jy(A ∨ B). Since π1 is focused, it
has the following shape, where we omit to mention the variable substitution:

Γ, A, . . . ,∀Ix∀Jy(A∨B) �Δ Γ, B, . . . ,∀Ix∀Jy(A∨B) �Δ ∨-l
Γ, A∨B, . . . , ∀Ix∀Jy(A∨B) �Δ ∀-l rules

Γ,∀Jy(A∨B), . . . , ∀Ix∀Jx(A∨B) �Δ ∀-l rules
Γ,∀Ix∀Jy(A∨B), . . . , ∀Ix∀Jx(A∨B) �Δ

Indeed, no conversion, contraction or axiom rule can apply to A ∨ B since it is
not atomic. We apply induction hypothesis to the derivation of the premises (also
focused), and we rearrange the rules, using the fact that no y ∈ J is free in A. This
gives us the derivation we were looking for:

Γ, A, . . . , ∀Ix(A∨ ∀JyB) �Δ

Γ, B, . . . , ∀Ix(A∨ ∀JyB) �Δ ∀-l rules
Γ,∀JyB, . . . , ∀Ix(A∨ ∀JyB) �Δ ∨-l

Γ, A∨ ∀JyB, . . . ,∀Ix(A∨ ∀JyB) �Δ ∀-l rules
Γ,∀Ix(A∨ ∀JyB), . . . , ∀Ix(A∨ ∀JyB) �Δ

For the converse, we assume π2 to be focused and we proceed by induction over
its structure. If the last rule of π2 is a rule r on a formula of Γ,Δ, or a contraction
on ∀Ix(A ∨ ∀JyB) then we apply induction hypothesis to the derivation(s) of the
premise(s), and then apply r to the derivation(s) obtained.
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Otherwise, it is a ∀-l rule on ∀Ix(A ∨ ∀JyB) and since π2 is focused, it has the
following shape, where we omit to mention the variable substitution:

Γ, A, . . . ,∀Ix(A∨ ∀JyB) � Δ Γ,∀JyB, . . . ,∀Ix(A∨ ∀JyB) � Δ ∨-left
Γ, A∨ ∀JyB, . . . ,∀Ix(A∨ ∀JyB) � Δ ∀-l rules

Γ,∀Ix(A∨ ∀JyB), . . . ,∀Ix(A∨ ∀JyB) � Δ

We apply the induction hypothesis to the derivation of both premises, and get two
derivations of the sequents Γ ′, θ A � Δ and Γ ′,∀JyB � Δ, where Γ ′ represents the
set of formulas Γ, . . . ,∀Ix∀Jy(A ∨ B). We use sublemma 12 below, to construct a
derivation of the sequent:

Γ ′, Γ ′, ∀Jy(A ∨ B) � Δ,Δ

to which we add ∀-l rules and contractions on Γ ′ and Δ to obtain the desired
derivation. �

Lemma 12 Let Γ, Γ ′,Δ,Δ′ be sets of formulas. Let C, D be formulas and J a set of
variables. Assume that we have derivations of the two sequents:

Γ ′,∀JyD, . . . , ∀JyD � Δ′ Γ, C � Δ

Then we can construct a derivation of the sequent:

Γ, Γ ′, ∀Jy(C ∨ D), . . . , ∀Jy(C ∨ D) � Δ′, Δ

Proof By induction over π , the derivation of Γ ′,∀JyD, . . . ,∀JyD � Δ′, assumed by
Lemma 5 to be focused. We omit the label J. We introduce multiple copies of ∀yD
since the number of contractions is not easily controllable: the derivation of the
sequent Γ, C � Δ may contain some and it could be replicated many times in the
final derivation.

If the last rule is a rule r on a formula of Γ ′, Δ′ then we apply induction hypothesis,
and the same rule r to the derivation(s) obtained. If a fresh constant in π is not fresh
for Γ,Δ or C, then first replace it in π by a new fresh constant.

Otherwise, it is a rule on ∀yD. If it is a contraction, we apply induction hypothesis,
and then apply contraction to one of the ∀y(C ∨ D) of the conclusion of the obtained
derivation. The last possibility is a ∀-l rule, and since π is focused, it is:

π ′
rule on D

Γ ′, D,∀yD, . . . ,∀yD � Δ′
∀-l rules

Γ ′,∀yD,∀yD, . . . ,∀yD � Δ′

This is also valid if J is empty. We apply induction hypothesis to π ′ and we obtain a
derivation of the sequent:

Γ, Γ ′, D,∀y(C ∨ D), . . . , ∀y(C ∨ D) � Δ,Δ′
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then, we can construct the following derivation, using the derived weakening rule:

Γ, C � Δ
weak

Γ, Γ ′, C, . . . ,∀y(C ∨ D) � Δ,Δ′
π ′

Γ, Γ ′, D, . . . , ∀y(C ∨ D) � Δ,Δ′
∨-l

Γ, Γ ′, C ∨ D, . . . ,∀y(C ∨ D) � Δ,Δ′
∀-l rules

Γ, Γ ′, ∀y(C ∨ D), . . . , ∀y(C ∨ D) � Δ,Δ′

�

7 Clause Normal Form Transformation in the Sequent Calculus

7.1 The Skolem Theorem in Sequent Calculus Modulo

Calculating the clause form performs Skolemization on the fly, so we must be able
to simulate this in the sequent calculus. Skolem theorem is well-known [39] in many
frameworks, however none of the existing results apply to our deduction modulo
case. There is only one known proof [24], but it is semantic, and translating it back
to syntax would introduce cuts. Since our derivations are forced cut-free, we must
additionally ensure that no cut rule are introduced and carry out a syntactic proof.
We therefore adapt the proof of [28], reworked by [17, 30], to our case.

This gives a result of independent interest: a Skolem theorem for (classical)
deduction modulo theories, and therefore for all the theories one can express with it.

Theorem 3 (Skolem theorem) Let Γ,Δ be sets formulas, A be a formula, x1, . . . , xn

be n variables abbreviated as x and f be a n-ary function symbol, fresh with respect to
Γ,Δ, A and rewrite rules.

There is a derivation of the sequent Γ,∀x∃yA � Δ if and only if there is a derivation
of the sequent Γ,∀x{ f (x)/y}A � Δ

The only if part has a trivial proof since, when applying the ∃-l rule, we introduce
a fresh constant c, that Lemma 2 allows to replace by any term in the derivation of
the resulting statement. Here, we need a proof of the converse, and since we are in
Theorem 3 also interested in the case where the cut-elimination property fails, we
cannot rely on cut elimination.

The rest of this section is dedicated to the proof of the converse statement. A, f
and the variables x are fixed. Until the end of this section, we consider a restriction
of sequent calculus modulo (Fig. 1) where sequents are always closed, and therefore
instantiations in rules ∀-l and ∃-r are limited to ground terms. The calculus of Fig. 1
is conservative over it: given a derivation π of the calculus of Fig. 1 we can replace
(extending Definition 4) each free variable x by a new fresh constant cx, the resulting
derivation is still a valid derivation and it fits our new constraint. Therefore, if a
sequent Γ � Δ is closed, it has a derivation in the calculus of Fig. 1 if and only if it
has a derivation in the restricted calculus.

We do not impose this restriction in the whole article since it would complicate
the study of the relations between sequent calculus and resolution (that allows free
variables) in Section 8. Here, on the contrary, we consider only ground instantiations
and closed sequents as this simplifies definitions and lemmas, compared to [17, 28]
for instance.
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Definition 9 [17] Let t = t1, ..., tn be ground terms, and x = x1, ..., xn be distinct
variables.

– {t/x} denotes the parallel substitution {t1/x1, ..., tn/xn}1

– an f -term is a term of the form f (t)

Remark 4 We do not need the notion of partial instance [17] (or f -formula [28]).
Those intermediate states of the formula ∀x{ f (x)/y}A, where not every ∀-l rule has
been applied yet, will be handled by focusing instead. This greatly simplifies the
matter.

Definition 10 (Pruning f -terms) Let u be a term, let f (t1), ..., f (tk) be the f -terms
appearing in u, arranged by decreasing term size, so that f (t j) does not appear in
f (ti) whenever j < i. Let c1, ..., ck be k fresh constants. We define the sequence of
terms ui:

– u0 = t,
– ui+1 is ui where each occurrence of f (ti) has been replaced by ci.

We let u∗ be uk. We extend this definition to u∗ for a list of terms u, to A∗ for a
formula A and to Γ ∗ for a context Γ .

Example 1 A( f (c), f ( f (c)), g( f (c)))∗ is A(c2, c1, g(c2)), and not A(c1, f (c1), g(c1)).
This is the whole point: we prune the outermost f -terms first.

Proposition 2 Let Γ,Δ be sets of (closed) formulas where all f -terms are ground
and let Σ denote an arbitrary number of copies of ∀x{ f (x)/y}A. Let f (t1), . . . , f (tp)

the f -terms appearing in Γ,Δ and let Θ be the set of formulas {t∗1/x, c1/y}A, ...,

{t∗p/x, cp/y}A (relevant instances of A).
If we have a derivation of Γ,Σ � Δ then we can build a derivation of Γ ∗,Θ,

∀x∃yA � Δ∗.

Proof By induction on the derivation π of Γ,Σ � Δ which we assume to be focused.

– if the last rule is an axiom, it cannot involve a formula of Σ since all f -terms are
ground in Δ. Therefore, it is between a formula of Γ and a formula of Δ. We
replace it by an axiom between the corresponding formulas of Γ ∗ and Δ∗.

– if the last rule is a rule on ∀x{ f (x)/y}A ∈ Σ , which is:

– a structural rule. Induction hypothesis gives us directly the wanted
derivation.

– a ∀-l rule. Since the derivation is focused, we have:

Γ,Σ, {t/x, f (t)/y}A � Δ ∀-l rules
Γ,Σ, ∀x{ f (x)/y}A � Δ

1Identical to {t1/x1}...{tn/xn} since in this section, terms are ground.



Resolution is Cut-Free 269

Note that f does not appear in A by hypothesis. So ({t/x, f (t)/y}A)∗ =
{t∗/x, c/y}A. By induction hypothesis, we have then a derivation of the
sequent:

Γ ∗, {t∗/x, c/y}A,Θ,Θ ′,∀x∃yA � Δ∗

where Θ ′ is the set
{

{u∗
1/x, d1/y}A, ..., {u∗

q/x, dq/y}A
}

, representing all the

instances {u∗
i /x, di/y}A such that f (ui) appears in f (t) and not in Γ,Δ.

Assume, similarly to Definition 10, that u1, ..., uq are arranged by increasing
size, so that d j = ( f (u j))

∗ does not appear in u∗
i if j > i. With this definition,

{u∗
q/x, dq/y}A = {t∗/x, c/y}A and we have, by hypothesis and contraction, a

derivation of the sequent:

Γ ∗,Θ,Θ ′,∀x∃yA � Δ∗

We prove by induction on q that we can get rid of Θ ′. If Θ ′ is empty, no
operation is required, note only that in this case {t∗/x, c/y}A ∈ Θ so that we
still have a valid derivation of the sequent Γ ∗,Θ,Θ ′, ∀x∃yA � Δ∗.
For the inductive case, let Θ ′′ = Θ ′ \ {u∗

q/x, dq/y}A. From our ordering on
the elements of Θ ′, dq is fresh in {u∗

q/x, dq/y}A, and the following derivation
proves the inductive case:

Γ ∗, Θ, Θ ′′, {u∗
q/x, dq/y}A,∀x∃yA � Δ∗

∃-l
Γ ∗, Θ, Θ ′′, {u∗

q/x}∃yA,∀x∃yA � Δ∗
∀-l rules

Γ ∗, Θ, Θ ′′,∀x∃yA,∀x∃yA � Δ∗
contr-l

Γ ∗, Θ, Θ ′′, ∀x∃yA � Δ∗

– otherwise we apply the same rule. For instance:

– if it is a ∀-l rule,

Γ,Σ, {u/z}B � Δ ∀-l
Γ,Σ, ∀zB � Δ

Since all the f -terms in B are ground, ({u/z}B)∗ = {u∗/z}B∗ and (∀zB)∗ =
∀zB∗. We can build the derivation:

Γ ∗, {u∗/z}B∗, Θ, Θ ′,∀x∃yA � Δ∗
∀-l

Γ ∗,∀zB∗,Θ,Θ ′,∀x∃yA � Δ∗

where the upper sequent has been proved by induction hypothesis and, as in
the previous case, Θ ′ contains all the instances {u∗

i /x, di/y}A such that f (ui)

appears in u and not in Γ,∀zB, Δ. With the exact same method, we get rid
one by one of those instances, by taking care of the freshness of the di in
ordering them.

– if it is a ∃-l rule,

Γ,Σ, {d/z}B � Δ ∀-l
Γ,Σ, ∃zB � Δ

By induction hypothesis, we have a derivation of the sequent:

Γ ∗, ({d/z}B)∗, Θ � Δ∗
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and since in B all f -term are ground, ({d/z}B)∗ = {d/z}(B∗). d does not
appear in any f -term, and therefore does not appear in Γ ∗, Δ∗ or Θ , so
we can safely apply the ∃-l rule to this sequent as well.

– The ∃-r case is similar to the ∀-l case. The other logical rules do not present
any difficulty, they only may involve some (derived) weakening on Θ . The
only remaining case is that of a rewrite rule, which is also straightforward,
since no f -term can be introduced thanks to the hypothesis that f does not
appear in the rewrite system. �

Now we can go back to Skolem Theorem 3.

Proof We apply Proposition 2: f is fresh, so Γ ∗ = Γ , Δ∗ = Δ and Θ is empty. �

7.2 Clause Form in Sequent Calculus

The following lemma says that we can strengthen a formula in a disjunction appear-
ing as an hypothesis, without changing the provability of the sequent.

Lemma 13 (Strengthening hypothesis) Let Γ,Δ be sets of formulas, and let A, B, C
be formulas. If we have a derivation π of a sequent Γ,∀lx(A ∨ C) � Δ, then we can
construct a derivation π ′ of the sequent Γ,∀lx((A ∧ B) ∨ C) � Δ containing the same
number of contractions as π .

Proof By induction over the pair 〈C(π), h(π)〉. If the last rule of π is a rule r on a
formula of Γ,Δ or a ∀-l rule on ∀lx(A ∨ C), we apply induction hypothesis to the
premise(s) and add r to the obtained derivation.

If the last rule is a contraction on ∀lx(A ∨ C) we have a derivation of the sequent
Γ,∀lx(A ∨ C),∀lx(A ∨ C) � Δ. An application of induction hypothesis gives us a
derivation of the sequent:

Γ,∀lx((A ∧ B) ∨ C),∀lx(A ∨ C) � Δ

containing one less contraction. So we apply again induction hypothesis and contract
the obtained derivation.

Lastly, if the last rule is ∨-left (l is empty), we have a derivation of the sequents
Γ, A � Δ and Γ, B � Δ and we build the following derivation:

Γ, A � Δ
derived weak-l

Γ, A, B � Δ∧-l
Γ, A ∧ B � Δ Γ, C � Δ ∨-l

Γ, (A ∧ B) ∨ C � Δ

Note that the derived rule weak-l does not introduce contractions. �

Proposition 3 (Inversion of clausal transformation) Let ψ1, . . . , ψn, χ1, . . . , χm be
sets of labelled formulas such that from a clausal transformation of Fig. 3 ψ1 | . . . |
ψn � χ1 | . . . | χm.

If we have a derivation of the sequent χ1, . . . , χm � then we can construct a
derivation of the sequent ψ1, . . . , ψn �.
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If ψ1 | . . . | ψn � ∗ χ1 | . . . | χm using an arbitrary number of clausal-
transformation steps, the same result holds.

Proof The second part of the proposition is the transitive closure of the first, on
which we concentrate. We omit the labels when they are not relevant, and we will
use indifferently ψ or ∀lx

∨
ψ . According to Lemma 7, if ψ is empty, A ∨ ∨

ψ is
equivalently A or A ∨ ⊥. We consider each rule of Fig. 3, assumed without loss of
generality to apply to ψ1:

– Φ | ψ, (A ∧ B)l �Φ | ψ, Al | ψ, Bl . We have by hypothesis a derivation π of the
sequent:

ψ, A, ψ, B, ψ2, . . . , ψn �
By Lemma 6 we can assume A and B to be at first place in the disjunctions ψ, A
and ψ, B. We use Lemma 13 twice to get a derivation of:

(A ∧ B), ψ, (A ∧ B), ψ, ψ2, . . . , ψn �
that we contract. Note that labels for quantifications do not change.
The case of the dual rule Φ | ψ, (¬(A ∨ B))l �Φ | ψ, (¬A)l | ψ, (¬B)l is handled
in exactly the same way, except that we would have to apply a lemma similar to
Lemma 13, stating that ¬A can be strengthened in ¬(A ∨ B) and using Kleene
Lemma 3.

– Φ | ψ, (A ∨ B)l �Φ | ψ, Al, Bl . No operation is required since ψ, (A ∨ B)l is
the same as ψ, Al, Bl , modulo Lemma 6. The case of the dual rule is almost as
simple, since Kleene Lemma 3 shows that anywhere in any derivation, ¬(A ∧ B)

could be replaced safely by ¬A ∨ ¬B and conversely.
– Φ | ψ, (A⇒ B)l �Φ | ψ, (¬A)l, Bl is similar to the ∨ case, while Φ | ψ, (¬(A⇒

B))l �Φ | ψ, Al | ψ, (¬B)l is similar to the ∧ case.
– Φ | ψ,⊥l �Φ | ψ . By a straightforward induction using Lemma 7 to replace∨

ψ1 by (
∨

ψ1) ∨ ⊥, we transform a derivation of ψ1, . . . , ψn � into a derivation
of ψ1,⊥, . . . , ψn �.

– the case of the rule Φ | ψ, (¬⊥)l �Φ is even more straightforward. Just add a
derived weakening rule on ψ1, (¬⊥).

– Φ | ψ, (∀xA)y �Φ | ψ, Ay,x. x being fresh from the clausal transformation
rule (Fig. 3), if the formula ψ1, (∀xA)y is ∀lz

(
(
∨

ψ1) ∨ ∀xA
)
, then the for-

mula ψ1, Ax,y is ∀x,l z
(
(
∨

ψ1) ∨ A
)
. We apply Lemma 11 to the derivation of

ψ1, Ax,y, ψ2, . . . , ψn � and this gives us a derivation of the needed sequent. The
case of the dual rule is similar, as usual using Kleene Lemma 3.

– Φ | ψ, (∃xA)y �Φ | ψ, ({ f (y)/x}A)y. Assume that we have a derivation of the
sequent:

∀lz
(
{ f (y)/x}A ∨

∨
ψ1

)
, ψ2, . . . , ψn �

Suppose, without loss of generality, that x is fresh, otherwise letting x′ fresh, first
replace x by x′ in A. We permute the quantifiers by Lemma 8 and get a derivation
of the sequent:

∀yy∀l\yz { f (y)/x}
(

A ∨
∨

ψ1

)
, ψ2, . . . , ψn �
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Thanks to Lemma 11, since y is a superset of the free variables of { f (y)/x}A and
x does not appear in ψ1, we can transform this derivation into a derivation of the
sequent:

∀yy { f (y)/x}
(

A ∨ ∀l\yz
∨

ψ1

)
, ψ2, . . . , ψn �

We now use Skolem Theorem 3 to get a derivation of the sequent:

∀yy∃x
(

A ∨ ∀l\yz
∨

ψ1

)
, ψ2, . . . , ψn �

Afterwards, we use Lemma 9 to get a derivation of the sequent:

∀yy
(
(∃xA) ∨ ∀l\yz

∨
ψ1

)
, ψ2, . . . , ψn �

Then, we apply Lemma 11 in the opposite way to get back the quantifiers in front,
and get a derivation of the sequent:

∀lz
(
(∃xA) ∨

∨
ψ1

)
, ψ2, . . . , ψn �

The case of the dual rule is similar and uses Kleene Lemma 3 to show the
equivalence of ¬∀ and ∃¬.

– Φ | ψ, (¬¬A)l �Φ | ψ, Al is an easy induction using Lemma 3 twice. �

8 Resolution in Sequent Calculus

Now that we know that the clausal form transformation rules of Fig. 3 are admissible
in the (cut free) sequent calculus of Fig. 1, let us see how we can emulate the EIR
rules of Fig. 4. We begin with a backward encoding of the identical resolution rule.
Lemma 7 allows to handle clause containing only one literal (i.e. A ∨ B below has in
fact the shape B).

Lemma 14 (Identical Resolution) Let Γ,Δ be sets of formulas, A, B, C be formulas
and l be a set of variables. If we have a derivation π of the sequent Γ,∀lx(A ∨
B), . . . , ∀lx(A ∨ B) � Δ, then we can build a derivation of the sequent:

Γ,∀lx(A ∨ C),∀lx(B ∨ ¬C), . . . ,∀lx(A ∨ C),∀lx(B ∨ ¬C) � Δ

Proof Like in Lemma 11, we introduce multiple copies. Quantifying three times over
the same l is slightly too weak to reflect the Identical Resolution rule (Fig. 4), which
is treated in Proposition 4. The proof proceeds by induction on π , that we assume
focused.

If the last rule of π is a rule r on a formula of Γ,Δ or a contraction on ∀lx(A ∨ B),
we apply induction hypothesis, and then the same rule r (twice in the second case).
Otherwise, it is a ∀-l rule on ∀lx(A ∨ B). Since π is focused, it has the shape:

Γ, θ A, . . . ,∀lx(A ∨ B) � Δ Γ, θ B, . . . , ∀lx(A ∨ B) � Δ ∨-l
Γ, θ(A ∨ B), . . . , ∀lx(A ∨ B) � Δ ∀-l rules

Γ,∀lx(A ∨ B), . . . ,∀lx(A ∨ B) � Δ
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where θ is the instantiation of the variables of l. Applying induction hypothe-
sis on the premises and letting Γ ′ be the set of formulas Γ,∀lx(A ∨ C),∀lx(B ∨
¬C) . . . , ∀lx(A ∨ C),∀lx(B ∨ ¬C), we get derivations of the sequents Γ ′, θ A � Δ

and Γ ′, θ B � Δ. We conclude by building the following derivation:

Γ ′, θ A � Δ
weak

Γ ′, θ A, θ¬C � Δ

axiom
Γ ′, θC � θC,Δ ¬-l

Γ ′, θC, θ¬C � Δ∨-l
Γ ′, θ(A ∨ C), θ¬C � Δ

Γ ′, θ B � Δ
weak

Γ ′, θ(A ∨ C), θ B � Δ ∨-l
Γ ′, θ(A ∨ C), θ(B ∨ ¬C) � Δ ∀-l rules

Γ ′,∀lx(A ∨ C),∀lx(B ∨ ¬C) � Δ

where, as we can note, the resolution step between A ∨ C and B ∨ ¬C turns into an
axiom with C. �

Lemma 15 (Instantiation) Let Γ,Δ be sets of formulas, A be a formula. Let l, l′ be
sets of variables, t be a term which free variables are in l′, and z be a fresh variable.
Assume that no free variable of A is in l′\l. If we have a derivation π of the sequent
Γ,∀l′∪lx{t/z}A � Δ then we can build a derivation of the sequent Γ,∀z,lxA � Δ having
the same number of contractions as π .

Remark 5 We cannot assume the intersection l ∩ l′ to be empty, since the Instantia-
tion rule of Fig. 4 does not impose anything.

Proof By induction over the pair 〈C(π), h(π)〉. If l ∪ l′ is empty it is sufficient to add
a ∀-l rule to π , so we assume that l ∪ l′ is not empty.

If the last rule of π is a rule r on Γ,Δ, apply induction hypothesis to the premise(s)
and then the same rule r. Otherwise the last rule is a rule on ∀l′∪lx{t/z}A.

If it is a contraction, then apply induction hypothesis twice—as usual the decreased
number of contraction allows that—and then a contraction on ∀z,lxA1.

Otherwise it is a ∀-l rule on a variable y, since l′ ∪ l is not empty. We apply
induction hypothesis, get a derivation, and identify two cases:

– y ∈ l. We add a ∀-l rule on y to the derivation, and we use Lemma 8 to permute
y and z in the quantification order. This does not add contraction rules.

– y ∈ l′\l. Induction hypothesis directly gives us ∀z,lxA, since y is not free in A. �

Proposition 4 (EIR rules) Let ψ1, . . . , ψn be clauses. If ψ1 . . . , ψn ↪→RE � then we
can build a derivation of ψ1, . . . , ψn �.

Proof By induction over the length of the resolution derivation. If it has no steps,
one of the clauses, say ψ1, is empty. Then ψ1 = ∀lx⊥. Some ∀-l rules and a ⊥-l rule
allow us to conclude. Otherwise, the last rule of the derivation is:

– Identical Resolution. Assume without loss of generality that this is on the clauses
ψ1 = ψ ′

1, C and ψ2 = ψ ′
2,¬C. Applying induction hypothesis and Lemma 6,

we get a derivation of the sequent ∀lx((
∨

ψ ′
1) ∨ (

∨
ψ ′

2)), ψ3, . . . , ψn �. Apply-
ing Lemma 14, we get a derivation of the sequent ∀lx(C ∨ ∨

ψ ′
1),∀lx(¬C ∨∨

ψ ′
2), ψ3, . . . , ψn �. Note that the formula ∀lx(

∨{C, ψ ′
1}) is not exactly ψ ′

1, C,
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because of the label l. l could contain variables not in the labels of ψ ′
1, C and it

could also miss some variables in the label of C. So we add the required ∀-l rules
and prune the unnecessary variables, by Lemma 10.

– Reduction. Assume that it applies to ψ1 −→ φ, where φ is a set of formulas
(no longer a clause). Let ψ ∈ cl(φ) = {χ1, . . . , χm} the clause such that we have
a shorter derivation of ψ1, . . . , ψn, ψ ↪→RE �. Then, by induction hypothesis,
we have a derivation of the sequent ψ1, . . . , ψn, ψ �. We can apply the derived
weakening rule to get a derivation of the sequent:

ψ1, . . . , ψn, χ1, . . . , χm �
Applying Proposition 3 gives us a derivation of the sequent:

ψ1, . . . , ψn, φ �
We have ψ1 −→ φ, since this relation holds for ψ1 and φ. So we apply a conv-l
rule:

ψ1, . . . , ψn, φ �
derived conv-l ψ1 −→ φ

ψ1, . . . , ψn, ψ1 �

and then we contract on ψ1.
– Conversion, on ψ1 ≡E ψ . Note that ψ remains a clause since conversion acts

only on terms. Induction hypothesis gives us a derivation of the sequent
ψ,ψ1, . . . , ψn �. Since ψ1 −→∗ ψ (Definition 2) we can add a derived conv-l rule
and then contract.

– Instantiation, on ψ1, of x by t. Induction hypothesis gives us a derivation of
the sequent {t/x}ψ1, ψ1, . . . ψn �. We apply Lemma 15, l being the union of the
labels of ψ1 without x, and l′ the free variables of t. This gives a derivation of
ψ1, ψ1, . . . , ψn �, which we contract.

Finally, if we did not obtain the same quantification order, we apply Lemma 8. �

We state again Theorem 2:

Theorem 4 (Soundness of EIR) Let Γ,Δ be sets of formulas. If cl(Γ,¬Δ) ↪→RE �
then we can build a derivation of the sequent Γ � Δ.

Proof Let ψ1, . . . , ψn = cl(Γ,¬Δ) and assume ψ1, . . . , ψn ↪→RE �. Proposition 4
gives us a derivation of the sequent ψ1, . . . , ψn �. We apply Proposition 3 to get a
derivation of the sequent Γ,¬Δ � and then Kleene Lemma 3 to get a derivation of
the sequent Γ � Δ. �

9 Conclusion

In this article, we proved that a resolution proof corresponds to a cut-free sequent-
calculus derivation in the framework of deduction modulo, without any hypothesis
on the rewrite system used. However, if one wants completeness of the original
ENAR with respect to the original sequent calculus, one has to make the extra
assumption that the rewrite system is confluent, to be able to use Proposition 1.
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This applies to many interesting cases, including higher-order logic [9, 15], Peano’s
arithmetic [16], or Zermelo’s set theory [11].

Moreover, since the cut-free fragment of sequent calculus corresponds exactly to
the resolution method, the completeness theorem cannot be proved if we do not
prove (or use, as in [10]) some version of the cut-elimination theorem. In particular
the semantic completeness result of [41], combined with Theorem 2 proved here
and soundness of sequent-calculus modulo with cuts, entails directly a semantic cut-
elimination theorem. More generally, any resolution completeness theorem not using
a cut-free derivation, combined with Theorem 2, entails a cut-elimination theorem
for that given theory.
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