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Abstract In this paper we consider the problem of dealing automatically with
arbitrary geometric statements (including, in particular, those that are generally
false) aiming to find complementary hypotheses for the statements to become true.
Our approach proceeds within the framework of computational algebraic geometry.
First we argue and propose a plausible protocol for automatic discovery, and
then we present some algorithmic criteria, as well as the meaning (regarding the
algebraic geometry of the varieties involved in the given statement), for the protocol
success/failure. A detailed collection of examples in also included.

Keywords Automatic theorem proving · Automatic theorem discovery ·
Elementary geometry · Computational algebraic geometry

1 Introduction

In this paper we will deal with automatic discovery of elementary geometry theorems.
We address this issue within the algebraic geometry framework that has already
shown its success for automatic theorem proving.

Roughly speaking, the algebraic geometry scheme towards theorem proving,
proceeds translating theses and hypotheses about geometric entities into systems
of polynomial equations, say T = {t1 = 0, . . . , ts = 0} and H = {h1 = 0, . . . , hr = 0}.
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Solutions1 for H and T, can be interpreted as geometric instances verifying the
hypotheses (respectively, the theses). In this scheme, a statement T : {H ⇒ T} is
to be declared true if and only if the algebraic set2 defined by H is included in
the solution set for T, i.e. if V(H) ⊆ V(T), since this inclusion expresses that all
instances verifying the hypotheses satisfy, as well, the theses. Further refinements
of this method allow considering the case when such inclusion is valid only on an
(Zariski) open set of V(H). Here the algebraic procedure automatically generates a
set of inequations that V(H) has to fulfill in order to be contained in V(T).

The above is just a very sketchy picture of the current state of the art. In
fact, it is well known that some problems—we will not deal with in this paper—
may arise on the geometric/algebraic translation process (see the references to this
issue that appear, for instance, at the book [10], or at the papers [1, 13, 21], or
in the introduction to [3]). Moreover, many different concepts of truth, diverse
protocols to achieve it and methods to accomplish them, have been considered, all of
them dealing, in an algebraic geometry manner, with automated theorem proving
(see, for its specific consideration of the relativeness of truth in this context, the
papers [6, 14]).

It is not the goal of this paper to present a survey of this flourishing topic, started
several decades ago by professor Wen-tsun Wu, who has received, in 1997, the
CADE (Conference on Automated Deduction) Herbrand Award and, in 2006, the
Shaw Prize for his contribution to the mechanization of mathematics (we refer
the reader to the impressive bibliography on the subject kept by prof. D. Wang
in http://www-calfor.lip6.fr/∼wang/). Yet we can summarize that automatic theorem
proving deals, in general, with confirming or refuting statements that are true in a
majority of instances verifying the given hypotheses.

On the other hand, automatic discovery of theorems addresses—in our opinion—
the case of statements that are false in most relevant cases. Even so, it aims to
produce, automatically, complementary hypotheses for the statement to be proved
as correct. For example, imagine we draw a quadrilateral [ABCD] and we want to
place a point E on the line supporting the side AD, such that the area of the triangle
�ABE equals the area of the quadrilateral. Obviously this is false in general for an
arbitrary position of E on the given line, but we want to discover, automatically, the
location of such point for the equality of areas to hold (see Example 8). We would
like to proceed by placing point E arbitrarily on that line and stating as thesis the
equality of areas. Then, the automatic discovering protocol we will describe in our
paper should take care of this situation, finding the correct location(s) of E for the
thesis to hold.

Another example could be the following: we draw a triangle and, then, the feet of
the corresponding altitudes. These feet are the vertices of a new triangle, the so called
orthic triangle for the given triangle. We want this orthic triangle to be equilateral,
but it is not so, in general. It seems quite obvious that this will be the case if the
original triangle is itself equilateral, but, only in this case? Deciding if there are other
possibilities is, again, the task of our protocol for automatic discovery of theorems.

1In a suitable field: there will be different interpretations for different choices of this field, but in this
paper we will adhere to the algebraically closed case, so we will miss, for instance, oriented geometry.
2We denote by V(H) or V(T) the solution set of the corresponding system of equations.

http://www-calfor.lip6.fr/~wang/


On Protocols for the Automated Discovery of Theorems in Elementary Geometry 205

We would like to impose as a thesis that the orthic triangle is equilateral and we
expect our method to find the more general situations in which this is going to happen
(see Example 6).

The interest of developing such automatized discovery procedure is quite obvious.
For instance, in the context of CAD, it could be used as an auxiliary tool for
determining the specific positions of the components of a drawing that are a priori
required to verify some geometric restrictions (an observation already remarked in
[15]). Automated discovery could be also useful in the educational context, since
it could allow a dynamic geometry program (provided with a link to a computer
algebra program, as shown in [4] or [22]) to act as an intelligent agent, being able
to know in advance the response for most (right or wrong) conjectures made by a
user attempting to construct a certain figure on the screen; in this way, the dynamic
geometry program could act as a tutor, guiding in the right direction the efforts of
the user towards the assigned task.

Although not as popular as automatic proving, automatic discovery of elementary
geometry theorems is not a new idea. It can be traced back to the work of Chou (see
[8, 9, 24] and [11]), generally under the form of “automatic derivation of formulas”,
a primitive version of automatic discovery where the goal consists in deriving results
that always occur under some given hypotheses, but that can be formulated in
terms of some specific set of variables (such as expressing the area of a triangle in
terms of the lengths of its sides). For instance, “Discovering Theorems” (the title of
Section 5.2 in [11]) actually deals with finding some properties that hold under the
given hypotheses. Describing the geometric locus of a point defined through some
geometric constraints, say, finding the locus of a point when its projection on the
three sides of a given triangle form a triangle of given constant area ([10], Example
5.8) can be considered as another variant of this “automatic derivation” approach.
Although quite similar in methodology, automatic derivation is somehow different
from automatic discovery—as we understand it—in that the former does not include
a priori a specific thesis (although one could always consider as thesis the trivial one
{0 = 0}) and does not pretend to modify substantially the given hypotheses, which is
crucial in our approach.

The idea of dealing with generally false statements by adding new, equality type,
hypotheses, has also precedents, such as [15], where it is explicitly stated that “. . . the
objective here is to find the missing hypotheses so that a given conclusion follows
from a given incomplete set of hypotheses. . . ”. In the same vein, the paper of [25] or
the book of [10] refer to “. . . finding new geometry theorems. . . Suppose that we are
trying to prove a theorem. . . and the final remainder. . . R0 is nonzero. If we add a new
hypotheses R0 = 0, then we have a theorem. . . ” [10], page 72. We must also mention
[26] and [19] (a book written in Spanish for secondary education teachers, with circa
one hundred pages devoted to this topic and with many worked out examples),
and the papers of [20], [21] or [16]. Examples achieved through a specific software for
discovery, named GDI (the initials of Geometría Dinámica Inteligente), of Botana-
Valcarce, appear in [4] or [22], such as the automatic discovery of the celebrated
Maclane 83-Theorem, or the automatic solving of some items on a test posed by
Richard [23], on proof strategies in mathematics courses, for students 14–16 years
old. See [18] for a most recent contribution and further details and examples of
theorem discovery (see, also, [7], a closely related contribution to the techniques of
[18]; differences and similarities are discussed in the introduction of [18]).
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Our present paper arises from the approach to discovery in [21], that proceeds,
roughly speaking, first identifying a set of independent variables (those ruling the
construction of the hypothesis variety), and, then, the corresponding privileged
components of this variety, where these variables are independent (and maximally
independent, as well). It is shown that the elimination ideal (over the independent
variables), of the Saturation3 ideal H : T∞ of the hypothesis ideal by the thesis ideal,
is not zero if and only if the theorem is true over all these components (and then
the theorem is called “generally true” [10]). When the given theorem is not generally
true, it turns out that the elimination ideal of the ideal generated by the hypotheses
plus the thesis is not zero if and only if the thesis does not hold over any privileged
component (the so called “generally false” case, the one suitable for discovery). In
this latter situation, [21] considers adding, as new hypotheses, the equations provided
by the elimination of the old hypotheses plus the thesis, and proceeds further on,
identifying a subset of the privileged variables that remain maximally independent
over the new hypothesis variety. It turns out that this new set of hypotheses and the
given thesis yields a non-generally false theorem, and, in many interesting examples,
it is generally true (but not always: the method is incomplete, as shown in [21]).

Our approach in this paper is different to that of [21] in several directions. First of
all, we do not start providing a method, but stating a general strategy for discovery,
a kind of general protocol (see Section 2.1). Namely, we aim towards collecting the
conditions that a couple of ideals, each one belonging to different set of variables,
should verify in order to express necessary and sufficient conditions for the given
thesis to hold. This couple of ideals (named here as a full set for discovering interesting
conditions, or an FSDIC) will contribute for some extra hypotheses of equality
(respectively, of inequality) type that are required for the theorem to hold. The
precise statement is provided in the next Section (see Definition 1).

It is shown, through examples, that such couple does not always exist (and it is, in
general, not unique, although it has some uniqueness properties, see Theorem 2).
But, if it exists, then we can identify (see Theorem 1) and construct a particular
FSDIC, that turns out to be very close to the output of the method presented in
[21]. A test for the existence of an FSDIC is then stated (Theorem 3). Next Section 3
explores the meaning of FSDIC for wise choices of variables (ie. when we deal with
“interesting” variables), but also remarks its limitations in other situations. Section 4
works out in detail an example taken (after adapting it to the discovery framework)
from [10].

Section 5 addresses an issue that seems forgotten in the mechanization of theorem
discovery, that of discussing the different ways of introducing inequations as part
of the hypotheses provided by the user. We believe it is quite useful in practice (and
there is an ancient tradition to do so, converting inequations into equations by adding
some auxiliary variables), but also quite subtle. In fact, we show in that Section that
there are two different (but related) possibilities, and the decision about which one
is more suitable should be left to the user, since it has consequences in the discovery
process. The discussion requires the analysis in detail of the saturation of one ideal
by another one, a summary of which is provided in an Appendix. Finally, Section 6

3The definition of this standard notion in Commutative Algebra (see [17]) and a collection of its
properties, that will be required in Section 5, are included in an Appendix to this paper.
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provides three more examples, fully discussed, showing that, still, human interven-
tion could be crucial in automatic discovery... but also that automatic discovery can
contribute fundamentally to human understanding of geometric problems.

2 The Search for Interesting Conditions for Discovering Theorems

2.1 Rationale

Let us assume as given an (algebraically translated) statement of the kind {H ⇒
T}, where4 H = (h1, . . . , hr) and T = (t1, . . . , ts)) are ideals of polynomials in a ring
K[X], X = {x1, . . . , xn}, with coefficients in a fixed field K, with algebraic closure
K. Then the algebraic sets V(H), V(T), defined as the solutions of the equations
generated by H, T over the affine space K

n
can be interpreted as geometric instances

verifying the hypotheses (respectively, the theses) of the statement.
A natural goal could be searching for complementary hypotheses, both of equality

type R′ and inequations—provided by another set of polynomials R′′—so that5 {(H ∧
R′ ∧ ¬R′′) ⇒ T} and {H ∧ R′ ∧ ¬R′′} is not empty. In fact, except for the inclusion
of new, equality type, hypotheses, this is the traditional formulation for automatic
proving, where the R′′ represents the—so called—degeneracy conditions. But in our
context it is clear that, taking R′ = T and a trivial R′′, we will have, in general, a
(useless) solution. So we should reconsider the formulation of the goal, taking into
account that we actually want to find the complementary hypotheses in terms of some
specific set of variables ruling our statement.

For example, if we want to find out the conditions for the orthic triangle of a
given one to be equilateral, our intuition expects the answer to provide some extra
constraints to be fulfilled for the given triangle. That is, we want to learn about new
hypotheses in terms of the variables assigned to the vertices of the given triangle (and
not, for example, in terms of the variables naming the vertices of the orthic triangle).
In fact, if we are given a triangle through the three vertices and then construct its
orthic triangle, the algebraic translation will be a system of 6 equations (two for each
vertex of the orthic triangle, stating that this vertex belongs to one side of the given
triangle and to an altitude) and 12 variables (two per vertex of both the triangle
and the orthic triangle). The system solution set has dimension six (six degrees of
freedom), as one expects, since the given triangle can be arbitrarily parametrized,
through the two-times-three coordinates of its vertices. These should be considered
as the independent variables ruling our given construction and, thus, the search for
the extra constraints yielding to an equilateral orthic triangle should proceed finding
R′, R′′ as polynomials in these variables.

Let us remark that the mere consideration of the algebraic system does not allow
to highlight such meaningful set of variables: there are, as well, other sets of six
free variables for the algebraic solution set, such as those corresponding to the

4By abuse of notation, H, T can be thought, as in the introduction, as some sets of equations, but
also as representing the ideals generated by the polynomials defining the equations.
5Again, by abuse of notation, the following formulas are to be understood as “for all points in K

n

that are simultaneous solutions of the equations in H and in R′ and are not solutions of R′′, then they
are also solutions of the equations defining T”, etc...
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coordinates of the orthic triangle vertices (since they determine, conversely, the given
triangle). Different examples show that it is impossible to determine the meaningful
variables in an automatic way by relying on heuristics, such as considering those
variables that are not involved in the thesis, etc. It should be human intuition (i.e.
the user) who has to point out the concrete collection of variables that will turn
meaningful the discovery process. Thus, our goal, as stated above, should be modified
by referring to some specific set of variables for the complementary hypotheses.

Next, to get things a little more complicated, we should notice that, once the
equality type extra hypotheses R′ are found, the degenerate conditions R′′ should
be expressed in terms of some subset of the selected variables, since the whole
construction, after adding R′, could possess, then, less degrees of freedom (for
instance, in the example above, if R′ is found and it states that the given triangle
must be equilateral, then the degree of freedom, of the new system of hypotheses,
will be reduced from six to four, since an equilateral triangle is determined by just
two vertices). In summary, our goal should be to look for the existence of two subsets
of variables U ′ ⊆ U ⊆ X, and two ideals (R′, R′′), in K[U] and K[U ′], respectively,
such that (H ∧ R′ ∧ ¬R′′) ⇒ T and {H ∧ R′ ∧ ¬R′′} is not contradictory.

But this framework is still not sound enough. It is true that, if we could find
such couple (R′, R′′), we would have found a true statement, keeping the given
theses T but adding some extra hypotheses {H ∧ R′ ∧ ¬R′′}. But nothing guarantees
that such statement really covers all possible discoveries related to the given T, H.
In the example above, imagine that some R′ is found expressing that the given
triangle should be equilateral; then it will yield to a true statement (in fact, the orthic
triangle of an equilateral triangle is also equilateral), but there are other possibilities
(far more interesting) for the given statement to hold. That the given triangle is
equilateral is, indeed, a sufficient condition for the orthic triangle to be equilateral,
but it is not a necessary condition. So, if we want to avoid discovering just some trivial
statements, what we really need to find out is a collection of non contradictory (i.e.
such that there is at least one instance of the given hypotheses were they actually
hold) extra hypotheses R′, R′′,

a) expressed in the right variables,
b) which are, when added to H, sufficient for T, so that {(H ∧ R′ ∧ ¬R′′) ⇒ T},
c) which also verify that {H ∧ T} ⇒ R′

The last requirement expresses that R′ represents a conjunction of necessary,
equality-type, additional conditions for the theses to hold under the given hypothe-
ses H.

Actually, one could also think about imposing, instead of c), some stricter con-
dition, such as c′) : {H ∧ T} ⇒ {R′ ∧ ¬R′′}. But then (jointly with a) and b)) it will
mean that {H ∧ T} ≡ {H ∧ R′ ∧ ¬R′′}. Let P be the formula (in K[U]) expressing
the elimination of existential quantifiers on the variables X\U in H (that is, the
projection of V(H) over the affine space described by the U-variables). It is easy
to show that, if we impose condition c′), then we will get P ∧ R′ ∧ ¬R′′ as the result
of projecting H ∧ T over the U-space. On the other hand, since U should be a set
of variables that rule H, it is quite plausible that, in many instances, P will not
introduce any restriction on the U variables (i.e. every assignment of the U variables
can be lifted to a value, of the remaining variables, verifying H). In conclusion, if c′
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is regarded, we will have in many cases that the projection of V(H) ∩ V(T) over the
affine space described by the selected U variables will be equal to V(R′)\V(R′′).

Now, this is a particularly strong requirement, since it is known that the projection
of an algebraic variety is a general constructible set, that is, a finite union of sets, each
one being the intersection of an algebraic variety and the complement of another
one, such as V(R′)\V(R′′). It is a finite union, and not, in general, just one of the
terms of such union (take, for example, V(R′

1)= a plane, V(R′′
1)= a line on the plane,

V(R′
2)=a point on this line; then (V(R′

1) \ V(R′′
1)) ∪ V(R′

2) can not be expressed as
V(R′

3)\V(R′′
3), for whatever sets of polynomials R′

3, R′′
3 .

This means that imposing c′) as a condition will yield to a discovery protocol
that would fail in several instances, due to the lack of an appropriate language to
express all necessary conditions. At this point two possibilities arise. One, that of
reformulating the whole approach to discovery, allowing, from the beginning, the
introduction of a finite union of equations and inequations. In some sense, this is
what has been achieved in [18] or [7]) and can be seen as quite close to performing
a certain kind of quantifier elimination procedure. But let us remark that, in the
theorem proving context, this formulation (i.e. requiring that {H ∧ T} ⇒ {¬R′′} for
non-degeneracy conditions) has not been followed in most works, perhaps due to its
complexity.

A second possibility is keeping condition c), at the risk of losing some necessary
inequality-type conditions. Since these conditions, in general, only describe the
degeneracy cases that should be avoided for the statement to become true, we think
it is quite safe to keep condition c) in our approach, as we will not miss any interesting
results just because of not paying attention to some degenerate cases.

With this rationale in mind, next section contains a formal description of the pro-
posed discovery protocol (finding R′, R′′ such that. . . ). An extra, technical, condition
has been added (items d) or d′) in the definition below), in order to achieve some
kind of unicity (see Theorem 2). Anyway, it is easy to prove (see Remark 3) that an
equivalent theory could be established deleting this last item d). That is, Theorem 1
will also hold with an alternate definition of FSDIC consisting just of items a), b), c)
and e) in Definition 1.

2.2 A Full Set of (Discovering) Interesting Conditions

As above, we will consider some subsets of a main set of variables X = {x1, . . . , xn},
namely U ′ ⊆ U ⊆ X. Then, we will often deal with the extension K[U ′] ↪→ K[U] ↪→
K[X] of polynomial rings on the corresponding variables, with coefficients in a fixed
field K. Let A be an ideal in K[U ′], B an ideal in K[U], and C an ideal in K[X].
We will denote—as it is standard in Commutative Algebra—by Ae′ = AK[U], the
extended ideal; by Ae = AK[X], and by Be = BK[X]. Clearly (Ae′

)e = Ae. More-
over we will denote by Cc′ = C ∩ K[U ′], its contraction ideal; by Cc = C ∩ K[U],
and by Bc′ = B ∩ K[U ′]. Again, it is clear that (Cc)c′ = Cc′

. Finally, if I is an ideal in
K[X], we will denote by V(I) = {(x1, . . . , xn) ∈ K

n | f (x1, . . . , xn) = 0, ∀ f ∈ I} the
algebraic set defined by I in K

n
, where K is the algebraic closure of K.

Definition 1 Let T be a statement, of the kind H ⇒ T, where the ideals H, T ⊆
K[x1, . . . , xn] will be the corresponding hypothesis ideal and thesis ideal. Let U ′ ⊆
U ⊆ {x1, . . . , xn} = X.
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Then a couple (R′, R′′) of ideals, respectively in K[U] and K[U ′], will be called
a Full Set of (Discovering) Interesting Conditions (FSDIC) for T with respect to U
and U ′ if the following conditions hold:

a) R′ ⊆ K[U] and R′′ ⊆ K[U ′];
b) V(H + R′e)\V(R′′e) ⊆ V(T);
c) V(H + T) ⊆ V(R′e);
d) if f ∈ K[U ′] is such that V(H + R′e)\V(( f )e) ⊆ V(T), then f ∈ √

R′′;
e) V(H + R′e)\V(R′′e) �= ∅.

Remark 1 Condition d) is equivalent to the following:

d′) if R′′′ ⊆ K[U ′] is an ideal such that V(H + (R′)e)\V((R′′′)e) ⊆ V(T), then
K

n \V((R′′′)e) ⊆ K
n \V((R′′)e).

In fact suppose that d) holds and that R′′′ = (g1, . . . , gl) ⊆ K[U ′] is such that V(H +
(R′)e)\V((R′′′)e) ⊆ V(T). Then for any i = 1, . . . , l, we have V(H + R′e)\V((gi)

e) ⊆
V(H + R′e)\V(R′′′e) ⊆ V(T), therefore gi ∈ √

R′′, and so gi ∈ √
R′′e. This last condi-

tion is equivalent to V((gi)
e) ⊇ V(R′′e) and so to K

n \V((gi)
e) ⊆ K

n \V(R′′e). Then
K

n \V(R′′′e) = ∪l
i=1 K

n \V((gi)
e) ⊆ K

n \V(R′′e).
Viceversa, let f ∈ K[U ′] be such that V(H + R′e)\V(( f )e) ⊆ V(T). Then, if we

take R′′′ = ( f ), we obtain K
n \V(( f )e) ⊆ K

n \V(R′′e), so V(( f )e) ⊇ V(R′′e), i.e f ∈√
R′′e. Since f ∈ K[U ′] and R′′ec′ = R′′ we obtain f ∈ √

R′′.

Example 1 For instance, suppose H = (x · y · z)K[x, y, z] ⇒ T = (y)K[x, y, z] be
a(n) (obviously false) statement. Let U ′ = {z} ⊆ U = {y, z} ⊆ {x, y, z}. Then the
couple (R′ = (y · z), R′′ = (z)) of ideals, respectively in K[U] and K[U ′], will be an
FSDIC, meaning

a) that the theorem will be true under the new hypotheses {x · y · z = 0, y · z =
0, z �= 0} (as stated in condition b) above),

b) that if the thesis holds on x · y · z = 0, then necessarily y · z = 0, (condition c)
above),

c) that any polynomial f ∈ K[z], such that it is a non degeneracy condition f �=
0 for the thesis to hold under the new hypotheses {x · y · z = 0, y · z = 0},
necessarily it must be a multiple of a power of (z) (as stated in condition d)

above)
d) and that, moreover, there are points verifying x · y · z = 0, y · z = 0, z �= 0

(condition e)).

But it is easy to check that also the couple (L′ = (y), L′′ = (1)) is another FSDIC for
H, T, and for the same variables.

Therefore, the natural question to ask is when these pairs of ideals exist and how
can we compute some of them. The following propositions give us a complete answer
to these questions:

Theorem 1 Let H′ = (H + T) ∩ K[U] and H′′ = ((H + H′e) : (T)∞) ∩ K[U ′] (see
the Appendix for the notation and main properties of this operation of saturation by
T). Then there exist two ideals R′, R′′ such that (R′, R′′) is an FSDIC for T with respect
to U and U ′ if and only if (H′, H′′) is FSDIC for T with respect to U and U ′.
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Proof Obviously, we have just to prove that if there exist two ideals R′, R′′ such that
(R′, R′′) is FSDIC for T with respect to U and U ′, then (H′, H′′) is also an FSDIC.

a) H′ ⊆ K[U] and H′′ ⊆ K[U ′] by definition.
b) First we observe that T ⊆ √

H + H′e : (H′′e)∞. In fact let g ∈ H′′e, and let T =
(t1, . . . , ts), so

g ∈ √
H′′e ⊆

√
(H + H′e) : (T)∞ ⊆

√
H + H′e : (T)∞

= ∩s
j=1

√
H + H′e : (t j)

∞ ⊆
√

H + H′e : (ti)∞

for any i = 1, . . . , s. Then ti ∈ √
H + H′e : (g)∞ for any g ∈ H′′e, i.e. ti ∈√

H + H′e : (H′′e)∞ for any i. Therefore we have

V(H + H′e)\V(H′′e) = V(
√

H + H′e)\V(H′′e) ⊆

V(
√

(H + H′e) : (H′′e)) = V(

√√
(H + H′e) : (H′′e)∞) =

V(
√

(H + H′e) : (H′′e)∞) ⊆ V(T).

c) H′ = (H + T) ∩ K[U], so H′e ⊆ (H + T) and then V(H + T) ⊆ V(H′e). Notice
that, if (R′, R′′) is an FSDIC, we always have that V(H + H′e) ⊆ V(H + R′e),
since V(H + T) ⊆ V(R′e) implies R′e ⊆ √

H + T; thus R′ = R′ec ⊆ √
H + T

c =√
H′, concluding that V(H′e) ⊆ V(R′e). We will use this fact in the proof of e).

d) Let f ∈ K[U ′] be such that V(H + H′e)\V(( f )e) ⊆ V(T). Then we have that

V(
√

H + H′e)\V(( f )e) ⊆ V(T). But we work in an algebraically closed field, so
V(

√
H + H′e : ( f )e) ⊆ V(T).

Since, V(
√

H + H′e : ( f )e) = V(
√

(H + H′e) : (( f )e)∞), then

T ⊆ √
(H + H′e) : (( f )e)∞ ⊆

√
H + H′e : (( f )e)∞

and this implies f ∈ √
H + H′e : (T)∞ ∩ K[U ′] = √

H′′.
e) It holds V(H + R′e)\V(R′′e) ⊆ V(H) ∩ V(T) by definition and property b).

Since H′ = (H + T) ∩ K[U], we have that H′e ⊆ (H + T). Thus V(H + R′e)\
V(R′′e) ⊆ V(H) ∩ V(T) ⊆ V(H′e). On the other hand V(H + R′e)\V(R′′e) ⊂
V(H), thus V(H + R′e)\V(R′′e) ⊆ V(H + H′e). Moreover R′′ ⊆ √

H′′, since if
f ∈ R′′ ⊆ K[U ′], then V(H + H′e)\V(( f )e) ⊆ V(H + R′e)\V(( f )e) ⊆ V(T) and
this implies f ∈ √

H′′ by condition d). Since R′′ ⊆ √
H′′ if and only if R′′e ⊆√

H′′e, then V(R′′e) ⊇ V(H′′e). Thus

∅ �= V(H + R′e)\V(R′′e) ⊆ V(H + H′e)\V(H′′e)

Notice that the hypothesis on (R′, R′′) as an FSDIC has only been used to prove
property e). ��

Remark 2 As remarked above in the proof of c), if (R′, R′′) is an FSDIC, we
always have that V(H + H′e) ⊆ V(H + R′e). On the other hand we have also shown,
along the above proof, that it holds the relation V(H + R′e)\V(R′′e) ⊆ V(H +
H′e)\V(R′′e). Therefore we have that

V(H + R′e)\V(R′′e) = V(H + H′e)\V(R′′e)
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Remark 3 Suppose, as motivated in the previous subsection, that an alternate defi-
nition of FSDIC is given, in which we drop property d). Then the statement of the
theorem above will still hold. In fact, the only point that requires the hypothesis of
(R′, R′′) as FSDIC is property e), but in its proof property d) for (R′, R′′) is not used.
Rather, it uses only that (H′, H′′) verifies property d), which holds in general, as
observed. Thus the existence of an FSDIC, with or without condition d), is always
equivalent to (H′, H′′) being an FSDIC in the stronger sense we have formally
introduced in Definition 1.

2.3 Existence and Unicity

The above theorem tells us that, if an FSDIC exists, then the couple (H′, H′′) is
indeed one such full set of conditions, providing an extra algebraic set of equality-
type constraints that is the smallest one in terms of the variety given by the first
ideal of the couple (since V(H′e) ⊆ V(R′e), see Remark 2) and also providing the
largest set of non degeneracy conditions in terms of the complement of the variety
given by the second ideal of the couple (as we have shown in the proof that always
V(R′′e) ⊇ V(H′′e)).

Moreover, the above Remark 2 shows that the hypotheses of equality type H +
R′e arising from whatever FSDIC will be always geometrically equivalent to H + H′e

(after adding the non-degeneracy hypotheses), and in this sense we can conclude
that our protocol yields, essentially, to a unique solution (when it exists one) on the
additional hypotheses of equality-type for the statement to become true.

But, algebraically speaking, there are, in general, several possible FSDIC’s.

Theorem 2 Given an FSDIC (R′, R′′), take any ideals R̃′, R̃′′, such that R′ ⊆ R̃′ ⊆√
H′ ⊆ K[U] and R̃′′ ⊆ K[U ′], with

√
R̃′′e =√

H′′e ⊆ K[X]. Then (R̃′, R̃′′) is also an
FSDIC.

Proof

a) Condition a) holds by definition.
b) By hypothesis V(H′e) ⊆ V(R̃′e) ⊆ V(R′e) and V(H′′e) = V(R̃′′e). Thus

V(H + R̃′e)\V(R̃′′e) ⊆ V(H + R′e)\V(R̃′′e)

Now we apply Remark 2, concluding that

V(H + R′e)\V(R̃′′e) = V(H + H′e)\V(R̃′′e) = V(H + H′e)\V(H′′e) ⊆ V(T)

c) Next, since by hypothesis V(H′e) ⊆ V(R̃′e) and V(H + T) ⊆ V(H′e), we have
V(H + T) ⊆ V(R̃′e).

d) Moreover, if for some ideal R′′′ ⊆ K[U ′] we have that V(H + R̃′e)\V(R′′′e) ⊆
V(T), then also V(H + H′e)\V(R′′′e) ⊆ V(H + R̃′e)\V(R′′′e) ⊆ V(T). Thus
V(H′′e) ⊆ V(R′′′e), by condition d′) on (H, H′). But, by hypothesis, V(R̃′′e) =
V(H′′e).

e) Finally, we see that ∅ �= V(H + H′e)\V(H′′e) ⊆ V(H + R̃′e)\V(R̃′′e) ��

Now let us see how to check for the existence of an FSDIC, determining some
necessary and sufficient algorithmic conditions for (H′, H′′) to be an FSDIC.
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Theorem 3 (H′, H′′) is FSDIC for T with respect to U and U ′ if and only if 1 �∈
(H′)c′ : H′′∞ (equivalently, iff H′′ �

√
(H′)c′ ).

Proof From the proof of the previous theorem we have that the pair of ideals
(H′, H′′) always verify a), b), c) and d).

Therefore we just have to prove that V(H + H′e)\V(H′′e) �= ∅ if and only if 1 �∈
(H′)c′ : H′′∞. This condition is equivalent to H′′ �

√
(H′)c′ , since

H′′ ⊆
√

(H′)c′ iff (1) =
√

(H′)c′ : H′′ =
√

(H′)c′ : H′′∞ iff (H′)c′ : H′′∞ = (1)

Suppose H′′ ⊆ √
(H′)c′ . Then H′′e ⊆ √

(H′)c′ e = √
(H′)c′ e ⊆ √

(H′)e ⊆ √
H′e + H, so

V(H + H′e) ⊆ V(H′′e).
Now suppose V(H + H′e) ⊆ V(H′′e). Then H′′e ⊆ √

H′e + H and so we conclude

H′′ = H′′ec′ ⊆ √
H′e + H

c′ = √
(H′e + H)c′ ⊆ √

((H + T) + H)c′ =
√

H′c′
. ��

Example 2 In the example H = (x · y · z)K[x, y, z] ⇒ T = (y)K[x, y, z], we can
now check that it actually has an FSDIC, since H′ = (y)K[y, z], H′′ = (1)K[z] do
verify that 1 �∈ (H′)c′ : H′′∞.

Example 3 Let us consider the following geometric situation. Let A, B, C be three
points in the plane, with coordinates A = (0, 0), B = (x[1], 0), C = (x[2], x[3]).
Consider as hypothesis the only condition x[4] · x[3] − 1 = 0 and as thesis T =
x[3] = 0. Then H + T is clearly (1), so for any choice of subsets of variables from
{x[1], . . . , x[4]}, we will have H′ = (1) and H′′ will be also (1). So there is no couple
(R′, R′′) that will be an FSDIC for this example.

Corollary 1 Moreover, if U ′ is a set of algebraically independent variables for H′, then
(H′, H′′) is an FSDIC for T with respect to U and U ′ if and only if H′′ �= (0).

Proof Note the new hypothesis implies H′c′ = 0 and thus (H′, H′′) is an FSDIC for
T iff 1 �∈ (0) : H′′∞. ��

3 The Protocol

3.1 Interpretation

It should be clear by now that we propose, as discovery protocol, the search for
an FSDIC, for some pair of sets of variables. Let us recall that a couple (R′ ⊂
K[U], R′′ ⊂ K[U ′])), which is an FSDIC, it is supposed to provide, as discussed in
Section 2.1,

– some necessary (as expressed by item c) of the definition of FSDIC)
– and sufficient (as expressed by items b) and d) of the definition of FSDIC)
– non-trivial (as expressed by item e) of the definition of FSDIC)

conditions of equality kind (given by R′) and of non degeneracy type (given by
R′′) for the given theses to hold under the given hypotheses. And, of course, such
conditions are meant to be meaningful for the geometric situation we are dealing
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with. For instance, R′′ should be given in terms of variables that rule the new
hypotheses H + R′e. But, formally speaking, in the definition of an FSDIC we have
not imposed the independence of the variables U and U ′. In particular, if we take
U = U ′ = X, then H′ = H + T and H′′ = (1) is (unless H′ = H + T = (1)) always
an FSDIC but it does not add real information to learn that the theses will hold if we
merely consider it as part of the hypotheses. The choice of taking U and U ′ as sets
of independent variables is exclusively related to the elusive concept of “interesting”
variables, that we have already discussed in Section 2.1 and that will be analyzed in
the different examples.

But, what does it mean for an statement H ⇒ T to have an FSDIC? To start with,
the following propositions give us some interpretation in different cases:

Proposition 1 Notation as in the previous section. Suppose that U ′ ⊂ U is a set
of algebraically independent variables for H + H′e. Then T is contained in all the
minimal primes of H + H′e where U ′ are independent if and only if 1 �∈ (H′)c′ : H′′∞

(and this is equivalent to the couple (H′, H′′) being an FSDIC).

Proof Let
√

H + H′e = p1 ∩ · · · ∩ pl ∩ pl+1 ∩ · · · ∩ pm be the unique primary decom-
position of

√
H + H′e, where U ′ are independent over pi for any i = 1, . . . , l and

dependent over the remaining.
Since U ′ are independent over H + H′e, it follows that (H + H′e)c′ = 0 and, in

particular, 0 = (H + H′e)c′ ⊇ (H′e)c′ = ((H′e)c)c′ = H′c′
, so H′c′ = 0 and the U ′ are

also independent over H′. In this case, as remarked above, the condition 1 �∈ (H′)c′ :
H′′∞ is equivalent to showing that H′′ �= 0.

Suppose there exists 0 �= g ∈ H′′ = ((H + H′e) : (T)∞) ∩ K[U ′]. Then T ⊆√
(H + H′e) : ((g)e)∞ = ⋂

g �∈p j
p j ⊆ p1 ∩ · · · ∩ pl since g ∈ K[U ′] and so g �∈ p j for

j = 1, . . . , l.
Conversely, assume T is contained in all primes pi, i = 1, . . . , l, and take for any

j = l + 1, . . . , m, some 0 �= g j ∈ p j ∩ K[U ′] (that should exist because U ′ is depen-
dent on each of the remaining primes). Let g := ∏s

j=l+1 g j. Then g · T ⊆ √
(H + H′e),

i.e. 0 �= g ∈ ((H + H′e) : T)∞ ∩ K[U ′] = H′′. ��

Lemma 1 Let p be a prime ideal in the polynomial ring R = K[x1, . . . , xn] and let
U ′ = {xi1 , . . . , xik} ⊂ {x1, . . . , xn} be such that p ∩ K[U ′] = (0) and dim(R/p) = k. If
t �∈ p then there exist q ∈ R and 0 �= r ∈ K[U ′] such that tq + r ∈ p.

Proof Since t �∈ p, then t �= 0 in the fraction field F F(R/p), which is an algebraic
extension of K(U ′) (because [F F(R/p) : K] = [K(U ′) : K] = k). Therefore there
exist a0, . . . , am−1 ∈ K(U ′) such that tm + am−1tm−1 + · · · + a0 = 0, where a0 �= 0.
Clearing denominators, we obtain b mtm + b m−1tm−1 + · · · + b 0 = 0 in R/p, where
bi ∈ K[U ′] and b 0 �= 0. Then we can take q = b mtm−1 + · · · + b 1 and r = b 0. ��

Proposition 2 Suppose that U ′ ⊂ U ⊂ X is a set of algebraically independent vari-
ables for H + H′e and, moreover, suppose it is maximal among the subsets of X with
this property (ie. K[Ũ] ∩ (H + He) �= (0) for any U ′ ⊂ Ũ ⊂ X).

Then, the couple (H′, H′′) is not an FSDIC is equivalent to the fact that T is not
contained in all the minimal primes of H + H′e where U ′ are independent, but also
that it is contained in at least one of them.
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Proof Notation as in the previous proposition. By the maximality of U ′, we can
suppose dim K[x1, . . . , xn]/pi = k =cardinal of U ′, for any i = 1, . . . , l.

By the independence hypothesis we have that H′c′ = 0, and thus, (H, H′) not
being an FSDIC is equivalent to H′′ = 0. By the precedent proposition this implies T
is not contained in all the minimal primes of H + H′e where the variables in U ′ are
independent.

So let us show that in this case it is also true that T is contained in at
least one of the minimal primes of H + H′e where the variables in U ′ are inde-
pendent, Otherwise, for every j = 1, . . . , l, let t j ∈ T be such that t j �∈ p j. Then,
by the Lemma 1, there exist q1, . . . , ql ∈ K[x1, . . . , xn] and r1, . . . , rl ∈ K[U ′], not
zero, such that q jt j + r j ∈ p j. Moreover, for any j = l + 1, . . . , m, let 0 �= g j ∈
K[U ′] ∩ p j (since U ′ is dependent over these components). Take g = (q1t1 +
r1)(q2t2 + r2) · · · (qltl + rs)gl+1 · · · gm. Then g ∈ √

(H + H′e), i.e. there exists d ∈ N
such that gd ∈ (H + H′e). But gd = t + (r1 · · · rlgl+1 · · · gm)d for some t ∈ T. Therefore
0 �= (r1 · · · rlgl+1 · · · gm)d ∈ ((H + H′e) + T) ∩ K[U ′]. But (H + H′e + T) ∩ K[U ′] ⊆
(H + T) ∩ K[U ′] = H′ ∩ K[U ′] = H′c′ = (0). Contradiction.

The converse is trivial, since if T is not contained in all the minimal primes of
H + H′e where U ′ are independent, then, by the previous proposition, H′′ = 0. ��

Therefore we believe we have got a good translation of the idea of FSDIC in the
case we choose U ′ as a set of algebraically independent variables for H + H′e, since
it means that we have obtained a description of all the relevant primes for the theses
to hold. On the other hand we think we have achieved a more complete description if
the set of variables U ′ is maximally independent, since in this case, having an FSDIC
allows us to identify all the relevant components where the theses holds and, in the
case an FSDIC does not exists, we know it is due to the fact that the theses holds over
some relevant component (but not over all).

Example 4 Things are quite subtle. Notice that such set of variables U ′ with
good independence properties may not exist: consider H = (a + 1) ∩ (b + 1)

in K[a, b , c], T = (a + b + 1, c), and U = {b , c}. Then H′ = (H + T) ∩ K[b , c] =
(c, b 2 + b) and there is not U ′ ⊂ U a set of algebraically independent variables for
H + H′e.

Remark 4 On the other hand, what happens if U ′ are dependent on H + H′e, in
particular if U ′ = U? Assume for this remark that we have an FSDIC for U ′ = U
and that U is independent on H. Then H′ �= (0). Also, if 1 �∈ (H′ ∩ K[U ′]) : H′′∞,
then T is contained in some minimal prime of H + H′e, but we do not have more
information about these components. We can produce examples where there does
not exist V ⊂ U a set of algebraically independent variables for H + H′e, examples
where V ⊂ U are independent (but not a maximal set!!), and T is contained just
in the components where all the variables V are dependent. Only in the case
V ⊂ U is a maximal set of algebraically independent variables for H + H′e, then
T results contained in some minimal prime of H + H′e where V are independent.
But also in this case we cannot conclude (as shown by different examples) that T is
contained in all the minimal primes of H + H′e where V are independent, even if
1 �∈ H′ : H′′∞.
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3.2 Applying the Protocol

After this analysis, we consider reasonable to adopt, in the examples, a protocol that
can be summarized as follows: Given a statement H ⇒ T, consider some couple of
“suitable” sets of variables U, U ′, compute the corresponding pair of ideals H′, H′′
and check whether there is an FSDIC in this context. If so, the above results explain
what it does mean, in geometric terms, to add H′ as new set of equality type
hypotheses and the negation of H′′ as inequation hypotheses. If there is not an
FSDIC, the above propositions give some hints about what is happening, yielding,
in general, to a deeper understanding of the geometric statement. Anyway, either
you start again, with some other couple of variables or you should consider finding a
decomposition of the hypothesis variety in terms of prime components.

The following are some finer hints about this process and, in particular, about the
selection of variables.

a) Check for the dimension of V(H). If it is −1 (i.e. if V(H) is empty), the statement
is trivial.

b) If dim(V(H)) is zero, take X = U = U ′. It is easy to prove—through Theorem
3—that there is an FSDIC if and only if T holds over some point of V(H). Check
the existence of an FSDIC (that here consists just in verifying that H + T �=
(1)). If this is the case, the couple of ideals H′ = H + T, H′′ = (1) will describe
precisely the points of H where T holds, i.e. it will hold true that {H ∧ H′ ∧
¬H′′} ⇒ T and this covers all possible cases.

c) If dim(V(H)) > 0, then it is practical (but not indispensable) to verify before
hand that the statement is not one of a true theorem (except for degenerate
conditions). Use your favorite proving protocol for this task. If it is not a true
theorem, identify a maximal6 subset of variables U such that H ∩ K[U] = 0, ie.
a set of variables “ruling” the relevant given data V(H), so that it is reasonable
to express the extra hypotheses H′ and H′′ in terms of these variables.
Then we should analyze two sub-cases, noticing that for any U ′ ⊆ U , we have
(H + H′e) ∩ K[U ′] = H′ ∩ K[U ′]:
– For all nonempty subsets U ′ ⊆ U , we have H′c �= 0, ie. (H + T) ∩ K[U ′] �=

0, so that all variables in U are algebraically dependent over H′. In this case it
seems, again, reasonable to consider U = U ′ as set of variables for checking
the existence of an FSDIC.
If there exists an FSDIC, then adding H′ and ¬H′′ to the given hypotheses
will produce a valid statement, and we will have discovered some compo-
nents of V(H + H′e) where T vanishes, precisely those which are separated
by the non-degeneracy conditions given by H′′. In fact, in this case H′′ =
((H + H′e) : T∞) ∩ K[U], and this saturation ideal gives the intersection
with K[U] of the all primary components of (H + H′e) associated to primes
that do not contain T. If these were all the components of H + H′e, then
H′′ = H′ and there will be no FSDIC, by Theorem 3. Contradiction.

6Notice that if K[U] ∩ H = (0) and the cardinality of U is equal to dim(V(H)) then U is a maximal
set of independent variables.
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But the converse—which holds when dim(V(H)) = 0—is not true in this
case:7 it can happen that T vanishes over some components of V(H + H′e)
and yet there will be no FSDIC for any pair U ⊇ U ′.

– There is a nonempty subset U ′ ⊆ U , of independent variables for H′ = (H +
T) ∩ K[U]. Then we should find a maximal8 U ′ set of such independent
variables for H′, included in U . We proceed checking the existence of a
FSDIC for such couple (U, U ′), since then the equality-type new hypotheses
will be expressed in terms of the variables U parametrizing our given
construction H, while the inequality-type conditions will be given in terms of
independent variables U ′ for the new hypotheses H + H′e. In this situation,
Proposition 1 shows that the existence of FSDIC is equivalent to the fact
that T vanishes over all components of V(H + H′e) where the variables in
U ′ remain independent.9 So, if there is an FSDIC and {H ∧ H′ ∧ ¬H′′} ⇒ T
will be a true statement, holding over some components.
Otherwise, check with different couples of variables, with the same prop-
erties. Finally, if there is no FSDIC at all, the method fails to identify such
components, if there are any (and, if U ′ is a maximal set of independent
variables for H + H′e, Proposition 2 shows there will be at least one such
component, yielding a warning sign for the need to factorize).

The examples below show this procedure is quite satisfactory, in our opinion, but
a different protocol, that yields results even when T vanishes just over some—not
all—independent components, or that considers expressing inequality conditions in
terms of variables not contained in U , could be also interesting and subject of future
work.

7In fact, it is enough to show examples of such behavior when there is no FSDIC for U = U ′,
since it will imply, as well, there will be no FSDIC for any couple U ⊃ U ′′. In fact, suppose
there is no FSDIC for U = U ′; then ((H + H′e) : T∞) ∩ K[U] ⊆ √

(H′). This implies ((H + H′e) :
T∞) ∩ K[U ′′] ⊆ √

H′ ∩ K[U ′′] = √
H ∩ K[U ′′] and, thus, there is no FSDIC for any U ⊃ U ′′.

For instance, we can consider H = ((a + 1) ∗ (a + 2) ∗ (b + 1)) ⊂ K[a, b , c], T = (a + b + 1, c) ⊂
K[a, b , c]. Take U = {b , c} = U ′, a set of dim(H)-variables, independent over H. Then H′ =
(c, b 3 − b) = H′′, so there is no FSDIC. But H + H′e = (a + 1, b , c) ∩ (a + 2, b , c) ∩ (a + 1, b −
1, c) ∩ (a + 2, b − 1, c) ∩ (b + 1, c) and T vanishes over some components, such as (a + 2, b − 1, c)
(and does not vanish over some other ones, such as (a + 1, b − 1, c): the existence of a FSDIC
requires that T vanishes simultaneously over all the components that have a common projection
on the {b , c}-plane, that cannot be separated by H′′. Otherwise, even if there are components over
which T vanishes, they can not be detected by a FSDIC and this could be regarded as a limitation of
the method, the price for not attempting to find a complete factorization of V(H).
8But U ′ could be not maximal for H + H′e. Take H = ((a + 1) ∗ (b + 1)) ⊂ K[a, b , c, d], T = (a +
b + 1, c) ⊂ K[a, b , c, d], U = {b , c, d}, U ′ = {d}. Then H′ = (c, b 2 + b) ⊂ K[U] is of dimension 1,
with d as only independent variable, but dim(H + H′e) = 2, since {a, d} are independent. Here there
is no FSDIC, since H′′ = 0.
9The previous footnote provides an example where T vanishes over some, but not all, compo-
nents where U ′ is independent. Moreover, taking H = ((a + 1) ∗ (b + 1) ∗ b) ⊂ K[a, b , c, d], T =
(a + b + 1, c) ⊂ K[a, b , c, d], U = {b , c, d}, U ′ = {d}, we have H′ = (c, b 3 + b2) of dimension 1,
dim(H + H′e) = 2, H′′ = 0—hence there is no FSDIC—and T vanishes on none of the components
of H + H′e = (a + 1, b 2, c) ∩ (b , c) ∩ (b + 1, c). This cannot happen if the cardinal of U ′ equals the
dimension of (H + H′e), since Proposition 2 above claims, in this situation, that if there is no FSDIC,
then T must both hold and fail over some independent component.
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4 An Example

Next, we will develop the above introduced notions over an example from [10]
(Example 91 in his book), suitably adapted to the discovery framework.

Example 5 Let us consider as given data a circle and two diametrically opposed
points on it (say, take a circle centered at (1, 0) with radius 1, and let C = (0, 0), D =
(2, 0) the two ends of a diameter), plus an arbitrary point A = (u1, u2). Then trace
a tangent from A to the circle and let E = (x1, x2) be the tangency point. Let
F = (x3, x4) be the intersection of DE and CA. Then we claim that the unoriented
lengths [AE] = [AF] are equal. Moreover, in order to be able to define the lines DE,
CA, we require, as hypotheses, that D �= E (ie. u1 �= 2) and that C �= A (ie. u1 �= 0
or u2 �= 0).

Now, using CoCoA10 [12] and its package TP (for Theorem Proving, see [2]), we
translate the given situation as follows

Alias TP := $contrib/thmproving;

Use R::=Q[x[1..4],u[1..2]];

A:=[u[1],u[2]];
E:=[x[1],x[2]];
D:=[2,0];
F:=[x[3],x[4]];
C:=[0,0];
O:=[1,0];

10The default ordering is degrevlex; to compute contracted ideals (by the command Elim) the
program uses a predefined term-ordering, which is an ordering of elimination for the selected
variables, and degrevlex over the remaining.
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Ip1:=TP.Perpendicular([E,A],[E,O]);
Ip2:=TP.LenSquare([E,O])-1;
Ip3:=TP.Collinear([0,0],A,F);
Ip4:=TP.Collinear(D,E,F);

H:=Saturation(Ideal(Ip1,Ip2,Ip3,Ip4),Ideal(u[1]-2)*
Ideal(u[1], u[2]));

T:=Ideal(TP.LenSquare([A,E])-TP.LenSquare([A,F]));

where T is the thesis and H describes the hypothesis ideal. Notice that Ip1 expresses
that the lines EA, EO are perpendicular; Ip2 states that the square of the length
of [EO] is 1 ( so Ip1, Ip2 imply E is the tangency point from A); and the next two
hypotheses express that the corresponding three points are collinear. The hypothesis
ideal H is here constructed by using the saturation command, since (see Appendix,
Remark 3) it is a compact form of stating that the hypothesis variety is the closure
of the set defined by all the conditions Ip[i] = 0, i = 1 . . . 4 minus the union {u[1] =
2} ∪ {u[1] = 0, u[2] = 0}, as declared in the formulation of this example (see also
Proposition 6 below). Finally, the thesis expresses that the two segments [AE], [AF]
have equal non oriented length.

Now we check that the statement H ⇒ T is not algebraically true in any conceiv-
able way. For instance, applying the protocol in [14], it turns out that (notice that
input lines in CoCoA end with a semicolon; therefore, the lines without it, are the
output)

Saturation(H, Saturation(H,T));
Ideal(1)
-------------------------------

and this computation shows that all possible non-degeneracy conditions (those
polynomials p(u, x) that could be added to the hypotheses as conditions of the
kind p(u, x) �= 0) lie in the hypothesis ideal, yielding, therefore to an empty set
of conditions of the kind p �= 0 ∧ p = 0. This implies, in particular, that the same
negative result would be obtained if we restrict the computations to some subset
of variables, since the thesis does not vanish on any irreducible component of the
hypothesis variety.

Thus we must switch on to the discovery protocol, checking before hand that
u[1], u[2] actually is a (maximal) set of independent variables for our construction:

Dim(R/H);
2
-------------------------------

Elim([x[1],x[2],x[3],x[4]],H);
Ideal(0)
-------------------------------
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Then we add the thesis to the hypothesis ideal and we eliminate all variables except
u[1], u[2]
H’:=Elim([x[1],x[2],x[3],x[4]],H+T);
H’;
Ideal(-1/2u[1]^5 - 1/2u[1]^3u[2]^2 + u[1]^4)
-------------------------------
Factor(-1/2u[1]^5 - 1/2u[1]^3u[2]^2 + u[1]^4);
[[u[1]^2 + u[2]^2 - 2u[1], 1], [u[1], 3], [-1/2, 1]]
-------------------------------

yielding as complementary hypotheses the conditions u[1]2 + u[2]2 − 2u[1] = 0 ∨
u[1] = 0 that can be interpreted by saying that either point A lies on the given circle
or (when u[1] = 0) triangle �(A, C, D) is rectangle at C. In the next step of the
discovery procedure we consider as new hypothesis ideal the set H + H′e, which is
of dimension 1 and where both u[2] or u[1] can be taken as independent variables
ruling the new construction.

Dim(R/(H+H’^e));
1
-------------------------------
Elim([x[1],x[2],x[3],x[4],u[1]],H+H’^e);
Ideal(0)
-------------------------------
Elim([x[1],x[2],x[3],x[4],u[2]],H+H’^e);
Ideal(0)

Choosing, for example, u[2] as relevant variable, we check that the new statement
H ∧ H′e ⇒ T is correct under the non-degeneracy condition u[2] �= 0:

H’’:=Elim([x[1],x[2],x[3],x[4],u[1]], Saturation(H+H’^e,T));
H’’;
Ideal(u[2]^3)
--------------------------------

Thus we have arrived to the following statement: Given a circle of radius 1 and
centered at (1, 0), and a point A not in the X-axis and not in the line X = 2, the
segments [AE], [AF] (where E is the tangency point from A to the circle and F is
the intersection of the lines passing by (2, 0), E and A, (0, 0)) are of equal length if
A is on the Y-axis or on the circle. The latter case is quite trivial, since it means that
A = E = F.

Remark that if we choose u[1] as the privileged variable, what we get is

H’’:=Elim([x[1],x[2],x[3],x[4],u[2]], Saturation(H+H’^e,T));
H’’;
Ideal(2u[1]^4)
-------------------------------

a more trivial statement, since here A is subject to the conditions of being “not in the
Y-axis and not in the line X = 2 and A is not the origin, plus A on the Y-axis or in
the circle”; which can be summarized as A is in the circle and A is neither the origin
nor the point (0, 2) (for the equality of lengths of the segments AE, AF).
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All the computations required 0.52 CPU-seconds and 1908 kb of memory, and
they were done with a processor AMD Athlon(tm) XP 2000+ CPU at 1.66 GHz and
1 GB RAM.

5 Introducing Non-degeneracy Hypotheses

The protocol we have developed in the previous sections, although it seems the nat-
ural way to deal with the automatic discovery, can give different answers depending
on the way we add non-degenerate conditions as hypotheses.

For example, take three points A, B, C, A = (0, 0), B = (u1, 0), C = (u2, u3) and
let T = (u3) be the thesis ideal. We want to exclude, as our only hypothesis, the case
u3 = 0. One way of doing so, as in the example above, is to consider the saturation
of the ideal H of equality type hypotheses (the zero ideal in this case) by the ideal
of inequality type hypotheses (the ideal (u3) in this instance), that is, to consider the
ideal (0) : (u3)

∞ = (0). This ideal represents (see Appendix) the Zariski closure of
the set defined by the equations in the hypothesis minus the set u3 �= 0. Let U =
{u1, u2, u3}. Then our protocol yields H′ = (u3) and H′′ = (1) (for whatever subset
of variables), therefore H′, H′′ is an FSDIC for our problem. It seems that we have
proved {u3 �= 0 ∧ u3 = 0} ⇒ u3 = 0, but a closer look reveals that the new hypothesis
ideal is H + H′e = (u3) and, thus, we have just discovered that u3 = 0 ⇒ u3 = 0. So,
in this case, adding H′ we have lost the essential information about u3 �= 0.

On the other hand, we can proceed in the following way, obtaining a dif-
ferent answer. Consider the following hypothesis ideal HH = (0) + (u3z − 1) in
K[u1, u2, u3, z]. Apparently, HH can be “read” as another simple way of stating that
u3 �= 0. Then our protocol gives11 R′ = ((u3z − 1) + T) ∩ K[u1, u2, u3] = (1), so there
is not an FSDIC for our problem since V(HH + R′e) = ∅.

This example seems quite artificial, but we are going to see that this situation is
not rare.

Example 6 Given an arbitrary triangle, we construct the associated orthic triangle,
that is, the triangle whose vertices are the endpoints of the altitudes of the given
triangle. Then we conjecture the orthic triangle is equilateral.

11We use different notation (i.e. R′ instead H′, etc.) to distinguish the two ways to solve the problem.
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As in the previous example, we translate the given situation. Thus, let h1, h2, h3 and
h4 be the polynomials in R = Q[x[1..4], u[1..3], z], which translate the hypotheses
EA ⊥ BC, FB ⊥ AC, F ∈ AC and E ∈ CB. Let HH =(h1, h2, h3, h4, u[1]u[3]z − 1)

and let T = (t1, t2) be the thesis ideal, where t1 is given by the equality of the square
of the lengths of the segments [DE]2 = [EF]2 and t2 is given by [DE]2 = [DF]2.

Notice we have added, as hypothesis, that u[1]u[3] should be different from zero
(by introducing the equation u[1]u[3]z − 1 = 0 and by enlarging the set of variables).
Then we check that u[1], u[2], u[3] actually is a (maximal) set of independent vari-
ables for our construction since HH ∩ K[u[1], u[2], u[3]]=(0) and Dim(R/HH)=3.

As the theorem is obviously false, we turn over to discovery conditions, adding the
theses to the hypothesis ideal, ie. considering R′ = (HH + T) ∩ K[u[1], u[2], u[3]]
and checking that R′ is not the zero ideal. Then we take U ′ = u[1] and we check that
U ′ is a maximal set of independent variables for HH + R′. Following our protocol,
we compute next the ideal of conditions R′′ = ((HH + R′) : T∞) ∩ K[u[1]] and we
obtain that R′′ = Ideal(1). Therefore R′, R′′ is an FSDIC for our problem.12

But, what do we have discovered? In order to look for an answer, we find a
decomposition13 of the new set of hypotheses V(HH + R′e). We can easily check
that the ideal R′ is the intersection of the prime ideals P1 =(u[1]−2u[2], u[2]2−
3u[3]2), P2 =(3u[1]−2u[2], u[2]2−3u[3]2), P3 =(u[1]+2u[2], 3u[2]2−u[3]2) and P4 =
(u[1]−2u[2], 3u[2]2−u[3]2), which means that the angles of the given triangle should
verify one of the following set of degrees: HH1: {A=30, B=30, C=120}, HH2:
{A=30, B=120, C=30}, HH3: {A=120, B=30, C=30} or HH4: {A=60, B=60,
C=60}.

Therefore we have discovered that the orthic triangle would be equilateral if the
given triangle is itself equilateral or isosceles (and, then, of the particular type with
angles equal to 120, 30 and 30 degrees, respectively). We have not been able to find
a reference in the literature to this, somehow surprising, result.

Now let us turn to solve the previous example in a different way, by adding
the hypothesis of non degeneracy for u[1], u[3] by means of a saturation, and
so now we consider H = (h1, h2, h3, h4) : (u[1]u[3])∞. Following our protocol,
we first compute H′ = (H + T) ∩ K[u[1], u[2], u[3]], then H′′ = ((H + H′) :
T∞) ∩ K[U[1]]; in this case we obtain that H′′ = (0). Since 1 ∈ (H′)c′ : H′′∞, it
turns out that (H′, H′′) does not result to be an FSDIC for our problem.14 A
confirmation for this different answer can be found in the prime decomposition
of

√
H + H′e, that is, the intersection of P1 =(u[1]−2u[2], u[2]2−3u[3]2,

2x[4] − 3u[3], 2x[3] − 3u[2], 2x[2] − 3u[3], 2x[1] − u[2]), P2 = (3u[1] − 2u[2], u[2]2−
3u[3]2, 2x[4] − u[3], 2x[3] − u[2], 2x[2]+u[3], 2x[1]−u[2]), P3 =(u[1]+2u[2], 3u[2]2−

12The computations required 0.41 CPU-seconds and 1726 kb of memory.
13Notice that if P1, . . . , Ps are the minimal primes of R′e, then V(HH + R′e) = V(HH)∩V(

√
R′e) =

V(HH) ∩ V(
⋂s

i=1 Pi)=V(HH)∩(
⋃s

i=1 V(Pi))=⋃s
i=1(V(HH)∩V(Pi))=⋃s

i=1(V(HH + Pi)).
14The computations in this setting required 0.88 CPU-seconds and 3388 kb of memory.
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u[3]2, 2x[4] + u[3], 2x[3] + u[2], 2x[2] − u[3], 2x[1]+u[2]), P4 =(u[1]−2u[2], 3u[2]2−
u[3]2, 2x[4]−u[3], 2x[3]−u[2], 2x[2]−u[3],2x[1]−3u[2]),P5 =(u[3], u[2], u[1], x[3]2+
x[4]2, x[2]x[3] + x[1]x[4], x[1]x[3] − x[2]x[4], x[1]2 + x[2]2), P6 = (u[3], u[2], x[3]2 +
x[4]2 − x[3]u[1], x[2], x[1]), P7 = (u[3], u[1] − u[2], x[4], x[3] − u[2], x[1]2 + x[2]2−
x[1]u[2]),P8 =(u[2], u[1], x[4], x[3], x[2], x[1]), P9 =(u[3], u[2], u[1], x[4], x[3], x[1]2+
x[2]2), P10 = (u[3], u[2], u[1], x[3]2 + x[4]2, x[2], x[1]), P11 = (u[3], u[1] − u[2], x[4],
x[3]−u[2], x[2], x[1]−u[2]), P12 =(u[3], u[2], x[4], x[3], x[2], x[1]).

We can check that the thesis ideal is not contained in P7. So we observe that the
thesis ideal does not belong to some minimal primes of H + H′e where the initial
degenerate conditions lie and where u[1] is independent.

In view of these examples it is natural to ask for the relations between the ideals
computed after introducing the non-degeneracy hypotheses in the two different
ways, i.e. to understand the relations between H′ and R′, and between H′′ and R′′.
Let E represent the ideal of the equations in the hypotheses and let G = (g1, . . . , gl)

be the ideal associated to a collection of inequations {g1 �= 0 ∨ · · · ∨ gl �= 0} that we
have also as hypotheses. We remark that there is no loss of generality in considering
only the disjunction of inequations, since a conjunction {g1 �= 0 ∧ · · · ∧ gl �= 0} can
be replaced by a product g1 · · · gl �= 0. Moreover, any conjunction of disjunctions of
inequations can be expressed (by the distributive law) as a disjunction of conjunctions
of inequations.

So we have E, G and T in K[X]. Let H be the hypothesis ideal built up according
to the saturation method (ie. H = (E : G∞)) and let HH be the hypothesis ideal
constructed by adding a slack variable, ie. HH = (EK[X, s] + ((g1s − 1) · · · (gls −
1)).

Let U ′ ⊂ U be the sets of our privileged variables. Then we proceed in both
cases with our protocol, yielding, respectively, H′ = ((E : G∞) + T) ∩ K[U] and
R′ = (EK[X, s] + ((g1s − 1) · · · (gls − 1)) + T K[X, s]) ∩ K[U], where s is an extra
variable. By Proposition 6 in the Appendix, we have that

(EK[X, s] + ((g1s − 1) · · · (gls − 1))) ∩ K[X] = HH ∩ K[X] = E : G∞ = H,

so both represent, after the elimination of the slack variable, the same set of initial
hypotheses. On the other hand we have seen in previous examples that H + H′K[X]
and HH + R′K[X, s] may represent different sets of new (that is, obtained after
applying the discovery protocol) equality type hypotheses. This is clarified through
the following statements.

Proposition 3 Suppose G contained in K[U]. Then R′ = H′ : G∞. Moreover, for the
new (equality type) hypothesis ideals we have the following relation:

(HH + R′K[X, s]) ∩ K[X] = (H + H′K[X]) : (GK[X])∞
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Proof Let SG = (g1s − 1) · · · (gls − 1) ⊆ K[X, s]. By Proposition 6 and by the
Lemmas 2 and 3 we have

R′ = (HH + T K[X, s]) ∩ K[U]
= (EK[X, s] + SG + T K[X, s]) ∩ K[U]
= (EK[X, s] + SG + T K[X, s]) ∩ K[X] ∩ K[U]
= ((E + T) : (GK[X])∞) ∩ K[U]
= (((E : GK[X]∞) + T) : (GK[X])∞) ∩ K[U]
= ((H + T) : (GK[X])∞) ∩ K[U]
= ((H + T) ∩ K[U]) : G∞ = H′ : G∞

Analogously, we can prove the relation holding between the two possible new
hypothesis ideals:

(EK[X, s] + SG + R′K[X, s]) ∩ K[X]
= (E + R′K[X]) : (GK[X])∞
= (E + (H′ : G∞)K[X]) : (GK[X])∞
= (E + (H′K[X] : (GK[X])∞)) : (GK[X])∞
= (E + H′K[X]) : (GK[X])∞

��

Therefore, the zero sets of the two new hypothesis ideals could be different because
V(H + H′e) can contain some components where the inequality conditions vanish
simultaneously, and these components are taken away by the saturation by G, so
what remains agrees—as shown in the preceding proposition—with the projection
over the X-variables of V(HH + R′e).

Next, let study the relation between R′′ and H′′.

Proposition 4 Suppose G ⊆ K[U ′]. Then R′′ = H′′ : G∞

Proof As above, let SG = (g1s − 1) · · · (gls − 1) ⊆ K[X, s]. Again, by Proposition 6,
by the Lemma 2 and by the previous proposition, we have

R′′ = ((EK[X, s] + SG + R′K[X, s]) : (T K[X, s])∞) ∩ K[U ′]
= ((EK[X, s] + SG + R′K[X, s]) : (T K[X, s])∞) ∩ K[X] ∩ K[U ′]
= (((EK[X, s] + SG + R′K[X, s]) ∩ K[X]) : T∞) ∩ K[U ′]
= (((E + H′K[X]) : (GK[X])∞) : T∞) ∩ K[U ′]
= ((((E : (GK[X])∞) + H′K[X]) : (GK[X])∞) : T∞) ∩ K[U ′]
= ((((E : (GK[X])∞) + H′K[X]) : T∞) : (GK[X])∞) ∩ K[U ′]
= ((((E : (GK[X])∞) + H′K[X]) : T∞) ∩ K[U ′]) : G∞ = H′′ : G∞

��
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Hence, in the case G ⊆ K[U ′], we have

(R′ ∩ K[U ′]) : R′′∞ = ((H′ ∩ K[U ′]) : H′′∞) : G∞.

So, if R′, R′′ is an FSDIC (i.e. 1 �∈ R′c′ : R′′∞) for HHK[X, s], T K[X, s], then H′, H′′
is an FSDIC for H, T. The converse holds only in the case U ′ is a set of independent
variables for H′. In fact, suppose H′c′ = (0). Then, by Lemma 2, R′c′ = H′c′ : G∞ =
(0). Suppose R′, R′′ is not an FSDIC, i.e. R′c′ : R′′∞ = (1). Then ((0) : H′′∞) : G∞ =
(1), i.e. ((0) : G∞) : H∞ = (1) and this implies (0) : H′′∞ = (1), i.e. H′, H′ is not an
FSDIC for H, T.

We can summarize the precedent analysis in the following result:

Theorem 4 Let T be a statement, let E ⊆ K[x1, . . . , xn] be the ideal corresponding to
the hypotheses given by equations, G = (g1, . . . , gl) ⊆ K[U ′] the ideal corresponding
to a disjunction of inequations and T the thesis ideal. Let U ′ ⊆ U ⊆ {x1, . . . , xn}.
Let H′, H′′, R′, R′′ as before, and suppose that R′, R′′ is an FSDIC for HH =
(EK[X, s] + ((g1s − 1) · · · (gls − 1))), T K[X, s]. Then H′, H′′ is a FSDIC for H =
(E : G∞), T.

Moreover, if U ′ is a set of independent variables for H′, then R′, R′′ is an FSDIC if
and only if H′, H′′ is an FSDIC.

In conclusion, we can say our protocol does not suggest a specific way the user has
to deal with in order to include inequations as part of the hypothesis, to eliminate
known before hand degenerate cases. In fact the user faces here a philosophical
problem: either from the beginning decides to eliminate some cases, and wants to
continue to exclude these situations when considering the new hypothesis ideal; or—
since the user is trying to discover theorems—the user could prefer to find out that
the answer is that the theorem holds if he/she does not eliminate the previously
considered as degenerate cases. The first situation corresponds to the choice of HH
as hypothesis; the second, to the election of H to describe the hypothesis through
saturation.

6 Further Examples

Example 7 This is an example of automatic discovery concerning Euler’s formula
relating the radii of the ex-circle and of the in-circle of a triangle, as well as the
distance between the centers of these circles. This problem has been approached
by Recio [19] and by Botana and Recio [4] in the automatic discovery frame-
work; and also by Wang and Zhi [27], but for automatic proving, giving explicitly
the formula of Euler (arguably named Poncelet’s theorem by them, for exam-
ple see http://mathworld.wolfram.com/EulerTriangleFormula.html or see the web
page http://enriques.mathematik.uni-mainz.de/intgeo/poncelet.html) and requiring
the machine to prove its validity.

We consider, for simplicity, a triangle with vertices at A = (−1, 0), B = (1, 0), C =
(u[1], u[2]). Then take the circumscribed circle of this triangle, of radius, say, c; the
inscribed circle, with radius r; and the distance d between the two centers of these
circles. We wonder if, in this case, there are some constraints that c, r, d will have

http://mathworld.wolfram.com/EulerTriangleFormula.html
http://enriques.mathematik.uni-mainz.de/intgeo/poncelet.html
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to fulfill; or if, on the contrary, these three quantities can take any arbitrary values.
Notice that in this case we should apply the protocol with thesis T = Ideal(0) and
U = {d, c, r}, so that the “complementary” hypotheses are expressed just in terms of
these variables.

Thus we proceed constructing the circumcenter O = (x[1], x[2]) as a point equidis-
tant to the three vertices; ditto for the incenter I = (x[3], x[4]), as the center of
a circle which is tritangent to the sides of the triangle (that is, passing through
every side and having a perpendicular radius at the corresponding point of contact
(y[1], y[2])). So the polynomial h1 which translates the incenter hypothesis will be
determined in the following way:

Elim(y,Ideal((y[1]-x[3])^2+(y[2]-x[4])^2-r^2,
TP.Collinear([y[1],y[2]],A,C),
TP.Perpendicular([I,[y[1],y[2]]],[A,C])));

Ideal(-u[2]^2x[3]^2 + 2u[1]u[2]x[3]x[4] - u[1]^2x[4]^2 +
u[1]^2r^2 + u[2]^2r^2- 2u[2]^2x[3] + 2u[1]u[2]x[4] +
2u[2]x[3]x[4] - 2u[1]x[4]^2 + 2u[1]r^2 - u[2]^2 +
2u[2]x[4] - x[4]^2 + r^2)

Analogously, one gets, by considering the tangency condition to the side BC, the
second hypothesis polynomial h2:

Elim(y,Ideal((y[1]-x[3])^2+(y[2]-x[4])^2-r^2,
TP.Collinear([y[1],y[2]],B,C),
TP.Perpendicular([I,[y[1],y[2]]],[B,C])));

Ideal(
-u[2]^2x[3]^2+2u[1]u[2]x[3]x[4]-u[1]^2x[4]^2+u[1]^2r^2
+u[2]^2r^2+2u[2]^2x[3]-2u[1]u[2]x[4]-2u[2]x[3]x[4]+
2u[1]x[4]^2-2u[1]r^2-u[2]^2+2u[2]x[4]-x[4]^2+r^2)

The remaining hypotheses: h3, h4, h5, h6, h7, as presented below, are self
evident: h3 = r2 − x[4]2, h4 = [AO]2 − [BO]2, h5 = [AO]2 − [CO]2, h6 = [AO]2 −
c2, h7 = d2 − [IO]2. Now we should search for a consequence from H = (h1, . . . , h7)

that just relates d, r, c. But

Use R::=Q[u[1..2],x[1..4],d,c,r];

Elim([u[1],u[2],x[1], x[2], x[3], x[4]],H);
Ideal(0)
-------------------------------
Dim(R/H);
3
-------------------------------

that means that, if {d, r, c} are constrained to be, respectively, the distance between
the in and ex-centers, and the corresponding radii, then they must verify the equation
0 = 0, which is obvious and not very interesting. Therefore {d, r, c} are independent
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variables for H. But the expected dimension should be 2, i.e. the configuration should
be fixed by u[1], u[2]. We conclude that it is possible we have, without noticing it,
introduced some degenerate cases.

It is perhaps remarkable to study in this case what happens if we add the
hypothesis u[2]z − 1, that is u[2] �= 0, in order to prevent the degeneration of the
given triangle. After all, one might easily verify by hand that if u[2] = 0 and the
triangle collapses to a line, the equations in H do not impose any constraint on
{d, r, c}. Thus one could, perhaps, eliminate, in the given statement, this degenerate
case. This is attempted below, using the saturation mode.

H:=Saturation(Ideal(Ip1,Ip2,Ip3,Ip4,Ip5,Ip6,Ip7),
Ideal(u[2]));

Elim([u[1],u[2],x[1], x[2], x[3], x[4]],H);
Ideal(d^4 - 2d^2c^2 + c^4 - 4c^2r^2)
-------------------------------
Factor(d^4 - 2d^2c^2 + c^4 - 4c^2r^2);
[[d^2 - c^2 + 2cr, 1], [d^2 - c^2 - 2cr, 1]]
-------------------------------

yielding now that the considered variables must verify {d2 − 2rc − c2 = 0} ∨ {d2 +
2rc − c2 = 0}, which is, essentially, Euler’s formula (extended to cover the case of
the different possible tritangent circles to a triangle).

All the computations in the previous example required 0.4 CPU-seconds and
2292 kb of memory.

Example 8 Let ABCD be a quadrilateral and let E be a point on the line AD.
We wonder where we have to place E in order that the triangle ABE and the
quadrilateral have same area.

This is a very common exercise in the elementary geometry classroom, were the
teacher expects the student to find “the” answer, namely, that point E should be
placed in the intersection of the line supporting side AD with the parallel to DB
through C, because all the triangles with common base BD and vertex on this parallel
line will have same height and, therefore, same area. Let us see what our protocol for
automatic discovery yields in this case.
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First, we (naively) observe that the area of the quadrilateral could be expressed
as u4/2 − u2/2. Then, in order to compute the area of ABE, let F = (x2, x3) be the
feet of the altitude on the side AB. Let [AB] = b and [EF] = h, so that the area
of the triangle ABE becomes bh/2. Moreover, we introduce (this time adding one
slack variable) the non-degeneracy condition u2u4 �= 0. So let h1, . . . , h6 be the poly-
nomials which translate the conditions E ∈ AD, F ∈ AB, EF ⊥ AB, [EF]2 = h2

and [AB]2 = b 2. Let HH = (h1, . . . , h6, zu[2]u[4] − 1), and T = (u[4]/2 − u[2]/2 −
bh/2).

Then we check that the dimension of the whole system is 5 (as it is ruled by
the two free vertices of the quadrilateral and the gliding point E on the line, ie.
{u[1], . . . , u[5]} is a maximal set of independent variables). Finally we apply our dis-
covery protocol, searching for an FSDIC and we obtain R′ = (−2u[2]u[4] + u[4]2 +
2u[2]u[5] − u[5]2). It is easy to check that −2u[2]u[4] + u[4]2 + 2u[2]u[5] − u[5]2 =
−(u[4] − u[5])(2u[2] − u[4] − u[5]). We verify that these complementary hypotheses
still leave free the two free vertices of the triangle, but involve now one coordinate
of point E, as expected. Therefore we set U ′ = {u[1], . . . , u[4]}. So, now, we search
for the complementary non-degeneracy hypotheses and we obtain that R" = (0), but
they are contradictory, since it introduces as hypotheses the expression 0 �= 0.

Therefore we do not have an FSDIC for our problem. Still, let us analyze the
answer we have obtained. It is clear what the condition u[4] − u[5] means, i.e. E has
to be taken on the parallel to DB passing through C. The condition 2u[2] − u[4] −
u[5] gives a point E′ such that [AE] = [AE′], as in the following picture:

But what the reason is for not having an FSDIC in this context? Let us try to find out
the relations between the various involved areas.

Elim([x[1],x[2],x[3],z,u[5],u[1],u[3]],HH+R’);
Ideal(b^2h^2 - u[2]^2 + 2u[2]u[4] - u[4]^2)
-------------------------------
Factor(b^2h^2 - u[2]^2 + 2u[2]u[4] - u[4]^2);
[[bh - u[2] + u[4], 1], [bh + u[2] - u[4], 1]]
-------------------------------
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The second relation means that the area of the triangle, as computed, is the
opposite of the area of the quadrilateral. In fact, we could have the following picture:

and in this case we would have bh/2 = −u[2]/2 + u[4]/2. So our approach, although
unsuccessful, tells us that the sign of the area plays a fundamental role in the
formulation of this situation. Then we try to solve the problem using, to express the
area of a triangle, the well known determinantal formula and expressing the area
of the quadrilateral as the sum of the areas of two triangles. The following is a self-
explanatory transcription of the computer session:

H1:=TP.Collinear(A,D,E);
HH:=Ideal(H1,zu[2]u[4]-1);

AreaABD:=1/2Det(Mat([[1,u[1],u[2]],[1,1,0],[1,0,0]]));
AreaBCD:=1/2Det(Mat([[1,1,0],[1,u[3],u[4]],[1,0,0]]));
AreaABE:=1/2Det(Mat([[1,u[1],u[2]],[1,1,0],[1,x[1],u[5]]]));

T:=Ideal(AreaABE-AreaBCD-AreaABD);

R’:=Elim([x[1],z],HH+T);
R’;
Ideal(-u[4] + u[5])
-------------------------------
R’’:=Elim([x[1],z,u[5]],Saturation(HH+R’,T));
R’’;
Ideal(1)
-------------------------------

So now we have an FSDIC and the complementary hypothesis described by R′
determines the location of E by tracing a parallel to DB passing through C. Notice
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that in this way we do not obtain the condition 2u[2] − u[4] − u[5] = 0 that appeared
before. Intrigued by this fact, we pay attention to the following picture

where we observe that here AreaABE = −AreaBCD − AreaABD. So a more
complete formulation could to consider as the thesis polynomial all the possible
combinations of the signed sum of the areas, as in the following FSDIC session:

T:=Ideal((AreaABE-AreaBCD-AreaABD)(AreaABE+AreaBCD-AreaABD)
(AreaABE+AreaBCD+AreaABD)(AreaABE-AreaBCD+AreaABD));

R’:=Elim([x[1],z],HH+T);
R’;
Ideal(4u[2]^2u[4]^2 - u[4]^4 - 4u[2]u[4]^2u[5] -

4u[2]^2u[5]^2 + 2u[4]^2u[5]^2 + 4u[2]u[5]^3 - u[5]^4)
-------------------------------

Factor(4u[2]^2u[4]^2 - u[4]^4 - 4u[2]u[4]^2u[5] -
4u[2]^2u[5]^2 + 2u[4]^2u[5]^2 + 4u[2]u[5]^3 - u[5]^4);

[[u[4] - u[5], 1], [u[4] + u[5], 1],
[2u[2] + u[4] - u[5], 1], [2u[2] - u[4] - u[5], 1]]
-------------------------------
R’’:=Elim([x[1],z,u[5]],Saturation(HH+R’,T));
R’’;
Ideal(1)
-------------------------------

that provides, through the factors of the new hypothesis generating R′, four possible
locations for point E. Of course, this procedure can be used to explore, as well, other
situations (such as introducing as thesis polynomial just the product of the first and
third factors, etc.).
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All the computations in the previous example required 1.23 CPU-seconds and
3604 kb of memory.

Example 9 This final example has been brought to our attention by one of the
referees, to whom we want to express our thanks. The example deals with a
generalization of the Steiner-Lehmus Theorem on the equality of lengths of
the angle bisectors on a given triangle, an issue which has attracted along the
years a considerable interest. We refer to http://www.mathematik.uni-bielefeld.
de/∼sillke/PUZZLES/steiner-lehmus for a large collection of references (sometimes
with comments) on the original statement, concerning the equality of two internal
angle bisectors, and to [28] or [5] for automatic approaches dealing with its general-
ization, regarding internal as well as external angle bisectors.

Without loss of generality we will consider a triangle of vertices A(0, 0), B(1, 0),

C(x, y). Then at each vertex we can determine two bisectors (one internal, another
one external) for the angles described by the lines supporting the sides of the triangle
meeting at that vertex. We want to discover what kind of triangle has, say, one
bisector at vertex A and one bisector at vertex B, of equal length. Recall that the
Steiner-Lehmus Theorem states that this is the case, for internal bisectors, if and
only if the triangle is isosceles. So the question here is about the equality of lengths
when we consider external bisectors, too.

Algebraically we translate the construction of a bisector, say, at vertex A, as
follows. We take a point (p, q) at the same distance as C = (x, y) from A, so it verifies
p2 + q2 − (x2 + y2) = 0. Then, we place this point at the line AB, by adding the
equation q = 0. Then the midpoint from (p, q) and C will be ((x + p)/2, (y + q)/2)

and the line defined by A and by this midpoint intersects the opposite side BC (or
its prolongation) at point (a, b), verifying {p2 + q2 − (x2 + y2) = 0, q = 0,−a(y +
q)/2 + b(x + p)/2 = 0,−ay + b(x − 1) + y = 0}. Finally, distance from (a, b) to A is
given as a2 + b 2, and this quantity provides (the square of) the length of the bisec-
tor(s) associated to A. Notice that by placing (p, q) at different positions in the line
AB, the previous construction provides both the internal and the external bisector
through A. There is no way of distinguishing both bisectors, without introducing
inequalities, something alien to our setting (since we work on algebraically closed
fields).

Likewise, we associate a set of equations to determine the length of the bisector(s)
at B, introducing a point (r, s) in the line AB, so that its distance to B is equal to
that of vertex C. Then we consider the midpoint of (r, s) and C and place a line
through it and B. This line intersects side AC at a point (m, n), which is defined by
the following set of equations: {(r − 1)2 + s2 − ((x − 1)2 + y2) = 0, s = 0,−m((y +
s)/2) + n((x + r)/2 − 1) + (y + s)/2 = 0,−my + nx = 0}. The length of this bisector
will be (m − 1)2 + n2.

Finally, we apply our discovery protocol to the hypotheses H given by the two
sets of equations and having as thesis T the equality (a2 + b 2) − ((m − 1)2 + n2) = 0.
It is clear the that the only two (geometrically meaningful for the construction)
independent variables are {x, y}, so we eliminate in H + T all variables except these
two, getting in this way the ideal H′. The result is a polynomial that factors as the
product of y3 (a degenerate case), 2x − 1 (triangle is isosceles) and the degree 10
polynomial 14x2 y4 + y2 + 246y2 x6 + 76x8 − y6 + 8x10 + 9y10 − 164y2x5 + 12y4x−
10x2 y2 − 4x4−44y8x−136y4x3 + 278y4x4 − 64x7 − 164x7 y2 + 122y6x2 − 6y4 + 8x5−

http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/steiner-lehmus
http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/steiner-lehmus
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36y6x+20y2x3+84y4x6+86x4 y6+44x2 y8+16x6+41y2x8+31y2x4−40x9 − 252y4x5−
172y6x3 + 14y8 (cf. [28], page 150, also [5] for a picture of the curve given by this
polynomial).

Next, in order to compute H′′ we must choose one of the variables x, y, say,
variable x, and eliminate y in the saturation of H + H′ by T. The result is (0), so there
is no FSDIC, according to Corollary 1. In fact it is hard to expect that for almost
all triangles with vertex C placed at the locus of H′ and for any interpretation of
the bisectors at A and B, they will all have simultaneously an equal length. But it
also means (by Proposition 2) that adding H′ to the set of hypotheses, for instance,
placing vertex C at any point on the degree 10 curve, there will be an interpretation
for the bisectors such that the equality of lengths follow. It is easy to deduce
that this is so (except for some degenerate cases) considering internal/external,
external/internal and external/external bisectors (since the internal/internal case
holds only for isosceles triangles). Moreover, intersecting this curve with the line
2x − 1 = 0 we can find out two points x = 1/2, y = (1/2)RootOf (−1 + 3Z 2) (aprox.
x = 0.5000000000, y = + − 0.2886751346) where all four bisectors (the internal and
external ones of A and B) have equal length. The other two points of intersection
correspond to the case of equilateral triangles, where the two internal bisectors and
the two infinite external bisectors of A, B have pairwise equal length, but the length
is not equal for the internal and external bisectors.

A further question can be considered in this setting, regarding the equality of
lengths of all three bisectors in a triangle. Here the hypotheses include the algebraic
description of the bisector(s) for A, B, C and the two theses describe the equality
of the lengths of the bisector(s) of A, B and of A, C. As above, we eliminate all
variables except {x, y}, yielding an ideal H′ generated by several polynomials (here
presented as product of irreducible factors):

1. y3(2x − 1)(136x2 y4 + 115021x2 y2 − 23136x2 + 23136x − 115021xy2 − 136xy4 −
21504 + 95149y2 + 116789y4),

2. y3(2x − 1)(17x2 − 17x − 2 + 19y2)(x2 − x + 1 + y2),
3. −y3(2x − 1)(103155x2 y2 − 20960x2 − 103155xy2 + 20960x + 85459y2 − 136y6 −

19328 + 104787y4),
4. y3(377084y2x4 − 17856 − 61088x4 − 148192x2 − 381436xy4 + 87104x −

412545xy2 + 80325y2 + 544y8 + 96005y4 − 754168x3 y2 + 122176x3 − 2856y6 +
789629x2 y2 + 381436x2 y4)

The solution set of this system of two-variable polynomials is the x-axis (a
degenerate case) plus a finite number of real and complex points. A detailed case
study shows that these real points correspond to the following situations:

a) The triangle is equilateral.
b) x = 2/17 − (2/17)RootOf (4Z 4 + 349Z 2 − 64)2, y = RootOf (4Z 4 + 349Z 2 −

64) (aprox. x = 0.09611796796, y = + − 0.4277818044). These two points
correspond to the equality of lengths for the external bisectors of A and C and
the internal bisector of B.

c) Likewise, we have the two points x = 15/17 + (2/17)RootOf (4Z 4 + 349Z 2 −
64)2, y = Root Of (4 Z 4 + 349 Z 2 − 64) (aprox. x = 0.09038820320, y =
+ − 0.4277818044). These points correspond to the equality of lengths for the
external bisectors of B and C and the internal bisector of A.
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d) x = 1/2, y = RootO f (4Z 4 −19Z 2 − 4) (aprox.x = .5000000000, y = ±2.225295714).
These two points correspond to the equality of lengths for the external bisectors
of A and B and the internal bisector of C.

In particular we remark that there are no triangles where two internal bisectors and
one external bisector (for different vertices) have equal length, and that there are no
triangles where the three external bisectors (one for each of the three vertices) are
equal (except for the case of infinite length).

7 Conclusions

The precedent examples, written in a dialectical style: user and machine both con-
tributing their part towards discovery . . . show, in our opinion, that human reflection
is still crucial in automatic discovery, but also that automatic discovery, through
the proposed protocol, is already an enlightening tool for human understanding of
geometric situations. It is by no means evident (at least in the etymological sense
of obvious, immediate) to a trained human, the finding of some of the conditions
that have mechanically appeared (performed with a laptop and a non-commercial
software) in the Examples 5 or 6. On the other hand, Examples 7, 8 and 9 show
how human cooperation is badly needed in some occasions (more or less trivial to
overcome in the case of Example 7; more tangled—but also more rewarding, as the
difficulties lead us to some unexpected positions for our query point—in the case of
Example 8 or Example 9).

The above examples also show how the inclusion “a priori”, as part of the
hypotheses, of some non-degeneracy conditions, could help the discovery protocol
we have presented. And, then, the discussion carried on Section 5 implies that this
inclusion can be done through two (apparently similar) methods, but that the choice
of one or the other has, sometimes, different consequences and require human
decision. We think that this remark has been overlooked until now and we have
presented examples using, randomly, one of the methods, and, occasionally, both of
them, showing its crucial role in some occasions.

The framework for discovery that we have called FSDIC aimed to be a general
approach towards discovery (stating in general terms what we wanted to achieve,
rather that how we wanted to achieve it). It turned out that despite the fact that
there are, if any, several possible FSDIC’s, its existence is equivalent to the existence
of a very concrete couple of ideals, verifying some simple to check conditions, close
to the ones presented in [21]. In this sense the present paper can be thought, after
an exhaustive formalization and analysis, as a definitive “closure” of the main ideas
originated there.

Appendix: Some Properties of the Saturation

Definition 2 I, J ideals of K[X]. Then I : J = {x, xJ ⊂ I}. The saturation of I by J
is defined as I : J∞ = ∪n(I : Jn). By abuse of notation, for a principal ideal J = ( f ),
I : ( f )∞ will be denoted as I : f ∞.
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Remark 5 The saturation of I by J gives the intersection of all primary components
Q associated to prime ideals of a minimal decomposition of I such that there is an
f in J with f not in such primes, i.e. the saturation of I by J is the intersection of
the primary components associated to the primes such that J is not contained in them.
Clearly this implies that

√
I : J∞ = √

I : J = √
I : √

J = √
I : J∞ (see also Lemma

3.3 of [1]).

Remark 6 Let X be a set of variables, U a subset of the X-variables and Y = X \ U .
First we remark that, for any ideal J in K[Y], its extension to K[Y, U] is exactly the
collection of polynomials that can be written as polynomials in the U-variables with
coefficients in JK[Y].

It follows that, given two ideals J1, J2 ⊂ K[Y], the extension of their intersec-
tion is the intersection of their extension. It is also true that (J1 : J2)K[Y, U] =
(J1 K[U, Y] : J2 K[U, Y]), i.e. the extension of the quotient of two ideals is the
quotient of the extended ideals. Moreover, since J1 : J∞

2 = J1 : Jn
2 for some n and

(J1 K[U, Y] : J2 K[U, Y]∞) = (J1 K[U, Y] : (J2 K[U, Y])m) for some m, we have we
(J1 : J∞

2 )K[Y, U] = (J1 K[U, Y] : J2 K[U, Y]∞) taking the max{n, m}.

The following properties have been used through the paper and are collected here,
since for some of them is difficult to find precise references.

Proposition 5 Let I, J be ideals of K[X]. Assume J is generated by f1, . . . , fr.
Then (I : J∞) = {x ∈ K[X], ∀ f ∈ J, ∃n ≥ 0, xf n ∈ I}. Moreover, (I : J∞) = {x ∈
K[X], ∀l = 1, . . . , r, ∃n ≥ 0, x fl

n ∈ I}.

Proof By definition, if x ∈ (I : J∞) then ∃n, x ∈ (I : Jn). Obviously, for every f ∈
J, f n ∈ Jn. Then ∀ f ∈ J, ∃n ≥ 0 (independent of f ), such that xf n ∈ I. The same
applies for fl .

Conversely, we want to prove that if x is such that ∀ f ∈ J there is some n = n( f )
with xf n ∈ I, then x ∈ (I : Jm) for some m. Since every element of Jm is a sum of
products of m elements in J (in particular, a product of m generators fl), if it is
enough to prove that x times each one of these products lies in I. Consider the power
ml such that x f l

ml ∈ I and let m = ∑
lml . Then, in the product of m factors of fl , each

fl will be repeated αl times, so that
∑

αl = m. But this implies for some l, αl ≥ ml .
Thus the multiplication by x of this product will lie in I. ��

Proposition 6 Let I and J = ( f1, . . . , fr) be ideals in K[X] and s an extra variable,
then I : J∞ = (Ie + (( f1s − 1) · · · ( frs − 1))) ∩ K[X], where Ie denotes here the ex-
tended ideal IK[X, s].

Proof In fact (I : J∞) = ⋂r
i=1(I : ( fi)

∞), so if f ∈ I : J∞ then f ∈ (I : ( fi)
∞), i.e.

f f ai
i ∈ I for some ai, hence f f ai

i sai ∈ Ie. But (1 − (sfi)
ai) = (1 − sfi)(1 + sfi + · · · +

(sfi)
ai−1), so f · ∏r

i=1(1 − (sfi)
ai) ∈ (( f1s − 1) · · · ( frs − 1)). Performing the product

in the first term of this equality, and noticing that it is f plus a collection of
summands in which there is always a product f ai

i sai times f , we conclude that
f ∈ Ie + (( f1s − 1) · · · ( frs − 1)).
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Viceversa, if f ∈ Ie + (( f1s − 1) · · · ( frs − 1)) and f ∈ K[X], then f =∑m
j=1 pjh j + h, where h j ∈ I ⊆ K[X], pj ∈ K[X, s] and h ∈ (( f1s − 1) · · · ( frs − 1)).

Let s = 1
fi

, then clearing denominators we have f f ai
i ∈ I for any i. ��

Corollary 2 Let I and Ji = ( fi1, . . . , fili) be ideals in K[X] for i = 1, . . . , r
and let s1 · · · sr be some auxiliary, independent, variables. Then it holds that
I : (

∏
1...r Ji)

∞ = (IK[X, s1, . . . , sr] + (( f11s1 − 1) · · · ( f1l1 s1 − 1), . . . , ( fr1sr − 1) · · ·
( frlr sr − 1))) ∩ K[X].

Proof It follows from Proposition 6 and from the previous remarks. ��

Lemma 2 Let J1 be an ideal in K[U, Y] and let J2 an ideal in K[U]. Then (J1 :
J2 K[U, Y]∞) ∩ K[U] = (J1 ∩ K[U]) : J∞

2 .

Proof Clearly if f ∈ K[U] is such that f b n ∈ J1 for any b ∈ J2 K[U, Y] and for some
n, then f b n ∈ J1 ∩ K[U] for any b ∈ J2. Viceversa, let f ∈ (J1 ∩ K[U]) : J∞

2 . Let b ∈
J2 K[U, Y], so b = ∑

cib i with bi ∈ J2 K[U] and ci ∈ K[U, Y]. Then f b = ∑
cib i f ∈

J1. ��

Lemma 3 Let J1, J2, J3 ideals in K[X]. Then

(J1 : J∞
2 + J3) : J∞

2 = (J1 + J3) : J∞
2

Proof Clearly (J1 : J∞
2 + J3) : J∞

2 ⊇ (J1 + J3) : J∞
2 . Let f ∈ (J1 : J∞

2 + J3) : J∞
2 and

let b ∈ J2. We claim that there exists n such that f b n ∈ J1 + J3. In fact there exists m
such that f b m ∈ J1 : J∞

2 + J3, so f b m = s + c, with sb k ∈ J1 for some k and c ∈ J3.
Therefore f b m+k ∈ J1 + J3. ��
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