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Abstract In Misra (ACM Trans Program Lang Syst 16(6):1737–1767, 1994), Misra
introduced the powerlist data structure, which is well suited to express recursive,
data-parallel algorithms. Moreover, Misra and other researchers have shown how
powerlists can be used to prove the correctness of several algorithms. This success
has encouraged some researchers to pursue automated proofs of theorems about
powerlists (Kapur 1997; Kapur and Subramaniam 1995, Form Methods Syst Des
13(2):127–158, 1998). In this paper, we show how ACL2 can be used to verify
theorems about powerlists. We depart from previous approaches in two significant
ways. First, the powerlists we use are not the regular structures defined by Misra;
that is, we do not require powerlists to be balanced trees. As we will see, this
complicates some of the proofs, but on the other hand it allows us to state theorems
that are otherwise beyond the language of powerlists. Second, we wish to prove
the correctness of powerlist algorithms as much as possible within the logic of
powerlists. Previous approaches have relied on intermediate lemmas which are
unproven (indeed unstated) within the powerlist logic. However, we believe these
lemmas must be formalized if the final theorems are to be used as a foundation for
subsequent work, e.g., in the verification of system libraries. In our experience, some
of these unproven lemmas presented the biggest obstacle to finding an automated
proof. We illustrate our approach with two case studies involving Batcher sorting
and prefix sums.
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1 Introduction

In [14], Misra introduced the powerlist data structure and powerlist algebra, which is
particularly well-suited to express and reason about recursive parallel algorithms.
Of particular interest to Misra is the expressiveness of powerlist algebra and its
utility as a logic in which to prove correctness results; much of [14] is devoted to
the development of practical examples using powerlists, including Batcher sorting,
FFT networks, and prefix sums, as well as the relevant correctness results. In the
same spirit, other researchers have used powerlists to find elegant proofs of parallel
algorithms, for example odd-even sorting in [12].

In this paper, we focus not on the discovery or expression of correctness results,
but on their mechanical verification. Specifically, we describe the development of a
library of provably correct functions on powerlists. To this end, the compositionality
of the correctness results is key: The theorems must be stated in ways that make
them useful to subsequent (mechanical) proofs. This is a departure from [14],
where intuition is often used as a guide to transform the original specifications into
more tractable forms, in order to simplify the formal proof based on the powerlist
algebra.

We will formalize powerlists using the ACL2 theorem prover, the successor to the
Boyer-Moore theorem prover. The logic of ACL2 is a first-order, mostly quantifier-
free logic of recursive functions with induction on the ordinals up to ε0, recursive
definitions, and witnessed constrain of new function symbols. The theorem prover
of ACL2 was designed to be an “industrial-strength” theorem prover, supporting
equality rewriting and induction, as well as more esoteric techniques such as equiv-
alence rewriting, congruence reasoning, and reasoning about theorem schemas via
functional instantiation. In addition to its reasoning engine, ACL2 provides many
amenities to the user. An important one is the abstraction of “books,” which allow
the user to construct theories in a modular fashion. For example, we will construct
a powerlist “book” with all the commonly used definitions and theorems about
powerlists, i.e., the requisite powerlist algebra [1, 2, 9–11].

Other researchers have also attempted to use automated theorem provers to
reason about powerlists, notably [6, 7] and [8]. While there are some similarities in
our respective approaches, there are significant differences as well. In [6], Kapur is
interested in extending a theorem prover to facilitate reasoning about regular data
structures, such as powerlists. Kapur and Subramaniam [7] uses this structure to
prove some of the theorems from [14], but the emphasis again is on the theorem
prover, and how it can find proofs that rival in elegance those generated by hand.
However, the theorems themselves, as in [14], are designed to simplify the powerlist
proofs, rather than to certify an algorithm’s correctness with respect to an absolute
specification. In spirit, we have more in common with [8], where adder circuits
specified using powerlists are proved correct with respect to addition on the natural
numbers.

The remainder of the paper is organized as follows. Section 2 develops an ACL2
book about powerlists; the theorems proved there will be used as lemmas in all
subsequent work. Sections 3 and 4 present a formalization in our framework of case
studies originally presented in [14], namely correctness proofs of Batcher sorting,
parallel prefix sum, and carry-lookahead addition. All proofs rest on the foundation
of Section 2. Moreover, the carry-lookahead proof uses the prefix sum result, thus
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illustrating a formal, modular proof, similar to the informal proof found in most
textbooks. Finally, Section 5 summarizes the results.

2 Booking Powerlists

2.1 Regular Powerlists

A powerlist is defined as follows. For any scalar x, the object 〈x〉 is a singleton
powerlist. If x and y are “similar” powerlists—that is, they have the same number of
elements, and corresponding elements are either both scalar or similar powerlists—
we can construct the new powerlists x | y and x �� y, called the tie and zip of x and y,
respectively. The powerlist x | y consists of all elements of x followed by the elements
of y, while x �� y contains the elements of x interleaved with the elements of y. Since
tie and zip are defined only for similar powerlists, all powerlists are of length 2n for
some integer n, and moreover all elements of a powerlist are similar to each other.

For example, 〈1〉,〈1, 2〉, 〈3, 4〉, 〈1, 2, 3, 4〉 and 〈1, 3, 2, 4〉 are all powerlists. More-
over, 〈1, 2〉 | 〈3, 4〉 = 〈1, 2, 3, 4〉 and 〈1, 2〉 �� 〈3, 4〉 = 〈1, 3, 2, 4〉.

The theory of powerlists depends on the following axioms (laws in [14]):

L0 For singleton powerlists 〈x〉 and 〈y〉, 〈x〉 | 〈y〉 = 〈x〉 �� 〈y〉.
L1a For any non-singleton powerlist X, there are similar powerlists L, R so that

X = L | R.
L1b For any non-singleton powerlist X, there are similar powerlists O, E so that

X = O �� E.
L2a For singleton powerlists 〈x〉 and 〈y〉, 〈x〉 = 〈y〉 iff x = y.
L2b For powerlists X1 | X2 and Y1 | Y2, X1 | X2 = Y1 | Y2 iff X1 = Y1 and

X2 = Y2.
L2c For powerlists X1 �� X2 and Y1 �� Y2, X1 �� X2 = Y1 �� Y2 iff X1 = Y1 and

X2 = Y2.
L3 For powerlists X1, X2, Y1, and Y2, (X1 | X2) �� (Y1 | Y2) = (X1 �� Y1) |

(X2 �� Y2).

2.2 Defining Powerlists in ACL2

2.2.1 A Naive Representation of Powerlists

Representing powerlists by directly mapping Misra’s powerlist axioms is problematic
in ACL2. For starters, ACL2 does not support partial functions, so the definitions of
| and �� must do something for non-similar powerlists, and in fact for non-powerlist
operands. One approach is to represent powerlists in ACL2 as lists of length 2n.
The functions tie and zip take two powerlists and return the appropriate result if
the arguments are lists of equal length, and a special error powerlist (e.g., nil) if the
arguments are not appropriate. A similar approach is taken in [7], with the use of
partial constructors. However, this leads to problems in ACL2. To reason about each
use of tie or zip, we have to prove that the arguments are of equal length, and these
proof obligations can become expensive.
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The second problem is that since ACL2 does not support function definitions over
terms, powerlist functions such as

rev(〈x〉) = x

rev(x | y) = rev(y) | rev(x)

need to be turned into the form

rev(X) =
{

X if X is a singleton
rev(right(X)) | rev(lef t(X)) otherwise

where lef t and right are defined so that lef t(X) | right(X) = X. But defining and
reasoning about these functions in ACL2 is not simple. Intuitively, the problem is
that to compute lef t(X), we must find the midpoint of X, which is an expensive
operation for linear structures.

2.2.2 A Better Representation of Powerlists

The observations above led us to pursue an alternative approach. Instead of rep-
resenting powerlists as lists, we chose to represent them as binary trees, i.e., cons
trees. Moreover, we remove the restriction that tie and zip only apply to similar
powerlists. The operation tie is now replaced by a simple cons and left and
right can be defined in terms of car and cdr. The definition of zip requires a
recursive function, very similar to the one used when representing powerlists as lists.
The result of this representation is that reasoning about powerlists requires much
less overhead than before; however, the representation allows objects that were
previously not recognized as powerlists, for example 〈1.〈2.3〉〉, where we use dotted
notation to emphasize the structural nature of the representation. In the sequel, we
will use the term “powerlists” to refer to arbitrary “dotted-pair” powerlists as above.
When we must refer to the original powerlists explicitly, we will use the term “regular
powerlists.”

The generalized notion of powerlists allows us to write some algorithms which
cannot be stated in traditional powerlist theory, for example, insertion sort. On
the other hand, it presents some new problems. First, it does not retain a 1-to-1
correspondence between linear lists and powerlists. For example, the list (1, 2, 3, 4)

can be viewed as either of the powerlists 〈1.〈2.〈3.4〉〉〉 or 〈〈1.2〉.〈3.4〉〉. This does
not trouble us, because the theorems we prove will be true of either powerlist
representation. Naturally, in parallel processing applications, we would like to choose
the powerlist with the smallest maximal branch height. The choice, however, is made
in the translation from lists to powerlists, not in the powerlist theory. A second
problem is that the operational semantics of certain functions may not carry over
to generalized powerlists. For example, the operational semantics of zip is that
it interleaves the elements from its two powerlist arguments. This is clearly not
possible if the arguments have different lengths. We will only insist that our function
definitions match the operational semantics for regular powerlists, but that they
retain the relevant algebraic properties for all powerlists. For example, we require
that our zip operator interleave the elements from its two arguments, when these
are regular and similar to each other. Furthermore, for all powerlists, we require that
zip obey the algebraic properties stated in laws L1b, L2c, and L3.
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The choice to use generalized powerlists was made taking these tradeoffs into ac-
count. Similar tradeoffs can be found in other approaches to generalized powerlists,
such as Kornerup’s parlists [13].

We must be careful here that the resulting theory is nevertheless faithful to the
original theory due to Misra. That is, we must ensure that the original axioms of
zip and tie hold in the new theory. At the very least, we must ensure that the
theorems about regular powerlists are precisely those of Misra’s theory. We will do
so by examining each of Misra’s powerlist axioms in turn.

Observe, since the scalar powerlist 〈x〉 is simply represented as x in our scheme,
law L2a is trivially true. A drawback of this approach is that we do not allow
nested powerlists, e.g., 〈〈1, 2〉, 〈3, 4〉〉 is indistinguishable from 〈1, 2, 3, 4〉 in our
representation. Where nested powerlists are needed, e.g., for matrices, we suggest
adding an explicit nest operator, as in 〈nest(〈1, 2〉), nest(〈3, 4〉)〉.

2.2.3 The Tie Constructor

We begin the actual implementation with the definition of the data type powerlist.
We prefer to define powerlists not directly as cons’s, but as record structures:

(defstructure powerlist car cdr)

Similar to Common LISP’s defstruct, ACL2’s defstructure defines
powerlist, powerlist-p, powerlist-car, and powerlist-cdr, which re-
spectively construct, recognize, and destruct powerlists. It also proves the relevant
“functor” theorems about them, corresponding to Misra’s laws L1a and L2b. Recall
that our representation does not differentiate between scalar values and single-
element powerlists, so the function powerlist-p defined by the defstructure
recognizes only multi-element lists.

We prefer the function names p-untie-l and p-untie-r instead of
powerlist-car and powerlist-cdr. We will follow the same convention
when introducing p-zip below. In the sequel, we will refer to (p-untie-l x)
as the “left untie” of x. Similarly, we will use “right untie” when referring to
(p-untie-r x).

The next step is to define the function p-zip, by using the laws L0 and L3. This
function will use a recursion scheme based on p-untie-l and p-untie-r, as will
many other functions defined on powerlists. ACL2 will accept recursive definitions
only if it can determine that each recursive invocation decreases some well-founded
measure. In this case, ACL2 must determine that both p-untie-l and p-untie-r
decrease some well-founded measure on powerlists, and in fact ACL2’s default
measure, acl2-count, satisfies this property. Since this recursion scheme will be
very common with powerlists, we prove the following theorem and add it as a built-
in rule, so that ACL2 applies it as early as possible:

(defthm untie-reduces-count-fast
(implies (powerlist-p x)

(and (e0-ord-< (acl2-count (p-untie-l x))
(acl2-count x))

(e0-ord-< (acl2-count (p-untie-r x))
(acl2-count x))))

:rule-classes :built-in-clause)
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Note: For integer arguments, such as the value returned by acl2-count, the ACL2
primitive e0-ord-< is identical to <. We use e0-ord-< instead of < so that the
theorem matches exactly the formula generated by ACL2 while processing a function
definition. The exact match is the limitation of built-in rules that allows them to be
used so efficiently.

2.2.4 The Zip “Constructor”

We can now define the function p-zip which implements the zip “constructor”:

(defun p-zip (x y)
(if (and (powerlist-p x) (powerlist-p y))

(p-tie (p-zip (p-untie-l x) (p-untie-l y))
(p-zip (p-untie-r x) (p-untie-r y)))

(p-tie x y)))

Note how the definition of p-zip mirrors L0 and L3, hence these axioms are
satisfied by our definition of p-tie and p-zip. In order to accept definitions based
on p-zip, we have to define the functions p-unzip-l and p-unzip-r, analogous
to p-untie-l and p-untie-r. We can do so as follows:

(defun p-unzip-l (x)
(if (powerlist-p x)

(if (powerlist-p (p-untie-l x))
(if (powerlist-p (p-untie-r x))

(p-tie (p-unzip-l (p-untie-l x))
(p-unzip-l (p-untie-r x)))

(p-untie-l x))
(p-untie-l x))

x))

Note that these functions provide the equivalent to Misra’s law L1b. At this state,
it is worthwhile to prove the validity of recursion based on p-zip, just as we did
for p-tie.

Notice that p-unzip-l and p-unzip-r return every other element of a reg-
ular powerlist. Using 1-based indexing, (p-unzip-l x) returns the odd-indexed
elements, and (p-unzip-r x) the even-indexed ones. Hence, in the sequel we
will refer to p-unzip-l and p-unzip-r as the odd- and even-indexed elements
of x, respectively. As before, we will refer to these lists as the “left unzip” and “right
unzip” of x.

The definitions of p-unzip-l and p-unzip-rwere carefully constructed so that
the following theorems are all true:

(defthm zip-unzip
(implies (powerlist-p x)

(equal (p-zip (p-unzip-l x) (p-unzip-r x))
x)))

(defthm unzip-l-zip
(equal (p-unzip-l (p-zip x y)) x))

(defthm unzip-r-zip
(equal (p-unzip-r (p-zip x y)) y))

These three theorems prove the equivalent of law L2c for our powerlists.
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2.3 Similar Powerlists

At this point, we have seen how our definitions of p-tie and p-zip satisfy all of
Misra’s powerlist axioms, except for the notion of similarity. Laws L1a and L1b claim
that the p-untie-l and p-untie-r of a powerlist are similar, i.e. of the same
length, and so are its p-unzip-l and p-unzip-r. This is certainly not the case
with our powerlists, since we do not require that powerlists be of length 2n. We will
now add conditions, namely that the given powerlists be regular, that make these
theorems true. Later, these regularity conditions will surface as hypotheses in some
of the example theorems proved.

In accordance with [14], we define two powerlists as similar if they have the same
tie-tree structure:

(defun p-similar-p (x y)
(if (powerlist-p x)

(and (powerlist-p y)
(p-similar-p (p-untie-l x) (p-untie-l y))
(p-similar-p (p-untie-r x) (p-untie-r y)))

(not (powerlist-p y))))

We can immediately prove that p-similar-p is an equivalence relation, allowing
it to be used in congruence (and not just equality) rewriting [3]. The ACL2 event
defequiv is syntactic sugar that expands to the usual theorems describing equiva-
lence relations:

(defequiv p-similar-p)

Our next task is to show how the property p-similar-p propagates across the
powerlist constructors and destructors. For example, we can prove that the property
is preserved by the destructors. I.e., if two lists are similar, so is their left unzip:

(defthm unzip-l-similar
(implies (p-similar-p x y)

(p-similar-p (p-unzip-l x) (p-unzip-l y))))

Similar theorems apply to the other destructors. These theorems will be used most
often in proving the antecedent of an inductive hypothesis. For example, with
the goal

(implies (p-similar-p x y)
(P x y))

where property P is defined in terms of p-zip, the following subgoal is likely to be
generated by induction:

(implies (and (powerlist-p x)
(p-similar-p x y)
(implies (p-similar-p (p-unzip-l x)

(p-unzip-l y))
(P (p-unzip-l x)

(p-unzip-l y)))
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(implies (p-similar-p (p-unzip-r x)
(p-unzip-r y))

(P (p-unzip-r x)
(p-unzip-r y))))

(P x y))

At this point, unzip-l-similar can be used to relieve the conditions in the
inductive hypothesis and the proof can proceed.

Remaining are the constructors p-tie and p-zip. We would like to say that
when a powerlist is zipped (tied) to one of two similar powerlists, the result is similar
to when it is zipped (tied) to the other. ACL2 provides a general way to reason about
this type of theorem, namely congruence rewriting. These congruence rules can be
specified in ACL2 as follows:

(defcong p-similar-p p-similar-p (p-zip x y) 1)
(defcong p-similar-p p-similar-p (p-zip x y) 2)

The defcong events offer syntactic sugar for the rules described above.

2.4 Regular Powerlists

Another useful property of powerlists is p-regular-p which is true of a perfectly
balanced powerlist, i.e., the ones introduced in [14]. This condition is more expensive
to check than p-similar-p, because it requires passing information from one half
of the powerlist to the other, i.e., not only must the left and right halves of the
powerlist be regular, they must also be similar to each other:

(defun p-regular-p (x)
(if (powerlist-p x)

(and (p-similar-p (p-untie-l x) (p-untie-r x))
(p-regular-p (p-untie-l x))
(p-regular-p (p-untie-r x)))

t))

As was the case with p-similar-p, we must show how p-regular-p interacts
with the constructors and destructors of p-tie and p-zip. This results in theorems
like the following:

(defthm unzip-regular
(implies (p-regular-p x)

(and (p-regular-p (p-unzip-l x))
(p-regular-p (p-unzip-r x)))))

The converse theorem requires an extra hypothesis, ensuring that the powerlists to
be combined are similar. This is the formal equivalent of the restriction that | and ��

only apply to powerlists of the same length:

(defthm zip-regular
(implies (and (p-regular-p x)

(p-similar-p x y))
(p-regular-p (p-zip x y))))
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Other theorems explore the interaction between p-regular-p and
p-similar-p powerlists. For example, we show that the unzips and unties of
regular powerlists are similar with the following:

(defthm regular-similar-unzip-untie
(implies (and (powerlist-p x)

(p-regular-p x))
(and (p-similar-p (p-unzip-l x)

(p-unzip-r x))
(p-similar-p (p-unzip-l x)

(p-untie-l x))
(p-similar-p (p-unzip-r x)

(p-untie-r x)))))

This particular theorem provides the missing similarity assertion of laws L1a
and L1b.

In our experience, similarity is much more useful than regularity, since similarity
ensures that a function taking more than one argument can recurse on one of the
arguments and still visit all the nodes of the other argument, e.g., for pairwise
addition of powerlists. In fact, the main use of regularity is to show that two
powerlists are similar, for example when a single powerlist is split and a pairwise
function is applied to the two halves. The regularity condition ensures that the two
halves of the powerlist are similar to each other.

The formalization of powerlists presented thus far is sufficient to prove, often
automatically, the “simple examples” of powerlists given by Misra in [14]. Inter-
estingly, most of the examples turn out to be true for arbitrary powerlists, though
when reasoning about multiple powerlists, we often have to assume the powerlists
are similar to each other, as suggested above.

2.5 Functions on Powerlists

When working with powerlists, many similar functions, usually small and incidental
to the main theorem, are encountered. For example, we may have to add all the
elements of a powerlist, or find their minimum or maximum, etc. We may also have to
take two powerlists and return their pairwise sum, product, etc. Moreover, we often
wish to prove similar theorems about these functions, such as the sum (maximum,
minimum) of the sum (maximum, minimum) of two powerlists is the same as the
sum (maximum, minimum) of their zip. ACL2’s encapsulation primitive allows us to
prove the appropriate theorem schemas, which can later be instantiated with specific
functions in mind, simplifying the overall proof effort.

To illustrate our approach, consider the following encapsulation:

(encapsulate
((fn1 (x) t)
(fn2-accum (x y) t)
(equiv (x y) t))

(local (defun fn1 (x) (fix x)))
(local (defun fn2-accum (x y) (+ (fix x) (fix y))))
(local (defun equiv (x y) (equal x y)))
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(defthm fn1-scalar
(implies (not (powerlist-p x))

(not (powerlist-p (fn1 x)))))
(defthm fn2-accum-commutative

(equiv (fn2-accum x y) (fn2-accum y x)))
(defthm fn2-accum-associative

(equiv (fn2-accum (fn2-accum x y) z)
(fn2-accum x (fn2-accum y z))))

(defcong equiv equiv (fn2-accum x y) 1)
(defcong equiv equiv (fn2-accum x y) 2)
(defequiv equiv))

This defines fn1 as a scalar function, fn2-accum as an associative-commutative
binary function, and equiv as an equivalence relation. Recall that defcong and
defequiv are syntactic sugar for introducing theorems that demonstrate the usual
properties of congruence substitution rules and equivalence relations. Outside of
the encapsulation, nothing is known about the functions other than the constraints
proved in the encapsulate. Hence, any theorems that can be proved about these
functions could also be proved about any functions that satisfy the constraints. In
effect, theorems about fn1, fn2-accum, and equiv are theorem schemas, which
can be instantiated for any suitable function. This allows the basic proof pattern to
be derived once and to be used in multiple instances thereafter.

Note that the functions must be defined locally in the encapsulate event. These
functions witness that the constraints are not contradictory, thus ensuring that the
resulting theory is sound.

As a motivating example, consider applying fn1 to all the elements of a powerlist
and fn2-accum to combine all these results, e.g., to find the sum of the squares of all
elements in a powerlist. Both functions can be defined recursively using either p-tie
or p-zip, and the result should be the same. Formally, we can prove the following:

(defun a-zip-fn2-accum-fn1 (x)
(if (powerlist-p x)

(fn2-accum (a-zip-fn2-accum-fn1 (p-unzip-l x))
(a-zip-fn2-accum-fn1 (p-unzip-r x)))

(fn1 x)))
(defun b-tie-fn2-accum-fn1 (x)
(if (powerlist-p x)

(fn2-accum (b-tie-fn2-accum-fn1 (p-untie-l x))
(b-tie-fn2-accum-fn1 (p-untie-r x)))

(fn1 x)))
(defthm a-zip-fn2-accum-fn1-==-b-tie-fn2-accum-fn1
(equiv (b-tie-fn2-accum-fn1 x)

(a-zip-fn2-accum-fn1 x)))

Other useful lemmas show how the functions a-zip-fn2-accum-fn1 and
b-tie-fn2-accum-fn1 behave with respect to the constructors and de-
structors of p-tie and p-zip; for example, the following theorems relate
b-tie-fn2-accum-fn1 to p-zip:

(defthm zip-b-tie-fn2-accum-fn1
(equiv (b-tie-fn2-accum-fn1 (p-zip x y))
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(fn2-accum (b-tie-fn2-accum-fn1 x)
(b-tie-fn2-accum-fn1 y))))

(defthm unzip-b-tie-fn2-accum-fn1
(implies (powerlist-p x)

(equiv
(fn2-accum

(b-tie-fn2-accum-fn1 (p-unzip-l x))
(b-tie-fn2-accum-fn1 (p-unzip-r x)))

(b-tie-fn2-accum-fn1 x))))

All of these theorem schemas are useful in establishing the antecedent of induction
hypotheses, and we will apply these theorem schemas by using specific instances, e.g.,
where fn2-accum is replaced with max.

3 Sorting Powerlists

We turn our attention to the problem of sorting a powerlist. Our specification is as
follows:

(defun p-sorted-p (x)
(if (powerlist-p x)

(and (p-sorted-p (p-untie-l x))
(p-sorted-p (p-untie-r x))
(<= (p-max-elem (p-untie-l x))

(p-min-elem (p-untie-r x))))
t))

where the functions p-min-elem and p-max-elem return the minimum and
maximum elements of a list respectively. We show how p-min-elem is defined.

(defun p-min-elem (x)
(if (powerlist-p x)

(if (<= (p-min-elem (p-untie-l x))
(p-min-elem (p-untie-r x)))

(p-min-elem (p-untie-l x))
(p-min-elem (p-untie-r x)))

(rfix x)))

Notice how p-sorted-p is most naturally expressed in terms of p-tie. For this
reason, we define p-min-elem using p-tie, though it could just as easily have
been defined with p-zip instead. However, since it is likely that we will want to
reason about p-zip in the future, we can prepare by proving theorems such as the
following:

(defthm min-elem-zip
(equal (p-min-elem (p-zip x y))

(if (<= (p-min-elem x) (p-min-elem y))
(p-min-elem x)

(p-min-elem y))))
(defthm min-elem-unzip
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(implies (powerlist-p x)
(and (>= (p-min-elem (p-unzip-l x))

(p-min-elem x))
(>= (p-min-elem (p-unzip-r x))

(p-min-elem x)))))

Both of these theorems are straightforward consequences of the generic theorems
proved in Section 2.5, so ACL2 does not need to perform added work in proving
them. Moreover, since different sorting algorithms are likely to require similar
theorems about functions such as p-min-elem and p-sorted-p, it pays to prove
these up front. For example, we can establish once and for all that the minimum of a
powerlist is no larger than its maximum. We can also prove how p-sorted behaves
in the presence p-zip, etc.

The result of sorting a powerlist should be a permutation of the original powerlist.
To specify this, we use the following function, which returns the number of times a
given argument appears in a powerlist:

(defun p-count (x m)
(if (powerlist-p x)

(+ (p-count (p-untie-l x) m)
(p-count (p-untie-r x) m))

(if (equal x m) 1 0)))

Again, we can prove basic theorems about p-count, such as how it behaves with
p-zip, since these lemmas will likely prove useful to any sorting algorithm.

In summary, we require that a proposed sorting algorithm p-sort satisfy the
following theorems:

– (p-sorted-p (p-sort x))
– (equal (p-count (p-sort x) m) (p-count x m))

Of course, we may allow specific sorting routines to impose additional restrictions,
e.g., requiring numeric lists.

3.1 Merge Sorting

Merge sort is a natural parallel sorting algorithm. We can write an abstract merge
sort over powerlists as follows:

(defun my-merge-sort (x)
(if (powerlist-p x)

(p-merge (my-merge-sort (p-split-1 x))
(my-merge-sort (p-split-2 x)))

x))

The functions p-merge, and p-split-1 and p-split-2 instantiate specific merge
sort algorithms. Classically, p-merge will be a complicated function and the split
functions will be trivial. What we would like to do is to encapsulate these functions
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and their relevant theorems and then prove the correctness of this generic merge
sort. In particular, we wish to establish the following theorems:

(defthm merge-sort-is-permutation
(implies (p-sortable-p x)

(equal (p-count (p-merge-sort x) m)
(p-count x m))))

(defthm merge-sort-sorts-input
(implies (p-sortable-p x)

(p-sorted-p (p-merge-sort x))))

In order to prove the theorems above, we need the following assumptions about
the generic merge functions:

(encapsulate
((p-sortable-p (x) t)
(p-mergeable-p (x y) t)
(p-split-1 (x) t)
(p-split-2 (x) t)
(p-merge (x y) t)
(p-merge-sort (x) x))

(defthm *obligation*-split-reduces-count
(implies (powerlist-p x)

(and (e0-ord-< (acl2-count (p-split-1 x))
(acl2-count x))

(e0-ord-< (acl2-count (p-split-2 x))
(acl2-count x)))))

(defthm *obligation*-count-of-splits
(implies (powerlist-p x)

(equal (+ (p-count (p-split-1 x) m)
(p-count (p-split-2 x) m))

(p-count x m))))
(defthm *obligation*-count-of-merge

(implies (p-mergeable-p x y)
(equal (p-count (p-merge x y) m)

(+ (p-count x m)
(p-count y m)))))

(defthm *obligation*-sorted-merge
(implies (and (p-mergeable-p x y)

(p-sorted-p x)
(p-sorted-p y))

(p-sorted-p (p-merge x y))))
(defthm *obligation*-merge-sort

(equal (p-merge-sort x)
(if (powerlist-p x)

(p-merge (p-merge-sort (p-split-1 x))
(p-merge-sort (p-split-2 x)))

x)))
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(defthm *obligation*-sortable-split
(implies (and (powerlist-p x)

(p-sortable-p x))
(and (p-sortable-p (p-split-1 x))

(p-sortable-p (p-split-2 x)))))
(defthm *obligation*-sortable-mergeable

(implies (and (powerlist-p x)
(p-sortable-p x))

(p-mergeable-p
(p-merge-sort (p-split-1 x))
(p-merge-sort (p-split-2 x))))))

Recall, however, that ACL2 requires a witness for each constrained function; that is,
an implementation of such a merging scheme. The easiest is the vacuous merger, i.e.,
when p-sortable-p is always nil.

3.2 Batcher Sorting

The Batcher merging algorithm can be defined as follows:

(defun p-batcher-merge (x y)
(if (powerlist-p x)

(p-zip (p-min (p-batcher-merge (p-unzip-l x)
(p-unzip-r y))

(p-batcher-merge (p-unzip-r x)
(p-unzip-l y)))

(p-max (p-batcher-merge (p-unzip-l x)
(p-unzip-r y))

(p-batcher-merge (p-unzip-r x)
(p-unzip-l y))))

(p-zip (p-min x y) (p-max x y))))

The functions p-min and p-max return respectively the pairwise minimum and
maximum of two powerlists. Since p-batcher-merge is defined in terms of p-zip,
we do the same for p-min and p-max.

Hidden in the definition of p-batcher-merge lies considerable complexity.
Notice in particular how the the left unzip of x is merged with the right unzip of
y, and vice versa. The result of this is that the resulting induction scheme is not
very natural.

We begin with the proof of the following goal:

(equal (p-count (p-batcher-merge x y) m)
(+ (p-count x m)

(p-count y m)))

Since p-min and p-max operate on the pairwise points of x and y, it is reasonable
to require that x and y be similar. Moreover, since p-batcher-merge is recursing
on opposite halves of x and y, we can expect that the powerlists must also be regular.
It turns out that we will also need to constrain the powerlist to be numeric. This is
because the ordering imposed by p-max is only well-defined over this domain. Of
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course, we will have to prove the theorems that all intermediate results satisfy the
structural requirements of the hypothesis; i.e., we must establish that for similar x
and y their p-min and p-max are also similar, etc.

Our goal becomes the following:

(defthm count-of-merge
(implies (and (p-regular-p x)

(p-similar-p x y)
(p-number-list x)
(p-number-list y))

(equal (p-count (p-batcher-merge x y) m)
(+ (p-count x m)

(p-count y m)))))

To prove the above claim, we must first establish that all the values of x and y
can be found somewhere in their (pairwise) p-min and p-max. We can prove this
generically; that is, we can prove that the sum of any scalar function over x and y is
unaffected by p-min and p-max:

(defthm a-zip-plus-fn1-of-min-max
(implies (and (p-similar-p x y)

(p-number-list x)
(p-number-list y))

(equal (+ (a-zip-plus-fn1 (p-max x y))
(a-zip-plus-fn1 (p-min x y)))

(+ (a-zip-plus-fn1 x)
(a-zip-plus-fn1 y)))))

Notice how we are extending the generic theorems defined in Section 2.5 to include
specific functions, such as p-min and p-max. This lemma can be extended to
p-batcher-merge:

(defthm a-zip-plus-fn1-of-merge
(implies (and (p-regular-p x)

(p-similar-p x y)
(p-number-list x)
(p-number-list y))

(equal (a-zip-plus-fn1 (p-batcher-merge x y))
(+ (a-zip-plus-fn1 x)

(a-zip-plus-fn1 y)))))

Instantiating fn1 with the function (lambda (x) (if (= x m) 1 0)) we can
prove our original goal, using the equivalence of the p-tie and p-zip definitions
of p-count.

We must now tackle the question of when p-batcher-merge returns a sorted
powerlist. The recursive step returns a powerlist of the form

(p-zip (p-min (p-batcher-merge X1 Y2)
(p-batcher-merge X2 Y1))

(p-max (p-batcher-merge X1 Y2)
(p-batcher-merge X2 Y1)))
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We know from the inductive hypothesis it will be easy to establish that both
(p-batcher-merge X1 Y2) and (p-batcher-merge X2 Y1) are sorted. It
is natural to ask, therefore, whether (p-zip (p-min X Y) (p-max X Y)) is
sorted, given sorted X and Y. Unfortunately, this is not the case, as the powerlists
〈1, 2〉 and 〈3, 4〉 demonstrate. The problem is that the p-min of 2 and 4 is 2, which
is smaller than the p-max of 1 and 3. What we need is to ensure that th‘e elements
of the lists are not only sorted independently, but that one lists does not “grow” too
much faster than the other.

Consider X = 〈x1, x2, x3, x4〉 and Y = 〈y1, y2, y3, y4〉. Our condition amounts to
the following:

max(xi, yi) ≤ min(x j, y j)

for all indices i < j. This condition automatically implies that X and Y are sorted.
We can write this in ACL2 as follows:

(defun p-interleaved-p (x y)
(if (powerlist-p x)

(and (powerlist-p y)
(p-interleaved-p (p-untie-l x) (p-untie-l y))
(p-interleaved-p (p-untie-r x) (p-untie-r y))
(<= (p-max-elem (p-untie-l x))

(p-min-elem (p-untie-r x)))
(<= (p-max-elem (p-untie-l x))

(p-min-elem (p-untie-r y)))
(<= (p-max-elem (p-untie-l y))

(p-min-elem (p-untie-r x)))
(<= (p-max-elem (p-untie-l y))

(p-min-elem (p-untie-r y))))
(not (powerlist-p y))))

So now, if (p-interleaved-p x y) is true, we would like to show that (p-zip
(p-min x y) (p-max x y)) is sorted. Intuitively, this is a simple result. In our
example above, the first two elements of Z will be x1 and y1, in ascending order.
Moreover, the hypothesis assures us these two numbers are the smallest of the x j

and y j for j ≥ 2. Similarly, we can reason about x2 and y2, and so on.
To prove the claim in ACL2, we have to reason about the interaction of p-min

and p-min-elem, as well as their max counterparts. Since p-min is defined in terms
of p-zip and p-min-elem in terms of p-tie, it is easier to prove these theorems
in terms of a single recursive scheme, say p-tie and then use the bridging lemmas
to prove the result:

(defthm zip-min-max-sorted-if-interleaved
(implies (and (p-interleaved-p x y)

(p-similar-p x y)
(p-number-list x)
(p-number-list y))

(p-sorted-p (p-zip (p-min x y)
(p-max x y)))))

Again, it is easier at first to prove this for p-min-tie and p-max-tie, since
p-sorted-p is defined in terms of p-tie.
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We have only to show that the recursive calls to p-batcher-merge return
p-interleaved-p lists. That is, given sorted X and Y,

L1 = (p-batcher-merge (p-unzip-l X) (p-unzip-r Y))
L2 = (p-batcher-merge (p-unzip-r X) (p-unzip-l Y))

are p-interleaved-p. Intuitively, this must be the case. We can assume that both
L1 and L2 are sorted, since this fact will follow from the induction hypothesis. Any
prefix of L1 will have some values from X and some from Y, say i and j values
respectively. Moreover, since L1 has only odd-indexed elements of X and L2 only
the even-indexed elements of X, no prefix of L1 can have more elements from X than
the corresponding prefix of L2, and similarly for the elements from Y. For example,
suppose that L1 starts with x1 and x3, but the corresponding prefix of L2 does not
contain x2. In this case, L2 must start with y1 and y3, which means that y3 < x2, since
L2 is sorted and its prefix does not contain x2. But, we can conclude from L1 that
x3 ≤ y2, since L1 is also sorted. We have then that x3 ≤ y2 ≤ y3 < x2 and so x3 < x2.
But this is a contradiction, since X is sorted.

Formalizing the argument given above places a severe challenge on the powerlist
paradigm, since the reasoning involves indices so explicitly, whereas powerlists do
away with the index concept. In fact, the whole concept of “prefix” is strange,
since these prefixes will by definition be irregular, and we have already observed
how p-batcher-merge requires regular arguments. We can replace the “prefix”
concept with the following:

(defun p-count-<= (x m)
(if (powerlist-p x)

(+ (p-count-<= (p-untie-l x) m)
(p-count-<= (p-untie-r x) m))

(if (<= (rfix x) m) 1 0)))

This returns the number of elements in x which are less than or equal to m; that is, for
an element m in x, it returns its (largest) index in x. With this notion, we can formalize
our argument involving the “prefix” of a powerlist.

We are interested in expressions of the form

M1 = (p-count-<= (p-batcher-merge (p-unzip-l x)
(p-unzip-r y))

m)
M2 = (p-count-<= (p-batcher-merge (p-unzip-r x)

(p-unzip-l y))
m)

so we begin with the following theorem:

(defthm count-<=-of-merge
(implies (and (p-regular-p x)

(p-similar-p x y)
(p-number-list x)
(p-number-list y))

(equal (p-count-<= (p-batcher-merge x y) m)
(+ (p-count-<= x m)

(p-count-<= y m)))))
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This theorem allows us to remove p-batcher-merge from the computation of
p-count. We are left with the following:

M1 = (+ (p-count-<= (p-unzip-l x) m)
(p-count-<= (p-unzip-r y) m))

M2 = (+ (p-count-<= (p-unzip-r x) m)
(p-count-<= (p-unzip-l y) m))

So the next step will be to compare the p-count-<= of the p-unzip-l and
p-unzip-r of a powerlist, specifically a sorted powerlist. These should differ by
no more than 1; moreover, since the p-unzip-r starts counting from the second
position, we expect its p-count-<= to be smaller than that of the p-unzip-l. In
fact, we can prove the following:

(defthm count-<=-of-sorted-unzips-1
(implies (and (powerlist-p x)

(p-regular-p x)
(p-sorted-p x))

(<= (p-count-<= (p-unzip-r x) m)
(p-count-<= (p-unzip-l x) m))))

(defthm count-<=-of-sorted-unzips-2
(implies (and (powerlist-p x)

(p-regular-p x)
(p-sorted-p x))

(<= (p-count-<= (p-unzip-l x) m)
(1+ (p-count-<= (p-unzip-r x) m)))))

Putting it all together, we end up with the following theorem, which states M1 and M2
differ by no more than 1:

(defthm count-<=-of-merge-unzips
(implies (and (powerlist-p x)

(p-regular-p x)
(p-similar-p x y)
(p-number-list x)
(p-number-list y)
(p-sorted-p x)
(p-sorted-p y))

(let ((M1 (p-count-<= (p-batcher-merge
(p-unzip-l x)
(p-unzip-r y))

m))
(M2 (p-count-<= (p-batcher-merge

(p-unzip-r x)
(p-unzip-l y))

m)))
(or (equal M1 M2)

(equal (1+ M1) M2)
(equal (1+ M2) M1)))))
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To derive a contradiction, we next show that for non p-interleaved-p lists, there
is some m so that the respective p-count-<= differ by more than 1. We can find
this m by making a “cut” through the two lists at the precise spot where they fail the
p-interleaved-p test:

(defun find-cutoff (x y)
(if (and (powerlist-p x) (powerlist-p y))

(cond ((< (p-min-elem (p-untie-r x))
(p-max-elem (p-untie-l x)))

(p-min-elem (p-untie-r x)))
((< (p-min-elem (p-untie-r x))

(p-max-elem (p-untie-l y)))
(p-min-elem (p-untie-r x)))

((find-cutoff (p-untie-l x) (p-untie-l y))
(find-cutoff (p-untie-l x) (p-untie-l y)))

((find-cutoff (p-untie-r x) (p-untie-r y))
(find-cutoff (p-untie-r x) (p-untie-r y))))

nil))

When x and y are p-interleaved-p, find-cutoff will return nil. In
all other cases, it returns a valid choice of m as a counterexample to
count-<=-of-merge-unzips. We can trivially show the first observation as
follows:

(defthm interleaved-if-nil-cutoff
(implies (and (p-similar-p x y)

(p-number-list x)
(p-number-list y)
(null (find-cutoff x y))
(null (find-cutoff y x)))

(p-interleaved-p x y)))

In order to establish that find-cutoff finds a valid counterexample when x and
y are not p-interleaved-p, notice that it always returns an element of x, and
furthermore for sorted x this value m is such that its “index” in x is at least one more
than its “index” in y, since it must satisfy

(< (p-min-elem (p-untie-r x))
(p-max-elem (p-untie-l y)))

for some corresponding subtree of x and y. In ACL2, we can prove the following
theorem:

(defthm count-diff-2-if-interleaved-cutoff-sorted
(implies (and (p-similar-p x y)

(p-number-list x)
(p-number-list y)
(p-sorted-p x)
(p-sorted-p y)
(find-cutoff x y))

(< (1+ (p-count-<= y (find-cutoff x y)))
(p-count-<= x (find-cutoff x y)))))
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This theorem serves to find the counterexample needed by the two lemmas
count-<=-of-merge-unzips and interleaved-if-nil-cutoff, so we can
now establish the following key theorem:

(defthm inner-batcher-merge-call-is-interleaved-p
(implies (and (powerlist-p x)

(p-regular-p x)
(p-similar-p x y)
(p-number-list x)
(p-number-list y)
(p-sorted-p x)
(p-sorted-p y)
(p-sorted-p
(p-batcher-merge (p-unzip-l x)

(p-unzip-r y)))
(p-sorted-p
(p-batcher-merge (p-unzip-r x)

(p-unzip-l y))))
(p-interleaved-p

(p-batcher-merge (p-unzip-l x)
(p-unzip-r y))

(p-batcher-merge (p-unzip-r x)
(p-unzip-l y)))))

From this point, the remainder of the proof is almost propositional. We can use
inner-batcher-merge-call-is-interleaved-p to prove the inductive case
of the correctness of batcher-merge.

(defthm recursive-batcher-merge-is-sorted
(implies (and (powerlist-p x)

(p-regular-p x)
(p-similar-p x y)
(p-number-list x)
(p-number-list y)
(p-sorted-p x)
(p-sorted-p y)
(p-sorted-p
(p-batcher-merge (p-unzip-l x)

(p-unzip-r y)))
(p-sorted-p
(p-batcher-merge (p-unzip-r x)

(p-unzip-l y))))
(p-sorted-p (p-batcher-merge x y))))

Almost anticlimatically, we can now prove the main result, which establishes the
correctness of Batcher merging:

(defthm sorted-merge
(implies (and (p-regular-p x)

(p-similar-p x y)
(p-number-list x)
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(p-number-list y)
(p-sorted-p x)
(p-sorted-p y))

(p-sorted-p (p-batcher-merge x y))))

With the theorem above and the meta-theorems about merge sorts proved in
Section 3.1, we can prove the correctness of Batcher sorting:

(defthm batcher-sort-is-permutation
(implies (and (p-regular-p x)

(p-number-list x))
(equal (p-count (p-batcher-sort x) m)

(p-count x m))))
(defthm batcher-sort-sorts-inputs
(implies (and (p-regular-p x)

(p-number-list x))
(p-sorted-p (p-batcher-sort x))))

3.3 A Comparison with the Hand-Proof

It is instructive to compare the machine-verified proof of Section 3.2 with the hand-
proof provided in [14] and verified in [7]. That proof starts by defining the function z
as follows:

z(〈x〉) = 1 if x = 0, 0 otherwise

z(p �� q) = z(p) + z(q)

That is, z(x) counts the number of zeros in x. Assuming that all powerlists range only
over 0’s and 1’s, we have the following characterization of sorted powerlists:

sorted(〈x〉)
sorted(p �� q) = sorted(p) ∧ sorted(q) ∧ 0 ≤ z(p) − z(q) ≤ 1

The 0/1 assumption completely characterizes the pairwise minimum and maximum
of two sorted lists as follows:

min(x, y) = x, if sorted(x), sorted(y), and z(x) ≥ z(y)

max(x, y) = y, if sorted(x), sorted(y), and z(x) ≥ z(y)

Moreover, the following key lemma can be established:

sorted(min(x, y) �� max(x, y)) if sorted(x), sorted(y),

and |z(x) − z(y)| ≤ 1

With some algebraic reasoning, this yields the main correctness result:

sorted(pbm(x, y)) if sorted(x) and sorted(y)

where pbm is the Batcher merge function on powerlists.
This proof is much simpler than that given in Section 3.2, and that may be taken

as an indication that ACL2 is ineffective in reasoning about powerlists. However,
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such a conclusion is premature. In fact, ACL2 can verify the reasoning given above
without too much difficulty. But the end result would not be as satisfying as the main
theorems proven in Section 3.2 for a number of reasons. First, the hand proof relies
on the 0/1 principle, which states that any comparison based sorting algorithm which
correctly sorts all lists consisting exclusively of zeros and ones will correctly sort an
arbitrary list. The formal proof in the powerlist logic proves the correctness only
for lists of zeros and ones, and then uses the 0/1 principle to “lift” this proof to the
arbitrary case. But the 0/1 principle is certainly not obvious.

Another problem with the hand proof is that the definition of sorted used is not
the same as the “standard” definition of a sorted list. It is only true for lists of 0’s
and 1’s, and it is not immediately clear how this property compares to our usual
notion of sorted lists. The definition supplied, however, is extremely useful, since it
is based on zip instead of tie, and so it works more naturally with the definition
of Batcher merge. However, the proof of the equivalence of the two definitions is
missing. This becomes especially important if we plan to use Batcher sorting as part
of a more complex function, e.g. a search routine, since the key property we require
in the complex function—that Batcher sort correctly sorts its input—has not been
established yet.

In fact, it is fair to say that the hand proof presents a mixture of formal reasoning
and informal arguments. Such a mixture is extremely convenient when generating
the proof by hand, but it makes it difficult to end up with theorems that can be used
compositionally in mechanical verification.

4 Prefix Sums of Powerlists

Prefix sums appear in many applications, e.g., arithmetic circuit design. For a pow-
erlist X = 〈x1, x2, . . . , xn〉, its prefix sum is given by ps(X) = 〈x1, x1 ⊕ x2, . . . , x1 ⊕
x2 ⊕ · · · ⊕ xn〉. The operator ⊕ is an arbitrary binary operator; for our purposes, we
will assume it to be associative, and to have a left-identity 0.

We use the functions bin-op and left-zero to encapsulate the binary operator
⊕ and its left identity, respectively. We use ACL2’s encapsulate so that the
following theorems are all theorem schemas which can be instantiated with any
suitable operator, e.g, plus, and, min, etc. The required axioms are as follows:

(encapsulate
((domain-p (x) t)
(bin-op (x y) t)
(left-zero () t))

;; Witnesses omitted...

(defthm booleanp-domain-p
(booleanp (domain-p x)))

(defthm scalar-left-zero
(domain-p (left-zero)))

(defthm domain-powerlist
(implies (domain-p x)

(not (powerlist-p x))))
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(defthm left-zero-identity
(implies (domain-p x)

(equal (bin-op (left-zero) x) x)))
(defthm bin-op-assoc

(equal (bin-op (bin-op x y) z)
(bin-op x (bin-op y z))))

(defthm scalar-bin-op
(domain-p (bin-op x y)))

)

Note: ACL2 requires witnesses for these functions, but we are leaving out their local
definitions, as they are irrelevant in this discussion.

The function domain-p recognizes our intended domain, which is required to
be scalar. The function p-domain-list-p recognizes powerlists of domain-p
elements. Note that we require the second argument of bin-op to be domain-p in
left-zero-identity, that there is no such requirement in bin-op-assoc, and
that domain-p is always true of the result of bin-op. This matches the conventions
used by ACL2 built-in binary functions.

There is a natural definition of prefix sums in terms of indices: entry y j in the prefix
sum of X is equal to the sum of all the xi up to x j. However, this definition does not
extend nicely to powerlists, since the two halves of a prefix sum are not themselves
prefix sums. The trick is to generalize prefix sums to allow an arbitrary value to be
added to the first element, in a manner analogous to a carry-in bit:

(defun p-prefix-sum-aux (prefix x)
(if (powerlist-p x)

(p-tie (p-prefix-sum-aux prefix (p-untie-l x))
(p-prefix-sum-aux (p-last (p-prefix-sum-aux

prefix
(p-untie-l x)))

(p-untie-r x)))
(bin-op prefix x)))

(defmacro p-prefix-sum (x)
‘(p-prefix-sum-aux (left-zero) ,x))

where p-last returns the last element of a powerlist. In the sequel, most of the
theorems will be about p-prefix-sum-aux, though a few will have to be proved
exclusively for p-prefix-sum.

4.1 Simple Prefix Sums

The definition of p-prefix-sum is inherently sequential. Our first goal will be to
prove that the following definition, more amenable to a parallel implementation, is
equivalent:

(defun p-simple-prefix-sum (x)
(if (powerlist-p x)

(let ((y (p-add (p-star x) x)))
(p-zip (p-simple-prefix-sum (p-unzip-l y))

(p-simple-prefix-sum (p-unzip-r y))))
x))
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The function p-add returns the sum of two powerlists, and p-star shifts a powerlist
to the right, prefixing the result with left-zero:

(defun p-star (x)
(if (powerlist-p x)

(p-zip (p-star (p-unzip-r x)) (p-unzip-l x))
(left-zero)))

(defun p-add (x y)
(if (powerlist-p x)

(p-zip (p-add (p-unzip-l x) (p-unzip-l y))
(p-add (p-unzip-r x) (p-unzip-r y)))

(bin-op x y)))

However, the definition of p-simple-prefix-sum is not obviously admissible,
since the recursive call replaces x by (p-unzip-l (p-add (p-star x) x))
which is not obviously “smaller” than x. To resolve this, we can introduce the
following measure on powerlists:

(defun p-measure (x)
(if (powerlist-p x)

(+ (p-measure (p-unzip-l x))
(p-measure (p-unzip-r x)))

1))

The measure counts the number of elements in a powerlist, and we can easily prove
theorems showing how p-star and p-add preserve measures:

(defthm measure-star
(equal (p-measure (p-star x)) (p-measure x)))

(defthm measure-add
(<= (p-measure (p-add x y)) (p-measure x)))

This makes the admissibility of p-simple-prefix-sum clear, so we can now
concentrate on its correctness. The definition of this function suggests two ap-
proaches: we can explore the powerlist given by (p-add (p-star x) x), or we
can consider what happens when we unzip the prefix sum of x. We will take the
first approach. Recall that p-star shifts its argument to the right, and that p-add
returns a pairwise sum. Thus, for x given by

X = 〈x1, x2, x3, . . . , xn〉
(p-add (p-star x) x) is

Y = X∗ ⊕ X = 〈x1, x1 ⊕ x2, x2 ⊕ x3, · · · , xn−1 ⊕ xn〉
Taking the p-unzip of this powerlist, gives the following:

Y1 = 〈x1, x2 ⊕ x3, . . . , xn−2 ⊕ xn−1〉
Y2 = 〈x1 ⊕ x2, x3 ⊕ x4, . . . , xn−1 ⊕ xn〉

It is clear now that indeed the prefix sum of Y1 yields precisely the odd-indexed
elements of the prefix sum of X and, similarly, the prefix sum of Y2 yields the
even-indexed elements. Thus we can, intuitively at least, verify the correctness of



A Formalization of Powerlist Algebra in ACL2 163

p-simple-prefix-sum. To formalize this, it will be convenient to think of Y1

and Y2 not as components of Y, but as two separate lists in their own right. This
removes the awkward reference to p-unzip and allows us to rederive Y1 and Y2

in a way more amenable to reasoning about p-prefix-sum. We begin with a new
characterization of Y2:

(defun p-add-right-pairs (x)
(if (powerlist-p x)

(if (powerlist-p (p-untie-l x))
(p-tie (p-add-right-pairs (p-untie-l x))

(p-add-right-pairs (p-untie-r x)))
(bin-op (p-untie-l x) (p-untie-r x)))

x))

This redefinition of Y2 is especially useful, because it is in terms of p-tie, not
p-zip, so it will be easier to reason about its p-prefix-sum. It is trivial to char-
acterize the prefix sum of the p-add-right-pairs of a two-element powerlist—
note that a two-element powerlist is the natural base case for an induction, since
p-add-right-pairs is only reasonable over non-singleton arguments. In par-
ticular, we can prove that for a powerlist X = 〈x1, x2〉, both the prefix sum of its
p-add-right-pairs and the right unzip of its prefix sum are equal to x1 ⊕ x2:

(defthm prefix-sum-p-add-right-pairs-base
(implies (and (domain-p val)

(powerlist-p x)
(not (powerlist-p (p-untie-l x)))
(p-regular-p x)
(p-domain-list-p x))

(and (equal (p-prefix-sum-aux
val
(p-add-right-pairs x))
(bin-op val
(bin-op (p-untie-l x)

(p-untie-r x))))
(equal (p-unzip-r

(p-prefix-sum-aux val x))
(bin-op val
(bin-op (p-untie-l x)

(p-untie-r x)))))))

The definition of p-prefix-sum uses the last element of the left prefix sum to
compute the right prefix sum. This suggests the following important lemma:

(defthm p-last-p-prefix-sum-p-add-right-pairs
(implies (and (domain-p val)

(p-regular-p x)
(p-domain-list-p x))

(equal (p-last (p-prefix-sum-aux
val
(p-add-right-pairs x)))

(p-last (p-prefix-sum-aux val x)))))
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An easy induction proves that the prefix sum of p-add-right-pairs computes
the right unzip of the prefix sum of a powerlist:

(defthm prefix-sum-p-add-right-pairs
(implies (and (domain-p val)

(powerlist-p x)
(p-regular-p x)
(p-domain-list-p x))

(equal (p-prefix-sum-aux
val (p-add-right-pairs x))

(p-unzip-r
(p-prefix-sum-aux val x)))))

The second half of the proof is similar. Consider p-add-left-pairs, which is a
new characterization of Y1 = 〈x1, x2 ⊕ x3, . . . , xn−2 ⊕ xn−1〉:

(defun p-add-left-pairs (val x)
(if (powerlist-p x)

(if (powerlist-p (p-untie-l x))
(p-tie (p-add-left-pairs val (p-untie-l x))

(p-add-left-pairs
(p-last (p-untie-l x))
(p-untie-r x)))

(bin-op val (p-untie-l x)))
(bin-op val x)))

Unfortunately, the function p-add-left-pairs is considerably more compli-
cated than p-add-right-pairs. The reason is that there is no need for the
left half of the computation to pass any information over to the right half in
p-add-right-pairs; i.e., the two recursive calls were completely independent
of each other. The net effect is that reasoning about p-add-left-pairs is
much more difficult than reasoning about p-add-right-pairs. However, there
is a simple way around this. Consider the powerlist X = 〈x1, x2, x3, . . . , xn〉 again.
If we shift this powerlist, getting X ′ = 〈0, x1, x2, x3, . . . , xn−1〉, and then take the
p-add-right-pairs of it, we get 〈x1, x2 ⊕ x3, . . . , xn−2 ⊕ xn−1〉 which is precisely
the p-add-left-pairs of X. Moreover, it is clear that the prefix sum of X and
the prefix sum of X ′ are related; specifically, the prefix sum of the shift is the shift
of the prefix sum.

Since both p-add-left-pairs and p-add-right-pairs are defined in terms
of p-tie, we define p-shift in terms of p-tie, rather than using the equivalent
function p-star:

(defun p-shift (val x)
(if (powerlist-p x)

(p-tie (p-shift val (p-untie-l x))
(p-shift (p-last (p-untie-l x))

(p-untie-r x)))
val))
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We first establish that the prefix sum and shift operators commute. That is, we prove
the following theorem:

(defthm p-prefix-sum-p-shift
(implies (and (domain-p c1)

(domain-p c2)
(p-domain-list-p x))

(equal (p-prefix-sum-aux c1 (p-shift c2 x))
(p-shift (bin-op c1 c2)

(p-prefix-sum-aux
(bin-op c1 c2) x)))))

The proof of this theorem, requires a subtle induction scheme, in order to account
for the two partial prefix sums

PS1 = (p-prefix-sum-aux c1 (p-shift c2 (p-untie-l x)))
PS2 = (p-prefix-sum-aux (p-last PS1)

(p-shift (p-last (p-untie-l x))
(p-untie-r x)))

Hence, in the second instance, the term (bin-op c1 c2) in the theorem becomes

(bin-op (p-last (p-prefix-sum-aux
c1 (p-shift c2 (p-untie-l x))))

(p-last (p-untie-l x)))

which using the inductive hypothesis is equal to the following:

(bin-op (p-last (p-shift (bin-op c1 c2)
(p-prefix-sum-aux
(bin-op c1 c2)
(p-untie-l x))))

(p-last (p-untie-l x)))

This term can be simplified into

(p-last (p-prefix-sum-aux (bin-op c1 c2) (p-untie-l x)))

using the following technical lemma:

(defthm binop-last-shift-prefix-sum
(implies (domain-p c)

(equal (bin-op
(p-last

(p-shift c
(p-prefix-sum-aux c x)))

(p-last x))
(p-last (p-prefix-sum-aux c x)))))

This simplification is the key step in the proof.
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Now that we have established that prefix sum and shift commute, we can return
to p-add-left-pairs. In particular, we will convert p-add-left-pairs into
p-add-right-pairs of a shifted powerlist:

(defthm p-add-left-pairs->p-add-right-pairs-p-shift
(implies (and (domain-p val)

(powerlist-p x)
(p-regular-p x)
(p-domain-list-p x))

(equal (p-add-left-pairs val x)
(p-add-right-pairs (p-shift val x)))))

It is now trivial to establish that

(p-prefix-sum-aux val (p-add-left-pairs val2 x))

is equal to

(p-prefix-sum-aux val
(p-add-right-pairs (p-shift val2 x)))

and hence to

(p-unzip-r (p-prefix-sum val (p-shift val2 x)))

and

(p-unzip-r (p-shift (bin-op val val2)
(p-prefix-sum (bin-op val val2) x)))

To complete the proof, we need only the following technical lemma to convert the
right unzip of a shift to the left unzip of the powerlist:

(defthm p-unzip-r-p-shift
(implies (and (powerlist-p x)

(p-regular-p x)
(not (powerlist-p val)))

(equal (p-unzip-r (p-shift val x))
(p-unzip-l x))))

It is easy now to characterize the prefix sum of the p-add-left-pairs of a
powerlist:

(defthm prefix-sum-p-add-left-pairs
(implies (and (p-regular-p x)

(p-domain-list-p x)
(powerlist-p x)
(domain-p val1)
(domain-p val2))

(equal (p-prefix-sum-aux
val1 (p-add-left-pairs val2 x))

(p-unzip-l (p-prefix-sum-aux
(bin-op val1 val2)
x)))))
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This is an important moment, because we have a characterization of both unzips of
p-prefix-sum. That is, we have taken the original definition of p-prefix-sum,
which was inherently sequential, and we have replaced it with an independent
characterization of its unzips, which will make it much easier to prove the correctness
of p-simple-prefix-sum.

However, our characterization is in terms of p-add-left-pairs and
p-add-right-pairs, while p-simple-prefix-sum is defined in terms of
p-star and p-add, instead. The next step is to show how these are related.
To start with, we give alternative definitions of p-star and p-add which
use tie instead of zip; this will make it easier to reason about them and
p-add-left-pairs/p-add-right-pairs together. Recall that p-star per-
forms a shift operation and p-add a pairwise addition. We have already defined
p-shift. Pairwise addition can be defined as follows:

(defun p-add-tie (x y)
(if (powerlist-p x)

(p-tie (p-add-tie (p-untie-l x) (p-untie-l y))
(p-add-tie (p-untie-r x) (p-untie-r y)))

(bin-op x y)))

ACL2 can easily prove the equivalence of these definitions with the original ones.
For our purposes, we only need the following theorem:

(defthm add-star-add-tie-shift
(implies (p-regular-p x)

(equal (p-add (p-star x) x)
(p-add-tie (p-shift (left-zero) x)

x))))

Using p-shift and p-add-tie, we can now prove how the results of p-add-
left-pairs and p-add-right-pairs are constructed inside p-simple-
prefix-sum:

(defthm zip-add-left-pairs-add-right-pairs
(implies (and (powerlist-p x)

(p-regular-p x)
(p-domain-list-p x))

(equal (p-zip (p-add-left-pairs
(left-zero) x)

(p-add-right-pairs x))
(p-add (p-star x) x))))

At this point, the proof is almost complete. We know that the term

(p-add (p-star x) x)

can be rewritten as

(p-add-tie (p-shift (left-zero) x) x)

Moreover, we know how this term is unzipped into the two terms

(p-add-left-pairs (left-zero) x)
(p-add-right-pairs x)
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And, finally, we know that the prefix sum of these terms can be zipped back together
to get the prefix sum of x. Putting all this together, we can prove the correctness of
p-simple-prefix-sum:

(defthm simple-prefix-sum-prefix-sum
(implies (and (p-regular-p x)

(p-domain-list-p x))
(equal (p-simple-prefix-sum x)

(p-prefix-sum x))))

4.2 Ladner-Fischer Prefix Sums

Misra [14] gives another algorithm for computing prefix sums, this one due to Ladner
and Fischer:

(defun p-lf-prefix-sum (x)
(if (powerlist-p x)

(let ((y (p-lf-prefix-sum
(p-add (p-unzip-l x) (p-unzip-r x)))))

(p-zip (p-add (p-star y) (p-unzip-l x)) y))
x))

The complexity of this algorithm is what justifies the previous usage of the name
p-simple-prefix-sum!

As before, we proceed by considering the correctness of the left and right unzips
separately. The right unzip is immediate:

(defthm unzip-r-lf-prefix-sum
(implies (and (powerlist-p x)

(p-regular-p x)
(p-domain-list-p x)
(equal (p-lf-prefix-sum

(p-add (p-unzip-l x)
(p-unzip-r x)))

(p-prefix-sum
(p-add (p-unzip-l x)

(p-unzip-r x)))))
(equal (p-lf-prefix-sum

(p-add (p-unzip-l x)
(p-unzip-r x)))

(p-unzip-r (p-prefix-sum x)))))

It is only necessary to recognize that

(p-add (p-unzip-l x) (p-unzip-r x))

is the same as (p-add-right-pairs x).
The left unzip is a little more subtle. It is equal to

(p-add (p-star (p-prefix-sum (p-add (p-unzip-l x)
(p-unzip-r x))))

(p-unzip-l x))
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which we know can be reduced to

(p-add (p-star (p-unzip-r (p-prefix-sum x)))
(p-unzip-l x))

We can reduce this further using the following trivial lemma:

(defthm unzip-l-star
(equal (p-unzip-l (p-star x)) (p-star (p-unzip-r x))))

Thus, we have the term

(p-add (p-unzip-l (p-star (p-prefix-sum x)))
(p-unzip-l x))

which we hope simplifies to

(p-unzip-l (p-prefix-sum x))

It is natural to generalize the above conjecture into the following theorem, which is
provable by ACL2:

(defthm add-star-prefix-sum
(implies (and (p-regular-p x)

(p-domain-list-p x))
(equal (p-add (p-star (p-prefix-sum x)) x)

(p-prefix-sum x))))

In the following Section 4.3, we will see how this theorem, called the “Defining
Equation” in [14], plays a key role in the hand proof.

These results imply that p-lf-prefix-sum equals p-prefix-sum, and thus
we have demonstrated its correctness:

(defthm lf-prefix-sum-prefix-sum
(implies (and (p-regular-p x)

(p-domain-list x))
(equal (p-lf-prefix-sum x)

(p-prefix-sum x))))

4.3 Comparing with the Hand-Proof Again

As was the case with Batcher sorting, the hand proof given in [14] is much simpler
than the machine-verified proof given above for the correctness of the prefix sum
algorithms. Part of the reason is that in [14] the proof begins in media res, as it were.
Instead of providing a constructive definition, the prefix sum ps(x) of a powerlist x is
defined as the solution to the following “defining equation”:

z = z∗ ⊕ x

This equation is exactly add-star-prefix-sum.
The proof then proceeds by applying the defining equation to derive formulas

for the left and right unzip of a prefix sum. Specifically, the derivation yields the
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Ladner-Fischer scheme. From there, it is shown how this scheme can be simplified
algebraically to yield the simple prefix sum algorithm.

However, as we saw in Section 4.2, establishing the correctness of the defining
equation requires a fair amount of effort, and once it is established the remainder of
the Ladner-Fischer proof is much simpler.

Requiring that correctness be established with respect to generally accepted
specifications is a necessity if the proof is to be used in part of a larger project. For
example, we stated that prefix sums appear in many applications, and so one expects
to find a prefix sum computation in the middle of a complex algorithm. However, in
establishing the correctness of the embedding algorithm, we must have that the prefix
sum of X = 〈x1, x2, . . . , xn〉 is in fact ps(X) = 〈x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn〉.
An equivalent correctness result, such as the defining equation above, will not help
us. In the next section, we consider an example where having a formal specification
for prefix sum is crucial. That is, we can prove the correctness of a carry-lookahead
adder by building on the theorem regarding prefix sums. This compositionality is
critical in large mechanical verifications.

4.4 L’agniappe: A Carry-Lookahead Adder

Powerlists have been used to represent n-bit registers and to reason about arithmetic
operations on them. In this section, we discuss how a carry-lookahead adder can
be proved correct, using the correctness of a parallel prefix sum algorithm, i.e., the
Ladner-Fischer scheme. This is similar to an earlier proof of arithmetic algorithms
using powerlists found in [8].

The “ripple-carry” or “schoolbook” algorithm for adding two n-bit registers is in-
herently sequential. Beginning with the least-significant bit, the algorithm progresses
by adding corresponding bits. In so doing, it generates the carry bit for the next
significant bit, and so on. This algorithm serves as our specification of addition.

The carry-lookahead adder uses the following observation. If it were only possible
to compute all the carry bits a priori, the result of adding two n-bit registers could
be computed in a single parallel step (using n full-adders). Moreover, given inputs
X = xnxn−1 . . . x1 and Y = yn yn−1 . . . y1, the carry vector C = cncn−1 . . . c1 can be
computed as follows. Consider c j. If x j and y j are both 0, then c j must also be 0.
Moreover, if x j and y j are both 1, then c j is equal to 1. In all other cases, c j is equal
to c j−1, where c0 is the original carry bit.

The essential remaining point is that this computation is actually a prefix sum
over an associative operator with left-identity. The prefix sum runs over the domain
{0, 1, p} with intuitive meaning of no-carry, carry, and propagate carry respectively.
In constant time, the carry bit for ci can be estimated as either 0, 1, or p, depending
on whether xi and yi are both 0, both 1, or otherwise. The prefix sum over this vector
of the operator 
 with x 
 0 = 0, x 
 1 = 1 and x 
 p = x will generate the required
carry bits. It is easily seen that the operator 
 is associative, with left-identity p.

This informal argument, as described for example in [4], can be made precise in
ACL2. In doing so, we found that the formal proof follows the informal one rather
closely. That is, the hardest step in the proof is the establishment that the prefix
sum computation—based on a linear algorithm similar to p-prefix-sum-aux—
actually computes the correct carry vector. Both formal and informal proofs are
made simpler by the fact the linear prefix sum algorithm is very similar to the
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ripple-carry adder algorithm. This would not be the case, of course, with a more
complex version of prefix sum, e.g., one based on the Ladner-Fischer scheme, or
with an abstract definition of prefix sum, such as the “defining equation” described
in Section 4.3. However, once the basic correctness results are established, it is trivial
to extend this result to a carry-lookahead algorithm based on a fast prefix sum: the
“hard” part of the proof is a simple instance of the generic theorems proved in
Section 4. We are encouraged that the formal proof for carry-lookahead was so easy
to establish—it took no more than a single session with ACL2. We feel this illustrates
the power of the powerlist formalism in general, the specific powerlist formalization
presented in Section 2, and the usefulness of mechanically establishing correctness
results with respect to “natural” specifications, as in Sections 3 and 4.

5 Conclusions

In this paper, we set out to formalize powerlists in ACL2. Although powerlists are
designed as regular data structures, we found it advantageous to generalize them in
ACL2 to encompass non-regular powerlists. This is more in keeping with ACL2’s
style, where even arithmetic and boolean operators can apply to any ACL2 object.

An unexpected contribution was the complete formalization of algorithms using
powerlists. Previously, it had been shown how powerlists could be used to reason
informally about software, but the reasoning was performed with a mixture of
arguments inside as well as outside of powerlist algebra. In this paper, we showed the
completion, using powerlists, of many of the example theorems in [14]. Moreover, by
completing the theorems—that is, by mechanically verifying their correctness with
respect to a natural correctness specification—we achieved compositional theories:
complex proofs can be simplified by referring to earlier theorems. Specifically, the
theory of powerlists, described in Section 2, was used in all the other theorems, and
moreover the verification of the carry-lookahead adder in Section 4.4 depends on the
correctness proof of the prefix sum algorithm in Section 4.

The formalization of powerlist algebra demonstrates the usefulness of reasoning
about constrained functions with encapsulate. However, while encapsulate
supports reasoning about functions, it is a strictly first-order inference rule. More-
over, its application in ACL2 requires extensive use of hints to direct the theorem
prover in the mapping of actual functions to constrained functions. Automation in
this process would be enormously useful, and it is something that is under partial

File Definitions Theorems Hints
Powerlist definitions 42 105 38

Simple theorems 10 22 6
Sortings pecification 8 10 6
Merge sort 8 18 3
Batcher merge 10 71 38
Prefix sum 20 74 31
Carry lookahead adder 17 20 9

Fig. 1 Effort of work
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development. Congruence rewriting turned out to be less useful in this project,
although its usefulness has been demonstrated elsewhere [3, 5].

Figure 1 gives an idea of the proof effort required in the formalization of
powerlists. The hints tell an interesting story. Out of 320 theorems, 131 required
user intervention in the form of hints to the theorem prover. These 131 hints can
be further classified into four categories. 51 of them instruct ACL2 to use a specific
lemma in a key spot, usually with bindings for the universally quantified variables
in the lemma. 57 of the hints are used to prove a theorem by invoking one of
the meta-theorems created with encapsulate. This illustrates both the utility of
encapsulate and the effort required to use it. 19 hints are required to suggest
an appropriate induction scheme, and the final 4 hints instruct ACL2 to ignore
certain lemmas that it knows about, as they steer ACL2 away from the actual
proof. As can be seen from this breakdown, the majority of the human intervention
that is required involves choosing specific lemma instances or instances involving
constrained functions.

The formalization of powerlists described in this paper is included in the ACL2
distribution. Also included are several examples based on this formalization, includ-
ing all the examples and case studies described here.
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