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Abstract Many theorems involving special functions such as ln, exp and sin can
be proved automatically by MetiTarski: a resolution theorem prover modified to
call a decision procedure for the theory of real closed fields. Special functions are
approximated by upper and lower bounds, which are typically rational functions
derived from Taylor or continued fraction expansions. The decision procedure
simplifies clauses by deleting literals that are inconsistent with other algebraic facts.
MetiTarski simplifies arithmetic expressions by conversion to a recursive representa-
tion, followed by flattening of nested quotients. Applications include verifying hybrid
and control systems.

1 Introduction

Many branches of mathematics, engineering and science require reasoning about
special functions: logarithms, sines, cosines and dozens of others. Few techniques
are known for automatically proving statements involving such functions. We have
implemented a theorem prover that works by eliminating special functions, substi-
tuting rational function upper or lower bounds, transforming parts of the problem
into polynomial inequalities, and finally applying a decision procedure for the theory
of real closed fields.

The theory of real closed fields (RCF) concerns equalities and inequalities involv-
ing addition, subtraction and multiplication. (We call logical formulas in this theory
algebraic.) A field F is real closed if every positive number has a square root in F and
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every odd degree univariate polynomial with coefficients in F has a root in F. The
decision procedure works by eliminating quantifiers from the supplied formula; for
example, ∃x. ax2 + b x + c = 0 reduces to

(
a �= 0 ∧ b 2 − 4ac ≥ 0

) ∨ (a = 0 ∧ b �= 0) ∨ (a = b = c = 0).

Both universal and existential quantifiers can be eliminated, but our current experi-
ments only require the decision procedure to refute purely existential formulas.

Tarski proved the decidability of RCF in the 1930s, but his procedure was im-
practical [19]. McLaughlin and Harrison [34] recently implemented a more efficient
procedure credited to Hörmander [27] and Cohen. We used it in earlier work [2, 4],
but unfortunately it fails to terminate if applied to a polynomial of degree greater
than six or so. QEPCAD-B [11, 26] is an advanced implementation of cylindrical
algebraic decomposition (CAD), which is the best available decision procedure for
the complete theory of RCF [19]. CAD is still doubly exponential in the number of
variables, but it is polynomial in other parameters such as size of the input formula,
the maximum degree of polynomials, the maximum coefficient length and so forth
[11]. In our experience, QEPCAD usually returns quickly if the formula has only a
few variables. We run it as a separate process.

Our approach [2–4] to proving inequalities involving special functions is to replace
function occurrences one by one with appropriate upper or lower bounds. Once
we have also eliminated occurrences of division, we can call QEPCAD and if it is
successful, simplify the problem. Daumas et al. [17] present families of upper and
lower bounds for square roots, trigonometric functions, logarithms and exponentials;
in fact, virtually all functions of interest to engineering can be approximated by
a power series or a continued fraction [14]. Each approximation is typically an
upper or lower bound of the desired function on some good-sized interval. A
small modification, such as including the next term of the power series, frequently
transforms a lower bound into an upper bound or vice versa. We can use a variety
of approximations in order to obtain coverage over wider intervals, in many cases
infinite intervals.

Our approach requires a full first-order theorem prover even to prove simple
inequalities. The bounds typically have side conditions that must be proved. Case
analysis is necessary when eliminating division and often when substituting bounds,
for example when combining intervals. We chose to modify a resolution theorem
prover rather than implementing a theorem prover from scratch. Impressive ex-
amples of the latter approach include Analytica [13] and Weierstrass [9], both of
which implement a form of sequent calculus. However, we felt that writing an
entire prover would require more effort than modifying a resolution prover, while
delivering inferior results. We were also inspired by SPASS+T [38], which effectively
combines the resolution theorem prover SPASS with various SMT solvers. For the
resolution prover, we chose Hurd’s Metis [28]. Compared with leading provers, it is
slow (being coded in Standard ML rather than C) and it lacks many refinements (such
as advanced data structures for indexing). However, it implements the superposition
calculus [7] and its code is extremely clear.

MetiTarski outputs proofs in the standard TSTP format [43]. These are machine-
readable and can also, with perseverance, be checked by humans. Most proof steps
involve standard resolution inference rules. To these we add specialist inference rules
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for arithmetic simplification, decision procedure calls and other steps. It should be
straightforward to build an independent tool for checking MetiTarski proofs.

Paper outline. We begin with a general architectural overview (Section 2). We
then discuss (Section 3) the upper and lower bounds we use, and other aspects of the
axiom system. We proceed to describe (Section 4) how we modified the resolution
prover Metis. We finally present a table of new results (Section 5) along with brief
conclusions (Section 6).

2 Overview of MetiTarski

We work in first-order logic with equality. Detailed technical definitions can be found
in standard reference works [7]. The following summary highlights the specific points
that pertain to MetiTarski.

2.1 Definitions

Our universe of discourse is the set of real numbers. All variables range over the
reals. A term is a variable, a constant or an n-ary function applied to an n-tuple of
terms. Our language includes constants for the integers and the arithmetic functions
+, −, × and /. Below we use familiar mathematical notation, for example writing
xy or x · y instead of x × y.

MetiTarski simplifies arithmetic expressions based on the assumptions outlined
above. We are particularly interested in real-valued functions such as sin and cos,
and their properties must be defined axiomatically. For each function of interest,
axioms must be provided that express upper or lower bounds, or properties such as
monotonicity. Needless to say, invalid axioms will yield invalid proofs.

An atomic formula P, Q, . . . has the form t = u or t ≤ u, where t and u are terms.
A literal is an atomic formula or its negation. We regard t < u as abbreviating the

literal ¬(u ≤ t) and accept the familiar abbreviations t �= u, t ≥ u and t > u.
A clause is a finite set of literals, interpreted as a disjunction. We typically write

clauses as logical formulas such as ¬P1 ∨ ¬P2 ∨ Q1 ∨ Q2 or P1 ∧ P2 → Q1 ∨ Q2

instead of sets such as {¬P1,¬P2, Q1, Q2}. The empty clause denotes the formula
⊥, contradiction. A set of clauses is interpreted as a conjunction.

A ground term, literal or clause is one containing no variables.

2.2 The Resolution Loop

A resolution prover [7] represents and works on a problem as a set of clauses, which
can be seen as a formula in conjunctive normal form. The conjecture is typically
supplied as a first-order formula; it is negated and conjoined with axioms appropriate
to the problem domain. The resolution procedure attempts to deduce the empty
clause, thereby proving the original conjecture by contradiction.

Each resolution inference combines two clauses and yields a new clause as follows:

P ∨ A ¬Q ∨ B
(A ∨ B)σ

Here P and Q are atomic formulas, A and B are sets of literals, and σ is the most
general unifier of P and Q. In general, the new clause will be longer than the original
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Fig. 1 The main loop
of resolution

ones, and most such steps are fruitless. The key to successful theorem proving
is to choose the right literals, P and ¬Q, to resolve upon. Resolution provers
use a term ordering to select the most appropriate literal; with the right ordering
(since resolution deletes the selected literals), this process gradually eliminates
all occurrences of special functions. We assist resolution by allowing a decision
procedure (QEPCAD) to delete ground algebraic literals that it determines to be
inconsistent with their context (such as adjacent literals).

A resolution prover’s main loop (Fig. 1) manages two sets of clauses, Active and
Passive [33]. The Active set consists of clauses that have been resolved with every
other Active clause, while the Passive set consists of clauses waiting to be processed.
At the start, all clauses belong to Passive. At each iteration, the following steps take
place:

– An element of the Passive set (called the given clause) is selected and moved to
the Active set.

– The given clause is resolved with every member of the Active set.
– Newly inferred clauses are first simplified, for example by rewriting. Those that

are not redundant are added to the Passive set.

MetiTarski modifies this procedure in several respects. The simplification phase
converts arithmetic formulas to a canonical form and attempts to isolate special
functions. It can also delete ground algebraic literals that it determines to be
inconsistent with their context. The built-in term ordering is modified to ensure that
special function occurrences are eliminated despite the existence of apparently more
complex algebraic formulas. Clauses that are obviously trivial, such as t ≤ 0 ∨ t ≥ 0,
are automatically discarded. Every aspect of this architecture has been designed
to ensure good performance for an axiom system of a specific form. Despite the
modifications outlined above, MetiTarski remains a resolution theorem prover, with
a control flow as shown in Fig. 1.

2.3 On Case Splitting

Newcomers to resolution may be surprised to learn that the procedure works by sat-
uration rather than by posing subgoals or by case splitting on variables. It processes
a single pool of assertions until it succeeds by detecting a contradiction or fails by
running out of clauses to process (or running out of memory). To prove a formula of
the form P ∨ Q → R, a subgoaling approach would attempt to prove two separate
problems, P → R and Q → R. Resolution expresses the problem P ∨ Q → R as
a pair of clauses derived from its negation: P ∨ Q and ¬R. Rather than proving the
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formula P → R, resolution may succeed (with the help of other axioms present in the
problem) in deducing Q from P ∨ Q and ¬R. It could complete the proof by finding
a contradiction between Q and ¬R. The two cases are actually proved sequentially.
Because every clause having two or more literals is a disjunction, every resolution
proof can be regarded as consisting of a series of case analyses.

3 Axiom System

We distribute MetiTarski with several axiom files that users can insert into problems.
MetiTarski requires axioms that specify the properties of the ≤ relation. Few of
these axioms are general; they typically concern the special functions or division. The
most important axioms provide bounds for special functions. These bounds must be
correct, accurate and not too complicated. They also need to be valid over a good-
sized interval. We have sought reasonably accurate bounds for the purposes of our
experiments, but these can always be improved upon.

In our earlier work [2–4], we relied almost exclusively on Daumas et al. [17],
who provide bounds for a few well-known functions. Those bounds, however, were
intended for a different application: to decide constant formulas like e > 2

√
2 using

interval arithmetic. For each function, they supplied a family of increasingly accurate
bounds. Each bound included range reduction: scaling to ensure accuracy for function
arguments of arbitrary magnitude. Their software selected appropriate parameters
for the problem at hand. In effect, each bound was an infinite family indexed in two
dimensions (accuracy and range). Resolution provers require a finite and preferably
small axiom system.

We have addressed these difficulties in a variety of ways. We have moved away
from Taylor expansions, which tend to be accurate only on narrow intervals and then
veer away wildly, in favour of continued fractions. For some functions, in particular
logarithm and arctan, the continued fraction approximation gives excellent accuracy
over wide intervals. We have eliminated arbitrary range reduction and chosen a few
fixed ranges of accuracy. These simplifications are adequate for our experiments,
allowing us to focus on crucial issues such as the search space and the treatment of
complex expressions. The original bounds were only claimed [17] to hold over narrow
intervals; these could often be relaxed. In other cases, we sought new bounds that
were valid over wider intervals. Relaxing the range restrictions allows inequalities to
be proved over infinite intervals. The resolution procedure can perform case analyses
(in the sense of Section 2.3) in order to join proofs involving bounds valid over
different intervals, but it can only consider finitely many cases.

Our problems demand a wide range of accuracies. Those of mathematical origin
sometimes require razor-sharp bounds while some derived from real-world prob-
lems [42] can be solved with crude bounds. The most accurate bounds are only
necessary for a few problems, so we keep them in separate axiom files because the
presence of many bounds for a particular function can greatly increase the search
space. One of our continued fraction bounds for the exponential function is accurate
to 1.06 × 10−12 on the interval [−2, 0], according to the computer algebra system
Maple.

The continued fraction expansions come from a standard reference book [14]. In
order to avoid introducing specialised notation, we do not present the continued
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fractions but instead the specific instances (“approximants”) that we require. We
have computed these approximants using Maple and library code obtained from the
book’s associated website [8]. We also omit the proofs that these approximants are
upper or lower bounds for the functions they approximate. To present those proofs
would require us to develop the theory of continued fractions at length. Continued
fractions are not essential to MetiTarski: our previous paper [3] does not use them
at all.

Remark We use f (x) and f (x) to stand for upper or lower bounds of f (x) often
in the absence of specific definitions; when we write say ln(x), we often refer to a
different function than do Daumas et al. [17].

3.1 The Square Root Function

In early work, we manually replaced square roots by new variables, replacing
√

t
by y such that y ≥ 0 and y2 = t. Provided the term t contains no special functions,
we obtain algebraic constraints that QEPCAD can accept. However, this approach
can only be applied to algebraic terms, and increasing the number of variables
is inadvisable when the decision procedure is doubly exponential in that number.
MetiTarski can now support the square root function directly, by means of upper
and lower bounds.

Daumas et al. [17] base their bounds for
√

x on Newton’s method. We have
improved their accuracy, making them exact when x = 1. Our versions are defined
as follows:

sqrt(x, 0) = x + 1

2

sqrt(x, n) = y + x/y
2

n ≥ 1, where y = sqrt(x, n − 1)

sqrt(x, n) = x
sqrt(x, n)

Their complexity increases rapidly. For example,

sqrt(x, 2)= x4+28x3+70x2+28x+1

8(x+1)
(
x2+6x+1

)

sqrt(x, 3)= x8+120x7+1820x6+8008x5 ++12870x4+8008x3+1820x2+120x+1

16(x+1)
(
x2+6x+1

) (
x4 + 28x3 + 70x2 + 28x + 1

)

We supply MetiTarski with axioms that assert

sqrt(x, n) ≤ √
x ≤ sqrt(x, n)

subject to the condition that x ≥ 0. As remarked above, we must choose a finite
number of these. If we plot these functions (Fig. 2), the graphs suggest that the
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Fig. 2 Square root upper bounds: sqrt(x, 2), sqrt(x, 3)

versions with higher values of n are more accurate everywhere, and so the best
approach should be to choose one reasonably large n. Experiments demonstrate
however that proofs are frequently found faster if versions with lower values of n
are also present, presumably because the formulas are simpler. We therefore include
instances of the axioms for n = 0, . . . , 4, a total of 10 axioms.

Their correctness is easy to demonstrate. Below, let n denote a non-negative
integer.

Lemma 1 If x ≥ 0 then sqrt(x, n) > 0.

Proof Immediate, by induction on n. ��

Proposition 1 If x ≥ 0 then sqrt(x, n) ≥ √
x.

Proof By the previous lemma, it suffices to show
(
sqrt(x, n)

)2 ≥ x. Regardless of
whether n is zero or nonzero, sqrt(x, n) can be written in the form 1

2 (y + x/y) for
some y > 0. A simple calculation reveals that

(
y + x/y

2

)2

− x = y2

4
+ x

2
+ x2

4y2
− x = y2

4
− x

2
+ x2

4y2
=

(
y − x/y

2

)2

≥ 0,

from which we conclude
(

1
2 (y + x/y)

)2 ≥ x. ��

Proposition 2 If x ≥ 0 then sqrt(x, n) ≤ √
x.

Proof Immediate, by the previous two propositions. ��
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3.2 The Logarithm Function

Daumas et al. [17] derive bounds for ln x from Taylor approximations,

n∑

i=1

(−1)i+1 (x − 1)i

i
,

for the range 1 < x ≤ 2. With this series, even values of n yield lower bounds while
odd values of n yield upper bounds. Unfortunately, these approximations become
wildly inaccurate as x increases because their leading term involves xn.

Our upper bounds are finite approximants of the continued fraction expansion
(11.2.1) of Cuyt et al. [14, p. 196]. Odd approximants yield upper bounds for ln x
for x > 0. Lower bounds are obtained by the identity ln x = − ln(1/x): we can define
ln(x) = −ln(1/x) because the change of sign reverses the inequality. Here are the first
four pairs of bounds:

x − 1

x
≤ ln x ≤ x − 1

(1 + 5x)(x − 1)

2x(2 + x)
≤ ln x ≤ (x + 5)(x − 1)

2(2x + 1)
(
1 + 19x + 10x2

)
(x − 1)

3x
(
3 + 6x + x2

) ≤ ln x ≤
(
x2 + 19x + 10

)
(x − 1)

3
(
3x2 + 6x + 1

)

(
47x3 + 239x2 + 131x + 3

)
(x − 1)

12x
(
x3 + 12x2 + 18x + 4

) ≤ ln x ≤
(
3x3 + 131x2 + 239x + 47

)
(x − 1)

12
(
4x3 + 18x2 + 12x + 1

)

They are valid for x > 0 and are reasonably accurate: Fig. 3 portrays the second and
third bounds shown above for the intervals (0, 1] and [1, 8]. Their correctness can be

Fig. 3 Logarithm upper bounds: ln(x, 2), ln(x, 3)
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Fig. 4 Logarithm upper bounds: (x − 1)
(
12x4 − 63x3 + 137x2 − 163x + 137

)
/60, ln(x, 2)

proved by a straightforward argument, appealing to general theorems concerning the
monotonicity properties of continued fraction tails [15].

The superiority of continued fractions over Taylor series is evident in Fig. 4.
It compares one of our simplest upper bounds with a Taylor formula, which is
inferior near zero and from x > 2 zooms into the stratosphere (its limiting value
is x5/5).

3.3 The Exponential Function

Daumas et al. [17] derive bounds for exp x from its Taylor expansion, but only for
−1 ≤ x < 0. They use a complicated system of transformations, first covering the
negative numbers in separate intervals of the form [k − 1, k) for integer k < 0. For
x > 0, they use the identity

exp(−x) = 1

exp x.
(1)

The rapid growth of the exponential function necessitates the use range reduction to
scale down large arguments. The variety of scaling possibilities yields a multiplicity
of bounds, but we can use only finitely many. Nevertheless, we have managed to find
simpler bounds valid over wide ranges. We complement these Taylor series bounds
with others based on continued fractions, specifically expansion (11.1.2) of Cuyt et al.
[14, p. 194].

We use a crucial fact about the Taylor expansion [12, p. 83].
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Proposition 3 If n is odd and x �= 0 then

exp x >

n∑

i=0

xi

i! .

If n is even then this inequality holds if x > 0, while the opposite inequality holds if
x < 0. Obviously we have equality when x = 0.

This opposite inequality yields upper bounds for x ≤ 0. The bound using n = 4 is
already poor when x < −2, but they are valid for all x ≤ 0. Proposition 3 with odd n
yields lower bounds for x ≥ 0. Using (1), we define exp(−x) = 1/exp(x): dividing by
a positive lower bound yields an upper bound. Obviously the exponential function
is not bounded by any rational function for x > 0, and one might imagine that the
exponential function overtakes its bound after a certain point. In fact, our upper
bounds are never overtaken, but reach a singularity as the denominator goes to zero.
With n = 3, the upper bound is 6/(6 − 6x + 3x2 − x3); its denominator is a cubic
equation with one real root at x ≈ 1.60. We extend this upper limit using range
reduction, via the identity exp x = exp(x/k)k, for k = 2, 4. With k = 4 and n = 3,
the denominator of the upper bound becomes a 12th degree polynomial; QEPCAD
easily copes with such high degrees. As always, we can employ only finitely many
cases of range reduction.

Continued fraction bounds have advantages and disadvantages compared with
Taylor series bounds. A Taylor series bound is valid for both positive and negative
arguments, subject to the singularity mentioned above. With continued fractions, we
must treat the positive and negative cases separately.1 On the other hand, a continued
fraction bound is typically much more accurate (measured as absolute difference)
than a similarly complex Taylor series bound, and is good over a wider interval.
The Taylor bounds we use are reasonably accurate near zero but go wildly astray as
x → −∞. Some of these points can be seen in Fig. 5, which compares a range-reduced
Taylor upper bound with the fifth (for x ≥ 0) and sixth (for x ≤ 0) continued fraction
approximants. We computed these approximants, as before, using Maple code from
a continued fractions library [8].

− x5 + 30x4 + 420x3 + 3360x2 + 15120x + 30240

x5 − 30x4 + 420x3 − 3360x2 + 15120x − 30240
(5th approximant)

x6 + 42x5 + 840x4 + 10080x3 + 75600x2 + 332640x + 665280

x6 − 42x5 + 840x4 − 10080x3 + 75600x2 − 332640x + 665280
(6th approximant)

21743271936
(−x3 + 12x2 − 96x + 384

)−4
(Taylor)

For x ≥ 0, the continued fraction upper bounds are valid over wider ranges than
the Taylor series bounds, even without range reduction. However, they all reach a
singularity eventually. For example, the denominator of the fifth approximant goes
to zero at x ≈ 7.29. Obviously, a bound is not valid beyond such a singularity.

1For x ≥ 0, odd approximants yield upper bounds of exp x while even ones yield lower bounds; for
x ≤ 0, the situation is reversed.
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Fig. 5 Upper bounds for the exponential function

Lower bounds are plentiful. By Proposition 3, the truncated Taylor expansion of
exp x for odd n is a lower bound over the entire real line. Unfortunately, for negative
arguments they are only accurate near zero. We can again use exp x = exp(x/k)k as
a means of range reduction, but only for odd k. In order to use exp(x/k)k as another
lower bound for exp x, it suffices to deduce

exp(x/k)k ≤ exp(x/k)k = exp x

from exp(x/k) ≤ exp(x/k), for which we need k to be odd because exp(x/k) could
be negative. We use the Taylor expansion with n = 5, performing range reduction
as described above with k = 3; this bound has degree 15 and gives an acceptable
fit for −6 ≤ x ≤ 6. We include the lower bound 1 + x (the Taylor expansion with

Fig. 6 Lower bounds for the exponential function
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Fig. 7 Taylor approximations
for the sine function

n = 1) because of its simplicity. We also use continued fraction approximants: the
third (for x ≤ 0) and second (for x ≥ 0), going right up to the seventh when we need
high accuracy. Finally, since the exponential function is always positive, we include
zero as a lower bound; the other lower bounds are insufficient to prove exp x > 0.

Figure 6 presents some of our lower bounds. It compares a range-reduced Taylor
lower bound, namely

(
1 + x

3
+ x2

18
+ x3

162
+ x4

1944
+ x5

29160

)3

,

with the fifth (for x ≤ 0) and sixth (for x ≥ 0) continued fraction approximants. Note
that the continued fraction lower bound peters out when x > 8, while the Taylor
bound continues to follow the function upwards.

3.4 Trigonometric Functions

For sin x and cos x, we follow Daumas et al. [17] and rely on the Taylor expansions:

sin x =
n∑

i=0

(−1)i

(2i + 1)! x2i+1

cos x =
n∑

i=0

(−1)i

(2i)! x2i

For x > 0, these yield upper bounds when n is even and lower bounds when n is odd;
for x < 0, the situation is reversed.2 We illustrate their behaviour by plotting sin x
against its Taylor expansions of seven and eight terms (Fig. 7), the most accurate
ones we use; they deteriorate badly when |x| > 5.

2For the proofs of these statements, we refer to Daumas et al. [17], who have formally verified all the
bounds in their paper using PVS.
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Daumas et al. [17] also suggest families of bounds that converge to π , but we
are using a fixed set of axioms and have simply chosen the pair 3.1415926 < π <

3.1415927.
For the inverse tangent, Daumas et al. [17] use the Taylor expansion once again:

tan−1 x =
n∑

i=0

(−1)i

2i + 1
x2i+1

Unfortunately, this series is notorious for its slow convergence, especially when
|x| ≈ 1. We adopted it for our early experiments [3], but even 25 terms of the series
yielded poor accuracy. We have since adopted bounds derived from its continued
fraction representation (11.4.8) [14, p. 207]. They are extremely accurate when
|x| ≤ 1, and otherwise we can transform them by the identities tan−1 x = π/2 −
tan−1(1/x) and tan−1(−x) = − tan−1 x. We thereby obtain excellent bounds for the
entire real line, at the expense of having separate bounds for the cases x < −1, x ≤ 0,
x ≥ 0, x > 1. Note that there is no need to make the ranges of coverage disjoint.

Here are the first four approximants yielded by the continued fraction:

x,
3x

x2 + 3
,

(
4x2 + 15

)
x

3
(
3x2 + 5

) ,

(
11x2 + 21

)
5x

3
(
3x4 + 30x2 + 35

)

By Lemma 1 of Cuyt et al. [16], the odd-numbered approximants are upper bounds
while the even-numbered ones are lower bounds.

The first two approximants are not very accurate but they yield simple bounds,
which benefits the more complicated proofs (those involving nested functions, for
instance).

tan−1 x ≤ −π

2
− 1

x
(x < −1)

tan−1 x ≤ 3x
x2 + 3

(x < 0)

tan−1 x ≤ x (x > 0)

tan−1 x ≤ π

2
− 3x

1 + 3x2
(x > 1)

We also use accurate bounds derived from the fifth and sixth approximants.

tan−1 x ≤ −π

2
− 64 + 735x2 + 945x4

15x
(
15 + 70x2 + 63x4

) (x < −1)

tan−1 x ≤
(
33x4 + 170x2 + 165

)
7x

5
(
5x6 + 105x4 + 315x2 + 231

) (x < 0)

tan−1 x ≤
(
64x4 + 735x2 + 945

)
x

15
(
15x4 + 70x2 + 63

) (x > 0)

tan−1 x ≤ π

2
−

(
33 + 170x2 + 165x4

)
7x

5
(
5 + 105x2 + 315x4 + 231x6

) (x > 1)
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The bounds that we show as valid for x < −1 are actually valid for x < 0, and those
that we show as valid for x > 1 are actually valid for all x, but with poor accuracy.
We find that restricting them as shown reduces the search space and improves
performance.

We omit the lower bounds due to lack of space, but they are easily obtained from
those shown. We define tan−1(x) = −tan−1(−x), since

tan−1(x) = −tan−1(−x) ≤ − tan−1(−x) = tan−1 x.

3.5 Other Functions

Many familiar mathematical functions are normally defined in terms of other func-
tions. Examples include the following:

xy = exp(y ln x) tan x = sin x
cos x

sinh x = exp x − exp(−x)

2

It seems natural to use these definitions directly rather than to seek upper and lower
bounds from first principles. The prover will then use the approximations it has for
the functions on the right-hand side.

Metis, like other modern resolution theorem provers, supports equality reasoning.
Given an equality axiom of the form t = u, it can replace instances of the term t by
corresponding instances of the term u, or vice versa. We can therefore insert such
definitions as equality axioms and let resolution do the rest. However, MetiTarski
usually gives better results if we regard the definitions as absolutely precise upper
and lower bounds,

sin x
cos x

≤ tan x ≤ sin x
cos x

,

which we formalise as discussed in Section 3.6 below. This use of inequalities has the
advantage of postponing the introduction of the definiens (right-hand side) until the
definiendum (left-hand side) becomes outermost in a term. Regardless of whether
we regard a function’s definition as an equality or as a pair of bounds, it is essential
to modify the term ordering (Section 4.5) to ensure that the definiendum is replaced
by the definiens and not the other way round.

Since the difficulty of a problem rises sharply with the number of function
occurrences it contains, it may be preferable to specify functions through upper and
lower bounds rather than in terms of other special functions. Reference works such as
Cuyt et al. [14] present approximations for dozens of special functions, which could
serve as the basis for upper and lower bounds. This approach requires more work
initially: we have to identify new upper and lower bounds rather than reusing the
ones we already have. It may yield better results in the long run.

We specify the absolute value function by a pair of clauses:

¬(0 ≤ x) ∨ |x| = x 0 ≤ x ∨ |x| = −x

The theorem prover uses these axioms to replace |t| by t or −t through case analysis
on the sign of t. This occurs via the paramodulation rule, which is the standard
inference rule for dealing with equality. If we have a clause of the form

P(|t|) ∨ C
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then paramodulation generates two clauses:

P(t) ∨ ¬(0 ≤ t) ∨ C

P(−t) ∨ 0 ≤ t ∨ C

The new literals have the form ¬(0 ≤ t) or 0 ≤ t and they are therefore complemen-
tary. To destroy this property by strengthening the second clause of the absolute
value function to 0 < x ∨ |x| = −x would harm performance.

3.6 Axioms

The guiding principle behind our axiom system is to avoid all use of general
properties of orderings, such as transitivity, antisymmetry, and monotonicity of
addition and multiplication. Such properties are notorious for blowing up the search
space. Necessary instances of these properties are built into other axioms, built into
simplification or left to the decision procedure. To limit the problem size and search
space, we only include axioms that are relevant to the functions that appear in
the problem. It is often obvious by inspection whether upper or lower bounds are
required. At present the user has to identify the required sets of axioms, although
this step would be straightforward to automate. On the other hand, analysis of a
problem to determine the required accuracy and range of bounds is difficult; we have
identified good general-purpose bounds, but no fixed set can be appropriate for all
problems.

A significant change from our earlier work [2] is that the less-than relation no
longer exists. We have only one primitive ordering relation, ≤. The equivalence
X < Y ⇐⇒ ¬(Y ≤ X), formerly a pair of clauses, is built into the parser. When
we write t < u in a clause, as just below for example, it actually abbreviates ¬(u ≤ t).

To illustrate our formalization of bounds, consider the fact 1 + x ≤ exp x. We
could combine it with transitivity for ≤ and < by asserting two axioms:

¬(Y ≤ 1 + X) ∨ Y ≤ exp(X)

¬(Y < 1 + X) ∨ Y < exp(X)

However, writing each bound twice would be inconvenient and could result in
user errors. Instead we introduce a generalized less-than relation. Its first argument
indicates which relation it designates. We express the following two equivalences
using the obvious four axiom clauses:

lgen(0, X, Y) ⇐⇒ X ≤ Y

lgen(1, X, Y) ⇐⇒ X < Y

Now, the lower bound axiom for ≤ and < can be expressed by a single clause:

¬(
lgen(R, Y, 1 + X)

) ∨ lgen
(
R, Y, exp(X)

)
.

The theorem prover will then generate the two clauses shown above.
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We modify the term ordering (used in resolution, Section 4.5) to ensure that
the exp literals are selected. The lower bound clauses combine with literals of the
form ¬(t ≤ exp(u)) or ¬(t < exp(u)), respectively, and therefore can resolve with
a fact of the form exp(u) < t yielding the new fact 1 + u < t, and similarly for ≤.
Since resolution works by negating the conjecture to be proved, these inferences
can be regarded as reducing a conjecture of the form t ≤ exp(u) to t ≤ 1 + u, and
similarly for <.

As before [2], we include axioms concerning division in order to encourage its
replacement by multiplication. The term ordering is set up (see Section 4.5) to ensure
that these axioms do not instead replace multiplication by division.

¬(X ≤ Y · Z ) ∨ X/Z ≤ Y ∨ Z ≤ 0

¬(X ≤ Y/Z ) ∨ X · Z ≤ Y ∨ Z ≤ 0

¬(X · Z ≤ Y) ∨ X ≤ Y/Z ∨ Z ≤ 0

¬(X/Z ≤ Y) ∨ X ≤ Y · Z ∨ Z ≤ 0

Because simplification flattens nested quotients (Section 4.1), these axioms are
reasonably effective in removing division from a problem. Those shown include the
literal Z ≤ 0, which means they concern the case when Z > 0; we also include the
analogous axioms for when Z < 0.

4 Modifications to the Resolution Procedure

The axioms presented above are sufficient to reduce a problem involving special
functions to one involving division and finally to one that is purely algebraic. The
remaining reasoning takes place in the theory of real closed fields. To accomplish
this reasoning, we modify the resolution procedure so that it interacts with a decision
procedure for RCF. Specifically, our modifications are as follows:

– The integer constants are available, and the input file can express fractions in
decimal notation; for example, 1.2 denotes 6

5 . The prover can perform rational
arithmetic on such fractions. We never use floating point arithmetic.

– Arithmetic expressions are simplified in order to identify redundant forms and
to isolate the special functions.

– Ground algebraic literals that are inconsistent with existing algebraic facts are
deleted from every new clause. This brings us closer to the empty clause.

– New clauses that follow in RCF from existing algebraic facts are regarded as
redundant and deleted. This reduces the use of space and time.

– The built-in term ordering supports subterm coefficients [32]. This encourages the
replacement of functions by bounds, even when they superficially appear to be
more complex.

4.1 Arithmetic Simplification

MetiTarski uses a recursive representation of polynomials. We map all variants of
an expression to a unique canonical form. To focus the proof search, we isolate
occurrences of special functions and flatten nested divisions.
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4.1.1 Horner Normal Form

All terms built up using constants, negation, addition, subtraction, and multipli-
cation can be considered as multivariate polynomials. Following Grégoire and
Mahboubi [22], we transform them to Horner normal form, also called the recursive
representation. This representation is canonical: distinct representations imply that
the original polynomials are not equal.

Any univariate polynomial anxn + · · · + a1x + a0 can be rewritten in recursive
form as

a0 + x
(
a1 + · · · x

(
an−1 + xan

))
.

We can consider a multivariate polynomial as a polynomial in one variable whose
coefficients are themselves a canonical polynomial in the remaining variables.

For example, we can represent the polynomial 3xy2 + 2xyz + 4y + yz/2 + 5 as

(
5 + y(4 + y(0 + x3))

) + z
(

0 + y
(

1

2
+ x2

))
.

It is a polynomial in z whose coefficients are polynomials in y and then x. (Our
Horner normal form makes the constant term explicit even if it is zero.) Integer
constants denote themselves, while rational numbers are expressed using the binary
function symbol “rational”, which is distinct from the general division operator.

We define arithmetic operations on canonical polynomials, subject to a fixed
variable ordering. For addition, our task is to add c + xp and d + yq. If variables x
and y are the same, then we just compute (c + xp) + (d + xq) = (c + d) + x(p + q),
returning simply c + d if p + q = 0. If variable x is smaller than y in the ordering,
then c + xp is recursively added to d, yielding some d′, and the result is d′ + yq.
The remaining case (y smaller than x) is handled by symmetry. For negation,
we recursively negate the coefficients, while subtraction is an easy combination of
addition and negation.

We can base a recursive definition of polynomial multiplication on the following
equation, solving the simpler sub-problems p · d and p · q recursively:

p · (d + yq) = (p · d) + (0 + y(p · q))

However, for 0 + y(p · q) to be in canonical form we need y to be the topmost
variable overall, with p having no variables strictly earlier in the list. Hence, we first
check which polynomial has the earlier topmost variable and exchange the operands
if necessary. Powers pn (for fixed n) are computed by repeated multiplication. Our
implementation of the canonical form algorithm is based on a preprint of John
Harrison’s recent book [24].

Any algebraic term can now be translated into canonical form by transforming
constants and variables, then recursively applying the appropriate canonical form
operations. We simplify a formula of the form X ≤ Y by converting X − Y to
its canonical form Z and returning the equivalent formula Z ≤ 0. We simplify
1 + x ≤ −4 to 5 + x ≤ 0, for example. Any fixed format can harm completeness, but
note that the literal deletion strategy described below is indifferent to the particular
representation of a formula.
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4.1.2 The Treatment of Division

Our normal form supports the operations of addition, subtraction, and multiplica-
tion. Division by an integer or rational does not present a problem, since a coefficient
can be a rational number: the divisor is recursively supplied to the normal form
conversion. Other occurrences of division must somehow be removed from a formula
before we can give it to the RCF decision procedure.

Division can occur deep inside expressions as a proof develops. Without special
treatment, such occurrences will be difficult to eliminate using resolution alone.
Accordingly, we transform an expression containing division into a rational function
according to the following rules. (We identify E with E

1 if necessary.)

x1

y1
+ x2

y2
= x1 y2 + x2 y1

y1 y2

x1

y1
· x2

y2
= x1x2

y1 y2

x1

y1
− x2

y2
= x1 y2 − x2 y1

y1 y2

x1

y1
÷ x2

y2
= x1 y2

y1x2

Thus we replace nested divisions by one single division, which as the outermost
symbol can be eliminated by one proof step using an appropriate division axiom
(see Section 3.6). In this example, three divisions are replaced by one.

(
x
y

)
1

(
x + 1

x

) = x2

y(x2 + 1)

We add literals to the resulting clause to account for the possibility of division
by zero. In particular, if we simplify x1/y1 + x2/y2 then we make the resulting
clause conditional on y1 �= 0 and y2 �= 0. However, for (x1/y1) · (x2/y2) and (x1/y1) ÷
(x2/y2), no such conditions are necessary. That is because we define x/0 = 0. It is
trivial to see that (x1/y1) · (x2/y2) = 0 if and only if any of x1, x2, y1, y2, are zero, and
in this they agree with the corresponding right-hand side.

On division by zero. The Isabelle and HOL communities are comfortable with
a formalised mathematics that defines x/0 = 0 on many numerical domains. They
appreciate that it simplifies deductions by making certain identities unconditional,
such as (x · y)−1 = x−1 · y−1. But some mathematicians view the idea with suspicion.
To simplify the discussion, let us restrict ourselves to fields, taking x/y as an
abbreviation for x · y−1 and restricting the issue to the status of 0−1.

In first-order logic, all functions are total. There are no models of the field axioms
in which 0−1 is undefined: 0−1 must denote something. Because the field axioms do
not constrain the value of 0−1, the axiom 0−1 = 0 is consistent with them; assuming it
cannot allow anything to be proved that contradicts the other axioms. If we augment
the real number system with an undefined value ∞ and augment the field axioms
with axioms to propagate undefinedness, then we can derive ∞ = 0 · ∞ = 0; that
approach just replaces the issue of 0−1 with the equally vexing issue of 0 · ∞.

Bergstra and Tucker [10] have recently given an equational specification of the
rational numbers from which 0−1 = 0 is deducible, which they readily accept. Their
article presents the issue in historical perspective.
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4.1.3 Isolating Function Occurrences

We attempt to isolate occurrences of special functions. In the Horner normal form
transformation (Section 4.1.1), we regard any non-algebraic term (preferably a
special function occurrence) as a variable. We order the variables, taken in this
general sense, using Metis’s built-in Knuth-Bendix ordering. This ensures that one
of the function occurrences will appear as the outermost “variable.” If we detect this
situation, we leave this term by itself on one side of the inequality, for example as
ln t ≤ t′. We even divide both sides by any constant coefficient, so that −2 ln t ≤ t′
becomes −t′/2 ≤ ln t. This transformation is built into arithmetic simplification.

Isolating the function is more difficult in cases such as (ln t)u ≤ t′, where a special
function is multiplied by an arbitrary term u. It is natural to divide both sides of
the inequality by this term, but we cannot do so unless we know the sign of u.
Our solution is to generate a case analysis. This step cannot be integrated with
simplification; it is, in fact, implemented as a separate rule of inference. Its logical
justification is trivial, by the properties of division.

If we have a clause of the form tu ≤ t′ ∨ C (the analogous inference is available
for t′ ≤ tu ∨ C), then we create four new clauses:

t ≤ t′/u ∨ u ≤ 0 ∨ C

0 ≤ t′ ∨ u �= 0 ∨ C

t′/u ≤ t ∨ u ≥ 0 ∨ C

u < 0 ∨ u = 0 ∨ u > 0

The first three clauses describe the situation when u > 0, u = 0 or u < 0, respectively.
The final clause expresses case analysis on the sign of u. We could express this
trichotomy axiom in full generality, but its effect on the search space would be
catastrophic. It is interesting to note that few of our examples require the fourth
clause; it is only necessary when u is not algebraic (otherwise QEPCAD could
perform the necessary reasoning) and cannot be proved to have one uniform sign.

4.2 Algebraic Literal Deletion

Literal deletion [2] simplifies new clauses that emerge from inference rules. For
each ground algebraic literal in such a clause, we conjoin it with the negations of
all ground algebraic literals in that clause (its context) and with all ground algebraic
clauses known to the prover. Taking as variables all Skolem constants present in this
conjunction, we proceed to form its existential closure. If the RCF solver (QEPCAD)
reduces this existential formula to false, then the literal under consideration is
deleted. This is the primary mechanism by which the decision procedure contributes
to deduction.

As a small example, suppose we are trying to prove

∀x [−3 < x < 1 → ln(1 − x) ≤ −x]

with the help of a range-restricted polynomial upper bound f2,

∀x
[
2 ≤ x ≤ 4 → ln x ≤ f2(x)

]
.
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Skolemization of the conjecture will yield three clauses, with u a Skolem constant:

−3 < u u < 1 ¬[ln(1 − u) ≤ −u].
MetiTarski maintains a list consisting of all ground algebraic clauses (regardless of
whether they are active or passive). At the start of the proof, −3 < u and u < 1 will be
the only elements of this list. As the proof proceeds, a resolution step will eventually
substitute our upper bound, yielding the following unsimplified clause:

f2(1 − u) ≤ −u ∨ 2 > 1 − u ∨ 1 − u > 4. (2)

Ordinary arithmetic simplification can reduce 2 > 1 − u to u > −1, and 1 − u > 4
to −3 > u, but if f2(1 − u) is a complicated polynomial, then only QEPCAD can
achieve a real simplification: we give it the formula

∃u

⎡

⎢
⎣ f2(1 − u) ≤ −u ∧ u ≤ −1 ∧ −3 ≤ u︸ ︷︷ ︸

negated literals

∧ −3 < u ∧ u < 1︸ ︷︷ ︸
algebraic clauses

⎤

⎥
⎦ .

Provided f2 is a sufficiently tight bound, the result will be false and the literal can be
deleted from clause (2). The literal u > −1 turns out to be consistent with its context,
so it is preserved. Then we call QEPCAD for −3 > u:

∃u [−3 > u ∧ u ≤ −1 ∧ −3 < u ∧ u < 1] .

This again is false, and the final simplified clause is

u > −1.

It will be added to our list of ground algebraic clauses. We have tightened the range
of u to −1 < u < 1; if it becomes empty, then we have reached a contradiction.

In this example, the constraints that accumulate are linear, but in general they
could relate arbitrary polynomials. QEPCAD can detect inconsistencies among non-
linear constraints.

4.3 Algebraic Subsumption

Resolution theorem provers generate many redundant clauses. To conserve space,
they typically delete any clause that is a syntactic instance of another. The redun-
dancy test is applied just before new clauses are added to the passive clause set
(recall Fig. 1). We generalize this redundancy criterion, known as subsumption, by
performing an analogous redundancy check in the RCF theory.

When a new clause is generated, we identify its ground algebraic literals and
form their disjunction. If this disjunction is an algebraic consequence of the existing
ground algebraic clauses, then we ignore the new clause; in future QEPCAD calls,
it could only contribute redundant information. This technique can even improve
the performance of some failing proofs so that they terminate (reporting failure)
rather than running forever. The resulting performance improvement depends on
other aspects of the formalization; at present, around 4% of our problems are proved
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significantly faster when this technique is enabled. Note that if we applied this idea
to standard resolution inferences, then all new clauses would be ignored, because all
clauses are logical consequences of the previous clauses.

Recall our previous example, where the ground algebraic clauses included −1 < u
and u < 1. Suppose that a resolution step yields the following clause:

ln(1 − u) ≤ u2 ∨ u2 < 2 ∨ 4u > 3.

Algebraic subsumption will call QEPCAD with the formula

∃u. u2 ≥ 2 ∧ 4u ≤ 3︸ ︷︷ ︸
negated literals

∧ −1 < u ∧ u < 1︸ ︷︷ ︸
algebraic clauses

.

QEPCAD returns false, indicating that the algebraic part of the clause follows from
−1 < u < 1. The clause is discarded.

4.4 Removal of Arithmetic Tautologies

The division axioms presented above (Section 3.6) give rise to many fruitless
deductions. These yield clauses such as X ≤ 0 ∨ X ≥ 0 ∨ . . .. Note that the slightly
different clause X ≤ 0 ∨ X > 0 is a propositional tautology, because X > 0 abbre-
viates ¬(X ≤ 0). It is therefore natural to interpret X ≤ 0 ∨ X ≥ 0 as a tautology
also. Generalising this idea, we examine each literal of the form t ≤ 0 or t ≥ 0 in a
newly deduced clause in order to determine whether it is tautologous in the context
of the neighbouring literals. If the term has the form t1 · t2 or t1/t2, then we recursively
perform the obvious sign computation on t1 and t2. If the computed sign for t logically
implies the literal, then the entire clause is deleted as tautologous.

For example, consider the clause X ≤ 0 ∨ Y ≤ 0 ∨ X · Y > 0. It is logically equiv-
alent to

X > 0 ∧ Y > 0 → X · Y > 0,

so when we examine the literal X · Y > 0, we can assume X > 0 and Y > 0. The sign
computation concludes that X · Y is positive: the literal X · Y > 0 is implied by its
context, so the clause is deleted. The effect is to reduce the search space by ignoring
deductions that cannot lead to a contradiction.

This procedure is the sole exception to our principle that properties of the special
functions are specified by axioms rather than being built into the code. Our sign
computation gives terms of the form exp x and cosh x a positive sign; for example, the
clause X ≤ 0 ∨ X exp Y > 0 will be deleted.

4.5 Modified Knuth-Bendix Ordering

The execution of a modern resolution prover is governed by a term ordering [7]. This
ordering serves several purposes:

– to orient equations appropriately,
– to eliminate redundant combinations of inferences (those that could never

produce essentially new results), and
– to draw the prover’s attention to literals of high priority.
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Metis follows most resolution theorem provers in providing the Knuth-Bendix
ordering (KBO) [6, p. 124]. Its advantages include computational efficiency and a
tendency to prefer simpler terms. The latter property, however, can be a drawback.

It gives an equation like X − X = 0 the obvious orientation, but others can be
difficult to orient. For example, consider the equation u = 1

2 , where u is a Skolem

constant. The default ordering will consider the fraction 1
2 (which is a function

application) to be more complex than u, and will therefore choose the perverse
orientation 1

2 = u. We can solve this issue by assigning suitable weights. Weights
(typically positive integers) can be assigned to all function symbols; the sum of the
weights in a term is a key measure in the ordering. By giving Skolem constants a
weight of 5, while integers and the function “rational” have a weight of 1, MetiTarski
ensures that the orientation u = 1

2 is chosen. Weights can similarly ensure that the
equation tan x = sin x/cos x is oriented from left to right, so that it eliminates rather
than introduces the tangent function.

Ordered resolution can implement our strategy of replacing special functions by
rational functions and then division by multiplication, provided we adopt a suitable
ordering. We are concerned with clauses such as the following:

¬0 < X ∨ ¬[
(X + 5)(X − 1)/(4X + 2) ≤ Y

] ∨ ln X ≤ Y.

This combines the upper bound property ln X ≤ (X + 5)(X − 1)/(4X + 2) with tran-
sitivity, allowing ln X to be replaced by its bound. We would like resolution to select
the literal ln X ≤ Y in order to eliminate an occurrence of ln t from another clause.
Unfortunately, standard KBO will want to select ¬[(X + 5)(X − 1)/(4X + 2) ≤ Y]
because it is syntactically larger than ln X ≤ Y. We can attempt to force the issue by
assigning ln a very high weight. Then ln X ≤ Y will be selected, but the second literal
will continue to be selected as well: KBO takes into account the number of variable
occurrences in the terms being compared, and the upper bound for ln X contains
multiple occurrences of X while ln X contains only one occurrence. Therefore both
literals are maximal. Selecting multiple literals for resolution is normal, but in this
case it needlessly expands the search space.

Ludwig and Waldmann [32] provide a solution to this difficulty. They give precise
definitions of useful extensions to KBO, along with theory and implementation
advice. We have modified Metis’s built-in ordering so that a function can have
not only a weight, but also a subterm coefficient. For example, if ln has a subterm
coefficient of 10, then each occurrence of a variable in ln t is equivalent to 10
occurrences of that variable in t; then ln X is regarded as containing 10 occurrences
of X while (X + 5)(X − 1)/(4X + 2) continues to contain only three occurrences. If
we make a function’s subterm coefficient large enough (greater than the number of
occurrences of the variable in any bound), we can ensure that a literal containing that
function is selected every time. This modification to Metis yields dramatic reductions
in solution times for the great majority of problems.

A further detail is extremely important. Ordered resolution frequently employs a
heuristic entitled negative selection: a literal’s sign is taken into account, in addition
to its rank in the ordering. Specifically, only maximal negative literals can be selected
for resolution. Metis employs negative selection by default but also offers3 unsigned

3via a simple change to its source code, see file Clause.sml



An Automatic Theorem Prover for Real-Valued Special Functions 197

literal selection. With this option, 76% of our problems are proved; with negative
selection, only 10% are proved; with no ordering whatever (all literals selected),
42% are proved.4 The terrible result with negative selection, where 58% of the
proof attempts quickly terminate with a result of “countersatisfiable” is strange:
negative selection should be complete, but clearly not with our heuristics! MetiTarski
uses unsigned literal selection in order to eliminate occurrences of special functions
regardless of their sign.

4.6 Waiting Queue Parameters

A resolution prover manages the unprocessed clauses in a priority queue. Other
things being equal, the following priorities apply:

1. A simple clause will have priority over one containing large expressions.
2. A clause containing few literals will have priority over one containing many

literals.
3. Older clauses have priority over younger ones.

The last point above ensures that every clause will eventually be processed, which is
essential for completeness. The Metis prover, by default, gives equal weight to the
first two points and a very low weight to the third. MetiTarski modifies this basic
framework.

The complexity of an expression is generally referred to as its weight, but note
that there is no connection between this concept of weight and that mentioned
in the previous section. The weight of an expression is typically the sum of the
weights of its constituent variables, constants and function symbols. Our upper
and lower bounds produce large expressions. We therefore assign low weights to
the algebraic operators (addition, subtraction and multiplication), a slightly higher
weight to division, much higher weights to the special functions, and a very high
weight to the absolute value function. All constants have a weight of zero. Variables
receive an unusual treatment: the first occurrence of a variable in a literal is assigned
a high weight, but subsequent occurrences are assigned a low weight. This penalises
clauses that contain many literals containing variables. For ground literals, we have
almost eliminated the penalty assessed on the number of literals in a clause. Many
of our problems require extensive case analysis, which means that their proofs will
require clauses having many literals. We have determined these values5 by extensive
empirical testing. They give much better results than the default settings.

5 Results and Related Work

As of this writing, we have nearly 400 problems, of which 79% are proved in under
40 s. For this paper, we present (Table 1) a small sample of the more interesting

4Tests were run on a 2.66 GHz Mac Pro allowing 10 s per problem.
5Currently 10 for variables but 450 on the first occurrence; 7 for algebraic operators, 40 for division,
100 for special functions and 900 for the absolute value function.
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Table 1 Problems and runtimes

Problem Seconds

−1 < x =⇒ 2|x|/(2 + x) ≤ |ln(1 + x)| 0.372

|x| < 1 =⇒ |ln(1 + x)| ≤ − ln(1 − |x|) 0.100

|x| < 1 =⇒ |x|/(1 + |x|) ≤ |ln(1 + x)| 0.318

|x| < 1 =⇒ |ln(1 + x)| ≤ |x|(1 + |x|)/|1 + x| 0.611

|x| < 1 =⇒ |x|/4 < |exp x − 1| 0.230

0 < |x| < 1 =⇒ |exp x − 1| < 7|x|/4 0.262

|exp x − 1| ≤ exp(|x|) − 1 0.174

|exp x − (1 + x)| ≤ |exp(|x|) − (1 + |x|)| 0.327

|exp x − (1 + x/2)2| ≤ |exp(|x|) − (1 + |x|/2)2| 0.368

0 ≤ x =⇒ 2x/(2 + x) ≤ ln(1 + x) 0.110

−1/3 ≤ x ≤ 0 =⇒ x/
√

1 + x ≤ ln(1 + x) 0.121

1/3 ≤ x =⇒ ln((1 + x)/x) ≤ (
12x2 + 12x + 1

)
/
(
12x3 + 18x2 + 6x

)
0.211

1/3 ≤ x =⇒ ln((1 + x)/x) ≤ 1/
√

x2 + x 0.109

0 < y < x =⇒ (1/2) ln(x/y) > (x − y)/(x + y) 0.181

0 ≤ x ≤ 1 =⇒ exp(x − x2) ≤ 1 + x 0.125

x ≤ 1/2 =⇒ exp(−x/(1 − x)) ≤ 1 − x 0.386

|x| < 1 =⇒ |sin(x)| ≤ 6/5|x| 0.116

0 < x < 100/201 =⇒ cos(πx) > 1 − 2x 0.296

cos(x) − 1 + x2/2 ≥ 0 0.005

x > 0 =⇒ tan−1 x > 8
√

3 x/
(

3
√

3 + √
75 + 80x2

)
285.200

x > 0 =⇒ (x + 1/x) tan−1 x > 1 0.103

x > 0 =⇒ tan−1 x > 3x/
(

1 + 2
√

1 + x2
)

3.299

0 < x ≤ π =⇒ cos(x) ≤ sin(x)/x 0.143

0 < x < π/2 =⇒ cos x < sin2 x/x2 0.324

π/3 ≤ x ≤ 2π/3 =⇒ sin x/3 + sin(3x)/6 > 0 1.368

and difficult problems. The runtimes were measured on a 2.66 GHz Mac Pro running
Poly/ML.

MetiTarski can prove problems involving square roots, but each square root
√

E
in the problems presented here has been manually replaced by a new variable y
such that y ≥ 0 and y2 = E. This transformation encodes square roots as algebraic
constraints and can easily be automated. Obviously, it is only useful if E is algebraic.

Our problems come from a variety of sources. Some were suggested by col-
leagues; many others come from mathematical textbooks and reference works
[1, 29, 30, 35, 36]. We have recently been applying MetiTarski to problems in hybrid
systems and control theory [5] and to analogue circuit verification [18]. For several
problems obtained from the HSolver website [42], MetiTarski performs better than
HSolver [41] itself, as we describe elsewhere [5].

Hybrid system problems are frequently expressed using linear differential equa-
tions, which can be solved using a computer algebra system such as Maple. The result
is an inequality, typically involving the exponential, sine and cosine functions, which
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MetiTarski can often prove. The following formula arises from a collision avoidance
system:

0 ≤ x ≤ 2 =⇒ 12 − 14.2 exp(−0.318x)

+ [
3.25 cos(1.16x) − 0.155 sin(1.16x)

]
exp(−1.34x) > 0.

MetiTarski can prove this formula in 25 s. MetiTarski can also prove a wide variety
of problems derived from the verification of Nichols plots [21, 23]. These typically
involve the arctangent, logarithm and square root functions; many of the proofs take
under 1 s.

Proofs require surprisingly few steps. Of our current set of problems, 314 can be
proved with a limit of 300 s. Of these 314 proofs, the longest is 482 steps. The median
proof is 50 steps long, so 50% of the proofs are no longer than that. Because many of
the proofs contain large formulas, we also examined their length in tokens (counted
using the UNIX utility wc). The largest proof is 6586 tokens long and the median
proof is 352 tokens long.

5.1 Limitations

Limitations of our approach can be seen in the facts that cannot be proved. We can
prove cos(πx) > 1 − 2x under the assumption 0 < x < 100/201 but unfortunately
not under the assumption 0 < x < 1/2: our approximation to π is fixed and some
precision is inevitably lost. If MetiTarski cannot prove a formula (whether it is a
theorem or not), it typically runs forever rather than reporting this fact.

Our approach is inherently incapable of proving non-algebraic equalities. The idea
of reducing f (x) = g(x) to a pair of inequalities must fail, as we cannot hope to prove
f (x) ≤ g(x) after we have substituted an upper bound for f and a lower bound for g.
At best we can prove | f (x) − g(x)| < ε for some positive ε, whose value will depend
on the accuracy of our bounds.

QEPCAD is hyperexponential in the number of variables, and it often fails to
terminate if the problem involves more than three variables. Eliminating this serious
limitation requires the development of more efficient RCF decision procedures.
QEPCAD is usually to blame when a proof takes a long time; the proof in Table 1
that takes 285 s spends 284 s in QEPCAD. We do not require the full power
of QEPCAD, which handles both existential and universal quantifiers; a decision
procedure that can prove purely universal formulas would suffice.

5.2 Related Work

We are not aware of much related work. SPASS+T [38] combines a resolution
theorem prover (SPASS) with an arbitrary SMT (satisfiability modulo theories)
procedure. The objective is to combine resolution’s power to handle quantification
with SMT’s ability to cope with huge propositional formulas whose atoms involve
linear arithmetic or other decidable theories. It terminates successfully if either
SPASS or the SMT procedure detect a contradiction. There are clear parallels with
our project, but our method of integration is different (we use the decision procedure
to simplify individual clauses) and we focus on a different problem domain, namely
that of the real-valued special functions.



200 B. Akbarpour, L.C. Paulson

Interval-based arithmetic constraint solving is a general method for handling
problems that involve non-linear formulas over the reals. In combination with an
SMT solver, it has the potential to solve large problems in many variables. It
generally yields a decision procedure, while theorem provers often fail to terminate.
However, interval arithmetic also has drawbacks. It does not deliver proofs of its
claims. Floating point arithmetic is typically used, rounding conservatively to ensure
correctness. Interval arithmetic can lose precision rapidly in certain situations. Many
of our examples are proved over unbounded intervals, which is not possible with
interval arithmetic.

RSolver [39] is a constraint solver based on interval arithmetic. Termination is
only guaranteed for problems that are robust “in the sense that their truth value . . .
does not change under small perturbations of the occurring constants.” For example,
the theorem ∀x

[
1 + x ≤ exp(x)

]
is not robust because ∀x

[
(1 + ε) + x ≤ exp(x)

]
fails

for all ε > 0. More generally, any theorem of the form ∀x ∈ I
[

f (x) ≤ g(x)
]

is not
robust if f (x) = g(x) for some x ∈ I. The robustness requirement is natural in
engineering applications but it does not hold for many of the problems in Table 1.
HSolver [41] is a program for verifying of hybrid systems based upon RSolver; it
works by generating a discrete approximation of the continuous state space. HySAT
[20] combines SAT solving techniques with interval-based arithmetic constraint
solving. Both HySAT [25] and RSolver [40] can reason about some transcendental
functions but neither supports the division operator and therefore cannot express
many of our problems.

Tangential to our approach, but possibly of interest, is the work of Lafferriere
et al. [31] concerning the reachability problem for systems of linear differential
equations. In general, closed form solutions to such systems involve transcendental
functions, but they can be reduced to polynomial problems in certain highly spe-
cialised cases. For example, occasionally all occurrences of x belong to the expression
exp(x), so a simple change of variable eliminates the exponential function. QEPCAD
and similar decision procedures are then applicable. This work can be used to verify
hybrid systems.

6 Conclusions

MetiTarski, which combines a resolution theorem prover with specialized simplifica-
tion and a decision procedure, can prove numerous facts involving special functions
automatically. By further refining our techniques, we expect to prove increasingly
difficult theorems. The approach is flexible, and should work with any well-behaved
functions.

MetiTarski delivers machine-readable proofs that could be checked, in principle,
by a separate tool. Checking a proof is much easier than finding a proof because
it requires no search, and proofs are fairly short. A complicating factor is that
QEPCAD performs lengthy computations using sophisticated algorithms. A proof
verifier could check its results by calling an alternative RCF decision procedure,
but it would be better not to trust any decision procedure. We do not require the
full power of QEPCAD, since we only seek to refute ∃-formulas (equivalently,
to prove ∀-formulas). We could therefore consider decision procedures that yield
independently checkable certificates, for example by transforming a polynomial into
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a sum of squares [37]. The transformation is easily verified using elementary algebra,
and it is trivial to check that a sum of squares is nonnegative. Such an approach may
yield both better performance and more trustworthy proof reconstruction.

Our choice of Metis over more advanced resolution provers has been successful.
We have obtained acceptable performance and the source code has been easy to
modify. ML’s garbage collector has certainly simplified our task.

Resolution is traditionally regarded first as a formal calculus and only second
as an implementation. A resolution calculus is first developed, then proved to be
complete, before an implementation is contemplated. Our results demonstrate that
modifying an implementation can deliver proofs and insights. Our modifications are
sympathetic to the overall architecture of resolution: we modify its notions of simpli-
fication and subsumption and its ordering. We ignore completeness because proving
something is better than proving nothing. Nonetheless, we welcome suggestions for
achieving completeness under particular circumstances.
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Appendix

Sample Proof

We present the proof of the formula

x > 0 =⇒ (x + 1/x) tan−1 x > 1.

In order to save space, we have manually removed applications of the substitution
rule, which most resolution provers would omit anyway. Otherwise, the output is
precisely as it was generated. Without examining the proof in detail, we can see
which axioms were used and which facts were deduced. In line 9, we can see how
the arctan function was isolated by dividing both sides of the previous line by 1 + x2,
which QEPCAD proves in line 11 to be positive. By line 12, MetiTarski is trying to
derive a contradiction from tan−1 x ≤ x/(1 + x2). By line 26, MetiTarski has derived
2x3 ≤ 0 ∨ x2 ≤ −3, which quickly leads to the desired contradiction.

SZS output start CNFRefutation for atan-problem-9.tptp
fof(atan_problem_9, conjecture,

(! [X] : (~ X <= 0 => ~ (X + 1 / X) * arctan(X) <= 1))).

cnf(leq_right_mul_divide_pos, axiom,
(~ X / Z <= Y | X <= Y * Z | Z <= 0)).

cnf(0, plain,
(~ skoX * ((1 + skoX * skoX) * 3) / (skoX ^ 2 + 3) <= skoX |
skoX * ((1 + skoX * skoX) * 3) <= skoX * (skoX ^ 2 + 3) |
skoX ^ 2 + 3 <= 0), inference(subst, [leq_right_mul_divide_pos])).
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cnf(leq_left_mul_divide_pos, axiom,
(~ X <= Y / Z | Z <= 0 | X * Z <= Y)).

cnf(2, plain, ((skoX + 1 / skoX) * arctan(skoX) <= 1),
inference(fof_to_cnf, [], [atan_problem_9])).

cnf(3, plain, (arctan(skoX) / skoX <= 1 + arctan(skoX) * -skoX),
inference(arith, [2])).

cnf(5, plain,
(arctan(skoX) <= (1 + arctan(skoX) * -skoX) * skoX | skoX <= 0),
inference(resolve, [3, leq_right_mul_divide_pos])).

cnf(6, plain, (arctan(skoX) * (1 + skoX * skoX) <= skoX | skoX <= 0),
inference(arith, [5])).

cnf(7, plain, (~ skoX <= 0), inference(fof_to_cnf, [],
[atan_problem_9])).

cnf(8, plain, (arctan(skoX) * (1 + skoX * skoX) <= skoX),
inference(resolve, [6, 7])).

cnf(9, plain,
(1 + skoX * skoX <= 0 | arctan(skoX) <= skoX / (1 + skoX * skoX)),
inference(split, [8])).

cnf(10, plain,
(skoX * skoX <= -1 | arctan(skoX) <= skoX / (1 + skoX * skoX)),
inference(arith, [9])).

cnf(11, plain, (~ skoX * skoX <= -1), inference(decision, [7])).

cnf(12, plain, (arctan(skoX) <= skoX / (1 + skoX * skoX)),
inference(resolve, [10, 11])).

cnf(lgen_less_neg, axiom, (~ Y <= X | ~ lgen(1, X, Y))).

cnf(atan_lower_bound_case_13, axiom,
(~ 0 <= X | ~ lgen(R, Y, 3 * X / (X ^ 2 + 3)) |
lgen(R, Y, arctan(X)))).

cnf(15, plain,
(~ 0 <= X0 | ~ arctan(X0) <= X1 |
~ lgen(1, X1, 3 * X0 / (X0 ^ 2 + 3))),
inference(resolve, [atan_lower_bound_case_13, lgen_less_neg])).

cnf(16, plain,
(~ 0 <= X0 | ~ arctan(X0) <= X1 | 3 * X0 / (X0 ^ 2 + 3) <= X1),
inference(arith, [15])).

cnf(18, plain,
(~ 0 <= skoX | 3 * skoX / (skoX ^ 2 + 3)
<= skoX / (1 + skoX * skoX)),
inference(resolve, [12, 16])).

cnf(19, plain,
(~ 0 <= skoX | skoX * 3 / (skoX ^ 2 + 3)
<= skoX / (1 + skoX * skoX)),
inference(arith, [18])).
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cnf(20, plain, (0 <= skoX), inference(decision, [7])).

cnf(21, plain, (skoX * 3 / (skoX ^ 2 + 3) <= skoX / (1 + skoX * skoX)),
inference(resolve, [20, 19])).

cnf(22, plain,
(skoX * 3 / (skoX ^ 2 + 3) * (1 + skoX * skoX) <= skoX |
1 + skoX * skoX <= 0),
inference(resolve, [21, leq_left_mul_divide_pos])).

cnf(23, plain,
(skoX * skoX <= -1 |
skoX * ((1 + skoX * skoX) * 3) / (skoX ^ 2 + 3) <= skoX),

inference(arith, [22])).

cnf(24, plain, (skoX * ((1 + skoX * skoX) * 3) /
(skoX ^ 2 + 3) <= skoX),
inference(resolve, [23, 11])).

cnf(25, plain,
(skoX * ((1 + skoX * skoX) * 3) <= skoX * (skoX ^ 2 + 3) |
skoX ^ 2 + 3 <= 0), inference(resolve, [24, 0])).

cnf(26, plain, (skoX * (skoX * (skoX * 2)) <= 0 | skoX * skoX <= -3),
inference(arith, [25])).

cnf(27, plain, (~ skoX * (skoX * (skoX * 2)) <= 0 | skoX * skoX <= -3),
inference(decision, [7])).

cnf(28, plain, (skoX * skoX <= -3), inference(resolve, [26, 27])).

cnf(29, plain, (~ skoX * skoX <= -3), inference(decision, [7])).

cnf(30, plain, ($false), inference(resolve, [28, 29])).
SZS output end CNFRefutation for atan-problem-9.tptp
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35. Mitrinović, D.S., Vasić, P.M.: Analytic Inequalities. Springer, New York (1970)
36. Muller, J.M.: Elementary Functions: Algorithms and Implementation, 2nd edn. Birkhäuser,

Boston (2006)

http://www.cfhblive.ua.ac.be/
http://hysat.informatik.uni-oldenburg.de/user_guide/hysat-user-guide.pdf
http://hysat.informatik.uni-oldenburg.de/user_guide/hysat-user-guide.pdf
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
http://gilith.com/software/metis/


An Automatic Theorem Prover for Real-Valued Special Functions 205

37. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program.
96(2), 293–320 (2003)

38. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) FLoC’06
Workshop on Empirically Successful Computerized Reasoning, CEUR Workshop Proceedings,
vol. 192, pp. 18–33 (2006)

39. Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM
Trans. Comput. Log. 7(4), 723–748 (2006)

40. Ratschan, S.: RSolver user manual. Academy of Sciences of the Czech Republic. http://rsolver.
sourceforge.net/documentation/manual.pdf (2007)

41. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based
abstraction refinement ACM Trans. Embed. Comput. Syst. 6(1) (2007)

42. Ratschan, S., She, Z.: Benchmarks for safety verification of hybrid systems. http://hsolver.
sourceforge.net/benchmarks/ (2008)

43. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated theorem proving
tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint Problem Solving and Reasoning in
Multi-Agent Systems, Frontiers in Artificial Intelligence and Applications, number 112, pp. 201–
215. IOS, Amsterdam (2004)

http://rsolver.sourceforge.net/documentation/manual.pdf
http://rsolver.sourceforge.net/documentation/manual.pdf
http://hsolver.sourceforge.net/benchmarks/
http://hsolver.sourceforge.net/benchmarks/

	MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions
	Abstract
	Introduction
	Overview of MetiTarski
	Definitions
	The Resolution Loop
	On Case Splitting

	Axiom System
	The Square Root Function
	The Logarithm Function
	The Exponential Function
	Trigonometric Functions
	Other Functions
	Axioms

	Modifications to the Resolution Procedure
	Arithmetic Simplification
	Horner Normal Form
	The Treatment of Division
	Isolating Function Occurrences

	Algebraic Literal Deletion
	Algebraic Subsumption
	Removal of Arithmetic Tautologies
	Modified Knuth-Bendix Ordering
	Waiting Queue Parameters

	Results and Related Work
	Limitations
	Related Work

	Conclusions
	Appendix
	Sample Proof

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


